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ABSTRACT 

Alternative Methods of Estimating the Degree of Uncertainty 
in Student Ratings of Teaching 

Ala’a Mohammad Alsarhan 
Educational Inquiry, Measurement and Evaluation, BYU 

Doctor of Philosophy 

This study used simulated results to evaluate four alternative methods of computing 
confidence intervals for class means in the context of student evaluations of teaching in a 
university setting. Because of the skewed and bounded nature of the ratings, the goal was to 
identify a procedure for constructing confidence intervals that would be asymmetric and not 
dependent upon normal curve theory. The four methods included (a) a logit transformation, (b) a 
resampling procedure, (c) a nonparametric, bias corrected accelerated Bootstrapping procedure, 
and (d) a Bayesian bootstrap procedure. The methods were compared against four criteria 
including (a) coverage probability, (b) coverage error, (c) average interval width, and (d) the 
lower and upper error probability. 

The results of each method were also compared with a classical procedure for computing 
the confidence interval based on normal curve theory. In addition, Student evaluations of 
teaching effectiveness (SET) ratings from all courses taught during one semester at Brigham 
Young University were analyzed using multilevel generalizability theory to estimate variance 
components and to estimate the reliability of the class means as a function of the number of 
respondents in each class. 

The results showed that the logit transformation procedure outperformed the alternative 
methods. The results also showed that the reliability of the class means exceeded .80 for classes 
averaging 15 respondents or more. The study demonstrates the need to routinely report a margin 
of error associated with the mean SET rating for each class and recommends that a confidence 
interval based on the logit transformation procedure be used for this purpose. 

Keywords: student evaluations of teaching,  confidence interval, reliability of class means, logit 
transformation, resampling, bias corrected accelerated, Bayesboot 
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CHAPTER 1: Introduction 

Student evaluations of teaching effectiveness (SET) are commonly used to evaluate 

teaching and instructional quality. Ting (2000) argues that course ratings are expressions of 

students' perceptions of the educational environment, and such perceptions are the outcome of an 

interaction process between students and teachers in the classroom. SET are used to inform 

decisions about teacher effectiveness in most colleges and universities. The results are used to 

provide feedback to faculty in hopes fostering teacher improvement. They are also used to 

monitor quality, to inform promotion and tenure decisions. In addition, the results are often used 

to provide information to students as they select teachers and courses (Boysen, 2015a; Marsh, 

2007; Marsh, Ginns, Morin, & Nagengast, 2011; Rantanen, 2013).  

Numerous publications have been written about the validity and reliability of SET ratings 

and the effect of different factors that influence such ratings (Boysen, Kelly, Raesly, & Casner, 

2014; Dodeen, 2013; Marsh et al., 2011; Narayanan, Sawaya, & Johnson, 2014; Rantanen, 

2013).  Furthermore, studies have shown that SET ratings can be reliable and are a function of 

the teacher rather than other class variables.  Variables related to potential sources of bias in the 

ratings such as class grades or class size tend to have a relatively minor effect on an instructor’s 

overall SET rating (DeFrain, 2016; Dodeen, 2013).  

However, less research has been devoted to the use and interpretation of SET ratings. 

Boysen (2015b, p. 151) argues that in higher education, SET are the source of an “eternal 

debate” even with vast research regarding their validity. For example, composite means of 

student ratings at the class-level are commonly interpreted and reported without understanding 

their meaning. Franklin (2001) concludes that it is a common mistake to consider raw mean 

scores a precise measure of SET. Boysen (2015a) states that “means are only an estimate of true 
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scores; thus, teaching evaluation means should be interpreted as estimates falling within a 

possible range of scores rather than a representation of true teaching competency” (p.151). SET 

in higher education typically have a negatively skewed distribution because students are likely to 

select higher ratings more often than lower ratings (Nulty, 2008; Zumrawi, Bates, & Schroeder, 

2014). Thus, a margin of error based on central limit theorem (CLT) is inappropriate and 

undesirable when ratings have skewed distributions. Determining the appropriate unit of analysis 

is another concern in SET research. The vast majority of SET research studies use the class as 

the proper unit of analysis (Lüdtke, Robitzsch, Trautwein, & Kunter, 2009; Marsh, 2007; Morin, 

Marsh, Nagengast, & Scalas, 2014). Moreover, it has been shown that how it is valuable to 

incorporate a multilevel perspective into the use and interpretation of SET results (Lang & 

Kersting, 2007).  

Need For the Study  

This research fills a gap in the SET literature by evaluating (a) reliability for aggregated 

student ratings, and (b) alternative methods of describing the degree of uncertainty associated 

with estimates of the mean composite rating of instructor effectiveness averaged across the 

number of responding students in each class. To date, there have been few, if any, studies to 

recommend a method which provides accurate results from the psychometric properties of the 

aggregated ratings on class level. Furthermore, very few studies touch on the topic of reporting 

reliability for aggregated student ratings (Lang & Kersting, 2007; Lüdtke et. al., 2009). 

Additionally, the bulk of the literature focuses primarily on validity, reliability, multilevel 

analysis, and descriptive studies of student ratings (Beran & Violato, 2005; Campbell, 2005; 

Fernandez, Mateo, & Muniz, 1998; Hobson & Talbot, 2001; Kulik, 2001; Liu, 2012; Ory, 2001; 

Ory & Ryan, 2001; Pincus & Schmelkin, 2003; Radmacher & Martin, 2001; Sojka, Gupta, & 
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Deeter-Schmelz, 2002).  Less research has been devoted to the use and interpretation of SET 

ratings to provide accurate results by developing inferential procedures about the mean rating 

(Franklin, 2001; James, Schraw, & Kuch, 2015; Miller & Penfield, 2005; Penfield & Miller, 

2004).  

We evaluated four methods of describing the degree of uncertainty associated with 

estimates of the mean composite rating of instructor effectiveness averaged across the number of 

responding students in each class. The four methods are (a) a logit transformation; (b) a 

resampling; (c) a non-parametric Bootstrapping (accelerated bias-corrected BCa); and (d) 

Bayesian bootstrap. 

Purpose  

The purpose of this study was threefold: First, to examine how the reliability of mean 

SET ratings varies as a function of the number of responding students and the number of items. 

Second, to evaluate four alternative methods of describing the degree of uncertainty associated 

with estimates of the mean composite rating of instructor effectiveness averaged across the 

number of responding students in each class. Third, to examine how the degree of uncertainty in 

class means varies as a function of the number of responding students. 

Research Questions 

1. What is the reliability of the estimated class means for the composite instructor

effectiveness ratings?

a. How does the estimated reliability vary as a function of the number of items and

whether the items are classified as fixed or random?

b. How does the estimated reliability vary as a function of both the number of items

and the number of respondents?
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c. What minimum number of respondents should be required before reporting the

class mean from single semester/term as an indicator of an instructor’s

effectiveness?

2. How do the various methods of estimating the range of uncertainty in class means

compare in terms of the following concerns?

a. The width of the interval.

b. The degree and direction of asymmetry of the interval about the mean.

c. The proportion of interval replications which contain the universe mean.

d. The feasibility of the estimation procedures (i.e., how likely is it that algorithmic

procedures for estimating the means of all classes across the university can be

automated and systematized into a set of procedures that can be routinely

implemented each semester or term with minimal human oversight and available

computer resources?

3. How do the different methods of estimating the degree of uncertainty vary as a function

of the number of responding students?

Definition of Terms 

Observed class mean. The mean of the teacher ratings averaged across all of the 

responding students in a particular class. The observed class mean is a random variable. It is 

expected to vary somewhat from one sample of students to another and from one measurement 

occasion to another. Therefore, the reported mean obtained from any one sample of students on a 

single rating occasion is an estimate of the universe mean that would result if we could obtain 

ratings from all students in the class on all possible rating occasions. However, the observed 

class mean provides a basis for making reasoned inference about the unknown universe mean. 
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Generalizability theory (Cronbach, Gleser, Nanda, & Rajarantnam, 1972) provides a basis for 

investigating the accuracy of such inferences. In the SET context, students typically are only 

asked to rate their class instructor once during a given term or semester, but the ratings obtained 

from the students who responded on that single occasion are presumed to be representative of the 

ratings that would have been obtained if the ratings had been collected on any other acceptable 

rating occasion during that term. 

Universe score. The universe score for a person is defined as the mean score for that 

person averaged over all included conditions of each facet in the universe of admissible 

observations (Figure 1A, 1B, and 1C). Universe scores are analogous to true scores in Classical 

Test Theory and have a similar meaning. In G-theory they are not called true scores because each 

examinee is expected to have a different universe score for each universe of admissible 

observations. The universe score for a given person is expected to vary from one universe of 

admissible observations to another depending upon which facets are included and the number of 

conditions within each facet as shown in Figure 1D.  

Figure 1C shows the simplest design for which G-theory can be used. G-theory requires 

one factor that functions as the object of measurement plus at least one factor that is a facet. The 

reliability-like g-coefficient obtained by applying G-theory to data from this design will be equal 

to Cronbach’s alpha coefficient and Hoyt’s reliability coefficient from Classical Test Theory. 

This equality is not true for any other designs. 

The last design (Figure 1E) is often used in informal rating situations, but it is an 

extremely weak design that should be avoided in conducting research and any time the goal is to 

obtain generalizable ratings. Raters are not a facet of this design because there is only one rater 

per person. Similarly, Task is not a facet because there is only one task per person. The Rater and 
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Figure 1. Alternative universes of admissible observations and estimated universe scores. 

Task variables are completely confounded, and the effects of each cannot be disentangled or 

estimated separately. It is impossible to estimate the dependability of the ratings obtained from 

this design. 

The one-, two-, and three-facet designs can each be expanded to include more persons 

(examinees), more tasks, more raters, or more occasions. Increasing the number of conditions in 

any of these facets will not change the structure of the design, but it will change the universe of 

admissible observations. Consequently, such changes will also likely change the estimated 

universe scores and the reliability of those estimates. 
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Universe class mean. The mean that would result if the University could obtain ratings 

from all students in a particular class on all possible rating occasions in a given semester. 

Variance. Variance is a measure of dispersion. In general, the variance of a group of 

scores or observations is a single number which summarizes the degree to which the scores 

within that group are dispersed about (i.e., spread out away from) their mean. Unless the scores 

in a group are all the same, some scores will be less than the mean, and other scores will be 

greater than the mean. The variance is influenced by the location of every score relative to the 

group mean.  

The variance of a set of scores is computed by calculating the squared deviation of each 

observed score from the group mean and then calculating the average of those squared 

deviations. The resulting number can be interpreted as a measure of the inconsistency or 

variability among the scores in the group. If the scores within a group are all the same, then the 

variance will be zero, and the scores will be perfectly consistent. The more the scores are spread 

out away from the group mean, the larger the variance will be.   

In the SET context, it is possible to compute the variance at multiple levels of 

aggregation in the data hierarchy. 

1. At the lowest level in the hierarchy (i.e., the item level), a variance can be computed

which summarizes the inconsistency among the responses of a single student to the

various items in the SET questionnaire.

2. At the next highest level in the hierarchy (i.e., the student level) a variance statistic can be

computed summarizes the variability of the mean rating obtained from each student about

the mean of all the students in the class. When the mean rating of the different students

are clustered closely about the class mean, this variance will be small. The farther the
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student means are spread out away from the class mean, the greater the inconsistency 

among the students’ ratings and the larger the variance will be. 

3. A third variance statistic can be computed at the department level. The variance at this

level describes the variability or inconsistency among the means of the different classes

in that department during that semester.

Variance within-group. Software programs used to conduct multilevel modeling do not

directly compute the variance of the student means within each class about their class mean.  

Instead, the software computes and reports a single, global estimate of the variance in the 

different classes. This pooled estimate is a weighted average of all the individual class variances.  

Consistent with the published literature on multilevel modeling, in this study this estimated 

variance component is labeled the within-group variance and is symbolized by 𝜎𝜎𝑊𝑊𝑊𝑊
2 . This 

variance describes the average variability of the student means within any given class about the 

mean of that class. 

Variance between-groups. Multilevel software programs also do not directly compute 

the variability of all the classes within a department about the mean of that department. Instead, 

these programs compute a single, global estimate of the average variance of the degree to which 

the means of the different classes within a department are dispersed about the mean of that 

department during in a particular semester.  This estimated variance component is labeled the 

between-group variance and is symbolized by 𝜎𝜎𝐵𝐵𝑊𝑊2 . 

The standard error of the mean. The standard deviation of the sampling distribution of 

the observed class mean. 

Confidence interval. A confidence interval (CI) defines a range within which the 

unknown universe mean for a given class can be said to lie, with a given level of confidence. 
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Reporting confidence intervals along with the estimated class means emphasizes that the 

reported mean is a fallible estimate of the unknown true mean for a given class and provides a 

description of how accurate (or inaccurate) that estimate is. 

Confidence level.  A confidence level specifies how confident we are in our estimate of 

class means. If a 90% confidence level is selected, 90 out of 100 samples will have the unknown 

true population mean within the range of precision specified. 

Credible interval. The Bayesian analog of a confidence interval is a credible interval. 

The credible interval is calculated from the posterior distribution to quantify uncertainty about 

the unknown true class mean. A 95% credible interval is one that has a 95% chance of containing 

the unknown true class mean.  

Intraclass correlation coefficient. An interclass correlation coefficient is an inferential 

statistic that can help to determine whether or not a hierarchical model is necessary. It can also 

help to understand how much of the overall variation in the response is explained simply by 

clustering. 
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CHAPTER 2: Literature Review 

Introduction 

Student evaluations of teaching effectiveness (SET) are essential in any higher 

educational institution. SET are used to inform decisions about teacher effectiveness in most 

colleges and universities. The results are used to provide feedback to faculty in hopes fostering 

teacher improvement. They are also important because they offer feedback that impacts the 

instructor’s self-image and professional satisfaction. 

Numerous publications have been written about the validity and reliability of SET ratings 

and the effect of different factors that influence such ratings. However, less research has been 

devoted to the use and interpretation of SET ratings. What is the reliability of aggregated 

students ratings? Which method is appropriate to describe the degree of uncertainty associated 

with estimates of the mean composite rating of instructor effectiveness averaged across the 

number of responding students in each class? 

In an attempt to answer these questions, three different areas of research will be 

reviewed: (a) multilevel nature of SET and unit of analysis, (b) psychometric properties of 

aggregated student ratings, and (c) estimation of class mean and range of uncertainty. 

Multilevel Nature of SET and Unit of Analysis 

 Many scholars have asserted that SET are a multilevel phenomenon in which students 

are nested within classes determining the proper unit of analysis based on this perspective a 

critical methodological concern (Lang & Kersting, 2007; Lüdtke et al., 2009; Lüdtke, Trautwein, 

Kunter, & Baumert, 2006; Marsh, 2007; Marsh, Lüdtke, Nagengast, Trautwein, Morin, 

Abduljabbar, & Koller, 2012; Raudenbush & Bryk, 2002; Schweig, 2013; Schweig, 2016; and 

Ting, 2000). Marsh et al. (2012) argued that the multilevel structure of educational data is 
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appropriately represented by “multilevel modeling and related techniques” (p. 108). Morin et al. 

(2014) argued that the multilevel structure should not rely on manifest-variable models but 

should consider latent-variable models “that control measurement error at L1 and L2, and 

sampling error in the aggregation of L1 ratings to form L2 constructs” (p. 1). Other studies 

argued that in educational research both Level 1 (individual-level) and Level 2 (class-level) have 

been considered as the unit of analysis and this decision depends on the research question 

(Lüdtke et al., 2009; Marsh et. al, 2012). However, in classroom research, it is important to 

distinguish between Level 1 which is based on student responses and Level 2 (e.g., teacher or 

class) which is based on aggregation of student responses within the class (Marsh et al., 2012; 

Morin et al., 2014).  

A review of the literature by Marsh (2007) reported many studies recommend using 

class-level as the unit of analysis. Marsh (2007, p. 329) concluded that there is a clear consensus 

in SET research that the class-average or individual teacher mean is the appropriate unit of 

analysis, rather than the individual [student] level. Lang and Kersting (2007) stated that “it is 

particularly important to determine the appropriate level of analysis, as an aggregated variable at 

a higher-order level might well measure a different construct than does its namesake at the 

individual level” (p. 193). Moreover, Lüdtke et al. (2006) argued that the aggregation of student 

ratings at class-level is the recommended approach in SET studies because the aggregation 

reflects the “perceptions of the shared learning environment” (p. 216).  

Morin et al. (2014) discussed the consequences of ignoring the hierarchal structure of 

classroom data and failing to use the class-level as unit of analysis. They argued, “failure to 

analyse the data at the proper level of analysis would lead the researcher to conclude that the 

effects are located at the individual level when in fact they are located at the classroom level” (p. 
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6). Consequently, a systematic bias may result when ignoring the level-2 because the effect of 

students level-1 residual.   

Psychometric Properties of Aggregated Student Ratings 

Many scholars have emphasized the importance of investigating the psychometric 

properties of the aggregated ratings among students in a class (Gross, Lakey, Edinger, Orehek, & 

Heffron, 2009; Lüdtke et al., 2009; Lüdtke et al, 2006; Marsh & Roche,1997; Marsh et al., 2012; 

Praetorius, Lenske, & Helmke, 2012; Schweig, 2016). Lüdtke et al. (2009) argued that “before 

aggregating student perceptions of learning characteristics at the class or school level, 

researchers must determine whether it makes sense to form an aggregate variable” (p. 122). In 

their review of the literature, Lüdtke et al. (2006) concluded that to justify and assess aggregated 

student ratings at the class level, the researcher should evaluate the reliability of aggregated 

student ratings. Nelson and Christ (2016) argued that “class-level reliability and agreement 

indices supplement more traditional considerations, such as test–retest and internal reliability of 

scales. The interpretation of the aggregate, or mean, of class ratings, requires evidence that the 

aggregate is a reliable indicator of consensus” (p. 421). 

Evaluating the reliability of aggregated student ratings. Two different ways to 

determine whether aggregated student ratings are reliable indicators of the group-level construct 

are considered in the literature review: (a) generalizability coefficients, and (b) intraclass 

correlation coefficients. 

Generalizability theory. Generalizability theory (Cronbach et al., 1972) is a measurement 

theory in which the error variance in a set of ratings or observations is partitioned into two or 

more components representing different likely sources of measurement error. Generalizability 

theory extends classical test theory in a way that permits researchers to generalize about a 
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person’s observed behavior (Proctor, 2003). Cronbach et al. (1972) stated a key idea in 

generalizability theory as: 

A behavioral measurement is a sample from the collection of measurements that might 

have been made, and interest attached to the obtained score only because it is [presumed 

to be] representative of the whole collection or universe. If the decision-maker could, he 

would measure the person exhaustively and take the average over all the measurements. 

(p. 18) 

The sources of error variation are a set of similar conditions within the acceptable 

universe that are called facets (Brennan, 2001).  A facet is a potential source of measurement 

error or inconsistency in the ratings. Researchers decide which facets should be included in the 

universe to which they intend to generalize (Brennan, 2001). In the context of SET, both students 

and items are considered important facets (Ibrahim, 2011). Rating occasion is another facet that 

could be included but usually is not. The universe score “replaces the true score within classical 

test theory and places emphasis on the idea that there are many universes to which a researcher 

can generalize” (Proctor, 2003, p. 13). The term universe is used because there are different 

universes to which the researcher may want to generalize (Brennan, 1992). According to 

(Briesch, Swaminathan, Welsh, & Chafouleas, 2014) generalizability theory “offers increased 

utility for assessment research given the ability to concurrently examine multiple sources of 

variance, inform both relative and absolute decision making, and determine both the consistency 

and generalizability of results” (p. 13).  

Generalizability theory distinguishes between two types of error variance: (a) relative 

error variance and (b) absolute error variance. The relative error variance is applicable when a 

researcher wants to make decisions about the relative standing of persons to each other and 
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whether each individual is above or below the group mean (Briesch et al., 2014). Relative error 

is the difference between a particular person’s observed deviation score and his/her universe 

deviation score (Brennan, 2001). In contrast, absolute error is the difference between a person’s 

observed score and his/her universe score (Brennan, 2001). The absolute error variance is used 

when the researcher wants to make inferences about an individual’s standing comparted to some 

predetermined level of acceptable performance such as a cutscore that is intended to define 

mastery. 

Generalizability theory includes two types of studies: (a) a generalizability or G-study, 

and (b) a decision or D-study. The G-study is used to obtain estimates of variance components 

for the object of measurement and for each facet and interaction in the model (Brennan, 2001).  

The estimated G-study variance components are then analyzed in a subsequent D-study.  The 

purpose of the D-study is to compute generalizability coefficients and to project how those 

coefficients are likely to vary if the number of levels of one or more facets (e.g., items or raters) 

is increased or decreased.  Ibrahim (2011) argued that the D-study is important in making 

decisions about the number of items and students needed to obtain “dependable ratings” (p. 254). 

Alkharusi (2012) argued that the D-study addressed the question “What should be done 

differently if you are going to rely on this measurement procedure for making future decisions?” 

(p. 193) 

Two different kinds of generalizability coefficients can be calculated within the 

generalizability theory framework: (a) a generalizability coefficient in which the relative 

standing of objects of measurement are of concern and (b) an index of dependability in which the 

absolute standing of the objects of measurement are of concern. The generalizability coefficient 

(Brennan, 1992) is defined as: 
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𝐸𝐸𝐸𝐸𝜎𝜎2 =
𝜎𝜎𝜏𝜏2

𝜎𝜎𝜏𝜏2 + 𝜎𝜎𝛿𝛿2
 

(2.1) 

In (2.1) 𝜎𝜎𝜏𝜏2 is the variance of the object of measurement and 𝜎𝜎𝛿𝛿2 is the relative error variance. 

This generalizability coefficient in “a conceptual sense are related to the traditionally used CTT 

reliability coefficient” (Raykov & Marcoulides, 2006, p. 84).  

In SET literature, reliability estimates for aggregated measures such as the class level are 

“relatively neglected” (Wei & Haertel, 2011, p. 15). Assessing the reliability of class means is 

needed to examine how well interactions can be distinguished based on ratings given by 

individual student ratings (Schweig, 2013). Unfortunately, many previous studies have estimated 

Cronbach’s alpha reliability and ignored the psychometric quality of their aggregated constructs 

(Jeon, Lee, Hwang, & Kang, 2009; Lüdtke et al., 2009). The consequences of ignoring the 

reliability of aggregated measures may lead to the misinterpretation or misuse of scores (Jeon et. 

al, 2009). Accordingly, it is important before using aggregated scores at the class level to 

investigate the psychometric properties of those scores. This examination is very important to 

“making accurate, substantial inferences based on those scores” (Jeon et al., 2009, p. 149).  

Regarding the reliability of class means, Kane and Brennan (1977) used a split-plot 

design to examine the reliability of class means with students nested in classes and items crossed 

with students. Four different reliability coefficients examined based on different conditions: (a) 

infinite universe of students and items, (b) infinite universe of students and fixed set of items, (c) 

infinite universe of items and fixed set of students, and (d) fixed set of students and fixed set of 

items. These four generalizability coefficients have been compared with three coefficients for 

estimating the reliability of class means (a) Wiley’s coefficient which is equivalent to infinite 

universe of students and fixed set of items; (b) Thrash and Porter's coefficient which is 

equivalent to infinite universe of items and fixed set of students; and (c) Shaycoft's coefficient 
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which is equivalent to an upper bound for infinite universe of items and fixed set of students, and 

lower bound for fixed set of students and fixed set of items. Kane and Brennan (1977) concluded 

that the most appropriate reliability coefficient is an infinite universe of students and item. Other 

studies used the variations of split plot design at the class level by using different conditions for 

items and students (e.g., Ibrahim, 2011; Kane, Gillmore, & Crooks, 1976; Wei & Haertel, 2011). 

However, the decision to treat facets as random or fixed can only be made in the context of the 

study (Brennan, 2011; Schweig, 2013). Fixing a facet in the design leads to large generalizability 

coefficient because it “restricts the universe of generalization and, in doing so, decreases the gap 

between observed and universe scores at the price of narrowing interpretations” (Brennan, 2011, 

p. 12).  

A number of studies have used multilevel models to estimate the different variance 

components to be used in the generalizability theory instead of using ANOVA (e.g., Geldhof, 

Preacher, & Zyphur, 2014; Jeon et al., 2009; Raykov & Marcoulides, 2006). In their study, Jeon 

et al. (2009) investigated different methods of estimating the reliability of school-level scores 

using generalizability theory and multilevel models. They found that both methods provide very 

similar reliability estimates of school-level scores. Moreover, they argued that the multilevel 

models “offer many advantages in examining the relationships among individual-level and 

school-level measures” (p. 150). Raykov and Marcoulides (2006) used structural equation model 

for purposes of estimating the relative generalizability coefficient in one-faceted and two-faceted 

crossed designs. Their results showed the aspects of commonality of the structural equation 

modeling and the generalizability theory. Geldhof et al. (2014) discussed the relationship 

between generalizability theory facets and parallel elements of the multilevel confirmatory factor 

analysis model and concluded that the multilevel confirmatory factor analysis model provides 
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decomposition of a scale variance similar to a parallel model derived from generalizability 

theory.  

Intraclass correlation coefficients. Many studies have used intraclass correlation ICC1  

and ICC2 to determine whether aggregated individual-level ratings are reliable indicators of 

group-level constructs (Frenzel, Goetz, Lüdtke, Pekrun, & Sutton, 2009; LeBreton & Senter, 

2008; Lüdtke et al., 2009; Marsh et al., 2012; Newman & Sin, 2007). Woehr, Loignon, Schmidt, 

Loughry, and Ohland (2015) stated that ICC1 describes the amount of variance in each item that 

can be attributed to belonging to the class-level.  Moreover, LeBreton and Senter (2008) argued 

that “within the context of multilevel modeling, the ICC1 is typically used to provide an estimate 

of effect size indicating the extent to which individual ratings (e.g., climate ratings) are 

attributable to group membership” (pp. 833-834). In contrast, ICC2  provides a reliable estimate 

of the class-level group means. ICC1 formula is defined as: 

𝐼𝐼𝐼𝐼𝐼𝐼1 =
𝜎𝜎𝐵𝐵2

𝜎𝜎𝐵𝐵2 + 𝜎𝜎𝑊𝑊2
 

(2.2) 

In (2.2) 𝜎𝜎𝐵𝐵2 is the between-group variance for the observed item, and 𝜎𝜎𝑊𝑊2  is the within group 

variance for the observed item, and k is the class size. ICC2 formula is defined as: 

             𝐼𝐼𝐼𝐼𝐼𝐼2 =
𝑘𝑘 ∑ 𝐼𝐼𝐼𝐼𝐼𝐼1/𝑚𝑚

1 + (𝑘𝑘 − 1)∑ 𝐼𝐼𝐼𝐼𝐼𝐼1/𝑚𝑚
 

(2.3) 

In (2.3) k is the average class size and m is the number of items. 

Lüdtke et al. (2009, p. 123) argued that as the number of students increases, the reliability 

of the class-mean rating as estimated by the ICC2  increases. In other words, the more students in 

class who provide ratings, the more accurately the class-mean rating will reflect the true value of 

the construct being measured. The interpretation of  ICC1  and ICC2 indexes are common within 
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the research literature. However, the rule of thumb for interpreting is “often implemented with 

minimal scrutiny and are sometimes mischaracterized” (Woehr et. al, 2015, p. 707). 

In their literature review, Woehr et. al (2015) discussed different rules of thumb which 

have applied in previous research to interpret ICC1 . For example, some researchers used rule of 

thumb (median = 0.12, range = 0.00-0.50). Other researchers referenced Bliese (2000) rule of 

thumb (0.05 to 0.20, never exceeding 0.30). On the other hand, LeBreton and Senter (2008) 

suggested another approach to interpreting values for ICC1  by adopting the effect size way of 

interpretation. For example, a value of .01 might be considered a small effect, a value of .10 

might be considered a medium effect, and a value of .25 might be considered a large effect. 

LeBreton and Senter (2008) declared that different research questions are answered by 

ICC1 and ICC2. ICC1 “informs a researcher as to whether judges’ ratings are affected by group 

membership, thus, a question should drive the use of ICC1 “(e.g., Does group membership affect 

judges’ ratings?)” (p. 834). On another hand, ICC2  tells a researcher how reliably the mean rating 

distinguishes between groups, thus, a question should drive the use of “(e.g., do judges’ mean 

ratings reliably distinguish among the groups/targets?)” (p. 834). 

Uncertainty in Estimates of the Universe Mean for a Class  

To date, there have been few, if any, studies which have attempted to describe the degree 

of uncertainty in the estimates of class mean. In fact, very few studies have been devoted to the 

use and interpretation of the SET results (Franklin, 2001; James et al., 2015; Miller & Penfield, 

2005; Penfield & Miller, 2004). On the other hand, the bulk of the literature focuses primarily on 

validity, reliability, multilevel analysis, and descriptive studies of student ratings (Beran & 

Violato, 2005; Campbell, 2005; Fernandez, Mateo, & Muniz, 1998; Hobson & Talbot, 2001; 
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Kulik, 2001; Liu, 2012; Ory, 2001; Ory & Ryan, 2001; Pincus & Schmelkin, 2003; Radmacher 

& Martin, 2001; Sojka et al., 2002). 

Boysen (2015a, p. 151) argued that in higher education, SET are the source of “eternal 

debate” even with vast research in their validity. For example, using class-level as an appropriate 

unit of analysis, composite means of student ratings at this level are commonly interpreted and 

reported without understanding their meaning. Furthermore, Boysen (2015a) stated that “means 

are only an estimate of true scores; thus, teaching evaluation means should be interpreted as 

estimates falling within possible range of scores rather than a representation of true teaching 

competency” (p.151). Boysen (2016) warned against the tendency of SET users to overinterpret 

the observed class mean.  He declared that the “cardinal rule” (p. 279) should be to report a 

confidence interval along with the observed mean from each class in order to emphasize that the 

observed mean is an estimate of the unknown universe mean.  Abrami (2001), Franklin (2001), 

and Boysen et al. (2014) provide further support for this recommendation. 

Confidence Interval with Skewed SET Distribution  

The confidence interval (CI) of a sample mean is an important sample statistic that is 

intended to help users qualify the inferences which they make about the population from which 

this sample was drawn. The sample mean provides a point estimate of an unknown population 

parameter. However, an interval estimate “specifies a range of values on either side of the 

sample statistic within which the population parameter can be expected to fall with a chosen 

level of confidence” (Sim & Reid, 1999, p. 189). In the context of this study, a confidence 

interval is an estimated range of values within which the true mean of a class has a 95% 

probability of being located. The confidence interval for each class is based on the mean and the 

variability of the ratings obtained from the students in that class and the number of students who 
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responded. The resulting confidence interval for each class is a random variable. The location 

and the width of the interval will vary if a different sample of ratings is obtained. 

 Confidence intervals can be very useful, but they are frequently misinterpreted. For 

example, it is incorrect to compute a 95% confidence interval and then declare that one can be 

95% certain that the true mean lies within that interval. After a confidence interval has been 

constructed, it either does or does not encompass the true mean. Hence, the probability that is 

captures the mean is either 0 or 1.0 (Cumming & Fidler, 2009; Sim & Reid, 1999).  

In order to correctly interpret a confidence interval, it is helpful to consider not only the 

interval obtained from the observed sample, but other intervals which could have been 

constructed based on information from other samples of ratings that could have been collected. 

For instance, Figure 2 displays examples of 50 different confidence intervals each based on a 

different sample. The vertical line in this diagram represents the universe mean. It is important to 

note that the universe mean is a constant. It is not a random variable which varies from sample to 

sample. In reality, the value of this parameter would not be known, but a fictitious example of 

such a parameter is reported here for pedagogical purposes. The location and width of each 

interval in Figure 2 differs depending on the information in the corresponding sample of ratings. 

All of these intervals are based on samples of the same size. The location of each interval is 

determined by the mean of corresponding sample, and the width of each interval is influenced by 

the variability of each ratings in the sample. If the ratings in any one of the 50 samples had been 

different, then the confidence interval for that sample would be different. 

Not that 48 (96%) of the 50 intervals capture the true mean, and 2 (4%) of them do not. 

Freedman, Pisani, Purves, and Adhikari (1991) use an interesting analogy to describe the process 

of estimating the unknown population mean based on an accompanying confidence interval. 
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Figure 2. The population mean and 95% confidence interval for 50 samples. 

They point out that if a researcher takes repeated samples and computes the sample mean and a 

confidence interval for each sample, some of the resulting intervals will capture the universe 

value and some will not. They conclude that this process is “like buying a used car. Sometimes 

you get a lemon—a confidence interval which doesn’t cover the parameter” (Freedman et al., 

1991, p. 351). This conclusion should serve as a warning to professors and administrators who 

interpret confidence intervals in the context of SET. Not all reported intervals will include an 

instructor’s universe mean. All that can be said with confidence is that in the long run the 

procedure will work. If we take many repeated samples and compute a confidence interval for 

each sample, in the long run 95% of the resulting intervals will encompass the parameter that is 

being estimated. 

If the proper steps for computing the sample mean and confidence interval are followed 

for each sample, then what can be said with a 95% level of confidence is that the procedure by 

which the intervals were produced will capture the unknown true mean in 95% of cases. It is the 

method or process that the user can be confident about.  
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Several methods have been described in the literature for estimating the confidence 

interval of the population mean. Most widely used methods designed to estimate confidence 

interval based on large sample sizes and assuming that the observations are normally distributed, 

which most SET data do not follow. It is known that confidence intervals for the population 

mean of a skewed distribution with small sample sizes usually have poor coverage rate (Meeden, 

1999; Shi & Golam Kibria, 2007). Therefore, numerous studies in the literature have presented 

other methods (e.g., a transformation method, bootstrap method) to obtain acceptable coverage 

rate and small interval width with skewed distribution and small sample sizes (Agresti & Coull, 

1998; Calzada & Gardner, 2011; Ghosh & Polansky, 2016; Liu, 2009; Meeden, 1999; 

Newcombe, 1998; Shi & Golam Kibria, 2007; Willink, 2007; Zhou & Gao, 1997; Zou & 

Donner, 2008).  

Other studies have highlighted another issue associated with estimating the confidence 

interval for a bounded parameter. Chen (2008) argued that intolerable error could emerge when 

constructing a confidence interval for bounded variables from skewed distribution even with 

large sample size. Sappakitkamjorn and Niwitpong (2013) argued that such error,  

is due to the fact that the information regarding the restriction is simply ignored. It is, 

therefore, of significant interest to construct confidence intervals for the parameters that 

include the additional information on parameter values being bounded to enhance the 

accuracy of the interval estimation. (p. 1416) 

SET in higher education often have a negatively skewed distribution because students are 

prone to select higher ratings more often than lower ratings (Nulty, 2008; Zumrawi, Bates, & 

Schroeder, 2014). Estimating a margin of error using methods that are based on the central limit 

theorem (CLT) is inappropriate and suffer from several deficiencies including the small number 
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of raters, the bounded nature of the rating scale items, and the standard error represented in the 

measurement (Boysen, 2016; Miller & Penfield, 2005). James et al. (2015) discussed two types 

of error related to a small number of raters including: 

1. Error caused by sample-to-sample variation, this error related to the standard deviation of

sample mean. Lower precision about the SET score is expected when the standard

deviation is large

2. Error caused by sampling bias, this error related to the selection bias that makes a

difference between true population mean and observed mean.

Therefore, it is important to construct a confidence interval of a sample mean that is not

limited by the assumption of population normality and less affected by the bounded nature of 

rating scale items (Miller & Penfield, 2005). In addition, researchers should provide information 

that show how much confidence one should have that the unknown true population mean lies 

within a certain distance from the obtained sample mean (Penfield & Miller, 2004). 

Few published SET studies have paid attention to developing inferential procedures that 

can provide more information about the lack of precision associated with using the observed 

class mean as an estimate of the universe mean. Penfield and Miller (2004) proposed an 

asymmetric score confidence interval for the population mean of a rating scale variable which 

can be used with small sample sizes. Franklin (2001) suggested an approach of estimating the 

margin of error associated with item’s mean. However, the two methods have some limitations: 

(a) the confidence interval is obtained for the item’s mean but it does not apply for the

aggregated item’s means (mean of the means) of a class; and (b) the methods assumes the rating 

has a symmetrical distribution. 
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 James et al. (2015) proposed a method to determine the margin of error around a SET 

mean score as a function of class size, response rate, and sample variability. They used a 

statistical sampling theory explained by Govindarajulu (1999) and Barnett (2002) with some 

modification. However, this method has a number of limitations: (a) it assumes the distribution 

of sample means follows a Student’s t-distribution, which is not the case with SET scores; and 

(b) it did not examine the bounded nature of rating scale items and the celling effect associated

with very high means on a scale. 

There have been few, if any, studies in the SET literature that recommend a method that 

provides accurate results from the psychometric properties of the aggregated ratings on class 

level. Method that address issues in SET such as a negatively skewed distribution, low response 

rate, and bounded distribution. Luh and Guo (2001) argued that “since violation of the normality 

assumption may be fairly common in applied research and since the consequences of non-

normality for test statistics are difficult to investigate, robust and efficient alternatives to deal 

with the problem are needed” (pp. 227-228). 

Logit transformation method. Several studies in the literature recommended the use of 

the logit transformation method to address violations of the normality assumption (Van Albada 

& Robinson, 2007; Williamson & Gaston, 1999). Other studies suggested that the logit 

transformation is appropriate when the data are bounded interval (Gart, Pettigrew, & Thomas, 

1985; Hu, Yeilding, Davis, & Zhou, 2011; Lesaffre, Rizopoulos, & Tsonaka, 2007). 

Choi, Fine, and Brookhart (2013) conducted a simulation to study the performance of a 

simple Wald-based CIs using transformation. Their findings indicated that with small to 

moderate sample sizes, the coverage of the Wald intervals has improved by transformation. 

Williamson and Gaston (1999) explained the process of using logit transformation as: (a) any 
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bounded data can be rescaled to a 0-1 scale and expressed as a proportion p; (b) q = 1 – p; (c) the 

standard form for the logit is log (p/q). However, Warton and Hui (2011) and Hu et al. (2011) 

argued that if the sample proportions equal to 0 and 1, this is problematic because it will 

transform to undefined values.  Williamson and Gaston (1999) presented an ad hoc solution to 

this problem by adding “some small value ε to both the numerator and denominator of the logit 

function, which introduces minimal bias while still satisfying the criteria above” (p. 5). Hu et al. 

(2011) suggested another solution by transforming the data to “a slightly smaller interval of [δ, 1 

- δ] with δ > 0 and then applying the logit transformation” (p. 499).

Bootstrap methods.  Efron (1979) introduced bootstrap methods as a computer-based 

tool used to make inferences about unknown population parameters for which no assumptions 

are necessary regarding the underlying distribution. Bootstrap is a “procedure for estimating 

(approximating) the distribution of a statistics. It is based on resampling and simulation” 

(Mammen, 1992, p. 1). Efron and Tibshirani (1986, p. 54) argued that the bootstrapping methods 

are “a general methodology” to answer a question how accurate the sample mean as an estimator 

of the population mean. Bootstrap sampling is useful for quantifying the behavior of parameter 

estimates, such as its standard error, skewness, bias, or for calculating a confidence interval 

(Chihara & Hesterberg, 2011). Bootstrapping is an alternative method used when the distribution 

of the original sample is skewed and does not follow the central limit theorem (Ghosh & 

Polansky, 2016). Thus, several bootstrap methods were introduced in the literature to construct 

confidence intervals. However, Shi and Golam Kibria  (2007) argued that “the accuracy of the 

bootstrap confidence interval depends on the number of bootstrap samples. If the number of 

bootstrap samples is large enough, the confidence interval may be very accurate for the specific 

sample” (p. 414). Briggs, Wonderling, and Mooney (1997) argued that the bootstrap method 
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“estimates the sampling distribution of a statistic through a large number of simulations, based 

on sampling with replacement from the original data. Confidence intervals can then be 

constructed using this empirical estimate of the sampling distribution” (p. 328).  

Bootstrap methods are performed by following two approaches: (a) non-parametric; and 

(b) parametric. A non-parametric approach is more a general approach, which does not make an

assumption about the form of distribution, but it can be computationally intensive (Carpenter & 

Bithell, 2000; Dixon, 2002; Kelley, 2005; Nicholls, 2014; O'Hagan, & Stevens, 2003). 

Moreover, Nixon, Wonderling, and Grieve (2010) argued that this approach involves re-

sampling from the original sample with a replacement while preserving the original structure of 

the data (e.g., same size). On the other hand, the parametric bootstrap assumes that the random 

sample follows a specific distribution (Savoy, 1997). 

Resampling. Resampling method is a percentile confidence interval for a population 

mean (Karian & Dudewicz, 2011). This non-parametric method “depends upon the fact that the 

empirical distribution function based on the bootstraps converges to the true distribution function 

asymptotically in sample size, and the empirical quantiles have a law of large numbers” (Puth, 

Neuhauser, & Ruxton, 2015, p. 893). Furthermore, this method does not have to make a 

distribution assumption, but it uses the distribution of the bootstrap sample statistic as a direct 

approximation of the data (Burn, 2003). 

This method is widely used in the literature for many advantages. Carpenter and Bithell 

(2000) argued that “simplicity is the attraction of this method, and explains its continued 

popularity. Unlike the bootstrap-t, no estimates of the σ are required. Further, no invalid 

parameter values can be included in the interval” (p. 1152). On the other hand, Ghosh and 

Polansky (2014) argues that this method suffers from low coverage probability. To compute the 
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(1-ɑ)100% confidence interval for the population mean, we take B resamples of size n with 

replacement from a population. Then, we use the (ɑ/2)𝐵𝐵𝑡𝑡ℎ, and the (1-ɑ/2)𝐵𝐵𝑡𝑡ℎ ordered 

bootstrapping means of all observed bootstrapping means as a lower and upper CI limits 

(Calzada & Gardner 2011). 

Nicholls (2014) argued that this method performs well with bounded distributions and 

“neither do we have to worry about small sample size effects, or effective degrees of freedom. 

No mathematics required” (p. 910). Abu-Shawiesh, Banik, & Kibria (2011) used a simulation 

study to compare the percentile method to other bootstrap methods under different distributions 

and different sample sizes. They found that the percentile method performed better compared to 

other methods with non-normal distributions. However, other studies presented different results 

in which the percentile method perform worse compared to other methods (e.g., Ghosh and 

Polansky, 2014).  

Ghosh and Polansky (2014) compare the bootstrap percentile CI to other methods (e.g., 

percentile t) through a simulation. They used three positively skewed distribution and three 

sample sizes (n = 15, 25, 50).  The results showed that the bootstrap percentile performed poor 

with small sample size, but it provided more accurate coverage probability for large samples.  

Non-parametric bootstrapping (Accelerated Bias-Corrected BCa). Efron (1987) 

introduced the BCa method to address the limitation of percentile method. Many researchers 

recommended using the accelerated bias-corrected percentile limit (BCa) method because it 

seeks to correct for skewness and bias in the bootstrap distribution (Calzada & Gardner, 2011; 

Carpenter & Bithell, 2000; Diciccio & Efron, 1996; Puth et. al., 2015). Calzada and Gardner 

(2011, p. 32) argued that the BCa procedure has “very desirable asymptotic characteristics” and 

its confidence interval “has stronger theoretical underpinnings and requires some easy to 
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program computation”.  In the non-parametric BCa two parameters are derived from the sample 

(a) the bias-correction constant z and (b) the acceleration a. The bias-correction constant z

“adjusts the sampling distribution for the bias of the estimator,” while the acceleration a “adjusts 

for the skewness of the sampling distribution” (Briggs et. al, 1997, p. 335). Diciccio and Efron 

(1996) argued that “the BCa method is an automatic algorithm for producing highly accurate 

confidence limits from a bootstrap distribution” (p. 192).Carpenter and Bithell (2000) argues that 

“this method generally has a smaller coverage error than the percentile” (p. 1154). 

Tong, Chang, Jin, and Saminathan (2012) compared the behavior of four 95% bootstrap 

confidence intervals of different bootstrap methods including the bootstrap BCa under different 

distributions and sample sizes. They found that BCa with large sample sizes always results in 

higher coverage performance and shorter interval mean. Moreover, bootstrap methods including 

BCs perform better given non-normal dataset and small sample size. However, Wang (2001) 

argued that in non-parametric situations “an accurate estimator of a is not easy to obtain, and the 

BCa confidence sets may perform poorly” (p. 259).  

In their simulation study, Banik and Kibria (2010) concluded that in case of small sample 

sizes and skewed distributions, the BCa method provides a narrow confidence interval width but 

it provides low coverage probability. However, their simulation considered only positively 

skewed distributions and did not consider bounded and negatively skewed distributions.  

Bayesian bootstrap. The Bayesian bootstrap is a non-informative Dirichlet process 

introduced by Rubin (1981) as the Bayesian equivalent of the bootstrap. In the recent years, 

Bayesian inference has become widely studied in the literature (Alfaro, Zoller, & Lutzoni; 2003; 

Efron, 2015; Gu, Ghosal, & Roy, 2008; Huang, Li, Cheng, Cheung, & Wong, 2016; O'Hagan, & 

Stevens, 2003). Alfaro et al. (2003) explained the principle of the Bayesian as,  
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In Bayesian inference one makes use of Bayes’s theorem to condition inferences about 

the value of some parameter of interest on the observed data. Bayesian inference focuses 

on the quantity known as the posterior probability, defined as the probability of some 

hypothesis conditional on the observed data. The posterior probability is proportional to 

the product of the likelihood of the data, given that the hypothesis is correct and the prior 

probability of the hypothesis before any data have been collected. (p. 256) 

The Bayesian bootstrap can be considered as doing the same like bootstrap except “the weights 

on the original data are resampled to give different posterior distributions” (Nicholls, 2014, p. 

910). The weight may take any value between zero and n (sample size) and still sum to n 

(O’Hagan & Stevens, 2003). Moreover, the simulation is on the posterior distribution of the 

parameter rather than the sampling distribution of a statistic estimating a parameter (Rubin, 

1981). In other words, the Bayesian bootstrap distribution is the posterior distribution of the 

parameter of interest (e.g., mean). 

The interpretation of the Bayesian interval of the mean is different from the frequentist 

approaches.  O’Hagan and Stevens (2003) argued that a “Bayesian 95% interval has the 

interpretation that there is a 95% probability that mean lies in the actual interval” (p. 39). They 

also stated that the Bayesian credible interval has “more direct and practically useful 

interpretation than a confidence interval” (p. 39). 

O’Hagan and Stevens (2003) compared Bayesian bootstrap interval estimation for the 

mean with other methods (e.g., standard normal-theory based on Student t and non-parametric 

bootstrap). They used data comprise 26 observations that have lognormal distribution. Their 

results indicated that both non-parametric bootstrap and Bayesian bootstrap provided similar 

results and outperformed the Student t method. However, the Bayesian bootstrap provided 
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smoother distribution compared to the bootstrap distribution, and this would make the 

interpretation of the result more direct and informative. Similar conclusion was reported by other 

researchers (e.g., Lazar, Meeden, & Nelson, 2008; Lo, 1988; Weng, 1989). 

Criteria for evaluating the different methods. The evaluation of the performance of 

confidence interval methods has been discussed widely in the literature (e.g., Abu-Shawiesh et 

al., 2011; Kelley & Rausch, 2006; Liu, 2009; Newcombe, 1998; Sappakitkamjorn & Niwitpong, 

2013; Shi & Golam Kibria, 2007; Swift, 2009; Tong et al., 2012; Wu, Wong, & Jiang, 2003). 

Different criteria are considered as a criterion of the good estimators in choosing a confidence 

interval method, for example: (a) the coverage probabilities; (b) the average interval widths; (c) 

the coverage error; and (d) the upper and lower error probability. 

The coverage probability represents the percentage of times that the actual parameter of 

interest (e.g., population mean) falls into the confidence intervals [𝐿𝐿,𝑈𝑈] as Pr[𝐿𝐿 ≤ 𝜃𝜃 ≤ 𝑈𝑈] where 

L and U are the lower and upper limits. Sim and Reid (1999) argued that the coverage probability 

of CI is indicative of its accuracy, which is determined by the chosen level of confidence. For 

95% confidence intervals, the proportion of the computed confidence intervals that correctly 

contained the population parameter should be close to .95. Tong et al. (2012) defined accuracy as 

“the ability to measure the true value of the characteristic correctly on average” (p. 84).  

The average interval widths represents an average length of n repeated confidence 

intervals. The length is computed by the difference between the upper bound and the lower 

bound of the interval (Tong et al., 2012). The mean width indicates how the interval is precise 

and informative in the sense of having small length. Kelly and Rausch (2006) argued that 

“holding the confidence interval coverage constant, the narrower the confidence interval, the 

more information about the population parameter of interest is obtained” (p. 381) 
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The coverage error represents the absolute difference between the nominal level (e.g., 

95% CI) and actual coverage probability (Wu et al., 2003). This criterion identifies the 

probability that the interval does not cover the true value of the parameter, and the desired value 

for coverage error is zero (Hurairah, Akma Ibrahim, Bin Daud, & Haron, 2006). 

The upper and lower error probability represent the percentage of a true parameter value 

falling above and below the intervals. This criterion identifies the symmetry of the confidence 

interval, and the desired value for symmetry of the upper and lower error probabilities depends 

on the selected confidence level (e.g., for 95% CI the error probability is .025). Few studies have 

paid attention to the balance between the left and right non-coverage rate (e.g., Newcombe, 

1998; Swift, 2009). Hurairah et al. (2006) argues that the “error probabilities are symmetric 

when the large of the lower or upper error probability is less than 1.5 times the smaller one”. 

However, “symmetry of error probabilities may not occur due to the skewness of the actual 

sampling distribution” (p. 141). Other studies argue that asymmetric confidence intervals should 

be preferred when the distribution is bounded and skewed (Cooley, 2013; Qin & Hotilovac, 

2008).  

Selection of an appropriate confidence interval method does not need to satisfy all the 

criteria simultaneously. Swift (2009) argued, “There is usually some tension between the 

different criteria.” However, choosing the best interval “depends on the relative importance the 

investigator places on each of these principles” (p. 749). It is useful to use more than one 

criterion in evaluating the performance of different CI methods. Penfield (2003) argued that, 

If two methods yield nearly identical coverage rates but drastically different interval 

sizes, then the method providing the smaller interval size is to be preferred. Similarly, if 

two methods yield nearly identical coverage rates but different sizes of error for the trials 
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displaying noncoverage, then the method providing the smaller error associated with 

noncoverage trials is to be preferred. (p. 154) 
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CHAPTER 3: Method 

The purpose of this study was threefold: First, to evaluate four alternative methods of 

describing the degree of uncertainty associated with estimates of the mean composite rating of 

instructor effectiveness averaged across the number of responding students in each class. Second, 

to examine how the degree of uncertainty in class means vary as a function of the number of 

responding students. Third, to examine how the dependability of mean SET ratings vary as a 

function of the number of responding students and number of items. The following areas are 

discussed in this chapter: (a) subjects, (b) instrument, (c) analysis of data, and (d) limitations. 

Subjects 

All classes with fewer than five students who responded to the SET questionnaire were 

excluded from analysis in this study. The total number of excluded classes was 1,060.  Most of 

these consisted of (a) special topics and/or individualized study classes, (2) private instruction 

classes, and (c) thesis or dissertation classes. As a result the data analyzed in this included the 

responses of 26,543 students who completed the questionnaire for one or more classes during the 

Winter 2016 semester at BYU. Only the responses to the five questions intended to evaluate the 

instructor are included in this study. Responses to the five questions about achievement of the 

BYU Aims were not included in the analysis. The total number of classes included in the 

analysis was 3,953 and the total number of faculty who were rated was 1,930. The analyzed 

classes ranged in enrollment from 5 to 836.  The average size of the 3,953 classes was 36.24 and 

the average response rate was 78.22%. The average number of responding students per class was 

27.10 with a range from 5 to 639 (See Figure 3).  
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Figure 3. Distribution of response ratio for all class. 

Instrument 

The student ratings instrument used at Brigham Young University is designed to obtain 

feedback from students about teachers and courses as a means of helping faculty to improve their 

teaching. In addition, department chairs and university committees review and consider students' 

ratings as one source of information in making teacher retention and promotion decisions. This 

instrument consists of 10 questions and is administered every semester in each class. 

A copy of this instrument is shown in Appendix A. All questions have 5-point scales, 

1(Not at all effective) to 5 (Very effective). This analysis will focus only on the five items which 

related to teaching effectiveness. For example, one question asks: 

How effective was this instructor (not the TA) in helping students who indicated a need for 

assistance? 

1 2 3 4 5 

Not at all 

effective 

Not very 

effective 

Moderately 

effective 

Effective Very effective 
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Analysis 

Level of analysis. The class was used as the unit of analysis in this study. For the purpose of 

this study, a class is defined as a specific section of a particular course taught by a specific 

teacher at scheduled time during a particular semester. The class-level is based on a unique 

combination of variables used by BYU: 

1. Semester_year (e.g., Winter 2016)

2. Course name (e.g., A HTG 100)

3. Instructor identification number (e.g., 1234567)

4. Class (e.g., 001002009045055). This variable consists of section numbers.

Based on the above combination the class id is (Winter 2016A HTG 

1001234567001002009045055). 

Multilevel confirmatory factor analysis (MCFA). MCFA (Muthén, 1994) was used to 

evaluate the factor structure underlying the student rating scale. The decision was made to use a 

multilevel confirmatory factor analysis because of the hierarchical or nested structure of the data 

(Brown, 2014). Two levels were considered: class level and student level. The MCFA accounts 

for the within and between-level latent constructs by decomposing the total sample covariance 

matrix into pooled within and between-group covariance matrices and uses these two matrices in 

the analyses of the factor structure at each level (Brondino, Pasini, & da Silva, 2013; Dedrick & 

Greenbaum, 2011). Muthén (1994) argued that ignoring the hierarchical structure of the data 

would produce problematic results. More specifically, Dyer, Hanges, and Hall (2005) explained, 

when the total covariance matrix is factor analyzed, the fit of the group level factor 

structure as well as any factor loading estimates will be biased since it is a mixture of the 

factor structure operating at the between-group and within-group levels. Typically, this 
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total factor structure will primarily be a function of the within-group factor structure (p. 

153). 

As shown in Figure 4, the model consisted of single factor MCFA with five observed 

indicators (𝑋𝑋1 − 𝑋𝑋5) for the five items in the scale. The five observed variables were 

hypothesized to load onto a single latent factor at the within level (𝐹𝐹𝑊𝑊). The five item means 

(𝜇𝜇1 − 𝜇𝜇5) were presumed to load onto the aggregated latent factor at the between level (𝐹𝐹𝐵𝐵). 

Thus, “the observed values of the original indicators are considered to be a function of both the 

within- and between-level latent constructs” (Dyer et al., 2005, p. 154). The model also includes 

the within (𝜆𝜆𝑖𝑖𝑊𝑊) and the between (𝜆𝜆𝑖𝑖𝐵𝐵) factor loadings, and the within (𝜃𝜃𝑖𝑖𝑊𝑊) and between (𝜃𝜃𝑖𝑖𝐵𝐵) 

measurement error variances. The MCFA model was estimated using the robust Maximum 

Likelihood (MLR) estimator, which “has been found to be efficient in the estimation of latent 

variable models based on non-normally distributed responses and items rated on answer scales 

including five or more response categories” (Morin et al., 2014, p. 12).  

Goodness of fit of the model was evaluated using the Tucker-Lewis Index (Bentler & 

Bonett, 1980); the Comparative Fit Index (Bentler, 1990) as relative fit indices; the Root Mean 

Square Error of Approximation (Hu & Bentler, 1999) as a parsimony corrected fit indices; 

Standardized Root Square Mean Residual (SRMR) as an absolute fit index. Values of.06 or less 

are considered an adequate fit for SRMR and RMSEA (MacCallum, Browne, & Sugawara, 

1996). A value of .95 and above is considered an excellent fit for CFI and TLI. Adequacy of 

factor loadings and will be examined for the MCFA model. Factor loadings exceeding 0.40 are 

considered acceptable (Hair, Anderson, Tatham, & Black, 1995). The MCFA was conducted 

using Mplus version 7.4 (Muthén & Muthén, 2015). 
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Figure 4. Path diagram of one-factor student ratings multilevel model. 

Variance components and the estimated reliability coefficient. To answer the first 

research question, the result from MCFA was used to estimate the different variance components 

used in the generalizability coefficient equations.   

Generalizability theory. Generalizability theory (Brennen, 2001; Cronbach et al., 1972) 

was used as the framework for estimating the reliability of the mean rating of the class level. 

Each student’s responses to the five questions were averaged across items to obtain a student 

mean. The student means were then averaged across the responding students within each class to 

get the class mean. Variance components were then computed to estimate (a) the variance of 

classes, (b) the variance of classes by items, (c) the variance of students within classes, and (d) 
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the residual error variance. The variance due to item main effect and student mean effect will not 

included in this study because all classes are rated on the same set of items (items are crossed 

with classes), thus, any difference in items affect all classes and does not change their relative 

standing (Gillmore, Kane, & Naccarato, 1978; Webb, Shavelson, & Haertel, 2006). 

Generalizability theory of a student rating data structure is partially nested split plot design in 

which each student in each class is given the same set of items will response to the same items.  

The design is (𝑖𝑖:𝑝𝑝) X 𝑗𝑗 (students (i) nested within class (p) crossed with items (j)). Where 

i:p is the students nested within class; pj is the items by classes variance; ij:p is the items by 

students nested within classes variance. In this study, students and items are considered 

important facets. Figure 5 illustrates the venn diagram of this design. 

For the purpose of this study, multilevel confirmatory factor analysis was used to 

estimate the variance components for reliability estimation as shown in Table 1.  

Figure 5. Venn diagram of i:p X j design. 
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Table 1  

Variance Components 

Between-classes 
𝜎𝜎𝑝𝑝2 =

�∑ 𝜆𝜆𝑖𝑖𝐵𝐵
𝑗𝑗
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2

𝑗𝑗2
𝜎𝜎𝑝𝑝𝑗𝑗2 =

�∑ 𝜃𝜃𝑖𝑖𝐵𝐵
𝑗𝑗
𝑖𝑖=1 �
𝑗𝑗

 

Within-classes 
𝜎𝜎𝑖𝑖:𝑝𝑝2 =

�∑ 𝜆𝜆𝑖𝑖𝑊𝑊
𝑗𝑗
𝑖𝑖=1 �

2

𝑗𝑗2
𝜎𝜎𝑒𝑒2 =

�∑ 𝜃𝜃𝑖𝑖𝑊𝑊
𝑗𝑗
𝑖𝑖=1 �
𝑗𝑗

Note. The 𝜎𝜎𝑝𝑝2 is the variance of classes; 𝜎𝜎𝑝𝑝𝑗𝑗2  is the variance of classes by items; 𝜎𝜎𝑖𝑖:𝑝𝑝2  is the variance of 

students within classes; and  𝜎𝜎𝑒𝑒2 is residual; j is the number of items; 𝜆𝜆𝑖𝑖𝑊𝑊is the within factor loadings; 𝜆𝜆𝑖𝑖𝐵𝐵 is 

the between factor loadings; 𝜃𝜃𝑖𝑖𝑊𝑊is the within measurement error variances; and 𝜃𝜃𝑖𝑖𝐵𝐵 is the between 

measurement error variances. 

Two different conceptualization of the universe of generalization and two different 

formulas to estimate the reliability of class-level scores were considered (Kane & Brennan, 1977; 

Schweig, 2013). First, items were treated as a random (equation 3.1) where the selected items are 

drawn from and are intended to represent, a broader universe of such items (Kane & Brennan, 

1977). Second, items were treated as a fixed (equation 3.2) where the selected items exhaustively 

define the universe to which generalization and inference are intended (Kane & Brennan, 1977). 

In both approaches, the students are treated as random. 

𝐸𝐸𝐸𝐸𝑔𝑔2 =
𝜎𝜎𝑝𝑝2

𝜎𝜎𝑝𝑝2 +
𝜎𝜎𝑝𝑝𝑗𝑗2

𝑛𝑛𝑗𝑗
+
𝜎𝜎𝑖𝑖:𝑝𝑝2
𝑛𝑛𝑖𝑖

+ 𝜎𝜎𝑒𝑒2
𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗

(3.1) 
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𝐸𝐸𝐸𝐸𝑔𝑔2 =
(𝜎𝜎𝑝𝑝2 +  

𝜎𝜎𝑝𝑝𝑗𝑗2
𝑛𝑛𝑗𝑗

)

(𝜎𝜎𝑝𝑝2 +  
𝜎𝜎𝑝𝑝𝑗𝑗2

𝑛𝑛𝑗𝑗
) +

𝜎𝜎𝑖𝑖:𝑝𝑝2
𝑛𝑛𝑖𝑖

+ 𝜎𝜎𝑒𝑒2
𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗

(3.2) 

In (3.1) and (3.2) the 𝐸𝐸𝐸𝐸𝑔𝑔2 is the between-classes generalizability coefficient; the 𝜎𝜎𝑝𝑝2 is the 

variance of classes; 𝜎𝜎𝑝𝑝𝑗𝑗2  is the variance component for the class by items interaction; 𝜎𝜎𝑖𝑖:𝑝𝑝2  is the 

variance component for students nested within classes; and  𝜎𝜎𝑒𝑒2 is the residual variance. 𝑛𝑛𝑗𝑗 the 

number of items; and 𝑛𝑛𝑖𝑖 is average number of respondents. 

Then, a D-study was conducted to determine an efficient number of items and students 

from the existing SET data required to obtain small error variances and/or large reliability 

coefficients which in turn will be used in making different evaluation decisions.  

Intraclass correlations coefficient. ICC1 and ICC2 were computed to determine whether 

aggregated individual-level ratings are reliable indicators of group-level constructs. Both indices 

utilize one-way random-effect analysis of variance, having student rating at Level 1 as the 

dependent variable and grouping level (class) is the independent variable (Lüdtke et al., 2009).  

ICC1 describes the amount of variance in each item that can be attributed to belonging to the 

class-level. In contrast, ICC2  provides a reliable estimate of the class-level group means (Woehr 

et al., 2015).  

Uncertainty in estimation of the universe mean for a class. To answer the second and 

third research questions, five methods were used to construct the confidence interval of class 

mean as follows: 

Logit transformation method. This analysis was carried out under R, version 3.2.2. (R 

Core Team, 2015. The logit transformation method was used to analyze student ratings which 
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will make the data more closely conform to theory and to a normal distribution and thus easier to 

compute the confidence interval (Williamson & Gaston, 1999). Some researchers argue that the 

logit transformation should be used when the data are bounded interval (Gart et al, 1985; 

Lesaffre et al., 2007). Let 𝑥𝑥 =  {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}, then the procedure to find the 95% confidence 

interval of the mean, is: 

• The scale score x ranging from 1 to 5 will be transformed into scale score x ranging from

0 to 4 by subtracting 1 from each (𝑥𝑥 = 𝑥𝑥 − 1).

• The transformed scale score of x will be transformed into a Proportion of Maximum

Possible (POMP) score p ranging from 0 to 1 by dividing it by 4 (𝑝𝑝 = 𝑥𝑥/4).

• A rescaled (“shrunken”) probability �́�𝑝 is mapped to the observed probability p by the

following,

�́�𝑝 =  𝛿𝛿𝑝𝑝 + .5(1 − 𝛿𝛿).  (3.3) 

Here, 𝛿𝛿 is a scaling constant greater than .5 and less than 1. We will choose 𝛿𝛿 to be .95. 

Warton and Hui (2011) argued that,  

one difficulty, though, with using this transform is that sample proportions equal 

to 0 and 1 transform to undefined values −∞ and ∞, respectively. An ad hoc 

solution to this problem is to add some small value ε to both the numerator and 

denominator of the logit function (p. 5). 

• The modified logit for the rescaled probability is

𝑡𝑡 =  ln(
�́�𝑝

1 − �́�𝑝
)

(3.4) 

• Estimate the mean, SD, confidence interval from the t values.

• A modified logit t will be transformed back to the rescaled probability �́�𝑝 using the

following,
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�́̂�𝑝 =
𝑒𝑒𝑡𝑡

1 + 𝑒𝑒𝑡𝑡
(3.5) 

• The rescaled probability �́̂�𝑝 will be transformed back to estimated standard probability �̂�𝑝

with the following,

�̂�𝑝 =
�̂�𝑝 +  .5(𝛿𝛿 − 1)́

𝛿𝛿
(3.6) 

• The POMP probability �̂�𝑝 will be transformed back into the rescaled value of a variable 𝑥𝑥�

score from 0 to 4 (𝑥𝑥� = 4�̂�𝑝).

• The estimated score will be transformed from the 0 to 4 scale back to a 1 to 5 scale by

adding 1 (𝑋𝑋� = 𝑥𝑥� + 1).

Resampling method. Resampling method or percentile confidence interval for a

population mean method (Karian & Dudewicz, 2011). This analysis was carried out under R, 

version 3.2.2. Let 𝑥𝑥 =  {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}, the procedure to find the 95% confidence interval of the 

mean, following (Wilcox, 2001), is:  

• Independently generate 1000 random samples of size n, with replacement.

• For each sample, estimate the mean 𝜃𝜃�.

• Obtain 1000 estimates 𝜃𝜃�1,𝜃𝜃�2, . . .  ,𝜃𝜃�1000 .

• Place the 1000 estimates 𝜃𝜃�1,𝜃𝜃�2, . . .  , 𝜃𝜃�1000 in increasing numerical order, obtaining

𝜃𝜃�(1) ≤ 𝜃𝜃�(2) ≤ . . .  ≤ 𝜃𝜃�(1000) 

• The percentile method’s 100(1 − 𝛼𝛼)% confidence interval for 𝜃𝜃 is

(𝜃𝜃�(𝑎𝑎),𝜃𝜃�(𝑏𝑏)) 

where 

𝑎𝑎 = �1000 ∗  
𝛼𝛼
2
� , 𝑏𝑏 = �1000 �1 −  

𝛼𝛼
2
�� 
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This indicates selecting the 25th and 975th values to construct 95% confidence interval. 

Non-parametric bootstrapping (Accelerated Bias-Corrected BCa). This analysis was 

carried out with the bootstrap library (Tibshirani & Leisch, 2015) under R, version 3.2.2 (R Core 

Team, 2015). In this analysis, we used the accelerated bias-corrected percentile limit (BCa) 

which performed a resampling with replacement. Let 𝑥𝑥 =  {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}, a sample of size n. To 

approximate the sampling distribution of 𝜃𝜃, we took 1000 resamples from 𝑥𝑥 and use these 

samples for computing the confidence interval. Then, following Kelley (2005), the function 

computed the bias correction value �̂�𝑧0 by calculating the proportion of the bootstrap distribution 

𝑑𝑑∗ values that are less than the sample 𝑥𝑥, then found the 25th and 975th  from the normal 

distribution with that cumulative probability:  

�̂�𝑧0 =  Φ−1(
# (𝑑𝑑∗ < 𝑥𝑥)

𝑛𝑛
) 

(3.7) 

In (3.7) Φ−1 is the inverse cumulative distribution function for the standard normal distribution. 

The acceleration constant, 𝑎𝑎�, can be computed using: 

𝑎𝑎� =  
∑ (�̃�𝑑 − 𝑥𝑥−𝑖𝑖)3𝑛𝑛
𝑖𝑖=1

6((∑ ��̃�𝑑 − 𝑥𝑥−𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1 )
3
2)

 
(3.8)

In (3.8) �̃�𝑑 is the mean of n jackknife 𝑥𝑥−𝑖𝑖 values. Then we computed the confidence intervals 

from the bootstrap sample using: 

𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝐿𝐿 =  Φ (�̂�𝑧0 +  
�̂�𝑧0 +  𝑧𝑧(𝛼𝛼2)

1 −  𝑎𝑎�(�̂�𝑧0 +  𝑧𝑧�
𝛼𝛼
2�)

) 
(3.9) 
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𝑈𝑈𝑝𝑝𝑝𝑝𝑒𝑒𝐿𝐿 =  Φ (�̂�𝑧0 +  
�̂�𝑧0 +  𝑧𝑧(1−𝛼𝛼2)

1 −  𝑎𝑎�(�̂�𝑧0 +  𝑧𝑧�1−
𝛼𝛼
2�)

) 
(3.10) 

Bayesboot method. This analysis was carried out with the Bayesboot library (Baath, 

2016) under R, version 3.2.2 (R Core Team, 2015). This method performs the Bayesian 

bootstrap introduced by Rubin (1981). Two steps are needed to perform this method as described 

by Baath (2016). Let 𝑥𝑥 =  {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}, to generate a Bayesian bootstrap sample of size n, repeat 

the following n times: 

1. Draw weights from a uniform Dirichlet distribution with the same dimension as the

number of data points. The Dirichlet distribution is a multivariate distribution over

proportions of real numbers between 0.0 and 1.0 that together sums to 1.0, and where any

combination of values is equally likely. O’Hagan and Stevens (2003, p. 47) argued that

the “key result is that we can draw random population distributions from this posterior

distribution in a very similar way to the bootstrap.”

2. Calculate the statistic (e.g., mean) of each of these Bayesian bootstrap samples, using the

Dirichlet, and record it.

For the purpose of estimating the class mean and the range of uncertainty, we did a

Bayesian bootstrap analysis of logit transformation procedure mentioned before by creating a 

function that takes the data and returns the mean, lower bound, and upper bound. Bayesboot 

procedure sampled from the data according to the probabilities defined by the Dirichlet, and use 

this resampled data to calculate the statistic. We used 1000 as the number of bootstrap draws and 

class size as the size of the original data used to calculate the statistical parameter for each 

Dirichlet draw. 
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Classical Z distribution method. This analysis was carried out using R, version 3.2.2 (R 

Core Team, 2015). Classical Z method is the most common method used to compute confidence 

interval of SET means. Estimation of the margin of error using the classical Z method is based 

on the central limit theorem (CLT) which assumes that the population of class means is normally 

distributed and the resulting interval is symmetrical about the estimated mean. Because the 

distribution of class means in the context of this study was known to be markedly skewed, we 

purposefully explored other options that do not depend on the normality assumption. However, 

the classical Z method was used as a benchmark to compare its results to the other four non-

traditional methods in this study. Let 𝑥𝑥 =  {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}, then the procedure to find the 95% 

confidence interval of the mean, is: 

• Estimate the mean and the standard deviation of each class. 

• Estimate the standard error by dividing the standard deviation by the square root of the 

class size. 

• Estimate the margin of error; for a 95% confidence level the margin of error is 1.96 times 

the standard error. 

• Estimate the lower limit (mean - margin of error) and the upper limit (mean + margin of 

error) of the confidence interval. 

Simulation study. Since a theoretical comparison of the estimators is not possible, the 

researcher carried out a simulation study to compare the performance of the confidence interval 

with five methods: the logit transformation, the resampling, the bootstrapping BCa, the Bayesian 

bootstrapping, and classical Z method in finite sample sizes. The simulation procedure following 

(Shi & Golam Kibria, 2007, p. 416) is: 
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1. Select the sample size (n), number of simulation times (1,000), and confidence level (e.g.,

95%).

2. Generate 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛  simulated student ratings which represent an independent and

identically distributed (iid) sample from a beta distribution with two parameters 𝛼𝛼 and 𝛽𝛽.

3. Construct confidence intervals for the population mean using each of the five methods.

4. For each method in step 3, determine if the confidence interval includes the population

mean, and calculate the width of the interval, and the upper and lower error.

5. Repeat (1)–(4) 1,000 times, then compute the coverage probability, the average of the

width, the coverage error and upper and lower error probability.

We considered five sample sizes in the simulation study: n = 5, 10, 20, 50, 100. This 

process used 1,000 simulated random samples bounded between 1 and 5 with various 

combinations of true means, standard deviation, and sample sizes that can correspond the real-

life situations of interest. Moreover, every sample is resampled 1,000 times for the resampling, 

Bootstrapping, and Bayesian boot methods. The simulations, including all data generation, is 

programmed in R, version 3.2.2 (R Core Team, 2015). 

Data generation. The research used a conditional beta distribution as a parametric model 

to create the different shapes of distributions (Nelson & Preckel, 1989).  The beta distribution is 

bounded between 0 and 1 and is characterized by two shape parameters, 𝛼𝛼, and 𝛽𝛽. Moreover, it 

has the flexibility to transform a rich family of distributional shapes into the standard beta 

distribution when a distribution over some finite interval is needed (Cordeiro & de Castro, 2011; 

Farnum & Stanton, 1987). The density function following (Kong, Parker, & Sul, 2014, p. 10) is 

given by 

𝑓𝑓(𝑥𝑥|𝛼𝛼,𝛽𝛽) = 1
𝐵𝐵(𝛼𝛼,𝛽𝛽)

𝑥𝑥𝛼𝛼−1(1 − 𝑥𝑥)𝛽𝛽−1,   for 𝑥𝑥 ∈ [0,1],𝛼𝛼 > 0,𝛽𝛽 > 0, (3.11)
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In (3.11) 𝐵𝐵(𝛼𝛼,𝛽𝛽) = ∫ 𝑥𝑥𝛼𝛼−1(1 − 𝑥𝑥)𝛽𝛽−1𝑑𝑑𝑥𝑥1
0 , which is the beta function. 

To generate random data bounded between lower bound (Lb) and upper bound (Ub) that 

has a specific distributional shape, different combinations of the mean 𝜃𝜃 and standard deviation 

𝜎𝜎 are chosen. The values of the mean 𝜃𝜃 and standard deviation 𝜎𝜎 used to compute the beta 

distribution parameters needed to generate the data. For the first combination 𝜃𝜃 = 2.9, 3.0, 3.1 

which represents symmetric distributions, the second combination has 𝜃𝜃 = 4.2, 4.4, 4.7 which 

represents left-skewed distributions, and the last combination has 𝜃𝜃 = 1.5, 1.8, 2.0 which 

represents right-skewed distributions. Three values of 𝜎𝜎 = 0.05, 0.10, 0.20 used with each 

combination. These small values were selected because of the observed homogeneity in the SET 

ratings (Appendix B). The procedure used for data generations following (AbouRizk, Halpin, & 

Wilson, 1991), is: 

1. Determine the desired shape by specifying the mean 𝜃𝜃 and standard deviation 𝜎𝜎.

2. Specify the sample size 𝑛𝑛.

3. Compute 𝛼𝛼 = �� 𝜃𝜃−𝐿𝐿𝑏𝑏
𝑈𝑈𝑏𝑏−𝐿𝐿𝑏𝑏

� �(𝜃𝜃−𝐿𝐿𝑏𝑏)(𝑈𝑈𝑏𝑏−𝜃𝜃)
𝑠𝑠2

� − 1�  (3.12) 

4. Compute 𝛽𝛽 = �𝑈𝑈𝑏𝑏−𝜃𝜃
𝜃𝜃−𝐿𝐿𝑏𝑏

� 𝛼𝛼     (3.13) 

5. Generate the random beta data using n, 𝛼𝛼, and 𝛽𝛽 using rbeta function under R, version 3.2.2.

6. Transform back the data to original bounds: 𝐿𝐿𝑏𝑏 + 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎(𝑈𝑈𝑏𝑏 − 𝐿𝐿𝑏𝑏).

Measures of performance. The performance of each method in the simulation study was 

judged by the following criteria: 
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1. Coverage probability: For each simulated combination, we calculated the confidence 

intervals for the estimate mean for all the methods. The coverage probability for each 

method is calculated as the number of intervals containing the true mean divided by 1000.  

2. Average interval width: For each simulated combination, we calculated the average width of 

each method. The width of the 95% confidence interval is the average difference between 

the upper limit and lower limit.  

3. Coverage error: For each simulated combination, we calculated the absolute difference 

between the nominal level (e.g., 95% CI) and actual coverage probability. 

4. Upper and lower error probability: For each simulated combination, we calculated the 

percentage of a true parameter value falling above and below the intervals.  
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CHAPTER 4: Results 

Demographics, Instrument, and Descriptive Statistics  

As mentioned in Chapter 3 there were 26,543 students in the sample who completed the 

questionnaire for one or more classes during the Winter 2016 semester at BYU.  The total 

number of classes included in the analysis was 3,953 and the total number of faculty who were 

rated was 1,930. The analyzed classes ranged in enrollment from 5 to 836.  Table 2 shows the 

number of classes in different enrolment ranges with their percentage. On one hand, the majority 

of classes have enrollment range of 11-20 students (30.4%). On other hand, the results show that 

more than 50% of classes have enrolment of 21 students or more. Out of 3,953 classes analyzed 

in this study 3,080 classes have a response rate higher than 61% as shown in Table 3.  

Table 2  

Number of Classes per Enrollment Range 

Enrolment range 5-10 11-20 21-30 31-40 41-50 51-100 101-900

Number of classes 524 1200 831 425 284 470 219 

Enrolment % 13.3 30.4 21.0 10.8 7.2 11.9 5.5 

Table 3  

Number of Classes per Response Ratio Range 

Response ratio 
range 

0-20 % 21-40 % 41-60 % 61-80 % 81-100 %

Number of classes 6 160 707 1541 1539 

Descriptive statistics for the items and scales are reported in Tables 4 and 5. Item means 

ranged from 4.312 (SD = 0.896) for the first item to 4.598 (SD= 0.730) for the last item. There 



50 
 

 
 

were no missing values in this data set. The distribution of responses to each item was left 

skewed distributed, with skewness ranging from -1.308 to -2.122 and kurtosis values ranging 

from 1.344 to 4.978. 

Table 4  

Distribution of Student Responses by Item 

 
Item 

Not at all 
effective 

Not very 
effective 

Moderately 
effective Effective 

Very 
effective 

1 1.089 % 3.468 % 12.422 % 29.152 % 53.869 % 

2 1.333 % 3.684 % 11.820 % 27.698 % 55.466 % 

3 0.662 % 2.205 %   9.673 % 27.526 % 59.934 % 

4 0.653 % 2.494 % 10.087 % 25.698 % 61.068 % 

5 0.685 % 1.494 %   6.045 % 20.901 % 70.875 % 

Note. N= 3953. 

Table 5  

Item Descriptive for the SET 

Item Item description Mean SD Skewness Kurtosis ICC 

1 Helping students 4.312 0.896 -1.308 1.344 .201 

2 Providing opportunities 4.323 0.914 -1.388 1.548 .198 

3 Teaching challenging concepts 4.439 0.807 -1.510 2.159 .191 

4 Demonstrating respect 4.440 0.822 -1.519 2.037 .183 

5 Organizing the course content 4.598 0.730 -2.122 4.978 .198 

Note. N= 3953. 
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Data Analysis and Results of the Research Questions 

Dependability of student ratings. The first research question was, “what is the 

reliability of the estimated class means for the composite instructor effectiveness ratings?” 

The reliability of the SET ratings was estimated by computing generalizability 

coefficients. As mentioned in Chapter 3, this study illustrates a two-facet partially nested split-

plot design. For this design (𝑖𝑖:𝑝𝑝) X 𝑗𝑗, four variance components were estimated: (a) the variance 

of the classes, (b) the variance of the classes-by-items interaction, (c) the variance of students 

within classes, and (d) the residual error variance. 

A Multilevel Confirmatory Factor Analysis (MCFA) model was used to estimate the 

anticipated sources of variation in the SET data. Prior to conducting the MCFA, an intraclass 

correlation coefficient (ICC) was calculated for each of the five items in the SET to estimate the 

variability between and within classes on each item and the degree of non-independence or 

clustering in the ratings. Table 5 displays the ICCs for each of the five items. The ICCs ranged 

from .183 for item 4 to .201 for item 1. These values indicate that there is sufficient between 

class variability to warrant multilevel analysis. The estimated reliability for the class-level mean 

using ICC2 in this study, with an average cluster size of 27 respondents per class, was .867. 

However, reliability is a variable rather than a constant in the context of SET ratings. It will be 

less than this estimated value for classes with fewer respondents and larger for classes with a 

greater number of respondents. 

Table 6 shows the standardized factor loadings for this model. All factor loadings were 

significantly greater than zero (p < .01) and adequate (all greater than .64 for the standardized 

solution) suggesting that all five items adequately reflect the latent construct. The standardized 

loadings for the items load strongly onto the single factor at the between level, ranging from .853 
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to .965. The factor loadings of the items at the within level, ranging from .691 to .780. Between-

level loadings were stronger than within level, underlining the importance of the group level for 

SET data. 

The fit indices suggest that the data-model fit was acceptable. The Root Mean Square 

Error of Approximation (RMSEA) = .075, CFI = .977, and TLI = .952. The Standardized Root 

Mean Square Residual (SRMR) fit indices at each level indicated adequate fit (SRMR-within = 

.024 and SRMR-between = .035). The path diagram of the model is displayed in Figure 6. 

Table 6  

Unstandardized and Standardized Factor Loadings by Item 

Unstandardized Standardized 

Item Within Between Within Between 

1 0.641 0.375 0.797 0.930 

2 0.617 0.366 0.745 0.887 

3 0.568 0.343 0.775 0.965 

4 0.582 0.329 0.780 0.928 

5 0.460 0.282 0.691 0.853 

Table 7 presents the estimates of the four sources of variation including (a) estimated 

variance components, (b) the total variance, and (c) percentage of the total variation. The results 

showed that students-within classes represents the largest variance component and that it 

accounts for 47% of the total variance. This finding indicates that the students’ ratings of classes 

were greatly affected by differences in the ratings assigned by the students. The second largest 

variance component accounted for 16% of the total variance and represents class-to-class 

variability.
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Figure 6. Path diagram and unstandardized parameters estimates of the multilevel model for the SET. 
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The smallest variance component represents the variability due to class-by-item 

interaction which accounted for 3%. The results show that with the average of 27 respondents, 

the generalizability coefficients when items were treated as a fixed facet and when items were 

treated as a random facet were .895 and .861 respectively.  

Table 7  

Estimated Variance Components 

Source of 
Variance 

Estimated Variance Component Percentage 
of Total 

Classes (𝜎𝜎𝑝𝑝2) 0.115    16% 
Classes by Items (𝜎𝜎𝑝𝑝𝑗𝑗2 ) 0.023      3% 

Students within classes (𝜎𝜎𝑖𝑖:𝑝𝑝2 ) 0.330   47% 
Residual (𝜎𝜎𝑒𝑒2) 0.241   34% 
Total variance 0.709 100% 

Figure 7 shows how the generalizability coefficients are expected to vary as a function of 

the number of items. The results show that high reliability is obtained when items are treated as a 

fixed facet rather than as a random facet. The G coefficients are not greatly influenced by 

changing the number of items in either condition except when only one item used in the random 

condition. In general, reliable results can be achieved using different number items, with the 

average of 27 students responds to SET questionnaire. On the other hand, Figure 8 shows that the 

G coefficients are influenced by varying the number of students who respond to the five items. 

Highly reliable results obtained when the average number of students were 15 for fixed item 

design and 27 for random item design. The key point here is that the reliability of the class 

means is a variable rather than a constant. It varies as a function of the number of respondents in 

a class. The greater the number of respondents the larger the reliability.  
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Figure 7. Generalizability coefficients for various numbers of items. 
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Figure 8. Generalizability coefficients for various numbers of respondents. 
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Figure 9 shows the generalizability coefficients when varying both the number of items 

and the average number of respondents. When items are treated as a fixed facet, highly reliable 

results cannot be achieved regardless of the number of items used when the number of 

respondents is 10 or less. The average number of respondents required to obtain highly reliable 

results is 15 or more with at least 3 items. The results show that the average number of 

respondents has a positive effect on the dependability of the ratings. Large number of 

respondents give more reliable ratings and small number of respondents give less reliable ratings. 

When items are treated as a random facet, highly reliable results achieved when three or more 

items used and the average number of respondents required is 27 or more. 

Uncertainty in estimation of the universe mean for a class. Our main objective in this 

study is to find the best interval estimator for describing the degree of uncertainty associated 

with estimates of the mean composite rating of instructor effectiveness averaged across the 

number of responding students in each class. A simulation study was conducted in hopes of 

accomplishing this objective since a theoretical comparison is difficult. The three families of 

distributions considered include the (a) symmetrical, (b) right-skewed, and (c) left-skewed 

families that correspond to the real-life situations of interest (see Figures B1- B3) in Appendix B. 

The primary outcomes of interest are: (a) the coverage probabilities of the 95% confidence 

interval estimates, (b) the coverage error probabilities, (c) the average interval width, and (d) the 

degree and direction of asymmetry of the interval about the mean. In addition to the four 

methods of interest in this study, we included a classical method (e.g., Z method) for comparison 

purposes. 
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Figure 9. Generalizability coefficients for various number of items and various number of respondents. 
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Symmetric distributions. For comparison convenience, the results of the simulation from 

symmetric distributions are presented here in plot form and reported in tables (see Tables D1-

D9) in Appendix D.  

Coverage probabilities. The results in Figure 10 suggest that when sampling from a 

symmetric distribution, the logit transformation method has coverage probability close to the 

nominal level of 95% and remains the same for different sample sizes. However, for small 

sample sizes, the estimated coverage probability of all methods (except the logit transformation) 

are below the nominal level of 95%. As the sample size increases, the estimated coverage 

probability of these methods increases. However, it is obvious that the Z distribution method 

outperformed the other bootstrap methods with sample sizes of 10 or more, because the coverage 

probabilities with this method tend to be higher than those with the other bootstrap methods. The 

Resampling, BCA, and Bayesboot need a sample size of 50 or more to attain a value close to the 

nominal level of 95%.  

Coverage error probabilities. The results for the coverage error probabilities are shown 

in Figure 11. These results are associated with the results obtained from the coverage 

probabilities criterion. The logit transformation method has almost zero coverage error for 

different sample sizes. We observe that the coverage error probabilities for the other methods are 

relatively large for small sample size. However, as the sample size increases, the estimated 

coverage error probability of these methods decreases.  

Average width. The results for the average interval width are shown in Figure 12. We 

observe that the interval width of all methods depend upon both the sample size and the 

magnitude of the variance in the underlying distributions. As the variance of the sample 

increases, the estimated interval width increases, and as the sample size decreases, the estimated 
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interval width increases. All methods produced the same interval width with sample size of 20 or 

more. Moreover, we observe that the resulting interval of the logit method was marginally wider 

on average than the other methods when the sample size is 10 or less. 

Upper and lower error probabilities. The results for the upper and lower error 

probabilities when sampling from a symmetric distribution for the logit method are shown in 

Figure 13. The results show that the estimated confidence intervals of the logit method are 

symmetrical for different sample sizes. However, the other methods require large sample size to 

obtain symmetrical confidence intervals (See Figures E1, E4, E7, & E10) in Appendix E.   

Right-skewed distributions. In this section overall coverage probabilities, coverage 

errors, average widths, and upper and lower error probabilities of the resulting confidence 

intervals estimated by each method considered are given for the right-skewed distributions. The 

results are presented here in plot form and reported in tables (see tables D10-D18) in Appendix 

D.  

Coverage probabilities. The results in Figure 14 suggest that when sampling from a right-

skewed distribution, the logit transformation method has coverage probability close to the 

nominal 95% level and remains the same for different sample sizes. However, for small sample 

sizes, the estimated coverage probability of all other methods are below the nominal level 95%. 

As the sample size increases, the estimated coverage probability of these methods increases. 

However, it is obvious that the Z distribution method outperformed the other bootstrap 

methods with sample size of 20 or more, because the coverage probabilities with this method 

tended to be higher than those with the other bootstrap methods. The resampling, BCa, and 

bayesboot need a sample size of 100 or more to attain a value close to the nominal level 95%.
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Figure 10. Coverage probabilities of the 95% CIs for the symmetrical distributions. 
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Figure 11. Coverage error probabilities of the 95% CIs for the symmetrical distributions.
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Figure 12. Average width of the 95% CIs for the symmetrical distributions.
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Figure 13. Logit upper/lower probabilities of the 95% CIs for the symmetrical distributions 
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Coverage error probabilities. The results for the coverage error probabilities are shown 

in Figure 15. These results are associated with the results obtained from the coverage 

probabilities criterion. The logit transformation method has almost zero coverage error for 

different sample sizes. We observe that the coverage error probabilities for the other methods are 

relatively large for small sample sizes. However, as the sample size increases, the estimated 

coverage error probability of these methods decreases.  

Average width. The results for the average interval width are shown in Figure 16. We 

observe that the interval width of all methods are related to both the sample size, and the 

magnitude of the variation in the underlying distributions. As the variance of the sample 

increases, the estimated interval width increases and as the sample size decreases, the estimated 

interval width increases. All methods produced the same interval width with a sample size of 20 

or more. However, with small variance, all methods obtain small estimates of interval length. In 

general, we also observe that the resulting interval of the logit method was marginally wider on 

average than the other methods when the sample size is 10 or less. 

Upper and lower error probabilities. The results for the upper and lower error 

probabilities when sampling from a right-skewed distribution for the logit method are shown in 

Figure 17. The results show that the estimated confidence intervals of the logit method are 

asymmetric for different sample sizes in which the upper limit coverage errors are higher than 

the lower coverage error. However, all other methods (except Z method) obtain asymmetrical 

confidence interval with high skewed distribution and as the variance increases (Figures E2, E5, 

E8, E11) in Appendix E.
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Figure 14. Coverage probabilities of the 95% CIs for the right-skewed distributions.
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Figure 15. Coverage error probabilities of the 95% CIs for the right-skewed distributions. 
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Figure 16. Average width of the 95% CIs for the right-skewed distributions. 
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Figure 17. Logit upper/lower probabilities of the 95% CIs for the right-skewed distributions 
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Left-skewed distributions. In this section overall coverage probabilities, coverage 

errors, average widths, and upper and lower error probabilities of the resulting confidence 

intervals estimated by each method considered are given for the left-skewed distributions. 

The results are presented in plot form and reported in tables (see Tables D19-D27) in 

Appendix D.  

Coverage probabilities. The results in Figure 18 suggest that when sampling from 

a left-skewed distribution, the logit transformation method has coverage probability close 

to the nominal 95% level and remains the same for different sample sizes. However, for 

small sample sizes, the estimated coverage probability of all methods (except logit 

transformation) are below the nominal 95% level. We observe that as the sample size 

increases, the estimated coverage probability of these methods increases. However, it is 

obvious that the Z distribution method outperformed the other bootstrap methods with 

sample size of 20 or more, because the coverage probabilities with this method tended to 

be higher than those with the other bootstrap methods. The resampling, BCa, and 

bayesboot need a sample size close to 100 or more to attain a value close to the nominal 

level 95%. 

Coverage error probabilities. The results for the coverage error probabilities are 

shown in Figure 19. These results are associated with the results obtained from the 

coverage probabilities criterion. The logit transformation method has almost zero 

coverage error for different sample sizes. We observe that the coverage error probabilities 

for the other methods are relatively large for small sample size. However, as the sample 

size increases, the estimated coverage error probability of these methods decreases. 



73 

Average width. The results for the average width are shown in Figure 20. We 

observe that the interval width of all methods are related to both the sample size, and the 

magnitude of the variation in the underlying distributions. As the variance of the sample 

increases, the estimated interval width increases and as the sample size decreases, the 

estimated interval width increases. All methods produced the same interval width with 

sample size of 20 or more. However, with small variance, all methods obtain small 

estimates of interval length. In general, we also observe that the resulting interval of the 

logit method was marginally wider on average than the other methods when the sample 

size is 10 or less. 

Upper and lower error probabilities. The results for the upper and lower error 

probabilities when sampling from a left-skewed distribution for logit method are shown 

in Figure 21. The results show that the estimated confidence intervals of the logit method 

are asymmetric for different sample sizes in which the lower limit coverage errors are 

higher than the upper coverage error. However, all other methods (except Z method) 

obtain asymmetrical confidence interval with high skewed distribution and as the 

variance increases (Figures E3, E6, E9, E12) in Appendix E. 

The feasibility of the estimated procedures. Table 8 presents a comparison 

between the four interval estimation methods used in this study. All methods can be 

easily implemented and automated to any SET data. However, the bootstrap methods in 

general require extra programming effort, more computation time, and high computer 

resources (e.g., CPU and RAM). The logit transformation method requires less 

programming effort, less computation time, and less computer resources.  
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Table 8  

The Feasibility of the Estimated Procedures 

Criterion Logit 
transformation Resampling BCA Bayesboot Z 

Integration Easy Easy Easy Easy Easy 
Programming Normal Extra Extra Extra Normal 
Average Time 21 Seconds 47 Minutes 27 Minutes 19 Hours 25 Seconds 

Note. The average time is calculated based on the simulation study.
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Figure 18. Coverage probabilities of the 95% CIs for the left-skewed distributions. 
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Figure 19. Coverage error probabilities of the 95% CIs for the left-skewed distributions.
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Figure 20. Average width of the 95% CIs for the left-skewed distributions. 
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Figure 21. Logit upper/lower probabilities of the 95% CIs for the left-skewed distributions. 
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CHAPTER 5: Discussion 

Reliability of the Estimated Class Means 

Estimating the reliability of class means is an important initial step to justify and assess 

aggregated student ratings at the class level. Generalizability theory is preferred method over 

classical test theory for this purpose since it partitions the error variance into two or more 

components representing different likely sources of measurement error. In this study, we applied 

generalizability theory to estimate the reliability of class means and to project how the estimated 

reliability coefficients would likely vary if the number of items and responding students were 

increased or decreased.  

The results show that the reliability estimates varied depending on whether the items 

were classified as a random or a fixed facet. More reliable results were obtained by treating items 

as fixed (e.g., .895). However, previous studies suggest that the decision to treat facets as random 

or fixed can only be made in the context of a particular study (Brennan, 2011; Kane & Brennan, 

1977; Schweig, 2013). When items are classified as fixed, to obtain a reliability of .80 or higher 

the university needs at least 3 items and 15 respondents. When items are classified as random, to 

obtain a reliability of .80 or higher the university needs at least 3 items and 27 respondents.  

The estimated reliability for the class-level mean using ICC2 in this study supported the 

findings from the generalizability theory (ICC2 = .867). As suggested by previous studies this 

estimate is desirable and indicating a sufficient degree of reliability of the class-mean ratings 

(Lüdtke et al., 2009; Nelson & Christ, 2016).  

Uncertainty in Estimation of the Universe Mean for a Class 

This dissertation used a simulation study to evaluate and compare four alternative 

methods of constructing confidence intervals for SET class means under different distributional 
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context. The four methods included (a) the logit transformation, (b) resampling, (c) BCA, and (d) 

Bayesboot. The classical Z method was included for comparison purposes. The criteria used to 

evaluate the five methods included (a) high coverage probability, (b) coverage error, (c) a narrow 

width, and (d) symmetric or asymmetric confidence intervals. However, selection of an 

appropriate confidence interval method does not need to satisfy all of these criteria 

simultaneously because it is difficult to find a confidence interval which satisfies all of these 

criteria at the same time. Thus, the researcher must decide which criterion is most important to 

the study and to pay the price for such a trade-off.  

Findings from simulation study. The current simulation study led to six important findings 

regarding the five different methods used. These finding include the following:  

1. When the data were symmetrically distributed, the five methods performed differently

across all criteria. As Tables D1-D3 in Appendix D illustrated, all confidence intervals

had coverage probabilities that were lower than the expected nominal 95% except for the

logit transformation. The average interval widths were also different across the five

methods when the sample size is less than 20 (Tables D4-D6 in Appendix D). All

confidence intervals had a narrower width for small samples than the logit transformation

interval. When the sample size is more than 20, all interval widths were fairly similar. It

is expected that when the data are symmetrically distributed, the intervals would be

symmetric and centered around the mean. The logit transformation interval was

symmetrical for different sample sizes. All other methods require large sample size to

obtain symmetrical confidence intervals (Tables D7-D9 in Appendix D).

2. When the data were nonormally distributed (either left or right skewed), the logit

transformation method outperformed the other methods in coverage probability. As
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Tables D10-D12 and Tables D19-D21 in Appendix D illustrated, all confidence intervals 

had coverage probabilities that were far lower than the expected nominal 95% except for 

the logit transformation and Z method with large sample sizes. The interval widths were 

also different across the five methods when the sample size was less than 20 (Tables 

D13-D15 and Tables D22-D24 in Appendix D). All confidence intervals had a narrower 

width for small samples than the logit transformation interval. When the sample size is 

more than 20, all interval widths were fairly similar. It is expected that when the data are 

nonnormally distributed, asymmetrical intervals would be estimated about the mean. 

Logit transformation intervals outperform all other methods to obtain asymmetrical 

interval for different sample sizes. All other methods obtain asymmetrical interval with 

high skewed distribution and as the variance increases (Tables D16-D18 and Tables D25-

D27 in Appendix D). 

3. In general, the coverage probabilities for confidence intervals became better as the 

sample size increases but still below the nominal 95% except for the logit transformation 

and Z method. The interval widths are related to both the sample size and the magnitude 

of the variation in the underlying distributions. As the variance of the sample increases 

and the sample size decreases, the estimated interval width becomes wider. 

4. The findings indicate that the classical Z method performs better in terms of higher 

coverage probability and average interval width as the sample size increases. However, 

this method fails to produce an asymmetric interval about the estimated mean when the 

data are not normally distributed.  

5. The findings indicate that the logit transformation method outperforms all other methods 

in terms of higher coverage probability and symmetric/asymmetric interval about the 
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mean, but the average widths are much wider than the average width intervals produced 

by the other methods when the sample size is small (e.g., 10 or less).  

6. The logit transformation method is preferable to other methods in term of the feasibility

of the estimation procedures because it requires less time and computer resources to

estimate a confidence interval for each class.

General Discussion 

Student evaluations of teaching effectiveness (SET) in higher education are commonly 

used in making important decisions regarding faculty promotion, raises, and tenure. Professors 

and administrators who use SET for such decisions have a need to be assured that the resulting 

ratings are a reliable indicator of a teacher’s effectiveness. Generalizability theory is suggested to 

justify and assess aggregated student ratings at the class level (Lüdtke et al., 2006; Nelson & 

Christ, 2016). Consistent with previous studies, the results of our generalizability theory analysis 

indicated that the effect of increasing the number of responding students’ has a greater effect 

than increasing the number of items in the SET instrument (Gilmore et al., 1978; Ibrahim, 2011). 

This finding suggests that the ratings by a small number of respondents in classes are most likely 

to be too unreliable to be used as a basis for making important personnel decisions.

Few published SET studies have paid attention to developing concepts and procedures to 

summarize information about the lack of precision associated with using the observed class mean 

as an estimate of the corresponding universe mean. Boysen (2015a) declared that “means are 

only an estimate of true scores; thus, teaching evaluation means should be interpreted as 

estimates falling within possible range of scores rather than a representation of true teaching 

competency” (p.151). The purpose for reporting a confidence interval along with the estimated 

class means is to emphasize that the reported mean is a fallible estimate of the unknown true 
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mean for a given class and to describe how accurate or inaccurate that estimate is. Hence, 

reporting the confidence interval is intended to help the users of SET results from over-

interpreting small differences in the observed class means as being indicative of true differences 

in teachers. When the confidence intervals for two or more teachers overlap, any differences in 

their observed class means may be due to measurement error or sampling error. Hence, we 

cannot be confident in inferring that their true scores are actually different. 

Findings from the current study suggest that the logit transformation method outperforms 

other methods in coverage probabilities and in terms of the degree and direction of asymmetry of 

the interval about the mean with small class sizes and nonnormal distributions. This finding is 

consistent with the results obtained by Choi et al. (2013) regarding of the performance of a 

simple Wald-based CIs using transformation. The resampling method showed poor coverage 

probability with small sample sizes and nonnormal distributions. The results from the current 

simulation are consistent with Ghosh and Polansky (2014) in terms of both coverage probability 

and interval width. The results of BCA method results are consistent with previous studies in 

showing low coverage probabilities but a narrow interval width with small sample sizes and 

skewed distribution (Banik & Kibria, 2010; Puth et. al, 2015; Wang, 2001). Likewise, the 

Bayesboot method provides similar results to non-parametric bootstrap methods with small 

samples sizes and skewed distributions. This consistent with previous research by O’Hagan and 

Stevens (2003).  The classical Z method provides similar results to logit transformation method 

and outperforms the other bootstrap methods. However, a major limitation of this method is the 

failing to estimate asymmetry interval when the data were nonormally distributed. This 

limitation provides estimates that may exceed the bounded range of the distribution.    
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Limitations 

The primary limitations of this study are the small size of some classes and the low 

response rate within many classes. These limitations affect the accuracy of margin of error as 

well as the reliability of the class means in the case of small size classes and classes with low 

response rates.  

Generalizability theory was used in this study to estimate different variance components. 

However, there might be other hidden facets that were not considered such as the subject area or 

instructor. These potential sources of variability were not included because of the unavailability 

of data. Accounting for more variance errors would potentially impact the results and the 

interpretation of the data.  

Using uninformative prior with Bayesboot method also introduces another limitation. The 

uninformative prior produces almost the same estimates compare to other bootstrap methods 

used in this study.    

Another limitation is related to the computer resources and the time needed for utilizing 

some methods (e.g., Bayesboot) in the analysis, taking into account the huge number of classes 

that need to included in such analysis. 

Recommendations and Future Research 

The following recommendations are offered based on the results of this study and the 

accompanying review of related published literature on SET ratings. Institutions which use SET 

ratings should implement the following actions: 

1. Routinely incorporate uncertainty information through the use of appropriate confidence

intervals whenever SET ratings are presented and displayed.
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2. Use the logit transformation procedure to compute confidence intervals for the mean SET

ratings for each class.

3. Because of the lower reliability of the estimated means obtained from classes with less

than 15 respondents, employ extra caution when interpreting the mean ratings for these

classes and treat the resulting estimates as tentative unless additional information is

obtained.

4. Consider ways to increase the response rate in all classes, especially in classes with

enrollments of 20 or less.

5. Conduct research to examine the potential effects of bias due to nonresponse in

estimating the mean SET ratings of classes.

6. Consider the appropriateness of combining SET ratings across multiple semesters for a

given class.

7. Use multilevel and generalizability analyses to gauge the appropriateness of aggregating

results at other organizational levels (e.g., programs, departments, colleges), including the

estimation of standard errors and confidence intervals at these other levels of aggregation.
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APPENDIX A: 

Specimen Copy of the New Student Evaluation of Teaching Form Used at Brigham Young 
University  

1. How effective was this instructor (not the TA) in helping students who indicated a need
for assistance?

a. Not at all effective
b. Not very effective
c. Moderately effective
d. Effective
e. Very effective

2. How effective was the instructor (not the TA) in providing meaningful opportunities and
encouragement for you to actively participate in the learning process?

a. Not at all effective
b. Not very effective
c. Moderately effective
d. Effective
e. Very effective

3. How effective was the instructor (not the TA) in teaching challenging concepts or skills?
a. Not at all effective
b. Not very effective
c. Moderately effective
d. Effective
e. Very effective

4. How effective was this instructor in demonstrating respect for students and their
opinions, questions, or concerns?

a. Not at all effective
b. Not very effective
c. Moderately effective
d. Effective
e. Very effective

5. How effective was the instructor in organizing the course content to enhance learning?
a. Not at all effective
b. Not very effective
c. Moderately effective
d. Effective
e. Very effective
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APPENDIX B: 

Beta Distribution 

Figure B 1. Right-skewed beta distribution. 
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Figure B 2. Symmetrical beta distributions. 
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Figure B 3. Left-skewed beta distributions. 
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APPENDIX C:  

Generalizability Results 

Table C 1  

Estimated Generalizability Coefficients for Varying Numbers of Items by Type of Design 

Number of items Items fixed design Items random design 

  1 .867 .724 

  3 .890 .834 

  5 .895 .861 

  7 .898 .873 

10 .899 .882 

Table C 2  

Estimated Generalizability Coefficients for Varying Numbers of Respondents by Type of Design 

Number of Students Items fixed design Items random design 

    5 .613 .589 

  10 .760 .731 

  15 .826 .794 

  27 .895 .861 

  30 .905 .870 

  50 .941 .904 

100 .969 .932 
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Table C 3  

Estimated Generalizability Coefficients for Various Conditions by Type of Design 

Fixed item design Random item design 

Number of items 

Number of respondents Number of respondents 

5 10 15 27 30 50 100 5 10 15 27 30 50 100 

  1 .547 .707 .784 .867 .879 .924 .960 .456 .589 .653 .723 .732 .770 .800 

  3 .599 .749 .818 .890 .900 .937 .968 .562 .703 .767 .834 .843 .879 .907 

  5 .613 .760 .826 .895 .905 .941 .969 .589 .731 .794 .861 .870 .904 .932 

  7 .619 .764 .830 .898 .907 .942 .970 .602 .743 .807 .873 .882 .916 .943 

10 .624 .768 .832 .899 .909 .943 .971 .611 .753 .816 .882 .891 .925 .952 



108 

APPENDIX D:  

Simulation Tables 

Table D 1  

Coverage Properties of the 95% Confidence Interval of Different Sample Sizes (True Mean = 2.9) 

Logit Resampling BCA Bayesboot Z 
n SD CP CE CP CE CP CE CP CE CP CE 

   5 0.050 0.945 0.005 0.828 0.122 0.836 0.114 0.801 0.149 0.896 0.054 
   5 0.100 0.948 0.002 0.824 0.126 0.836 0.114 0.805 0.145 0.890 0.060 
   5 0.200 0.955 0.005 0.848 0.102 0.855 0.095 0.828 0.122 0.890 0.060 
 10 0.050 0.948 0.002 0.888 0.062 0.884 0.066 0.870 0.080 0.931 0.019 
 10 0.100 0.951 0.001 0.890 0.060 0.890 0.060 0.874 0.076 0.929 0.021 
 10 0.200 0.955 0.005 0.914 0.036 0.908 0.042 0.901 0.049 0.937 0.013 
 20 0.050 0.942 0.008 0.909 0.041 0.910 0.040 0.900 0.050 0.955 0.005 
 20 0.100 0.947 0.003 0.922 0.028 0.920 0.030 0.914 0.036 0.943 0.007 
 20 0.200 0.945 0.005 0.910 0.040 0.917 0.033 0.915 0.035 0.939 0.011 
 50 0.050 0.945 0.005 0.933 0.017 0.924 0.026 0.921 0.029 0.956 0.006 
 50 0.100 0.947 0.003 0.936 0.014 0.925 0.025 0.935 0.015 0.946 0.004 
 50 0.200 0.945 0.005 0.934 0.016 0.935 0.015 0.931 0.019 0.957 0.007 
100 0.050 0.945 0.005 0.936 0.014 0.919 0.031 0.925 0.025 0.958 0.008 
100 0.100 0.948 0.002 0.944 0.006 0.937 0.013 0.937 0.013 0.944 0.006 
100 0.200 0.950 0.000 0.946 0.004 0.938 0.012 0.943 0.007 0.943 0.007 

Note. SD = standard deviation; CP = coverage probability; CE = coverage error. 
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Table D 2  

Coverage Properties of the 95% Confidence Interval of Different Sample Sizes (True Mean = 3.0) 

  Logit  Resampling  BCA  Bayesboot  Z 
n SD CP CE  CP CE  CP CE  CP CE  CP CE 

   5 0.050 0.947 0.003  0.823 0.127  0.831 0.119  0.796 0.154  0.886 0.064 
   5 0.100 0.944 0.006  0.828 0.122  0.840 0.110  0.808 0.142  0.893 0.057 
   5 0.200 0.947 0.003  0.831 0.119  0.844 0.106  0.805 0.145  0.894 0.056 
 10 0.050 0.942 0.008  0.885 0.065  0.882 0.068  0.868 0.082  0.940 0.010 
 10 0.100 0.947 0.003  0.896 0.054  0.893 0.057  0.885 0.065  0.921 0.029 
 10 0.200 0.957 0.007  0.893 0.057  0.890 0.060  0.884 0.066  0.937 0.013 
 20 0.050 0.944 0.006  0.905 0.045  0.898 0.052  0.892 0.058  0.956 0.006 
 20 0.100 0.944 0.006  0.917 0.033  0.916 0.034  0.906 0.044  0.944 0.006 
 20 0.200 0.938 0.012  0.908 0.042  0.914 0.036  0.903 0.047  0.946 0.004 
 50 0.050 0.947 0.003  0.934 0.016  0.930 0.020  0.928 0.022  0.958 0.008 
 50 0.100 0.943 0.007  0.936 0.014  0.925 0.025  0.927 0.023  0.955 0.005 
 50 0.200 0.944 0.006  0.931 0.019  0.934 0.016  0.935 0.015  0.962 0.012 
100 0.050 0.950 0.000  0.940 0.010  0.915 0.035  0.928 0.022  0.964 0.014 
100 0.100 0.950 0.000  0.947 0.003  0.941 0.009  0.943 0.007  0.945 0.005 
100 0.200 0.954 0.000  0.945 0.005  0.944 0.006  0.946 0.004  0.939 0.011 

Note. SD = standard deviation; CP = coverage probability; CE = coverage error. 
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Table D 3  

Coverage Properties of the 95% Confidence Interval of Different Sample Sizes (True Mean = 3.1) 

  Logit  Resampling  BCA  Bayesboot  Z 
n SD CP CE  CP CE  CP CE  CP CE  CP CE 

   5 0.050 0.945 0.005  0.826 0.124  0.833 0.117  0.801 0.149  0.896 0.054 
   5 0.100 0.948 0.002  0.823 0.127  0.842 0.108  0.805 0.145  0.890 0.060 
   5 0.200 0.955 0.005  0.848 0.102  0.858 0.092  0.828 0.122  0.890 0.060 
 10 0.050 0.948 0.002  0.889 0.061  0.885 0.065  0.870 0.080  0.931 0.019 
 10 0.100 0.951 0.001  0.891 0.059  0.891 0.059  0.874 0.076  0.929 0.021 
 10 0.200 0.955 0.005  0.916 0.034  0.907 0.043  0.901 0.049  0.937 0.013 
 20 0.050 0.942 0.008  0.910 0.040  0.910 0.040  0.900 0.050  0.955 0.005 
 20 0.100 0.947 0.003  0.923 0.027  0.920 0.030  0.914 0.036  0.943 0.007 
 20 0.200 0.945 0.005  0.913 0.037  0.916 0.034  0.914 0.036  0.939 0.011 
 50 0.050 0.945 0.005  0.935 0.015  0.924 0.026  0.921 0.029  0.956 0.006 
 50 0.100 0.947 0.003  0.938 0.012  0.925 0.025  0.935 0.015  0.946 0.004 
 50 0.200 0.945 0.005  0.935 0.015  0.935 0.015  0.931 0.019  0.957 0.007 
100 0.050 0.945 0.005  0.935 0.015  0.919 0.031  0.925 0.025  0.958 0.008 
100 0.100 0.948 0.002  0.945 0.005  0.937 0.013  0.937 0.013  0.944 0.006 
100 0.200 0.950 0.000  0.946 0.004  0.938 0.012  0.943 0.007  0.943 0.007 

Note. SD = standard deviation; CP = coverage probability; CE = coverage error. 
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Table D 4  

Lower, Upper, and Width of the Confidence Interval of Different Sample Sizes (True Mean = 2.9) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD L U W   L U W   L U W   L U W   L U W 
5 0.05 2.841 2.957 0.117  2.864 2.934 0.070  2.860 2.935 0.076  2.866 2.932 0.066  2.858 2.941 0.083 
5 0.10 2.781 3.014 0.234  2.827 2.967 0.140  2.819 2.971 0.152  2.831 2.964 0.132  2.816 2.981 0.165 
5 0.20 2.659 3.133 0.474  2.753 3.037 0.284  2.736 3.044 0.308  2.762 3.030 0.268  2.730 3.062 0.332 
10 0.05 2.865 2.934 0.069  2.872 2.928 0.056  2.871 2.929 0.058  2.873 2.927 0.054  2.870 2.930 0.061 
10 0.10 2.830 2.969 0.139  2.843 2.956 0.113  2.842 2.958 0.116  2.845 2.954 0.109  2.839 2.960 0.121 
10 0.20 2.758 3.040 0.282  2.785 3.012 0.227  2.784 3.016 0.232  2.790 3.009 0.219  2.777 3.021 0.244 
20 0.05 2.877 2.923 0.046  2.879 2.921 0.042  2.879 2.921 0.042  2.879 2.920 0.041  2.878 2.921 0.043 
20 0.10 2.853 2.946 0.093  2.858 2.941 0.084  2.858 2.942 0.084  2.858 2.941 0.082  2.856 2.943 0.087 
20 0.20 2.806 2.993 0.187  2.815 2.983 0.168  2.815 2.984 0.169  2.817 2.982 0.166  2.811 2.985 0.174 
50 0.05 2.886 2.914 0.028  2.886 2.913 0.027  2.886 2.914 0.027  2.886 2.914 0.027  2.886 2.914 0.028 
50 0.10 2.871 2.928 0.057  2.872 2.927 0.054  2.872 2.927 0.055  2.872 2.927 0.055  2.872 2.927 0.055 
50 0.20 2.842 2.957 0.115  2.845 2.954 0.109  2.844 2.955 0.110  2.845 2.955 0.110  2.844 2.955 0.111 
100 0.05 2.890 2.910 0.020  2.890 2.910 0.019  2.890 2.910 0.019  2.890 2.910 0.020  2.890 2.910 0.020 
100 0.10 2.880 2.920 0.040  2.881 2.920 0.039  2.881 2.920 0.039  2.881 2.920 0.039  2.880 2.919 0.039 
100 0.20 2.860 2.941 0.080   2.862 2.939 0.078   2.862 2.940 0.078   2.861 2.940 0.079   2.860 2.939 0.079 

Note. SD = standard deviation; L = lower limit; U = upper limit; W = average width. 
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Table D 5  

Lower, Upper, and Width of the Confidence Interval of Different Sample Sizes (True Mean = 3.0) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD L U W   L U W   L U W   L U W   L U W 
5 0.05 2.940 3.057 0.116  2.964 3.034 0.070  2.960 3.035 0.076  2.966 3.032 0.066  2.958 3.040 0.083 
5 0.10 2.881 3.114 0.233  2.928 3.067 0.140  2.919 3.071 0.152  2.932 3.064 0.132  2.915 3.081 0.165 
5 0.20 2.759 3.230 0.471  2.853 3.136 0.282  2.836 3.142 0.306  2.862 3.128 0.266  2.831 3.162 0.332 
10 0.05 2.965 3.034 0.069  2.972 3.028 0.056  2.971 3.029 0.058  2.973 3.027 0.054  2.970 3.030 0.061 
10 0.10 2.930 3.069 0.139  2.943 3.056 0.113  2.942 3.058 0.115  2.945 3.054 0.109  2.939 3.060 0.121 
10 0.20 2.858 3.140 0.281  2.885 3.112 0.227  2.883 3.116 0.232  2.890 3.109 0.219  2.878 3.120 0.243 
20 0.05 2.977 3.023 0.046  2.979 3.021 0.042  2.979 3.021 0.042  2.979 3.020 0.041  2.978 3.021 0.043 
20 0.10 2.953 3.046 0.093  2.958 3.041 0.083  2.958 3.042 0.084  2.959 3.041 0.083  2.956 3.043 0.087 
20 0.20 2.906 3.093 0.187  2.915 3.083 0.168  2.915 3.084 0.169  2.917 3.082 0.166  2.911 3.085 0.174 
50 0.05 2.986 3.014 0.028  2.986 3.013 0.027  2.986 3.014 0.027  2.986 3.014 0.027  2.986 3.014 0.028 
50 0.10 2.971 3.028 0.057  2.973 3.027 0.054  2.972 3.027 0.055  2.973 3.027 0.055  2.972 3.027 0.055 
50 0.20 2.942 3.057 0.115  2.945 3.054 0.109  2.945 3.055 0.110  2.945 3.055 0.110  2.944 3.054 0.111 
100 0.05 2.990 3.010 0.020  2.990 3.010 0.019  2.990 3.010 0.019  2.990 3.010 0.020  2.990 3.010 0.020 
100 0.10 2.980 3.020 0.040  2.981 3.020 0.039  2.981 3.020 0.039  2.981 3.020 0.039  2.980 3.019 0.039 
100 0.20 2.961 3.041 0.080   2.962 3.040 0.078   2.962 3.040 0.078   2.961 3.040 0.079   2.960 3.039 0.079 

Note. SD = standard deviation; L = lower limit; U = upper limit; W = average width. 

 

 



113 
 

 
 

Table D 6  

Lower, Upper, and Width of the Confidence Interval of Different Sample Sizes (True Mean = 3.1) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD L U W   L U W   L U W   L U W   L U W 
5 0.05 3.043 3.159 0.117  3.066 3.136 0.070  3.061 3.137 0.076  3.068 3.134 0.066  3.059 3.142 0.083 
5 0.10 2.986 3.219 0.234  3.032 3.172 0.140  3.023 3.175 0.152  3.036 3.169 0.132  3.019 3.184 0.165 
5 0.20 2.868 3.341 0.473  2.962 3.246 0.284  2.942 3.250 0.308  2.970 3.238 0.268  2.938 3.270 0.332 

10 0.05 3.066 3.135 0.069  3.072 3.128 0.056  3.071 3.129 0.058  3.073 3.127 0.054  3.070 3.130 0.061 
10 0.10 3.031 3.170 0.139  3.044 3.157 0.113  3.042 3.158 0.116  3.046 3.155 0.109  3.040 3.161 0.121 
10 0.20 2.960 3.242 0.282  2.987 3.214 0.227  2.984 3.216 0.232  2.991 3.210 0.219  2.979 3.223 0.243 
20 0.05 3.077 3.123 0.046  3.079 3.121 0.042  3.079 3.121 0.042  3.080 3.121 0.041  3.079 3.122 0.043 
20 0.10 3.054 3.147 0.093  3.059 3.142 0.083  3.058 3.142 0.084  3.059 3.142 0.082  3.057 3.144 0.087 
20 0.20 3.007 3.194 0.187  3.017 3.184 0.168  3.016 3.185 0.169  3.018 3.183 0.165  3.015 3.189 0.174 
50 0.05 3.086 3.114 0.028  3.086 3.114 0.027  3.086 3.114 0.027  3.086 3.114 0.027  3.086 3.114 0.028 
50 0.10 3.072 3.129 0.057  3.073 3.127 0.054  3.073 3.128 0.055  3.073 3.127 0.055  3.073 3.128 0.055 
50 0.20 3.043 3.158 0.115  3.045 3.155 0.109  3.045 3.156 0.110  3.046 3.155 0.110  3.045 3.156 0.111 

100 0.05 3.090 3.110 0.020  3.090 3.109 0.019  3.090 3.110 0.019  3.090 3.110 0.020  3.090 3.110 0.020 
100 0.10 3.080 3.120 0.040  3.080 3.119 0.039  3.080 3.119 0.039  3.080 3.119 0.039  3.081 3.120 0.039 
100 0.20 3.059 3.139 0.080   3.060 3.138 0.078   3.060 3.138 0.078   3.060 3.139 0.079   3.061 3.140 0.079 

Note. SD = standard deviation; L = lower limit; U = upper limit; W = average width. 
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Table D 7  

Lower and Upper Error of the Confidence Interval of Different Sample Sizes (True Mean = 2.9) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD LE UE   LE UE   LE UE   LE UE   LE UE 

   5 0.050 0.021 0.034  0.076 0.096  0.056 0.094  0.084 0.106  0.051 0.053 
   5 0.100 0.024 0.028  0.077 0.099  0.069 0.090  0.081 0.107  0.055 0.055 
   5 0.200 0.017 0.028  0.065 0.087  0.058 0.085  0.078 0.089  0.053 0.057 
 10 0.050 0.025 0.027  0.058 0.054  0.054 0.048  0.060 0.057  0.034 0.035 
 10 0.100 0.023 0.026  0.056 0.054  0.053 0.048  0.060 0.060  0.035 0.036 
 10 0.200 0.021 0.024  0.041 0.045  0.046 0.043  0.050 0.048  0.031 0.032 
 20 0.050 0.027 0.031  0.040 0.051  0.038 0.042  0.038 0.046  0.020 0.025 
 20 0.100 0.023 0.030  0.037 0.041  0.034 0.040  0.032 0.042  0.025 0.032 
 20 0.200 0.026 0.029  0.040 0.050  0.039 0.043  0.039 0.044  0.030 0.031 
 50 0.050 0.027 0.028  0.032 0.035  0.027 0.027  0.027 0.029  0.024 0.020 
 50 0.100 0.022 0.031  0.025 0.039  0.026 0.036  0.026 0.034  0.020 0.034 
 50 0.200 0.024 0.031  0.031 0.035  0.028 0.032  0.031 0.033  0.023 0.020 
100 0.050 0.027 0.028  0.032 0.032  0.028 0.026  0.020 0.026  0.027 0.015 
100 0.100 0.028 0.024  0.030 0.026  0.031 0.021  0.027 0.019  0.032 0.024 
100 0.200 0.023 0.027   0.026 0.028   0.026 0.029   0.024 0.027   0.029 0.028 

Note. SD = standard deviation; LE = lower coverage error; UE = upper coverage error. 
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Table D 8  

Lower and Upper Error of the Confidence Interval of Different Sample Sizes (True Mean = 3.0) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD LE UE   LE UE   LE UE   LE UE   LE UE 

   5 0.050 0.021 0.032  0.077 0.100  0.059 0.093  0.088 0.102  0.058 0.056 
   5 0.100 0.025 0.031  0.075 0.097  0.062 0.090  0.087 0.104  0.056 0.051 
   5 0.200 0.020 0.033  0.073 0.096  0.061 0.092  0.082 0.106  0.059 0.047 
 10 0.050 0.024 0.034  0.054 0.061  0.053 0.053  0.059 0.060  0.032 0.028 
 10 0.100 0.029 0.024  0.056 0.048  0.058 0.040  0.062 0.047  0.044 0.035 
 10 0.200 0.022 0.021  0.055 0.052  0.058 0.052  0.058 0.055  0.034 0.029 
 20 0.050 0.022 0.034  0.047 0.048  0.037 0.045  0.042 0.050  0.022 0.022 
 20 0.100 0.024 0.032  0.035 0.048  0.033 0.045  0.035 0.048  0.027 0.029 
 20 0.200 0.027 0.035  0.043 0.049  0.038 0.046  0.046 0.050  0.030 0.024 
 50 0.050 0.025 0.028  0.032 0.034  0.024 0.024  0.028 0.031  0.021 0.021 
 50 0.100 0.027 0.030  0.028 0.036  0.030 0.032  0.029 0.035  0.019 0.026 
 50 0.200 0.025 0.031  0.031 0.038  0.029 0.034  0.027 0.032  0.020 0.018 
100 0.050 0.027 0.023  0.031 0.029  0.025 0.021  0.024 0.020  0.024 0.012 
100 0.100 0.029 0.021  0.029 0.024  0.030 0.019  0.026 0.019  0.031 0.024 
100 0.200 0.025 0.021   0.029 0.026   0.027 0.024   0.026 0.023   0.031 0.030 

Note. SD = standard deviation; LE = lower coverage error; UE = upper coverage error. 
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Table D 9  

Lower and Upper Error of the Confidence Interval of Different Sample Sizes (True Mean = 3.1) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD LE UE   LE UE   LE UE   LE UE   LE UE 

   5 0.050 0.034 0.021  0.096 0.078  0.082 0.073  0.106 0.084  0.053 0.051 
   5 0.100 0.028 0.024  0.098 0.079  0.078 0.076  0.107 0.081  0.055 0.055 
   5 0.200 0.028 0.017  0.087 0.065  0.072 0.067  0.089 0.078  0.057 0.053 
 10 0.050 0.027 0.025  0.053 0.058  0.048 0.054  0.057 0.060  0.035 0.034 
 10 0.100 0.026 0.023  0.053 0.056  0.048 0.053  0.060 0.060  0.036 0.035 
 10 0.200 0.024 0.021  0.042 0.042  0.043 0.046  0.048 0.050  0.032 0.031 
 20 0.050 0.031 0.027  0.049 0.041  0.042 0.038  0.046 0.038  0.025 0.020 
 20 0.100 0.030 0.023  0.040 0.037  0.040 0.034  0.042 0.032  0.032 0.025 
 20 0.200 0.029 0.026  0.047 0.040  0.043 0.039  0.044 0.039  0.031 0.030 
 50 0.050 0.028 0.027  0.032 0.033  0.027 0.027  0.029 0.027  0.020 0.024 
 50 0.100 0.031 0.022  0.037 0.025  0.036 0.026  0.034 0.026  0.034 0.020 
 50 0.200 0.031 0.024  0.034 0.031  0.032 0.028  0.033 0.031  0.020 0.023 
100 0.050 0.028 0.027  0.032 0.033  0.026 0.028  0.026 0.020  0.015 0.027 
100 0.100 0.024 0.028  0.025 0.030  0.021 0.031  0.019 0.027  0.024 0.032 
100 0.200 0.027 0.023   0.026 0.028   0.029 0.026   0.027 0.024   0.028 0.029 

Note. SD = standard deviation; LE = lower coverage error; UE = upper coverage error. 
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Table D 10  

Coverage Properties of the 95% Confidence Interval of Different Sample Sizes (True Mean = 1.5) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD CP CE   CP CE   CP CE   CP CE   CP CE 

   5 0.050 0.946 0.004  0.818 0.132  0.828 0.122  0.798 0.152  0.881 0.069 
   5 0.100 0.944 0.006  0.823 0.127  0.839 0.111  0.800 0.150  0.897 0.053 
   5 0.200 0.939 0.011  0.808 0.142  0.822 0.128  0.791 0.159  0.873 0.077 
 10 0.050 0.947 0.003  0.891 0.059  0.887 0.063  0.874 0.076  0.910 0.040 
 10 0.100 0.948 0.002  0.894 0.056  0.894 0.056  0.882 0.068  0.920 0.030 
 10 0.200 0.951 0.001  0.898 0.052  0.897 0.053  0.885 0.065  0.904 0.046 
 20 0.050 0.939 0.011  0.906 0.044  0.905 0.045  0.891 0.059  0.938 0.012 
 20 0.100 0.946 0.004  0.911 0.039  0.912 0.038  0.903 0.047  0.938 0.012 
 20 0.200 0.938 0.012  0.903 0.047  0.912 0.038  0.904 0.046  0.936 0.014 
 50 0.050 0.939 0.011  0.922 0.028  0.907 0.043  0.911 0.039  0.945 0.005 
 50 0.100 0.960 0.010  0.949 0.001  0.947 0.003  0.944 0.006  0.943 0.007 
 50 0.200 0.948 0.002  0.928 0.022  0.930 0.020  0.925 0.025  0.944 0.006 
100 0.050 0.954 0.004  0.950 0.000  0.937 0.013  0.940 0.010  0.954 0.004 
100 0.100 0.946 0.004  0.942 0.008  0.931 0.019  0.939 0.011  0.948 0.002 
100 0.200 0.954 0.004   0.940 0.010   0.944 0.006   0.943 0.007   0.954 0.004 

Note. SD = standard deviation; CP = coverage probability; CE = coverage error. 
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Table D 11  

Coverage Properties of the 95% Confidence Interval of Different Sample Sizes (True Mean = 1.8) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD CP CE   CP CE   CP CE   CP CE   CP CE 

   5 0.050 0.943 0.007  0.819 0.131  0.824 0.126  0.796 0.154  0.885 0.065 
   5 0.100 0.950 0.000  0.826 0.124  0.844 0.106  0.815 0.135  0.887 0.063 
   5 0.200 0.931 0.019  0.814 0.136  0.826 0.124  0.784 0.166  0.897 0.053 
 10 0.050 0.946 0.004  0.883 0.067  0.883 0.067  0.870 0.080  0.929 0.021 
 10 0.100 0.954 0.004  0.902 0.048  0.898 0.052  0.892 0.058  0.924 0.026 
 10 0.200 0.950 0.000  0.889 0.061  0.886 0.064  0.878 0.072  0.916 0.034 
 20 0.050 0.940 0.010  0.907 0.043  0.894 0.056  0.887 0.063  0.927 0.023 
 20 0.100 0.937 0.013  0.900 0.050  0.905 0.045  0.897 0.053  0.932 0.018 
 20 0.200 0.942 0.008  0.909 0.041  0.911 0.039  0.902 0.048  0.930 0.020 
 50 0.050 0.944 0.006  0.932 0.018  0.926 0.024  0.924 0.026  0.945 0.005 
 50 0.100 0.948 0.002  0.937 0.013  0.929 0.021  0.931 0.019  0.948 0.002 
 50 0.200 0.947 0.003  0.935 0.015  0.918 0.032  0.928 0.022  0.951 0.001 
100 0.050 0.948 0.002  0.941 0.009  0.924 0.026  0.928 0.022  0.955 0.005 
100 0.100 0.954 0.004  0.944 0.006  0.938 0.012  0.945 0.005  0.951 0.001 
100 0.200 0.941 0.009   0.934 0.016   0.930 0.020   0.934 0.016   0.945 0.005 

Note. SD = standard deviation; CP = coverage probability; CE = coverage error. 
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Table D 12  

Coverage Properties of the 95% Confidence Interval of Different Sample Sizes (True Mean = 2.0) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD CP CE   CP CE   CP CE   CP CE   CP CE 

   5 0.050 0.956 0.006  0.829 0.121  0.840 0.110  0.802 0.148  0.900 0.050 
   5 0.100 0.945 0.005  0.823 0.127  0.836 0.114  0.795 0.155  0.884 0.066 
   5 0.200 0.949 0.001  0.830 0.120  0.844 0.106  0.807 0.143  0.891 0.059 
 10 0.050 0.950 0.000  0.898 0.052  0.896 0.054  0.881 0.069  0.928 0.022 
 10 0.100 0.948 0.002  0.911 0.039  0.908 0.042  0.893 0.057  0.916 0.034 
 10 0.200 0.943 0.007  0.895 0.055  0.903 0.047  0.887 0.063  0.921 0.029 
 20 0.050 0.943 0.007  0.913 0.037  0.906 0.044  0.896 0.054  0.932 0.018 
 20 0.100 0.939 0.011  0.906 0.044  0.907 0.043  0.903 0.047  0.936 0.014 
 20 0.200 0.940 0.010  0.919 0.031  0.924 0.026  0.917 0.033  0.931 0.019 
 50 0.050 0.939 0.011  0.928 0.022  0.919 0.031  0.925 0.025  0.956 0.006 
 50 0.100 0.947 0.003  0.936 0.014  0.941 0.009  0.931 0.019  0.945 0.005 
 50 0.200 0.943 0.007  0.922 0.028  0.933 0.017  0.925 0.025  0.946 0.004 
100 0.050 0.943 0.007  0.935 0.015  0.920 0.030  0.926 0.024  0.951 0.001 
100 0.100 0.950 0.000  0.943 0.007  0.936 0.014  0.943 0.007  0.933 0.017 
100 0.200 0.947 0.003   0.932 0.018   0.931 0.019   0.934 0.016   0.937 0.013 

Note. SD = standard deviation; CP = coverage probability; CE = coverage error. 
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Table D 13  

Lower, Upper, and Width of the Confidence Interval of Different Sample Sizes (True Mean = 1.5) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD L U W   L U W   L U W   L U W   L U W 
5 0.05 1.443 1.560 0.117  1.464 1.534 0.070  1.460 1.536 0.076  1.466 1.532 0.066  1.458 1.541 0.082 
5 0.10 1.389 1.626 0.238  1.427 1.568 0.141  1.420 1.573 0.152  1.432 1.565 0.133  1.415 1.583 0.168 
5 0.20 1.283 1.802 0.520  1.348 1.646 0.298  1.338 1.662 0.323  1.359 1.640 0.281  1.320 1.676 0.356 
10 0.05 1.466 1.535 0.070  1.472 1.528 0.056  1.472 1.529 0.058  1.473 1.527 0.054  1.469 1.530 0.061 
10 0.10 1.432 1.573 0.142  1.443 1.557 0.114  1.444 1.561 0.117  1.446 1.556 0.110  1.438 1.561 0.123 
10 0.20 1.360 1.667 0.307  1.380 1.622 0.242  1.385 1.636 0.251  1.387 1.621 0.234  1.369 1.631 0.261 
20 0.05 1.477 1.523 0.046  1.479 1.521 0.042  1.479 1.521 0.042  1.479 1.521 0.041  1.478 1.521 0.044 
20 0.10 1.454 1.548 0.094  1.457 1.542 0.084  1.458 1.544 0.086  1.459 1.542 0.083  1.455 1.543 0.088 
20 0.20 1.403 1.607 0.204  1.410 1.590 0.180  1.415 1.599 0.184  1.414 1.592 0.178  1.406 1.594 0.188 
50 0.05 1.486 1.514 0.029  1.486 1.514 0.027  1.486 1.514 0.028  1.486 1.514 0.027  1.486 1.514 0.028 
50 0.10 1.471 1.530 0.058  1.472 1.528 0.055  1.473 1.529 0.056  1.473 1.528 0.056  1.472 1.528 0.056 
50 0.20 1.440 1.566 0.126  1.442 1.560 0.118  1.444 1.564 0.120  1.443 1.562 0.118  1.440 1.560 0.120 
100 0.05 1.490 1.510 0.020  1.491 1.510 0.019  1.491 1.510 0.020  1.490 1.510 0.020  1.490 1.510 0.020 
100 0.10 1.480 1.521 0.041  1.481 1.520 0.039  1.481 1.521 0.040  1.481 1.521 0.040  1.480 1.520 0.040 
100 0.20 1.458 1.546 0.088   1.459 1.543 0.084   1.460 1.546 0.085   1.459 1.545 0.086   1.458 1.543 0.085 

Note. SD = standard deviation; L = lower limit; U = upper limit; W = average width. 
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Table D 14  

Lower, Upper, and Width of the Confidence Interval of Different Sample Sizes (True Mean = 1.8) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD L U W   L U W   L U W   L U W   L U W 
5 0.05 1.742 1.858 0.117  1.764 1.834 0.070  1.760 1.835 0.076  1.766 1.832 0.066  1.758 1.841 0.083 
5 0.10 1.686 1.920 0.234  1.728 1.868 0.140  1.720 1.872 0.152  1.732 1.864 0.132  1.716 1.881 0.165 
5 0.20 1.578 2.059 0.481  1.653 1.937 0.284  1.640 1.946 0.306  1.662 1.930 0.268  1.628 1.968 0.340 
10 0.05 1.765 1.835 0.070  1.772 1.828 0.056  1.771 1.829 0.058  1.773 1.827 0.054  1.769 1.830 0.061 
10 0.10 1.731 1.872 0.140  1.743 1.857 0.113  1.743 1.859 0.116  1.746 1.855 0.109  1.739 1.861 0.122 
10 0.20 1.662 1.951 0.289  1.684 1.915 0.231  1.686 1.923 0.238  1.690 1.913 0.223  1.675 1.924 0.248 
20 0.05 1.777 1.823 0.046  1.779 1.821 0.042  1.779 1.821 0.042  1.779 1.820 0.041  1.778 1.821 0.043 
20 0.10 1.754 1.847 0.093  1.758 1.842 0.084  1.758 1.843 0.085  1.759 1.841 0.083  1.756 1.843 0.087 
20 0.20 1.705 1.898 0.193  1.713 1.885 0.171  1.715 1.889 0.174  1.716 1.885 0.169  1.710 1.888 0.178 
50 0.05 1.786 1.814 0.029  1.786 1.814 0.027  1.786 1.814 0.027  1.786 1.814 0.027  1.786 1.814 0.028 
50 0.10 1.772 1.829 0.058  1.773 1.828 0.055  1.773 1.828 0.055  1.773 1.828 0.055  1.772 1.828 0.055 
50 0.20 1.742 1.861 0.119  1.744 1.856 0.112  1.745 1.858 0.113  1.745 1.857 0.113  1.743 1.856 0.113 
100 0.05 1.790 1.810 0.020  1.791 1.810 0.019  1.790 1.810 0.020  1.790 1.810 0.020  1.790 1.810 0.020 
100 0.10 1.781 1.821 0.040  1.781 1.820 0.039  1.781 1.820 0.039  1.781 1.820 0.040  1.780 1.820 0.039 
100 0.20 1.760 1.843 0.083   1.761 1.841 0.080   1.762 1.842 0.080   1.761 1.842 0.081   1.760 1.840 0.081 

Note. SD = standard deviation; L = lower limit; U = upper limit; W = average width. 
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Table D 15  

Lower, Upper, and Width of the Confidence Interval of Different Sample Sizes (True Mean = 2.0) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD L U W   L U W   L U W   L U W   L U W 
5 0.05 1.941 2.058 0.117  1.964 2.034 0.070  1.960 2.035 0.076  1.966 2.032 0.066  1.958 2.041 0.083 
5 0.10 1.885 2.118 0.234  1.928 2.067 0.140  1.920 2.071 0.152  1.932 2.064 0.132  1.916 2.081 0.165 
5 0.20 1.773 2.251 0.477  1.853 2.136 0.284  1.838 2.145 0.307  1.862 2.130 0.268  1.829 2.168 0.339 
10 0.05 1.965 2.035 0.070  1.971 2.028 0.056  1.971 2.029 0.058  1.973 2.027 0.054  1.970 2.030 0.061 
10 0.10 1.931 2.071 0.140  1.943 2.056 0.113  1.943 2.059 0.116  1.945 2.055 0.110  1.939 2.060 0.121 
10 0.20 1.863 2.147 0.284  1.886 2.114 0.228  1.887 2.121 0.234  1.891 2.112 0.220  1.876 2.123 0.247 
20 0.05 1.977 2.023 0.046  1.979 2.021 0.042  1.979 2.021 0.042  1.979 2.020 0.041  1.978 2.021 0.043 
20 0.10 1.954 2.047 0.093  1.958 2.041 0.083  1.958 2.043 0.085  1.959 2.041 0.083  1.956 2.043 0.087 
20 0.20 1.907 2.097 0.190  1.915 2.085 0.170  1.916 2.088 0.172  1.917 2.085 0.168  1.911 2.088 0.177 
50 0.05 1.986 2.014 0.029  1.986 2.014 0.027  1.986 2.014 0.028  1.986 2.014 0.027  1.986 2.014 0.028 
50 0.10 1.971 2.029 0.057  1.973 2.027 0.055  1.973 2.028 0.055  1.973 2.028 0.055  1.972 2.027 0.055 
50 0.20 1.942 2.060 0.118  1.945 2.056 0.111  1.946 2.058 0.112  1.945 2.057 0.111  1.944 2.056 0.112 
100 0.05 1.990 2.010 0.020  1.990 2.010 0.019  1.991 2.010 0.019  1.990 2.010 0.020  1.990 2.010 0.020 
100 0.10 1.981 2.021 0.040  1.981 2.020 0.039  1.981 2.020 0.039  1.981 2.020 0.039  1.980 2.020 0.039 
100 0.20 1.961 2.043 0.082   1.962 2.041 0.079   1.962 2.042 0.079   1.962 2.042 0.080   1.960 2.040 0.080 

Note. SD = standard deviation; L = lower limit; U = upper limit; W = average width. 
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Table D 16  

Lower and Upper Error of the Confidence Interval of Different Sample Sizes (True Mean = 1.5) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD LE UE   LE UE   LE UE   LE UE   LE UE 

   5 0.050 0.020 0.034  0.075 0.107  0.061 0.096  0.081 0.106  0.056 0.063 
   5 0.100 0.016 0.040  0.065 0.112  0.051 0.108  0.077 0.118  0.046 0.057 
   5 0.200 0.013 0.048  0.048 0.144  0.041 0.133  0.054 0.151  0.030 0.097 
 10 0.050 0.027 0.026  0.049 0.060  0.049 0.052  0.053 0.061  0.044 0.046 
 10 0.100 0.022 0.030  0.038 0.068  0.043 0.061  0.045 0.068  0.041 0.039 
 10 0.200 0.013 0.036  0.029 0.073  0.035 0.066  0.034 0.078  0.026 0.070 
 20 0.050 0.027 0.034  0.039 0.055  0.034 0.050  0.039 0.051  0.026 0.036 
 20 0.100 0.023 0.031  0.037 0.052  0.041 0.040  0.041 0.049  0.023 0.039 
 20 0.200 0.019 0.043  0.027 0.070  0.033 0.053  0.029 0.064  0.023 0.041 
 50 0.050 0.032 0.029  0.036 0.042  0.035 0.028  0.033 0.031  0.030 0.025 
 50 0.100 0.014 0.026  0.019 0.032  0.019 0.027  0.018 0.027  0.024 0.033 
 50 0.200 0.021 0.031  0.027 0.045  0.030 0.036  0.027 0.041  0.021 0.035 
100 0.050 0.025 0.021  0.026 0.024  0.022 0.018  0.023 0.017  0.027 0.019 
100 0.100 0.027 0.027  0.030 0.028  0.031 0.025  0.027 0.024  0.028 0.024 
100 0.200 0.019 0.027   0.023 0.037   0.025 0.024   0.025 0.027   0.023 0.023 

Note. SD = standard deviation; LE = lower coverage error; UE = upper coverage error. 
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Table D 17  

Lower and Upper Error of the Confidence Interval of Different Sample Sizes (True Mean = 1.8) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD LE UE   LE UE   LE UE   LE UE   LE UE 

   5 0.050 0.021 0.036  0.073 0.108  0.062 0.101  0.081 0.110  0.057 0.058 
   5 0.100 0.014 0.036  0.070 0.104  0.057 0.093  0.077 0.106  0.048 0.065 
   5 0.200 0.020 0.049  0.067 0.119  0.058 0.113  0.085 0.129  0.037 0.066 
 10 0.050 0.025 0.029  0.057 0.060  0.054 0.055  0.053 0.063  0.037 0.034 
 10 0.100 0.020 0.026  0.041 0.057  0.041 0.052  0.044 0.059  0.040 0.036 
 10 0.200 0.022 0.028  0.044 0.067  0.053 0.058  0.049 0.072  0.035 0.049 
 20 0.050 0.029 0.031  0.044 0.049  0.043 0.045  0.043 0.051  0.028 0.045 
 20 0.100 0.028 0.035  0.043 0.057  0.044 0.046  0.042 0.047  0.029 0.039 
 20 0.200 0.031 0.027  0.044 0.047  0.046 0.038  0.047 0.045  0.031 0.039 
 50 0.050 0.030 0.026  0.034 0.034  0.030 0.026  0.032 0.024  0.029 0.026 
 50 0.100 0.026 0.026  0.028 0.035  0.030 0.029  0.028 0.029  0.023 0.029 
 50 0.200 0.020 0.033  0.023 0.042  0.030 0.043  0.025 0.043  0.024 0.025 
100 0.050 0.030 0.022  0.032 0.027  0.027 0.025  0.026 0.020  0.027 0.018 
100 0.100 0.028 0.018  0.033 0.023  0.031 0.016  0.030 0.016  0.029 0.020 
100 0.200 0.023 0.036   0.025 0.041   0.029 0.039   0.025 0.040   0.032 0.023 

Note. SD = standard deviation; LE = lower coverage error; UE = upper coverage error. 

 

 

 

 

 



125 
 

 
 

Table D 18  

Lower and Upper Error of the Confidence Interval of Different Sample Sizes (True Mean = 2.0) 

    Logit   Resampling   BCA   Bayesboot   Z 
n SD LE UE   LE UE   LE UE   LE UE   LE UE 

   5 0.050 0.014 0.030  0.071 0.100  0.054 0.092  0.079 0.106  0.047 0.053 
   5 0.100 0.023 0.032  0.069 0.108  0.058 0.102  0.076 0.120  0.050 0.066 
   5 0.200 0.014 0.037  0.060 0.110  0.051 0.103  0.072 0.119  0.039 0.070 
 10 0.050 0.026 0.024  0.051 0.051  0.051 0.041  0.057 0.048  0.038 0.034 
 10 0.100 0.022 0.030  0.041 0.048  0.042 0.044  0.043 0.055  0.042 0.042 
 10 0.200 0.024 0.033  0.047 0.058  0.048 0.049  0.050 0.060  0.039 0.040 
 20 0.050 0.029 0.028  0.043 0.044  0.036 0.037  0.042 0.042  0.028 0.040 
 20 0.100 0.028 0.033  0.041 0.053  0.041 0.048  0.036 0.051  0.030 0.034 
 20 0.200 0.030 0.030  0.037 0.044  0.038 0.036  0.036 0.042  0.030 0.039 
 50 0.050 0.027 0.034  0.035 0.037  0.029 0.030  0.028 0.033  0.022 0.022 
 50 0.100 0.030 0.023  0.038 0.026  0.035 0.022  0.034 0.023  0.025 0.030 
 50 0.200 0.029 0.028  0.038 0.040  0.032 0.032  0.035 0.038  0.018 0.036 
100 0.050 0.028 0.029  0.030 0.035  0.022 0.026  0.026 0.020  0.028 0.021 
100 0.100 0.028 0.022  0.031 0.026  0.030 0.021  0.028 0.018  0.039 0.028 
100 0.200 0.029 0.024   0.035 0.033   0.034 0.027   0.032 0.029   0.032 0.031 

Note. SD = standard deviation; LE = lower coverage error; UE = upper coverage error. 
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Table D 19  

Coverage Properties of the 95% Confidence Interval of Different Sample Sizes (True Mean = 4.2)  

  Logit  Resampling  Bca  Bayesboot  Z 
n SD CP CE  CP CE  CP CE  CP CE  CP CE 

   5 0.050 0.943 0.007  0.818 0.132  0.826 0.124  0.796 0.154  0.885 0.065 
   5 0.100 0.948 0.002  0.822 0.128  0.839 0.111  0.803 0.147  0.882 0.068 
   5 0.200 0.953 0.003  0.817 0.133  0.836 0.114  0.802 0.148  0.896 0.054 
 10 0.050 0.946 0.004  0.883 0.067  0.884 0.066  0.870 0.080  0.929 0.021 
 10 0.100 0.952 0.002  0.898 0.052  0.900 0.050  0.890 0.060  0.920 0.030 
 10 0.200 0.945 0.005  0.894 0.056  0.899 0.051  0.885 0.065  0.920 0.030 
 20 0.050 0.938 0.012  0.907 0.043  0.898 0.052  0.890 0.060  0.930 0.020 
 20 0.100 0.934 0.016  0.903 0.047  0.905 0.045  0.893 0.057  0.934 0.016 
 20 0.200 0.948 0.002  0.919 0.031  0.918 0.032  0.917 0.033  0.935 0.015 
 50 0.050 0.949 0.001  0.940 0.010  0.927 0.023  0.930 0.020  0.949 0.001 
 50 0.100 0.943 0.007  0.933 0.017  0.928 0.022  0.928 0.022  0.949 0.001 
 50 0.200 0.956 0.006  0.936 0.014  0.934 0.016  0.936 0.014  0.950 0.000 
100 0.050 0.949 0.001  0.946 0.004  0.931 0.019  0.931 0.019  0.955 0.005 
100 0.100 0.956 0.006  0.950 0.000  0.948 0.002  0.942 0.008  0.954 0.004 
100 0.200 0.943 0.007  0.935 0.015  0.928 0.022  0.937 0.013  0.944 0.006 

Note. SD = standard deviation; CP = coverage probability; CE = coverage error. 
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Table D 20  

Coverage Properties of the 95% Confidence Interval of Different Sample Sizes (True Mean = 4.4) 

  Logit  Resampling  Bca  Bayesboot  Z 
n SD CP CE  CP CE  CP CE  CP CE  CP CE 

   5 0.050 0.942 0.008  0.823 0.127  0.838 0.112  0.796 0.154  0.889 0.061 
   5 0.100 0.949 0.001  0.818 0.132  0.829 0.121  0.795 0.155  0.881 0.069 
   5 0.200 0.941 0.009  0.813 0.137  0.818 0.132  0.788 0.162  0.886 0.064 
 10 0.050 0.955 0.005  0.900 0.050  0.899 0.051  0.885 0.065  0.922 0.028 
 10 0.100 0.951 0.001  0.902 0.048  0.899 0.051  0.892 0.058  0.917 0.033 
 10 0.200 0.944 0.006  0.896 0.054  0.889 0.061  0.870 0.080  0.913 0.037 
 20 0.050 0.956 0.006  0.929 0.021  0.927 0.023  0.921 0.029  0.937 0.013 
 20 0.100 0.939 0.011  0.915 0.035  0.909 0.041  0.905 0.045  0.941 0.009 
 20 0.200 0.939 0.011  0.894 0.056  0.892 0.058  0.886 0.064  0.930 0.020 
 50 0.050 0.936 0.014  0.930 0.020  0.925 0.025  0.920 0.030  0.952 0.002 
 50 0.100 0.934 0.016  0.923 0.027  0.917 0.033  0.918 0.032  0.947 0.003 
 50 0.200 0.962 0.012  0.945 0.005  0.937 0.013  0.940 0.010  0.938 0.012 
100 0.050 0.941 0.009  0.935 0.015  0.921 0.029  0.924 0.026  0.955 0.005 
100 0.100 0.954 0.004  0.946 0.004  0.940 0.010  0.939 0.011  0.945 0.005 
100 0.200 0.943 0.007  0.934 0.016  0.932 0.018  0.935 0.015  0.952 0.002 

Note. SD = standard deviation; CP = coverage probability; CE = coverage error. 
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Table D 21  

Coverage Properties of the 95% Confidence Interval of Different Sample Sizes (True Mean = 4.7) 

  Logit  Resampling  Bca  Bayesboot  Z 
n SD CP CE  CP CE  CP CE  CP CE  CP CE 

   5 0.050 0.947 0.003  0.824 0.126  0.835 0.115  0.793 0.157  0.893 0.057 
   5 0.100 0.936 0.014  0.825 0.125  0.836 0.114  0.798 0.152  0.867 0.083 
   5 0.200 0.926 0.024  0.806 0.144  0.833 0.117  0.788 0.162  0.869 0.081 
 10 0.050 0.942 0.008  0.905 0.045  0.891 0.059  0.882 0.068  0.914 0.036 
 10 0.100 0.943 0.007  0.878 0.072  0.881 0.069  0.859 0.091  0.906 0.044 
 10 0.200 0.942 0.008  0.887 0.063  0.893 0.057  0.882 0.068  0.887 0.063 
 20 0.050 0.939 0.011  0.913 0.037  0.897 0.053  0.893 0.057  0.931 0.019 
 20 0.100 0.941 0.009  0.907 0.043  0.904 0.046  0.899 0.051  0.922 0.028 
 20 0.200 0.938 0.012  0.915 0.035  0.921 0.029  0.912 0.038  0.921 0.029 
 50 0.050 0.941 0.009  0.927 0.023  0.915 0.035  0.916 0.034  0.954 0.004 
 50 0.100 0.949 0.001  0.940 0.010  0.931 0.019  0.933 0.017  0.934 0.016 
 50 0.200 0.930 0.020  0.921 0.029  0.921 0.029  0.920 0.030  0.946 0.004 
100 0.050 0.944 0.006  0.939 0.011  0.930 0.020  0.932 0.018  0.939 0.011 
100 0.100 0.938 0.012  0.934 0.016  0.927 0.023  0.930 0.020  0.954 0.004 
100 0.200 0.951 0.001  0.951 0.001  0.948 0.002  0.954 0.004  0.956 0.006 

Note. SD = standard deviation; CP = coverage probability; CE = coverage error. 
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Table D 22  

Lower, Upper, and Width of the Confidence Interval of Different Sample Sizes (True Mean = 4.2) 

  Logit  Resampling  BCA  Bayesboot  Z 
n SD L U W  L U W  L U W  L U W  L U W 
5 0.05 4.142 4.258 0.116  4.166 4.236 0.070  4.161 4.237 0.076  4.168 4.234 0.066  4.159 4.242 0.083 
5 0.10 4.081 4.313 0.232  4.132 4.272 0.139  4.122 4.273 0.151  4.136 4.267 0.131  4.119 4.283 0.164 
5 0.20 3.948 4.418 0.470  4.066 4.343 0.277  4.043 4.346 0.302  4.073 4.335 0.262  4.037 4.367 0.330 
10 0.05 4.165 4.235 0.069  4.172 4.228 0.056  4.171 4.229 0.058  4.173 4.227 0.054  4.170 4.230 0.060 
10 0.10 4.129 4.268 0.139  4.144 4.256 0.112  4.141 4.256 0.115  4.145 4.254 0.108  4.140 4.261 0.121 
10 0.20 4.054 4.335 0.281  4.088 4.312 0.224  4.081 4.311 0.230  4.091 4.307 0.217  4.080 4.321 0.241 
20 0.05 4.177 4.223 0.046  4.179 4.221 0.042  4.179 4.221 0.042  4.180 4.221 0.041  4.179 4.222 0.043 
20 0.10 4.154 4.246 0.092  4.158 4.241 0.083  4.157 4.241 0.084  4.159 4.241 0.082  4.157 4.244 0.087 
20 0.20 4.105 4.292 0.187  4.117 4.284 0.167  4.114 4.282 0.168  4.118 4.282 0.164  4.115 4.287 0.172 
50 0.05 4.186 4.214 0.028  4.186 4.214 0.027  4.186 4.214 0.027  4.186 4.214 0.027  4.186 4.214 0.028 
50 0.10 4.171 4.228 0.057  4.172 4.227 0.054  4.172 4.227 0.055  4.172 4.227 0.055  4.173 4.228 0.055 
50 0.20 4.141 4.257 0.116  4.145 4.254 0.109  4.143 4.253 0.110  4.145 4.254 0.109  4.146 4.255 0.110 
100 0.05 4.190 4.210 0.020  4.190 4.209 0.019  4.190 4.209 0.019  4.190 4.210 0.020  4.190 4.210 0.020 
100 0.10 4.179 4.219 0.040  4.180 4.219 0.039  4.180 4.219 0.039  4.180 4.219 0.039  4.180 4.219 0.039 
100 0.20 4.158 4.239 0.081  4.160 4.237 0.077  4.159 4.237 0.078  4.159 4.238 0.078  4.161 4.239 0.078 

Note. SD = standard deviation; L = lower limit; U = upper limit; W = average width. 
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Table D 23  

Lower, Upper, and Width of the Confidence Interval of Different Sample Sizes (True Mean = 4.4) 

  Logit  Resampling  BCA  Bayesboot  Z 
n  SD L U W  L U W  L U W  L U W  L U W 
5 0.05 4.341 4.458 0.116  4.366 4.436 0.070  4.361 4.437 0.076  4.368 4.434 0.066  4.359 4.442 0.083 
5 0.10 4.278 4.511 0.233  4.333 4.471 0.139  4.322 4.472 0.151  4.336 4.467 0.131  4.319 4.483 0.164 
5 0.20 4.134 4.608 0.474  4.264 4.541 0.277  4.239 4.541 0.302  4.270 4.531 0.261  4.238 4.567 0.329 
10 0.05 4.365 4.434 0.070  4.372 4.428 0.056  4.371 4.428 0.058  4.373 4.427 0.054  4.370 4.430 0.060 
10 0.10 4.328 4.468 0.139  4.344 4.456 0.112  4.340 4.456 0.115  4.345 4.454 0.108  4.340 4.461 0.121 
10 0.20 4.250 4.531 0.280  4.287 4.510 0.223  4.278 4.507 0.230  4.289 4.505 0.215  4.279 4.520 0.240 
20 0.05 4.377 4.423 0.046  4.379 4.421 0.042  4.379 4.421 0.042  4.379 4.421 0.041  4.379 4.422 0.043 
20 0.10 4.353 4.446 0.092  4.358 4.441 0.083  4.357 4.441 0.084  4.359 4.441 0.082  4.357 4.444 0.086 
20 0.20 4.304 4.490 0.186  4.317 4.482 0.165  4.312 4.480 0.168  4.317 4.480 0.163  4.314 4.487 0.173 
50 0.05 4.386 4.414 0.028  4.386 4.414 0.027  4.386 4.414 0.027  4.386 4.414 0.027  4.386 4.414 0.028 
50 0.10 4.371 4.428 0.057  4.372 4.427 0.054  4.372 4.427 0.055  4.372 4.427 0.054  4.373 4.428 0.055 
50 0.20 4.340 4.456 0.116  4.345 4.454 0.109  4.343 4.452 0.110  4.344 4.453 0.109  4.345 4.455 0.110 
100 0.05 4.390 4.410 0.020  4.390 4.409 0.019  4.390 4.409 0.019  4.390 4.410 0.020  4.390 4.410 0.020 
100 0.10 4.379 4.419 0.040  4.380 4.419 0.039  4.380 4.419 0.039  4.380 4.419 0.039  4.380 4.420 0.039 
100 0.20 4.358 4.439 0.081  4.360 4.437 0.077  4.359 4.437 0.078  4.359 4.438 0.078  4.361 4.439 0.078 

Note. SD = standard deviation; L = lower limit; U = upper limit; W = average width. 
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Table D 24  

Lower, Upper, and Width of the Confidence Interval of Different Sample Sizes (True Mean = 4.7) 

  Logit  Resampling  BCA  Bayesboot  Z 
n  SD L U W  L U W  L U W  L U W  L U W 
5 0.05 4.640 4.755 0.116  4.666 4.735 0.069  4.661 4.736 0.075  4.668 4.733 0.065  4.660 4.742 0.082 
5 0.10 4.570 4.804 0.234  4.633 4.770 0.138  4.620 4.770 0.150  4.636 4.765 0.130  4.620 4.782 0.162 
5 0.20 4.399 4.880 0.481  4.561 4.831 0.270  4.527 4.827 0.300  4.566 4.820 0.254  4.538 4.860 0.322 

10 0.05 4.664 4.734 0.069  4.672 4.728 0.056  4.670 4.728 0.057  4.673 4.727 0.054  4.670 4.730 0.060 
10 0.10 4.627 4.765 0.138  4.644 4.755 0.111  4.639 4.753 0.114  4.645 4.752 0.107  4.640 4.760 0.119 
10 0.20 4.540 4.818 0.278  4.583 4.804 0.221  4.565 4.797 0.232  4.584 4.796 0.213  4.582 4.817 0.235 
20 0.05 4.677 4.723 0.046  4.679 4.721 0.041  4.678 4.720 0.042  4.679 4.720 0.041  4.679 4.722 0.043 
20 0.10 4.653 4.745 0.092  4.659 4.741 0.082  4.656 4.740 0.084  4.658 4.740 0.082  4.657 4.743 0.086 
20 0.20 4.601 4.783 0.182  4.615 4.779 0.165  4.604 4.774 0.170  4.613 4.775 0.162  4.615 4.786 0.171 
50 0.05 4.685 4.714 0.028  4.686 4.713 0.027  4.686 4.713 0.027  4.686 4.713 0.027  4.686 4.714 0.027 
50 0.10 4.671 4.727 0.057  4.672 4.726 0.054  4.671 4.726 0.055  4.672 4.726 0.054  4.673 4.728 0.055 
50 0.20 4.640 4.752 0.112  4.643 4.752 0.109  4.638 4.749 0.111  4.642 4.750 0.109  4.645 4.754 0.110 

100 0.05 4.690 4.710 0.020  4.690 4.709 0.019  4.690 4.709 0.019  4.690 4.709 0.020  4.690 4.710 0.020 
100 0.10 4.679 4.719 0.040  4.680 4.719 0.039  4.679 4.718 0.039  4.680 4.719 0.039  4.681 4.719 0.039 
100 0.20 4.658 4.736 0.078  4.659 4.736 0.078  4.656 4.735 0.079  4.657 4.736 0.079  4.660 4.738 0.078 

Note. SD = standard deviation; L = lower limit; U = upper limit; W = average width. 
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Table D 25  

Lower and Upper Error of the Confidence Interval of Different Sample Sizes (True Mean = 4.2) 

  Logit  Resampling  BCA  Bayesboot  Z 
n SD LE UE  LE UE  LE UE  LE UE  LE UE 

   5 0.050 0.036 0.021  0.106 0.076  0.084 0.076  0.110 0.081  0.058 0.057 
   5 0.100 0.038 0.014  0.106 0.072  0.087 0.066  0.117 0.077  0.065 0.053 
   5 0.200 0.037 0.010  0.119 0.064  0.101 0.058  0.126 0.068  0.063 0.041 
 10 0.050 0.029 0.025  0.060 0.057  0.055 0.055  0.063 0.053  0.034 0.037 
 10 0.100 0.029 0.019  0.057 0.045  0.053 0.037  0.061 0.047  0.043 0.037 
 10 0.200 0.031 0.024  0.066 0.040  0.058 0.041  0.070 0.038  0.051 0.029 
 20 0.050 0.032 0.030  0.050 0.043  0.041 0.043  0.047 0.041  0.043 0.027 
 20 0.100 0.034 0.032  0.053 0.044  0.044 0.042  0.052 0.045  0.033 0.033 
 20 0.200 0.030 0.022  0.043 0.038  0.040 0.036  0.043 0.038  0.036 0.029 
 50 0.050 0.021 0.030  0.025 0.035  0.021 0.029  0.024 0.030  0.021 0.030 
 50 0.100 0.025 0.032  0.030 0.037  0.025 0.036  0.026 0.034  0.025 0.026 
 50 0.200 0.021 0.023  0.032 0.032  0.031 0.033  0.031 0.028  0.025 0.025 
100 0.050 0.024 0.027  0.023 0.031  0.020 0.025  0.020 0.025  0.018 0.027 
100 0.100 0.020 0.024  0.023 0.027  0.015 0.027  0.016 0.026  0.018 0.028 
100 0.200 0.033 0.024  0.037 0.028  0.037 0.029  0.031 0.026  0.024 0.032 

Note. SD = standard deviation; LE = lower coverage error; UE = upper coverage error. 
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Table D 26  

Lower and Upper Error of the Confidence Interval of Different Sample Sizes (True Mean = 4.4) 

  Logit  Resampling  BCA  Bayesboot  Z 
n SD LE UE  LE UE  LE UE  LE UE  LE UE 

   5 0.050 0.034 0.024  0.105 0.072  0.083 0.068  0.116 0.077  0.059 0.052 
   5 0.100 0.031 0.020  0.110 0.072  0.097 0.070  0.114 0.078  0.067 0.052 
   5 0.200 0.042 0.017  0.129 0.058  0.114 0.063  0.143 0.067  0.075 0.039 
 10 0.050 0.028 0.017  0.050 0.050  0.043 0.045  0.054 0.052  0.045 0.033 
 10 0.100 0.027 0.022  0.057 0.041  0.051 0.043  0.059 0.045  0.042 0.041 
 10 0.200 0.030 0.026  0.062 0.042  0.062 0.047  0.071 0.052  0.061 0.026 
 20 0.050 0.024 0.020  0.034 0.037  0.031 0.030  0.034 0.035  0.036 0.027 
 20 0.100 0.034 0.027  0.046 0.039  0.044 0.038  0.049 0.038  0.033 0.026 
 20 0.200 0.034 0.027  0.066 0.040  0.053 0.048  0.066 0.044  0.048 0.022 
 50 0.050 0.037 0.027  0.039 0.031  0.034 0.023  0.036 0.029  0.020 0.028 
 50 0.100 0.034 0.032  0.040 0.037  0.033 0.035  0.037 0.035  0.029 0.024 
 50 0.200 0.023 0.015  0.031 0.024  0.033 0.026  0.032 0.025  0.036 0.026 
100 0.050 0.027 0.032  0.033 0.032  0.025 0.025  0.023 0.023  0.017 0.028 
100 0.100 0.021 0.025  0.025 0.029  0.020 0.024  0.023 0.026  0.029 0.026 
100 0.200 0.030 0.027  0.035 0.031  0.031 0.030  0.032 0.030  0.028 0.020 

Note. SD = standard deviation; LE = lower coverage error; UE = upper coverage error. 
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Table D 27  

Lower and Upper Error of the Confidence Interval of Different Sample Sizes (True Mean = 4.7) 

  Logit  Resampling  BCA  Bayesboot  Z 
n SD LE UE  LE UE  LE UE  LE UE  LE UE 

   5 0.050 0.039 0.014  0.114 0.062  0.090 0.063  0.115 0.075  0.063 0.044 
   5 0.100 0.055 0.009  0.129 0.046  0.105 0.049  0.139 0.057  0.095 0.038 
   5 0.200 0.062 0.012  0.153 0.041  0.129 0.037  0.161 0.048  0.113 0.018 
 10 0.050 0.036 0.022  0.054 0.041  0.054 0.046  0.059 0.046  0.051 0.035 
 10 0.100 0.037 0.020  0.080 0.042  0.070 0.042  0.082 0.043  0.067 0.027 
 10 0.200 0.049 0.009  0.088 0.025  0.071 0.033  0.084 0.033  0.093 0.020 
 20 0.050 0.035 0.026  0.052 0.035  0.046 0.037  0.050 0.037  0.037 0.032 
 20 0.100 0.040 0.019  0.066 0.027  0.059 0.029  0.066 0.028  0.054 0.024 
 20 0.200 0.044 0.018  0.058 0.027  0.043 0.032  0.053 0.030  0.065 0.014 
 50 0.050 0.037 0.022  0.044 0.029  0.033 0.026  0.040 0.021  0.028 0.018 
 50 0.100 0.022 0.029  0.027 0.033  0.023 0.037  0.025 0.035  0.041 0.025 
 50 0.200 0.045 0.025  0.050 0.029  0.040 0.034  0.045 0.030  0.038 0.016 
100 0.050 0.025 0.031  0.027 0.034  0.021 0.030  0.023 0.028  0.031 0.030 
100 0.100 0.030 0.032  0.034 0.032  0.022 0.035  0.023 0.033  0.024 0.022 
100 0.200 0.033 0.016  0.031 0.018  0.024 0.023  0.025 0.016  0.028 0.016 

Note. SD = standard deviation; LE = lower coverage error; UE = upper coverage error. 
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APPENDIX E:  

Simulation Figures 

Figure E 1. Resampling Upper/Lower probabilities of the 95% CIs for the Symmetrical distributions. 
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Figure E 2. Resampling Upper/Lower probabilities of the 95% CIs for the Right-skewed distributions. 
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Figure E 3. Resampling Upper/Lower probabilities of the 95% CIs for the Left-skewed distributions. 
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Figure E 4. BCA Upper/Lower probabilities of the 95% CIs for the Symmetrical distributions. 
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Figure E 5. BCA Upper/Lower probabilities of the 95% CIs for the Right-skewed distributions. 
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Figure E 6. BCA Upper/Lower probabilities of the 95% CIs for the Left-skewed distributions. 
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Figure E 7. Bayesboot Upper/Lower probabilities of the 95% CIs for the Symmetrical distributions. 
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Figure E 8. Bayesboot Upper/Lower probabilities of the 95% CIs for the Right-skewed distributions. 
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Figure E 9. Bayesboot Upper/Lower probabilities of the 95% CIs for the Left-skewed distributions. 
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Figure E 10. Z Upper/Lower probabilities of the 95% CIs for the Symmetrical distributions. 
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Figure E 11. Z Upper/Lower probabilities of the 95% CIs for the Right-skewed distributions. 
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Figure E 12. Z Upper/Lower probabilities of the 95% CIs for the Left-skewed distributions. 
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