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  Water temperature is a physical property that fundamentally affects stream ecology and is considered an 

important water quality parameter from scientific and legal view points.  On global, catchment and reach 

scales, anthropogenic activities have substantially altered natural stream temperature regimes, impairing 

these systems‘ ability to maintain ecological integrity.  Thermal degradation often can be attributed to a 

variety of human activities, and global climate change, which has been accelerated by the demands of an 

exponentially expanding human population, will play a central role in defining stream temperature 

regimes in the future.  Natural spatial and temporal variability in stream temperatures adds to the 

complexity of regulating thermal pollution and restoring natural conditions of stream ecosystems.  As 

such, managers would benefit from a comprehensive understanding of the thermal dynamics and primary 

drivers, including air temperature, of the thermal energy budgets in unaltered, or reference, streams.  

 

  In this study, a random coefficient regression model was developed and used to analyze variability in 

summer daily average water temperatures and the relationship between summer daily average air and 

water temperatures of thirty-six of the Montana Department of Environmental Quality‘s reference 

streams.  These streams represent four of Montana‘s seven Level III ecoregions: Middle Rockies, 

Northern Rockies, Northwestern Glaciated Plains, and Northwestern Great Plains.  Variability in stream 

temperatures between ecoregions, between streams within ecoregions, and the air-water temperature 

relationship were primary considerations.  This model indicates that there is not significant variability 

between ecoregions in Montana‘s reference stream temperatures and in the air-water temperature 

relationship.  Alternately, the model indicates that there is significant variability between streams within 

each ecoregion in reference stream temperatures and the air-water temperature relationship.  Equations 

representing the expected daily average water temperatures of reference streams, given values of daily 

average air temperature with zero and one-day lag, are also presented.  Finally, the management 

implications of this predictive model are discussed, and a holistic approach is recommended for 

developing thermal regime-based stream temperature standards, which are critical for the restoration and 

maintenance of ecological integrity, based on ‗natural‘ conditions in reference streams.   
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INTRODUCTION 

 

Stream temperature regimes are the result of dynamic interactions between fluvial system 

structures, including the channel, riparian zone, and alluvial aquifer, and the processes that drive or 

influence water temperatures, including climatic factors, stream flow, groundwater/surface water 

interactions, solar radiation and shading by riparian vegetation (Poole and Berman 2001; Theurer et al. 

1984; Bartholow 1989; Johnson 2004; Moore et al. 2005).  On global, catchment and reach scales, 

anthropogenic activities have substantially altered natural stream temperature regimes (Poole and Berman 

2001; US EPA 2003; Webb 1996; Webb and Crisp 2006; Krause et al. 2004; Reeves et al. 1998).  Global 

climate change, in particular, has been accelerated by the growing demands of an exponentially 

expanding human population (IPCC 2007) and will likely play a central role in defining stream 

temperature regimes in the future (Schindler 1997; Bates et al. 2008; Hauer et al. 1997; Durance and 

Ormerod 2008).  Natural and anthropogenically-induced fluctuations in stream temperature will interact 

and may induce a wide array of novel, and potentially detrimental, behavioral and physiological responses 

in aquatic organisms and can render formally suitable habitat unsuitable for native species assemblages 

(Poole and Berman 2001).   

Unfortunately, as of 2006, thermal impairment is already documented in 2,393 miles of rivers and 

streams in Montana, or about 13% of those that have been assessed for beneficial use support (United 

States Environmental Protection Agency (US EPA) 2006).  Although legislation is in place to address the 

deleterious impacts of changing stream temperature regimes, growing concern for the ecological integrity 

of stream ecosystems and the native aquatic species assemblages they support has led to mitigation and 

regulation of human activities that cause thermal degradation.  However, research and monitoring 

programs that do not account for spatial and temporal patterns of stream temperature, the relative 

influence of various drivers, and the expected response of stream temperature to anthropogenic influences 

will not provide sufficient or useful answers to scientific or management questions about the temperature 

requirements of stream communities (Poole and Berman 2001; Johnson 2003).  A holistic and adaptive 

approach to understanding and restoring natural variability (in space and time) in ecological processes 

that acknowledges the tremendous uncertainty that is inherent in attempting to model and restore stream 

ecosystems is necessary for effective stream management (Franklin 1993; Poff et al. 1997; Wohl et al. 

2005).   

A conceptual understanding of the processes and structures that influence stream temperature in 

unaltered systems can provide a framework for understanding the breadth of human activities that may 

substantively influence stream temperature and provide the basis for development of ―spatially explicit 

management prescriptions‖ (Poole and Berman 2001).  The ―reference condition concept‖ asserts that 
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there exist for any group of similar waterbodies (such as streams) relatively undisturbed (reference) 

examples that can represent the natural biological, physical, and chemical integrity of a region (Montana 

Department of Environmental Quality (MT DEQ) 2006).  Montana‘s narrative temperature standards 

require that water quality be  compared to ―naturally occurring‖, and the DEQ uses reference sites to help 

interpret what naturally occurring is (MT DEQ 2006; Suplee et al. 2005) and thus relies on accurate 

empirical study, description and analysis of reference stream data.  Reference streams are also a useful 

tool for conducting comparative analyses between ―reference‖ and ―degraded‖ systems (Bailey et al. 

2004; Hughes 1995).  Hence, an investigation of spatial and temporal variability in reference stream 

temperature regimes, coupled with a discussion of the human activities most likely to affect the primary 

determinants of these regimes, may provide stream managers with a framework for understanding and 

managing the issue of thermal impairment.  This analysis may also be useful for making predictions about 

expected stream temperature conditions, and for developing or changing Montana‘s water quality 

temperature standards in the future.   

  The overall purpose of this study is to improve our understanding of natural spatial and temporal 

variability in water temperature in Montana‘s reference streams and to use that information to guide 

efforts to restore and maintain the temperature integrity of Montana‘s streams.  The first objective is to 

provide a critical review of scholarly literature on natural variability in, and the ecological significance of, 

stream temperatures (especially in Montana‘s ecoregions), and on factors that drive and buffer stream 

temperature variability.  The second objective is to provide a critical review of legal approaches to 

restoring and maintaining stream temperature integrity, including EPA guidance on temperature standards 

and temperature Total Maximum Daily Loads (TMDLs) and Montana‘s current temperature standards 

and TMDL practices, and to discuss the current status of stream thermal impairment and management in 

Montana.  

  The Level III ecoregion is the geographical unit often used to study and describe ecosystem 

parameters in different regions of Montana (Woods et al. 2002).  However, high spatial variability across 

Montana‘s landscapes suggests that the ecoregion scale may be too coarse to usefully develop reference 

stream temperature monitoring schemes or to capture natural variability in reference stream temperature 

regimes, affirming the need for more site-specific analysis.  If reference stream data is to be used to 

determine ‗spatially explicit characteristic‘ stream temperatures and develop ecologically meaningful 

water quality temperature standards, it is useful to first determine how much variability in stream 

temperatures is natural, or considered acceptable, between ecoregions and between streams within 

ecoregions.  Also, air temperature is a primary driver of natural variability in stream temperature (Crisp 

and Howson 1982; Stefan and Preud‘homme 1993; Johnson 2004), and analysis of the air-water 
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temperature relationship over time in Montana‘s reference streams will improve managers‘ understanding 

of natural stream temperature variability.   

  Thus, the third objective of this study is to develop a random coefficient regression model that 

allows Montana‘s stream managers to: (1) analyze if water temperatures and the air-water temperature 

relationship in reference streams varies significantly between ecoregions; (2) analyze if water 

temperatures and the air-water temperature relationship in reference streams varies significantly between 

streams within ecoregions; (3) develop a general equation representing the air-water temperature 

relationship for all reference streams (the population average) in four of Montana‘s ecoregions; (4)  

construct a similar equation for each individual reference stream included in this analysis that deviates 

significantly from the population average; and (5) reliably predict reference stream water temperatures 

given air temperature values.  This type of model may provide a framework for the development of 

predictive models of stream water temperature change over time, and may also be useful in addressing 

global climate change concerns and other human impacts on future temperature regimes.   

Unfortunately, Montana‘s reference stream temperatures are typically sampled throughout only 

one summer season; this may result in unrepresentative reference data.  The fourth objective of this 

study is to determine whether or not the reference streams included in the model were sampled during a 

year when air temperature conditions were typical of long-term averages.   

 Finally, the natural flow regime paradigm calls for restoring the full range of the natural flow 

regime (Poff et al. 1997; Lytle and Poff 2004).  However, particularly in the western United States, 

stream management often focuses on maintaining minimum low flows during the hottest time of the year, 

primarily for maintenance of cold-water fisheries and anthropogenic water demands (Poff et al. 2007; 

Larson 1981).  This management approach ignores: (1) other extreme conditions with respect to 

temperature and discharge that are critical in shaping the nature of the stream system and its biological 

communities; (2) the consideration of spatial and temporal stream temperature variability in the creation 

of regionally-specific water quality standards; (3) the impacts of thermal degradation on the greater 

ecosystem form and processes; and (4) the impacts of thermal degradation on aquatic organisms besides 

fish.  There are also limitations in the collection and summary of stream temperature data in Montana 

which complicate efforts to research and analyze stream temperature regimes.  Hence, the fifth objective 

of this paper is to recommend and describe a more holistic approach to developing summertime 

temperature standards to restore and maintain stream temperature integrity, and to discuss meaningful 

ways to collect and summarize reference stream temperature data for easier comparison between streams 

and years and for greater ease in relating temperature to driving variables (such as air temperature).   
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SECTION 1 - REVIEW OF STREAM TEMPERATURE REGIME DYNAMICS, ECOLOGICAL 

SIGNIFICANCE, AND ANTHROPOGENIC DEGRADATION 

Stream Temperature Basics: Thermal Energy Budgets and Heat Flux 

Energy exchange is described by the First and Second Laws of Thermodynamics, which explain 

that energy can be transformed but neither created nor destroyed, and that the direction of energy 

exchange will occur from areas of higher to lower concentration (Halliday and Resnick 1988; Larson and 

Larson 1996).  Understanding heat flux in streams is increasingly important as anthropogenic influences, 

including climate change, alters stream thermal regimes, often leading to shifts in aquatic species 

composition and changing rates of biogeochemical processes (Evans et al. 1998; Poole and Berman 

2001).  Stream heat budgets are complicated because temperature is controlled by multiple factors; as the 

relative magnitude of each factor varies among sites with differing biotic and geophysical properties, the 

impact of individual components can be difficult to distinguish (Johnson 2004; Sinokrot and Stefan 1993; 

Burkholder et al. 2008).  A more comprehensive understanding of thermal dynamics will make stream 

managers less apt to study stream temperatures in the wrong way, at the wrong location, or at the wrong 

time, and will help them to describe the expected response of stream temperatures to such disturbances 

(Poole and Berman 2001; Johnson 2003).   

The temperature of streams draining a landscape represents an integration of energy inputs from 

diverse sources, including solar radiation, and transfers of latent and sensible heat between the 

atmosphere and stream channel environment (Tague et al. 2007).  However, water temperature is not 

simply a measure of the amount of heat energy in water but is instead proportional to heat energy divided 

by the volume of water (discharge) and can thus be conceptually understood as a measure of the 

concentration of heat energy in a stream, which varies daily, seasonally, and along latitudinal and 

altitudinal geographic gradients (Poole and Berman 2001; McClain et al. 1998; Kim 2007).   

  Five basic thermal processes are recognized by heat flux relationships in streams: (1) radiation; 

(2) evaporation; (3) convection; (4) conduction; and (5) conversion of energy from other forms to heat 

(Theurer et al. 1984; Brown et al. 2005; Hondzo and Stefan 1994; Silliman et al. 1995).  Each is 

considered mutually exclusive but, when added together, they account for the thermal energy budget of a 

given column of water (Theurer et al. 1984).  This budget determines the amount of energy available to 

modify stream water temperature (Webb 1996).  Several of these gradients and the major heat flux 

relationships are depicted in Figure 1.   

An understanding of the basic heat flux components of energy budgets is helpful when 

developing stream temperature studies and restoration plans.  Radiation is an electromagnetic mechanism 

which allows energy to be transported at the speed of light through regions of space that are devoid of 

matter (Theurer et al. 1984).  The heating of a natural body of water is governed by two primary sources 
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of radiation: the sun (solar), and the ambient back radiation emitted from the water surface, atmosphere, 

riparian vegetation and topographic features; this distinction is necessary because surfaces (i.e., water, 

rock, vegetation, road) absorb, emit and reflect radiation differently and can thus have site-specific effects 

on stream heat budgets (Satterlund and Adams 1992; Larson and Larson 1996).  Evaporation, though 

second in importance to radiation, is a significant form of heat exchange, and the rate of evaporation is a 

function of the circulation (wind speed) and vapor pressure (relative humidity) of the surrounding air 

(Theurer et al. 1984).  Evaporation requires an exchange of thermal energy for the isothermal conversion 

of liquid water to vapor (heat of vaporization); its counterpart, condensation, requires an equivalent 

amount of energy released through condensation as vapor is converted to liquid (Theurer et al. 1984).    

Convection is often an important form of heat exchange at the air-water interface as the ability of air to 

circulate, either due to wind or temperature differences, leads to the constant exchange of air and affects 

the rate of evaporation (Theurer et al. 1984).  Conduction occurs when a temperature gradient exists in a 

material medium in which there is molecular contact, and occurs both at the air-water surface and along 

the streambed interface (Theurer et al. 1984; Poole and Berman 2001).  Streambed conduction, for 

example, is a function of the difference in temperature between the streambed at the water-streambed 

interface and the streambed at an equilibrium ground temperature at some depth below the streambed 

elevation (the equilibrium depth) and the thermal conductivity of the streambed material (Theurer et al. 

1984).   Finally, as water flows downstream, fluid friction generates heat from the portion of the potential 

energy that is not converted to other uses, although this is the least significant source of heat flux (Theurer 

et al. 1984).   

Variables that affect lotic water temperatures can be categorized into drivers (i.e., solar radiation, 

air temperature), insulating and buffering processes (i.e., channel morphology, shading, groundwater 

inflow).  Several of these variables are depicted in Figure 2 and are discussed in more detail below.   

Drivers of Stream Temperature 

The heat load of streams is derived from solar radiation, which transfers heat energy from the sun 

to the stream; alternately, discharge, which is derived entirely from precipitation and whose pathways for 

entering the stream are determined by the interaction of climatic and geographic drivers, determines the 

stream temperature response to a given heat load (Poole and Berman 2001).  For a given rate of solar 

radiation, in-channel water temperature increase is directly proportional to stream surface area and 

inversely proportional to stream discharge (Poole and Berman 2001; Sullivan et al. 1990; Brown 1972; 

Beschta 1997).  The larger the water volume, the greater the capacity for heat storage and the less 

responsive the stream will be to alterations in the energy budget (Webb 1996).   
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Any process that influences heat load or discharge will influence water temperature and can be 

considered a natural ―driver‖ of stream temperature (Poole and Berman 2001).  Drivers are external to the 

stream system, help form the physical setting, and control the rate of heat and water delivery, therefore 

raising or lowering stream temperatures; they include: wind speed, phreatic groundwater temperature and 

discharge, solar angle, cloud cover, relative humidity, precipitation, topographic shade, upland vegetation, 

and tributary temperature and discharge (Poole and Berman 2001; Sullivan and Adams 1991).   

Consideration of variation in the relative importance of stream temperature drivers within and 

among streams and over time may help explain discrepancies in stream temperature literature (Johnson 

2004).  Fluctuations in these drivers and changing water source contributions, all of which vary markedly 

in space and time, have been used to explain distinct annual, seasonal, and diurnal fluctuations in stream 

temperature (Brown et al. 2005; Constantz 1998; Malard et al. 2001; Brown and Hannah 2007).  Many 

believe the thermal regimes of small streams are affected most by solar radiation and ambient-air 

temperatures (Isaak and Hubert 2001).   

Solar radiation 

Solar radiation, when corrected for atmospheric conditions and cloud cover, represents the total 

amount of solar energy per unit area, often as projected onto a level surface over 24-hours (Theurer et al. 

1984).  At a specific site, as related to sunrise-to-sunset duration, solar radiation is a function of latitude, 

general topographic features, and time of year: latitude is a measure of the angle between horizontal 

surfaces along the same longitude at the equator and the site; average solar altitude at sunrise/sunset is 

the measure of obstruction by topographic features; and the time of year directly predicts the angle of the 

sun above or below the equator (declination) and the distance between the earth and the sun (orbital 

position) (Theurer et al. 1984; Poole and Berman 2001).  Deviations from the zenith position reduce the 

intensity of radiation by spreading energy over a larger surface area, causing solar radiation to vary in 

intensity from zero at night to a maximum at noon when the sun is directly overhead (Trewartha 1968; 

Satterlund and Adams 1992; Larson and Larson 1996).   

Increased solar input results in higher maximum summer temperatures and larger diurnal 

fluctuations, especially in small streams (Sullivan et al. 1990).  It has been suggested that a representative 

value for daily incoming radiation in the temperate zone on a clear summer day is 332 W/m
2
 of solar 

radiation and 330 W/m
2
 of ambient radiation (Satterlund and Adams 1992; Larson and Larson 1996).  As 

seen in Figure 2, solar radiation is attenuated on its path through the atmosphere by scattering and 

absorption when encountering gas molecules, water vapor, and dust particles; this is a function of cloud 

cover which significantly reduces direct solar radiation and somewhat reduces diffused solar radiation 

(Theurer et al. 1984).  An average of 19% of the solar radiation striking the atmosphere actually reaches 
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the surface of the earth as direct radiation; an additional 28% will arrive at the earth surface as diffuse and 

scattered radiation (Trewartha 1968; Larson and Larson 1996). 

Water is transparent to (does not absorb), visible solar radiation (violet to red 400-700nm) and is 

least likely to absorb energy contained in blue (400 nm) and green (500 nm) color bands (Hollaender 

1956).  Approximately 95% of visible radiation will penetrate a column of clear water to a depth of 3ft 

and over 75% will penetrate to a depth of 30ft (Hollaender 1956, Sellers 1974; Larson and Larson 1996).  

In contrast, water is opaque to (absorbs) near-infrared (700-1,000 nm) and ambient (>1,000 nm) radiation, 

with nearly 90% of this radiation absorbed in the top 0.5 inch of a water column and 100% absorbed 

within the top 4.0 inches (Hollaender 1956, Sellers 1974).  The absorption of this energy warms the top 4 

inches of the water column without directly warming the water at greater depths and these interactions 

vary with the season of the year, time of day, water turbidity, and surface turbulence (Larson and Larson 

1996). 

Ambient Air Temperature 

While incoming solar radiation is the main source of thermal energy for streams (Brown and 

Krygier 1970; Sinokrot and Stefan 1993; Webb and Zhang 1999), air temperature is also considered a 

major driver of stream temperature (Smith and Lavis 1975; Sullivan and Adams 1990; Johnson 2004).  As 

described above, air temperature plays a part in most of the heat flux components (especially atmospheric 

radiation, evaporation, and convection) and is the most important, or sensitive, parameter affecting stream 

temperature and thus deserves special attention (Bartholow 1989).  Air temperature, which is influenced 

by solar radiation, is a primary factor affecting the amount of long-wave atmospheric radiation entering 

the water, along with atmospheric vapor pressure, cloud cover, reflection at the water surface, and 

interception by vegetative canopy (Johnson 2003; Theurer et al. 1984).  Because high correlations exist 

between air and stream temperature in diurnal and seasonal patterns of temperature fluctuations, air 

temperature is occasionally used as a ‗surrogate‘ for predictions instead of complex heat flux equations 

(Webb 1987; Johnson 2003).  For example, Crisp and Howson (1982) found that they could explain 86-

96% of the variance in water temperature by regressions containing solely mean air temperatures, and 

several others have found similar correlations (Stefan and Preud‘homme 1993; Smith and Lavis 1975).   

While analyses of the air-water temperature relationship may prove useful for some management 

applications, it must be noted that solar radiation remains the major factor influencing both air and stream 

temperature and, while correlations can be helpful in predicting patterns for a future time or a nearby 

location, they do not imply causation (Johnson 2003).  Ideally, comprehensive heat budget analyses 

should be used to model stream temperature regimes since convection at the air-water interface is, in fact, 

only one component of otherwise complex heat flux relationships (Sinokrot and Stefan 1993; Webb and 
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Nobilis 1997).  However, as resources for stream management and restoration are often limited, air 

temperature can serve as a useful parameter for modeling stream temperature variability in space and 

time.   

Another complicating factor in correlating air and water temperature is that complex 

environmental gradients occur over very short distances away from the stream, and air temperature and 

other climate-related factors (wind speed, relative humidity, subsurface saturation and soil) are very 

responsive to variations in landscape features and riparian vegetation distribution (Chen et al. 1993). 

Measurement of these parameters close to the stream may reveal very different conditions than if 

measured several meters away, and variability can increase with greater distance from the stream.  Due to 

limited availability of site-specific air temperature data, data from the nearest climatic station, which is 

often kilometers away from the study stream, is commonly used to represent environmental conditions for 

modeling; this data can provide useful information about the air-water temperature relationship but may 

not be accurate input for sensitive models (Johnson 2003).   

Insulating and Buffering Processes of Stream Temperature 

Unlike drivers, the stream‘s physical structure exerts internal control over water temperature and 

determines resistance to warming or cooling as well as the means and rates of heat and water entry into, 

flow through, storage within, and release from the stream system and its components (Poole and Berman 

2001).  Insulating characteristics, such as channel geometry and shading, influence the rate of heat flux 

into and out of a stream (Poole and Berman 2001).  Buffering processes either heat or cool a stream 

channel but differ from drivers in that they store heat already in the system rather than adding or 

removing any additional thermal energy, and they also integrate variation in discharge and temperature 

over time (Poole and Berman 2001).  The two-way exchange between the alluvial aquifer and stream 

channel is perhaps the most important stream temperature buffer (Poole and Berman 2001).   

Channel Geometry 

Channel width determines the surface area available for heat flux activities, all of which take 

place at either the air-water interface or water-ground interface (Bartholow 1989).  Since wider streams 

are shaded less by riparian vegetation (Naiman and Sedell 1980) it is thought that stream width would 

exhibit a direct relationship with temperature.  However, the influence of channel width on temperature is 

often negated, at least in part, by the likeliness that increasing stream width would also be accompanied 

by an increase in the total thermal capacity of a stream, thereby decreasing the responsiveness to solar 

inputs (Isaak and Hubert 2001).  As described above, channel depth affects the absorption capacity of a 
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channel, with narrower, deeper channels absorbing less heat than shallow, wide channels (Poole and 

Berman 2001).   

Watershed aspect is thought to influence stream temperatures on the premise that orientation 

relative to the path of the sun will alter the amount and intensity of sunlight that a stream receives (Isaak 

and Hubert 2001; Johnson 1971; Smith and Lavis 1975).  Accordingly, streams in the northern 

hemisphere that have northerly aspects are generally believed to be coldest and those with southerly 

aspects are warmest; however, it can be argued that if streams with northerly and southerly aspects are 

oriented similarly relative to the path of the sun but simply flow in opposite directions, watershed aspect 

would have the same effect on the temperatures of streams with northerly and southerly aspects and a 

different effect on streams with easterly and westerly aspects (Isaak and Hubert 2001).   

Channel elevation influences atmospheric pressure with respect to heat convection, the depth of 

the atmospheric pathway of solar radiation, and helps to determine channel slope which results in heat 

from friction (Bartholow 1989).  Elevation may have the largest effect on maximum stream temperature 

in small streams, and mean basin elevation tends to correlate more strongly with stream temperatures than 

point elevations probably by better characterizing the spatially distributed effect of air temperature on 

stream temperature.  As such, mean basin elevation could also be a ‗surrogate‘ when stream temperature 

data are unavailable (Isaak and Hubert 2001; Sloat et al. 1999). 

Stream Shading 

Shading affects stream temperature by screening the water surface from direct solar radiation, 

reducing the amount of the back radiation from water at night, and by producing its own long wave 

thermal radiation which tends to moderate minimum stream temperatures at night (Bartholow 1989).  

Stream shade comes largely in two forms: riparian vegetative shade and topographic shade from valley 

walls, cliffs and streambanks, although in-stream shade from woody debris, vegetation and other 

structures should also be considered (Bartholow 1989; Davies-Colley et al. 1998).  For an unshaded 

stream during clear-sky conditions in mid-summer, over 90% of the incoming energy would become 

available to that stream (Beschta 1997).  Low flow, high width streams are especially sensitive to stream 

shading in midsummer (Bartholow 1989).   

Topographic shade is a function of the: (1) time of year; (2) stream reach latitude; (3) general 

stream reach azimuth; and (4) topographic altitude angle.  Riparian vegetation shade is a function of the 

topographic shade plus several riparian vegetation parameters: (1) height of vegetation; (2) crown 

measurement; (3) vegetation offset; and (4) vegetation density (Theurer et al. 1984).  As such, the effect 

of shade on water temperature varies due to the continually changing spatial relationship between the sun, 

the canopy of riparian vegetation, and the amount of solar energy reaching a stream from day-to-day 
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during the summer (Beschta 1997; Larson and Larson 1996).  The greatest reduction in direct radiation by 

shade occurs at the time of the greatest solar angle (Larson and Larson 1996).  In general, riparian 

vegetation helps regulate the microclimate of stream-riparian ecosystems, and streams with adequate 

shade are cooler in summer and warmer in winter than those without, although the effectiveness of these 

zones decreases with increasing stream size (Welch et al. 1998; Brown and Brazier 1972; Larson and 

Larson 1996; Sand-Jensen and Pedersen 2005).  Additional discussion of the importance of shading on 

stream temperatures can be found under ―Reduction of Riparian Shading‖ in the ―Anthropogenic Causes 

of Thermal Degradation in Streams‖ section of this report.   

Groundwater-Surface Water Interactions (Hyporheic Exchange) 

Groundwater can be defined as the water contained in interconnected pores located below the 

water table in an unconfined aquifer or located in a confined aquifer (Fetter 2001).  The interface where 

stream- and groundwater mixing occurs is typically referred to as the hyporheic zone, which has been 

defined as ―the subsurface region of streams and rivers that exchanges water with the surface‖ (Valett et 

al. 1993).  Hyporheic exchange has been previously thought to have little impact on stream temperature 

(Brown 1969), but a number of recent studies show that hyporheic exchange plays an important role in 

the thermal dynamics of some streams and preserving these interactions is critical to maintaining their 

ecological health (Burkholder et al. 2008; Story et al. 2003; Johnson 2004; Loheide and Gorelick 2006).  

For example, the presence of cooler patches of water within rivers can act as thermal refugia for fish and 

other aquatic organisms, reaffirming the importance of maintaining natural groundwater interactions 

when restoring the thermal regime of rivers (Burkholder et al. 2008).  

Groundwater tends to have more stable temperatures than surface water (Ringler and Hall 1975; 

White et al. 1987; Evans and Petts 1997; Johnson 2004), and thus generally forms the baseline from 

which stream temperature deviates, with channel water temperature often trending away from 

groundwater and toward atmospheric temperatures in a downstream direction (Sand-Jensen and Pedersen 

2005; Edwards 1998; Sullivan et al. 1990).  As such, during warm periods, groundwater-surface water 

interactions have two primary effects on stream temperature: (1) cool groundwater discharging as 

baseflow lowers stream temperature, and (2) hyporheic exchange buffers diurnal stream temperature 

variations (Loheide and Gorelick 2006).   

The mechanism for hyporheic heat exchange is streambed conduction, which is a function of the 

thermal gradient at the streambed interface; rates of heat exchange depend on the thermal conductivity of 

the bed material as well as the thermal gradients within the substrate (Johnson 2004).  The thermal 

gradient between ground and surface water temperature determines the rate of heat lost or gain by the 

water from the streambed; the larger the difference, the greater the potential heat transfer (Bartholow 
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1989).  Conduction occurs while the water is in contact with the subsurface substrates, transferring heat 

energy from warmer to cooler surfaces (i.e., water warmed during the daytime and flowing over cooler 

rocks in the subsurface would transfer heat to the substrates, whereas during the night, cooler stream 

water entering the subsurface and passing over warmer rocks would absorb heat) (Johnson 2004).  

Hyporheic exchange may also buffer stream temperature over time as, for example, stream temperature in 

autumn is buffered probably as a result of progressive heating of the ground during the summer in both 

summer-warm and summer-cool streams (Edington 1965).   

Because hyporheic exchange occurs more readily through more permeable alluvial substrates 

than bedrock, silt or sand, with alluvial sediments often acting as a preferential groundwater pathway 

(Stonestrom and Constantz, eds. 2003; Burkholder et al. 2008; Fetter 2001), alluvial streams are more 

likely to be buffered by hyporheic exchange (Johnson 2004).  Also, hyporheic flowpaths lengthen the 

residence time of water in a given reach of stream, thereby likely moderating diurnal fluctuations in 

downstream temperatures (Poole and Berman 2001; Haggerty et al. 2002).  Stream size also influences 

the effect of hyporheic exchange on stream temperatures, with smaller streams experiencing a greater 

groundwater buffering effect than larger rivers due to diminishing opportunities for hyporheic exchange 

as channel size increases (Johnson 2004; D‘Angelo et al. 1993; Boulton et al. 1998; Burkholder et al. 

2008).   

Because streambed temperature is suggested to reflect the nature and extent of groundwater–

surface water interactions (Malcolm et al. 2004; Brown et al. 2005; Brown and Hannah 2007), 

temperature is  increasingly being used as a tool in quantitative studies of these processes (Oxtobee and 

Novakowski 2002; Johnson et al. 2005; Conant 2004; Silliman et al. 1995; Kulongoski and Izbicki 2008).  

However, similarly to surface water temperatures, hyporheic exchange is sensitive to biogeographical 

conditions of the upland (including geology, climate, vegetation and land use) (Hayashi and Rosenberry 

2002), and varies in the vertical, lateral and longitudinal directions (Woessner 2000), and so any study 

designed to quantify the influence of hyporheic exchange on water temperatures must take spatial 

variability into account at multiple scales.   
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Ecological Significance of Stream Temperature 

Human use of streams may be affected by water temperature, with the efficiency of water 

purification and treatment methods, the palatability of domestic supplies, the effectiveness of irrigation, 

the economics of commercial aquaculture and of industrial processes requiring cooling water, and the 

suitability of water courses for recreation, including swimming and angling, all related to river 

temperatures (Webb 1996).  However, stream temperature is an ecologically significant parameter that 

affects the entire stream ecosystem and, as such, maintaining or restoring the natural thermal regime 

beyond human utility should be a primary goal in stream management (Webb 1996).   

A stream's summertime temperature regime is often a critical characteristic of habitat quality 

(Beschta 1997).  By directly influencing aquatic species‘ geographical distribution, growth and metabolic 

rates, physiology, reproduction and life histories, movements and migrations, behavior, and tolerance to 

parasites, diseases and pollution, water temperature is arguably the most important physical property 

fundamentally affecting the stream ecology and is thus considered an important water quality parameter 

(Johnson 2004; Webb 1996; Isaak and Hubert 2001; Welch et al. 1998; US EPA 1986).  Undoubtedly, the 

ratio of heterotrophy to autotrophy in stream ecosystems is controlled, in part, by temperature (Cummins 

1974).  Stream water temperature also governs in-stream processes, including metabolism, organic matter 

decomposition, and solubility of gases (Johnson 2004), and helps to determine rates of other important 

community processes such as nutrient cycling and productivity (Poole and Berman 2001).   

Various aspects of the ecological significance of stream temperature are described in greater 

detail below with the hope that those charged with managing and restoring thermal regimes of streams 

will approach management of stream temperature regimes with a more holistic system perspective, rather 

than an anthropo- or fish-centric perspective.   

Physical and Chemical Characteristics of Stream Water 

 Temperature exerts a strong influence on many physical and chemical characteristics of water, 

including gas solubility, surface tension, density and viscosity, sediment concentrations and transport, 

denitrification and other chemical reaction rates, and the persistence and growth of pathogens (Stevens et 

al. 1975; Webb 1996; Pfenning and McMahon 1996).  Increases in the concentration of dissolved organic 

carbon (DOC), an important source of carbon for stream bacteria, are associated with changes in water 

temperature (Bernhardt and Likens 2002).  Additionally, the toxicity of many substances is intensified as 

the temperature rises (Theurer et al. 1984).  Temperature also affects the solubility of gases in water, 

particularly dissolved oxygen, which is critical to the survival of aerobic biota, with higher temperatures 

diminishing the solubility of dissolved oxygen so warm water holds less oxygen than cold (Johnson 2004; 

Welch et al. 1998).  Since the rate of oxygen consumption and organic decomposition tends to increase 



13 
 

with higher temperatures, elevated temperatures stress stream ecosystems by creating an increased 

oxygen demand and decreased oxygen supply (Sand-Jensen and Pedersen 2005; Theurer et al. 1984).  In 

addition, sorption of chemicals to particulate matter and volatilization rates are influenced by changes in 

water temperature, with sorption often decreasing with increasing temperature and volatilization 

increasing with increasing temperature (US EPA 2007).  This may affect the response of the system to 

chemical pollutants.   

Metabolism and Nutrient Cycling 

Temperature increases accelerate the rates of production, metabolism and respiration of algae and 

other microorganisms, plants, invertebrates, fishes, and other cold-blooded stream animals (Welch et al. 

1998).  Respiration approximately doubles with a 10
o
C temperature increase (Theurer et al. 1984), 

thereby increasing overall nutrient uptake, nutrient assimilation, and elimination of waste products 

(McClain et al. 1998 Sobczak and Findlay 2002; Sinsabaugh 1997).  Microbial activity and other 

processes that govern nutrient cycling in stream systems also increase with higher temperatures, leading 

to faster rates of organic matter decomposition (i.e., leaf breakdown) and redox reactions, further 

increasing both nutrient mineralization and uptake (McClain et al. 1998; Theurer 1984; Suberkropp 

1998).  Research has shown, for example, that temperature influences uptake lengths for important 

elements like phosphorus (P) and nitrogen (N) (Butturini and Sabater 1998; Valett et al. 2002).  

Fish (Especially Salmonid Species) 

Temperature is critical to the survival of cold-water organisms, particularly salmonid fishes 

(Welch et al.1998; Crisp 1996; Malcolm et al. 2008).  Due to their ectothermic nature, stream temperature 

inevitably shapes the physiology (Lund 2003; Nicola and Almodovar 2004), life history (Staurnes et al. 

1994, Dunham et al. 1999), and distribution (Rahel and Hubert 1991; Zweifel et al. 1999; Martin 2004) of 

stream fishes.  Over the non-lethal range, temperature plays a key role in the rates of species additions 

(and thus community diversity) (Reeves et al. 1998), location and time of spawning (Webb and McLay 

1996; Reeves et al. 1998), rates of embryo development and timing of emergence (Crisp 1988; Elliot and 

Hurley 1998), food intake (Ojanguren et al. 2001; Flodmark et al. 2004), growth (Meeuwig et al., 2004; 

Bacon et al., 2005), species distribution (Lessard and Hayes 2003; Richter and Kolmes 2005; Wherly et 

al. 2007), density (Lessard and Hayes 2003; Isaak and Hubert 2004), biomass (Isaak and Hubert 2004), 

smolting (Crisp 1996), migration (Hall 1972; Richter and Kolmes 2005) and resistance to disease 

(Malcolm et al. 2008).     

The most serious potential effect of solar heating is that it can produce lethal stream temperatures 

for these cold-water fish, leading to increased concern over summer high temperature extremes that may 
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cause fish mortality (Quigley 1981; Malcolm et al. 2008).  For example, at least two major fish kills 

occurred due to excessive heating of lakes and rivers in Montana in July of 2007, in the Firehole River 

(Associated Press 2007a) and in Roger‘s Lake (Associated Press 2007b).  Thermal metabolic stress, 

competition for cold-water refugia, and reduced DO levels can also influence juvenile mortality (Bisson 

et al. 1988).  Higher-than-normal winter water temperatures can also cause more rapid egg development 

and emergence, thus subjecting emerging fry to potentially lethal late-winter and early-spring high flows 

(Holtby 1988).  Thermal tolerance varies depending on species (Elliot and Elliot 1995; Richter and 

Kolmes 2005), duration of exposure (Elliot 1991; Elliot and Elliot 1995) and local adaptation (Richter 

and Kolmes 2005; Malcolm et al. 2008). 

Salmonids respond to an uncomfortable water temperature by moving from one spot to another 

because of a discrepancy between the temperature of the surrounding water and a ―set point‖ in their 

brains that registers thermal comfort, a response known as behavioral thermoregulation (Sauter et al. 

2001).  Besides behavioral thermal regulation, evolutionarily adaptive non-thermal ecological factors can 

be immediately cued by thermal stimuli, including habitat selection, intraspecies size segregation, 

interspecies niche differentiation, isolating mechanisms, predator avoidance, prey location, escape 

reactions, and migrations (Sauter et al. 2001).  Interestingly, the choice of spawning sites by salmonids is 

often tied to the presence of groundwater discharge since it provides a thermal buffer, in both winter and 

summer, that incubates eggs within proximity of the water table, even during periods of low flow, and 

prevents redds from freezing (Woessner and Brick 1992; Power et al.1999; Malcolm et al. 2002).   

Natural resource managers often refer to thermal guild classifications which are developed to 

consolidate fish species of similar thermal suitabilities into practical categories (e.g. cold-water, cool-

water, and warm-water) (Eaton et al. 1995, Wehrly et al. 2003).  While these guilds can be useful, they 

are often developed based on examination of the consequences of thermal variability at both relatively 

small spatial scales within individual stream reaches, as well as regional variability among stream reaches 

(Martin 2004).  However, an improved understanding and quantification of thermal dynamics across 

entire watersheds may greatly enhance our understanding of large-scale fish dynamics (Webb 1996, 

Young 1999, Gardner et al. 2003). 

Macroinvertebrates 

Temperature serves partially to synchronize invertebrate life cycles, with egg incubation, 

overwintering and emergence tied directly to temperature cues (Brittain 1983; Butler 1984; Hershey and 

Lamberti 1998).  Temperature also fundamentally constrains macroinvertebrate physiology, with some 

(cold stenotherms) preferring a narrow range of temperature, whereas others (eurytherms) are able to 

tolerate a broader range (Hershey and Lamberti 1998).  For several species of stoneflies (Plecoptera), 
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Brittain (1983) found that nymphal growth rate increased with temperature and growth rates changed 

markedly in connection with the rise and fall of temperatures associated with ice-break and ice formation.  

This underscores the need for year-round stream temperature measurements.   

It has also been suggested that temperature may be a limiting factor in species distribution and 

diversity, although contradictions in research findings exist (Edington 1965).  Since water temperature is 

a primary physical habitat factor influencing the life history characteristics, distribution and diversity of 

macroinvertebrate taxa in lotic ecosystems (Vannote and Sweeney 1980; Ward 1985; Sweeney and 

Vannotte 1986), and particularly in alpine streams (Milner and Petts 1994), an understanding of the 

processes driving thermal variability is fundamental for assessment and prediction of stream ecological 

response (Brown et al. 2005).  Variability in the water column and streambed temperatures provides a 

range of thermal habitat available for colonization of benthic communities over relatively small areas 

(Brown et al. 2005).   

Primary Producers 

Many riparian trees, such as poplar and willow, are phreatophytes which acquire water from the 

saturated zone below the water table (Fetter 2001), and the effects of shading by these ground water-

dependent plants can significantly reduce the diurnal fluctuations in stream water temperatures (Beschta 

1997).  As human activities alter groundwater availability and riparian canopy cover, stream ecosystems 

are at risk of losing the temperature regulating qualities of this vegetation.  Temperature increases can 

also stimulate algae growth, leading sometimes to nuisance levels (Welch et al. 1998, Watson and 

Gestring 1996).  Periphyton, benthic algae that typically attach themselves to substrate and plants, are 

often distinctly segregated, in part, by temperature (Stanford and Ward 1993).  Optimal temperatures for 

photosynthesis were determined for natural populations of algae inhabiting cold mountain streams in the 

Beartooth Mountains in Montana and Wyoming, where temperatures from 20 to 30
o
C were optimal for all 

the samples, regardless of site temperature and the organisms present in the sample (Mosser and Brock 

1976).  

Fungus, Bacteria, and Disease Organisms 

Many disease organisms proliferate at higher temperatures, and fish are more susceptible to 

disease when stressed by higher temperatures (Theurer et al. 1984).  For example, the emergence of 

Whirling disease (Myxobolus cerebralis), first discovered in Montana in 1994, and the bottom-dwelling 

aquatic worm that is the whirling disease protozoa‘s secondary host (Tubifex tubifex), is delayed by cold 

water temperatures, reducing its ability to infect trout (Palmer 2002).  
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Temperature has been correlated with bacterial growth and production doubling rates of 

unicellular and filamentous populations in sediments of forested streams (Bott and Kaplan 1985; 

Suberkropp 1998; Bott 1975). Temperature can also affect microbial mineralization directly during leaf 

breakdown, with greater breakdown rates often found in environments with higher temperatures 

(Cummins 1974, Suberkropp 1998).  Aquatic hyphomycetes, which are decomposers commonly found 

growing on leaves and wood in flowing waters, have temperature- specific growth adaptations 

(Suberkropp 1998; Suberkropp 1984).  For example, those commonly found on leaves in temperate 

streams during autumn and winter grow optimally at 15 to 20
o
C but can grow at 1

o
C (Suberkropp 1984); 

in contrast, species common in summer (or in tropical streams) grow optimally at temperatures as high as 

25 to 30
o
C, but typically do not grow at temperatures below 5

o
C (Suberkropp 1998).   
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Anthropogenic Causes of Thermal Degradation in Streams 

Stream temperature regimes have been substantially altered by various human activities on global 

to reach scales and over time despite their ecological significance (Poole and Berman 2001).  Stream 

temperatures in many regions have increased as a result of land use practices (Beschta and Taylor 1988; 

Sugimoto et al. 1997), resulting especially in undesirable impacts on cold-water species (i.e., salmonids) 

(Beschta et al. 1987; Bisson et al. 1992; Li et al. 1994; Johnson 2004; Khangaonkar and Yang 2008).  

Stream temperature degradation can often be attributed to multiple anthropogenic causes (Webb 1996; 

Wang and Kahnel 2003).  As such, an understanding of the mechanisms of human-induced stream 

temperature change, and the expected ecological response in individual stream systems, is critical to 

accurately identify sources of thermal degradation, prioritize restoration efforts, and to prevent further 

decline in ecosystem integrity.    

Direct sources of thermal degradation, such as the discharge of heated effluents (Langford 1990), 

are referred to as ―point sources‖.  Indirect, ―nonpoint‖ sources of thermal pollution human activities 

which tend to result in elevated stream temperatures due to excessive atmospheric heat loading 

(Khangaonkar and Yang 2008), include riparian vegetation removal and streamside logging (Beschta 

1997; LeBlanc and Brown 2000; Crisp et al. 2004; Webb and Crisp 2006), impoundment with dams 

(Petts 1984; Khangaonkar and Yang 2008), human-induced wildfire (Brown and Krieger 1970; Dwire and 

Kauffman 2003), urbanization (Krause et al. 2004; Kim 2007; Herb et al. 2008), and other forms of 

channel modification.  While the following discussion describes several main anthropogenic factors 

driving thermal degradation, it is recommended that, for individual streams, the causes of thermal 

degradation be evaluated on a site-specific basis to ensure appropriate and adequate restoration goals are 

developed.   

Point Sources: Heated Effluent Discharge 

The discharge of heated effluents, especially in the form of the cooling water used in the 

generation of electrical power, results in a direct alteration of stream and river thermal regime (Parker 

1974; Webb 1996).  Leaking sewer pipes, industrial and wastewater treatment effluents, and irrigation 

return flows often add heat to streams (Walsh 2000; US EPA 2003), particularly in urban areas (Kim 

2007).  Heated discharge from industrial facilities often have particularly negative effects because they 

tend to be long term, excessive, and are often associated with toxic chemicals (Brown and Brazier 1972; 

Welch et al. 1998).  Fortunately, with the passage of the Clean Water Act (CWA) in 1972, and the 

implementation of source control through the National Pollutant Discharge Elimination System (NPDES), 

point sources of thermal pollution have largely been rather strictly and successfully regulated 
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(Khangaonkar and Yang 2008).  Whereas point sources are often overtly visible and more readily 

identified, the following non-point sources may prove to be more elusive causes of stream degradation 

and targets for restoration.   

Reduction of Riparian Shading  

As mentioned previously, preventing stream heating with riparian shade is an important function 

of streamside vegetation (Brown and Krygier 1970; Feller 1981; Isaak and Hubert 2001; Fleming et al. 

2001; LeBlanc and Brown 2000; Webb and Crisp 2006).  One of the most common causes of elevated 

stream temperatures is excess solar heat loading due to the absence of riparian shading (LeBlanc and 

Brown 2000; Moore et al. 2005; Caissie 2006).  A relatively continuous border of riparian trees located 

along the streambank and beyond can significantly ameliorate this problem (Beschta 1997), and riparian 

shading can help to moderate daily minima and daily maxima, especially during the summer period 

(Webb and Crisp 2006).   

Unfortunately, the shading functions of riparian vegetation along many streams in the western US 

has been diminished by a wide variety of human activities with serious effects on water and habitat 

quality (Quigley 1981; Beschta 1997; Welch et al. 1998).  While the loss of vegetation may cause 

summer base flows to increase slightly (Ziemer 1964; Jones and Post 2004), thereby increasing the 

stream‘s thermal capacity, thermal degradation from riparian canopy removal persists.  This results from a 

variety of historical land use practices, including harvesting of riparian trees, shrub removal along 

streams, ditching and straightening of channels, and season-long grazing in riparian areas (Mclntosh et al. 

1994, Wissmar et al. 1994, National Research Council 1996; Beschta 1997; Isaak and Hubert 2001).  A 

reduction in stream shade is the dominant mechanism by which forestry activities can increase stream 

temperature (Teti 2003), and has been shown to have short-term negative effects on aquatic biota (Jobling 

1981; Brownlee et al. 1988; Hicks et al. 1991; Mellina et al. 2005; Moore et al. 2005).  Also, given the 

ubiquity of cattle across western North America, grazing may be a particulary problematic cause of 

thermal degradation in streams across very broad geographic areas (Isaak and Hubert 2001).   

It is important to note that the efficacy of using riparian vegetation to remediate thermal 

degradation may have variable or limited application depending on responsiveness of the stream site in 

question to shading (Larson and Larson 1996; Pollack et al. 2009).  Small streams, with low flow rates 

and high width-to-depth ratios, are at greatest risk from temperature problems but are also the easiest to 

shade (Welch et al. 1998).  The type of vegetation that is effective in providing shade varies among 

riparian zones and size of stream, ranging from mature trees to sedges, rushes, and other herbaceous 

plants along streambanks (Beschta 1997).  Because trees provide more shade than other forms of riparian 
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vegetation such as shrubs or grasses, stream temperatures can be predicted to be colder in those 

watersheds where trees make up a large proportion of the riparian vegetation (Isaak and Hubert 2001).   

 Given the increasing interest in managing semi-natural riparian woodland for salmonids, there is 

an urgent need to understand the influence of riparian shading on the spatiotemporal variability of stream 

temperatures and the impact that this has on salmonids (Malcolm et al. 2008).  Specifically there is a need 

to understand over what distances stream temperatures change in response to riparian tree cover, the 

magnitude of that response, the aspects of the thermal regime that are most heavily influenced (e.g. mean, 

maximum, minimum temperatures), and the time periods over which these changes occur (Malcolm et al. 

2008). 

Dams/Hydroelectric Power Production 

Dam impoundment and regulation might have an immediate effect on downstream water 

temperature by eliminating freezing conditions, depressing summer maxima, delaying the annual cycle of 

variation and reducing diel fluctuations in temperature (Webb 1996; Imbert and Stanford 1996; Dare and 

Hubert 2003; US EPA 2003), although the magnitude or severity of these impacts may vary considerably 

on an annual basis and over the long term (Webb 1996; Murchie et al. 2008).  Modified discharge 

regimes in regulated streams also influence their thermal capacity (Webb 1996).  The thermal 

characteristics of water issuing from a reservoir typically differ from ambient conditions in an unregulated 

water course because of the greater thermal inertia of the impounded water mass, thermal stratification of 

the reservoir, or alteration of groundwater circulation downstream of the dam (Webb 1996).  Some dams 

release cold, hypolimnetic water that produce colder ecological conditions downstream (Lessard and 

Hayes 2003).  The effect of warm water discharge from small, surface release dams on downstream 

thermal regimes is also a major habitat concern for many cold-water systems across the country (Lessard 

and Hayes 2003).    

As such, dams can be detrimental to the natural temperature regimes of streams and can alter the 

community structure, reproductive success and survival of native aquatic species, particularly 

macroinvertebrate and salmonid fish species (Reeves et al. 1998; Imbert and Stanford 1996; Dare and 

Hubert 2003).  Not surprisingly, there is considerable pressure on regulators and dam operators to 

implement operational changes and in-stream flow control to modify water temperatures (Khangaonkar 

and Yang 2008). 

 Diversion of Flow (Dewatering) 

Off-stream diversion of stream water for industrial, agricultural or domestic purposes, or out of 

basin diversion of flow in transfer schemes, may cause changes in water temperature by altering the 
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discharge, and thus thermal capacity, of the stream without necessarily modifying the actual components 

of the heat budget (Webb 1996).  Diversion of flow can impact water temperatures over long distances of 

stream channels and in-stream withdrawals may exacerbate maximum temperatures, particularly during 

summertime periods (Beschta 1997). 

Urbanization (Imperviousness) and Channel Modification 

Urbanization often elevates stream temperature through changes in shading, channel geometry, 

groundwater input, and inflows of stormwater and point source loading (Pluhowski 1970; Welch et al. 

1998; Krause et al. 2004; Kim 2007; Herb et al. 2008).  Stream temperatures often experience the ―urban 

heat island effect‖ (Booth and Jackson 1997; Kim 2007), whereby urban areas tend to be warmer as a 

result of paved and other heat absorbing surfaces.  Shallow, wide, low-flow stream channels typical of 

urban areas are especially susceptible to thermal degradation due to larger inputs of solar energy and the 

smaller heat capacity due to their physical structures (Booth and Jackson 1997).  Increased and warmer 

runoff from impervious surfaces into streams can also lead to degradation of habitat for cold-water 

species assemblages (Herb et al. 2008; Wang and Kahnel 2003).  Thermal pollution from stormwater 

runoff is more severe when (1) atmospheric air and dew point temperatures are higher than stream 

temperature, e.g. for streams that are fed by groundwater that is colder than the ambient air, (2) rainfall 

events are short, intense and preceded by full or partial sun, and (3) watersheds have a high percentage of 

impervious, particularly paved, surfaces (Herb et al. 2008).  Urban development schemes that minimize 

the total amount of impervious areas and that avoid development in areas where major ground water 

recharge occurs should reduce the impact of urbanization on cold-water stream integrity (Wang and 

Kahnel 2003). 

Furthermore, human-imposed channel modifications that simplify localized habitat structure 

(dredging, diking, bank hardening, etc.) reduce temperature variability, leading to loss of thermal refugia 

and general decline in habitat quality for stream organisms (Poole and Berman 2001).  In addition, 

widening channels causes greater exposure to solar radiation (Swanson 1981).  Overall, it appears that 

channel widening and other channel disturbance will result in a net increase in stream temperatures 

(Dunham et al. 2007).  

Wildfire 

 Wildfire is a major source of natural disturbance in stream ecosystems (Gresswell 1999), 

although human activities have altered the natural fire regime and have increased the frequency and 

severity of wildfires (IPCC 2007c).  Wildfire and associated channel disturbance may influence a number 

of processes that contribute to the heat budget of streams, and a large number of thermal responses are 
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possible (Beschta et al. 1987; Johnson 2003; Moore et al. 2005; Dunham et al. 2007).  However, wildfire 

tends to result in elevated summer maximum water temperatures (Brown and Krieger 1970; Dwire and 

Kauffman 2003), a phenomenon that can persist for at least a decade following wildfire, particularly in 

streams with severe channel reorganization (Dunham et al. 2007).  During wildfire, intense heating can 

lead to short-term (<1 day) increases in stream temperatures of several degrees (Hitt 2003).  However, 

over longer timeframes and broader spatial scales, changes to terrestrial vegetation and stream channel 

morphology related to wildfire may lead to substantially altered water temperatures across stream 

networks.  In turn, such changes in stream temperature can lead to loss and fragmentation of suitable 

habitats and increased risk of local extinction for cold-water aquatic species (Bury 2004; Burton 2005; 

Sestrich 2005; Dunham et al. 2007).   
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Climate Change and Stream Temperature 

Earth‘s natural greenhouse effect makes life as we know it possible; however, scientific 

consensus suggests that human activities, primarily the burning of fossil fuels and clearing of forests, 

have greatly intensified the natural greenhouse effect, causing global warming (IPCC 2007a).  This occurs 

when these and other human activities increase the planet‘s atmospheric concentrations of greenhouse 

gases (GHGs), aerosols, and cloudiness, affecting climate by altering components of the planet‘s basic 

energy balance, namely incoming solar radiation and outgoing thermal radiation (IPCC 2007a).  Since the 

start of the industrial era (about 1750), anthropogenic emissions of four principal GHGs (carbon dioxide, 

methane, nitrous oxide and halocarbon gases), as well as water vapor and ozone, have significantly 

increased concentrations beyond their natural range (IPCC 2007a).  Given the driving relationship 

between air and water temperatures, climate change is poised to have serious and irreversible impacts on 

natural stream temperature regimes.   

Global climate change has now widely been recognized as the most important issue of our time.  

Altogether, there is probably no other effect of climatic warming that will approach crisis proportions as 

quickly as the diminution of freshwater resources (Schindler 1997) and, globally, the negative impacts of 

future climate change on freshwater systems are expected to outweigh the benefits  (Bates et al. 2008).  

North America‘s already overallocated water resources will be strained further, increasing competition 

among agricultural, municipal, industrial, and ecological uses (Bates et al. 2008; Grimm et al. 1997; 

Schindler 1997).     

In light of the severity of this issue, it is becoming increasingly important for natural resource 

managers to understand the causal linkages between anthropogenically-driven climate change and thermal 

degradation of surface waters, as well as the ecosystems‘ projected sensitivity and response in the future.  

While climate change will certainly have an impact, it is useful to bear in mind that the effects of land use 

practices on regional climate may overshadow larger-scale temperature changes commonly associated 

with observed increases in greenhouse gases (Stohlgren et al. 1998).  An understanding of the processes 

driving stream temperature dynamics is fundamental for assessment and prediction of thermal response to 

climatic variability and change (Caissie 2006; Brown and Hannah 2007).   Human-induced climate 

change itself may ultimately be considered a major driver of stream temperature degradation as it affects 

the flow regimes and many of the basic heat flux components of the thermal budgets of streams.  Models 

that help to explain the influence of climatic drivers on stream temperature regimes and other ecological 

parameters may help managers to predict the severity of impacts of climate change on stream ecosystems.   

Several examples of ecologically-detrimental effects of climate change on thermal regimes are already 

evident across Montana, and management approaches will have to take the effects of climate change on 

stream temperatures into consideration as these trends continue.   
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Rising Air temperatures 

On the global scale, warming of the climate system is unequivocal.  Eleven of twelve years 

between 1995 and 2006 rank among the 12 warmest years in the instrumental record of global surface 

temperature (since 1850) (IPCC 2007b), and the second half of the 20
th
 century was likely the warmest 

50-year period in the Northern Hemisphere in the last 1300 years (IPCC 2007a).  For the next two 

decades, global warming of about 0.2°C per decade is projected and, even if the concentrations of all 

greenhouse gases and aerosols had been kept constant at year 2000 levels, a further warming of about 

0.1°C per decade would be expected (IPCC 2007b).  In general, analyses from central Rocky Mountains 

suggest that the climate has been steadily warming since ca. 1850 (Luckman 1990; Hauer et al. 1997).  As 

seen in Figure 3, from 1895 to 2008, summer (June-August) air temperatures in Montana have been 

steadily increasing at a rate of approximately 0.11
o
F per decade (NOAA 2009a).  More recently, in the 

past 50 years (1958-2008), summertime air temperatures have been rising at a rate of 0.24
o
F per decade 

(see Figure 4) (NOAA 2009a). Streams that are most sensitive to changes in air temperatures are at the 

greatest risk from climate change (Hauer et al. 1997).  Stefan and Preud'homme (1993) found that stream 

temperatures increased by an average of approximately 0.98
o
C for every degree increase in air 

temperature.  An exception appears to be where groundwater is the major water source for small streams 

(Schindler 1997).   

Alterations to the Natural Flow Regime  

Snowmelt/runoff 

Observed warming over several decades has been linked to changes in the large-scale 

hydrological cycle (Bates et al. 2008).  The hydrology of the Rocky Mountain region is dominated by 

snow accumulation and melt (Poff and Ward 1989), where summer stream hydrographs are typically 

driven by melting snow that has accumulated throughout the winter and, by late summer and autumn, 

streamflow is predominately supported by groundwater discharge (Hauer et al. 1997).  Therefore, 

seasonal distribution of streamflow is, in general, more sensitive to air temperature changes than 

elsewhere in the US (Adam et al. 2009).  Projected warming in the western US produces strong decreases 

in winter snow accumulation and spring snowmelt over much of the affected area (Hamlet et al. 2007; 

Mote et al. 2005; Stewart et al. 2005; Adam et al. 2009).   For example, Mote et al. (2005) evaluated 

trends in the entire reconstructed snow water equivalent (SWE) records for 1915–2003 for the western 

US, and found that, over the nearly 90-year period, there was a general downward trend in snow water 

equivalent (SWE) over most of the region (Adam et al. 2009).  Increasing temperatures by even a few 
o
C 

may dramatically affect the timing of runoff in mountainous watersheds in the western US (Gleick 1987; 

Lettenmaier and Gan 1990), and the timing of the center of mass of annual runoff has shifted consistently 
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over the last half century towards earlier dates in areas affected by snowmelt (Stewart et al. 2005; Adam 

et al. 2009), increasing runoff in the cool season, decreasing runoff in the warm season, and moving peak 

flows associated with snowmelt earlier in the water year (Adam et al. 2009).  These alterations to the 

natural flow regime of streams in the western US, specifically in the Rocky Mountain region, that result 

from climate change are likely to substantially influence stream temperatures and thermal capacity in 

Montana.  

Flow years like those seen in 2007 on Montana‘s Blackfoot River are becoming more common: 

an early pulse of runoff after a warm spell in March, followed by peak flows in early May—weeks ahead 

of the historic average peak flow (Brick et al. 2008).  Flow data from the Clark Fork Basin and from 

around the northern Rockies all point toward earlier runoff in the spring (Brick et al. 2008), followed by a 

long period of below-average flow from late-June through September as a result of limited snowpack 

(Brick et al. 2008).  Some have suggested that 60% of the climate-related trends seen in flow, snowpack, 

and winter air temperatures over the past 50 years are attributable to human-caused release of greenhouse 

gases to the atmosphere (Brick et al. 2008).   

Precipitation 

Climate change has also influenced precipitation, the primary driver of the land surface 

hydrologic system (Adam et al. 2009).  Although the average annual precipitation remained steady or 

even increased slightly in the Clark Fork basin over the past 50 years, more of that moisture came down 

as rain instead of snow, especially at lower elevations (Brick et al. 2008).   In its Climate Change 2007 

report, the IPCC predicts no significant change for western Montana‘s total precipitation over the next 

century; however, the timing and type of precipitation may shift: the report predicts a 10% increase in 

precipitation during the winter months, and a 10 to 15% decrease in summer precipitation (Brick et al. 

2008; IPCC 2007c).  Also, for western North America, Revelle and Waggoner (1983) conclude that 

declining precipitation would amplify the effect of increasing evapotranspiration (Schindler 1997).   

Drought 

Montana has experienced several years of prolonged, and sometimes severe, drought (National 

Weather Service 2009).  As depicted in Figure 5, much of Montana has experienced prolonged deficit 

from normal precipitation levels during five years in this decade.  As of June 16, 2009, the U.S. Drought 

Monitor shows that abnormally dry conditions are now found in the northeastern corner and spans across 

much of western Montana and along much of the western half of the Montana-Canada border.  

Fortunately, moderate to extreme drought conditions only exist in a small region along the Canadian 

border in several Mid- to Western-central counties (see Figure 6) (Tinker 2009).  Higher water 

temperatures and changes in extremes, including floods and droughts, are projected to affect water 
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quality, exacerbate thermal pollution, and negatively affect ecosystem integrity and human use of streams 

(Bates et al. 2008; Lettenmaier et al. 2008; Hogg and Williams 1996).   

Groundwater Interactions 

Climate warming may significantly alter groundwater temperatures (Hauer et al. 1997).   

With climate change, availability of groundwater is likely to be influenced by three key factors: 

withdrawals (reflecting development, demand, and availability of other sources), evapotranspiration 

(increases with temperature) and recharge (determined by temperature, timing and amount of 

precipitation, and surface water interactions) (Bates et al. 2008).  Groundwater-dominated watersheds that 

are transitioning between transient and seasonal snow regimes will be the most affected by projected 

climatic change, particularly in terms of late summer and fall streamflow (Jefferson et al. 2008).  As a 

result, water resource managers in the mountainous western USA, particularly in groundwater-dominated 

watersheds and those perched at the transient/seasonal snow transition, must anticipate and address the 

elevated temperatures that climate change is likely to bring (Jefferson et al. 2008).   

Melting Glaciers 

The melting of glaciers could have serious implications for temperatures in streams that rely on 

these glaciers for summer base flow, particularly in northwestern Montana.  The mean annual summer 

temperature in Glacier National Park has increased three times more than the global average and only 27 

of an estimated 150 glaciers remain since it was founded in 1910 (Brick et al. 2008).  According to Hall 

and Fagre (2003), Montana‘s glaciers are in serious decline and all glaciers in the Blackfoot-Jackson 

Glacier Basin of Glacier National Park, when modeled to include carbon dioxide-induced global 

warming, are projected to disappear by as soon as the year 2030.    

Temperature-Related Ecological Threats to Stream Integrity by Climate Change 

Native Species Resilience 

The major effect of climate warming on stream fishes will probably be mediated through changes 

in maximum summer temperatures and minimum winter temperatures (Keleher and Rahel 1996).  The 

potential impacts of climate change on biological diversity at all levels of biological and ecological 

organization have been of concern to the scientific community for some time (IPCC 1990; Lovejoy and 

Hannah 2005; Janetos et al. 2008).  As Montana‘s climate changes, native species assemblages remain at 

great risk and closures of recreational fisheries are likely to become more common.   In the Rocky 

Mountain region, global warming is likely to induce a noticeable reduction in habitat suitable for 

salmonids and an increase in population fragmentation as coldwater fish become separated from main 

river channels and restricted to headwater streams at increasingly higher elevations (Keleher and Rahel 
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1996; Hauer et al. 1997).  Consequently, a substantial number of fish species endemic to this region could 

face extinction unless they were able to adapt behaviorally or genetically (Keleher and Rahel 1996; 

Flebbe 1993).   

It has been estimated that, due to warmer temperatures alone, western Montana could lose 

between 5 to 30% of native trout habitat over the next century, and temperature-sensitive native species 

are particularly at risk (Brick et al. 2008). For example, as lower elevation streams warm up during the 

summer, a loss of 27 to 99% of habitat patches that are large enough to sustain populations of bull trout, 

listed as ―threatened‖ under the Endangered Species Act, by the end of the century has been predicted 

(Brick et al. 2008).  Some mid- to late-summer temperatures in Montana have been lethal for even more 

temperature-tolerant non-natives, such as rainbow and brown trout (Brick et al. 2008).   

Invasive/ Non-Native Aquatic Species 

Direct effects of climate change, including range expansions of pathogens and habitat changing 

invasive plants, will likely be some of the most noticeable changes seen in aquatic ecosystem 

communities (Janetos et al. 2008).  Interactions between increasing global temperature and pests and 

pathogens are of particular concern because of the rapid and sweeping changes these taxa can render 

(Janetos et al. 2008).  The rise in global temperature will tend to extend polewards the ranges of many 

invasive aquatic plants, posing a major threat to native biodiversity in aquatic ecosystems (Bates et al. 

2008).  Climate warming may also affect native stream salmonids, such as native cutthroat and bull trout, 

by exacerbating biotic interactions with non-native species that may gain a competitive advantage as a 

result of climate change (Hauer et al. 1997).  For example, in the western mountains, native bull trout 

(Salvelinus confluentus) are threatened by the introduction of the eastern brook trout (Salvelinus 

fontinalis), which has already taken over much of the bull trout's habitat in montane areas (Schindler 

1997).  Whereas brook trout appear to be prevented from invading high altitude bull trout habitats by cold 

water temperatures, this limitation would be likely be reduced by climatic warming, causing further 

extirpation of the threatened bull trout (Schindler 1997).   

Declining Riparian condition 

A warmer climate is also predicted to have a substantial effect on riparian plant communities, 

particularly in arid regions in the western US, as the competitive balance shifts in favor of non-native 

plants, such as Salt cedar and Russian olive, promoting displacement of native plants, like willows and 

cottonwoods, in riparian zones (Ryan et al. 2008; Janetos et al. 2008).  Also, shallow groundwater, which 

plays an important role in structuring riparian plant communities (Stromberg et al. 1996), will likely 

decline as human depletions and intensified drought in a changing climate lowers the water table (Ryan et 
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al. 2008).  Structural changes in the riparian canopy may compromise its ability to provide adequate 

shade for regulation of stream temperatures.   

Future Outlook on Climate Change Preparedness 

One of the challenges of understanding changes in biological diversity related to variability and 

change in the physical climate system is the adequacy of the variety of monitoring programs that exist for 

documenting those changes (Janetos et al. 2008; Mulholland et al. 1997).  Essentially no aspect of the 

current hydrologic observing system was designed specifically for purposes of detecting climate change 

or its effects on water resources and are thus in many cases unable to predict all the challenges of a 

rapidly changing climate (Lettenmaier et al. 2008).  Regardless of the cause of recent climate warming 

trends, it is essential to anticipate the consequences for aquatic ecosystems and the human endeavors that 

depend on them (Schindler 1997).  The predictive model discussed in Section 3 of this report may serve 

as a useful tool for anticipating the effects of climate change on natural stream temperatures in Montana‘s 

reference streams, particularly by facilitating the application of more readily available air temperature 

data to supplement more extensive on-site monitoring of stream temperatures.    
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SECTION 2 – REVIEW OF THE LEGAL MADATE FOR MANAGING STREAM 

TEMPERATURES: MOTIVATIONS FOR RESTORING NATURAL THERMAL REGIMES 

Managing Temperature as a Water Quality Parameter 

The federal government, specifically the United States Environmental Protection Agency (US 

EPA), has provided states with a legal mandate and guidance to protect the thermal regimes of streams.  

Given the complexity, natural variability, ecological significance, and impairment of thermal regimes in 

Montana‘s streams, the development of regulatory mechanisms for fulfilling this mandate presents a 

challenge to management agencies, primarily the Montana Department of Environmental Quality (MT 

DEQ), for several reasons.   

The process of setting stream temperature standards must take into account the wide variety of 

human uses and values associated with Montana‘s surface waters while also preventing the decline in 

integrity of Montana‘s aquatic ecosystems that often results from those uses.  Maintaining stream 

temperatures that support all human and ecosystem uses can be difficult since deleterious impacts can 

stretch across the entire ecosystem and their causes can be elusive.  Also, because temperature 

management in streams and rivers is primarily driven by the need to provide temperatures in compliance 

with fish rearing and spawning needs (Khangaonkar and Yang 2008), the delineation of thermal 

tolerances across species and regions adds an additional layer of complexity to setting water quality 

standards.  Furthermore, choosing the proper targets (i.e., reference condition) for maintaining and 

restoring ―natural‖ temperatures is complicated by the natural variability in, and the multitude of factors 

that influence, stream temperature.   

Not surprisingly, thermal degradation remains a substantial problem across the United States, 

particularly in Montana and the greater West.  An understanding of the legal mandate and protocol for 

developing water quality standards may help determine the degree of flexibility that managers have 

within the law to expand and improve upon stream temperature management approaches.   

Current Status of Stream Temperature Impairment in Montana 

Nationally, temperature has been listed as one of the top ten impairments of water quality (Poole 

et al. 2004), with temperature recently cited as the cause of impairment for 3,015 waters (US EPA 2008).  

Montana has 677 waters on the ―303(d) list‖ (see below) (US EPA 2008).  As of 2006, 18,006 miles of 

the 176,750 total miles of rivers and streams (~10%) in Montana have been assessed for water quality 

and, of these, 15,221 miles (~85%) are considered impaired (US EPA 2006).  Temperature is cited as the 

cause of impairment for 2,393 miles (~13% of those assessed) (US EPA 2006).   

As of 2007, nonpoint source pollution accounted for 90% of stream impairments in Montana, 

with water temperature listed as one of four primary factors responsible for the greatest numbers of 
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impaired stream miles in Montana, along with sediments, nutrients, and heavy metals (MT DEQ 2007).  

According to Montana‘s Nonpoint Source Management Plan, the five leading sources of water quality 

impairments for rivers and streams, all of which impact temperature directly or indirectly, are: (1) 

agriculture (including dryland farming, irrigated crop production and grazing); (2) hydrologic 

modification (i.e., channel straightening, channel relocation, dams); (3) resource extraction (mining); (4) 

habitat modification; and (5) construction (MT DEQ 2007).   

Legal Mandate for Protecting Stream Temperature 

The Clean Water Act (CWA) 

The Clean Water Act of 1972 (33 U.S.C. §§1251 et seq.), provides the primary legal mandate for 

protecting natural stream temperatures.  The CWA established an "interim" national goal of achieving 

fishable and swimmable water quality by July 1, 1983 to allow the propagation of fish and wildlife, and 

recreational uses of water, by that date "wherever attainable" (Plater et al. 2004; Murchinson 2005).  The 

stated objectives of the CWA are to restore and maintain the chemical, physical, and biological integrity 

of the nation's waters and that the discharge of toxic pollutants in toxic amounts be prohibited (33 

U.S.C.S. § 1251(a)(3); Friends of Pinto Creek v. EPA 2007).  The phrase "restore and maintain" indicates 

that Congress sought to return water bodies to their natural conditions, not modify their natural 

conditions, and "integrity" refers to a condition in which the natural structure and function of ecosystems 

is maintained (Sierra Club et al. v. Leavitt 2007).  

This statute provides a legal mechanism for regulating thermal pollution of our nation‘s 

―navigable‖ waters by imposing national, technology-based effluent limitations from point sources of 

pollution discharging to waters of the United States and more stringent in stream quality-based discharge 

limits for waters where technology-based limitations do not meet water quality standards based on 

fishable-swimmable criteria (Plater et al. 2004).  While effluent limitations focus on the composition of 

the waste stream as it flows out of the discharge pipe, water quality limits focus on the waste assimilation 

capacity of the receiving water.  These quality-based regulations are necessary to account for the fact that 

natural and human-induced variability in streams can mean that compliance with effluent limitations does 

not necessarily mean that water quality standards will be met.  This is particularly true streams that 

receive discharge from multiple sources, streams with relatively low flows, or those with heavy use 

(Andreen 2004).   

CWA’s “303(d) list” and “305(b) List” 

Section 303(d)(1)(A) of the CWA requires that each state identify ―water quality limited 

segments‖ within its boundaries for which the technology-based point-source limits required by the CWA 

http://www.lexisnexis.com/us/lnacademic/mungo/lexseestat.do?bct=A&risb=21_T3486368078&homeCsi=6320&A=0.2668493766922452&urlEnc=ISO-8859-1&&citeString=33%20U.S.C.%201251&countryCode=USA
http://www.lexisnexis.com/us/lnacademic/mungo/lexseestat.do?bct=A&risb=21_T3486368078&homeCsi=6320&A=0.2668493766922452&urlEnc=ISO-8859-1&&citeString=33%20U.S.C.%201251&countryCode=USA


30 
 

are not stringent enough to implement water quality standards applicable to such waters (33 U.S.C.S. § 

1313(d)(1)(A); 40 C.F.R. §§ 130.2(j), 130.7(b)(1)).  This list is often referred to as ―the 303(d) list‖ (40 

C.F.R. § 130.7(d)(1), (b)(4); Plater et al. 2004).  Also, under section 305(b) of the CWA, states must 

provide an assessment on the overall state-wide water quality, the extent to which state waters protect 

their designated uses, a report on water pollution control programs; and a description of ground and 

drinking water programs (MTDEQ 2006).  As such, Montana‘s Integrated 303(d)/305(b) Water Quality 

Report for Montana is the primary document for state-wide reporting of water quality (MT DEQ 2007).   

Total Maximum Daily Loads (TMDLs) 

According to §303 (d)(1)(C) of the CWA, for each waterbody on the list, states must establish the 

total maximum daily load (TMDL) for every pollutant, including temperature, suitable for calculation that 

prevents or is expected to prevent a waterbody from attaining applicable water quality standards (Plater et 

al. 2004; 40 C.F.R. § 130.7(c)(1)(ii)).  A TMDL is a specification of the ―maximum amount of a 

particular pollutant that can pass through a waterbody each day without water quality standards being 

violated‖ (33 U.S.C. §1313(d)(1)(c); Plater et al. 2004; Andreen 2004), and is essentially the same as the 

―waste assimilation capacity‖ of a water body.  Such load shall be established at a level necessary to 

implement the applicable water quality standards, with acknowledgement of seasonal variations and a 

margin of safety which takes into account any lack of knowledge concerning the relationship between 

effluent limitations and water quality (Plater et al. 2004).  TMDLs allocate those loadings among the 

various sources of pollution (Andreen 2004), and they are divided into two types: "load allocations" for 

nonpoint source pollution and "wasteload allocations" for point source pollution (40 C.F.R § 130.2(g)-

(i)).   

States are required to submit their lists of water quality limited water bodies, TMDLs, and 

priority rankings to the EPA every two years (40 C.F.R. § 130.7(d)(1)).  Section 303(e)(3) of the Clean 

Water Act (CWA) additionally requires that each state include in its continuing planning process adequate 

implementation, including schedules of compliance, for revised or new water quality standards for all 

navigable waters within such State (Pronsolino et al. v. Nastri et al. 2002).  A state may remove a 

waterbody from its impaired waters list if it is meeting all applicable standards, or is expected to meet 

them in a reasonable time frame, or if the original basis for listing is determined to be inaccurate  (Sierra 

Club et al. v. Leavitt 2007). 

These regulations apply whether a water body receives pollution from point sources only, non-

point sources only, or a combination of the two (Pronsolino et al. v. Nastri et al. 2002).  This ruling 

helped to secure the legal mandate for protection of streams from both direct and indirect causes of 

thermal degradation.  Also, in Friends of the Earth v. EPA et al. (2006) when questioned whether the 
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http://www.lexisnexis.com/us/lnacademic/mungo/lexseestat.do?bct=A&risb=21_T3486368078&homeCsi=6320&A=0.37863049755431455&urlEnc=ISO-8859-1&&citeString=33%20U.S.C.%201313&countryCode=USA
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http://www.lexisnexis.com/us/lnacademic/mungo/lexseestat.do?bct=A&risb=21_T3486368078&homeCsi=6320&A=0.37863049755431455&urlEnc=ISO-8859-1&&citeString=40%20C.F.R.%20130.7&countryCode=USA
http://www.lexisnexis.com/us/lnacademic/mungo/lexseestat.do?bct=A&risb=21_T3486368078&homeCsi=6320&A=0.37863049755431455&urlEnc=ISO-8859-1&&citeString=40%20C.F.R.%20130.7&countryCode=USA
http://www.lexisnexis.com/us/lnacademic/mungo/lexseestat.do?bct=A&risb=21_T3486368078&homeCsi=6320&A=0.37863049755431455&urlEnc=ISO-8859-1&&citeString=40%20C.F.R.%20130.7&countryCode=USA
http://www.lexisnexis.com.weblib.lib.umt.edu:8080/us/lnacademic/mungo/lexseestat.do?bct=A&risb=21_T3421083256&homeCsi=6320&A=0.7971229776375365&urlEnc=ISO-8859-1&&citeString=40%20C.F.R.%20130.2&countryCode=USA
http://www.lexisnexis.com.weblib.lib.umt.edu:8080/us/lnacademic/mungo/lexseestat.do?bct=A&risb=21_T3421083256&homeCsi=6320&A=0.7971229776375365&urlEnc=ISO-8859-1&&citeString=40%20C.F.R.%20130.2&countryCode=USA
http://www.lexisnexis.com/us/lnacademic/mungo/lexseestat.do?bct=A&risb=21_T3486368078&homeCsi=6320&A=0.37863049755431455&urlEnc=ISO-8859-1&&citeString=40%20C.F.R.%20130.7&countryCode=USA
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meaning of the word ―daily‖ in TMDL was sufficiently pliant to mean a measure of time other than daily, 

the court held ―daily means daily, nothing else.‖   

Montana’s TMDL Program Overview 

The Watershed Management Section (WMS) within the Water Quality Planning Bureau is 

responsible for TMDL development for Montana.  The goals for the section include the development of 

TMDLs that are consistent in the application and interpretation of state water quality standards and state 

law, and the development of TMDLs at a pace consistent with court ordered schedules. The WMS also 

provides a linkage to TMDL implementation by including implementation strategies and 

recommendations in TMDL documents, thus facilitating the transition from TMDL development to 

TMDL implementation (MT DEQ 2006).  Of the 18,006 miles of streams and rivers in Montana that have 

been assessed for water quality, 12,533 miles (~70%) still require completion of TMDL(s) as of 2006 (US 

EPA 2006).   

 In Montana, TMDLs and watershed restoration plans are developed using a "watershed" approach 

in which TMDLs are developed for all streams impaired by a given pollutant or set of pollutants within a 

given watershed.  The scale of the watershed used for TMDL development is based on USGS Hydrologic 

Unit Code (HUC - 4th code) boundaries where practical. These ―watersheds‖ are called TMDL Planning 

Areas (TPAs) to distinguish the areas from USGS 4th code HUC watersheds, and can be seen in Figure 7 

(MT DEQ 2006).  In Montana, these watersheds usually have a size of more than 300,000 acres (MT 

DEQ 2007).   

Within the TMDL process, the EPA draws a distinction between ―pollutants‖ and ―pollution.‖  

The EPA only approves or disapproves TMDLs addressing pollutant impaired or threatened waterbodies, 

whereas pollution impairment or threats may be addressed within the TMDL document but are not 

considered in EPA‘s approval of the TMDL for a specific waterbody - pollutant combination (MT DEQ 

2006).  Temperature is considered a pollutant, while examples of pollution include ―alteration in stream-

side or littoral vegetative covers‖, ―low flow alterations‖, and ―fish barriers‖ (MT DEQ 2006).  A large 

percentage of waters within Montana have impairments that fall within the ―pollution‖ category (MT 

DEQ 2006).  WMS staff develops water quality plans that include TMDLs for waterbodies impaired by 

pollutants and additional restoration goals and objectives for waterbodies impaired by pollution.  This 

allows staff to identify and pursue water quality improvements via a comprehensive planning process that 

typically addresses all situations where water quality standards are not attained within a watershed. The 

comprehensive document is often referred to as a watershed or water quality restoration plan that includes 

required TMDLs within its scope (MT DEQ 2006).   
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Enforcement of the CWA  

Unfortunately, states must implement TMDLs only to the extent that they seek to avoid losing 

federal grant money; there is no pertinent statutory provision otherwise requiring implementation of §303 

plans or providing for their enforcement. 33 U.S.C.S. § 1319; 33 U.S.C.S. 1365 (Pronsolino et al. v. 

Nastri et al. 2002).  Additionally, although the EPA has approval authority, it does not have a mandatory 

duty to monitor a state's waters under the CWA. §1313(d)(2) (Sierra Club et al. v. Hankinson et al. 1996).  

This lack of compliance and enforcement has heightened the challenge of maintaining natural thermal 

regimes necessary for healthy aquatic systems.  Fortunately, the EPA may approve a state's continuing 

planning process only if it will result, for all ―navigable waters‖ within the state, plans that include 

effluent limitations, TMDLs, area-wide waste management plans for non-point sources of pollution, and 

plans for "adequate implementation, including schedules of compliance, for revised or new water quality 

standards.‖ §303(e)(3) (Pronsolino et al. v. Nastri et al. 2002).  Also, to aid in enforcement of the CWA, 

section 505(a) authorizes citizens to bring suit in federal court against the EPA for failure to perform any 

act or duty under the CWA which is not discretionary with the Administrator. 33 U.S.C.S. § 1365(a).  

"The Supreme Court has held that the CWA citizen suit provision allows a district court to 'order the 

relief it considers necessary to secure prompt compliance with the Act'‖ (Sierra Club et al. v. Hankinson 

et al. 1996).   

Stream Temperature (Water Quality) Standards: Guidance from the US EPA 

Water quality standards are tailored to the uses and values of specific waters, for which states set 

technical criteria for water quality standards designed to protect those uses (33 U.S.C. §1313(c)(2)(A); 

Andreen 2004).  The US EPA believes that water quality criteria should apply to all the river miles for 

which a particular use is designated, including the lowest point downstream at which the use is 

designated, whereby waters upstream of that point will generally need to be cooler in order to ensure that 

the criterion is still met downstream as water progressively warms (US EPA 2003).  The EPA also 

believes that criteria should apply upstream of the areas of actual use because temperatures in upstream 

waters significantly affect the water temperatures where the actual use occurs and upstream waters are 

usually colder (40 C.F.R. § 131.11(a); US EPA 2003). 

Montana’s Beneficial Uses 

As shown in Table 1, Montana‘s Water-Use Classification System (ARM 17.30.604-629) 

identifies the following beneficial uses: drinking, culinary use, and food processing; aquatic life support 

for fishes and associated aquatic life, waterfowl, and furbearers; bathing, swimming, recreation, and 

aesthetics; agriculture water supply; and industrial water supply (MT DEQ 2006).  A waterbody is 

considered impaired when there is a violation of the water quality standards established to protect any of 
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the applicable beneficial uses (MT DEQ 2006).  The designated uses that have the highest water quality 

requirements are aquatic life, fisheries, recreation, and drinking water, culinary and food processing, and 

any waterbody that supports these beneficial uses should support all other existing and future designated 

uses (see Table 1) (MT DEQ 2006).  

Montana Water Quality Standards: Numeric vs. Narrative 

Montana law provides the authority to the DEQ and the Board of Environmental Review (BER) 

to adopt proposed water quality standards into the Administrative Rules of Montana (ARM), and the 

DEQ periodically reviews, updates, and modifies Montana's water quality standards, as necessary.  

Montana water quality standards include both use-specific components (ARM 17.30.621-629) and 

general provisions (ARM 17.30.635-646), and may be either narrative or numeric, and be specific to 

human health (i.e., drinking water, contact recreation), aquatic life support or other beneficial uses (MT 

DEQ 2006b).    

Using guidance from the EPA, Montana has established numeric water quality temperature 

standards based on Water-Use Classifications (ARM 17.30.620-629; MT DEQ 2008).  Narrative 

standards provide a minimum level of protection to state waters and may be used to limit the discharge of 

pollutants, or the concentration of pollutants in waters not covered under numeric standards (MT DEQ 

2006).  Montana narrative water quality standards also prohibit activities which would result in nuisance 

aquatic life, such as excessive biomass (e.g., alga growth) or the dominance of undesirable species (ARM 

17.30.637), both of which have been tied to elevated stream temperatures. Narrative standards for 

temperature, as well as pH and sediment, are defined in terms of change from what would naturally exist 

and provide that "no increase above naturally occurring condition" shall occur (MT DEQ 2006).  

―Naturally occurring" refers to conditions or materials present from events over which man has no 

control, or from developed land where ―reasonable‖ land, soil, and water conservation practices have 

been applied (although conditions resulting from reasonable operation of dams in existence since July 1, 

1971, are considered natural) (75-5-306 MCA; MT DEQ 2006b).  Montana‘s current stream temperature 

standards are listed by ‗use classification‘ in Table 2.    

Cold- and Warm-Water Fisheries  

Broad-scale distribution patterns of fishes in Rocky Mountain streams generally reflect the 

importance of temperature, with upstream reaches being dominated by cold-water species and 

downstream reaches by warm-water species (Rahel and Hubert 1991).  In Montana, stream sites located 

in the level III ecoregions Canadian Rockies (41), Northern Rockies (15), Idaho Batholith (16) and 

Middle Rockies (17) were labeled as cold-water, and those in the Northwestern Glaciated Plains (42), 

Northwestern Great Plains (43) and the Wyoming Basin (18) were labeled as warm-water (Woods et al. 
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2002).  Overall, the geographic location of warm- and cold-water sites based on ecoregions closely 

parallels the state‘s beneficial use classifications for warm- and cold-water fisheries (see ARM 17.30.607) 

(Suplee et al. 2005).   

Cold-water streams are generally located in the western mountainous region of the state, and are 

expected to support salmonids — fish preferring temperatures lower than 65
o
F. Warm-water streams are 

generally located east of the Rocky Mountain Front, and comprise prairie streams and rivers that support 

walleye, bullhead, bass and a variety of other fish that prefer temperatures 65
o
F or greater (Holton and 

Johnson 1996).  More specifically, a cold-water fish guild composed of four species of salmonids that are 

common throughout the Rocky Mountain region (rainbow trout (Oncorhynchus mykiss), brown trout 

(Salmo trutta), brook trout (Salvelinus fontinalis), and cutthroat trout (Oncorhynchus clarki) show 

optimal temperatures for growth of 14-18°C and upper thermal tolerance limits of 22-24°C (Eaton et al. 

1995; Keleher and Rahel 1996).   

These delineations of cold- and warm-water fisheries inform the creation of temperature 

standards in Montana.  For example, Montana divides B and C classifications based on cold-water or 

warm-water aquatic life.  B-1 and C-1streams support growth and propagation of cold-water organisms 

(i.e., salmonid fishes and associated aquatic life) and B-2 and C-2 streams support growth and marginal 

propagation of cold-water aquatic life, wheras B-3 and C-3 waterbody classes support warm-water 

aquatic life (i.e., non-salmonid fishes and associated aquatic life) (MT DEQ 2006).  Most streams in 

Montana have a B (1, 2, or 3) classification (MT DEQ 2006).  

Benefits and Challenges of Complying with the CWA in Montana 

Humans and ecosystems co-benefit from Montana‘s compliance with the Clean Water Act‘s 

requirement to set and enforce water quality standards for stream temperature (MT DEQ 2006).  For 

example, with fishing as one of the most popular and income-generating water-related activities in 

Montana, maintaining natural stream temperatures, especially in Montana‘s several Blue Ribbon Trout 

Rivers and streams, is beneficial to anglers and native fish species alike, particularly those that are 

endangered and threatened.  However, setting water quality standards to support beneficial uses that 

adequately reflect ―natural‖ conditions of stream temperature regimes is a complex task, as described 

above.  As such, investigations of spatial and temporal variability in Montana‘s reference stream 

temperatures are imperative for water quality managers as they seek to preserve the natural condition and 

integrity of stream ecosystems across the state and into the future.  Additionally, compliance with the 

CWA will likely become more difficult to achieve as the changing climate will likely amplify the 

importance of air temperature as a driver of stream temperature.  Thus, further investigation of the air-
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water temperature relationship in these reference streams may also be an asset to stream managers as they 

develop predictive tools for modeling stream temperature regimes now and in the future.   
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SECTION 3 – ANALYSIS OF SPATIAL AND TEMPORAL VARIABILITY IN TEMPERATURE 

REGIMES OF SEVERAL OF MONTANA‘S REFERENCE STREAMS 

Introduction 

This section aims to quantify spatial and temporal variability in Montana‘s reference streams and 

to investigate the air-water temperature relationship that influences their thermal regimes.  The thirty-six 

streams included in this analysis are characterized as ―reference‖ by the Montana Department of 

Environmental Quality (MT DEQ), and represent four of Montana‘s Level III ecoregions: Middle 

Rockies, Northern Rockies, Northwestern Glaciated Plains, and Northwestern Great Plains (see Table 3).  

A brief discussion of the study streams chosen and the field study/characterization of MT DEQ‘s 

reference streams are followed with a brief literature review of the air-water temperature relationship and 

the availability of and collection methods for water and air temperature data.  To achieve objective 3 of 

this study, data are analyzed through the development of a random coefficient regression model which 

allows stream managers to: (1) analyze if water temperatures and the air-water temperature relationship in 

reference streams varies significantly by ecoregion; (2) analyze if water temperatures and the air-water 

temperature relationship in reference streams varies significantly by stream within ecoregion; (3) develop 

a general equation representing the air-water temperature relationship for all reference streams (the 

population average), and (4) to construct a similar equation for each individual reference stream included 

in this analysis that deviates significantly from the population average.  To determine if reference streams 

were sampled during a summer when air temperatures were typical of long-term averages, and to achieve 

objective 4 of this study, an analysis of air temperatures over an 11-year period is also described.  This 

section concludes with a discussion of improvements that may be made to the collection and analysis of 

reference stream water temperature data, and the management implications of this model‘s application.    

Purpose and History of Montana’s “Reference Streams” 

Until the early-1990‘s, the United States Environmental Protection Agency (US EPA) based 

water pollution controls primarily on the measurement of chemical constituents and laboratory tests of the 

toxicity of wastewater discharges to selected organisms.  Recognizing that this was insufficient, they 

began to emphasize a more ecological approach to water pollution control in attempts to directly gauge 

the health of whole biological communities in aquatic ecosystems, most notably those subject to the 

cumulative effects of both point and nonpoint sources of pollution (Bahls et al. 1992).  This paradigm 

change led to efforts by states, including Montana, to begin establishing baseline conditions of various 

biological components in aquatic reference systems (Bahls et al. 1992).  The MT DEQ uses reference 

condition to determine if narrative water quality standards are being achieved (MT DEQ 2006b).  The 

term ―reference condition‖ is defined as the condition of a waterbody capable of supporting its present 
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and future beneficial uses when all reasonable land, soil, and water conservation practices have been 

applied; in other words, reference condition should reflect minimum impacts from human activities and 

attempts to identify a waterbody‘s greatest potential for water quality given historic land uses activities 

(MT DEQ 2006b).   

The Montana Water Quality Bureau presented three reasons for establishing benchmark or 

baseline biological conditions in least-impaired ―reference‖ streams:  

 

1. To provide a reference against which to compare conditions in other streams. Such a reference will 

help gauge the severity of pollution as well as progress in abating pollution. This will be 

particularly helpful in the Nonpoint Source Program- for ranking prospective watershed 

demonstration project streams and measuring the effectiveness of best management practices, 

2. To provide the basis for narrative and numerical biological criteria and enforceable  biological 

standards in streams, and 

3. To describe the natural biodiversity and types of algal and macroinvertebrate communities found in 

Montana streams. The concept of biodiversity recognizes the intrinsic value of biological species 

and their functional importance in ecosystems. Little work of this type has been accomplished in 

aquatic ecosystems as compared to terrestrial ecosystems; and few studies of biodiversity have 

addressed invertebrates and nonvascular plants as compared to vertebrate animals and vascular 

plants (Bahls et al. 1992).   

 

In response, in 1992 Bahls et al. released a report that documents the benchmark biology of 

several reference streams in Montana, marking early efforts to establish reference conditions in the state.  

This report describes the composition and structure of benthic macroinvertebrate (mostly insect), 

periphyton (algae), and fish communities inhabiting least-impaired reference streams in Montana‘s six 

major ecoregions in the summer of 1990. In addition the report provides supporting information on water 

chemistry, macroinvertebrate habitat, and overall stream condition (Bahls et al. 1992).   

Montana Department of Environmental Quality’s (MT DEQ) Reference Stream Project 

 In 2002, the Department of Environmental Quality re-initiated these earlier efforts with the 

Reference Stream Project in which data were collected at both existing reference sites (per Bahls et al. 

1992) and at new sites that were identified around the state (Suplee et al. 2005).  Recall that the reference 

condition concept asserts that there exist for any group of waterbodies relatively undisturbed examples 

that can represent the natural biological, physical and chemical integrity of a region; such reference 

stream sites serve to represent the reference condition (MT DEQ 2006). The MT DEQ is primarily 
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interested in reference sites because they help the Department interpret narrative water-quality standards; 

as a number of Montana‘s narrative standards require that water quality be compared to ―naturally 

occurring,‖ reference sites serve to help interpret the meaning of this designation (Suplee et al. 2005).  As 

of 2009, 159 documented reference streams exist in Montana (Suplee 2009).     

MT DEQ’s Reference Stream Site Criteria 

Although some pre-established reference sites that had already been thoroughly reviewed were 

automatically classified as final reference sites, the MT DEQ uses an evaluation process to assess each 

candidate reference site.  Quantitative watershed and water-quality analyses are performed for each site, 

as well as qualitative assessments of stream health and condition using a set of criteria and best 

professional judgment (BPJ) (Suplee et al. 2005).  Each criterion evaluates some aspect of stream or 

watershed condition that could potentially impact water quality and aquatic life, with sixteen criteria used 

for cold-water streams in Montana‘s mountainous regions and thirteen criteria tailored for warm-water 

streams in prairie regions (Suplee et al. 2005).    

To create the final list of reference sites, seven tests, or ―screens‖, are then used which were 

constructed from the qualitative BPJ assessments and from numeric values identified as impact thresholds 

in the quantitative analyses (Suplee et al. 2005).  These are: (1) cumulative impacts from multiple causes; 

(2) site-specific data sufficiency; (3) impacts from land-use based on the proportion of agriculture; (4) 

numeric water-quality standards exceedences for heavy metals; (5) impacts from mines; (6) road density; 

and (7) timber-harvest intensity (the latter two applicable to cold-water streams only).  A site must pass 

each applicable screen to qualify as a general-purpose reference site and be considered to be in an un-

impacted condition for all categories; these ―screens‖ address factors operating at the watershed-scale, 

site-specific scale and, in many cases, both (Suplee et al. 2005).   

Explaining Variability in Montana’s Reference Stream Temperature Regimes 

The complexity of stream thermal budgets and natural and anthropogenic variability adds to the 

challenge of applying the reference condition approach.  Once reference sites are identified, they must be 

sufficiently characterized in a way that allows managers to choose a ‗reference site‘ that is adequately 

representative of the ‗degraded‘ or ‗comparison‘ site parameters in question.  For example, when 

developing reasonable restoration goals and expectations for a stream experiencing thermal degradation, 

the reference condition may be used to reflect appropriate standards of the ―natural condition‖ that can be 

expected post-restoration.  Ideally, to help heighten confidence that the proper reference condition is 

chosen, comprehensive studies of ―reference‖ and degraded ―comparison‖ streams that characterize every 

individual ecosystem parameter that contributes to streams‘ thermal heat budgets should be undertaken 

and used to facilitate this choice.  These comprehensive stream energy balance studies are vital for 
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understanding the heat transfer processes driving temperature variability (Hannah et al. 2008; Malcolm et 

al. 2008).   

Unfortunately, these systems-oriented heat budget investigations are generally spatially limited 

due to associated costs and logistics and are normally of short duration (Webb and Zhang 1997).  This is 

problematic for assessing larger spatial and temporal scale variability in stream temperature and, 

consequently, there is a need for studies that are capable of generating spatially distributed temperature 

data (through field measurement), which are more readily obtainable and resourced over longer time 

periods (Malcolm et al. 2008).  The MT DEQ Reference Stream Project collects a wide array of data on 

physical, chemical and biological parameters of these stream ecosystems, but the study of temperature is 

currently rather limited in scope.   

Particularly due to its large size, temperate climate, wide elevation gradient, and the different 

climatic regimes that occur on the eastern and western sides of the Rocky Mountain divide, Montana 

exhibits substantial variability in climate.  Thus, it is expected that natural (reference) stream temperatures 

will vary significantly over space (i.e., region-to-region and stream-to-stream) and time (season-to-season 

and year-to-year).   Given our growing understanding of the importance of thermal heterogeneity across 

multiple spatial scales, monitoring programs may be inadequate if they cannot capture expected changes 

in the spatial thermal variability of streams (Poole and Berman 2001).  Also, owing to the flowing nature 

of streams, stream temperature at a point is controlled not only by immediate surroundings but also by 

upstream conditions (Johnson 2003).  As such, while site-specific variability in stream temperature is 

important for determining community composition and other localized attributes, stream temperatures 

must also be measured on a sufficiently coarse scale to understand the influence of upstream thermal 

variability on chosen study sites.  Facing resource limitations, the MT DEQ and others designing stream 

temperature studies in Montana would benefit from choosing an appropriate scale to use while designing 

efficient and effective sampling schemes.   

Level III Ecoregions  

The MT DEQ has, in general, found the Level III ecoregions presented by Omernik and others 

(Omernik 1987, 1995; Woods et al. 2002) to be an excellent tool for the initial partitioning of Montana 

reference streams (see map of Level III ecoregions in Figure 8) (Suplee et al. 2005).  Ecoregions have 

been used to classify regions of the United States within which the ecosystems and the type, quality, and 

quantity of environmental resources are generally similar.  They are designed to serve as a spatial 

framework for the research, assessment, management, and monitoring of ecosystems and ecosystem 

components (Woods et al. 2002).  They were first derived based on the premise that ecological regions 

can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic 
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phenomena that affect or reflect differences in ecosystem quality and integrity, including geology, 

physiography, vegetation, climate, soils, land use, wildlife, and hydrology (Wiken 1986; Omernik 1987;  

Woods et al. 2002).  As a result, ecoregions were used as a major grouping variable while conducting this 

investigation of reference stream temperature variability in Montana.  A more detailed description of 

Montana‘s ecoregions can be found in Appendix A.   

Applicability and Limitations of Reference Data 

The MT DEQ does, however, recognize that while it is likely that some water quality parameters 

and biological assessment metrics can be ―referenced‖ at the fairly coarse ecoregion scale, others cannot.  

In certain cases, more specific geospatial characteristics may need to be determined for the reference site 

and the comparison site depending on the parameter of interest (Suplee et al. 2005).  This notion 

reinforces the rationale for this study of spatial variability in reference stream temperature data between 

ecoreigons and between streams within ecoregions, to determine if the ecosystem-scale is useful for 

designing stream temperature studies and standards.   

It should also be noted that most of the MT DEQ‘s Reference Stream Project sites are located in 

lower Strahler stream orders – mainly 1
st
 through 4

th
 but including a few 5

th
 order sites – and thus the data 

are most applicable to ―wadeable‖ streams and may not be appropriately applied to much larger 

waterbodies (Suplee et al. 2005).  In the Strahler ordering scheme, stream order is 1 at the headwaters and 

increases toward the outlet of the watershed; when two n-th order streams come together, they form an 

(n+1)-th order stream, but the confluence with streams of lower order does not change the order of the 

highest order stream (Strahler 1957; Duscharne 2008).   

The MT DEQ recognizes that reference streams are not necessarily pristine or perfectly suited to 

giving the best possible support to all possible beneficial uses.  Reference condition does not reflect an 

effort to ―turn the clock back‖ to water quality conditions that may have existed before human settlement, 

which is usually unattainable, but is instead intended to accommodate natural variations in ecosystem 

attributes (i.e., biological communities, water chemistry) due to natural physiochemical differences (i.e., 

climate, bedrock, soils, hydrology), and to differentiate between natural conditions and widespread or 

significant alterations of biology, chemistry or hydrogeomorphology due to human activity (MT DEQ 

2006b).   

 Also, comparisons of conditions in a waterbody to reference waterbody conditions must be made 

during similar season and/or hydrologic conditions for both waters (MT DEQ 2006b), particularly when 

water temperatures that are driven by climatic and hydrologic variables are in question.   
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Air Temperature: A Primary Driver of Stream Temperature 

As described in Section 1 of this report (―Drivers of Stream Temperature‖), air temperature is 

considered a major driver of stream temperature (Smith and Lavis 1975; Sullivan and Adams 1990; 

Johnson 2004) and the air-water temperature relationship has often been used to predict or explain 

variability in stream water temperatures (Stefan and Preud‘homme 1993; Smith and Lavis 1975; Crisp 

and Howson 1982).  Investigations and mathematical models of the air-water temperature relationship in 

reference streams may provide useful information and tools for managers aiming, for example, to predict 

the response of natural water temperature regimes to climate change or other human-induced sources of 

thermal degradation.  These models may also allow managers to more efficiently identify potential 

reference sites by allowing them to use widely-available air temperature data to accurately predict 

whether or not a potential reference stream‘s temperature appears to fall within its natural temperature 

range. 

Linearity in the Air-Water Temperature Relationship 

Using data from field studies, many authors have successfully used simple linear regression 

models to represent the air-water temperature relationship, and have shown that mean air temperature 

accounts for a high percentage (i.e., 86-96%) of the variation in corresponding mean water temperatures 

(Stefan and Preud‘homme 1993; Crisp and Howson 1982; Jeppesen and Iversen 1987; Saffran and 

Anderson 1997; Eaton and Scheller 1996; Caissie et al. 1998; Duscharne 2008).  According to Crisp and 

Howson (1982), this strong correlation exists even when the water and air temperatures were measured at 

stations some 50km apart.  These simple linear regression models highlight air temperature as a surrogate 

for changes in heat fluxes that affect the water surface (Duscharne 2008).  The strength of this association 

has led several researchers to describe local air temperature as the single most important parameter 

associated with daily mean stream temperature (Bartholow 1989, Sinokrot and Stefan 1994; Meays et al. 

2005).    

It is important to note that several observations of the subtleties and complexities of the air-water 

temperature relationship have led some to question the assumption that this relationship is linear (Webb et 

al. 2003).  For example, a deviation from this linear relationship has been shown at very low temperatures 

(<0
o
C) (Crisp and Howson 1982; Webb and Nobilis 1997), which can be ascribed to the release of latent 

heat with ice formation which prevents water temperatures falling much below 0
o
C (Webb et al. 2003).  

More recently, it has been suggested that deviation from the linear relationship for weekly mean values 

occurs also at high air temperatures (> ca. 25
o
C) (Webb et al. 2003); this likely occurs as increases in the 

moisture-holding capacity of the atmosphere promotes greater evaporation from the water surface and 

thus enhances evaporative cooling and, as water temperatures rise, back radiation is also enhanced 

(Mohseni et al., 1998, 1999, 2002).  At both extremely high and low temperatures, a continuous S-shaped 
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curve based on a non-linear logistic regression function has been used successfully to represent departures 

of the water–air temperature relationship (Webb et al. 2003; Mohseni and Stefan 1999).   

The reference streams included in this study were sampled during the summer, negating (or 

greatly reducing) the effect of extreme low temperatures on linearity of the air-water temperature 

relationship.  To ensure that extreme high temperatures during the sampling period did not have a 

substantial effect on linearity, scatter plots of each stream‘s air-water temperature relationship regressions 

were reviewed (see Figures 9-12).  The green line in these figures represents the linear regression between 

daily average water temperature and daily average air temperature with various lag times, whereas the red 

line represents a slightly sigmoid regression relationship between these two variables.  Since these two 

lines mostly overlap and the sigmoid relationship did not appear to be a substantially better ―fit‖ for the 

data than a linear regression model is, the linear model was deemed appropriate for use in this analysis.  

These (green) regression lines suggested a linear pattern exists between daily average summer water and 

air temperatures for all streams included in this study.  The scattered behavior of minima in some streams 

has been attributed to the fact that the higher thermal capacity of water prevents development of the low 

nocturnal minima characteristic of air temperature (Smith 1979).  Daily means were the thermal variables 

(metrics) chosen for this study because several authors found that the use of daily average (or maximum) 

water and air temperature values tend to be less scattered than daily minimum values (Webb et al. 2003; 

Stefan and Preud‘homme 1993), and because the available air temperature data was better suited to 

calculating means.  Also due to the high thermal capacity of water, air temperatures would be expected to 

experience higher daily extreme temperatures than water temperatures, further suggesting that daily 

averages were suitable for comparison in this analysis.  However, future studies, particularly those 

concerned with lethal thresholds for aquatic organisms, may consider including other metrics, including 

daily maxima, which may represent periods when aquatic organisms experience additional thermal stress. 

Also, since water temperatures cannot be predicted from air temperature in periods with large 

amounts of melt water (Smith and Lavis 1975; Jeppesen and Iversen 1987), it is fortunate that reference 

streams were studied during the summer season so as to minimize the effects of spring high flows on the 

air-water temperature relationship.   

Air Temperature Lag Time 

Because of the high heat capacity of water, water temperature variations often tend to lag behind 

those of air temperature (Meays et al. 2005; Stefan and Preud‘homme 1993, Mosheni and Stefan 1999; 

Duscharne 2008; Jeppesen and Iversen, 1987).  As such, several authors have suggested that the 

correlation of water temperatures to air temperatures can be improved by imposing a lag time, often 

finding the current day and/or one day-lagged air temperature data is most appropriate for relatively small 
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streams (Stefan and Preud‘homme 1993; Saffron and Anderson 1997; Grant 1977; Webb et al. 2003).  

Analysis of the effect of time-lagged air temperature data discussed in this report supports this finding 

(see ―Determination of Appropriate Air Temperature Lag Times‖ section below).   

The lag effect has been shown to be more pronounced in larger, deeper rivers that have higher 

flow volumes and greater thermal capacities than in smaller streams (Webb et al. 2003; Stephan and 

Preud‘homme 1993; Saffron and Anderson 1997).  In this study, lagged air temperatures are defined as 

the daily average air temperatures measured one, two, and three days prior to the day reference stream 

water temperatures were measured, rather than the daily average air temperature averaged over multiple 

days.  Because all of Montana‘s reference streams included in this analysis are located in lower Strahler 

stream orders and are thus relatively small streams (Suplee et al. 2005), the decision to limit the lag times 

included in this analysis to three days was assumed to be sufficient and later verified through statistical 

analysis.  

 Stefan and Preud‘homme (1993) have also suggested that this lag time varies depending on 

catchment size, with 0 days for catchments 300 km
2
 or less in size, but more than 8 days for basins in 

excess of 4 x 10
5
 km

2
.  While catchment size data for the reference streams analyzed here was not 

available and thus not included, this relationship between lag time and catchment size may be helpful to 

consider when designing future studies of the air-water temperature relationship in Montana‘s streams 

and rivers.   

Water and Air Temperature Data Availability: Temperature Data Loggers & Weather Stations 

Water temperature can be measured with relative ease although data that are both detailed and 

long enough for rigorous assessment of trends are rare.  Hence there is a dearth of long, reliable and 

unbroken river temperature records reflecting the later development of interest in quality monitoring, 

compared with quantity monitoring for rivers (Webb 1996).  Fortunately, the advent of a new technology 

over the past several years has allowed examination of spatial dynamics of stream temperature at higher 

resolution than possible before (Johnson 2003; Dunham et al. 2005).  This technology consists of small, 

inexpensive electronic temperature sensors coupled with data loggers which are relatively inexpensive, 

simple to deploy and capable of collecting large amounts of data.  Also, long and detailed records of air 

temperature data are kept for many weather stations across Montana and are available online through the 

National Oceanographic and Atmospheric Administration‘s (NOAA) National Climatic Data Center 

(NCDC) (NOAA 2009b).  Since complex environmental gradients occur over very short distances (and in 

a lateral, horizontal, or vertical direction) away from the stream, appropriate measures should be taken to 

capture site-specific data (Johnson 2003; Dunham et al. 2005).  For example, wind speed, relative 

humidity, subsurface saturation and soil and air temperature are very responsive to variations in landscape 
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features and riparian vegetation distribution (Chen et al. 1993; Johnson 2003).  As such, it is ideal to 

measure air and water temperatures at the same stream site when the data is to be used to model the 

relationship between these two variables.  However, logistical limitations sometimes necessitate the use 

of remote air temperature data.  The air temperatures obtained from carefully-chosen weather stations for 

use in this analysis are assumed to be sufficiently representative of the stream sites at which water 

temperatures were measured.   

Methods 

Reference Stream Temperature Data (Source and Manipulation)   

One electronic data logger, the Optic® StowAway developed by the Onset Computer Corporation 

(2009), was used to collect water temperature data in each of 36 of Montana‘s reference streams every 30 

minutes throughout one summer (data logger identification numbers and period of record dates are listed 

in Table 4).  The Optic StowAway is submersible, has a memory capacity of 32,520 observations, is 

reliable for a temperature range of –4
o
C to 37

o
C, and is accurate to 0.2 

o
C (Dunham et al. 2005).  

According to the MT DEQ Temperature Data Logger Protocols Standard Operating Procedure and others 

(Stermitz et al. 2005; Jones and Allin 2006), an accuracy check was performed on temperature data 

loggers in the lab and care was taken to place data loggers in a stream location that is: shaded from direct 

sunlight; away from obvious regions of warm or cool water sources such as side channel inflows or 

ground water; in a well-mixed portion of the stream that is most likely to remain flowing for the longest 

period of time (typically in or very near the thalweg); and is not susceptible to excessive scour.  

Temperature data loggers were typically secured using plastic zip ties to either a steel fencepost or a brick 

to avoid displacement or disturbance.  Upon deployment during the first site visit (early summer), the 

date, time, and a descriptive narrative of the location, as well as the latitude and longitude collected using 

a handheld GPS unit, was recorded on a field form.  Often, a digital photograph of the deployment 

location was taken as well.  Each data logger was generally checked during a mid-summer site visit to 

ensure they were not ―high and dry or buried in the substrate‖ and necessary adjustments were made and 

recorded on the field form (Stermitz et al. 2005).  Data loggers were retrieved upon the third and final site 

visit (usually late-August to mid-September), and the date and time were recorded. 

Continuous water temperature data and site identification information for 36 of Montana DEQ‘s 

reference streams were obtained from Rosie Sada de Suplee, Montana DEQ‘s Water Quality Monitoring 

Section Environmental Program Manager.  These streams represent all reference streams for which 

continuous temperature data is available, and they represent 4 of the 7 total Level III ecoregions in 

Montana with 4 streams in the Middle Rockies Ecoregion, 11 in the Northern Rockies Ecoregion, 5 in the 

Northwestern Glaciated Plains Ecoregion, and 16 in the Northwestern Great Plains Ecoregion (see Table 
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3) (Woods et al. 2002).  The period of record for each stream varied between June to September, with 

most streams sampled from July to August.  Each stream was sampled during one summer between 2004 

and 2008 (see Table 4).  

For each stream, summer daily average water temperature (DAWT) (
o
F) was calculated to 

summarize data and minimize the effect of diurnal temperature variability on this analysis.  DAWT is 

defined as the average of 48 temperature measurements per day for the summer period of record.  The 

first and last dates of the data logger period of record were removed from these calculations so that only 

water temperatures measured during an entire day were included.  To begin exploring trends in 

temperature over time between ecoregions and between streams within ecoregions, reference streams 

were sorted by ecoregion, and a timeplot of DAWT (
o
F) was created for each ecoregion (see Figures 13-

16).  Generally, as seen in Figures 13 through 16, over the course of the entire summer season there 

appears to be little variability in water temperatures in the Northern Rockies and Northwestern Great 

Plains ecoregions.  In contrast, the trend lines of stream temperatures in the Middle Rockies and 

Northwestern Glaciated Plains ecoregions experience an observable drop from mid-July to September.  It 

is likely that these trends are a result of the different sampling periods for streams.  Most streams that 

experience an observable decline in temperatures near the end of their period of record were sampled later 

in the summer, with temperature measurements collected from mid-July to mid-September when air 

temperatures begin to decline rapidly (see Figures 13, 15).  Alternately, those that appear to remain rather 

constant were sampled earlier, from mid-or late-June to early-September (see Figures 14, 16).    

Air Temperature Data (Source and Manipulation) 

A weather station was chosen that was thought to be most ‗representative of‘ or ‗correlated to‘ the 

air temperature conditions at each reference site.  The choice of a weather station to correlate with each 

stream was prioritized, from most to least representative, by: (1) similarity in elevation to stream 

sampling site; (2) proximity to the stream sampling site; and (3) length of period of record.  Each 

reference stream‘s elevation was within 415 m of the weather station chosen to represent that stream.  

One exception to this is Rock Cr II (2007) which was prioritized by location rather than elevation (1117m 

difference) since few weather stations exist nearby.  Specific methods for accessing, requesting and 

downloading weather station data can be found in Appendix B.    

Hourly air temperature data sets from 14 weather stations (13 in Montana and one in Canada) 

were obtained from NOAA‘s National Climatic Data Center (NCDC) (NOAA 2009b).  Some weather 

stations were associated with multiple streams (see Table 4).   Air temperatures for an 11 year period of 

record, from January 1998 to December 2008, were requested; it was important to ensure that this record 
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includes data both for each summer day reference streams water temperatures were sampled and on an 

(almost) daily basis each summer month over the 11 years (see Appendix B).      

For each day corresponding to each stream‘s summer period of record, four thermal variables 

were calculated: daily average air temperature (DAAT) (
o
F), daily average air temperature with one day 

lag (DAAT1) (
o
F), daily average air temperature with two day lag (DAAT2) (

o
F), and daily average air 

temperature with three day lag (DAAT3) (
o
F).  DAAT is defined as the average of approximately 50 

measurements per day that a reference stream‘s water temperature was measured.  DAAT1, DAAT2, and 

DAAT3 are defined as the DAAT one, two and three days prior to the corresponding water temperature 

measurement, respectively; these variables are used to determine the appropriate lag time to include in the 

analysis of the air-water temperature relationship exhibited by Montana‘s reference streams.    

DAWT, DAAT, DAAT1, DAAT2, and DAAT3 were compiled for each reference stream‘s 

period of record into a Microsoft Excel spreadsheet in a format compatible with SAS version 9 for 

Windows with the following columns: Ecoregion (E), Stream Name (SN), Stream (S), Time, Date (Month 

Day), Year, DAWT, DAAT, DAAT1, DAAT2, and DAAT3.     

Model Specification  

A (linear) relationship is known to exist between water temperature and air temperature both from 

the literature (Stefan and Preud‘homme 1993; Crisp and Howson 1982; Jeppesen and Iversen 1987; 

Saffran and Anderson 1997; Eaton and Scheller 1996; Caissie et al. 1998; Duscharne 2008) and from 

initial analysis of the scatter plots between DAWT and DAAT for these reference streams (see Figures 9-

12).  As such, one objective with this model is to determine if this relationship varies significantly by 

ecoregion and by stream within ecoregions.  An additional objective is to ensure that this relationship is 

established within the model for all reference streams, not just for the 36 reference streams included in 

this analysis.  These factors were taken into account when specifying which model to use.   

A random coefficient regression model (also referred to as a multilevel or hierarchical model) 

was built where both the intercept and slope are assumed to be random.  The MIXED procedure in 

version 9 of SAS for Windows was used and two levels of randomness were included in the model: (1) at 

the across ecoregion level, and (2) at the across stream level within ecoregions.  Essentially, the model 

allows for the effect of air temperature to vary between ecoregions and between streams within 

ecoregions.  The within stream serial dependence of the daily air and water temperatures is accounted for 

by including an autoregressive order 1 type autocorrelation for the random errors.  

This mathematical model can be expressed as follows: 

DAWTijk = β0 + β1DAAT1 + β2DAAT2 + β3DAAT3 + (b0i + b0j(i)) + (b1i + b1j(i))DAAT1 + (b2i + 

b2j(i))DAAT2 + (b3i + b3j(i))DAAT3 + Ɛ ijk 
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 Where, i = i
th
 ecoregion (1,2,3,4); j = j

th
 stream within ecoregion (1,2,3,…,Ni); Ni = the number of 

streams in the i
th
 ecoregion; k = k

th
 day within j

th
 stream within i

th
 ecoregion (k = 1,2,3,…,nij); nij = the 

number of days observed for the j
th
 stream in the i

th
 ecoregion; β0 = the overall population average 

intercept; β1 = the overall effect of air temperature on water temperature; b0i = the deviation in the slope 

for the i
th
 ecoregion; b0j(i) = the deviation in the slope for the j

th
 stream in the i

th
 ecoregion; b1i = the 

deviation in the effect of air temperature on water temperature for the i
th
 ecoregion; b1j(i) = the deviation in 

the effect of air temperature on water temperature for the j
th
 stream in the i

th
 ecoregion; and Ɛ ijk = the 

random errors.   

Fitting the Model: Determination of Appropriate Air Temperature Lag Times 

It has been discussed that analyses of the air-water temperature relationship in streams can be 

improved by the addition of lag times between air and water temperature (Stefan and Preud‘homme 1993; 

Saffran and Anderson 1997; Grant 1977; Webb et al. 2003).  Thus, when constructing the model, it was 

important to determine the type of relationship experienced between DAWT and DAAT for reference 

streams, and to determine how much lag time (in days) is appropriate to include in the model.  Initial 

exploratory analysis was performed by plotting, for each stream, DAWT vs. DAAT, DAWT vs. DAAT1, 

DAWT vs. DAAT2, and DAWT vs. DAAT3.  These scatter plots indicated that, for all reference streams, 

a linear relationship exists between DAWT and all four DAAT variables, although DAAT and DAAT1 

appear to display the least random statistical noise as compared to longer lagged air temperatures.   

The initial model was run to determine the significance of the fixed effect, and the deviation from 

it for each stream and ecoregion, of daily air temperature with zero to three day lag times (DAAT to 

DAAT3) on daily average water temperature.  The level of significance was set at α = 0.05.   

Improve and Run the Model 

 As will be shown in the Results section of this report, the Ecoregion, DAAT2 and DAAT3 

variables were determined to have an insignificant effect on water temperature.  Hence, these variables 

were removed from the model.  The updated model was run and was used to analyze variability in 

Montana‘s reference streams as a result of stream and air temperatures with zero (DAAT) and one day 

(DAAT1) lag time, both of which were found to be able to explain a significant amount of variability in 

water temperature.  Residual analysis was also conducted to assess the adequacy of the model.   The basic 

code for this ‗Proc Mixed‘ model can be found in Appendix C.    

 

Longer-Term Representativeness of the Model given Air Temperature Change 

A fifth air temperature variable, monthly average air temperature (MAAT), was calculated for 

each summer month (June through September) throughout the 11-year period of record, from 1998 to 
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2008, for each weather station.  MAAT is defined as the average of approximately 700 to 1200 (and up to 

as many as 8000+) measurements per month.  This variable is used to analyze whether reference stream 

temperatures appeared to be sampled during a summer season in which air temperatures were typical of 

long term averages.  For each weather station, MAAT for June, July, August and September were plotted 

and analyzed to determine whether air temperatures at each weather station exhibit a significant trend 

(i.e., warming) (see Figure 17).  The existence of such a trend would indicate that the summer season in 

which water temperature was sampled in each stream, associated with a given weather station, may not be 

truly representative of climatic conditions that may be expected in recent years or those to come, having 

implications for the applicability and predictive capacity of this model.  Fortunately, this does not appear 

to be the case (see Figure 17).   

Results and Discussion 

Relating Stream Temperatures to Air Temperature with Various Lag Times 

The solution for fixed effects resulting from running the initial model (1) indicates that the effect 

of DAAT and DAAT1 on DAWT is significant, with p = 0.0170 and 0.0470, respectively.  However, the 

effect of DAAT2 and DAAT3 is not significant regardless of ecoregion or stream within ecoregion, with 

p = 0.4055 and 0.5900, respectively.  This indicates that there is zero effect overall of two and three day 

lagged air temperature on the population average of reference stream water temperature.  Likewise, the 

covariance parameter estimates indicate that DAAT2 and DAAT3 also do not have a significant effect on 

reference stream water temperatures of individual reference streams included in this analysis, with p = 

0.2920 and 0.2115, respectively.  This finding supports the decision to remove DAAT2 and DAAT3 from 

further analysis.   

As described previously, Montana‘s reference streams are generally relatively narrow and 

shallow 1
st
 through 4

th
 order streams and so are likely affected more rapidly by changes in air temperature 

than would be larger streams, thereby negating the need for longer lag times.  Also, because weather 

stations were relatively similar in elevation and proximity to the reference stream sites, they are 

considered to be adequately representative of the climatic conditions at the stream site itself.  Longer lag 

times may have been needed if air temperature conditions from more distant weather stations had been 

used; temperatures at these stations are likely to exhibit very different conditions to those at the stream 

study sites.  

Ecoregion-to-Ecoregion Variability in Stream Temperatures and their Relationship to Air 

Temperatures 

The variance of the random intercept at the ecoregion level indicates that there is no significant 

variability in reference stream water temperatures between ecoregions, with p =  0.2002.  Also, there is no 
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significant variability in the effect of DAAT and DAAT1 on the air-water temperature relationship 

between ecoregions, with p = 0.1518 and 0.2116, respectively.   

This finding suggests that the ecoregion, while useful when studying some ecosystem parameters, 

may not be the ideal unit for grouping reference streams when conducting stream temperature analyses, 

particularly those investigating the air-water temperature relationship. This is because a significant 

amount of variability in Montana‘s reference stream temperatures cannot be explained with the addition 

of ecoregion as a variable in this model.  This has implications for natural resource managers developing 

water temperature standards, suggesting that the ecoregion scale is too coarse to usefully predict the 

degree and rate of temperature change that a particular stream ecosystem can withstand, as well as the 

tolerance of that system to thermal pollution.  This also has implications for developing water temperature 

monitoring projects, whereby sampling schemes that choose monitoring sites according to ecoregion may 

not capture significant spatial variability occurring at another scale.   

Stream-to-Stream (Within Ecoregion) Variability in Stream Temperatures and their Relationship 

to Air Temperatures 

The variance of the random intercept at the stream level indicates that there is significant 

variability in reference stream water temperatures between streams within ecoregions, with p = 0.0047.  

Also, there is significant variation in the effect of DAAT and DAAT1 on water temperature in reference 

streams between streams within ecoregions, with p = 0.0003 and 0.0246, respectively.     

Air temperature is shown to explain differing, and significant, amounts of variability on reference 

stream water temperature when considered at a more site-specific stream scale as opposed to the 

ecoregion scale.  Factors that directly influence the air-water temperature relationship (i.e., riparian 

shading) may be more pronounced in some regions of the state than others, and care must be taken to 

investigate these changes in the temperature regime of streams at an appropriate scale.  Global warming, 

for example, will likely have a more severe impact on (reference) stream ecosystems that are more 

sensitive to ambient air temperature than others.  Analysis, using this model, of trends in expected 

reference stream temperatures as the climate warms in the future may help managers know what ‗natural‘ 

conditions can be expected, and to prioritize which streams or types of stream ecosystems are at the 

greatest risk of thermal degradation, and set restoration goals accordingly.   

Significant stream-to-stream variability also suggests that comprehensive investigation and 

monitoring of site-specific conditions is crucial for adequately understanding the temperature dynamics of 

a stream ecosystem.  Reference stream monitoring projects would benefit from aiming specifically at 

investigating stream temperature regimes in light of those variables most influencing stream temperatures 

(i.e., degree of shading, groundwater exchange, etc.).  Unfortunately, while fully comprehensive 

monitoring is the ideal scenario, it is not always a realistic goal for managers facing limited budgets, time 
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and other resources.  Thus, models such as this are useful in that they allow managers to make predictions 

about and better understand a stream system‘s thermal regime based on widely-available air temperature 

data before undertaking any extensive field research.  Besides air temperature, other driving, insulating 

and/or buffering characteristics that control the temperature regimes of individual reference stream 

ecosystems may also exhibit significant variability when considered on a more site-specific scale.  This 

model would benefit from the addition of other influential variables besides air temperature to conduct a 

more complete heat budget analysis.   

In summary, the Level III Ecoregion scale is too coarse to capture the diverse landscapes in 

which Montana‘s streams exist; the landscape can be quite different within a short distance and thus 

ecosystem parameters that influence water temperature also exhibit site-specific characteristics, 

particularly as a result of human use of the land for agriculture, rangeland, and urban/suburban 

development, etc.  Thus, managers should aim to sample many more streams grouped at a finer scale than 

Level III ecoregions to ensure reference streams are representative of all streams in Montana.   

Air-Water Temperature Relationship: All Reference Streams  

As seen in Table 5, based on the solution for fixed effects, the general equation representing the 

expected daily average water temperature for all reference streams in at least the four ecoregions 

represented in this analysis for given values of air temperature can be expressed as: 

Expected DAWT for Reference Streams = 41.2586 + (0.2050)DAAT + (0.06295)DAAT1. 

Air-Water Temperature Relationship: Individual Reference Streams 

Statistically, most (23 of the 36) of the reference streams included in this analysis deviate 

significantly, in at least one variable, from the overall equation depicting the population average for ―all 

reference streams.‖  Those streams‘ equations are listed in Table 5, and the estimates and p-values for all 

streams and the population average are listed in Table 6.  If this model is to be used for making 

predictions about or comparisons between streams (i.e., between ―reference‖ and ―degraded‖), care 

should be taken to choose the proper reference equation.  If, for example, a stream in question seems 

likely to exhibit characteristics similar to one of the documented reference streams included in this 

analysis (i.e., due to proximity or similar air temperature regimes/climatic conditions), the corresponding 

individual reference equation should be chosen.  Otherwise, if there is little reason to believe that the 

stream in question may deviate significantly from the population average, the general reference equation 

should be chosen.   
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Considerations of Ecological Significance  

 Despite these statistically significant differences, the question remains of whether these individual 

stream equations produce expected DAWTs that deviate from the population average to a degree of 

ecological significance to influence water quality investigations.  If these equations all predict 

temperatures that are similar (i.e., within 1
o
F) to predictions from the population average equation, there 

may be little motivation for choosing a more specific individual reference stream equation with which to 

simulate the water (temperature) quality of the stream in question.   

 To assess the degree to which these predicted DAWTs deviate from the population average, the 

same air temperature value (60
o
F) was entered into each equation discussed above and shown in Table 5 

for both DAAT and DAAT1.  As shown in Table 7, when the same air temperature value is input to solve 

each equation, the predicted water temperatures deviate at least 1.7
o
F and at most 27.6

o
F from the 

population average.  This represents a 3% to 48% change between the population average and individual 

results.  A majority (14 of 23) deviate by at least 6
o
F and, on average, expected DAWT from the 

individual stream equations deviates 6.91
o
F (either plus or minus) from the population average.  

 Some of the individual streams‘ temperatures are predicted to be higher (+) and some are 

predicted to be lower (-) than the population average (see Table 7).  None of the four Middle Rockies 

streams deviate from the population average.  However, all five Northern Rockies streams deviate from 

the population average.  Water temperatures in these five streams are predicted to be generally cooler than 

the population average temperatures.  This is very likely because these streams are all higher elevation, 

cold headwater streams in the Yaak region of northwestern Montana.  The predicted water temperatures 

for most (4 of 5) of the Northwestern Glaciated Plains streams deviate from and are mostly warmer than 

the population average.  This is likely because they tend to be low-flow prairie streams with little shade 

from riparian vegetation.  An exception to this is Deer Creek-1which is located in the foothills of the 

Sweetgrass Hills, a small island mountain range in north central Montana.  As such, Deer Creek-1 is at a 

much higher elevation and has substantially more riparian vegetation than the other streams in this 

ecoregion.  Finally, most (9) of the twelve Northwestern Great Plains streams that deviate from the 

population average are predicted to be warmer, whereas only three are predicted to be warmer than the 

population average.  Similarly, many of these streams are rather small and unshaded prairie streams.  In 

contrast, Sweetgrass Creek and Rock Creek II (2007) are both located in the Crazy Mountains, have 

higher elevations than the rest and more shade, and are thus not surprisingly generally warmer than others 

within the ecoregion.  The Unnamed Tributary to Little Deer Creek is also not surprisingly cooler than the 

rest since this stream is incredibly narrow and shallow but was completely shaded by mature woody 

vegetation (see Table 7).  Although it is not possible based on this analysis to explain exactly why Lost 

Boy Creek is predicted to be so drastically warmer than the population average, it is likely because this is 
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an ephemeral stream located in the (extremely hot and arid) Terry Badlands in far eastern Montana.  It 

consists of isolated, shallow pools for much of the summer and appears to have little cool groundwater 

inflow, perhaps leading it to respond more rapidly to rising air temperatures experienced throughout the 

summer season.  Overall, the individual reference stream equations appear to predict temperatures that 

deviate enough from the reference stream population average to have potentially ecologically significant 

implications for management applications of this model.  This underscores the recommendation that the 

equations described here be chosen carefully according to the management goal/intent as well as the level 

of sensitivity of the system in question.   

Model Adequacy (Diagnostics or Residual Analysis)  

In checking the model‘s assumptions, the effect of non-normality on these data analyses can be 

assumed to be negligible because a very large data set is being used.  Also, the autoregressive (AR) serial 

dependence term indicates that there is significant serial dependence between water temperature and air 

temperature over time, with p = <0.0001; this supports the model‘s inclusion of autoregressive type serial 

dependence and makes it more reliable.   

Residual analysis did not identify anything that indicates the model‘s assumptions are invalid.  As 

shown in Figure 24, when the residuals are plotted against the linear predictors of water temperature, no 

pattern (i.e., parabolic, linear, funneling) is apparent, suggesting confidence that the model was specified 

correctly.   

Furthermore, boxplots depicting water temperatures for each stream within each ecoregion were 

created (see Figure 18).  These generally display a symmetrical distribution.  This further supports our 

confidence in the model and the findings presented above.  Also, when compared between ecoregions, 

very little variation among boxplots is apparent and the interquartile ranges of all streams temperatures 

range between approximately 46
o
F and 80

o
F, whereas a substantial variance is apparent when compared 

for streams within ecoregions (see Figure 18).  For example, it is apparent in Figure 18 that water 

temperatures in Deer Creek-1 differ substantially from water temperature in the other streams in the 

Northwestern Glaciated Plains ecoregion.  As previously described, and unlike the other less shaded 

prairie streams, Deer Creek-1 is a high-elevation, substantially shaded steam in the foothills of the 

Sweetgrass Hills.   

It is important to note that this model requires that air and water temperature data be entered in 

degrees Fahrenheit (
o
F), and is applicable only to summertime temperatures.   

Longer-Term Air Temperature Data Trends 

 To be useful for forming management prescriptions, particularly water quality standards, 

reference stream temperature data must be representative of the natural temporal variability in Montana‘s 
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streams.  Some concern arose throughout the development of this model regarding the fact that these 

reference streams are only sampled throughout a single summer.  If the reference streams‘ water 

temperatures had been measured during an exceptionally hot or cool summer, the data used to fit and run 

the model would not necessarily be representative of the ―typical‖ climatic conditions and stream 

temperatures for that given reference site.  Although serial dependence in water and air temperature over 

time in the model, the potentially significant amount of natural year-to-year variability in Montana‘s 

stream temperatures suggests the need for reference streams to be studied for multiple consecutive years 

to obtain a more representative sample.   

 However, upon further investigation, no significant year-to-year variation in the summer (June-

September) monthly average air temperatures (MAAT) exists for the previous 11 years (1998-2008) at 

any of the weather stations incorporated in this study (see Figure 17).  On average, monthly air 

temperatures at each weather station paired with a reference stream are not exhibiting a significantly 

upward, downward, or other, trend, and instead remain rather consistent (horizontal) between 60-70
o
F 

(see Figure 17).  Accordingly, during the time the reference project has been conducted the air 

temperatures at these weather stations have been similar, so it is probably appropriate to compare stream 

temperatures across those years of study.  This suggests that the model‘s findings, described above, and 

the model itself, may be reliably able to predict reference stream water temperatures and describe the air-

water temperature relationship in future years, provided no major alterations are made to the stream or 

climatic system.  In light of natural and human-induced climate change, forecasts of water temperature 

change over longer time scales must still, of course, remain tentative.  While air temperatures during the 

summers that these streams were sampled, from 2004 to 2008, do not appear to be atypical of the long-

term average from 1998-2008, air temperatures in the past 10+ years have been substantially warmer than 

those previous on record; warming trends over the past many decades coupled with projections of 

continued warming must be considered (see Figure 3).   

Conclusion 

The creation of water quality standards has serious implications for stream ecosystems, and the 

dynamic nature, and variability in space and time, of stream temperature makes this water quality 

parameter perhaps more difficult to regulate than others that can rely on more simplistic thresholds.  The 

hierarchical nature of random coefficient regression models allows for the integration of multiple 

variables and provides for both the assessment of the individual effect of each variable as well as their 

combined effect on the dependent variable in question.  As such, they lend themselves to the investigation 

of complex relationships inevitably found in natural ecosystems, in which all parameters interact with one 

another to produce the conditions that result.  This provides some of the flexibility that is needed to 
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approach stream temperature investigations with a systems perspective, and is particularly helpful for 

identifying those variables that can explain the most significant variability.  Predictive models can be used 

and revised over time, as well, making them a useful tool for adaptive management schemes.  However, it 

must be realized that predictive models are simplifications that are inherently limited in scope and cannot 

replace carefully designed and executed field investigations.  Also, while the importance of the air-water 

temperature relationship has been well documented and is supported by the findings of this study, there 

remains the potential for improvement of this model for more accurate simulation of on-the-ground 

conditions.  Several other variables may be of particular interest.   

The inclusion of catchment size, for example, may allow for a more watershed-scale analysis of 

stream temperature variability and allow managers to better explain variability when upstream and 

downstream drivers/influences are taken into account (Stefan and Preud‘homme 1993).  Similarly, the 

integration of land-use factors may also help managers explain regionalized differences in stream 

temperatures, and identify regions particularly at risk of thermal degradation.  It has also been suggested 

that mean basin elevation correlates well with stream temperature and that elevation may be used as a 

surrogate whenever stream temperature data are unavailable (Isaak and Hubert 2001; Meays et al. 2005).  

Thus, the model described here, or similar models, may be improved with the inclusion of elevation as a 

parameter beyond using it simply to prioritize the choice of associated weather stations.  Solar radiation, 

in its role as the primary driver of stream temperature, may also be worthwhile to include, although it can 

be difficult to measure in the field.  Also, since the volume of water flowing through a stream system, 

coupled with the shape of the channel itself, plays a major role in determining the stream‘s thermal 

capacity and sensitivity to climatic drivers, especially air temperature and incoming solar radiation, the 

inclusion of discharge and width-depth ratio and/or other measures of channel geometry may be 

beneficial.  Likewise, groundwater-surface water interactions play a critical role in regulating 

temperatures in some streams and the adequacy of modeling these streams‘ temperatures may require the 

inclusion of hyporheic exchange.  An analysis of soil slopes and permeability in the watershed may help 

to identify runoff- versus groundwater-dominated streams.  Streams with steeper, less permeable soils are 

often dominated by runoff, whereas streams with flatter, more permeable soils are typically associated 

with a larger groundwater component.  Some metric to relate the degree of shading, particularly by 

(relatively) undisturbed riparian vegetation, could also be incorporated in the future.  

Unfortunately, stream sampling schemes often fail to adequately quantify the aforementioned 

variables, thus diminishing the ability to incorporate them into modeling and management scenarios.  The 

MT DEQ Reference Stream Project does, however, involve the collection of data on many physical, 

chemical, and biological parameters, thereby enhancing reference streams‘ potential for use to understand 

natural variability in Montana‘s stream ecosystems.  Given a clear and accurate understanding of natural 
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variability in temperatures in unaltered streams, managers will be better equipped to identify, explain, and 

address unnatural changes experienced by these systems, and the model presented here begins to achieve 

this understanding.     
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SECTION 4: FINAL CONCLUSIONS AND RECOMMENDATIONS FOR STREAM 

TEMPERATURE MANAGEMENT 

Limitations of the Current Stream Temperature Management Scheme 

 Biological integrity is defined as the capability of supporting and maintaining a balanced, 

integrated, adaptive community of organisms having a species composition, diversity, and functional 

organization comparable to that of the natural habitat of the region (Karr and Dudley 1981; Apfelbeck 

2007).  Often, the focus of stream assessment is to evaluate biological integrity because it provides a 

direct measure of aquatic life beneficial use support, and the assessment of biotic communities can help 

identify water quality stressors, such as elevated temperatures, nutrients, toxic metals and sediment, that 

cause degradation (Apfelbeck 2007).  Unfortunately, stream management scenarios too often focus solely 

on one, or few, indicator species and on protecting human uses of surface waters.  Also, stream 

temperature restoration projects tend to assume that the manipulation of one, or few, physical stream 

characteristics (i.e., altering the width/depth ratio to narrow widened channels and change the thermal 

capacity, or enhancing shading with riparian vegetation) will be sufficient and will elicit similar responses 

in different streams.   

Recently, however, a shift in the dominant paradigm of stream management has begun to take 

hold.  The natural flow regime paradigm calls for restoring the full range of the natural flow regime (Poff 

et al. 1997; Lytle and Poff 2004).  Whereas traditional stream restoration techniques often focus on 

making structural changes to stream channels, this new paradigm calls for a more process-based 

approach and considers major drivers of stream (flow) dynamics.  Due to the strong relationship between 

stream temperature and discharge, maintenance and restoration of the natural flow regime will surely aid 

in maintenance of natural thermal regimes as well.  Despite this shift, stream temperature management, 

particularly in the western United States, often continues to concentrate on maintaining minimum low 

flows during the hottest time of the year, primarily for maintenance of fisheries and anthropogenic water 

demands (Poff et al. 2007; Larson 1981).  In Montana, for example, salmonid species in cold-water 

regions of the state often serve as the ultimate indicator of overall stream health and integrity.  Our 

growing understanding of the complexities and ecological significance of stream temperatures has 

emphasized the need for a more holistic, systems-oriented approach to managing stream temperatures as 

thermal degradation persists.   

Because the complete description and quantification of entire natural ecosystems is inherently 

beyond human comprehension and study, management and restoration of stream temperatures must 

inevitably rely on making assumptions.  These include assumptions regarding the basic behavior, the 

major influential variables, and the expected response to human manipulation of stream temperatures.  
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Mathematical models, such as that presented here, can help to test the validity of these assumptions and 

can be an asset to managers seeking to efficiently and effectively measure and analyze stream 

temperatures at the proper spatial and temporal scales, and using proper methods.  This model could be 

used for a variety of applications, several of which are described briefly below.   

Furthermore, limitations in the collection and summary of stream temperature data in Montana 

complicates efforts to research and analyze stream temperature, leaving many of these assumptions 

untested.  To ensure that these management and restoration assumptions are based on the best possible 

approximations of stream ‗reference condition‘, it is critical that managers, and others, design stream 

temperature studies with thermal energy budget analyses in mind as much as possible.  Achieving the 

ultimate goal of regulating stream temperatures such that all biotic and abiotic components are able to 

maintain their structure and function, and thus preserve ecosystem integrity, requires an understanding of 

stream heat flux components, as well as the collection and summary of comprehensive, accurate field 

data, and useful analytical tools.  Based on realizations made throughout this study, several 

recommendations for improving upon current (reference) stream data collection and analysis are included 

below and will hopefully be considered during future efforts to achieve water quality goals.   

Applications of the Model 

Reference Stream Site Choice and Screening 

As described in Section 2 of this report, the MT DEQ adheres to an intensive and time-consuming 

protocol for choosing potential reference streams, which is followed by additionally intensive site 

assessment and screening phases.  The model developed and described in this study may also be helpful 

by allowing monitoring project planners investigating spatial variability of stream temperatures to 

determine, before doing fieldwork, if it seems likely the streams that have been chosen for sampling may 

actually exhibit significant differences in water temperatures.  This may be helpful for strategizing which 

potential reference streams to choose in the future.  For example, to save time, travel and money, prior to 

on-site visits, managers could choose either the ‗reference population average‘ or a more closely-paired 

individual reference stream equation, ―plug in‖ air temperature data, which is more readily-available and 

can be remotely accessed via the Internet, and run the model  to determine the expected stream 

temperature.  Then, once on-site measurements are taken upon the first site visit, managers could better 

determine if the potential stream is behaving ‗as expected‘ for natural and local conditions.  If the 

potential reference sites‘ predicted water temperatures do not appear to be in line with the expected values 

for other similar reference streams as projected from the model, this may be an indication that the site is 

experiencing some degree of thermal degradation.  It is recommended that multiple (at least three) 

reference streams are chosen as opposed to a single reference.  Also, the basis on which to choose which 
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individual reference stream equation may differ depending on the region or need for comparison.  It is 

recommended that, when temperature is the variable in question, reference streams are chosen or first 

prioritized according to similarities in the drivers of stream temperature (i.e., solar radiation, air 

temperature, wind speed, phreatic groundwater temperature and discharge, solar angle, cloud cover, 

relative humidity, precipitation, topographic shade, upland vegetation, and tributary temperature and 

discharge) (see Drivers of Stream Temperature in Section 1 of this report).  Similarities in elevation and 

other insulating and buffering factors should be additional considerations when choosing a reference 

stream.   

Stream Temperature Study Design  

 As previously discussed, Montana‘s size, beneficial use and cold- vs. warm-water fisheries 

delineations, climate, etc., seems to indicate that streams would exhibit significantly different 

temperatures in different ecoregions.  Perhaps the most enlightening outcome of this study lies in the 

rather surprising finding that temperature in Montana‘s reference streams, at least those included in this 

study, does not vary significantly from ecoregion-to-ecoregion.  Because of the role that the Level III 

ecoregion scale plays in the study design and sampling scheme of the MT DEQ Reference Stream Project, 

and other ecosystem investigations, those responsible for designing these monitoring plans should avoid 

basing site choice on which ecoregion it lies within.  Furthermore, managers seeking to test other scales 

that may be more appropriate for studies intending to capture natural variability in stream temperatures, 

and investigating the air-water temperature relationship, may adapt this model to accommodate the 

grouping/descriptive variable of choice.  Other variables that may be useful to test include the Level IV 

ecoregions (see Table 3 and Figure 22) (Woods et al. 2002), Montana‘s major drainage basins (see Figure 

22) or the USGS 4
th
-code Hydrologic Unit Codes (HUCs) that delineate drainage basins and also 

delineate TMDL planning areas (see Figure 7)) (MT DEQ 2007).   

Inform Restoration Goals/Objectives 

 Typically faced with the aforementioned resource limitations, restoration project planners could 

more efficiently plan and execute stream temperature restoration projects with clear knowledge of the 

precise causes of thermal degradation.  While this study does not allow managers to identify caused of 

thermal degradation, and understanding of how stream temperatures can be expected to respond to 

changes in the air-water temperature relationship is helpful.  Effective restoration of thermally impaired 

streams will require the human manipulation of multiple components of the thermal energy budget to 

achieve the purpose of restoring their natural thermal regimes.  To set reasonable goals and expectations 

for restoration of a degraded stream, it is critical that an appropriate ‗reference condition‘ is chosen.  The 

findings of this study suggest that, when choosing a reference stream to represent a restored stream‘s 
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desired outcome, it is not sufficient or useful to first choose a reference stream from within the same 

ecoregion as the degraded stream.  Also, as previously mentioned, since considerable variability can be 

expected between streams within the same ecoregion, reference site choice must consider similarity in the 

primary driving, insulating and buffering factors influencing each stream‘s thermal energy budget.  Once 

a documented reference stream is chosen, air temperature conditions from the degraded site could also be 

used to solve the respective reference stream equation to obtain an idea of the water temperatures that are 

considered ‗natural‘ or ‗acceptable‘  under given climatic conditions.  Target temperatures for restoration 

could then be based, at least in part, upon these expectations.   

Prediction of Future Impacts of Climate Change  

 Given the importance of water temperature to the quality, ecology, utility and sensitivity of 

streams, it is of considerable interest to understand how thermal regimes have changed in the past and 

how they may be modified in the future (Webb 1996).  As discussed in Section 1, climate change is one 

major factor that is likely to influence stream temperatures in the future, and analyses of trends in 

expected future water temperatures over time rely on prediction.  The model presented here may be useful 

to managers in predicting how much of an increase in temperature may be expected in Montana‘s 

reference streams as a result of a warming climate.   

 For example, Table 8 shows the expected daily average water temperature (DAWT) for the 

reference streams included in this study over five decades when the model-derived equations are solved 

using a baseline DAAT and DAAT1 of 60
o
F for 2009 and assuming a climate warming rate of 0.11°F per 

decade (see Figure 3), as projected for Montana (NOAA 2009a).  Expected reference stream temperatures 

increase only a very small amount, several hundredths of a degree per decade, indicating rising air 

temperatures on the state-wide scale may not be as ecologically significant.  Even when these equations 

are solved for conditions that would exist 200 years from now (i.e., 62.2
o
F in 2209), they predict water 

temperatures that are still less than one degree different than those predicted based on current conditions 

in 2009 (see Table8).  These applications have interesting implications since reference streams 

theoretically depict temperatures that would have, except for climate change, remained otherwise 

unaltered.  As such, these predictions require the assumptions that other influential factors on reference 

stream temperatures have not significantly changed in the short-term as climate change occurs, and that 

regional expectations of warming will be experienced similarly at each stream site.  Unfortunately, this is 

not likely the case, and the long-term effects of climate change will realistically be amplified by other 

detrimental human activities in the short-term.  Generally, the air-water temperature relationship is not 

likely to change substantially, and since many climate scenarios focus on predictions of air temperature 

changes, this model‘s the inclusion of air temperature seems ideal for generally predicting the effect of 
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climate change on stream temperatures.  However, even these slightly warmer air temperatures may cause 

changes in snowmelt, runoff, groundwater interactions and other hydrologic properties that will influence 

the air-water temperature relationship and so predictions made centuries into the future based on this 

relationship alone may not necessarily provide accurate results.   

Management Recommendations 

 As discussed throughout this report, while stream temperature management and restoration have 

positive intentions of maintaining thermal integrity, management approaches tend to be limited in scope 

for a variety of reasons.  Detailed expressions of spatial and temporal variability are sometimes replaced 

with ―snapshot views‖ of the temperature conditions.  Summer sampling periods may provide information 

about the upper range of thermal tolerances for aquatic organisms, but they fail to capture variability in, 

and response to, other extreme climatic and hydrologic conditions throughout the year that are critical in 

shaping the nature of the stream system and its biological communities.  These include extreme low 

temperatures in the winter and other extreme periods of drought and flooding.  Furthermore, while fish 

and other higher-order stream organisms can serve as useful indicators of biological integrity, 

management and restoration projects that focus exclusively on these without regard for overall ecosystem 

form and process may miss capturing the full impacts of thermal degradation on the system.   

 Although it was beyond the scope of this report to test the significance of these limitations, 

several recommendations for reference stream data collection and analysis are discussed below.  These 

help to identify opportunities for future stream temperature investigations and improvements to this 

model.   

Recommendations for Stream Temperature Data Collection/ Summary/Analysis  

 Spatial variability complicates stream management and restoration.  The lotic nature of streams 

means the effects of activities that affect upstream discharge and temperatures will be felt downstream, 

and so management prescriptions must be made from a watershed-scale perspective.  Also, since 

environmental (i.e. climatic) conditions that form boundary conditions for stream ecosystems vary 

throughout different regions of the state, ecologically-based classification of spatial regions can be useful 

when determining appropriate water quality standards.   

Temporal variability also makes restoration of thermal regimes difficult.  In the long-term, 

climate will exert a fundamental control on stream temperatures and, as global climate change accelerates, 

stream temperature issues will be increasingly challenging to address.  Daily and seasonal variations are 

also important to overall thermal dynamics and, to form pragmatic and ecologically-sound restoration 

goals, it will be crucial to understand the natural constraints on temperatures of individual streams.  Also, 

since thermal degradation tends to stem from several indirect sources, it is likely that restoration of 
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thermal regimes may often be accomplished only over a longer time scale and immediate improvements 

will not be apparent.  For example, riparian vegetation growth may eventually provide adequate shade but 

a newly planted riparian buffer cannot be expected to supply immediately the benefits that it will once 

fully established.   

 As a result of this variability, current water quality temperature standards (see Table 2) are 

inevitably quite confusing, particularly because they limit rates of change over short time periods and 

differ quite a bit according to beneficial uses and classifications.  Current sampling schemes are 

sometimes insufficient to detect these changes in a manner that is detailed enough to be able to effectively 

identify impaired streams and enforce standards.   Each stream assessment plan needs a comprehensive 

sampling strategy and clear goals with respect to stream temperature  

 To better capture spatial variability, temperature data loggers could be deployed in more streams 

throughout the state, and sampled at a scale that can be shown to explain enough variability in stream 

temperatures to allow setting stream-specific temperature standards.  Currently, temperature data exists 

for only a small number of reference streams in each ecoregion.  Consequently, and as shown in this 

analysis, this quantity of data is insufficient to allow for analysis of variability in stream temperatures 

within regions that are smaller than ecoregions.  If temperature is measured in additional reference 

streams, reference streams may be grouped together at a finer scale which may better facilitate the 

analysis of variability in temperature.  Then, once managers identify the scale at which significant 

variability in stream temperature is apparent between these regions, more spatially explicit temperature 

standards could be developed to reasonably reflect natural variability.  Also, the placement of additional 

data loggers in each stream site would provide a more complete picture of reach-scale characteristics of 

the streams, particularly habitat heterogeneity with respect to maintenance of temperature requirements 

for aquatic organisms (i.e., at various depths, on both banks, in the hyporheic zone, in pools and riffles, in 

regions of variable shading by riparian vegetation, etc.).  At a minimum, two temperature data loggers 

should be placed in each stream to avoid losing data due to instrument malfunctions, loss, or damage.   

 Since temperatures may vary significantly from year-to-year, a single season of reference stream 

temperature data may be insufficient to adequately determine ―characteristic temperature regimes‖.  

Therefore, stream monitoring plans that measure for a much longer period of record (i.e., over the course 

of multiple years, throughout multiple seasons of per year) are recommended.  Although the summer air 

temperatures have not varied significantly from year-to-year at weather stations over the past 11 years 

(during which time the reference stream project has been conducted), significant variance may be 

apparent if considered over a longer that 11-year period of time.  This suggests that further investigation 

into how reliably one summer period of record of reference stream temperatures, as analyzed in this 
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report, can be used to represent ‗natural conditions‘ in coming decades may help to ensure that truly 

representative reference data is being used to inform management actions.   

 In addition to the MT DEQ, many other state and federal agencies are involved with the 

collection of temperature measurements in streams (i.e., Montana Department of Fish, Wildlife, and 

Parks, U.S. Geological Survey).  The science and management communities would benefit from a state-

wide database in which stream temperature data could be compiled, coupled with site descriptions and 

quality assessments, and made publicly available.  Similar databases already exist for a number f other 

water-related variables, such as the Ground Water Information Center (GWIC).  Ideally, the data would 

be continuous, collected with similar data loggers and at the same granularity (i.e., every 30 minutes).  

These databases could also include site-specific records of air temperature or other stream temperature 

driving variables.   

 Stream temperature investigations would also benefit from the identification of thermal metrics 

(i.e., daily maximums, 7-day running average daily means, monthly or annual degree-days, cumulative 

days the maximum is above a certain threshold for aquatic species) that are the most useful for making 

ecologically-meaningful comparisons between streams, years and driving variables.  Finally, particularly 

because stream temperature standards are complex and difficult for the ―layman‖ to comprehend, public 

outreach and education about the ecological significance of stream temperature, its role as a critical water 

quality parameter, and the importance of regulating thermally degrading activities, may help to minimize 

thermal impairment.   

Final thoughts on Management and Restoration of Stream Temperatures in Montana 

 Some have advocated for the development of water quality ―regime‖ standards, which would 

describe desirable distributions of conditions over space and time within a stream network (Poole et al. 

2004), rather than reliance on a single threshold value (Bisson et al. 1997, Poff et al. 1997).  This 

approach recognizes the importance of the dynamics associated with healthy ecosystems and focuses the 

development of water quality standards on supporting and protecting important patterns of natural 

variability, and should be applied at coarse spatial scales (Poole et al. 2004).   

 A review of the boxplots produced for each reference stream‘s summer daily average 

temperatures may help to provide a framework for developing such regime-based standards.  To begin, 

the boxplots help managers to describe the thermal conditions that could be expected over the summer 

season for individual reference streams.  This may be particularly helpful for describing those streams that 

exhibit temperatures that differ substantially from other streams in the same ecoregion (or other scale), or 

that deviate significantly from the population average.  For example, upon review of the boxplot for Deer 

Creek-1, it is apparent that this stream differs substantially from the other reference streams in the 
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Northwestern Glaciated Plains ecoregion (see Figure 18).  Deer Creek-1 is also predicted to exhibit 

temperatures that are approximately 4
o
F cooler than the reference stream population average (see Table 

7).   

 The boxplot for this stream can be used to discuss the expected thermal characteristics of Deer 

Creek-1 stream and could hence aid managers when describing the characteristics of other reference 

streams that are believed to be similar to this stream according to thermal driving, insulating and 

buffering characteristics.  Upon review of the boxplot for Deer Creek-1, it may be reasonable to believe 

that maximum temperatures should not exceed 61
o
F, and minimum temperatures should not fall below 

43
o
F, for any substantial period of time.  Also, when monitoring temperatures, managers could assume 

that roughly half of the measurements should fall above, and half below, the median temperature of 

53.5
o
F for this stream and those like it.  Finally, with a lower quartile temperature of 49.5

o
F, temperatures 

should not fall below this value for any more than 25% of the time and, likewise, temperatures should not 

exceed the upper quartile temperature of 56.6
o
F any more than 25% of the time.  These types of thermal 

guidelines can be referenced, for example, during monitoring to help determine if an existing reference 

stream has begun to experience ‗unnatural‘ temperatures.  They could also inform managers‘ expectations 

of temperature regimes of streams that are similar to the existing reference stream.   

 Furthermore, and as discussed throughout this analysis, streams will not necessarily exhibit 

similar thermal regime characteristics simply because they are located within the same spatial region.  As 

such, the boxplots in Figure 18 may help managers to group streams according to the thermal 

characteristics that they experience over the course of a summer season.  This may then allow for the 

development of stream temperature standards based on similarities in stream characteristics that influence 

stream temperatures rather than over a defined spatial scale (ie., ecoregion, watershed).  For example, it is 

apparent that the temperature regimes of Sweetgrass Creek and Rock Creek II (2007) differ substantially 

from the regimes of other reference streams in the Northwestern Great Plains ecoregion (see Figure 18).  

However, the interquartile ranges of these two streams are closely aligned with those of Grizzly Creek 

and White Creek in the Northern Rockies ecoregion.  As such, a regime-based stream temperature 

standard could be based, in part, on the distribution of these streams‘ boxplots and then applied to these 

and other similar streams.  By mandating the protection and restoration of the aquatic ecosystem 

dynamics that are required to support beneficial uses in streams, well-designed regime standards would 

facilitate more effective strategies for management of natural water quality parameters (Poole et al. 2004).  

In such instances, managers and stakeholders would be charged with developing a restoration plan to 

comply with the regime standard (Poole et al. 2004). 

One limitation of this approach is that streams that deviate, and those that do not deviate, from the 

model‘s predicted population average cannot be easily distinguished by their boxplots of daily average 
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water temperatures (see Figure 18).  This is likely because streams that deviate from the population 

average tend to do so because of a difference in the effect of at least one of the daily average air 

temperature terms within the model (DAAT and/or DAAT1), and not necessarily because of a difference 

in water temperature itself.  Thus, a stream that does deviate may exhibit a similar daily average water 

temperate boxplot as another stream that does not deviate, particularly if the effect of daily average air 

temperature (with zero or one day lag) is the only term by which this deviation from the population 

average is significant.  As a result, reviewing the boxplots provides a relatively limited view of the air-

water temperature relationship exhibited by these streams.   

In conclusion, since a multitude of factors influence stream temperatures, there will often likely 

not be a simple solution to restoring natural temperature regimes.  Restoration efforts must begin with a 

comprehensive investigation of the ecological community that is being adversely affected.  Careful 

identification of the causes and severity of impairment should follow, upon which restoration goals can be 

based.  Future monitoring schemes should also be included in stream temperature restoration and 

management plans to allow for evaluation of success and adaptive management purposes.  Gaining a 

conceptual understanding of the processes and structures that influence stream temperature in unaltered 

systems is a challenge that will persist into the future.  The reference condition approach provides a 

framework from which spatially-explicit ―acceptable temperature ranges‖ based on reference stream data 

can be carefully developed and used to inform the creation of numeric and narrative water quality 

standards for stream temperature.  As a result, long-term, comprehensive and thoughtfully-designed 

stream assessment projects like the MT DEQ Reference Stream Project are critical and should continue 

and be improved upon for the foreseeable future.   
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Table 1 - Montana surface water beneficial use classifications   

 

Classification Description 

A-CLOSED Waters classified A-Closed, are suitable for drinking, culinary and food processing purposes after simple disinfection. 

A-1 
Waters classified A-1, are suitable for drinking, culinary and food processing purposes after conventional treatment for removal of 

naturally present impurities. 

B-1 

Waters classified B-1, are suitable for drinking, culinary and food processing purposes after conventional treatment; bathing, swimming 

and recreation; growth and propagation of salmonid fishes and associated aquatic life, waterfowl and furbearers; and agricultural and 

industrial water supply. 

B-2 

Waters classified B-2, are suitable for drinking, culinary and food processing purposes after conventional treatment; bathing, swimming 

and recreation; growth and marginal propagation of salmonid fishes and associated aquatic life, waterfowl and furbearers; and agricultural 

and industrial water supply. 

B-3 

Waters classified B-3, are suitable for drinking, culinary and food processing purposes after conventional treatment; bathing, swimming 

and recreation; growth and propagation of non-salmonid fishes and associated aquatic life, waterfowl and furbearers; and agricultural and 

industrial water supply. 

C-1 
Waters classified C-1, are suitable for bathing, swimming and recreation; growth and propagation of salmonid fishes and associated 

aquatic life, waterfowl and furbearers; and agricultural and industrial water supply. 

C-2 
Waters classified C-2, are suitable for bathing, swimming and recreation; growth and marginal propagation of salmonid fishes and 

associated aquatic life, waterfowl and furbearers; and agricultural and industrial water supply. 

C-3 

Waters classified C-3, are suitable for bathing, swimming and recreation; growth and propagation of non-salmonid fishes and associated 

aquatic life, waterfowl, and furbearers. The quality of these waters is naturally marginal for drinking, culinary and food processing 

purposes, agriculture, and industrial water supply. Degradation which will impact existing or established uses is not allowed. 

I 

The goal of the State of Montana is to have these waters fully support the following uses: drinking, culinary and food processing purposes 

after conventional treatment; bathing, swimming and recreation; growth and propagation of fishes and associated aquatic life, waterfowl 

and furbearers; and agricultural and industrial water supply. 

(MT DEQ 2006a; ARM 17.30.604-629) 
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Table 2 - Montana‘s stream temperature standards, 2009  

Specific surface water quality standards, along with general provisions in ARM 17.30.635 through 17.30.637, 17.30.640, 17.30.641, 

17.30.645, and 17.30.646, protect the beneficial water uses set forth in the water-use descriptions for the following classifications of water 

(17.30.620).  SAMPLING METHODS (1) Water quality monitoring, including methods of sample collection, preservation, and analysis used to 

determine compliance with the standards must be in accordance with 40 CFR Part 136 (July 1, 2007) or other method allowed by the department. 

17.30.641.  Narrative temperature standards set for Montana‘s streams that have been deemed to support beneficial uses (A, B, C, & I) and 

specifically for classifications A-closed, A1, B1, B2, B3, C1, C2, C3, & I (from A.R.M. 17.30.601-17.30.629, 2006).   

 

Use 

Classification 

Temperature Standards A.R.M. 

Section 

A-CLOSED No increase above naturally occurring water temperature is allowed. 

 

17.30.621 

A-1 A 1ºF maximum increase above naturally occurring water temperature is allowed within the range of 32ºF to 

66ºF; within the naturally occurring range of 66ºF to 66.5ºF, no discharge is allowed which will cause the 

water temperature to exceed 67ºF; and where the naturally occurring water temperature is 66.5ºF or greater, 

the maximum allowable increase in water temperature is 0.5ºF. A 2ºF-per-hour maximum decrease below 

naturally occurring water temperature is allowed when the water temperature is above 55ºF. A 2ºF maximum 

decrease below naturally occurring water temperature is allowed within the range of 55ºF to 32ºF.  

17.30.622 

B-1 

 

A 1ºF maximum increase above naturally occurring water temperature is allowed within the range of 32ºF to 

66ºF; within the naturally occurring range of 66ºF to 66.5ºF, no discharge is allowed which will cause the 

water temperature to exceed 67ºF; and where the naturally occurring water temperature is 66.5ºF or greater, 

the maximum allowable increase in water temperature is 0.5ºF. A 2ºF per-hour maximum decrease below 

naturally occurring water temperature is allowed when the water temperature is above 55ºF. A 2ºF maximum 

decrease below naturally occurring water temperature is allowed within the range of 55ºF to 32ºF. This 

applies to all waters in the state classified B-1 except for Prickly Pear Creek from McClellan Creek to the 

Montana Highway No. 433 crossing where a 2ºF maximum increase above naturally occurring water 

temperature is allowed within the range of 32ºF to 65ºF; within the naturally occurring range of 65ºF to 

66.5ºF, no discharge is allowed which will cause the water temperature to exceed 67ºF; and where the 

naturally occurring water temperature is 66.5ºF or greater, the maximum allowable increase in water 

temperature is 0.5ºF.  

17.30.623  

 

B-2  

 

A 1ºF maximum increase above naturally occurring water temperature is allowed within the range of 32ºF to 

66ºF; within the naturally occurring range of 66ºF to 66.5ºF, no discharge is allowed which will cause the 

water temperature to exceed 67ºF; and where the naturally occurring water temperature is 66.5ºF or greater, 

17.30.624  
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 the maximum allowable increase in water temperature is 0.5ºF. A 2ºF per-hour maximum decrease below 

naturally occurring water temperature is allowed when the water temperature is above 55ºF. A 2ºF maximum 

decrease below naturally occurring water temperature is allowed within the range of 55ºF to 32ºF. 

B-3  

 

A 3ºF maximum increase above naturally occurring water temperature is allowed within the range of 32ºF to 

77ºF; within the naturally occurring range of 77ºF to 79.5ºF, no thermal discharge is allowed which will cause 

the water temperature to exceed 80ºF; and where the naturally occurring water temperature is 79.5ºF or 

greater, the maximum allowable increase in water temperature is 0.5ºF. A 2ºF per-hour maximum decrease 

below naturally occurring water temperature is allowed when the water temperature is above 55ºF. A 2ºF 

maximum decrease below naturally occurring water temperature is allowed within the range of 55ºF to 32ºF. 

17.30.625  

 

C-1  

 

A 1ºF maximum increase above naturally occurring water temperature is allowed within the range of 32ºF to 

66ºF; within the naturally occurring range of 66ºF to 66.5ºF, no discharge is allowed which will cause the 

water temperature to exceed 67ºF; and where the naturally occurring water temperature is 66.5ºF or greater, 

the maximum allowable increase in water temperature is 0.5ºF. A 2ºF per-hour maximum decrease below 

naturally occurring water temperature is allowed when the water temperature is above 55ºF. A 2ºF maximum 

decrease below naturally occurring water temperature is allowed within the range of 55ºF to 32ºF.  

17.30.626  

 

C-2  

 

A 1ºF maximum increase above naturally occurring water temperature is allowed within the range of 32ºF to 

66ºF; within the naturally occurring range of 66ºF to 66.5ºF, no discharge is allowed which will cause the 

water temperature to exceed 67ºF; and where the naturally occurring water temperature is 66.5ºF or greater, 

the maximum allowable increase in water temperature is 0.5ºF. A 2ºF per-hour maximum decrease below 

naturally occurring water temperature is allowed when the water temperature is above 55ºF. A 2ºF maximum 

decrease below naturally occurring water temperature is allowed within the range of 55ºF to 32ºF. 

17.30.627  

 

C-3  

 

A 3ºF maximum increase above naturally occurring water temperature is allowed within the range of 32ºF to 

77ºF; within the range of 77ºF to 79.5ºF, no thermal discharge is allowed which will cause the water 

temperature to exceed 80ºF; and where the naturally occurring water temperature is 79.5ºF or greater, the 

maximum allowable increase in water temperature is 0.5ºF. A 2ºF per-hour maximum decrease below 

naturally occurring water temperature is allowed when the water temperature is above 55ºF. A 2ºF maximum 

decrease below naturally occurring water temperature is allowed within the range of 55ºF to 32ºF.  

17.30.629  

 

I  

 

No increase in naturally occurring temperature is allowed which will or is likely to create a nuisance or render 

the waters harmful, detrimental, or injurious to public health, recreation, safety, welfare, livestock, wild 

animals, birds, fish, or other wildlife. 

17.30.628 

 

(ARM 17.30.621-629)  
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Table 3 – Reference stream site identification and location by Level III Ecoregion 

Reference Stream by Level 

III Ecoregion 

Year 

Sampled 
Latitude Longitude 

Elevation 

(m) 
Level IV Ecoregion County 

MIDDLE ROCKIES 
   

Cottonwood Creek 2004 44.9425 112.4294 2006 
Dry Intermontane Sagebrush 

Valleys 
Beaverhead 

Willow Creek II 2004 45.483 112.7422 1612 
Dry Intermontane Sagebrush 

Valleys 
Beaverhead 

Elk Springs Creek 2004 44.6444 111.6636 2031 Centennial Basin Beaverhead 

Willow Creek I 2004 45.4481 112.8277 1859 Pioneer-Anaconda Ranges Beaverhead 

       NORTHWESTERN GLACIATED PLAINS 
     

Rock Creek II  (state land) 2004 48.5858 106.9981 696 Glaciated Northern Grasslands Valley 

W.Fk. Poplar River 2004 48.4149 105.4954 769 Glaciated Northern Grasslands Roosevelt 

Wolf Creek at Wolf Point 2004 48.0866 105.6769 614 Glaciated Northern Grasslands Roosevelt 

Woody Island Coulee 2008 48.9227 108.3806 858 Glaciated Northern Grasslands Blaine 

Deer Creek-1 2008 48.9831 111.566 1281 
North Central Brown Glaciated 

Plains 
Toole 

       NORTHERN ROCKIES 
      

Cache Creek 2006 46.7979 114.6558 1168 
Grave Creek Range - Nine Mile 

Divide 
Mineral 

N. Fork Canyon Creek 2006 48.4202 115.1918 1124 Salish Mountains Lincoln 

N. Fork Fish Creek 2006 46.9126 114.8181 1082 St. Joe Schist-Gneiss Zone Mineral 

Straight Creek 2006 46.9099 114.8188 1085 St. Joe Schist-Gneiss Zone Mineral 

White Creek 2006 46.7957 114.6607 1180 
Grave Creek Range - Nine Mile 

Divide 
Mineral 

North Fork 17 Mile Creek 2008 48.6619 115.7623 942 
Purcell-Cabinet-North Bitterroot 

Mountains 
Lincoln 

Flattail Creek 2008 48.6243 115.7142 1012 
Purcell-Cabinet-North Bitterroot 

Mountains 
Lincoln 

Smoot Creek 2008 48.7203 115.6436 1014 Salish Mountains Lincoln 

East Fork Basin Creek 2008 48.8753 115.484 1276 Salish Mountains Lincoln 
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Reference Stream by Level 

III Ecoregion 

Year 

Sampled 
Latitude Longitude 

Elevation 

(m) 
Level IV Ecoregion County 

Independence Creek 2008 48.7056 115.8581 904 
Purcell-Cabinet-North Bitterroot 

Mountains 
Lincoln 

Grizzly Creek 2008 48.7464 115.8188 1107 
Purcell-Cabinet-North Bitterroot 

Mountains 
Lincoln 

       NORTHWESTERN GREAT PLAINS 
     

Hart Creek 2006 47.5674 106.9657 705 River Breaks Garfield 

Hell Creek 1 - Lower 2006 47.3452 106.5778 724 River Breaks Garfield 

Snap Creek 2006 47.5566 106.2923 688 River Breaks Garfield 

Lost Boy Creek 2007 46.7998 105.4208 681 River Breaks Prairie 

Sweetgrass Creek 2007 46.1529 110.1815 1764 
Non-calcareous Foothill 

Grassland 
Sweet Grass 

Rock Creek II (state land) 2007 47.2545 106.838 1817 
Non-calcareous Foothill 

Grassland 
Garfield 

Crow Creek 2007 45.6788 105.1219 877 Montana Central Grasslands Powder River 

Little Powder River 2007 45.2001 105.3144 971 Montana Central Grasslands Powder River 

Milk Creek 2007 46.1673 104.6787 882 Montana Central Grasslands Fallon 

Boxelder Creek 2007 47.2714 104.4989 613 River Breaks Dawson 

Krug Creek 2007 47.0922 104.6102 643 River Breaks Dawson 

Little Beaver Creek 2007 46.0453 104.3728 954 Montana Central Grasslands Fallon 

Boxelder Creek 2008 47.339 109.0117 1095 Montana Central Grasslands Fergus 

Beaver Creek 2008 47.0834 109.5994 1159 Judith Basin Grassland Fergus 

Little Deer Creek 2008 47.2554 109.2689 1312 
Non-calcareous Foothill 

Grassland 
Fergus 

Unnamed Tributary to Little 

Deer Creek 
2008 47.257 109.2662 1319 

Non-calcareous Foothill 

Grassland 
Fergus 
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Table 4 – Reference stream site data logger number, period of record, and associated weather station 

Water Body Name 
Period of 

Record 
Year 

Temp 

Logger 

Number 

Stream 

Elevation 

Weather 

Station 

Elevation 

Difference 

in 

Elevation 

 
Begin End 

  
(m) (m) (m) 

Cottonwood Creek 27-Jul 12-Sep 2004 578049 2006 1591.7 414.3 

Willow Creek II 17-Aug 10-Sep 2004 650635 1612 1591.7 20.3 

Elk Springs Creek 20-Jul 14-Sep 2004 650640 2031 2076 -45 

Willow Creek I 17-Jul 14-Sep 2004 650641 1859 1591.7 267.3 

Cache Creek 13-Jul 8-Sep 2006 578177 1168 972 196 

N. Fork Canyon 

Creek 
11-Jul 3-Sep 2006 617397 1124 906.2 217.8 

N. Fork Fish Creek 15-Jul 3-Sep 2006 650669 1082 972 110 

Straight Creek 14-Jul 6-Sep 2006 650694 1085 972 113 

White Creek 16-Jul 5-Sep 2006 584806 1180 972 208 

North Fork 17 Mile 

Creek 
29-Jun 

29-

Aug 
2008 650648 942 906.2 35.8 

Flattail Creek 1-Jul 
29-

Aug 
2008 927375 1012 906.2 105.8 

Smoot Creek 2-Jul 
28-

Aug 
2008 759252 1014 906.2 107.8 

East Fork Basin 

Creek 
3-Jul 

31-

Aug 
2008 759354 1276 906.2 369.8 

Independence Creek 1-Jul 
27-

Aug 
2008 759295 904 906.2 -2.2 

Grizzly Creek 5-Jul 
30-

Aug 
2008 759246 1107 906.2 200.8 

Deer Creek-1 19-Jul 22-Sep 2008 759309 1281 1169.8 111.2 

Rock Creek II  (state 

land) 
9-Jul 5-Sep 2004 650646 696 699.2 -3.2 

W.Fk. Poplar River 8-Jul 3-Sep 2004 650658 769 635.5 133.5 

Wolf Creek at Wolf 

Point 
6-Jul 4-Sep 2004 650650 614 635.5 -21.5 

Woody Island Coulee 18-Jul 8-Sep 2008 759254 858 785 73 

Hart Creek 30-Jun 
23-

Aug 
2006 418516 705 811 -106 

Hell Creek 1 - Lower 30-Jun 
23-

Aug 
2006 418532 724 811 -87 

Snap Creek 28-Jun 
23-

Aug 
2006 418529 688 811 -123 

Lost Boy Creek 20-Jun 
22-

Aug 
2007 584807 681 749 -68 

Sweetgrass Creek 18-Jul 14-Sep 2007 530247 1764 1407.6 356.4 

Rock Creek II (state 

land) 
16-Jul 13-Sep 2007 650593 1817 699.2 1117.8 
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Crow Creek 12-Jul 4-Sep 2007 617334 877 802.8 74.2 

Little Powder River 8-Jul 3-Sep 2007 650640 971 802.8 168.2 

Milk Creek 7-Jul 2-Sep 2007 617357 882 902 -20 

Boxelder Creek 5-Jul 
23-

Aug 
2007 617311 613 749 -136 

Krug Creek 4-Jul 
22-

Aug 
2007 650694 643 749 -106 

Little Beaver Creek 15-Jun 
20-

Aug 
2007 530216 954 902 52 

Boxelder Creek 15-Jul 6-Sep 2008 759328 1095 1263.7 -168.7 

Beaver Creek 16-Jul 6-Sep 2008 759292 1159 1263.7 -104.7 

Little Deer Creek 13-Jul 8-Sep 2008 759340 1312 1263.7 48.3 

Unnamed Trib 14-Jul 5-Sep 2008 759256 1319 1263.7 55.3 
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Table 5 – Equations for estimating expected daily average water temperature (DAWT) for 

reference streams in four of Montana‘s ecoregions, given daily average air temperatures with zero 

(DAAT) and one-day (DAAT1) lag time 

 

 Stream Name Equation for Predicting DAWT 

  

All Reference Streams* = 41.2586 + (0.2050)DAAT + (0.06295)DAAT1 

  

N Fk Canyon = 41.2586 + (0.3097)DAAT + (0.06295)DAAT1 

Straight = 41.2586 + (0.0890)DAAT + (0.06295)DAAT1 

White = 41.2586 + (0.12351)DAAT + (0.06295)DAAT1 

Smoot = 34.4227 + (0.2050)DAAT + (0.06295)DAAT1 

E Fk Basin = 34.3639 + (0.2050)DAAT + (0.06295)DAAT1 

Independence = 50.2291 + (0.0141)DAAT + (0.06295)DAAT1 

Deer Cr-1 = 29.7817 + (0.3321)DAAT + (0.06295)DAAT1 

Rock Cr II (2004) = 41.2586 + (0.3208)DAAT + (0.06295)DAAT1 

W Fk Poplar = 41.2586 + (0.4405)DAAT + (0.01074)DAAT1 

Wolf = 41.2586 + (0.3239)DAAT + (0.06295)DAAT1 

Woody Island Coulee = 41.2586 + (0.3292)DAAT + (0.01132)DAAT1 

Hart = 50.4987 + (0.12981)DAAT + (0.06295)DAAT1 

Hell = 49.6540 + (0.13073)DAAT + (0.06295)DAAT1 

Snap = 41.2586 + (0.27025)DAAT + (0.06295)DAAT1 

Lost Boy = 58.5546 + (0.3762)DAAT + (0.06295)DAAT1 

Sweetgrass = 41.2586 + (0.0629)DAAT + (0.06295)DAAT1 

Rock Cr II (2007) = 41.2586 + (0.0508)DAAT + (0.06295)DAAT1 

Crow = 41.2586 + (0.3159)DAAT + (0.06295)DAAT1 

Little Powder = 49.0075 + (0.2050)DAAT + (0.06295)DAAT1 

Milk = 41.2586 + (0.2050)DAAT + (0.12554)DAAT1 

Little Beaver = 48.2854 + (0.2050)DAAT + (0.06295)DAAT1 

Little Deer = 41.2586 + (0.3111)DAAT + (0.06295)DAAT1 

Unnamed Trib to Little Deer Cr = 30.6453 + (0.3533)DAAT + (0.06295)DAAT1 

 

*Streams that fit this equation are: Cottonwood, Willow II, Elk Springs, Willow I, Cache, N. Fk. Fish, N. 

Fk. 17 Mile, Flattail, Grizzly, Boxelder (2007), Krug, Boxelder (2008), and Beaver. 
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Table 6 – Model output estimates* and p-values used to develop equations in Table 5 for each reference 

stream 

   
Intercept 

 
DAAT 

 
DAAT1 

Ecoregion & 

Stream Name 

Stream 

Code  
Estimate p-value 

 
estimate p-value 

 
estimate p-value 

Middle Rockies (1) 

Cottonwood 

Creek 
1 

 
-6.2158 0.0699 

 
-0.01903 0.6277 

 
0.00099 0.9705 

Willow Creek II 2 
 

-5.1954 0.1606 
 

0.000154 0.9972 
 

0.01022 0.716 

Elk Springs 

Creek 
3 

 
0.3657 0.9 

 
-0.0404 0.1608 

 
0.04006 0.0528 

Willow Creek I 4 
 

-6.0734 0.0615 
 

-0.03012 -0.422 
 

0.009387 -0.7161 

Northern Rockies (2) 

Cache Creek 1 
 

-3.1952 -0.3464 
 

-0.03409 0.3428 
 

-0.00538 0.8285 

N. Fork Canyon 

Creek 
2 

 
-9.6033 0.0059 

 
0.1047 0.0097 

 
-0.02226 0.4108 

N. Fork Fish 

Creek 
3 

 
-1.6486 0.6323 

 
-0.05175 0.1533 

 
-0.00404 0.8714 

Straight Creek 4 
 

4.1165 0.2296 
 

-0.116 0.0014 
 

-0.03431 0.1741 

White Creek 5 
 

-3.092 0.367 
 

-0.08149 0.0248 
 

-0.00194 0.9382 

North Fork 17 

Mile Creek 
6 

 
-2.3326 0.4696 

 
-0.04004 0.2343 

 
0.000594 0.9806 

Flattail Creek 7 
 

-3.4279 0.2938 
 

-0.02261 0.5019 
 

0.005354 0.827 

Smoot Creek 8 
 

-6.8359 0.0385 
 

-0.04856 0.1806 
 

-0.01152 0.6429 

East Fork Basin 

Creek 
9 

 
-6.8947 0.0342 

 
-0.04099 0.2277 

 
-0.00851 0.7234 

Independence 

Creek 
10 

 
8.9705 0.0079 

 
-0.1909 <0.0001 

 
-0.04208 0.0954 

Grizzly Creek 11 
 

-5.9987 0.0691 
 

-0.02028 0.5588 
 

0.000474 0.9844 

Northwestern Glaciated Plains (3) 

Deer Creek-1 1 
 

-11.4769 0.0001 
 

0.1271 <0.0001 
 

-0.00501 0.8145 

Rock Creek II  

(state land) 
2 

 
2.4453 0.4458 

 
0.1158 0.0009 

 
0.005257 0.828 

W.Fk. Poplar 

River 
3 

 
-3.5613 0.2718 

 
0.2355 <0.0001 

 
-0.05221 0.0473 

Wolf Creek at 

Wolf Point 
4 

 
1.9399 0.5321 

 
0.1189 0.0008 

 
0.004083 0.8679 

Woody Island 

Coulee 
5 

 
1.4301 0.6263 

 
0.1242 <0.0001 

 
-0.05163 0.0161 

Northwestern Great Plains (4) 

Hart Creek 1 
 

9.2401 0.008 
 

-0.07519 0.023 
 

0.005218 0.8209 

Hell Creek 1 - 

Lower 
2 

 
8.3954 0.0157 

 
-0.07427 0.0247 

 
0.038 0.103 

Snap Creek 3 
 

-0.06196 0.9854 
 

0.06525 0.0447 
 

0.01414 0.5365 
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Lost Boy Creek 4 
 

17.296 <0.0001 
 

-0.1712 <0.0001 
 

-0.00544 0.8088 

Sweetgrass 

Creek 
5 

 
3.1346 0.3173 

 
-0.1421 <0.0001 

 
-0.0286 0.1992 

Rock Creek II 

(state land) 
6 

 
2.2786 0.4814 

 
-0.1542 <0.0001 

 
-0.02661 0.2661 

Crow Creek 7 
 

-0.4455 0.8992 
 

0.1109 0.0018 
 

0.04464 0.0761 

Little Powder 

River 8 

 

7.7489 0.0284 

 

-0.03699 0.2915 

 

0.03849 0.1138 

Milk Creek 9 

 

2.0581 0.5347 

 

-0.00259 0.935 

 

0.06259 0.0072 

Boxelder Creek 10 

 

2.9837 0.4178 

 

0.04646 0.1964 

 

0.03134 0.2119 

Krug Creek 11 

 

5.8012 0.1203 

 

0.02357 0.5116 

 

0.01593 0.525 

Little Beaver 

Creek 12 

 

7.0268 0.0291 

 

-0.02094 0.5181 

 

-0.00155 0.9462 

Boxelder Creek 13 

 

4.0504 0.1811 

 

-0.02249 0.4764 

 

0.00377 0.8666 

Beaver Creek 14 

 

0.09724 0.9743 

 

0.03527 0.2644 

 

0.02194 0.3312 

Little Deer 

Creek 15 

 

-2.7068 0.3601 

 

0.1061 0.0008 

 

-0.02485 0.2654 

Unnamed Trib to 

Little Deer 

Creek 16 

 

-10.6133 0.0007 

 

0.1483 <0.0001 

 

-0.019 0.3958 

*Shaded cells represent those coefficients that deviate significantly from the population average, where p 

< 0.05.   
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Table 7 - Deviation of expected DAWT predicted by individual reference stream equations from 

reference stream population average when DAAT=DAAT1=60 

 

  Deviation from Average 

Reference Stream (
o
F) (%) (+/-) (Trend) 

Northern Rockies 

    N Fk Canyon 6.3 11.0% + 

Mostly 
Cooler  

Straight 7.0 -12.1% - 

White 4.9 -8.5% - 

Smoot 6.8 -11.9% - 

E Fk Basin 6.9 -12.0% - 

Independence 2.5 -4.3% - 

Northwestern Glaciated Plains 

   Deer Cr-1 3.9 -6.7% - 

Mostly 
Warmer 

Rock Cr II (2004) 6.9 12.1% + 

W Fk Poplar 11.0 19.2% + 

Wolf 7.1 12.4% + 

Woody Island Coulee 4.4 7.6% + 

Northwestern Great Plains 

    Hart 4.7 8.3% + 

Mostly 
Warmer 

Hell 3.9 6.9% + 

Snap 3.9 6.8% + 

Lost Boy 27.6 48.1% + 

Sweetgrass 8.5 -14.9% - 

Rock Cr II (2007) 9.3 -16.1% - 

Crow 6.7 11.6% + 

Little Powder 7.7 13.5% + 

Milk 3.8 6.6% + 

Little Beaver 7.0 12.3% + 

Little Deer 6.4 11.1% + 

Unnamed Trib to Little Deer Cr 1.7 -3.0% - 

Average 6.9 4.3% + 
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Table 8 – Predicted daily average water temperatures (DAWT) (
o
F) in Montana‘s reference streams for 

the next five decades, and in 200 years, assuming global warming rate of 0.11
o
F* per decade 

 
2009 2019 2029 2039 2049 2059 2209 

Stream 
DAWT 

at 60
o
F 

DAWT 

at 

60.11
o
F 

DAWT 

at 

60.22
o
F 

DAWT 

at 

60.33
o
F 

DAWT 

at 

60.44
o
F 

DAWT 

at 

60.55
o
F 

DAWT 

at 

62.20
o
F 

Reference Streams that Fit the Average Model 

   

 

 
57.34 57.37 57.39 57.42 57.45 57.48 57.93 

Northern Rockies 
      

 

N Fk Canyon 63.62 63.66 63.70 63.74 63.78 63.82 64.44 

Straight 50.38 50.39 50.41 50.43 50.44 50.46 50.71 

White 52.45 52.47 52.49 52.51 52.53 52.55 52.86 

Smoot 50.50 50.53 50.56 50.59 50.62 50.65 51.09 

E Fk Basin 50.44 50.47 50.50 50.53 50.56 50.59 51.03 

Independence 54.85 54.86 54.87 54.88 54.89 54.89 55.02 

Northwestern Glaciated Plains 
    

 

Deer Cr-1 53.48 53.53 53.57 53.62 53.66 53.70 54.35 

Rock Cr II (2004) 64.28 64.33 64.37 64.41 64.45 64.49 65.13 

W Fk Poplar 68.33 68.38 68.43 68.48 68.53 68.58 69.33 

Wolf 64.47 64.51 64.55 64.60 64.64 64.68 65.32 

Woody Island 

Coulee 
61.69 61.73 61.76 61.80 61.84 61.88 62.44 

Northwestern Great Plains 
     

 

Hart 62.06 62.09 62.11 62.13 62.15 62.17 62.49 

Hell 61.27 61.30 61.32 61.34 61.36 61.38 61.70 

Snap 61.25 61.29 61.32 61.36 61.40 61.43 61.98 

Lost Boy 84.90 84.95 85.00 85.05 85.10 85.15 85.87 

Sweetgrass 48.81 48.82 48.84 48.85 48.86 48.88 49.09 

Rock Cr II (2007) 48.08 48.10 48.11 48.12 48.13 48.15 48.33 

Crow 63.99 64.03 64.07 64.11 64.16 64.20 64.82 

Little Powder 65.08 65.11 65.14 65.17 65.20 65.23 65.67 

Milk 61.09 61.13 61.16 61.20 61.24 61.27 61.82 

Little Beaver 64.36 64.39 64.42 64.45 64.48 64.51 64.95 

Little Deer 63.70 63.74 63.78 63.83 63.87 63.91 64.52 

Unnamed Trib to 

Little Deer Cr 
55.62 55.67 55.71 55.76 55.80 55.85 56.54 

*See Figure 3 
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Figure 1 – Several factors controlling stream temperatures (energy fluxes associated with water 

exchanges are shown as black arrows)  

 

 
 

(Moore et al. 2005) 
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Figure 2 – Sources of heat flux that determine stream water temperature regimes  

 

 

 

 
 

 

(from Bartholow 1989 as modified from Theurer et al. 1984) 
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Figure 3 – Summer (June – August) air temperatures from 1895 to 2008 in Montana (statewide) 

 

(Summer (Jun-Aug) 1901 - 2000 Average = 63.91 degF; Summer (Jun-Aug) 1895 - 2008 Trend = 0.11 degF / Decade) 

 

 
 

(NOAA 2009a) 
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Figure 4 – Summer (June – August) air temperatures from 1958 to 2008 in Montana (statewide) 

(Summer (Jun-Aug) 1901 - 2000 Average = 63.91 degF; Summer (Jun-Aug) 1958 - 2008 Trend = 0.24 degF / Decade) 

 

(NOAA 2009a) 
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Figure 5 – Departure from normal precipitation levels (inches) in Montana‘s recent past (Jan 1999-August 2003)  

 

(National Weather Service 2009) 
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Figure 6 – Drought Conditions in Montana as of June 16, 2009 

 

 
(Tinker 2009) 
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Figure 7 - Map of Montana Department of Environmental Quality‘s Updated Completion Schedule for 

TMDL Planning Areas (TPAs), 2007 

 

(MT DEQ 2007) 
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Figure 8 - Map Depicting Montana‘s Seven Level III ecoregions 

 

 

 
(Woods et al. 2002) 
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Figure 9 – Plots of Daily Average Water Temperature (DAWT) (
o
F) versus Daily Average Air Temperature (

o
F) with Zero Lag Time (DAAT) 
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Figure 10 – Plots of Daily Average Water Temperature (DAWT) (
o
F) versus Daily Average Air Temperature (

o
F)  

with One-Day Lag Time (DAAT1) 
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Figure 11 - Plots of Daily Average Water Temperature (DAWT) (
o
F) versus Daily Average Air Temperature (

o
F)  

with Two-Day Lag Time (DAAT2) 
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Figure 12 - Plots of Daily Average Water Temperature (DAWT) (
o
F) versus Daily Average Air Temperature (

o
F)  

with Three-Day Lag Time (DAAT3) 
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Figure 13 - Daily average reference stream temperatures (
o
F) in the Middle Rockies ecoregion, 2004 - 2008 
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Figure 14 - Daily average reference stream temperatures (
o
F) in the Northern Rockies ecoregion, 2004 - 2008 
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Figure 15 – Daily average reference stream temperatures (
o
F) in the Northwestern Glaciated Plains ecoregion, 2004 - 2008 
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Figure 16 – Daily average reference stream temperatures (
o
F) in the Northwestern Great Plains ecoregion, 2004 - 2008 
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Figure 17 – Plots of summer (June – September) air temperature from fourteen weather stations in Montana,  

over an 11-year period (1998-2008) 
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Figure 18 – Box plots for reference stream summer daily average water temperatures 

 

 

 

 

 

Middle 

Rockies Northern Rockies 
Northwestern 

Glaciated Plains 

Northwestern 

Great Plains 

1. Cottonwood* 

2. Willow II* 

3. Elk Springs* 

4. Willow I* 

1. Cache*                 7.   Flattail* 

2. N. Fk. Canyon      8.   Smoot 

3. N. Fk. Fish*          9.   E. Fk. Basin 

4. Straight               10.  Independence 

5. White                  11.  Grizzly* 

6. N. Fk. 17 Mile* 

 

1. Deer Cr-1 

2. Rock Cr II (2004) 

3. W. Fk. Poplar 

4. Wolf 

5. Woody Island Coulee 

1. Hart                         9.    Milk 

2. Hell                         10.   Boxelder (2007)* 

3. Snap                       11.   Krug* 

4. Lost Boy                 12.   Little Beaver 

5. Sweetgrass            13.   Boxelder (2008)* 

6. Rock Cr II (2007)   14.   Beaver* 

7. Crow                       15.   Little Deer 

8. Little Powder        16.   Unnamed Trib 

 *streams that do not deviate from the population average 
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Figure 19 – Map depicting Level IV ecoregions of Montana 

 
(Woods et al. 2002)
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Figure 20 – Montana‘s major drainage basins and Montana DEQ administrative basins  

 

(MT DEQ 2006a) 
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Figure 21 – Plot of Residuals versus Linear Predictors 
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APPENDICES 

Appendix A – Descriptions of Montana‘s Ecoregions 

 

Northern Rockies (15) 

Ecoregion 15 is mountainous and rugged. Climate, trees, and understory species are 

characteristically maritime-influenced. Douglas-fir, subalpine fir, Englemann spruce, western larch, 

lodgepole pine, and ponderosa pine as well as Pacific indicators such as western redcedar, western 

hemlock, mountain hemlock, and grand fir occur. Pacific tree species are more numerous than in the 

Idaho Batholith (16) and are never dominant in the Middle Rockies (17). Alpine areas occur but, as a 

whole, the region has lower elevations, less perennial snow and ice, and fewer glacial lakes than the 

adjacent Canadian Rockies (41). Metasedimentary rocks are common; granitic rocks and associated 

management problems are less extensive than in the Idaho Batholith (16). Thick volcanic ash deposits are 

more widespread than in Ecoregion 16. Logging and mining are common and have caused stream water 

quality problems in the region. Recreational uses are also important (Woods et al. 2002). 

 

Middle Rockies (17) 

The climate of the Middle Rockies lacks the strong maritime influence of the Northern Rockies. 

Mountains have Douglas-fir, subalpine fir, and Engelmann spruce forests and alpine areas; Pacific tree 

species are never dominant. Forests can be open. Foothills are partly wooded or shrub- and grass-covered. 

Intermontane valleys are grass- and/or shrub-covered and contain a mosaic of terrestrial and aquatic fauna 

that is distinct from the nearby mountains. Many mountain-fed, perennial streams occur and differentiate 

the intermontane valleys from the Northwestern Great Plains. Granitics and associated management 

problems are less extensive than in the Idaho Batholith. Recreation, logging, mining, and summer 

livestock grazing are common land uses. 

Northwestern Glaciated Plains (42)  

Ecoregion 42 is transitional between the generally more level, moister, more agricultural 

Northern Glaciated Plains (46) to the east and the typically more irregular and drier Northwestern Great 

Plains (43) to the south. The southern boundary of the Northwestern Glaciated Plains (42) is near the limit 

of continental glaciation and its soils are derived from glacial drift. Hummocky moraines locally occur 

and are characterized by seasonal and semi-permanent ponds and wetlands. Land use is devoted to cattle 

ranching and farming (Woods et al. 2002). 

 

Northwestern Great Plains (43) 

Ecoregion 43 is largely an unglaciated, semiarid, and rolling plain that is underlain by shale, 

siltstone, and sandstone. It contains occasional buttes, badlands, ephemeral-intermittent streams, and a 

few perennial rivers. Low precipitation and high summer evapotranspiration rates restrict groundwater 

recharge rates. Rangeland is common, but spring wheat and alfalfa farming also occur; agriculture is 

affected by erratic precipitation and few opportunities for irrigation. Native grasslands persist, especially 

in areas of steep or broken topography (Woods et al. 2002). 

 

Idaho Batholith (16) 

Ecoregion 16 is mountainous, deeply dissected, partially glaciated, and characteristically 

underlain by granitic rocks. The lithological mosaic and related slope stability and water quality issues are 

different from Ecoregions 15 and 17. Soils derived from granitics are droughty and have limited fertility, 

and therefore provide only limited amounts of nutrients to aquatic ecosystems. They are highly erodible 

when vegetation is removed. Douglas-fir, ponderosa pine, and, at higher elevations, subalpine fir occur. 
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Maritime influence is slight. Pacific tree species are less numerous than in Ecoregion 15; western 

hemlock is absent. Overall, the vegetation is unlike that of Ecoregions 15 and 17. Land uses include 

logging, grazing, and recreation. Streams are likely to suffer from increased loads of fine sediments after 

disturbance by humans. Fish assemblage composition is similar to Ecoregion 15 (Woods et al. 2002). 

 

Wyoming Basin (18) 

The broad, xeric intermontane Wyoming Basin (18) is punctuated by high hills and low 

mountains and dominated by grasslands and shrublands. The region is somewhat drier than the 

Northwestern Great Plains (43) and is nearly surrounded by mountains. Livestock grazing takes place 

throughout the ecoregion even though many areas lack sufficient vegetation to adequately support this 

activity (Woods et al. 2002). 

 

Canadian Rockies (41) 

Ecoregion 41 extends into northern Montana from Alberta and British Columbia. The ecoregion 

is generally higher and more snow- and ice-covered than the Northern Rockies (15), and portions are 

strongly influenced by moist maritime air masses. Melting snow and rainfall are abundant at the higher 

elevations. Some surplus water is stored in glacial deposits, unconsolidated mountain valley fill, and 

permeable sedimentary rocks. However, areas underlain by crystalline rocks lack sufficient groundwater 

storage capacity to prevent overland runoff or to develop groundwater supplies; in these places, base flow 

is meager and high elevation streams generally flow only during rain and snow melt periods. The highest 

elevations are treeless, glaciated alpine areas. The potential natural vegetation is mostly subalpine fir, 

Douglas-fir, and Engelmann spruce. Soils are thin or absent on upper mountain slopes but become deeper 

and more developed below, especially west of the Continental Divide. Recreation, forestry, and mining 

are common land uses (Woods et al. 2002).   

 

(Woods et al. 2002) 
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Appendix B – Methods used to access, request and download air temperature data from weather 

stations 

 

Choice of weather station methods 

To determine which weather station‘s air temperature data is most reliably correlated to each 

reference stream‘s water temperature, the National Climatic Data Center (NCDC) online mapping tool 

from the National Oceanographic and Atmospheric Administration (NOAA; US Department of 

Commerce) was used this tool to locate and display all weather stations that collect hourly air temperature 

data within the county and surrounding counties in which each stream is located.   

- To search stations, go to website [http://www.ncdc.noaa.gov/oa/ncdc.html] 

- Under ―Data & Products‖, click on ―Search by Map‖ 

- http://gis.ncdc.noaa.gov/website/ims-entrymap/viewer.htm 

- First drop-down box (NCDC Data/Products), select: Surface Data Hourly Global 

- Click ―Select Area‖ tab on right of screen 

- Enter Country (US), State (Montana), and County (containing stream(s) in question) 

- When map image is loaded, click on ―Identify Location‖ tab above image 

- Cross reference stream location within county using Montana Atlas/Gazetteer 

- Record any applicable weather stations (with station ID, station name, lat/long, elevation, etc.) 

within the county and surrounding counties containaing each reference stream  

- Determine which weather station(s) seem to be most representative of the reference stream site 

climatic conditions (according to similarity in elevation and proximity with stream site) 

 

Air temperature data request and manipulation methods 

Once a weather station was chosen for each stream, air temperature data from each was requested 

electronically from the National Climatic Data Center‘s NNDC Climate Data Online database.      

- Go to website [http://www.ncdc.noaa.gov/oa/ncdc.html] 

- Under ―Data & Products‖, click on ―Data Access tools‖; click Climate and Weather; then click 

Global Surface Data; then click on Station Name under ―Search Options‖ (or go to 

[http://www7.ncdc.noaa.gov/CDO/cdo], click on ―Station Name‖ under ―Search Options‖)  

- Type in Station Name of desired weather station (found using method described above); press 

Enter 

- Find desired station in list; next to option ―DS3505 – Surface Data, Hourly Global‖, ensure that 

the record includes the desired date range (1998-2008); click ―DS3505 – Surface Data, Hourly 

Global‖ 

- Under ―Select Date Restrictions‖, select ―Use Date Range‖ and enter range of dates from January 

1998 to December 2008; click Continue.  

- Under ―Hourly Obs Available‖, click on ―View Inventory‖; ensure that necessary data is 

available for each month within each desired year.  

- If the inventory indicates that the record is sufficiently complete, check the box that says 

―Inventory Review‖ assuring that you‘ve reviewed the inventory prior to placing a data request;  

to request data, enter valid email address   *Note: this data was accessed from a university 

computer and so was free; typically there is a substantial cost per weather station record requested  
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- After receiving notification via email indicating that the data is available, follow the link provided 

in the email to access each weather station‘s data; save each station‘s data as a text file (opened 

using Microsoft Notepad).   

- Import each station‘s text file into a Microsoft Excel spreadsheet, using tab and space delimited 

commands, label each file with the station‘s name, and save.   

- Remove all columns from the spreadsheet except the date (YR—MODAHRMN) and air 

temperature (TEMP) columns.   
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Appendix C – Basic ‗Proc Mixed‘ code for random coefficient regression model presented here 

With Ecoregion, DAAT2, and DAAT3 variables:  

Proc Mixed covtest data=work.wat; 

class ER S; 

model DAWT= DAAT DAAT1 DAAT2 DAAT3/ solution ddfm=satterth outp=pres; 

random int DAAT  DAAT1 DAAT2 DAAT3/ solution sub=ER; 

random int DAAT  DAAT1 DAAT2 DAAT3/ solution sub=S(ER); 

repeated / type= ar(1) sub=S(ER); 

run; 

 

Without Ecoregion*, DAAT2, and DAAT3 variables:  

proc mixed covtest data=work.wat; 

class ER S; 

model DAWT= DAAT DAAT1/ solution ddfm=satterth outp=pres; 

random int DAAT  DAAT1/ solution sub=S(ER); 

repeated / type= ar(1) sub=S(ER); 

run; 

*Note: one level of ―randomness‖ (ecoregion) has been removed 
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