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ABSTRACT 
 
 

Growth in Students’ Conceptions of Mathematical Induction 
 

John Gruver 
 

Department of Mathematics Education 
 

Master of Arts 
 

 
While proof and reasoning lie at the core of mathematical practice, how students learn to 

reason formally and build convincing proofs continues to invite reflection and discussion. To add 
to this discussion I investigated how three students grew in their conceptions of mathematical 
induction. While each of the students in the study had different experiences and grew in different 
ways, the grounded axes (triggering events, personal questions about mathematics, and personal 
questions about a particular solution) highlighted patterns in the narratives and from these 
patterns a theoretical perspective emerged. Reflection, both on mathematics in general and about 
specific problems, was central to students’ growth. The personal reflections of students and 
triggering events influenced each other in the following way. The questions students wondered 
about impacted which trigger stimulated growth, while triggers caused students to rethink 
assumptions and reflect on mathematics or specific problems. The reflections that allowed 
triggers to stimulate growth along with the reflections that were results of triggering events 
constitute an “investigative orientation.” Each narrative reflects a different investigative 
orientation motivated by different personal needs. These investigative orientations affected what 
type of knowledge was constructed. 
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Chapter 1: Introduction 

“Proof is what makes mathematics special. Students should understand and 
appreciate the core of mathematical culture: the value and validity of careful 
reasoning, precise definition, and close argument.” (Mathematical Association of 
America, 2009, p. 6).  
 

 While proof and reasoning lie at the core of mathematical practice, how students learn to 

reason formally and build convincing proofs continues to invite reflection and discussion. To 

further this discussion, it may help to investigate, in detail, how specific students learn to build 

correct induction proofs with understanding. On this basis, this study seeks to offer insight into 

how educators might help undergraduates learn to reason mathematically. 

 The term “meaningful induction proof” could have a variety of interpretations. Here, a 

proof will be an argument that can be accepted in the professional mathematics community. We 

will say a proof is meaningful if it is meaningful to its author, in the sense that it is convincing to 

him or her in the same way that it is convincing to the mathematics community. In particular, the 

author does not simply follow a prescribed template to gain approval from an external authority, 

but instead constructs an argument that makes sense and is compelling personally. Students who 

build and check such proofs participate in genuine mathematics, mathematician’s mathematics, 

because at that moment they no longer experience mathematics merely as spectators.  

 Proof by mathematical induction, at least for beginners, might be especially susceptible to 

a template approach. When mathematical induction was first introduced to me, I understood it 

only as a template to be filled in. I could “do” step one and step two, but the resulting proofs 

were not meaningful, in the sense defined above, because I didn’t understand why my proofs 

proved anything. Yet my teachers seemed content with the “proofs” I had produced. Later, as I 

began to understand the logical structure of proofs by mathematical induction, such proofs 

became more than just exercises; they became meaningful. The contrast was stark. One year I 
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was just performing a procedure; mysteriously, a few years later, I could explain the logical 

structure of induction proofs. As prior research has confirmed, (Brown, 2003; Fischbein & 

Engel, 1989; Movshovitz-Hadar, 1993b) many students conceptualize mathematical induction 

simply as a series of steps. In other words, my own case might represent a larger population. It 

would benefit undergraduates who view induction in this way to make the transition from filling 

in a template to constructing a meaningful argument.  

 Despite some prior research, this transition remains mysterious. While the literature on 

mathematical induction offers useful categorizations of what induction means to students, and 

documents student deficiencies, the mathematics education community still lacks detailed 

analysis of how students can come to understand induction meaningfully. I studied people who 

grew in their conception of induction. Although none of the subjects started with a template 

understanding, their conceptions of induction were enriched through the course of the study. 

Detailed analysis of student thinking at key transition points offered insight into how students’ 

understandings of induction grow. 

 Three initial questions focused the research: a) how do students build meaningful 

conceptions of induction; b) how does the teacher facilitate this construction of knowledge; and 

c) what aspects of the mathematics need highlighting to ensure this knowledge construction? We 

should note immediately that these questions represent simply initial guidelines for investigation. 

In particular, the research design, as it unfolded, afforded opportunities for critical reflection, and 

refinement of these focal questions, based on the emerging student data. In this way, both data 

gathering (primarily through ongoing student interviews) and analysis proceeded in iterative 

cycles, to reflect emerging insight into student thinking. 
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Chapter 2: Literature Review 

 Prior research on teaching and learning mathematical induction seems to fall into three 

broad categories: stage theories, pedagogical suggestions, and descriptions of student difficulties.  

 The stage theory literature is represented by Brown (2003), Dubinsky and Lewin (1986), 

Harel (2001), and  Harel and Brown (2008).  I will emphasize Harel and Brown (2008), which is 

a summary of Harel (2001) and Brown (2003).  The stages advanced in these papers seem more 

meaningful than those put forward by Dubinsky and Lewin (1986).  The result of Harel and 

Brown’s (2008) synthesis is a three-stage model of learning mathematical induction. In the first 

stage, students “show” a theorem is true by showing that the theorem holds for a few cases. In 

stage two, students begin to see a pattern in what mathematicians call the induction step. 

However, they do not prove the induction step in general terms. Rather, they show that it is true 

for a few examples, (e.g. P(1) => P(2) and P(2) => P(3) so the pattern must continue). In stage 

three, students actually create proofs by mathematical induction. Most importantly, students 

know P(n) => P(n+1) because they have proved it deductively, not simply because a few 

examples, for small n, worked.  

 Even though Harel and Brown’s (2008) stages are useful categorizations, they do not get 

at the details of how a student progresses from one stage to another, or more generally what 

elicited the growth in students’ conceptions. Harel might claim that the curriculum design 

enabled the transition, but this is an incomplete explanation. To understand why students are able 

to grow in their understanding, a deep analysis of changes in students’ conceptions of induction 

needs to be performed. The purpose of the present study is not to categorize all stages a learner 

must pass through to understand induction, but to understand the experiences that help a 

student’s conception grow. As the participants’ conceptions grew, the details of how this growth 
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happened for these students were captured by paying close attention to how the task and teacher 

influenced the growth. 

 Suggestions on teaching induction are advanced by Avital and  Hansen (1976), Dubinsky 

(1986, 1989),  Leron and Zazkis (1986), Movshovitz-Hadar (1993a) Wistedt and Brattström 

(2005), and Woodall (1981). I will highlight Avital and Hansen (1976) and Wistedt and 

Brattström (2005), because these two articles together discuss principles of teaching that were 

relevant to this proposed study. Avital and Hansen (1976) strongly emphasized the importance of 

student exploration. They noted that in textbooks students are most often asked to use 

mathematical induction to prove a specific equality. For Avital and Hansen, the nature of such a 

task is not consistent with the full experience of a mathematician in creating a proof. 

Mathematical researchers engage in exploration to imagine a plausible result, and then they seek 

to provide a proof of the result. Simply asking for a proof of a pre-formed result without offering 

a chance to think about and perhaps discover the result is not genuine mathematics. Teachers 

should offer students the opportunity to explore before producing the final product, the proved 

theorem. 

 Even though students’ exploration is important, teachers play a critical role in helping 

students understand. Wistedt and Brattström (2005) observed students working collaboratively 

on a non-standard induction problem, but this process did not result in growth of students’ 

conceptions. Wistedt and Brattström conjectured that this was because none of the students 

understood induction, so they could not teach each other. This study showed that simply putting 

peers into groups and having them discuss mathematical topics is not sufficient for learning to 

take place. 
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 Avital and Hansen (1976) and Wistedt and Brattström (2005) together provide insight 

into how students’ roles and teachers’ roles might be defined in ways that would help students 

understand how to create induction proofs. Students need to be actively engaged in exploring 

concepts, making conjectures, reformulating conjectures, and proving them. However, it is not 

enough to give the students a rich problem and leave everything up to them. An insightful 

teacher who asks questions that draw students’ attention to previously unexamined aspects of a 

problem must support students.  

 Documenting the difficulties students have with induction is a common theme in much of 

the literature on mathematical induction (see Ernest, 1984; Fischbein & Engel, 1989; Lowenthal 

& Eisenberg, 1992).  Harel (2001) showed that often the difficulties students have depend on 

how they were taught. While Harel’s observation might be seen as qualifying other results cited 

here, a reoccurring theme emerged, the formulation of and argument for the induction step was 

problematic for students (Ernest, 1984; Fischbein & Engel, 1989; Lowenthal & Eisenberg, 

1992). While this issue was considered in the present study, the students in this study did not 

seem to have as much difficulty with the induction step as was reported in the literature. 
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Chapter 3: Theoretical Orientation 

 Here I describe two analytic lenses that helped focus my analysis, which led me to 

segments of the data where students thought about proofs as a mathematician does. 

 For mathematicians, proof is a complex process of purposeful exploration and discovery. 

The exploration that accompanies proof engenders understanding, which is what mathematicians 

find valuable (Hanna, 1983). Reid (1996, p. 186) said, “proving is central to mathematical 

discovery and exploration.” Hence, data segments that give evidence of students’ use of proof to 

drive exploration merit careful analysis. Raman (2003) and Lakatos (1976) provided constructs 

to help locate and conceptualize those instances in the data where students are thinking about 

proofs like mathematicians. Such instances were the starting points for an analysis, which 

evolved over time. 

 Raman (2003) claimed that for mathematicians, proof was essentially about “key ideas.” A 

key idea “links together the public and private domains, and in doing so gives a sense of 

understanding and conviction. Key ideas show why a particular claim is true” (Raman, 2003, p. 

323). The private aspects are the parts of the proof that explain or enlighten the individual. The 

public aspects are the parts that make the argument convincing or sufficiently rigorous to the 

mathematical community. In interviews I identified what the key ideas appeared to be for the 

students, and concentrated analysis at places in the data where students reference these ideas.  

 I also looked for places where students refined ideas by proposing conjectures or 

“solutions” and then either prove or refute them. In his innovative book, Proofs and Refutations, 

Lakatos (1976) showed that a critique of a proposed proof can be a motivating force for the 

development of new mathematical exploration and knowledge. In the situation presented in the 

book, the refinement happened because individuals challenged one another’s justifications. Such 
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refinement can happen in a classroom as well, the place where Lakatos, indeed, has set his 

fictional retelling of the historical story. Such challenges or interplays could happen within an 

individual or socially within the classroom. As I reviewed the data, I looked for evidence of such 

interplays in the interviews. 
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Chapter 4: Research Subjects, Setting, and Task Design 

 The subjects of the proposed study were undergraduates in Math 290. This course was 

designed to introduce students to mathematical proof and increase their ability to communicate 

mathematically (“09 – 10 undergraduate catalog,” 2009). I selected participants from one 

section, led by an instructor sympathetic to the goals of this study. Participants were selected to 

represent the broadest student population possible. My goal was to have racial diversity, a variety 

of working styles, a range of class standings, and several areas of the country represented. 

 In contrast to the course, my goal was to gain insight into the growth of students’ 

concepts of induction through investigation of their thinking at a key developmental threshold. 

My guiding questions deal with how students work and think as they wrestle with key ideas. 

Accordingly, the participants were selected from students who already have some acquaintance 

with induction. 

 Subjects participated in three settings: an initial individual task-based interview, a small 

group session, and a follow-up individual interview. In the first interview I documented students’ 

initial concepts of induction. Data collected here provided data to compare with data collected 

later in the study. In the group session I asked students to solve two problems in collaboration, to 

elicit mathematical discussion with minimal researcher input. In this way, students’ conceptions 

of induction could develop, or at least become more visible. By putting students in a group 

setting where they could collaborate, I especially hoped for opportunities to see how ideas were 

refined through a social process of confirming or refuting proposed solutions, conjectures, and 

guesses. Individual interviews, before and after the collaborative session, were used to document 

to what extent students’ conceptions change. The follow-up interviews not only investigated 

whether growth had occurred, but also allowed me to identify possible key ideas. Whenever key 
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ideas appeared, especially in the second round of interviews, I invited the students to explore 

them on the spot. 

 For productive collaboration, the task the students undertook should challenge them to 

reflect on basic understandings. If students were to propose key ideas, the task needed to be rich 

enough to elicit or require such ideas. Also, for students to refine their thinking through 

discussion, the task needs to be rich enough, or pose sufficient challenges, to demand discussion. 

For specific tasks, I chose problems with these two requirements in mind. 

 The modified chessboard problem asks students for which n a 2n x 2n chessboard with 

one square removed can be tiled with L-shaped ( ) pieces, regardless of which square was 

removed. The handshake problem asks students to determine how many hands a hostess at a 

party shakes, given certain constraints. The party consists of 2n partiers and each partier, 

excluding the host, shakes a different number of hands. Also, no one shakes the hand of his or 

her spouse. Since these problems were unlike problems they had faced in their class, students 

needed to discuss with group-mates how to solve them. Also, solutions of these problems tend to 

have explanatory power that goes well beyond whatever templates might have been in place 

initially. Since I limited the number of participants, I could analyze particular events in detail to 

locate analytic constructs with explanatory power in relation to my guiding questions. 
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Chapter 5: Data Collection and Analysis 

Data Collection 

 I collected data in four stages: a preliminary questionnaire, a small-group session devoted 

to a single task, and two rounds of individual interviews, before and after the group session. The 

interviews and the group session were videotaped with one camera, to capture the participating 

students and their work. Key events were selected and transcribed for subsequent analysis. 

 At the outset, everyone in the class who consented to participate completed a brief 

questionnaire. The questionnaire asked only for basic information such as name and year at 

BYU, prior experience with induction, and if so, a very brief description of the latter. I also 

observed the class, and took field notes to better understand students’ capabilities and working 

styles. 

 The next step was an open-ended task-based interview with each of the students, one-to-

one. The tasks were unassigned induction problems from their text, more basic than the modified 

chessboard or the handshake problem. I asked questions like, “How is this argument 

convincing?” or “Could you tell me more about your thinking here?” or “Are you sure?” In these 

interviews I worked primarily to encourage each student's exploration, to convey interest and 

curiosity about their thinking, and to provide generous opportunities for students to develop 

explanations, locate errors (when such occurred), and for the students to reshape their arguments 

and strategies as needed. The best interviews of this kind occur when the student subject takes 

over the conversation and actively explores new possibilities.  

 For the group session, the students met together for about two and a half hours, to work 

collaboratively on the modified chessboard and handshake tasks. The students working together 

were videotaped by a single camera, which zoomed in to capture student work when appropriate. 
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 The final interview with each of the students had two main components. First, I showed 

the students clips from their initial interview and asked them to characterize their earlier work 

seen in the video clips. This offered me both a clearer understanding of the students’ current 

conception as well as starting places to think about what changes were significant for them. The 

second component centered on the progress each student made toward a solution to the two tasks 

as a springboard to how their conception of induction had evolved. The students’ individual 

progress reports offered them opportunities to explain their ideas about the two tasks specifically 

and about induction more generally. 

Analysis 

 Analysis was a variant of grounded theory. First, I did a coarse descriptive analysis, 

describing, at 10-minute intervals, what happened in the videotaped session at that moment. 

From this broad survey, I used the guiding theoretical constructs previously described to identify 

key events in the data. I also included events and ideas that students identified as significant. I 

began a detailed analysis of these key events by refining the descriptive analysis around the 

event to 30-second intervals. This note taking was done with as little interpretation as possible. 

During this open coding portion of analysis, I looked for emergent themes. From these themes I 

established analytic axes, in the style of grounded theory (Strauss & Corbin, 1990) to help focus 

further coding and analysis, especially to make clear, as much as possible, the dynamics of the 

learning process. In the process, I took repeated passes through the data, revising as necessary, to 

make sure, axis by axis, that my interpretations fit the data and provided insight into the dynamic 

that I sought to clarify. The three axes I eventually selected are descriptive in nature. They are 

(1) personal questions about mathematics, (2) personal questions about a particular solution, and 

(3) triggering events. Basing analysis on these three axes helped me make clear, to a significant 
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extent, the dynamic of these students’ learning process. In particular, I found that the personal 

questions students had influenced which triggering events would stimulate their growth. 

Similarly, a triggering event could stimulate reflection and create new personal questions. To 

illustrate these findings in more detail I now present data segments and analysis of these 

segments using the thematic axes.  
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Chapter 6: Background, Data and Analysis 

 Analysis was focused on events that illustrate growth in students’ conceptions of 

induction and the context surrounding these events, with the intent to learn why the students 

were successful in understanding induction better. During the course of the project, students’ 

conceptions of induction grew in different ways, so events were selected for each student to 

reflect these differences.  To underpin analysis, the context surrounding each event was 

analyzed. This context can be understood in terms of the axes described previously. First, there 

were events that stimulated growth. I call such stimuli triggering events. Sometimes the trigger is 

a single event and sometimes it is a cluster of events. Second, there are circumstances that affect 

the way a trigger actually stimulated the student’s growth. Such circumstances include both 

student’s personal questions about mathematics and personal questions about a particular 

solution, as well as, that student’s working style and personal motivations. 

 To understand the data, it is first important to understand each student’s background and 

the events they experienced which helped them grow. First, I summarize relevant background 

that is common for all students. Then I present a grounded narrative for each student’s event, 

including further background specific to that student. I conclude with themes and patterns that 

emerge directly from the data in relation to my guiding questions. 

Background 

 The project had three sections: an initial interview, a group session, and a final interview. 

The initial interview included giving students four tasks that could be solved by induction. These 

tasks were to prove: (1) n! > 2n for n greater than or equal to 4, (2) the sum of the first n odd 

integers is n2, (3) the finite intersection of complements is equal to the complement of the union, 

and (4) every non-empty finite subset of the real numbers has a largest element. In the group 
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session, the students were asked to solve two problems: first, to determine which chessboards, in 

terms of size, with one square removed can be tiled with L-shaped tiles, and, second, to 

determine how many hands a hostess shook at a party, given certain constraints. During the final 

interview, I showed each student clips from his or her first interview and asked the student if he 

or she would respond differently. I also had the student recapitulate his or her solution to the two 

problems from the group session. 

 During the group session, the students tried many ideas to solve the chessboard problem, 

but eventually gave the following argument. They began with a proof of the 2 x 2 case. They 

then assumed chessboards of size 2n x 2n could be tiled and investigated chessboards sized 2n+1 x 

2n+1. They divided the chessboard into four quadrants. They argued that the quadrant with the 

missing tile could be tiled by the induction hypothesis. This leaves a large “L” (it is actually a 

backwards L, but I will refer to both L’s and backwards L’s as L’s) consisting of the other three 

2n x 2n quadrants. To do this they first broke this “L” into four smaller L’s (see Figure 1). 

Alexander pointed out that each of these four L’s is basically the 2n x 2 n case, with one quadrant 

removed. The group claimed this implies each of the L’s can be tiled (see Figure 2). Their 

solution leaves the following question unanswered. How does one know that the small L’s can be 

tiled? The students seem to have thought that because it was possible to tile the 2n x 2n board 

with one square removed, it was also possible to tile the board with one quadrant removed. This 

question was discussed individually in the exit interviews. Reflection on this question was often 

a way for students to understand the solution to this problem better and with Mark, induction 

itself better. 
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Figure 1. The 2n+1 by 2n+1 case subdivided into the 2n by 2 n case and four “L’s.” 

 

 

Figure 2. The 2n by 2n case, highlighting a backwards L. 

Mark 

 Introduction. Mark came from a large family of seven, which resided in a small town in 

Pennsylvania. Mark was a junior, a mechanical engineering major, and a math minor. He 



 16 

enrolled in math 290 to fulfill a requirement for his minor. Previous to math 290 he had taken 

courses in calculus I and II, multivariable calculus, linear algebra, and differential equations. He 

said he loves math and compared solving problems in the initial interview to going to an 

amusement park. 

 Initial Interview. In Mark’s initial interview, he mentioned that induction was unclear to 

him at first introduction, but coming into the project he understood it well. He reported induction 

became clearer for him after he had solved several homework problems. In the initial interview 

he was able to do each of the problems I gave him by induction. More than that, he was able to 

explain why these proof proved the proposition for all n. 

 One important feature of Mark’s problem solving style is that, after he finished an 

argument, he reflected on the clarity and validity of his solution. For example, he reported, 

without prompting, that he could not find a “neat” way of presenting his proof that n! > 2n for n 

greater than or equal to four. Also, when he proved De Morgan’s law for an arbitrary finite 

number of sets, he commented that although his argument made sense to him, he did not think it 

would stand up in a mathematical journal. 

 The De Morgan’s law event is an example where Mark’s ability to articulate his solution 

grew. After he had reflected and said he did not think his proof would stand up in mathematical 

journal, I asked what part of the proof a mathematician would criticize. He answered quickly. 

After he articulated the problem, he saw a clearer way to prove the law and volunteered his 

improved solution. Here the triggering event was a question. Mark was not satisfied with his 

solution, and with some encouragement from me, he decided to rethink the proof and then came 

up with a better solution. While the triggering event was me asking Mark to analyze his solution, 

the context of Mark’s personal question about a particular solution, in this case a question about 
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his own proof, as well as, his working style were more important. I believe it is his personal 

question that allowed the triggering event to actually stimulate growth.  

 Exit Interview. In his exit interview, I asked Mark to give his solution to the modified 

chessboard problem. His solution was based on an idea that had been mentioned in the group 

session. The solution was similar to the final argument given in the group session, but not the 

same. He broke the chessboard into four quadrants and considered the three of them without the 

missing block, the three forming an L. He then broke this L into smaller L’s using the same 

procedure as used in the group session. He then said he would break these smaller L’s into even 

smaller L’s, using the same procedure (see Figure 3). Mark explained, you continue this process 

until you have L’s that are made up of three 1x1 squares. This is your tiling. To tile the quadrant 

with the square removed, you again break the quadrant up into four quadrants; the three without 

the missing square form an L. You can tile this L using the same process as above. You continue 

this process. 

 

Figure 3. Mark breaks down a red L into four blue L’s and a blue L into four green L’s. 

 At this point in the interview, Mark had come up with a solution to the problem, but I was 

not satisfied with the precision of his solution. What follows next in the interview is my 
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expression of dissatisfaction and Mark’s response. Here we again see a triggering event. 

Bracketed items are not part of the original transcript. 

John: Um… So…. Like, I guess, this like seems like an induction argument sort 
of, but it’s like, um, not the traditional induction argument right? And so I guess, 
um, for, for me, uh, like… When you do induction, like, one, one way you could 
do it, is just say, like, see this is how I get from one to two, and then this is how I 
get from two to three, and this is how I get from three to four and then kind of 
being like and this will still continue (simultaneously Mark: continue), right? But 
when we do like a formal mathematical induction argument we like really nail 
down, like, how you’re gonna get from one case to the next. (Mark: Ok) And so 
like, in this, we’re, we’re breaking things down, so instead of building up, we’re 
breaking down, umm, but we’re still kind of being like, like, to, the 
 
(interrupts) Mark: Vague 
 
John: Yeah, a little vague. Like, the, the reader of the proof, or whatever, has to 
do like a lot of imagining. You know what I mean? 
[My question again acts as a triggering event] 
 
Mark: Yes 
 
John: So, is there a way we could, um, you know, sharpen it up a, a tiny bit? 
 
Mark: I think it just clicked in my mind how to do it. (John: Okay. Okay.) Let’s 
go for. And. So if we have a 2n by, (Mark draws a square on the board) or 2 to the 
n plus one, so we’re going to assume it works for the 2 to the n case. (John: okay) 
And then we go to the 2 to the n plus one case, we’ve already shown it equals, it 
works for n equals one. (John: K.) So this is 2 to the n plus one by 2 to the n plus 
one. (Mark labels the sides of the box he has drawn) (John: K.) And if we divide 
it, like we’ve down before. (Mark divides the box into four quadrants). (John: K.) 
Then we get blocks that are 2 to the n by 2 to the n. (Labels the upper right 
quadrant 2n on both the top and side) (John: okay.) Now if we look at the block 
that has been, that has had the block removed. (John: uh-huh.) So, let’s say it’s 
this one (Draws a small square in the upper left quadrant). (John: K.) We know 
that it works for 2 to the n. (John: Okay) And so we know that we can tile this 
block (Traces the upper left quadrant with his finger) (John: okay.), with umm, 
(Pause 3 seconds) the tiles. (John: uh-huh.) And for the rest of this (Gestures to 
the other three quadrants) (Pause 6 seconds)… Then (pause 16 seconds)… Ah. I 
just had a good idea. 
 
(Excited) John: Okay, what is that? 
 
Mark: We know, we know we can tile these 2 to the n blocks if one tile has been 
removed (Places fingers on the upper right quadrant). (John: K.) And for this, this 
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three corners case, then let us remove the block on the very corner here, from all 
(draws a small square in the lower left corner of the upper right quadrant, a small 
square in the upper left corner of the lower right quadrant, and a small square in 
the upper right corner of the lower left quadrant,)… all of these blocks (Gestures 
to the three quadrants) (John: Okay). And then, we know we can tile this one now 
(Points to the upper right quadrant), since one has been removed (Points to the 
small square in the upper right quadrant). We know we can tile this one (Points to 
the lower right quadrant), since one has been removed (Points to the small square 
in the lower right quadrant). And we know that we can tile this one (Points to the 
lower left quadrant), since one has been removed (Points to the small square in 
the lower left quadrant). And then we’re just gonna take the one single one 
(Points to a previously drawn L shaped tile) and stick it right there in the corner 
(Shades the three adjacent small squares) to complete those three (Gestures to the 
three quadrants). (John: Ok) And so then it works for the 2 to the n plus one case, 
which proves that. 
 

 Here Mark went through the process of making his argument more clear and in the 

process he revised the argument substantially. Instead of proving an arbitrary n case directly, he 

used induction. Instead of breaking down the n case, he makes use of previous cases. One salient 

feature of his argument that changed is that in order to prove the n+1 case, he used two different 

tilings from his induction hypothesis. One where the block has been removed in the same place 

that it has been removed in the upper left quadrant, and one case where it has been removed in a 

corner. His induction hypothesis had to apply not only to one object, but to a whole class of 

objects. In other words, he had to assume the hypothesis true for all possible squares removed. 

This is how he could use two different tilings from his hypothesis. 

 Discussion. Harel's approach (2008) highlights the significance of Mark’s achievement. 

In his paper, Harel (2008, p. 122) distinguished between problems that require the solver to 

assume the hypothesis for one object versus those that require the assumption for a whole class 

of objects. He suggested a teacher start by giving problems of the former type, where the 

induction hypothesis need only apply to an object, then move to the more complex type of 

problem. This helps the student move through the stages he described, first placing emphasis on 
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recursive thinking and then giving a greater intellectual need for reliance on the induction 

hypothesis. 

 In the exchanged relayed above, Mark seems to have transitioned to a new way of 

thinking about induction, in the sense that he gained the ability to think of the induction 

hypothesis applying to a whole class of objects. Mark was able to make this transition because he 

thought about the chessboard problem in a new way. He gave an argument and then I asked him 

to make it clearer. This triggered Mark to approach the problem from a new angle. Mark’s fresh 

look helped him not only solve the problem, but also see induction itself in a new way. His in-

the-moment reflection about his solution was central to his growth in understanding. Also, it 

seems he was not completely convinced of his original solution. When I tried to articulate my 

concern with his proof, he finished my sentence with the adjective vague. It did not take much 

convincing to get Mark to improve his proof. This makes sense considering his working style of 

proving and then reflecting on the validity of the proof. 

 As with the De Morgan’s law example, Mark’s personal questions about his solution 

helped him grow in his understanding. However, this time the growth was more substantive 

because it is growth in Mark’s conception of induction itself. In order to make his solution 

clearer and more concise, he revised how he thought about induction itself. 

Sarah 

 Introduction. Sarah was a sophomore from New Hampshire. She was majoring in 

actuarial science with a math minor. She had taken several math courses: linear algebra, Calculus 

I and II, and multivariable Calculus. She was involved with IMPACT, a faculty advised research 

group for undergraduates. During the first interview, I asked if she had seen induction in 

IMPACT. She said she had, but did not understand induction when first introduced. She said that 



 21 

she had only mimicked what others had done. We talked about how her conception had changed 

since then. The transcript of this exchange will be presented later. 

 Initial Interview. During the initial interview, Sarah attempted proofs of the following 

three results: the formula of the sum of the first n odd integers, generalized De Morgan’s law, 

and finite subsets of the real numbers have a largest element. The first two she was able to do, 

but she was not able to come up with a proof for the third. Two interesting features came up in 

the initial interview. First, Sarah’s difficulties centered on technical details and novel problem 

situations, not on induction itself. Second, an important part of induction for Sarah seemed to be 

building a particular set at the beginning of each proof. 

 The first feature of her problem solving process was that she did not have any difficulty 

with the induction part of the proofs, just with technical details and novel situations. In the odd 

integers problem she had trouble with some of the symbolic manipulations. However, she was 

able to explain how induction proved the formula for all n. The hardest part for Sarah of proving 

De Morgan’s law was the proof of the law for two sets. Proving the law for k+1 sets assuming it 

holds for k sets, the induction step, posed no problem to her, even though she said she had never 

done a problem like it before. When attempting the largest element problem, she mentioned 

several times that she did not have experience proving these types of problems by induction. 

 The second feature was that when she tried the induction problems, she would first write 

out, using set builder notation, a subset of the natural numbers that had the property she was 

trying to prove applied to all natural numbers. This is how her instructor introduced the concept 

to the class. First one writes this set, then one proves the set contains all the natural numbers. Her 

consistency in giving this preamble to the proof is evidence that she saw this as important to the 

proof. Later, this became less important for her. 
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 Exit Interview. Sarah’s growth in her conception of induction occurred in when 

induction could be applied. This was revealed in the exit interview when she watched and 

responded to a clip from her initial interview. For Sarah, the trigger was not a single event, as it 

was for Mark. Rather her growth was triggered by exposure to rich induction problems. 

 In the clip from the initial interview Sarah watched, she basically described her 

understanding of induction. I showed her this clip because I wanted to see if she would describe 

things differently after her new experiences with induction. While she said her understanding 

was mostly the same, she mentioned her view of when induction could be used had broadened. 

First I present the transcript of the clip she is responding to, her response to the clip follows. 

Clip from interview one 
Sarah: ’Cause like, for IMPACT, we did, like I would do a proof and it would 
show, like I didn’t get why, like, you assume it’s true for, like, one or something, 
and then you do it for, so you assume it’s true for some random thing, and then 
you show that the next one would be true, and that didn’t make sense to me how 
that proved why everything was then true, the whole like sequence or whatever 
you were proving. So that didn’t make sense to me. But then doing it in class. I 
guess, when we just, he started doing more examples, is showing that it is like a 
sequence that we were proving or something like that. (John: Um-hmm) And then 
you’d show it’s true for one. And then, you’d show like for some random k, and 
then for the next one. And that made more sense to me, ‘cause then I realized that 
like, you could apply that to like the base case, and then, show that the next one is 
true and then the next one and keep going. So, that’s what made it click for me. 
 
Response to Clip 
Sarah: Okay. Umm . . . . I  think [my understanding] it’s kind of the same. Except 
now, like, because of the problems that we did when we all worked together 
(John: uh-huh), umm, I’ve seen just more how it can be used (John: Ok), and that 
makes me understand it better still, I think. ’Cause before I just thought that, I 
only, like, understood how you would apply it to like a series really I guess. But 
now, having, having seen it done with other examples, I see how you break it 
down and then kind of, would have to show by induction, like, with like a series, 
or something, kind of. I don’t know if that was clear. 
 
John: What do you mean by a series or something? 
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Sarah: So, it’s not, you wouldn’t necessarily break down the problems that we did 
into series, or like, but it’s, it’s a pattern that you would show, (John: ok) and by 
like the pattern is how you would show, like, you can show it’s true by induction. 
 
John: Ok, How does that differ from… 
 
Sarah: From what I thought before? Like before, I always, was stuck, in like, like, 
uh, like, express it mathematically. Like I, I didn’t know how to do it not with 
just, I don’t know, like, hmm… 
 
John: What do you mean by express it mathematically? 
 
Sarah: So, like I would write it all out in symbols. And be like this is the base case 
and this is the next case, and this the next case, and this is the next case. (John: 
Ok) But, and I didn’t think that you could generalize it to be like, well, think of 
this as your base case. (John: Uh-huh) Like, I thought the base case would be like 
for n equals 1 or for the first whatever the thing was defined. I guess it’s still is 
kinda the same, I just hadn’t seen it been applied to like more of a pattern than 
like some kind of series in mathematics. 
 
[We continue our discussion to try to clarify how her understanding has changed. 
For the full transcript see the appendix. Eventually we proceed with the 
following.] 
 
John: So I guess, umm, what I’m hearing you say, tell me if I’m right or wrong 
(Sarah: Ok), is that umm, before there were, there was, umm, maybe some sort of 
formula that (Sarah: yeah) you (Sarah: right) were trying to prove (Sarah: yeah). 
So you could kind of uhh . . 
 
Sarah: You just (John: mess . . .) you knew what you were arriving at and you 
knew what started with and you just kind of get there. Like, it was just systematic 
like plug this in do this swap this around and then you could get there or 
something. 
 
John: Yeah, (Sarah: Whereas) Go ahead 
 
Sarah: Whereas, now it’s just you have more, you want to see if something is true 
and so you’re, ummm . . . It’s like not a formula you’re getting to, but you’re just 
showing it would be true in any case. 
 

 I think a reason why the change that had just taken place was difficult for Sarah to 

describe is because her knowledge of induction did not change, but her knowledge about 

induction changed. She had added a new dimension to her understanding. While induction is still 
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induction, it can now apply to a much larger class of problems and be used to explore, not just to 

verify. 

 Discussion. For Sarah, before participation in the study, induction seemed to be a 

straightforward game of symbol manipulation. While she understood why induction proved the 

claim, the technique was limited in scope. She moved beyond this view, broadening her 

conception of when induction could be applied. During the exit interview, she said that she no 

longer needed to preface her argument of De Morgan’s law with a set describing the subset of 

natural numbers that had the property law’s properties. This provides more evidence, that for 

Sarah, induction had moved beyond a formal exercise. 

 Her exposure to the chessboard and other rich induction problems helped her realize that 

induction can be applied to a variety of problems and that it is not always a straightforward 

manipulation. This exposure to rich problems along with her attempts to solve them and write up 

their solutions constitutes the trigger in Sarah’s case. This trigger stimulated personal reflections 

on induction. In particular, Sarah began to think about the variety of situations when induction 

can be used. 

Alexander 

 Introduction. Alexander was a freshman at BYU studying mathematics. He was from 

Normal, Illinois. He had taken classes the summer previous to this study, at which time he joined 

IMPACT, a faculty advised undergraduate research program. Through IMPACT he had been 

introduced to many mathematical topics, including induction proofs. 

 Initial Interview. In the initial interview, Alexander was able to do most of the 

problems. The data collected in this interview gives insight into his understanding of induction 

and illustrates his desire to use formalities and understand mathematical concepts from a formal 
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perspective. He did the sum of the first odd integers very efficiently, making use of summation 

notation. He was able to do the inequality problem well. While he did make a small error with 

the base case, overall his general idea with generalized De Morgan’s law was correct. Finally, he 

did not prove that every finite subset of the real numbers has a largest element, but instead 

proved if a subset has a largest element it is unique. 

 Perhaps more important than identifying which problems Alexander could do on his feet 

is his understanding of induction more generally. When asked directly what his understanding of 

induction was, he simply explained what one needs to prove in an induction proof. More 

revealing of his actual understanding are two responses to other questions. First, I asked him if 

induction problems were convincing to him. 

John: The proof worked out well, but like are induction proofs convincing to you? 
Like, and if so, or why or why not? 
 
Alexander: Uh, (pause) let’s see here. 
 
John: Does, does my question make sense? 
 
Alexander: Yeah, it does make sense. I’m trying, I’m, I’m trying to actually think 
about your question.  
 
John: Ok 
 
Alexander: Alright. How convincing... Uh… Personally they’re the least 
convincing of all the methods of proof, (John: Ok) because it seems that you’re, 
because you’re making this, you’re making the k step assumption, where in the, 
where all the other methods of proof, you, we could prove they work by truth 
tables, and this is by, uh, I’ve never seen a proof on why mathematical induction 
works. Where everything else was proved why it works in class. 
 
John: Ok, um.. 
 
Alexander: Except we, we did look at the axioms of real numbers, but I haven’t 
worked too much into that. 
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 I observed the classes on induction that Alexander participated in and I believe that when 

Alexander said the axioms of real numbers he is referring to Peano’s axioms. It seems that 

Alexander craved a formal argument for why induction works. His inclination for formalization 

came up in other contexts as well. As mentioned earlier, he chose to use summation notation for 

the sum of squares proof, something neither of the other students did. Also, while working in the 

group session, he unexpectedly used the word bijection instead of explaining informally that two 

sets had the same cardinality, even though the sets were set in a real world context. Also, he 

chose not to use induction on the greatest element problem because the real numbers do not have 

a clearly defined successor function. This is the first time successor functions came up with 

Alexander, a concept that seems to be important for him judging from him bringing up the idea 

multiple times throughout the interviews. Successors are another abstract, formal idea that gets at 

the heart of why induction works. 

 Even though at this point he seems to still be searching for that formalization of 

induction, he does have an intuitive understanding of why induction works. This is demonstrated 

by the response that follows. After working on the inequality problem, where the base case is 

four, I asked him why he could assume the k case in his proof. 

Alexander: Give me a moment… (pause) All right. Uh, We can do it because, uh, 
since we’ve proved the minimum case, that it’s, uh, necessarily true. Like, 
because, what we’re trying to show is that the next number is, uh, going to follow 
that same formula. So, when we’re, uh, assuming k, we’re not really assuming, 
like there’s not really this too much that we’re assuming, ’cause the main thing 
we’re trying to prove is that for the next, nat, uh, next, uh, natural number, that 
it’s going to be true. So, if 4, then 5, 6, 7, 8 also. And by assuming this, uh, by 
assuming the k step, that doesn’t really prove anything nor does it add hindrance 
to it. 
 

Alexander demonstrated that he understood that through repeated use of the induction step and 

the base case you can get from 4 to whatever number you wish. 
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 Another important point from Alexander’s initial interview is that when I asked him if he 

had any questions about induction, he had one. He wondered why Polya’s proof of all horses 

being the same color was false. This problem did not come up in the Math 290 class that he 

attended. This shows that he actively reflected on mathematics meaning he wondered about 

mathematical problems that he was exposed to outside the classroom environment and wanted to 

resolve them. 

 Exit Interview. In the exit interview, I asked him to show me his solution of the 

chessboard problem. He proceeded by induction, showed the n=1 case, and then assumed the n 

case. He drew the n+1 case, and split it up into four quadrants. He tiled the one with the missing 

block using the induction hypothesis. He looked at the three one-by-one squares that belong to 

the three corners where the quadrants come together, but abandoned this. He showed that after 

you remove the quadrant with the missing piece, the L that is left over can be broken into four 

smaller L’s in the same way Mark broke up the chessboard with one quadrant removed. This of 

course leaves the question, how do you know you can tile those smaller L’s. I asked him this and 

our discussion follows. 

Alexander: Umm.. We… I was… umm… by induction. Because, if we have, uhh, 
we can do it for, ok so, here’s a base case. (Points to a previously drawn figure of 
a tiled 4x4 chessboard) 
 
John: Where? 
 
(Alexander erases a quadrant from the figure, leaving behind Figure 4.)  
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Figure 4. Alexander illustrates his base case. 

 
Alexander: Where, uh, uh, n equals 2. Because it’s 2 n minus one, so you get one, 
and zero’s not a natural number. So these are all, one, uh, these are all one, sq, 
these are all one by one (points to the individual squares in the picture). The 
whole thing was this (gestures to the whole picture). Each of this is one tile 
(Points to individual squares). And since we’re filling in with these looking things 
(points to another picture of three large blocks in the shape of an L), then you can 
do it with the n equals 2 case. (John: k) And then, for the, so assume you can do it 
for the, you can make these tiles for the n case. And then for the n plus one case, 
(draws a new picture, of three blocks in the shape of an L) where, where these are 
all n by n (Labels each of the three blocks “n x”),  
 
John: You mean 2 to the n by 2 to the n? 
 
Alexander: Yeah. (Revises some labels) Uh, (Subdivides the picture to look like 
Figure 5) 

 
Figure 5. Alexander’s n+1 case. 
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Uh, This is a smaller version (points to the three small blocks on the inside corner 
of the L). So this is. So these tiles, like, this red one right here, so we’re taking 
this red one (draws an arrow and another red L, see Figure 6), is, each of these is 
2 to n minus one by 2 to the n minus one. So, we know we can do that by, uh, 
hypothesis. And then, so we can do each of those (Draws in red lines as he says 
“each of those” see Figure 7). 
 
 

 
Figure 6. Alexander demonstrates where the n case is found in the n+ 1 case. 

 

 
Figure 7. Alexander shows 4 “n” cases. 

 

 Alexander found a clever proof of the chessboard problem that involved two induction 

arguments. As with Mark, the triggering event was asking him to clarify or make more precise a 
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step in the argument. However, in this example it is not clear that Alexander is learning 

something new about induction in general, but rather only clarifying his argument. 

 However, this does not mean that Alexander’s conception of induction did not change 

throughout the study. In the initial interview, he described induction as the least convincing form 

of proof. In the final interview, I asked him to view that clip and I asked him if his thinking had 

changed. While watching this clip he smiled and laughed, and at the end, without hesitation, he 

said they are convincing. I asked him why, and he said he had seen a proof, in class, based on 

successor functions. Again, I think what he referred to is the discussion on Peano’s axioms. 

While he said he did not think about the ideas between the interviews, he said in his deductive 

logic class he worked with successor functions and had to prove things about them. So he had 

thought about the ideas, just in another context. The trigger here was his deductive logic class. 

However, the class did not talk about induction specifically. This suggests it was only a trigger 

for Alexander because of his personal reflections about mathematics. At the very least, 

Alexander took an active role in making the connections. 

 Discussion. For Alexander, what stimulated the most significant change in his 

understanding of induction was his personal questions about induction, in particular its 

formalization. Since he was exposed to successor functions in his deductive logic class, he 

thought about these functions more than he would have otherwise. This reflection about 

mathematics allowed him to resolve his personal questions. Alexander was not convinced until 

he felt comfortable with the formalization. He was the one who pushed himself to make those 

connections. 
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 The research techniques employed in this study, unfortunately, did not allow me to see 

what went on in his deductive logic class, or for that matter, any events outside the classroom 

and project that may have acted as triggers.  
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Chapter 7: Conclusions 

 While each of the students in the study had different experiences and grew in different 

ways, the thematic axes (triggering events, personal questions about mathematics, and personal 

questions about a particular solution) highlighted patterns in the narratives and from these 

patterns a theoretical perspective emerged. Reflection, both on mathematics in general and about 

specific problems, was central to each student's growth. The personal reflections of students and 

triggering events influenced each other in the following way. The questions students wondered 

about impacted which trigger might elicit growth, while triggers caused students to rethink 

assumptions and reflect on mathematics or specific problems. The reflections through which 

triggers led to growth, along with the reflections that were subsequent results of triggering events 

can be understood to constitute an investigative orientation. Each narrative reflects a different 

investigative orientation, motivated by different personal needs as well as different triggering 

events. Significantly, each investigative orientation affected what kind of knowledge was 

constructed. 

 Part of Mark’s investigative orientation was his tendency to question his own proofs. As 

Mark reflected in the moment of actually proving something, he was able to revise his proof to 

make it clearer. This helped him understand induction in general better, as well as, the problem 

he was solving. Mark’s tendency to reflect on the validity of his solution provided fertile ground 

for triggers that take the form of questions that ask for greater precision. In Mark’s case, his 

personal questions influenced what triggers stimulated growth and he was able to construct new 

knowledge that allowed him to provide a precise solution to the problem at hand. While this 

knowledge will be useful to Mark in solving many induction problems, it was built in the context 
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of solving a particular problem because his personal reflections were in the context of particular 

problems. 

 Sarah expanded her conception of what induction could apply to by her exposure to rich, 

complex problems, which went beyond symbol manipulation. While Sarah’s initial personal 

questions did not come up in the interviews, it is clear that the tasks she engaged in raised 

questions for her. Her questions centered on when induction could be used, her conception of 

which expanded because of the tasks she participated in. In Sarah’s case, the trigger affected 

what reflections took place and resulted in a different kind of knowledge construction, 

knowledge about induction instead of knowledge of induction. 

 Alexander also had the experience of revising his thinking in the moment to help clarify 

his argument. Alexander also had a desire to understand induction at a formal, axiomatic level. 

He felt more comfortable with the formalization of induction as he thought about topics from his 

logic class. Thus, experiences and reflection outside the mathematics classroom were important 

to his growth. Alexander wanted to formalize induction to answer his personal questions about 

what induction is, why it works, and how to avoid mistakes. This allowed him take experiences 

from a class not directly related to mathematical induction and learn from them. Alexander’s 

situation is more similar to Mark’s than to Sarah’s in that his personal questions affected what 

events triggered growth. However, it is different from Mark’s in that Alexander’s personal 

questions had to do with the formal underpinnings of induction and so Alexander constructed 

knowledge related to these formalities. 

 Even though each student was exposed to the same stimuli, i.e. the same classroom 

process, the same text, and the same problems assigned, each student built a different kind of 

knowledge, in part because their personal backgrounds, and the inquiries that were built from 
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these specific backgrounds, contrasted sharply.  Such variation suggests strongly that because 

students can have strikingly different experiences, even though they have been placed in the 

same learning situation, instruction could benefit by taking such differences into account, and 

helping students build from them. One way this could happen is the instructor could allow 

students to pursue their worthwhile personal questions. 
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Chapter 8: Discussion 

 The results so far have several potential implications for researchers and teachers. First, 

the analysis above suggests theoretical perspectives that could, at least to some extent, suggest a 

unifying context for contrasting findings of some prior studies. Avital and Hansen (1976) gave 

suggestions for how to teach induction that focused on student exploration. Wistedt and 

Brattström (2005) emphasized the importance of the teacher in the learning process and said that 

student exploration was not enough. The findings here suggest ways to make sense of this 

seeming disparity. As we have seen above, exploration allows students to become more sensitive 

to their own investigative orientations, and hence direct personal inquiry to areas where they 

might be ready to build further understanding. However, each student, as an individual, may not 

know which questions to ask to trigger growth for other students. 

 Second, the findings here invite us to reconsider several widely held assumptions. We 

might be cautious about studies that involve stage theories whose underlying frameworks make 

generalizations across student populations without considering significant, indeed fundamental, 

individual differences. Different students, as we've seen, may not go through the same 

developmental stages, or respond to given tasks in the same way. For example, Harel (2008, pg 

122) distinguishes between types of problems that require the solver to assume the hypothesis for 

an object, versus those that require the assumption for a whole class of objects, but the analysis 

of Mark above suggests that Harel’s framework needs to be refined.  To be specific, Harel’s 

distinction carries an unstated prior assumption: that the type of problem is an attribute of the 

problem, independent of the student working on that problem.  For Mark, however, proving 

generalized De Morgan’s law was not a problem. To prove a generalized De Morgan’s law, the 

solver needs to make, and then build from, an assumption about “sets.” It is unclear to me if 
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Harel would consider Generalized De Morgan’s law a problem of the first or second type, i.e. if 

the solver has to make an assumption about an object or about a class of objects. Harel's 

classification depends on whether a set is understood to be an object or a class of objects. This 

distinction is impossible to make without considering the student solving the problem. If a set is 

an object for the student, it is a problem of the first type. If a set is a class of objects for the 

student, it is a problem of the second type. That one cannot classify such problems without 

considering the student working on the problem, however, does not invalidate prior research 

such as Harel's. It is certainly possible that stages of the kind Harel has emphasized might appear 

as trends, in the aggregate, across samples of many students. Even so, on the bases of the cases 

studied here, one should be careful not to make assumptions based on aggregate behavior about 

how particular students may approach a given problem. Also, it may well be best to let, or, better 

still, encourage students to pursue personal lines of inquiry, to explore topics that they have 

personal questions about, and so keep instruction personal.  In particular, based on the findings 

here, I believe we have good reason to examine critically the widely held idea that there exists a 

single optimum curriculum or classroom methodology that can lead students to build ideas in a 

specific way. 

 Second, the work reported here suggests possibilities for further investigation. The 

present conclusions build from a particular interpretive approach, derived from close analysis of 

work by a small student sample.  Hence not just the findings here, but also the interpretive 

approach they build from, could be tested with a larger student sample and appropriately adapted 

methods.  One might attempt, for example, with a larger student sample, to locate widespread, 

statistically significant trends or patterns across different students’ investigative orientations, 

hence to explore to what extent each student’s orientation is completely personal or unique. 
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Another place to look for trends or patterns might be in how students respond to given triggers. 

Some might be more effective than others, through the ways that they elicit growth across a 

variety of personal investigative orientations. 

 With the students in this study, growth occurred when they reflected, often during 

research interviews in which they were invited to explain their thinking and its motivations. A 

teacher can encourage such reflection by pushing students to make arguments more precise, or 

by posing considered, sympathetic questions about why a particular technique or procedure 

works. Hopefully, this may not just invite students to reflect on the particular problem at hand, 

but will also help them to develop or refine existing habits of reflection. 
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Appendix A: Questionnaire 

Questionnaire 

Name: 
 
Year at BYU: 
 
What prior experience have you had with mathematical induction, if any? 
 
 
 
 
Briefly describe your understanding of mathematical induction: 
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Appendix B: Full Transcript of Sarah’s Event 

 

Sarah (video): ‘Cause like, for impact, we did, like I would a proof and it would show, like I 
didn’t get why, like, you assume it’s true for, like, one or something, and then you do it for, so 
you assume it’s true for some random thing, and then you show that the next one would be true, 
and that didn’t make sense to me how that proved why everything was then true, like the whole 
sequence or whatever you’re proving. So that didn’t make sense to me. But then doing it in class, 
I guess, when he just started doing more examples, is showing more that it was a sequence or 
something that we were proving or something like that. Like you’d show it was true for one. 
Then for some random k, and then for the next one. That made more sense to me, ‘cause you 
could just use it on the base case. Show the next one and then the next one and keep going. 
That’s what made it click for me. 
 
I ask her if her understanding is different 
 
Sarah: Okay. Umm…I think it’s kind of the same. Except now, like, because of the problems that 
we did when we all worked together (John: uh-huh), umm, I’ve seen just more how it can be 
used (ok), and that makes me understand it better still, I think. ‘Cause before I just thought that, I 
only, like, understood how you would apply it to like a series really I guess. But now, having, 
having seen it done with other examples, I see how you break it down and then kind of, would 
have to show by induction, like, with like a series, or something, kind of. I don’t know if that was 
clear. 
 
John: What do you mean by a series or something? 
 
Sarah: So, it’s not, you wouldn’t necessarily break down the problems that we did into series, or 
like, but it’s, it’s a pattern that you would show, (John: ok) and by like the pattern is how you 
would show, like, you can show it’s true by induction. 
 
John: Ok, How does that differ from… 
 
Sarah: From what I thought before? Like before, I always, was stuck, in like, like, uh, like, 
express it mathematically. Like I, I didn’t know how to do it not with just, I don’t know, like, 
hmm… 
 
John: What do you mean by express it mathematically? 
 
Sarah: So, like I would write it all out in symbols. And be like this is the base case and this is the 
next case, and this the next case, and this is the next case. (ok) But, and I didn’t think that you 
could generalize it to be like, well, think of this as your base case. (uh-huh) Like, I thought the 
base case would be like for n equals 1 or for the first whatever the thing was defined. I guess it’s 
still is kinda the same, I just hadn’t seen it been applied to like more of a pattern than like some 
kind of series in mathematics. 
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John: When you say series do you mean like (Sarah: By series I mean like) a summation? 
 
Sarah: Yeah, you can, you can express this as, this like series as a summation or something, and 
then you prove that that expressed what you had before, by induction. 
 
John: Ok 
 
Sarah: I don’t know if that makes sense either. 
 
John: Umm, well, I mean I can guess what you’re saying, I guess 
 
Sarah: Kind of 
 
John: So maybe. 
 
Sarah: Like, for the most part it’s the same. 
 
John: Ok 
 
Sarah: It’s, It’s just like (John: And in what ways…) I can see more how’s it’s been applied, like 
it’s becoming more clear, like I see now more the ways you can use it. 
 
John: Ok, so I guess my question is, umm, in what ways is it the same for you and in, and in 
what ways, like, umm, you’ve mentioned that it was like a different, I don’t kind of a scenario 
maybe? (yeah) Is that a fair way? (yeah) So, in like, in what ways is the chessboard problem 
different from the types of problems that you’ve done before? 
 
Sarah: Ok. So, well the chessboard problem was more, like, I guess I just mean you can’t, the 
chessboard problem you couldn’t just write out, well like, having like a two to the n by a two to 
the n and then you just plug in like the different numbers, it wasn’t, like less, it’s not even 
computational, the way I did it before, but more just, you can write down a definite, like this and 
then this and then this, whereas you’d have to use more words, and explain with the chessboard 
problem, or something, or show with pictures that it works, at least that’s the only, that’s what I 
got from what we did on Saturday. 
 
John: Ok, good. 
 
Sarah: And so just seeing that like induction, ‘Cause I hadn’t, I’d only seen it applied, to just 
when you would just express it in numbers and symbols. So I hadn’t seen like how you’d use it 
be like, uhh.., I don’t think I’m making more sense still 
 
John: No, I do think, I, I think you, you 
 
Sarah: But… 
 
John: Go ahead 
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Sarah: I don’t know 
 
John: So I guess, umm, what I’m hearing you say, tell me if I’m right or wrong (ok), is that 
umm, before there were, there was, umm, maybe some sort of formula that (yeah) you (right) 
were trying to prove (yeah). So you could kind of uhh.. 
 
Sarah: You just (mess…) you knew what you were arriving at and you knew what started with 
and you just kind of get there. Like, it was just systematic like plug this in do this swap this 
around and then you could get there or something. 
 
John: Yeah, (Whereas) Go ahead 
 
Sarah: Whereas, now it’s just you have more, you want to see if something is true and so you’re, 
ummm.., It’s like not a formula you’re getting to, but you’re just showing it would be true in any 
case. 
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