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ABSTRACT 

STUDENT TEACHER KNOWLEDGE AND ITS IMPACT ON TASK DESIGN 
 
 
 

Tenille Cannon 

Department of Mathematics Education 

Master of Arts 
 
 
 

 This study investigated how student teachers used their mathematical knowledge 

for teaching and pedagogical knowledge to design and modify mathematical tasks.  It 

also examined the relationship between teacher knowledge and the cognitive demands of 

a task.  The study relied heavily on the framework in Hill, Ball, and Shilling (2008), 

which describes the different domains of knowledge in mathematical knowledge for 

teaching, and the framework on the cognitive demands of mathematical tasks in Stein, 

Smith, Henningsen, and Silver (2000).   

 Results of the study indicated that the student teachers used their common content 

knowledge when they lacked sufficient knowledge in other domains, especially 

specialized content knowledge, to perform a particular job of teaching.  There was often a 

decrease in the cognitive demands of a task when it was modified by the student teachers.  

These drops were often associated with a lack of specialized content knowledge. 
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Introduction 

 Teachers’ mathematical content knowledge impacts their classroom behavior 

which, in turn, indirectly affects student achievement (Fennema & Franke, 1992; Stein, 

Remillard, & Smith, 2007).  However, establishing a direct link between teachers’ 

knowledge and student achievement has proven elusive (Ball & Bass, 2000; Carpenter, 

Fennema, Peterson, & Carey, 1988; Fennema & Franke, 1992).  Although a link has not 

yet been clearly established, it is likely that one exists and researchers continually seek to 

establish a connection. 

The research that has attempted to ascertain a direct correlation between student 

achievement and teacher knowledge has proved unfruitful, at least in part, because 

researchers failed to account teacher classroom practices.  Researchers often used global 

measures to assess knowledge, which removed knowledge from the practice of teaching 

(Ball, 1990b; Ma, 1999).  In their review of relevant literature, Fennama and Franke 

(1992) cited several examples of how measuring mathematical knowledge according to 

the number of completed mathematics courses was invalid (see also National Research 

Council, 2001).  This methodology implicitly assumed that mathematics coursework 

provided prospective teachers with all the necessary knowledge for teaching mathematics 

(Ball, 1990b).  Other studies have defined the needed mathematical knowledge for 

teaching according to the overall content of the curriculum; similarly, this approach 

tacitly assumes that the only knowledge needed for teaching is that included in the 

curriculum, oversimplifying the situation (Ball & Bass, 2000).  These methodologies are 

further flawed by their conception of knowledge.  The notion that knowledge is an 

external object that can be acquired through transfer is inherent in the generation of lists 
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of content to be known by preservice teachers.  This conception of knowledge and the 

accompanying methodologies, do not explain the use and creation of knowledge in 

practice.  If we are to gain a better understanding of how teachers use their knowledge in 

the act of teaching, a different epistemological theory and methodology should be 

considered. 

 Hill, Schilling, and Ball (2004) claimed that researchers should focus on how 

teachers use their knowledge rather than on quantities of possessed knowledge.  By 

focusing on how teachers apply knowledge in different situations, researchers may learn 

how knowledge impacts teachers’ behaviors.  However, many of the studies focusing on 

the use of teacher knowledge in practice attempt to examine several aspects of teacher 

practice simultaneously: preparation, instruction, assessment and reflection (e.g., Kahan, 

Cooper, & Bethea, 2003; Tirosh, Even, & Robinson, 1998).   Such an approach to 

studying teacher knowledge may be beneficial; however, there need to be more studies 

that examine only one aspect of teaching.  Furthermore, by investigating only one area of 

teacher practice, researchers can look at teacher knowledge in greater depth.  Thus, this 

study will focus on the aspect of preparation. 

 The National Council of Teachers of Mathematics (1991; 2007) suggested the 

importance of posing worthwhile mathematical tasks in the classroom.  It has been 

suggested that the knowledge teachers use to implement mathematical tasks influences 

the cognitive demands of the tasks (Stein, Smith, Henningsen, & Silver, 2000).  

Furthermore, the cognitive demand of a task influences student learning (Stein et al., 

2000).  Examining how teacher knowledge impacts the cognitive demands of a task may 

provide understanding about how teacher knowledge impacts student learning.  However, 
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few studies have investigated how teachers use their knowledge to design and modify 

mathematical tasks.  This is one area of teacher practice that needs to be researched in 

conjunction with teacher knowledge.  Thus, this study will investigate the relationship 

between teacher knowledge and the design and modification of mathematical tasks. 

 Stein et al. (2000) claimed that student learning was greatest in high-level tasks.  

In order to increase student learning, teachers should strive to implement high-level tasks.  

By looking at the connection between teacher knowledge and the cognitive demands of a 

task, researchers can better describe the impact teacher knowledge has on classroom 

practice. 

 In studying teacher knowledge, it is valuable to study not only how it is used, but 

how it might develop.  As such, it is important to establish a baseline of teacher 

knowledge by studying student teachers.  Student teachers may not have the same 

knowledge base as more experienced teachers.  The inexperience of novice teachers often 

means that they lack knowledge that experienced teachers might possess.  Consequently 

student teachers will likely encounter more instances where they do not have the 

necessary knowledge.  By researching student teachers instead of practicing teachers, 

these instances will be more frequent and allow the researcher to get a better 

understanding of how knowledge is used in designing and modifying tasks as well as the 

impact knowledge has on the cognitive demands of the tasks. 

An additional problem prevalent in the research is the abundance of research on 

elementary teachers rather than secondary mathematics teachers.  Even in studies 

examining both groups (e.g, Ball, 1990b), it is difficult to differentiate the conclusions 

drawn for the two different groups.  The transfer of conclusions regarding knowledge and 
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practice from elementary to secondary teachers is problematic because the groups likely 

have different knowledge bases due to differences in preparation, training, and practice. 

Rationale 

Given the difficulty of linking teacher knowledge to student achievement this 

research project was intended to contribute to the formation of a connection between the 

two variables by looking at how teachers used their knowledge in the classroom, 

specifically how student teachers used their knowledge to plan and modify worthwhile 

mathematical tasks.  The research project chose to investigate the cognitive demands of 

tasks because of the importance of high levels of cognitive demand in student learning.  

Additionally, this research project intended to add to the sparse field of research on 

secondary mathematics preservice teachers’ knowledge as well as on the impact such 

knowledge has on the cognitive demands of a task.   

Research Questions 

 This study focused on how student teachers used their knowledge in the practice 

of designing and modifying mathematical tasks.  The first question addressed how their 

knowledge was used; the second question addressed the impact their knowledge had on 

the cognitive demands of the task.   

The specific research questions were: 

• How does a student teacher use their mathematical knowledge for teaching 

and pedagogical knowledge to design or modify a mathematical task? 

• How does the student teachers’ use of their mathematical knowledge for 

teaching and pedagogical knowledge affect the cognitive demand of the 

task?  

  



 5

Literature Review and Theoretical Framework 

 The research area of teacher knowledge is discussed first in this chapter, looking 

at both what the research has found about mathematics teachers’ knowledge as well as 

proposed theoretical frameworks for researching teacher knowledge.  Next, the chapter 

addresses findings of and frameworks for researching mathematical tasks.  The section 

integrating the two areas of research discusses the few studies investigating teacher 

knowledge and mathematical tasks as well as the rich research potential of integrating the 

two areas. 

Teacher Knowledge 

 Teacher knowledge has long been considered critical to effective teaching.  In 

Education and Experience, Dewey (1938) frequently discussed the role of the teacher as 

the more mature and knowledgeable individual in the classroom.  In his discussion on 

creating a community of learners, Dewey (1938) stated,  

It requires thought and planning ahead.  The educator is responsible for a 
knowledge of individuals and for a knowledge of subject-matter that will enable 
activities to be selected which lend themselves to social organization, an 
organization in which all individuals have an opportunity to contribute something, 
and in which the activities in which all participate are the chief carrier of control. 
(p. 56) 

 
This quote specifically addresses how to establish a classroom environment where 

positive and productive discourse can occur, and the role teacher knowledge plays in such 

an endeavor.  The knowledge Dewey mentioned can be generalized to all aspects of 

teaching; the teacher must have knowledge of students, in general and as individuals, as 

well as a rich knowledge of the content.   

 Teacher knowledge continues to receive attention as policy makers and 

researchers attempt to improve student achievement and learning.  “Knowledge of 
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teaching, of mathematics, and of students is an essential aspect of what a teacher needs to 

know to be successful” (NCTM, 2007, p. 16).  In order to teach successfully, teachers 

need to have a firm knowledge base; however, research has indicated that many teachers 

lack the knowledge needed for teaching mathematics (Mewborn, 2003).  In a review of 

literature, Mewborn (2003) found overwhelming evidence in the literature that teachers 

of mathematics had strong procedural knowledge, but possessed little or no conceptual 

knowledge of mathematics. 

 Many studies have pointed to a lack of teacher knowledge in preservice and 

practicing teachers.  In a study on preservice elementary and secondary teachers, Ball 

(1990b) found that both sets of preservice teachers were unable to create a story 

representing fractional division.  The secondary teachers were also unable to explain why 

division by zero is undefined.  She found that the preservice teachers’ content knowledge 

was compartmentalized and procedural.  Even (1993) found similar results with respect 

to preservice secondary mathematics teachers and the concept of function.  She found 

that some of the preservice teachers did not have an understanding of the modern 

definition of a function and many of the preservice teachers could not explain why 

univalence was an important aspect of the definition.  Additionally, Tirosh et al. (1998) 

found that some practicing middle school teachers were unaware of common mistakes 

students make when solving equations, even after years of experience. 

 In order to gain a better understanding of the knowledge needed to teach 

mathematics, some researchers have compared the knowledge of Chinese teachers with 

U.S. teachers.  Ma (1999) found that U.S. elementary teachers knowledge was 

compartmentalized and procedural compared to their Chinese counterparts whose 
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knowledge was interconnected and rooted in the underlying mathematics.  An, Kulm, and 

Zhonghe (2004) found similar differences in the knowledge of the two groups, and also 

found differences in the teaching practices of the two groups.  They found that the 

Chinese teachers focused on developing both conceptual and procedural knowledge 

through the use of more traditional practices whereas the U.S. teachers advocated 

creativity and inquiry to help students develop mathematical understanding. 

 Although much of the research has pointed to a lack of teacher knowledge, one 

study indicated that there may be a correlation between teacher knowledge and practice.  

In a study comparing secondary preservice teachers’ mathematical content knowledge to 

their lesson plans and transcripts of their lessons, Kahan, Cooper, and Bethea (2003) 

found that preservice teachers with strong mathematical content knowledge produced 

strong lessons.  Similarly, strong mathematical content knowledge was also correlated 

with strong lesson transcripts. 

 Mathematical content knowledge is necessary and important for effective 

teaching; however, one study showed that teachers need more than just a strong 

knowledge of the content in order to teach mathematics.  Thompson and Thompson 

(1996; 1994) found that although the teacher possessed a strong understanding of rate, he 

was unable to communicate that understanding in a way that would help a student 

develop a conceptual understanding of rate.  The researchers found that the teacher often 

projected his understanding of rate into what the student’s explanations.   

 Both Kahan et al. (2003) and Thompson et al. (1996; 1994) relied on the 

perspective that knowledge is situated in practice and can be inferred from the actions of 

teachers.  In this situated cognition view, “knowing is viewed as the practices of a 
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community and the abilities of individuals to participate in those practices; learning is the 

strengthening of those practices and participatory abilities” (Even & Tirosh, 2002, p. 

232).  Just as it is impossible to learn mathematics without doing what mathematicians do 

(Lave, 1997), it is impossible to learn to teach mathematics without doing what 

mathematics teachers do.  Similarly, it is impossible to study how mathematics teachers 

use their knowledge without studying their use of that knowledge in the practice of 

teaching.  While studies using methods segregating knowledge from the act of teaching to 

measure and understand a teacher’s mathematical knowledge for teaching may provide 

some insights, studying a teacher’s mathematical knowledge for teaching in situ will 

likely provide greater insights about their knowledge. 

 Several frameworks on teacher knowledge have been proposed.  In addition to 

reviewing what the literature has said about the quantity and quality of teacher 

knowledge, this chapter discusses what the literature has said about how to study teacher 

knowledge.  The next sections describe some of the more prominent frameworks on 

teacher knowledge. 

Pedagogical Content Knowledge 

In early research, pedagogical knowledge and content knowledge were considered 

separate entities.  In simple terms, content knowledge included knowledge obtained in 

content-specific courses, while general pedagogical knowledge consisted of the subject 

matter taught in education classes (Ball & Bass, 2000).  However, Shulman (1986) 

proposed that the two knowledge domains interacted to create another aspect of 

knowledge, termed pedagogical content knowledge.   
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In his framework of teacher knowledge, Shulman (1986) identified three 

categories: content knowledge, pedagogical content knowledge, and curricular 

knowledge.  Content knowledge referred to the knowledge of the subject-matter the 

teacher was to teach.  It extended beyond facts and principles of the subject and into the 

underlying structures of the subject, i.e. the organization of the subject and the 

establishment of truth in the subject. 

Shulman (1986) described pedagogical content knowledge as subject matter 

knowledge that is pertinent to the act of teaching.  “A second kind of knowledge is 

pedagogical knowledge, which goes beyond knowledge of subject matter per se to the 

dimension of subject matter knowledge for teaching” (Shulman, 1986, p. 9).  This 

definition was refined and expanded through examples.  According to Shulman, 

pedagogical content knowledge included knowledge of multiple representations in 

connection with the optimal representation needed to teach a specific topic, and 

knowledge of difficult and easy concepts for students as well as common misconceptions. 

The final category of teacher knowledge was curricular knowledge.  According to 

Shulman (1986), the curriculum included all the materials and resources available for the 

teaching of a subject, including full programs and supplementary materials.   

Additionally, the curriculum included the guides and suggestions of what should and 

should not be included in the instruction of a particular grade level.  For example, the 

standards put forth by a state as well as resources from NCTM would be included as part 

of the curriculum.  Shulman hypothesized that curricular knowledge needed for teaching 

extended beyond knowledge of the curriculum taught by the teacher to include 

knowledge of the other curricula their students were studying and the relationships 
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among the different curricula.  Similarly, teachers needed to have knowledge of the 

curriculum of previous and subsequent years.  Curricular knowledge would assist 

teachers as they ordered their curriculum for the school year. 

Shulman’s (1986) conception of teacher knowledge has been adopted and refined 

by researchers in mathematics education.  However, the detail and definitions used to 

study teacher knowledge have varied widely.  Some mathematics education studies 

provided no explicit definition of teacher knowledge (e.g., Barnett, 1991; Steele, 2005).  

Others gave broad definitions of teacher knowledge along with a few supporting 

examples (e.g., Chinnappan & Lawson, 2005; Even, 1993; Llinares, 2000; A. G. 

Thompson & Thompson, 1996; Tirosh et al., 1998; Van der Valk & Broekman, 1999).  

For example, Chinnappan et al. (2005) provided the following definitions of teacher 

knowledge. 

Mathematical content knowledge includes information such as mathematical 
concepts, rules, and associated procedures for problem solving.  Pedagogical 
knowledge refers to teachers’ understanding of their students, and the processes 
involved in teaching.  The blend of content and pedagogical knowledge includes 
understandings about why some children experience difficulties when learning a 
particular concept while others find it easy to assimilate, knowledge about useful 
ways to conceptualise and represent the chosen concept, the quality of 
explanations that teachers generate prior to and during instruction, and 
perceptions about the nature of mathematics. (p. 198) 

 
These definitions exemplify the descriptions of teacher knowledge found in many other 

studies.  They describe mathematical content knowledge as the content the teachers teach.  

General pedagogical knowledge refers to how students learn and strategies for teaching.  

Pedagogical content knowledge refers to the intersection of content and pedagogical 

knowledge.  Such definitions are broad and lack detail. 
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 Few researchers have elaborated more on Shulman’s (1986) definition of 

pedagogical content knowledge and attempted to create a model or framework for 

examining teacher knowledge (e.g, An et al., 2004; Carpenter et al., 1988; Kahan et al., 

2003).  These models were often specific to the area of teacher practice the researchers 

were studying.  Articles summarizing research on teacher knowledge also proposed 

models and frameworks for examining teacher knowledge (e.g., Even & Tirosh, 2002; 

Fennema & Franke, 1992; Graeber, 1999; NRC, 2001).  These models often suggested 

studying subcategories of teacher knowledge as well as the interaction of the different 

categories.  Commonly identified knowledge types were mathematical knowledge, 

knowledge of students, and knowledge of instructional practice (e.g., NRC, 2001). 

Profound Understanding of Fundamental Mathematics 

Ma (1999) provided another theory of mathematical teacher knowledge which has 

influenced the frameworks of other researchers in mathematics education.  She described 

teachers’ knowledge as consisting of knowledge packages (p. 113).  Only when the 

teachers’ knowledge was interconnected and rooted in the structure of mathematics were 

the knowledge packages adequate for teaching.   She termed the mathematical knowledge 

needed for teaching as profound understanding of fundamental mathematics: “By 

profound understanding I mean an understanding of the terrain of fundamental 

mathematics that is deep, broad, and thorough” (Ma, 1999, p. 120).  By depth, Ma was 

referring to conceptually connecting the mathematical topic to the structure of 

mathematics.  On the other hand, the breadth of understanding referred to connecting the 

topic to similar ideas within the structure of mathematics.  In terms of Shulman’s (1986) 

framework, profound understanding of fundamental mathematics would best align with 
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his category of content knowledge because profound understanding of fundamental 

mathematics referred exclusively to mathematical knowledge and did not include 

pedagogical knowledge.   

Mathematical Knowledge for Teaching 

Akin to profound understanding of fundamental mathematics, Ball (1990) 

identified three aspects of mathematics content knowledge.  First, it included a correct 

knowledge of both procedures and concepts in mathematics.  Second, mathematical 

content knowledge encompassed an understanding of the underlying principles related to 

the procedures and concepts.  Finally, mathematical content knowledge included a 

network of connections relating different concepts and how each concept contributed to 

the whole of mathematics.   

Ball, Lubienski, and Mewborn (2001) have elaborated on what Shulman (1986), 

Ma (1999), and Ball (1990) have discussed about teacher knowledge.  Mathematical 

knowledge for teaching refers to  

“Such knowledge is not something a mathematician would have by virtue of 
having studied advanced mathematics.  Neither would it be part of a high school 
social studies teacher’s knowledge by virtue of having teaching experience.  
Rather, it is knowledge special to the teaching of mathematics.” (Ball et al., 2001, 
p. 448)  

 
This definition was supported by many examples, both general and specific, of the 

knowledge teachers need to teach mathematics.  These examples included “using 

curriculum materials judiciously, choosing and using representations and tools, skillfully 

interpreting and responding to their students’ work, and designing useful homework 

assignments” (p. 433).  Additional examples included responding to student questions 

and confusions and building on student thinking.  According to Ball et al., mathematical 
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knowledge for teaching extended beyond knowledge of mathematics and how to teach 

mathematics to include knowledge of the structure of mathematics.  Additional examples 

of mathematical knowledge for teaching can be found in the literature (see Ball & Bass, 

2000; Ball & Bass, 2002; Ball, Hill, & Bass, 2005; Hill, Rowan, & Ball, 2005; Hill, 

Sleep, Lewis, & Ball, 2007). 

In their chapter on assessing teacher’s mathematical knowledge, Hill et al. (2007) 

called for a better theoretical framework for studying and measuring mathematical 

knowledge for teaching.  Hill, Ball, and Schilling (2008) suggested such a framework.  

They defined mathematical knowledge for teaching as “the mathematical knowledge that 

teachers use in classrooms to produce instruction and student growth” (p. 374).  The 

framework divided teacher knowledge into six categories: knowledge at the mathematical 

horizon, common content knowledge (CCK), specialized content knowledge (SCK), 

knowledge of content and students (KCS), knowledge of content and teaching (KCT), and 

curricular knowledge (see Figure 1). The first three categories are knowledge of 

mathematics content; the last three categories are knowledge of content and pedagogy.  

Although this framework was developed to assist in writing assessment items, the authors 

suggested that the framework would apply to other investigations into teacher knowledge, 

including research on teachers’ abilities to design tasks. 
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Common 
Content 

Knowledge 
(CCK) 

Knowledge at the 
mathematical 

horizon 

Specialized 
Content 

Knowledge 
(SCK) 

Knowledge of 
Content and 

Students (KCS) 

Knowledge of 
Content and 

Teaching 

Knowledge of 
curriculum 

Pedagogical Content Knowledge Subject Matter Knowledge 

Figure 1.  Mathematical knowledge for teaching.  From “Unpacking Pedagogical Content 

Knowledge: Conceptualizing and Measuring Teachers’ Topic-Specific Knowledge of 

Students,” by H. C. Hill, D. L. Ball, and S. G. Schilling, 2008, Journal for Research in 

Mathematics Education, 39, p. 377.  Copyright 2008 by NCTM.  Adapted with 

permission. 

Neither curricular knowledge nor knowledge at the mathematical horizon were 

defined in the text of the article (Hill et al., 2008).  Given the strong influence of 

Shulman’s (1986) theory on their work, it can be assumed that the curricular knowledge 

suggested in their framework is similar to what Shulman described in his.   

In an article titled “With an Eye on the Mathematical Horizon: Dilemmas of 

Teaching Elementary School Mathematics”, Ball (1993) discussed issues she encountered 

while trying to create mathematical experiences that built on her students’ prior 

experiences, with an eye on the direction she wanted to take the class.  In order to create 

meaningful experiences for the students, the teacher “must understand the specific 
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mathematical content and its uses, bases, and history, as well as be actively ready to learn 

more about it through the eyes and experiences of [their] students” (p. 394).  This article 

may provide insight into what Hill et al. (2008) meant by knowledge at the mathematical 

horizon. 

Common content knowledge (CCK) and specialized content knowledge (SCK). In 

an attempt to distinguish between mathematical content knowledge and pedagogical 

content knowledge, Hill, Schilling, and Ball (2004) developed measures for determining 

a teacher’s mathematical knowledge for teaching.  They worked to develop test items 

dealing specifically with mathematical content knowledge that could be categorized as 

either CCK or SCK.  CCK was determined by the mathematical knowledge an average 

adult should possess, beginning with elementary arithmetic through algebra and geometry 

concepts, as well as the mathematical knowledge of mathematicians and other 

professionals.  NCTM’s (2000) process standards, or things mathematicians do, would 

also be considered part of CCK.  CCK also includes how an individual would solve a 

problem; for example, a teacher solving a problem for his/her own benefit would be 

CCK.  In contrast, SCK is considered unique to a mathematics teacher.  For example, a 

mathematics teacher should be able to create an ordering decimals problem that would 

address the mathematics of ordering decimals whereas the average adult or even 

mathematician would be unable to create such a task.  SCK is deep in nature and includes 

performing error analysis, creating a mathematical explanation, and using representations 

(Ball et al., 2005).  Furthermore, teachers not only need to be able to perform the 

procedures accurately, they also need to have a principled understanding of the 

mathematics (NRC, 2001).  Hill et al. (2004) determined the nature of CCK and SCK to 
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be related, but not equivalent, and concluded that SCK is a domain of knowledge related 

to, yet separate from, mathematics content knowledge and pedagogical content 

knowledge.   

According to Hill et al. (2008), both CCK and SCK are mathematics content 

knowledge and do not involve any knowledge of students or teaching.  In comparison to 

other research on teacher knowledge, CCK would align with Shulman’s (1986) 

conception of content knowledge.  SCK is likely a new construct not included in 

Shulman’s theory (Hill et al., 2008).  Ma’s (1999) theory of knowledge packages would 

correlate well with the nature of the knowledge included in the SCK domain. 

Knowledge of content and students (KCS). Hill et al. (2008) defined KCS as 

“content knowledge intertwined with knowledge of how students think about, know, or 

learn this particular content”(p. 6).  It involves knowledge of common misconceptions 

and strategies, being able to assess student understanding, and knowing how students 

evolve in their mathematical thinking.  KCS is distinct from CCK or SCK in that it 

requires knowledge of students.  In relation to Shulman’s (1986) framework, this 

knowledge domain would be a subcategory of pedagogical content knowledge. 

Knowledge of content and teaching (KCT).  KCT combines knowledge of content 

with knowledge of teaching.  It involves knowing how to build on student thinking and 

strategies for addressing and correcting student misconceptions (Hill et al., 2008).  In 

relation to Shulman (1986), KCT is another subset of pedagogical content knowledge, 

distinct from KCS in that it involves knowledge of teaching rather than knowledge of 

students.  It is delineated from CCK and SCK in that it requires more than just knowledge 

of content. 
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Theoretical Framework of Teacher Knowledge 

 This study adapted the theoretical framework presented by Hill et al. (2008).    

This framework was selected because it was more developed and specific when 

compared to the other models considered.  Additionally, it was the only model of teacher 

knowledge that separated mathematical content knowledge into two domains: CCK and 

SCK.  The framework used in this study contained CCK, SCK, KCS, KCT, and 

curricular knowledge as defined above (Ball et al., 2005; Hill et al., 2008; Shulman, 

1986).  The framework omitted knowledge at the mathematical horizon because it was 

not defined well.  Furthermore, Ball (1993) indicated that this type of knowledge was 

personal mathematical knowledge that could be gleaned from experiences with students 

whereas this study focused on the student teachers’ knowledge in the planning phase, 

prior to their experiences with students.   

As student teachers may use knowledge not related to mathematics in order to 

design or modify a task, the framework added an additional domain of pedagogical 

knowledge.  Pedagogical knowledge refers to knowledge of students and teaching that is 

not directly related to a specific mathematical concept.  This includes knowledge of how 

children learn in general (learning theories), child development, classroom management 

techniques such as establishing classroom norms, and other teaching practices not related 

to mathematics.  Many of the frameworks reviewed in the literature did not consider the 

use of pedagogical knowledge when studying teacher knowledge.  However, Webb 

(2006) found that preservice teachers spent a large amount of time anticipating 

nonmathematical responses during their lesson planning, which indicates that preservice 
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teachers may use pedagogical rather than mathematical knowledge for teaching to make 

teaching decisions. 

 Figure 2 illustrates the author’s conception of the different domains of teacher 

knowledge and is modified slightly from Hill et al. (2008).  It shows the delineations 

among the different domains as well as how the framework relates to other research on 

teacher knowledge: the alignment of Shulman’s (1986) content knowledge with CCK, 

Ma’s (1999) profound understanding of fundamental mathematics with both CCK and 

SCK, and Shulman’s pedagogical content knowledge with KCS and KCT.  The 

alignment of the different theories is not perfect.  For example, Shulman (1986) included 

knowledge of representations as part of pedagogical content knowledge; however Hill et 

al. (2008) placed knowledge of mathematical representations in SCK.  Pedagogical 

knowledge is not shown in the figure because it is not considered part of mathematical 

knowledge for teaching. 

  



 19

 Knowledge 
of Content 

and 
Students 

(KCS) 

Common 
Content 

Knowledge 
(CCK) 

Specialized 
Content 

Knowledge 
(SCK) 

 

Knowledge 
of Content 

and 
Teaching 

(KCT) 

Curricular 
Knowledge 

S
hulm

an’s (1986) P
edagogical C

ontent K
now

ledge 

Shulman’s 
(1986) 

Content 
Knowledge 

Ma’s (1999) Profound 
Understanding of 

Fundamental Mathematics 

Shulman’s 
(1986) 

Curricular 
Knowledge 

Figure 2.  Integration of different theories of teacher knowledge.  From “Unpacking 

Pedagogical Content Knowledge: Conceptualizing and Measuring Teachers’ Topic-

Specific Knowledge of Students,” by H. C. Hill, D. L. Ball, and S. G. Schilling, 2008, 

Journal for Research in Mathematics Education, 39, p. 377.  Copyright 2008 by NCTM.  

Adapted with permission. 

 Mathematical Tasks 

Definition and Characteristics 

 Much of the research on academic tasks comes from Doyle and his colleagues 

(Doyle, 1988; Doyle & Carter, 1984).  A task refers to the academic work students do in 

the classroom and consists of four components:   
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 (a) a goal state or end product to be achieved; (b) a problem space or set of 
conditions and resources available to accomplish the task, (c) the operations 
involved in assembling and using resources to reach the goal state or generate the 
product, and (d) the importance of the task in the overall work system of the class.  
(Doyle, 1988, p. 169) 

 
Doyle et al. (1988) also described two different categories of tasks: novel and familiar.  

The categorization of a task as novel or familiar was dependent on the students’ previous 

experiences.  A novel task could become familiar if the teacher made the task routine in 

some way. 

In order to improve the teaching and learning of mathematics, NCTM (1991; 

2007) encouraged the use of worthwhile mathematical tasks (NCTM, 2007, p. 32).  Not 

all tasks are created equal; some tasks engage students in the mathematics more than 

others.  In order to facilitate student learning, a teacher must implement worthwhile 

mathematical tasks.  NCTM (2007) provided a list of characteristics of such tasks: 

The teacher of mathematics should design learning experiences and pose tasks 
based on sound and significant mathematics and that--- 

• engage students’ intellect;  
• develop mathematical understandings and skills;  
• stimulate students to make connections and develop a coherent framework 

for mathematical ideas;  
• call for problem formulation, problem solving, and mathematical 

reasoning;  
• promote communication about mathematics;  
• represent mathematics as an ongoing human activity; and display 

sensitivity to, and draw on, students’ diverse background experiences and 
dispositions. (pp. 32-33) 

 
Tasks of such caliber appropriately challenge students to develop important mathematical 

concepts through communication and problem solving.  Tasks that fail to meet the above 

description of a worthwhile mathematical task may not promote the desired mathematical 

learning. 
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The most research on mathematical tasks has been performed by Stein and her 

colleagues.  Stein et al. (2000) defined a task as “a segment of classroom activity devoted 

to the development of a mathematical idea” (p. 7).  “Tasks include expectations regarding 

what students are expected to produce, how they are expected to produce it, and the 

resources available for so doing” (Stein et al., 2007, p. 346).    

 Phases of a Task 

 Doyle et al. (1988) claimed that there a many different levels of a task.  There was 

the task as it was launched by the teacher, the task as it was interpreted by the students, 

and the task as it appeared in the finished products of student thinking.  They noted that a 

task may exhibit different features at different times. 

Elaborating on Doyle et al.’s (1988) theory that a task changes at different levels 

of implementation, Stein et al. (2000) developed The Mathematical Tasks Framework 

which describes the phases of a task and it’s impact on student learning (see also Stein et 

al., 2007; Stein & Smith, 1998).  Stein et al. (2000) agreed with Doyle et al.’s (1988) 

theory that a task changes at it evolves through different levels of implementation; 

however, Stein et al. (2000) broadened the levels to include how the task appeared in the 

curriculum as well as how the teacher intended to use the task.  The framework was 

based on research suggesting a significant difference between the task as it appears in the 

curricular resources and as it is implemented in the classroom (Stein et al., 2007).  The 

first phase of a task is how it appears in the curriculum or other instructional materials or 

as created by the teacher.  This was referred to as the written phase of a task.  The next 

phase of a task is the intended phase, or how teachers plan to use the task in instruction.  

The final phase, the enacted phase, is how the task is actually implemented in the 
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classroom by the students.  Researchers need to investigate possible reasons for the 

changes in the task from one phase to another. 

 Stein et al. (2007) offered possible explanations for how and why tasks are 

transformed during instruction.  The tasks may change between phases due to a teacher’s 

knowledge, beliefs, or orientation to the curriculum.  Structures and norms within the 

classroom, school, and community also hold explanatory power for the transformation of 

tasks.   

Cognitive Demands of a Task 

 In order to better describe the differences between two tasks as well as the 

differences between two phases of one task, Doyle et al. (1988) identified two cognitive 

levels of academic tasks.  The cognitive level of a task was defined as “the cognitive 

processes students are required to use in accomplishing [the task]” (Doyle, 1988, p. 170).  

Low-level tasks involved memorization, the use of formulas, and the use of search-and-

match strategies.  In contrast, high-level tasks involved decision making and 

interpretation.  “The focus for tasks involving higher cognitive processes, then, is on 

comprehension, interpretation, flexible application or knowledge and skills, and assembly 

of information from several different sources to accomplish work” (Doyle, 1988, pp. 170-

171).   

 Tasks requiring a high level of cognitive processes have features that distinguish 

them from low-level tasks.  In a non-mathematical study of academic tasks, Doyle (1984) 

found key differences in the features of major (high-level) and minor (low-level) writing 

tasks.  Major tasks were lengthy and ambiguous in nature and required more time for 
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completion.  Minor tasks were clearly defined and there was often an algorithm available 

for accomplishing the task. 

Tasks require different kinds of thinking in order for students to successfully 

complete; the kinds of thinking are referred to as the cognitive demands of a task (Stein et 

al., 2000).  Additionally, the cognitive demands of a task may change as the task passes 

through various phases.  A task may require high levels of cognitive demand in the 

written phase and deteriorate to requiring low levels of cognitive demand during the 

enacted phase. 

 Stein et al. (2000) refined Doyle et al.’s (1988) theory on the cognitive levels of a 

task and developed four levels of cognitive demands for mathematical tasks.  On the 

lower end of the spectrum were memorization and procedures without connections.  

Tasks requiring higher levels of demands were categorized as procedures with 

connections and doing mathematics.  The descriptions of the different cognitive demands 

of tasks that follow come from The Task Analysis Guide (Stein et al., 2000, p. 16). 

 Memorization tasks.  Memorization tasks require students to access previously 

learned facts, rules, definitions, formulas, etc. or commit them to memory.  The use of a 

procedure is not practical either because a procedure does not exist or time limits prevent 

the use of a procedure.  The expectations of the task are so clearly articulated that there is 

no ambiguity as to what the student is expected to do or reproduce.  There is no 

connection to the underlying mathematics of the facts, rules, definitions, or formulas 

(Stein et al., 2000). 

 Procedures without connections tasks.  The tasks in this lower-level category 

allow for the reproduction of a procedure.  There is little ambiguity in what the students 
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are expected to do: perform a series of steps to obtain the correct answer.  If an 

explanation is required, the expected explanation focuses on the procedure used rather 

than connections to the underlying mathematics. 

 Procedures with connections tasks.  The tasks in this category require the students 

to connect deeper mathematics to the procedure involved in the task.  While a procedure 

may be implied in the instructions of the task, the procedure is closely tied to meaning 

and cannot be blindly applied.  There are often multiple representations or pathways 

students may follow to arrive at a solution. 

 Doing mathematics tasks.  Tasks in this high-level category require complex 

thinking accompanied by considerable effort and anxiety often due to the ambiguous 

nature of the task as well as the need to access relevant, time-removed knowledge.  The 

students are required to explore mathematical relationships, monitoring their processes 

and solutions, considering constraints in the task that may limit possible solutions.  

Students are expected to justify their process and solution in terms of correct 

mathematical principles rather than procedures.  Procedures with connections and doing 

mathematics tasks would likely be comparable to what NCTM (2007) described as a 

worthwhile mathematical task. 

 Superficial features of a task should not influence the analysis of the cognitive 

demands of a task.  For example, many lower-level tasks could be considered higher-

level tasks because they resemble reform-oriented tasks by the use of manipulatives, 

presence of multiple questions, or set in “real-world” context.  Furthermore, the reverse is 

also true; high-level tasks can appear to be low-level if they resemble a traditional 

textbook problem. 
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Theoretical Framework of Tasks 

 The framework guiding this study was based on the notion that tasks often 

transform during different phases of instruction and that the written, intended, and 

enacted phases of a task will sometimes vary in subtle yet significant ways.  This study 

adopted the framework and definitions of Stein et al. (2000) because of its specificity and 

detail, and focused primarily on the first two phases of a task: the written and intended 

phases.  The task as it was given to and modified by the student teachers or developed by 

the student teachers was considered the written phase of the task.  The intended phase of 

the task was how it appeared in the context of the lesson plan, including anticipated 

student thinking and acceptable student responses.  The framework also relied heavily on 

the Task Analysis Guide (Stein et al., 2000).    

Teacher Knowledge and Cognitive Demands of Tasks 

This study sought to find a connection between teacher knowledge and the 

cognitive demand of a task.  Although several researchers have surmised a connection 

between the two, the review of literature located only two studies investigating such a 

connection.  Although Crespo (2003) did not study teacher knowledge explicitly, she 

found that how teachers launched tasks in the classroom changed as the teachers gained 

more teaching experience.  In the beginning of the study, the teachers posed trivial, 

computational tasks and decreased the ambiguity of the task as they helped students.  

However, as the teachers gained more teaching experience the tasks posed to the students 

increased in complexity, being more open-ended and exploratory.  Crespo hypothesized 

that teacher knowledge may hold explanatory power for the apparent change how 

teachers posed mathematical problems.   
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Another study explicitly examined the role of teacher knowledge in how teachers 

assessed the cognitive demands of mathematical tasks (Osana, Lacroix, Tucker, & 

Desrosiers, 2006).  Osana et al. used Stein et al.’s (2000) definitions of cognitive 

demands of tasks to study whether teacher knowledge impacted preservice secondary 

mathematics teachers’ abilities to sort the tasks correctly.  They found that preservice 

teachers with stronger content knowledge, as measured by a standardized test were able 

to sort the tasks better than preservice teachers with weak content knowledge.  Although 

this study investigated the connection between teacher knowledge and mathematical 

tasks, it differed from the present study in several ways.  First, it measured content 

knowledge through the use of a standardized test rather than investigating the use of 

teacher knowledge in practice.  Second, it only considered content knowledge and not the 

other domains of knowledge conceptualized by Hill et al. (2008).  Additionally, it studied 

the impact of knowledge of preservice teachers’ abilities to sort the tasks rather than plan 

the tasks. 

Even though few studies investigating the impact of knowledge were found, many 

researchers have implied that such an investigation would prove fruitful.  Dewey (1938) 

discussed the difficulty teachers face when attempting to plan educative experiences for 

their students.   

There is incumbent upon the educator the duty of instituting a much more 
intelligent, and consequently more difficult, kind of planning.  He must survey the 
capacities and needs of the particular set of individuals with whom he is dealing 
and must at the same time arrange the conditions which provide the subject-matter 
or content for experiences that satisfy these needs and develop these capacities.  
The planning must be flexible enough to permit free play for individuality of 
experience and yet firm enough to give direction towards continuous development 
of power. (Dewey, 1938, p. 58) 
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Dewey implied the difficulty of creating educative experiences required a great amount 

of knowledge concerning the students who would engage in the experience and the 

subject-matter pertinent to the experience.  The knowledge needed to create educative 

experiences could be comparable to the knowledge needed to create worthwhile 

mathematical tasks. 

 Stein et al. (2007) hypothesized that teacher knowledge, among other factors, 

contributed to the transformation of tasks between phases.  They indicated that teacher 

knowledge likely impacts how tasks are used in instruction, implying that the impact of 

teacher knowledge on cognitive demands of tasks would be a fruitful area of study. 

Additionally, Hill et al. (2005) suggested investigating how mathematics teachers use 

their knowledge during planning.  Combining the two suggestions, this study investigated 

how student teachers used their knowledge in the planning of tasks and the impact 

teacher knowledge had on the cognitive demands of the task.  This study hoped that by 

studying student teachers there would be more opportunities to investigate the knowledge 

teachers rely on when they lack the most valuable knowledge for accomplishing a 

teaching job because student teachers may lack knowledge that experienced teachers 

possess. 
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Methodology 

Structure of the Student Teaching Program 

 This study is part of a larger study involving secondary mathematics student 

teachers from a large university (see Galindo, Leatham, Peterson, & Wilson, 2008).  As 

opposed to the traditional apprenticeship model of student teaching where the student 

teacher is assigned to a cooperating teacher and expected to learn how to teach by 

mimicking the actions of the teacher, the student teaching program for this study 

incorporated aspects of the Japanese model of student teaching which in turn uses aspects 

of Japanese lesson study (see Lewis, 2002). 

 The student teachers were assigned to clusters of four.  Each cluster was divided 

into two pairs of student teachers.  The pairs were assigned to different cooperating 

teachers.  During weeks 3 through 5 and 14 of the 15-week student teaching experience, 

each pair of student teachers planned and taught one lesson.  Each pair planned the lesson 

together and then each taught the lesson separately to different classes.  The cooperating 

teacher, the other members of their cluster, and the university supervisor observed the 

two lessons taught by the pair of student teachers.  Following the lessons, the observers 

and the student teachers discussed the teaching experiences in a reflection meeting, with a 

protocol encouraging the student teacher to take the primary role in the discussion.  This 

sequence of events will be referred to as teach/observe/reflect sessions. Both the lesson 

and the reflection meeting were video recorded for later analysis.   

Participants and Sampling 

This study chose to investigate the knowledge of student teachers rather than the 

knowledge of practicing teachers.  In Hill et al. (2008), the authors suggested that much 
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of the KCS used by teachers was experiential rather than grounded in research.  As 

student teachers do not have much experience with students and teaching mathematics, 

they may have to rely on different knowledge domains (e.g. CCK, SCK, KCS, KCT, etc.) 

than experienced teachers in order to design and modify tasks.   

Additionally, student teachers may have more gaps in their mathematical 

knowledge for teaching than do experienced teachers.  Instances where the student 

teachers lacked knowledge will be more frequent than they would be for experienced 

teachers.  By studying student teachers, the researcher hoped to gain a better 

understanding of how student teachers use their knowledge in situations where they may 

lack the particular knowledge needed to teach the mathematics. 

 There were eight student teachers during the semester the data were collected.  

From the eight student teachers, one cluster of four student teachers was initially studied.  

Two of the student teachers were assigned to a cooperating teacher at a high school and 

taught pre-calculus; the other two student teachers were assigned to a cooperating 

teaching at a junior high and taught pre-algebra.  A purposeful sample (Maxwell, 2005) 

was used to select the student teachers.  This particular cluster was selected because of 

the traditional curricula encouraged by the school district as well as the mathematical 

teaching training of the cooperating teachers.  The cooperating teacher at the high school 

had earned a master’s degree in mathematics education; in contrast, the cooperating 

teacher at the junior high had only earned a minor in mathematics education.  Although 

the knowledge of the cooperating teacher was not an integral part of this study, the cluster 

was initially selected to serve as a way to compare the pairs of student teachers in case 

the cooperating teacher’s knowledge became an issue in the study.   
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The district-assigned curricula for the classes came from traditional textbooks.  

The high school teacher carefully followed the textbook and state core.  The teacher at 

the junior high did not use the textbook adopted by the district, but used a collection of 

activities that he had gathered and felt aligned with the topics in the state core.  The 

junior high classroom structure consisted of a 5-minute warm-up quiz, a problem-of-the-

day presentation, and a task.  The class period at the junior high was 45 minutes in length.  

A lesson at the high school lasted approximately 90 minutes and resembled more of a 

traditional classroom with the student teachers telling the students in a lecture how to do 

the mathematics rather than having the students explore the mathematics through a task. 

Purposeful sampling was again used when deciding to omit the pair of high 

school student teachers.  The structure of the high school classroom did not provide the 

necessary data for investigating teacher knowledge, especially that of how teachers use 

their knowledge to develop and modify tasks.  Although the high school student teachers 

had the students work through examples, they did not have the students exploring 

mathematics through a task; the students worked on exercises instead of tasks.  

Consequently, the pair of student teachers assigned at the high school was not considered 

in this study. 

The remaining pair of student teachers consisted of two females, Kristen and 

Abby (pseudonyms).  Kristen and Abby are traditional university students in their early 

twenties.  Kristen was married and expecting a baby soon after her student teaching 

experience.  Abby took an 18-month sabbatical from school between her course work and 

her student teaching to serve a mission for her church.  Both student teachers had taken 

university classes consisting of mathematics, education, and mathematics education 
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courses.  One objective of the university program, as well as the larger study, was to help 

preservice teachers learn to teach mathematics for understanding.   The learning 

outcomes for the program included objectives in which preservice teachers engaged in 

mathematical inquiry and approached mathematics as a problem-solving activity, 

understood how students learn mathematics with understanding, and planned student-

centered instruction that engaged students in  mathematical inquiry. 

As an ethnographic study, intended to describe and analyze the knowledge student 

teachers use to design and modify tasks, the researcher’s primary objective in sampling 

was to sample a representative group (Mertens, 2005).  The student teachers were 

representative of other mathematics student teachers.  First, the student teachers’ 

experiences as students were traditional in nature and likely resembled the past 

experiences of other student teachers (Ball, 1990a).  Second, the student teachers were 

expected to teach mathematics differently from how they were taught and had received 

some training in the mathematics and pedagogy involved in teaching mathematics from a 

reform perspective.   

This sample of two student teachers is also representative of the situation in which 

many student and practicing teachers find themselves. The student teachers did not have a 

reform textbook to serve as a reference of mathematical tasks and attempted to teach 

mathematics for understanding by replacing the traditional curriculum with tasks that 

they either created or modified.  As not all teachers have access to task-based curricula, 

the situation of the student teachers is similar to the situations of other teachers.   

This study initially planned to look at the enacted as well as written and intended 

phases of the tasks.  However, the length of the 45-minute junior high classes did not 
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allow the students to complete the task during the allotted time.  The student teachers at 

the junior high would launch a task and give the students time to explore the task during 

the first 45-minute period.  The classroom discussion of the task usually began at the end 

of the first 45-minute period and extended into the next day’s 45-minute period.  The 

researcher assumed that the lessons would only last for one period and only planned to 

video record the first day’s instruction.  Consequently, the entirety of the enacted phase 

of the task was not recorded and thus not analyzed in this study. 

Unit of Analysis 

 This study focused on the knowledge teachers used in the design and modification 

of tasks.  The units of analysis studied were the tasks in the four lesson plans created by 

the pair of student teachers.  By examining the tasks, the researcher could analyze the 

cognitive demands of the tasks as well as infer, through the use of other data sources, the 

knowledge the student teachers used to design and modify the tasks.  In the case of one 

task, the student teachers did not have time to give the entire task to the students; only the 

portion of the task included in the lesson itself was used in this study. 

Data Collection 

 The data collected for use in this study came from multiple sources: lesson plans, 

lessons, reflection meetings, reflection papers, and interviews.  The units of analysis were 

taken from the student teachers’ lesson plans; the other data sources were used to 

determine the knowledge associated with each task.  The use of multiple data sources, in 

the form of two participants and multiple methods, provided for the triangulation of the 

data and increased the credibility of the study (Maxwell, 2005; Mertens, 2005).   
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Lesson plans. Van der Valk and Broekman (1999) showed that examining 

preservice teachers’ lesson plans was an effective methodology for determining teachers’ 

pedagogical content knowledge.  Extrapolating these results to the assessment of 

mathematical knowledge for teaching, the use of lesson plans is one methodology for 

identifying mathematical knowledge for teaching.  The student teachers were required to 

create a lesson plan as a pair for the four lessons they taught for the teach/observe/reflect 

sessions.  A copy of each lesson plan was given to the lesson observers just prior to the 

lesson.  Within the lesson plan, the student teachers described their teacher moves in the 

lesson, the anticipated student thinking, and formative assessment based on the 

anticipated thinking.  The lesson plans contained the written and intended phases of the 

task.  The lesson plan template the student teachers were expected to use can be found in 

Appendix A. 

 Lessons. Each lesson taught by the student teachers during weeks 3 through 5 and 

14 were video recorded.  Table 1 shows the dates for each recorded lesson.   

Table 1 
 
Dates of Data Collection for the Tasks 
 

Data Source Task 1 Task 2 Task 3 Task 4 
Lesson Date 9/20/2007 9/25/2007 10/3/2007 12/6/2007 

Reflection Meeting 9/20/2007 9/25/2007 10/3/2007 12/6/2007 

Interview Date 9/24/2007 10/2/2007 10/10/2007 12/13/2007 

 

The lessons were reviewed by the researcher and served as inspiration for the interview 

protocols.  For example, instances in the lessons that may be related to a lack of 
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knowledge were identified by the researcher as something to discuss during the 

interviews with the student teachers. 

 Reflection meetings.  After both student teachers taught their lesson, the student 

teachers and observers met together in a reflection meeting to discuss the learning 

objectives and outcomes of the lessons.  The reflection meetings always took place on the 

same day as the lessons.  The reflection meetings were video recorded and transcribed.  

The student teachers discussed the tasks, how they planned to use the task in the 

classroom, and what they expected students to do with the task.  Often, unexpected 

student thinking was discussed by the student teachers, providing insight into knowledge 

the student teachers did or did not use when designing or modifying the task.  Table 1 

shows the dates for each reflection meeting. 

 Reflection papers.  Each week, the student teachers were required to write a 

reflection paper about their experiences.  The student teachers were assigned a different 

focus for each reflection paper, sometimes the focus was on the lesson they had taught 

and other times it was on a lesson they observed.  These papers occasionally added 

insight into the knowledge the student teachers used or did not use when planning or 

modifying the tasks.  The reflection papers were not always written immediately 

following the lesson and reflection meeting, but were usually written a few days later.   

 Interviews.  Interviews were used to increase the credibility of the study (Mertens, 

2005), and to allow the researcher to better infer the knowledge the student teachers used 

to plan and modify the tasks.  The lesson plans, lessons, and reflection meeting were 

reviewed for a few days following collection.  During this time, literature regarding the 

topic of the task was consulted.  Interview protocols were then created to further probe 
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the knowledge of the student teachers.  The interview protocols were reviewed by the 

researchers involved in the larger study, one of whom was the university supervisor, and 

modified accordingly.  The structure of the interviews was flexible, closely following the 

interview protocol and asking additional questions to clarify and probe.  In order to gain a 

broad understanding of the knowledge the student teachers used while teaching, questions 

were asked about the written, intended, and enacted phases of the task.  During the 

interviews, the student teachers were shown clips of their lesson and were asked to 

interpret or evaluate student thinking.  The interview protocols are included in 

Appendixes B through H. 

 The interviews were approximately 45 to 60 minutes in length.  There was one 

interview for each lesson taught for a total of eight interviews: four with Abby and four 

with Kristen.  The interviews occurred within one week of the lessons.  The one week 

gap was needed in order for the researcher to review the lessons and reflection meetings, 

prepare the interview protocol, and meet with the researchers’ graduate committee for 

feedback on the interview protocols.  The interviews always occurred before the student 

teachers taught their next lesson, so that they would not confuse the different lessons they 

had taught.  The interviews were audio recorded and transcribed by the researchers for 

later analysis. Table 1 shows the dates for the interviews of each task. 

Analysis 

 The data analysis for this study consisted of four components: review of literature 

associated with the topics of the tasks, analysis of the cognitive demands of the tasks, 

analysis of the teacher knowledge, and analysis of the correlation between the cognitive 

demands of the tasks and the teachers’ knowledge.   
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 Review of literature about the mathematics of the tasks.  In order to better 

understand the different components of knowledge the student teachers could have as 

they designed or modified the tasks, the researcher reviewed the mathematics education 

literature about the different topics of the tasks.  The literature review highlighted 

knowledge that the student teachers both did and did not use to design and modify the 

tasks.  The literature review was also helpful in the analysis of the cognitive demands of 

the tasks. 

Analysis of the cognitive demands of the tasks.  The cognitive demands of the four 

tasks used by the student teachers were analyzed using Stein et al.’s (1998) framework.  

Two of the tasks were designed by the student teachers.  These tasks were analyzed both 

within and without the context of the lesson plan, i.e. the written and intended phases of a 

task.  Two of the tasks were given to the student teachers by their cooperating teacher and 

then modified.  These tasks were analyzed in their original and modified forms (written 

phase), and then within the context of the lesson plan (intended phase).   

In order to increase the reliability of the study, the tasks in their original and 

modified forms or as they were designed by the student teachers were rated by four other 

graduate students in addition to the researcher.  The raters attended an hour long training 

on how to use the framework to analyze the tasks.  Three of the raters were consistent in 

their ratings.  However, the fourth rater gave the tasks a rating that was different than the 

others, sometimes significantly different, on five of the six tasks they rated.  

Consequently, the codes from the fourth rater were discarded and not considered in the 

study.  The other three rater’s codes were consistent with the researcher and used in the 

results of the study to support the analysis of the tasks and provide additional reasons and 
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justifications for the codes assigned to the tasks.  Table 2 shows the codes for the tasks as 

coded by the raters and by the researcher. 

Table 2 
 
Comparison of Task Analysis Done by Graduate Raters and Researcher 
 

Task Rater 1 Rater 2 Rater 3 Rater 4 Researcher 
Task 1      

    Original PwoC PwoC PwoC PwC PwC 

    Modified PwoC PwoC PwoC Math PwoC 

    Intended - - - - PwoC 

Task 2      

     Written PwC PwC Math PwoC PwC 

     Intended - - - - PwoC 

Task 3      

     Written PwoC PwoC PwoC PwC PwoC 

     Intended - - - -  PwoC 

Task 4      

     Original PwoC PwoC PwoC PwoC PwoC 

     Modified Math Math Math PwC Math 

     Intended - - - - PwC 

Note. - = analysis not performed; PwoC = procedures without connections; PwC = 

procedures with connections; Math = doing mathematics.  

 Analysis of teacher knowledge.  The analysis of the teacher knowledge was done 

in tandem with the analysis of the tasks and consisted of three stages.  First, sentences 

from the lesson plans, reflection meetings, reflection papers, and interviews were coded 
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using the modification of Hill et al.’s (2008) framework.  The inferences of the student 

teachers’ knowledge were based on the definitions described in Chapter 2.  The first 

delineation inferred by the researcher was whether or not the statement contained 

evidence of pedagogical knowledge.  If not, the researcher determined if the statement 

could be coded as CCK or SCK, depending on whether or not the knowledge use was in 

common with how others may use the knowledge.  If there was pedagogical and 

mathematical knowledge in the statement, the researcher coded it as either KCS or KCT 

or curricular knowledge, depending on the type of pedagogical knowledge.  Additionally, 

the knowledge inferred by the researcher could often be described as knowledge the 

student teachers’ had while they were planning the task and knowledge the student 

teachers learned from their teaching experience.  The student teachers often indicated that 

they either did not know something before they taught or they had not considered it 

before they taught.  These instances were noted as times when the student teachers lacked 

knowledge. 

 The second stage of the analysis of the knowledge consisted of determining which 

knowledge was used to design or incorporate the task into the lesson plan.  The 

researcher determined whether the knowledge was used by its presence in the lesson plan 

or an explicit indication by the student teachers that they had used that knowledge when 

planning the tasks.   

 In the third stage, the knowledge that was inferred from the coded sentences was 

synthesized and summarized into tables for each task.  The researcher then inferred how 

the knowledge was used to plan the tasks.  Finally, the researcher looked across the four 
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tasks to see if there were any commonalities in how the student teachers used their 

knowledge to plan the lessons. 

 Analysis of the correlation between the knowledge and the tasks.  The final part of 

the analysis consisted of looking for a correlation between the teacher knowledge used to 

design or modify a task and the cognitive demand of the task.  This was done by looking 

at how the knowledge was used and determining whether that use either increased, 

decreased, or maintained the cognitive demand of the task.   The researcher focused on 

changes in the phases of the tasks, i.e. from the original to modified form and from the 

written to intended phases.  The researcher also considered times when the student 

teachers indicated that they did not use a particular knowledge when designing or 

modifying a task and how that may have impacted the cognitive demands of the tasks. 

 

  



 40

Results 

The purpose of this chapter is to discuss the results of the analysis. The results are 

given separately for each of the four tasks.  Included in the results is a description of the 

task, the cognitive demands of the task in its different forms, a description of teacher 

knowledge found in the literature, and a description of the knowledge the student teachers 

used as they prepared the task.  

Task 1: Adding Ten Different Ways 

Description of Task 

Prior to teaching their first lesson, Kristen and Abby’s cooperating teacher gave 

them an article from a newsletter (McAnallen, 2000) and asked them to create a three-day 

unit based on the ideas presented in the article.  The second of the three lessons was 

recorded for this study.  The task given for the recorded lesson was taken from a section 

of the article by McAnallen and included in the student teachers’ lesson plan.  Because 

the student teachers did not give the students a written task, the task had to be inferred 

from the lesson plan and from the article. 

 In the article, McAnallen (2000) presented an idea for a lesson plan with two 

objectives: to teach students to justify their work and to help students gain a conceptual 

understanding of addition. The teacher used what she called an algebraic approach to 

addition to accomplish the learning outcomes. In this algebraic approach, numbers are 

partitioned and recombined in different ways.  For example, the numbers 27, 15, and 42 

can be partitioned into tens and ones and recombined by adding the tens and ones (see 

Figure 3).  Alternately, the numbers could be partitioned into fives and sevens and 

recombined by adding the fives and sevens separately (see Figure 4).  For clarity in future 
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examples, the actual numbers used in the article were 15, 25, and 37, while the numbers 

used by the student teachers in the lesson plan were 27, 15, and 42. 

27 = 20 + 7
15 =10 + 5
42 = 40 + 2
This means we add 20 +  10 +  40 =  70
and then we add 7 +  5 +  2 =  14,
so we have 70 +  14 =  70 + 10 + 4 = 84.

 

Figure 3.  Sample student work from Task 1, partitioning into tens and ones (Lesson Plan 

1). 

    27 = 4 + 4 + 4 + 4 + 4 + 4 + 3
    15 = 3+ 3+ 3+ 3+ 3
+ 42 = 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 2

= 6(4) + 6(3) + 8(5) + 2
= 24 +18 + 40 + 2
= 20 +10 + 40 + 4 + 8 + 0 + 2
= 70 +14 = 84

 

Figure 4.  Sample student work from Task 2, partitioning into fours, threes, and fives 

(Lesson Plan 1). 

As a counter-example to justification, the author discussed the use of the 

“carrying” strategy in addition, stating that most students don’t understand that the 

“carried” one really represents a ten or a hundred, etc.  In order to teach students to 

justify their work, the author suggested an algebraic approach to addition in which the 

students justify their addition through the use of “drafts”.  The students partition the 

numbers for a first draft, combine some of them for a second draft, and possibly combine 

more if needed for a third draft.  The author further emphasized the need for students to 

justify their work by giving the students the answer to a two-digit addition problem, 15 + 
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25 + 37, and then having the students focus on the process of adding the numbers rather 

than the answer itself. 

According to McAnallen (2000), the “carrying” strategy of addition clouds the 

meaning of addition.  “Addition is advanced counting . . . It doesn’t matter where you 

start or end, just get ‘em all” (p. 8).  The article demonstrated this idea by showing the 

numbers in the addition problem as groups of ones that can be combined in any way.  The 

teacher introduced the class to an axiom.  

An axiom is a proposition that we can’t prove is true but we’ve never found a case 
that hasn’t worked.  Here is an axiom: If we take a set of equals and add them to a 
set of equals, the sum will be equal. (p. 8) 
 

Through the use of the algebraic addition strategy, the teacher was trying to help the 

students understand the “algebraic assumption that left-hand side must always equal 

right-hand side” (p. 9).  The article also suggested that, depending on the developmental 

level of the students, this addition strategy could be used to discuss the concept of similar 

terms in mathematics by having the students write the partitioning using multiplication 

and then discussing how you could combine the numbers.  For example, in 3(5) + 5(5) + 

6(6) + 1, only the three and five could be combined because they are similar terms. 

The following paragraph from the article inspired the student teachers’ task and 

lesson plan:   

Indeed, Rachel only assigns that one problem as homework, and requests that 
students find 10 different ways to add it.  They must justify their work in the way 
that she has demonstrated.  Sometimes a student will tell Rachel that they were 
taught a certain way to add.  “That can be one of your ways,” she’ll tell them. 
(McAnallen, 2000, p. 9) 

 
The student teachers modified the notion of adding one problem ten different ways and 

assigned the students in their class a similar task.  Taken from the lesson plan itself, the 
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student teachers wrote, “Teacher gives class 3 new numbers: 27 + 15 + 42.  Teacher tells 

students to work in pairs with their neighbor to come up with as many different ways as 

they can to add these numbers together.  Tell them they have 10 min” (Lesson Plan 1).  

Within the context of the lesson plan, the student teachers placed the task assignment 

following a brief review of the previous lesson where the students added 15, 25, and 37, 

“explaining again how to add each place value, and emphasizing that we can combine 

numbers in many different ways . . . as long as we make sure to count everything once” 

(Lesson Plan 1).  After the students had had time to work on the task, the student teachers 

planned to ask several students with “really creative approaches” to present their work at 

the board, stating that the students will need to “explain their thinking” (Lesson Plan 1). 

Cognitive Demand of the Task 

The cognitive demand of this task was analyzed in three different stages: in its 

original form as given to the student teachers, in its modified form, and within the context 

of the lesson plan.  The raters coded this task in its original and modified forms (see 

Table 2).  In both forms the raters coded the task as procedures without connections.  In 

its modified form I agreed with the raters; however, I coded the original form of the task 

as procedures with connections.  The discrepancy is likely related to the selections of the 

articles read by the raters.  In order to decrease the amount of necessary work for the 

raters, they were only given the excerpt from the article that explicated the task rather 

than the article in its entirety.  However, given that the student teachers read the entire 

article and selected the task from the article, it is best to consider the task within the 

context of the article.   
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The lack of purpose in the task made determining the cognitive demands of the 

task difficult.  It was difficult to determine the mathematical goal from the directions to 

add the problem ten different ways. This made it difficult to determine whether the 

students would be grappling with any mathematics or if they would descend into 

unsystematic exploration (Stein et al., 2000). Consequently, it was difficult to assign a 

cognitive demand to the task based only on the directions.  Within the context of the 

article the mathematical goals of the task were fairly clear; it suggested several purposes: 

to help students conceptualize addition, to discuss the conventional use of the equal sign, 

to introduce like terms, and to discuss what it means to justify something mathematically.  

According to the article, the decision to pursue one of these purposes should depend on 

the developmental level of the students. 

Using the framework from Stein et al. (1998), the task within the context of the 

article was coded as procedures  with connections.  The article emphasized that the 

algebraic approach to addition was intended to focus the students’ attention on the 

meaning of addition.  It also emphasized that students needed to justify their strategy, 

using the meaning of addition and the axiom discussed in class.  The justification 

expectation meant that the task could not be “followed mindlessly” (Stein & Smith, 

1998).  The procedure of partitioning the numbers provided the students with a general 

approach to the problem, but the students still had the freedom to try a different 

partitioning.  Additionally, the article focused on varying the task so that it was catered to 

the developmental level of the students in the class.  This indicated that the author of the 

article wanted the task tailored to the students so that the task would be adequately 
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challenging for the students.  The use of multiple representations was the one point in the 

task analysis guide that was not met by the task.   

The other raters determined that the task in the article was a procedures without 

connections task.  They suggested two reasons for coding the task as they did: the 

placement of the task following the discussion simplified the task into an exercise and the 

lack of purpose and meaning in the task.  One rater stated that “it could be rated higher if 

there was a good connection to a mathematical principle.”  The later reason for coding 

the task as procedures without connections would have been resolved had the raters read 

the article in its entirety since the article did contain some mathematical purposes.  

Although the former reason is valid, the examples given in the article did not limit the 

students’ approaches the problem.  On the contrary, the author encouraged the students to 

try different approaches to the problem as long as the students could justify the validity of 

their approach.  In fact, the examples from the article were generated by the students.  

Although the raters brought up two good reasons to code the task as procedures without 

connections, their reasons are not as strong when the task is considered in the context of 

the article. 

The student teachers modified the task when they put it into their lesson plan. 

Abby described how they changed the task by not emphasizing the axiom as much.   

I remember we changed it, but [pause].  Because in the article it emphasized 
more, it called it the Awesome Axiom. It was that we could add up all the 
numbers in a different way and as long as we had all the parts it would still be the 
same.  But we didn’t really talk about that it was an axiom.  Like in the article, 
she had given her students a challenge that if they could disprove that she would 
give them a $50 bill.  So it talked about how they all went home and tried to add 
the numbers in a way that wasn’t going to give them the same answer.  So we 
kind of skipped over that whole part. (Abby, Interview 1) 
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Although the student teachers understood the meaning of addition, as indicated by the 

statement “we can combine numbers in many different ways . . . as long as we make sure 

to count everything once”, Abby however indicated that they did not view having the 

students understand addition conceptually as the purpose of the task.   

One the other hand, Kristen stated that she wanted her students to understand the 

axiom but that she did not want to use the term axiom with the students:    

Like there's the axiom. You know, like if you have two things that are equal and 
another set of two things that are equal, and if you add the two things together 
they remain equal.  And I didn't want to say that in words; you know, that this is 
an axiom, but I wanted them to become comfortable with that mathematical idea. 
That even if I rewrite 15, 27 and 42, since these are all equal and since these still 
are equal, it's still going to be equal if I continue to recombine things. (Kristen, 
Interview 1) 
 

From Kristen’s statement it seems that the student teachers wanted to convey the axiom 

to the students, but they did not want to discuss that it was an axiom or take time to have 

the students try to disprove the axiom. 

 In the directions the student teachers intended to give the students, they did not 

explicitly ask the students to justify or explain their solution strategy.  By removing this 

component of the task from the directions, the student teachers implied to the students 

that justification was not a key purpose of the lesson.  Although the student teachers titled 

the lesson “Proving Addition Facts” on the board, Kristen indicated that justification was 

not a mathematical purpose of the lesson:   

Well, that title was more for just hopefully giving the students a reason for doing 
it.  I think that the day before we had called it “Adding Different Ways”, but they 
didn't care about adding different ways.  So I thought, “Well in math it's kind of a 
big deal to be able to prove things, like prove it’s 82, so let's tell them that's why 
we're doing it.  (Kristen, Interview 1) 
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The student teachers were trying to provide the students with a purpose for doing the task 

and they decided to use the notion of proving as the purpose.  However, it was intended 

to motivate the students to work on the task rather than to get the students to grapple with 

the mathematics. 

 Given these two changes to the task, de-emphasizing the meaning of addition, and 

removing the justification, the task as modified by the student teachers was coded as 

procedures without connections by both the raters and the researcher.  The raters’ 

concerns about the unmodified task were the same in the modified version of the task: the 

students’ prior experience made the task unproblematic and there was no purpose to the 

task.  Additionally, one rater felt that the task was too easy for pre-algebra students. 

 Using the framework (Stein & Smith, 1998), the modified task fit better with the 

description of procedures without connections than with procedures with connections.  

The task itself required no explanation and consequently the students did not need to 

make connections to any mathematics.  Additionally, the difficulty of the original task 

was in the required explanation; simply adding the numbers different ways required little 

cognitive demand to complete.   

 When considered in the context of the lesson plan, the intended task remained a 

procedures without connections task.  If the student teachers had had an expectation that 

the justifications of approaches connected to a mathematical principle then the cognitive 

demand of the task may have changed.  However, the anticipated student work given in 

the lesson plan indicated a focus on the procedure of adding rather than the meaning of 

addition.  For example, in describing one possible solution, the student teachers 

partitioned 27 into 20 and 7, 15 into 10 and 5, and 42 into 40 and 2.  They then said, 
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“This means that we add 20 + 10 + 40 = 70 and then we add 7 + 5 + 2 = 14, so we have 

70 + 14 = 70 + 10 + 4 = 84” (Lesson Plan 1).  This example of an anticipated student 

response is typical of the anticipated student thinking in the lesson plan in that it walks 

through the arithmetic but does not describe why they could partition and add the way 

they did or even why one would want to do so.  Additionally, in the formative assessment 

column, the student teachers read into the student response by saying that the “student 

understands how to add place value separately, [and] can correctly re-write each number 

in expanded form” (Lesson Plan 1).  The student may or may not understand place value, 

but without more of an explanation beyond the arithmetic steps performed to solve the 

problem it is difficult to assess the students’ understanding. 

 The interviews provided further evidence that the student teachers were looking 

for procedural explanations of the students’ strategies.  In the interviews, the student 

teachers were shown video clips of student explanations from their lessons and were 

asked whether the students justified their solutions.  One of the students in Kristen’s class 

partitioned the numbers but did not recombine them to confirm that both sides of the 

equal sign were still equal.  When asked whether this student justified their answer 

Kristen said, “I was hoping, because he is a bright kid, so I was hoping, I was trying to 

get at how he recombined these. But it turns out that he hadn't anyway, he had just put 

82” (Interview 1).  Kristen did not accept this justification because the student had not 

explained the procedure he used to recombine the partitioned numbers.   

 In another video clip Kristen asked to elaborate on, the student stated what they 

did to solve the problem but did not explain why they chose the strategy they did or why 

their strategy was legitimate.  When asked to evaluate this student’s explanation Kristen 
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said, “I think that this one is justifying because he's saying, adding the tens and adding 

the ones, in adding those together” (Interview 1).  Even though in the video of the lesson 

the student does not talk about adding the tens and ones and why that is possible, the 

student teacher inferred that understanding from the students’ explanation and considered 

it an adequate explanation. 

 Abby also felt that simply explaining the steps taken to recombine the numbers 

was an adequate justification of the process.  When shown one of her student’s 

explanations of their strategy where they explained their steps of recombining, Abby said 

that she thought it met their expectations: 

I like that he had, that he had taken the sevens that he took out from the ones. That 
he recognized that it was 14, and then he took out all the tens from each one and 
he made the 20 and then with that, he added the 24, which I guess is what he was 
showing here with the 14.  I think I would have liked it better if he would have 
left the ten separate and written out the 14 as plus ten plus four.  Then he could've 
put plus 14 and recognized that it was another ten and then recombined them. 
(Interview 1) 
 

Abby focused on how the recombined the numbers by adding the ones and then adding 

the tens.  By indicating that she was unsatisfied with the students’ strategy of not 

breaking up the 14, Abby indicated that it was the process that determined an acceptable 

explanation. 

 Although the student teachers indicated in the lesson plan that they expected the 

students to explain their strategy, the explanations were focused on the procedure and not 

connected to the mathematics.  For this reason, the task remained at the procedures 

without connections level when considered in the context of the lesson plan. 
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Knowledge Associated with the Task 

 During the analysis of each task, a literature review of the topics of each task was 

performed.  This literature review was done to gain a better understanding of the 

knowledge a teacher could have as the designed or modified the tasks; it is not meant to 

describe the knowledge pieces a teacher should have.  The findings of the literature 

review are given in this chapter to justify areas where the student teachers may have 

lacked knowledge. 

 As indicated in the article (McAnallen, 2000), this task could have been used to 

accomplish several mathematical goals in the lesson.  Consequently, there are several 

different components of knowledge that could be associated with this task.  The list of 

knowledge compiled in this section is not meant to be exhaustive but to provide a 

glimpse of the knowledge the literature and task analysis suggested could have been used 

in designing the task.  

Knowledge of whole numbers operations and early algebra as found in the literature.  

Task 1 dealt with whole numbers and primarily the operation of addition.  The use of the 

multiplicative operation was also likely to occur in the task.  Additionally, the article 

suggested that the algebraic approach to addition could lend itself to early algebra 

discussions.  Consequently, a review of research on whole number operations and early 

algebra was performed to describe the possible knowledge the student teachers could 

have used to modify the task.  In the reviewed research, knowledge could be inferred and 

categorized as KCS, KCT, and SCK.  As the research was focused on mathematics 

teaching, it did not address CCK or pedagogical knowledge.  Curricular knowledge was 

often beyond the scope of the reviewed literature because the literature, and the task for 
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that matter, is dealing with one particular topic rather than how that topic fits in with the 

rest of the subject, although there existed some hints of local organization of the 

curriculum and prerequisite understanding. 

 The KCS in the literature covered common strategies, sequencing, and common 

misconceptions or difficulties.  Children develop strategies for solving multidigit 

arithmetic problems without formal instruction, often inventing their own algorithms 

(Carpenter, Fennema, Franke, Levi, & Empson, 1999).  One study identified two primary 

classes of strategies children used to solve multidigit addition and subtraction problems: 

decompose-tens-and-ones and begin-with one-number methods (Fuson et al., 1997).  In 

the former strategy, the numbers were partitioned into tens and ones and then combined 

separately.  In the later strategy, the child partitioned the second number into tens and 

ones and counted up or down from the first number.  Other research projects have found 

similar strategies under slightly different names (Verschaffel, Greer, & Corte, 2007).  A 

third strategy identified by some researchers is compensating or varying, where the child 

adjusts the numbers slightly to make the addition or subtraction easier (Verschaffel et al., 

2007), although Fuson et al. (1997) considered these types of strategies to be 

incorporated into the two classes of strategies they identified.  Carpenter et al. (1999) 

identified the following strategies of multidigit addition and subtraction invented 

algorithms: incrementing (begin-with-one-number), combining tens and ones, and 

compensating. 

 Common difficulties and misconception associated with multidigit arithmetic and 

transitioning into early algebra have also been identified.  One misconception children 

commonly held was viewing multidigit numbers as adjacent single-digit numbers rather 
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than considering the meanings of the different positions (Verschaffel et al., 2007).  Many 

researchers have found the transition from arithmetic to algebra to be cognitively difficult 

for students (Verschaffel et al., 2007).  The relational use of the equal sign, a common 

misconception found in middle-school students, was shown to influence students’ ease 

transitioning from arithmetic to algebra (Knuth, Stephens, McNeil, & Alibali, 2006). 

 KCT found in the literature centered on the types of experiences teachers needed 

to provide students so that students could build their understanding of multidigit 

arithmetic and algebra.  Verschaffel et al. (2007) stated that as students encountered 

experiences with counting and manipulating sets of objects students would begin to 

operate on those objects.  Teachers can build on students’ natural tendencies to use 

operations when counting sets.  Another study found that teachers’ use of the standard 

algorithm contributed to the development of more buggy algorithms (Carpenter, Franke, 

Jacobs, Fennema, & Empson, 1998). 

 Careful selection of tasks is necessary if teachers want to build on students’ 

arithmetic skills and push the students toward thinking algebraically.  The teacher should 

select tasks that motivate a need for algebra by demonstrating its power (Verschaffel et 

al., 2007).  A teacher wants to select arithmetic tasks that provide students with the 

opportunity to find patterns, generalize, conjecture, and justify relationships (Verschaffel 

et al., 2007).  In the context of Task 1, if a teacher wants to begin to push students into 

thinking algebraically, they should select student work that demonstrates the power of 

algebra.   

 As already noted in the discussion of KCS, many students have a deficient 

understanding of the use of the equal sign, treating it as operational rather than relational 
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(Knuth et al., 2006).  This deficit in understanding could be due the different treatments 

of the equal sign in arithmetic and algebra (Carpenter, Franke, & Levi, 2003).  In an 

example akin to the adding ten different ways task, Falkner, Levi, and Carpenter (1999) 

illustrated how the teacher can develop students’ algebraic reasoning by selecting tasks 

where the students explore the relational use of the equal sign:  

A child who has had many opportunities to express and reflect on such number 
sentences as 17 – 9 = 17 – 10 + 1 might be able to use the same mathematical 
principle to solve more difficult problems, such as 45 – 18, by expressing 45 – 18 
= 45 – 20 + 2.  This example shows the advantages of integrating the teaching of 
arithmetic with the teaching of algebra.  By doing so, teachers can help children 
increase their understanding of arithmetic at the same time that they learn 
algebraic concepts. (Falkner et al., 1999, p. 233) 
 

 Discussion of SCK in the literature focused on representations and principled 

understanding of the mathematics.  Verschaffel et al. (2007) discussed the different 

representations of numbers and operations on numbers, such as base-ten representations 

and a number line.  Additionally, teachers could know the different ways algebra can be 

represented in arithmetic, such as pattern-finding and generalizations (Verschaffel et al., 

2007).  Teachers could also know that addition can be represented by the combining of 

sets or the joining of segments of different lengths (NRC, 2001). 

 Additionally, teachers need a principled understanding of the underlying 

mathematics in their students’ strategies in order to determine their validity.  For 

example, in the decompose-tens-and-ones strategy discussed earlier, teachers need to 

recognize the students’ tacit use of the mathematical principle that numbers can be 

partitioned and then recombined (Verschaffel et al., 2007).  Teachers could be aware of 

the use of the commutative and associative properties in arithmetic.  These two properties 

allow for a great deal of freedom in arithmetic (NRC, 2001).  The standard algorithms 
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depend on these properties as well as the distributive property, yet their compact nature 

often hides the use of the properties (Verschaffel et al., 2007). 

 The literature contained some implicit references to curricular knowledge that 

dealt primarily with the prerequisite understanding students need in order to understand 

multidigit arithmetic.  The use of a decimal number system requires a firm understanding 

of place value and different ways numbers can be represented, for example, standard and 

expanded forms (Verschaffel et al., 2007).  Prior to instruction on multidigit arithmetic, 

children need ample experiences with the base-ten number system (NRC, 2001). 

 Knowledge the student teachers used to modify and incorporate the task.  As the 

student teachers modified the task from the article and incorporated it into their lesson 

plan, they used knowledge from all six identified knowledge domains.  For each 

category, there will be a discussion of the knowledge the student teachers used as well as 

a comparison of their knowledge to the literature. 

Table 3 shows a list of the pedagogical knowledge used as well as sample 

statements.  The pedagogical knowledge used in Task 1 included the principles of 

connecting to the students’ prior learning, using contexts that interest students, 

encouraging the students to work in groups, managing the classroom with time limits, 

and observing students as they work on the task.  The pedagogical knowledge 

demonstrated by the student teachers in this task was used with the purpose of motivating 

the students to want to do the task.  The student teachers tried to motivate the students to 

work on the task by changing the title of the lesson to “Proving Addition Facts”.  The 

student teachers were planning to look for “creative” and “interesting” student work that 

would “excite” the students in the class and thus motivate the students to want to work on 
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the task more.  The student teachers were also hoping to motivate the students by having 

them work with partners.  The student teachers used their pedagogical knowledge to 

manage the classroom by setting time limits, having the students work in groups, and 

walking around the classroom to increase proximity.  They used their pedagogical 

knowledge to come up with strategies to help the students learn, for example reminding 

the students of the previous day’s lesson and planning to have the students present their 

solutions to one another. 

Table 3 
 
Pedagogical Knowledge Used in Task 1 
 
Pedagogical Knowledge Example Statement 
Try to connect new learning to 
previous student experiences. 
 

Review of Day 1 

An interesting context and creating 
ownership will motivate the 
students to want to do the task. 

So we were trying to make it fun for them and 
that they could do because a lot of them when 
we started this, especially in Kristen’s class on 
the first day, they were like, “We already know 
how to add, why do we have to do this?” 
 

Have students work together so that 
they can help each other. 
 

Students also help each other to understand how 
to add place values. 

Manage the classroom by setting a 
time limit on the task. 
 

Tell them they have 10 min. 

The teacher should observe students 
as they work and have students 
present to facilitate the discussion. 

Teacher walks around observing students 
working, and looks for creative ideas the 
students have. 

 

Similar to the table for pedagogical knowledge, Table 4 shows a list of the 

curricular knowledge the student teachers used when planning the lesson and a sample 

statement.  As the student teachers did not have much control over what was to be taught, 

they did not use their curricular knowledge often.  The student teachers considered the 
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state core to be a curricular resource that told them what they needed to teach.  While this 

may not be true, the student teachers treated it as a fact and thus the researcher considered 

the notion that the state core could serve as a curricular resource to be knowledge.  

Additionally, the student teachers knew that the article they were given by their 

cooperating teacher could be used as a curricular resource.  The student teachers were 

told that the task could be used to push the students toward algebraic thinking; however, 

whether the student teachers had the knowledge to actually do this will be discussed later.  

Finally, the student teachers knew that the rewriting of numbers was prerequisite to the 

students understanding and successfully completing Task 1. 

Table 4 
 
Curricular Knowledge Used in Task 1 
 

Curricular Knowledge Example Statement 
The state core is a curricular 
resource. 

We tried going through the State Core to see what 
objectives it met, but the only connection we could 
identify is with Standard I Objective 1-1, which 
requires students to be able to explain why addition 
works. 
 

The article is a curricular 
resource. 

In order to plan our lesson we were given an article 
addressing this addition activity.  
 

The task could be used to 
bridge the gap between 
arithmetic and algebra. 
 

And we talked to our cooperating teacher and we 
talked about how this could lead into combining like 
terms.   
 

Place value and different 
ways of writing numbers 
are prerequisite to this 
lesson. 

Because they’ve been learning tens, hundreds and 
they’ve also been learning the difference between a 
digit and a number, you know, that digits are zero to 
nine. 

 

 This task exemplifies some of the common misconceptions the student 

teachers had about the curriculum: First, the state core provides a curriculum (a list) of 
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what should be taught as well as possible prerequisite knowledge of their students.  

Second, any article or activity that the cooperating teacher gave to the student teachers 

was worthy of being incorporated into the curriculum.  (There is evidence that the student 

teachers begin to evaluate the different activities and articles given to them by their 

cooperating teacher later.)  Although they were told by the cooperating teacher and the 

article that this task provided an opportunity to discuss like terms, the student teachers 

did not incorporate this idea into the lesson plan except in the title.  In fact, Abby did not 

understand how the task could be used to discuss like terms because “these all are like 

terms already, because they're all whole numbers” (Interview 1). 

Table 5 provides a summary of the student teachers’ KCT.  The student teachers 

used this knowledge to plan how they would build on student thinking, to choose the 

numbers of the task to avoid certain false generalizations, and to determine how much 

information to give the students before they worked on the task.  By giving the students 

the answer to the addition problem as was suggested in the article, they wanted the 

students to realize that the answer was not as important as the justification and thus 

encourage the students to justify their strategies.  The student teacher’s planned move of 

questioning the students to help them understand the role of place value in the standard 

addition algorithm was a broad suggestion without specific questions.  Even though the 

student teachers planned to ask questions, without the specific questions it is difficult to 

determine whether the student teachers’ questions actually would have helped the 

students understand. 
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Table 5 
  
Knowledge of Content and Teaching Used in Task 1 
 

KCT Example Statement 
Focus the students on the 
process rather than the 
answer. 
 

Wednesday, when I began my lesson, I think it helped a 
lot that I put the three numbers up on the board and had 
the students quickly add them in any way they wanted to. 

Look for particular student 
thinking to build on 
(connection between 
multiplication and addition, 
and place value). 
 

But then also, I was looking for the connection between 
addition and multiplication. 

Students tend to form false 
generalizations so vary the 
numbers to avoid this. 
 

I think that he [The cooperating teacher] was worried that 
students would catch that pattern and only see that pattern 
and not do it if they see that pattern and that may have 
happened.   

Misunderstandings 
regarding algorithm can be 
remedied by asking 
questions about place value. 

Teacher asks students questions to try to help them 
understand that it is a 10 they are representing with that 1.

 

 When compared to KCT found in the literature, the student teachers’ KCT did not 

include how to build on students’ arithmetic skills to push them into algebraic thinking.  

They also did not consider how to build on students’ natural strategies nor possible buggy 

algorithms stemming from the method of addition taught in the lesson.  Their concern to 

avoid false generalizations came primarily from their cooperating teacher.  The article of 

the original task gave the pedagogical suggestion to provide the students with the answer 

to the addition problem. 

 Table 6 provides a list of the KCS the student teachers used when modifying Task 

1 as well as an example statement.  The student teachers knew that even though the 

students had already learned the addition algorithm, many students do not understand 

how the addition algorithm works and described how a student might interpret the 
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“carried” one as having a value of one rather than representing a ten.  Also, because the 

students already knew how to add, the student teachers knew that the task was too simple 

for junior high students.  The student teachers also knew that some students did not have 

a conceptual understanding of addition nor did the students understand that multiplication 

was repeated addition.  Finally, the student teachers took the students’ abilities to 

partition the numbers into tens and ones as evidence that the students understood the 

place value system. 

Table 6  

Knowledge of Content and Students Used in Task 1 
 

KCS Example Statement 
If students partition the numbers 
using tens and ones then they 
understand place value. 
 

Student understands how to re-write place value 
separately . . . 

Students don’t understand the 
addition algorithm. 

Student is using “carrying” correctly, but as we can 
see by his explanation, he doesn’t understand that the 
little “1” he writes over the tens column actually 
represents 10, not 1. 
 

Students have difficulty 
connecting addition and 
multiplication. 

Part of the reason was that I've noticed that some of 
the students have a problem understanding what 
multiplication is. But it really is, that the 15 is five 
plus five plus five, and that's three fives, three groups 
of five. 
 

Students are already familiar 
with the addition algorithm. 
 

I would say that every student is comfortable with 
adding using carrying. 

Students don’t have a 
conceptual understanding of 
addition. 

I don't think that as many of them really 
understanding that addition is just combining 
everything and the way you combine isn't as 
important as that you get everything exactly once, 
and so that's where they were lacking.   
 

This task is too simple for 
junior high students. 

We thought this was way too simple for junior high 
students. 
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The student teachers’ used their KCS to plan how they would evaluate student 

understanding, for example, by looking for evidence of understanding of place value in 

how the students partitioned and recombined the numbers.  They also used KCS to 

anticipate student thinking.  For example, they knew that they students were already 

familiar with the addition algorithm but may not understand why it works.  They 

anticipated that some students would add this way, and using their KCT, they planned 

how they could help the students understand the algorithm better.  Their knowledge of 

common student difficulties also motivated the student teachers’ purpose of the task and 

the kinds of student thinking they were looking for as the students worked.   

 The literature on KCS pointed to strategies of multidigit arithmetic and common 

difficulties.  From the examples given in the lesson plan, the student teachers were only 

aware of one strategy aside from the standard algorithm that students might use to add 

multidigit numbers: decompose-tens-and-ones.  This may be related to the article as it 

was the strategy promoted by the algebraic method.  However, the student teachers 

seemed open to other methods given that they wanted to see “some really creative 

approaches”.  One can assume that if the student teachers were aware of some of the 

other methods they would have included them as possible student solutions.  

Additionally, the student teachers showed no evidence that they knew of difficulties in 

the transition from arithmetic to algebra caused by a misconception of the equal sign even 

though this was implicit in the article. 

SCK was not used much by the student teachers (see Table 7).  Their SCK 

consisted of knowing why the addition algorithm worked and being able to conceptualize 

addition as the combining of sets.  They used their conceptual understanding of addition 
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to plan how they were going to explain the axiom to the students.  The student teachers 

used their knowledge of how the addition algorithm worked to determine that this task 

may address this concept. 

Table 7 
 
Specialized Content Knowledge Used in Task 1 
 

SCK Example Statement 
How the addition algorithm 
works. 
 

Carrying is really more breaking it down into tens and 
ones. 

How to conceptualize 
addition. 
 

So to show that addition is just counting up the numbers 
and then putting each number once. 

 

 There were great differences in the SCK in the literature and the SCK the student 

teachers used to modify and plan Task 1, which was to be expected.  Although the 

student teachers held one conceptual understanding of addition, that of combining sets, 

they showed no evidence that they knew that addition could also be represented by 

adjoining segments.  This was not surprising given that the conceptualization of set 

combining aligned more with the addition strategy they wanted the students to learn.   

The student teachers openly admitted that they had not considered the use of the 

associative and commutative properties in the strategy that they were teaching.  Abby 

explained that it would have been a good idea to talk about the commutative and 

associative properties of addition and multiplication in conjunction with Task 1 because 

“these properties [commutative and associative] are things they need to learn about in this 

class because they are part of the core” (Reflection Paper 1).  From this quote and the 

student teachers’ use of the core as a list of things they needed to teach, the researcher 

inferred that if the student teachers had known that Task 1 could be used to discuss the 
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commutative and associative properties, they would have included it in their lesson plan.  

Additionally, the student teachers were unable to describe the use of the distributive 

property in adding like terms.   

Although the article containing the original task discussed the connection between 

the algebraic method of addition and combining like terms, the student teachers were 

unsure how this task related to combining like terms.  When the cooperating teacher 

suggested that this task could be used to introduce like terms, the student teachers 

disregarded the suggestion.  Abby indicated that: 

We had talked about giving them something more algebraic with different terms 
in it and having them deal with it, but having had them already thought about 
addition in a different way.  Instead of just going through, and having them 
always add up numbers, but breaking them down and having something with 
variables in it.  They could break it down and look for what was common in order 
to find like terms.  I don't know that we would go from this [just using numbers] 
to talking about combining like terms because these are already like terms, 
because they’re whole numbers. (Interview 1) 
 

Abby’s indication that like terms needed to be taught using variables and that all whole 

numbers are like terms pointed to Abby having a segregated view of algebra and 

arithmetic.  She seemed to be unable to consider how algebra related to the arithmetic of 

the task.   

After the reflection meeting where there had been a brief discussion about using 

the task to discuss combining like terms, Kristen indicated that she had thought more 

about the concept of combining like terms: 

And so I was trying to think about what he [the cooperating teacher] meant by 
combining like terms, and I think that the idea behind it is that we see all the 
sevens and so we can combine the sevens.  And we see all these threes and so we 
can combine the threes, I think. (Interview 1) 
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From this statement, Kristen’s view of algebra as generalized arithmetic does not seem to 

be as narrow as Abby’s view.  However, the notion of discussing like terms in the context 

of arithmetic appeared to be a novel idea to Kristen.  The student teachers likely did not 

see the connection between the arithmetic of the task and algebra because they did not 

know what algebraic thinking to look for in their students’ work, for example, justifying, 

generalizing, and pattern-finding.   

 Table 8 shows the CCK the student teachers used to plan and modify Task 1.  The 

student teachers’ CCK consisted of the knowledge that justification and proof are 

important mathematical processes, knowledge of the addition algorithm, and the ability to 

write numbers in different forms. 

Table 8 
 
Common Content Knowledge Used in Task 1 
 

CCK Example Statement 
Mathematics involves 
justification. 
 

Well in math, it's kind of a big deal to be able to prove 
things. 

Addition algorithm and why 
it works. 
 

I carry when I add, and that's fine. 

Numbers can be written in 
many different forms. 

Student . . . can correctly re-write each number in 
expanded form. 

 

 The student teachers’ used CCK to determine the purpose of the task and to 

anticipate some student thinking.  The student teachers knew that Reasoning and Proof 

was one of the Process Standards (NCTM, 2000), and so they “incorporated” proof into 

the task by titling the lesson “Proving Addition Facts”.  However, the expectation for 

student justification was more along the lines of an explanation of the students’ thought 

process rather than a proof of why their process worked.  The student teachers also used 
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their knowledge of the addition algorithm and rewriting numbers to create some of the 

different ways that they predicted students would add the numbers. 

In summary, the student teachers lacked knowledge of many common strategies 

students use to add multidigit numbers.  Consequently, they relied on their own strategies 

for adding numbers in order to anticipate student thinking.  The student teachers did not 

see a mathematical purpose for the task, and so they used the state core to identify the 

mathematics they should be teaching and relied on their knowledge of what 

mathematicians do in order to create a mathematical purpose.  Additionally, the student 

teachers did not have adequate knowledge regarding the connection between arithmetic 

and algebra.  They were “hoping to see students come up with different ways to add” 

(Lesson Plan 1), but were unsure as to what specific thinking they should be looking for 

in order to bridge the gap between arithmetic and algebra. 

Task 2: Spatial Reasoning 

Description of Task  

The students had been making hexahedra in class.  Kristen and Abby’s 

cooperating teacher asked them to create a task for the students using the hexahedra.  The 

student teachers consulted the state core to determine a mathematical topic that they 

could teach through the use of the hexahedra.  The student teachers determined that the 

hexahedra could be used to teach the concept of surface area.  They also decided that 

students first needed to have a conceptual understanding of area before they could 

understand surface area.  The student teachers decided that these objectives aligned best 

with the core objective of deriving geometric formulas.   
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The student teachers did not provide the students with a written task, so the task 

had to be inferred from the lesson plan.  In this case, the task consisted of a series of 

questions the student teachers planned to ask the students.  On the previous class period, 

the student teachers gave the students six pieces of square paper and explained to the 

students how to fold the papers so that the six folded papers would fit together to form a 

hexahedron.  At the start of the task, the students had folded the six sides of their 

hexahedron, but had not yet assembled the hexahedron.  Figure 5 shows the relative size 

of a folded side (the shaded square) to the unfolded square paper and the fold marks that 

would result from folding the square paper.  The questions in the task had the students 

use one of the folded sides.  In the first question, the student teachers asked the students 

to “pull out one of [their] six squares [they] folded yesterday.  If we let one edge of that 

square [referring to the shaded square in Figure 4] be one unit, what would be the area of 

the whole square?”  Once the area of the square had been established, the student teachers 

handed another square of paper that was the same size as the unfolded hexahedron to the 

students.  The student teachers then asked them to “work with their partner to come up 

with their best estimate of the area of the square of paper, using their smaller squares as 

one square unit.”  If the students oriented the folded square so that it was oriented the 

same direction as the unfolded paper, then the folded square did not cover the sheet of 

paper evenly and the students had to estimate the area measurement.  The student 

teachers then asked the students to “unfold one of their smaller squares to see a way to 

get a more accurate estimate.”  When the square was unfolded the students could find 

squares congruent to the unit square which would improve the accuracy of their 

measurement. 
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Figure 5.  An unfolded side of a hexahedron used in Task 2. 
 
Cognitive Demand of the Task 

 Two of the raters gave the written task a code of procedures with connections and 

one gave the written task a code of doing mathematics.  The raters who coded the task as 

procedures with connections indicated that the task connected area to the meaning of 

counting square units, but felt that the students were guided too much by the suggestion 

that students unfold the paper to find a more accurate estimate.  The rater who coded the 

task as doing mathematics did so because a pathway wasn’t suggested until the end and 

the task required the students to access their own knowledge. 

 As a researcher, I also coded the task as procedures with connections, but with a 

reservation about the amount of anxiety it would cause the students.  The task is 

connected to the concept of measurement as a count of a standard unit of the attribute to 
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be measured.  This fits well with the description that procedures with connections tasks 

“focus students’ attention on the use of procedures for the purpose of developing deeper 

levels of understanding of mathematical concepts” (Stein et al., 2000, p. 16).  The 

pathway suggested also had a strong connection to the concept of measurement as 

counting.  However, the cognitive demand of the task did not seem to fit with junior high 

school mathematics.  The measurement standard expectations listed in Principles and 

Standards for School Mathematics places the expectations that students understand that 

measurements are estimates and how to best estimate a measurement as well as how to 

determine an appropriate unit of measure for a particular attribute in grades three through 

five and not in the junior high grades (NCTM, 2000).  The expectations for junior high 

school students were much higher than this task would elicit. 

 In the context of the lesson plan, the cognitive demand of the task descended to 

procedures without connection.  The anticipated thinking in the lesson plan did not 

contain much detail.  They stated that the estimates would be “rough guesses” but did not 

plan to discuss how the students found the estimates.  They also thought that the students 

might try to estimate the length and width and apply the area formula for a rectangle.  

There is no indication that they expected the students to explain their answers beyond 

“explain[ing] what they did” (Lesson Plan 2).  Given the directions to unfold the square 

and the unproblematic nature of the task for junior high students, the task was already 

bordering on the procedures without connections cognitive level.   This insight into the 

expected student explanations made it so that the task fit better with the procedures 

without connections level than the procedures with connections. 
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Knowledge Associated with the Task 

 In order for the researcher to better describe and justify the knowledge a teacher 

could use when designing Task 2, the researcher included a review of the literature 

regarding area measurement.  The first section contains some of the key knowledge 

components mentioned in the literature.  The second section contains the knowledge the 

student teachers used to design Task 2 as inferred by the researcher. 

 Knowledge of measurement and area found in the literature.  In order to 

understand area measurement, one must have an understanding of measurement in 

general.  The literature reviewed dealt with measurement in general, common 

misconceptions of area, and the formula for finding the area of a rectangular polygon.  

Although this task did not deal directly with deriving formulas, the student teachers 

determined that the state core objective of deriving formulas aligned with the task. 

 First, the literature stated that most elementary students, secondary students, and 

even teachers do not have an adequate understanding of area (Ball et al., 2001; Bonotto, 

2003; Stephan & Clements, 2003).  This difficulty is compounded by the lack of 

experiences students have with measurement in general: lacking an understanding of the 

inverse relationship between size of unit and number of times it can be used to measure a 

region, that units can be partitioned into smaller regions to increase accuracy, and the use 

of different sized units in conversions (Lamon, 2007).  For many students, measuring an 

area involves identifying numbers and applying an arithmetic operation without 

estimating the area first (Bonotto, 2003).  Common difficulties students experience with 

area include: confusing area and perimeter, misapplying the area formula for rectangles 

to non-rectangular figures, using linear units, understanding the proportional relationship 
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between the sides of a figure and its area, having gaps or overlaps, and varying the size of 

the unit (Outhred & Mitchelmore, 2000).  Stephan and Clements (2003) attributed these 

difficulties to the complexity and sophistication of the array structure and multiplicative 

reasoning involved in the formula.  Outhred and Mitchelmore (2000) stated that many of 

these errors could be traced to a non-conceptual understanding of area.   

 Baturo and Nason (1996) suggested two different strategies that children may use 

to find the area of a region using a unit of measure.  First, students could iterate the unit 

by transposing and rotating the unit within the region.  Second, the students could use as 

many units as necessary to completely cover the region without overlapping the units or 

leaving gaps.  The student teachers intended the students to use the former strategy, 

although the students could have employed the latter if they had pooled all of their unit 

squares. 

 The literature also suggested various tools and pedagogical strategies teachers 

could employ to help students develop a better conceptual understanding of measurement 

and area (KCT).  Stephan and Clements (2003) indicated that many of the traditional 

instructional tools used to measure and teach area hide the conceptual aspects of area.  

NCTM (1989) suggested that teachers have students use concrete materials to cover the 

region.  However, Outhred and Mitchelmore (2000) indicated that research has shown 

that the use of such materials often conceals the conceptual underpinnings of area they 

are intended to teach and suggests the use of drawings as an alternative.  In contrast, 

Stephan and Clements (2003) indicated that students’ first experiences with measuring 

area should involving covering the region with a unit, incorporating classroom 

discussions that focus on the issues of overlapping, gaps, and precision.  In order to get 
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students to see the connection between rectangular area and formula, students need to be 

given experiences where they can explore arrays and their connection to the linear 

measurements of the rectangle (Battista, 2003).   

  The literature contained a great deal of information on the principles of 

measurement and area (SCK).  Baturo and Nason (1996) described the process of finding 

a measurement: identifying the attribute to be measured, partitioning the attribute into 

units, and then counting the units.  Stephan & Clements (2003) discussed assumptions 

involved in measuring an attribute by covering, for example, the chosen unit of measure 

is appropriate to measure the region, units do not overlap, and congruent units have equal 

areas.  

Area has been defined as the “amount of two-dimensional surface that is 

contained within a boundary and that can be quantified in some manner” (Stephan & 

Clements, 2003, p. 10).  Baturo and Nason (1996) suggested that area be considered from 

both the static and dynamic perspectives:   

The static perspective equates area with an amount of region that is enclosed 
within a boundary and the notion that this amount of region can be quantified.  
The dynamic perspective focuses on the relationship between the boundary of a 
shape and the amount of surface that it encloses so that, as the boundary 
approaches a line, area approaches zero. (p. 238) 

 
Additionally, Baturo and Nason (1996) identified three types of knowledge associated 

with area: concrete, computational, and principled conceptual.  Concrete knowledge 

included measuring an area with no gaps or overlaps for both regular and irregular 

shapes, using both standard and arbitrary units, being able to count parts of a unit, and an 

understanding of conservation of area.  Computational knowledge incorporated the use of 

formulas and unit conversions.  Principled conceptual knowledge included identifying the 
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attribute that is to be measured and knowing why it is to be measured, that “area is a 

continuous attributed divided into discrete subunits” (Baturo & Nason, 1996, p. 244), 

area comes from squaring a linear attribute, the necessity of standard units for 

comparison, inverse proportionality of units, issues of precision, and the derivation of and 

connections among area formulas. 

Knowledge the student teachers used to develop the task.  Table 9 lists the student 

teachers’ KCS.  The student teachers described their students’ tendencies to multiply any 

two numbers to find the area rather than multiplying the length and the width.  These 

types of statements indicated that the student teachers knew that the students often 

misapplied the rectangular area formula and that students did not have a conceptual 

understanding of area.  The student teachers anticipated that some of the students might 

not realize that the units could not overlap, but that most students would still be able to 

determine the area of the unfolded square by counting the units and fractions of units.  

The student teachers also knew that the students were uncomfortable with nonstandard 

units of measure and that the students may struggle because the folded square did not 

cover the unfolded square “evenly”, meaning in a grid pattern. 

Table 9 
 
Knowledge of Content and Students Used in Task 2 
 

KCS Example Statement 
Students know that the area of a 
rectangle is length times width, 
but have no conceptual 
understanding of area. 
 
 
 
 
 

I mean they know that area of a square is length 
times width, but maybe having that conceptual 
understanding of it . . .  
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KCS Example Statement 
Students have difficulty applying 
the area formula. 

For example they did a problem in class where 
they had to know area, and the pool table 
problem—or the pool problem, almost every 
student knew that they had to multiply two 
numbers together, but very few students 
understood that it mattered which two you know. 
 

Students are uncomfortable with a 
nonstandard unit of measure. 

So you know, she just didn’t understand that a 
unit is…an inch is just a type of a unit and we 
don’t need to label it “inch”. 
 

Students may struggle with the 
task because the unit doesn’t fit 
“evenly”. 

We thought that they might not realize that things 
can't overlap, and that they might have a hard 
time because the unit didn't fit evenly. 
 

Students might not realize that the 
units cannot overlap. 

We thought that they might not realize that things 
can't overlap, and that they might have a hard 
time because the unit didn't fit evenly. 
 

Students will be able to count the 
unit and pieces of squares  

Students will probably be able to use this 
suggestion to see that they need to rotate their 
smaller square and combine all the partial squares 
to get an accurate measure of the area. 

 

For two of the items in the table, application of area formula and overlapping of 

units, Kristen indicated that they had discussed them while planning the lesson.  

However, neither of these ideas appeared in the lesson plan.  The overlapping of units is a 

fundamental principle of measuring area and an idea that would likely present itself 

during the implementation of the task, but was not discussed in the lesson plan.   

Another inconsistency between the lesson plan and what was mentioned in the 

interviews was the students counting partial units.  The task required the students to count 

pieces of the whole unit and combine those pieces to make units.  There was evidence in 

the lesson plan that the student teachers anticipated this thinking.  However, Kristen 

stated in her interview that she was surprised when students counted partial units, “I 
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intended them to use squares, because that was the unit.  But then the student saw that the 

triangle is half of the unit.”  This inconsistency can likely be explained by the idea that 

Kristen anticipated the students counting all of the whole units and then the pieces of the 

whole unit, she did not anticipate that the students would partition the square unit into a 

smaller unit that they could then count to get a more accurate measurement. 

The student teachers’ used their KCS as a motivation to teach the lesson.  They 

felt that the students did not have a conceptual understanding of area and that this task 

would help students develop that connection.  It is unclear whether the student teachers 

intended the task to explain and clarify some of the misconceptions students had with the 

area formula for a rectangle.  In the lesson plan and the reflection meeting, the student 

teachers discussed how students needed to be able to apply and derive formulas.  

However, Kristen acknowledged that the task “doesn't help them see very well why it’s 

length times width” (Interview 1). 

The student teachers used their KCS to anticipate student thinking.  The 

anticipated student thinking in the lesson plan dealt with having to rotate the square to 

make it fit evenly, multiplying the length and width, and counting the units and partial 

units.  The student teachers had observed students multiplying numbers to find area in the 

past and knew this was a strategy students might use to determine the area.  Additionally, 

the student teachers knew that the students would be able to count the number of units 

and partial units because the students had used that strategy on a past task. 

The student teachers knew that the students were uncomfortable with nonstandard 

units of measure.  This knowledge was reflected in the student teachers choosing a 

nonstandard unit of measure for the class to use to measure the area of the paper.  
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However, there is no indication in the lesson plan that the student teachers intended to 

talk about issues of nonstandard units with the class. 

Compared to the literature, the student teachers were aware of some student 

difficulties associated with area.  The knowledge of these difficulties came from their 

experiences with their current students.  They knew that most of their students did not 

have a conceptual understanding of area and that they often misapplied the area formula.  

They also knew that students would struggle with covering the area with no gaps or 

overlaps.   

The student teachers’ KCT (Table 10) centered on how to provide students with 

experiences that would build their conceptual understanding of area and using those 

experiences with area to lead into surface area.  The student teachers knew that the action 

of covering the area with a unit would build a conceptual understanding of area.  The 

student teachers had the knowledge that they needed to prepare the students for a 

discussion on surface area by providing the students with experiences that would develop 

their conceptual understanding of area first.  The student teachers’ strategy to have the 

students cover the area with a concrete unit was similar to what was suggested in the 

literature (NCTM, 1989; Stephan & Clements, 2003).  

Table 10 
 
Knowledge of Content and Teaching Used in Task 2 
 

KCT Example Statement 
Help students conceptualize 
area by having them cover 
the area with a concrete 
unit. 
 
 
 

And I think it helps them get a better conceptual idea of 
area to try to estimate in that way. 
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KCT Example Statement 
Help students conceptualize 
area by giving them a 
context where they have to 
visualize area. 
 

So something that can help them understand, kind of 
picture, visualize area in some kind of context is very 
helpful to conceptual understanding. 

Prepare students for surface 
area by reviewing area. 

If they understood the surface area of their own cube, 
then that would help.  But in order to do that then we 
decided to review what area was to see how it all ties 
together. 

 

Table 11 lists the student teachers’ SCK.  There was evidence in the interviews 

that the student teachers knew that there could be no gaps or overlaps when measuring 

area.  Additionally, the student teachers had knowledge of units, specifically that units 

must be congruent.  Although there was some indication in Kristen’s interview that she 

was aware of arrays and how they apply to the rectangular area formula, this knowledge 

was not included in the table because she did not use the knowledge to plan the task. She 

was aware that the rotation of the unit made it so that this task was not well suited for 

helping the students understand the multiplicative relationship in the area formula. 

Table 11 
 
Specialized Content Knowledge Used in Task 2 
 

SCK Example Statement 
In finding area, there can be no 
overlaps or gaps. 
 

Then we could have discussed that the 
squares couldn't overlap. 

General understanding of units: units 
are what you count; congruency and 
consistency. 

And so the reason is, if you are counting 
squares of all different sizes then you get to 
the end and you have 27 what? 

 

The student teachers’ had much of the SCK mentioned in the literature.  They had 

some knowledge of units and measuring area with concrete units.  The difference 

between the SCK of the student teachers and the SCK in the literature is in the breadth 
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and depth of the knowledge (see Ma, 1999).  For example, the student teachers knew 

some of the principles of area measurement such as covering the area completely and 

consistency of units.  However, they did not show evidence that they understood how 

varying the size of the unit affects a measurement nor how unit conversions are 

connected to unit size.  Their knowledge package of area was incomplete.  Additionally, 

Kristen had a conceptual definition of area, but it was not articulated as well as it could 

have been. 

 Table 12 shows the student teachers’ CCK, which consisted of the formula for 

finding the area of a rectangle, the notion that problem solving was a mathematical 

processes, the idea that there are many ways to estimate a measurement, and a conceptual 

definition of area.  Their CCK was used to determine a purpose in the lesson (problem 

solving) and was also critical in the design of their task (having the students estimate the 

area as well as find the exact measurement).   

Table 12 
  
Common Content Knowledge Used in Task 2 
 

CCK Example Statement 
Area (of a rectangle) is 
length times width. 
 

Understanding of area as the length multiplied by the 
width. 

Mathematics is problem 
solving. 
 

Well, that was problem solving . . . That was a math 
idea that I kind of wanted to do. 

Estimation in area 
measurement 

I wanted them to see that there were many ways to 
estimate and there was also a way to get an exact 
answer. 
 

Conceptual definition of 
area. 

The area of the paper is the middle part, kind of. 
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 The student teachers’ curricular knowledge, which is listed in Table 13, included 

the core as a curricular resource and necessary prerequisite understanding for surface 

area.  It is interesting that the student teachers did not view this task as the time to address 

issues related to units.  This could have been because they wanted to use an arbitrary unit 

rather than a standard unit such as inches.   

Table 13 
 
Curricular Knowledge Used in Task 2 
 

Curricular Knowledge Example Statement 
The state core is a curricular 
resource (deriving 
formulas). 

And so we went through the core and really tried to 
decide what the big mathematical ideas were, and really 
it just was surface area and having a conceptual 
understanding of that. 
 

Area is prerequisite to 
surface area. 

I think you need to understand area before you get to 
surface area. 
 

Units are also connected to 
area and surface area (but 
not necessarily prerequisite) 

We kind of wanted a little bit to address units, oh yeah, 
we decided to do that later; we decided to really focus 
on units later. 

 

 The student teachers used their curricular knowledge to order the lesson.  They 

knew that they needed to teach the students about area before they could adequately 

address surface area.  Additionally, they decided that units were not necessary to 

understanding surface area and decided to address issues of units later.   

They also used their curricular knowledge to find a purpose to the lesson by 

referring to the state core objectives.  Although the purpose identified by the student 

teachers (deriving formulas) did not align well with the task, the student teachers knew 

that the state core was a tool they could use to determine the mathematics that should be 

taught in a pre-algebra course. 
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Table 14 lists the pedagogical knowledge the student teachers used to design Task 

2.  The pedagogical knowledge employed by the student teachers was used to manage the 

classroom and build on students’ past experiences.  The student teachers knew that it was 

good pedagogical practice to build off the students’ past experiences.  Earlier in the year, 

the students had made tetrahedrons and were asked to find the area of the folded paper.  

The student teachers wanted to connect this new task to their students’ past experiences.   

Table 14 
 
Pedagogical Knowledge Used in Task 2 
 

Pedagogical Knowledge Example Statement 
Try to connect new learning to 
previous student experiences. 

. . . they did something very similar when they made 
tetrahedrons. 
 

Have students work together. I decided it might work better to try to have them 
working with each other more than with a whole 
class discussion. 

 

Additionally, the student teachers had been experiencing management problems.  

The student teachers’ used their pedagogical knowledge to try to address some of the 

management problems.  In this case, the student teachers decided to have the students 

work in pairs and that she would help the individual pairs more rather than having a class 

discussion. 

To summarize the student teachers’ use of knowledge, they used KCS to 

anticipate student thinking and to provide the student teachers with a purpose for teaching 

the lesson.  Their KCT allowed them to create experiences to help students conceptualize 

area.  Their pedagogical knowledge was used to manage the classroom.  Curricular 

knowledge was used to order the lesson and to identify the mathematics that should be 
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taught in the classroom.  While the student teachers had SCK, it was not well-connected 

or as deep as it could have been. 

Task 3: Subtracting Integers 

Description of Task 

Prior to planning the third lesson, the student teachers had noticed that students 

were struggling with subtracting integers.  They wanted to create a task in which students 

would have to subtract integers.  They handed the students the following story problem: 

You have a lawn-mowing job and get paid every Friday.  At the beginning of the 
week you had $32.  By looking at what you did during the week, figure out how 
much money you had at the end of each day. (Make sure you show your work the 
way we discussed in class.) 

• Monday: You bought candy and balloons for your friend Joe’s birthday.  
This cost you $8. 

• Tuesday: you went to Joe’s birthday party at Seven Peaks and spent $17 
total on your park pass and snack.  On the way home, you stopped to get 
enough gas to mow your lawns tomorrow.  The gas cost $22, and since 
you didn’t have enough, you paid everything you had and borrowed the 
rest from Joe. 

• Wednesday: Your friend Susan paid you back the $4 she owed you. And 
you used this money to pay back part of your debt to Joe. 

• Thursday: The ice cream man came by and Joe let you borrow another $2 
to buy ice cream. 

• Friday: Pay Day!! Your employers paid you $42 for the lawn mowing 
jobs you did this week.  You paid off all your debt to Joe and kept the rest. 

 
Within the context of the lesson plan, this task was placed after a discussion about 

different methods of subtraction, similar to the adding ten different ways task.  The 

student teachers gave a two-digit subtraction problem, 23 – 18, to the students and 

discussed how they could partition the numbers so that they could subtract them in a 

useful way.  For example, 23 = 10 + 13 and -18 = -10 – 8; the students could then 

combine 10 and -10 and 13 and 8 to get 0 + 5.  The students were then expected to 

practice this method of subtraction in the story problem they were given. 
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Cognitive Demand of the Task 

 This task was coded as procedures without connections.  There is no indication in 

the task that the expected explanation needed to extend beyond procedures.  In fact the 

explanation needed to mimic what was shown during the discussion.  Even though the 

task was set in a monetary context, the task itself did not elicit any connection to the 

underlying principles of integer subtraction.  The students could easily solve the problem 

without having to understand how to subtract integers.  In fact, the students could solve 

the problem without using negative numbers.   

 The other raters also coded this task as procedures without connections.  Their 

explanations were related to the type of explanation required, describing it as a 

“rehearsed” explanation.  One rater gave additional reasons, stating that “even though this 

task is long, it was not very demanding mathematically.  Students would just have to add 

and subtract numbers.  There is a context, but I would not say there are much connections 

being made while doing the procedure.” 

 The intended phase of the task was coded as procedures without connections, 

possibly leaning toward memorization.  Within the context of the lesson plan, the student 

teachers placed the task following a discussion of how to subtract multidigit numbers.  

The method for subtracting numbers further removed the meaning of subtraction.  For 

example, in the method the students rewrote the multidigit subtraction problem 23 – 18.  

Connected to the meaning of subtraction, this operation involves subtracting 18 positive 

numbers.  However, the student teachers had the students rewrite subtract 18 as 

equivalent to negative ten subtract eight.  Conceptually the problem has changed from 

subtracting 18 positives to adding 10 negatives and subtracting 8 positives.  
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Mathematically the result will be the same, but they are conceptually different problems.  

By having the discussion about rewriting subtraction problems prior to giving the task, 

the student teachers removed the meaning of subtraction from the problem.  

Knowledge Associated with the Task 

 Knowledge on the learning and teaching of integers found in the literature.  This 

section contains knowledge that the student teachers could have possessed in the planning 

of Task 3.  The domain of integer numbers is the result of a search for closure on the 

whole number system to the operation of subtraction (NRC, 2001; Verschaffel et al., 

2007).  Students often experience difficulties with arithmetic whenever their domain of 

numbers is extended to include larger domains (English & Halford, 1995; Verschaffel et 

al., 2007).  Specifically, when the whole number system is extended to include negative 

whole numbers the relation of order and magnitude have to be reconceptualized (English 

& Halford, 1995).  Although students may have had limited exposure to negative 

numbers, for example, temperature and debt (Ball, 1993), studies have found that 

children have a natural tendency to form an organized number line (English & Halford, 

1995). 

 There are two primary approaches a teacher can take to the extension of a number 

system: appeal to the rules of arithmetic and intuition (NRC, 2001).  Mathematically, “the 

extension of whole numbers to integers is an example of the axiomatic method in 

mathematics: basing a mathematical system on a short list of key properties” (NRC, 

2001, p. 82).  There are a number of representations that may appeal to students’ 

intuition: money, frog on a number line, game-scoring, elevator (Ball, 1993), and hot 

coals and ice cubes.   
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 There are positive and negative aspects to the money model of representing 

integers.  The advantages are that the representation allows for all meanings of addition 

and subtraction and models relative quantities, for example negative five is less than 

negative two (Ball, 1993).  However, students in Ball’s class tended to separate the 

money they had and the money they owed, keeping track of both amounts separately 

rather than combining them into one amount.  Additionally, the children were able to 

avoid the concept of negative numbers entirely by labeling the money owed as debt rather 

than as “-$8”. 

 One pedagogical dilemma in the teaching of integers is the use of the “-” to refer 

to both subtraction and negative numbers.  This notational choice often creates confusion 

between the operation and the negative number.  Experienced students are able to rely on 

the context of the number sentence to determine the meaning of the symbol; however, 

novice students often struggle with the notation.  Ball (1993) suggested the placement of 

the circumflex (^) above the number so that the students are able to focus on the negative 

number as a number rather than an operation. 

 Several mathematical principles underlie the teaching of integers.  Ball (1993) 

described the two distinct representational uses of negative numbers: an opposite amount 

and a location relative to zero.  Additionally, every number has a magnitude and 

direction; the issue of magnitude presents pedagogical difficulties: 

There is a sense in which -5 is more than -1 and equal to 5 even though, 
conventionally, the “right” answer is that -5 is less than both -1 and 5.  This 
interpretation arises from perceiving -5 and 5 as both five units away from zero 
and -5 as more units away from zero than -1.  Simultaneously understanding that -
5 is, in one sense, more than -1 and, in another sense, less than -1 is at the heart of 
understanding negative numbers. (Ball, 1993, p. 379) 
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 Knowledge of integers used to design the task.  Table 15 lists the KCS the student 

teachers used to design Task 3.  The student teachers knew that students experience 

difficulties performing operations on integers.  Specifically, students struggle whenever 

they subtract a larger number from a smaller number, order two negative numbers, and 

subtract negative numbers.  The student teachers thought that students conceptualize 

subtraction as “take away”.  The student teachers also knew that the students would be 

able to solve simple subtraction problems that involved subtracting a smaller number 

from a larger number. 

Table 15 
  
Knowledge of Content and Students Used in Task 3 
 

KCS Example Statement 
Students struggle with 
subtracting integers, specifically 
subtracting negative numbers and 
crossing zero. 

We noticed in an assessment they had last week 
doing the order of operations that a lot of them 
when they have to subtract a negative, they knew 
the rules said, “you add that”.  But we’re hoping to 
kind of bring that out, to have them see why it 
becomes addition; instead of just it's a rule. 
 

Students struggle with ordering 
numbers, especially two negative 
numbers. 
 

So he wasn't understanding that -69 is a bigger 
number than -75, so he added and got a bigger 
number.   

Students have a 
conceptualization of the 
operation of subtraction as taking 
away, but it is difficult to transfer 
this understanding to negative 
numbers. 
 

Well, they kind of know that subtraction is more or 
less, that it's taking away . . . But when they say, 
“Oh, I have seven things and then take away 
negative three things.” They have a hard time 
picturing that in context of how they understand 
subtraction.   

Students can solve simple 
subtraction problems. 

For example $32 - $8 = $24 and $24 - $17 = $7 are 
simple subtraction problems that we felt everyone 
should be able to solve without difficulty.  
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The student teachers’ KCT centered on how the different representations of 

number line, money, and taking away could address certain difficulties students 

experience with negative numbers.  For example, Kristen thought that the number line 

representation would be a helpful representation to help students order integers (i.e., the 

number that is the furthest right on the number line is the largest).  Both Abby and 

Kristen thought that the familiarity of the context of money would help the students 

understand integer subtraction better.  Additionally, their experiences with Task 1 

indicated that having the students adding the numbers ten different ways did not produce 

the kinds of student thinking that they wanted, and so the student teachers felt that using a 

similar task would be ineffective.  However, the cooperating teacher wanted the student 

teachers to teach the students a useful way of subtracting through the strategy of 

partitioning numbers.  The student teachers decided to place a discussion on useful 

subtracting prior to having the students work on the task, but they did not consider how 

the placement of the task in relation to the discussion might impact student thinking.  

They later realized that they were restricting the possible student thinking by having the 

discussion before the task (see Table 16 for sample statements). 

Table 16 

Knowledge of Content and Teaching Used in Task 3 
 

KCT Example Statement 
Money is a meaningful context 
for discussing negative 
numbers. 
 

And I think we tried to, we did the idea using money 
because we thought it brought more conceptual 
understanding of it instead of just . . . 

The number line may help 
students who are having 
difficulty ordering and 
subtracting numbers. 
 

That helps them with their order because I think they 
have a hard time ordering integers that are negative.   
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KCT Example Statement 
The concept of removing 
negatives will help students 
understand the rule for 
subtracting negatives. 

And so if we’re taking away part of our negatives, 
that kind of helps them see why subtracting a 
negative is the same as adding.  So instead of just 
saying that is suppose to be plus, but I don’t know 
why, it just is.   
 

Importance of careful use of 
terminology. 

I think that either minus should not be used at all or it 
should only be used to mean subtract because when 
you use it either way it is confusing. 
 

The ten different ways was not 
a productive task and the same 
idea shouldn’t be used with 
subtraction as well. 

He was having us go off of suggested the task of 
using two different numbers and showing 10 different 
ways to subtract those numbers, but I kind of felt that 
that sort of was silly, because the point of showing 
them the subtraction strategy is to partition in a way 
that makes it easy for you to do the subtraction.   
 

Look for student thinking to 
reinforce the idea of partitioning 
the numbers to subtract. 

Well, I was hoping that they would use some of the 
strategies that we had talked about, because I think 
that they help to illustrate what is going on better 
sometimes.  

 

 Another KCT listed in Table 16 is knowledge of important use of terminology in 

mathematics instruction.   The use of proper mathematical terminology was addressed in 

an article about subtraction their cooperating teacher gave them.  Although the student 

teachers knew that they needed to use proper terminology, there is evidence that the 

student teachers did not understand the terminology associated with subtracting integers 

(e.g., subtraction, negative, and minus).  In the reflection meeting, the student teachers 

indicated that the article suggested they never use the word “minus”.  In her interview, 

Kristen expressed confusion about the definition and use of “minus”.  She knew that 

subtraction referred to an operation and that negative was a way to describe a number, 

but she had heard minus used for both subtraction and negative.  This issue parallels the 

notation issue discussed in the literature review of the teaching of integers.   
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 Table 17 lists four different components of SCK the student teachers used to 

design Task 3.  First, the student teachers knew how to create situations where the 

students would have to subtract a larger number from a smaller number and subtract 

negative numbers.  These were types of integer problems that the student teachers noticed 

caused difficulties for the students.  The student teachers wrote the Tuesday portion of 

the task to force the students to deal with subtracting a larger number, and they wrote the 

Wednesday portion of the task to prompt students to subtract a negative number.  These 

portions of the task could accomplish the goals of the student teachers; however, they did 

not consider how the context of money would allow students to avoid using negative 

numbers by simple labeling the money owed as debt.  Consequently, the tasks the student 

teachers wrote did not necessary force the students to wrestle with the issues the student 

teachers had hoped.   

Table 17 
  
Specialized Content Knowledge Used in Task 3 
 

SCK Example Statement 
Writing the task so that the 
students have to cross zero 
and subtract negative 
numbers. 

On this one on Tuesday, we ended up after, so here 
after they go to seven peaks, they ended up having 
seven dollars left, but then he goes to get gas, which 
was 22, and so they are subtracting a bigger number 
from a smaller number.   
 

The difference between 
adding a negative and 
subtraction. 

I didn't want to say subtracting a negative is adding 
because it's not adding; it results in the same thing is 
adding.   
 

The subtraction method of 
partitioning the numbers 
explains borrowing. 

And it helps them see why borrowing works because 
you’re just rewriting it as 20 plus 12 instead of 32.  
And so you’re taking the 8 from the 12 and that’s 
essentially what you do when you borrow. 
 

Different representations: 
number line and zero pairs. 

Because for me, that's how I make sense of it all . . . I 
picture a number line.   
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 Second, one of the student teachers acknowledged the conceptual difference 

between subtracting a negative number and adding a positive number.  Kristen described 

subtracting a negative numbers as removing negatives from the set and adding a positive 

number as adding positives to the set.  Kristen then explained that the result of the two 

operations would be the same.  Abby, on the other hand, felt that the students just used 

the rule “add the opposite”, but when asked to explain how the rule worked, Abby just 

stated that they were the same thing (Interview 3). 

 Third, the student teachers’ had two of the representations mentioned in the 

literature: number line and zero pairs.  Kristen was more comfortable with the number 

line representation, while Abby preferred the idea of zero pairs.  Kristen was explicit in 

her preference and Abby implicit. 

 Finally, the student teachers knew that the strategy of partitioning numbers could 

help explain to the students why the method of “borrowing” worked in subtraction.  For 

the subtraction problem 32-8, the students could partition 32 into 20 plus 12.  This is 

what happens when you “borrow” to subtract.  Ma (1999) termed this regrouping (p. 12). 

 After teaching the lesson, the student teachers discussed how their purpose of the 

task did not align with the task.  First, Abby found that the students in her class avoided 

using negative numbers and decided that the context of money had not forced the 

students to use negative numbers.  Additionally, they intended the task to be used as a 

way to practice the subtraction strategies that they had taught during the discussion, not 

to elicit student thinking of integers.  The student teachers wanted the students to practice 

the partitioning strategy as they worked on Task 3.  The task was meant to supplement 
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the discussion that occurred before the lesson rather than to provide student thinking that 

could be discussed later.  If they had planned to elicit student thinking from the task then 

they would have altered the task.  Finally, Kristen acknowledged that the subtraction 

problems in the task were too simple and did not motivate the students to need to use the 

subtraction method they had taught. 

 The student teachers used SCK to create problems in the task that would elicit 

certain student thinking (e.g. subtracting a negative number) and to decide which 

representations they would use while teaching.  They did not consider how their task 

aligned with their teaching objectives.  This may be because they lacked key components 

of SCK for integers. 

 Their CCK fell primarily into two categories: how they solved subtraction 

problems through partitioning and principles of integers (see Table 18).  The student 

teachers found partitioning the subtraction to be a useful way to mentally subtract 

numbers and wanted to teach this to their students.  Abby in particular found the method 

enlightening as she had never considered the concept of partitioning the numbers; she had 

always used the algorithm or her fingers.  The student teachers also knew that the 

partitioning strategy for subtracting integers was similar to the partitioning strategy for 

Task 1.  The student teachers also had knowledge of integers, specifically the rule for 

subtracting integers as well as how the integers fit into the number system.   

Table 18 
 
Common Content Knowledge Used in Task 3 
 

CCK Example Statement 
The strategy for subtraction 
is similar to the strategy for 
addition. 

We are actually kind of doing the same thing that we 
did with addition.  But we are doing it with subtraction. 
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CCK Example Statement 
The rule for subtracting 
numbers. 

Kristen: well, then, because I know, minus the negative 
is plus.   
 

How integers fit into the 
number systems. 
 

This led to a good conversation in which whole and 
rational numbers were also mentioned. 

Partitioning the subtraction 
allows us to do it in our 
head. 

It helps me to do it in my head.  And when I was trying 
to figure out a pattern, 77 and whatever else, to get the 
differences. I partitioned the different ones.  It just 
helped me to do it in my head a lot easier. 

 

The student teachers used their CCK to determine the topic of what they wanted 

to teach.  They wanted to teach this useful way to subtract numbers because they had 

personally found it to be helpful. They recognized that combining integers was an 

important aspect of the partitioning strategy, so they decided that they needed to teach 

integers as well, specifically how subtracting a negative number gives the same result as 

adding a positive number.  They had knowledge of the number systems, but did not 

explicitly plan to talk about the concept beyond the idea that integers were an extension 

of the whole numbers. 

 There was only one indication of how the student teachers used their pedagogical 

knowledge to plan the lesson.  In Kristen’s third interview, she stated, “Well, if they can 

do one problem with you helping them that hopefully would increase their understanding, 

but that isn't enough to necessarily think that they could apply those principles in any 

situation.”  This is similar to the pedagogical practice of leading the students from 

solving the problems with teacher assistance to solving the problems on their own.  This 

aligns with a behaviorist perspective of how students learn. 

 There was evidence of the teachers using pedagogical knowledge in their lesson 

plan to manage the classroom.  For example, in the lesson plan the student teachers have 
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the students clear their desks from distractions.  The student teachers did not discuss 

management issues in the other data gathered for this task. 

 There was no evidence that the student teachers used any curricular knowledge 

when planning the lesson.  This could have been because they were assigned the topic by 

their cooperating teacher.  They did use the state core to determine that the students 

needed to learn how to add and subtract integers and rational numbers. 

 In summary, the student teachers used KCT and CCK to determine an objective.  

They also used CCK to identify that integers were used in their method of subtraction.  

The student teachers wanted the students to encounter certain types of problems and used 

SCK to write problems that addressed specific issues.  They used KCT to decide how to 

remedy student misconceptions. 

Task 4: Proportional Reasoning Problems 

Description of the Task 

The final task the student teachers used in the collected data was a set of problems 

where the students could have used proportional reasoning to solve the problems.  The 

cooperating teacher gave the student teachers a worksheet containing nine proportion 

problems with different contexts.  The nine proportion problems can be found in 

Appendix I; a sample problem from the worksheet read as follows: 

If You Hopped Like a Frog . . .  
Frogs are champion jumpers.  A 3-inch frog can hop 60 inches.  That means the 
frog is jumping 20 times its body’s length.  How tall are you?  If you could jump 
20 times your body length, how far could you go? 
 
The student teachers modified the task by selecting four of the nine problems and 

giving one problem to every pair of students in the classroom rather than having every 

student work on all nine problems.  They also changed the individual problems by 
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omitting the scale factors and adding additional questions.  The students were assigned to 

work on their problem and to create a poster explaining how they found the solution.  The 

problems were given to the students prior to any discussion of how to set up proportions 

to solve the problem; however, the students had been solving similar problems where 

they could have used proportional reasoning for several days.  The students did not use 

the strategy of setting up proportions; most students found a scalar multiplier to help 

them solve the problem.  The student teachers wanted the students to develop the strategy 

of setting up proportions to solve these problems.  The student teachers gave the students 

one of four problems.  The modified problems can be found in Appendix J; a sample 

problem is as follows: 

If You Hopped Like a Frog . . . Frogs are champion jumpers.  A 3-inch frog can 
hop 60 inches.  If you could jump like a frog, how far could you hop in one jump?  
How many jumps would it take you to jump down a football field (100 yards)? 
How far would you go if you hopped 30 times? 
 

Cognitive Demands of the Task 

The written phase of this task was coded twice: in its original form as it was given 

to the student teachers and in its modified form.  The original task was coded as 

procedures without connections.  By providing the students with information about the 

multiplicative relationship, the task becomes easier for the students and strongly implies 

the pathway that should be taken to solve the problem.  Additionally, there was no 

explanation required. 

The modified task was coded as doing mathematics by both the researcher and the 

raters.  The raters felt that the coding of this task depended largely on previous 

experiences of the students.  The raters felt that if the students had not been taught how to 

solve these proportional problems previously, then the students would experience a great 
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deal of anxiety and would have to access relevant knowledge.  However, if the task were 

to be given to the students following a lesson on how to solve problems by setting up 

proportions, then the raters would have given the task a coding of procedures without 

connections.  While the students in the class had previous experience with solving 

problems that involved proportional reasoning, they had not been explicitly taught to set 

up a proportion and did not use that strategy. 

 The other concern the raters expressed in the coding of this task was the lack of 

justification that was required in the task.  However, that concern was not strong enough 

for the task to be coded as something different from doing mathematics.  The raters felt 

that not giving the students a pathway to follow balanced the need for a justification. 

 Within the context of the lesson plan, the intended task declined to procedures 

with connections.  First, the purpose of the task for the student teachers was to get the 

students to develop the procedure of setting up proportions.  They hinted that the students 

should set up proportions by including proportions on the warm-up and problem-of-the-

day at the beginning of the lesson.  However, the student teachers decided not to suggest 

any method for solving the task as the students worked on it.  Additionally, the 

justification required by the student teachers in the lesson plan was for the students to 

explain their thought process rather than to justify their work mathematically.   

Knowledge Associated with the Task 

 Knowledge of proportional reasoning found in the literature.  There exists a large 

body of research dedicated to the development of proportional reasoning.  This list of 

knowledge was generated from a small sampling of the research available.  The research 

reviewed included research that assimilated much of the literature. 
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 The literature provided examples of SCK in defining proportional reasoning, 

identifying different types of proportional problems, and describing the foundational 

understanding involved in being able to reason proportionally.  As proportional reasoning 

and proportionality have often been ill’defined in the literature, Lamon (2007) provided 

the following definition for proportional reasoning: 

 I propose that proportional reasoning means supplying reasons in support of 
claims made about the structural relationships among four quantities in a context 
simultaneously involving covariance of quantities and invariance of ratio or 
products; this would consist of the ability to discern a multiplicative relationship 
between two quantities as well as the ability to extend the same relationship to 
other pair of quantities. (pp. 637-638) 
 

Additionally, proportional reasoning involves the recognition that there are two scalar 

multipliers that are inverses of one another (Lamon, 2007).  A proportion is two equal 

ratios.  Other important definitions involve the difference between ratios and rates.  

Mathematically, a ratio compares two quantities of the same unit; whereas a rate 

compares two quantities with different units.  For example, 4 miles:5 miles is a ratio and 

4 miles/3 hours is a rate. 

 Three types of proportional problems were identified in the literature: missing 

value, numerical comparison, and qualitative comparison (Kaput & West, 1994; Lamon, 

2007; NRC, 2001).  In missing value problems, the student is given a complete ratio or 

rate and a second ratio or rate (either implicitly or explicitly) with one of its quantities 

missing, and the student is expected to solve for the missing value (Kaput & West, 1994; 

Lamon, 2007; NRC, 2001).  Numerical comparison problems involve determining which 

of two ratios or rates is greater (Lamon, 2007; NRC, 2001).  Finally, in qualitative 

comparison problems one of the quantities in the ratio or rate has been altered and the 

student is expected to determine how that would change the ratio.  For example, “What 
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happens to the price of a balloon if you get more balloons for the same amount of 

money” (NRC, 2001, p. 243). 

 Lamon (2007) described what is involved in understanding proportionality.  Such 

understanding includes knowing the difference between addition and subtraction, 

knowing when to apply (and when not to apply) proportions to model a situation, and 

understanding the difference between direct and inverse proportionality in the context of 

a function, graph, or constant of proportionality. 

 Kaput and West (1994) discussed features of multiplicative word problems that 

make the problems easier or harder to solve.  Problems were easier to solve if the given 

ratio is in reduced form, there is an integer scalar multiple, the quantities in the unit are 

contained is some way, the wording of the problem contains the phrases “for each” or 

“for every” or if the rate is something students would be familiar with, such as speed or 

price.  Features associated with difficult word problems included quantities where one 

was not a factor of the other and quantities that were relatively close, resulting in the 

students using an additive rather than multiplicative approach. 

 In terms of KCS, the literature discussed difficulties, strategies, and learning 

development sequences of proportions and proportional reasoning.  Both children and 

adults struggle with proportional problems (Weinberg, 2002).  Ball et al. (2001) stated 

that less than half of the middle school teachers in one study were able to solve a simple 

proportion problem, and the authors attributed the difficulty to an overgeneralization of 

whole number arithmetic.  Furthermore, students’ ability to give correct answers to 

proportion problems does not necessarily guarantee that the students are able to reason 
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proportionally; for example, cross multiplication allows students to avoid reasoning about 

the constant of proportionality (Lamon, 2007; Weinberg, 2002). 

 Common student errors involved in solving missing value proportion problems 

included using only two of the three quantities given in the problem or using all three 

quantities with incorrect operations (Weinberg, 2002).  For example, students often use 

an additive rather than multiplicative approach when solving proportion problems (NRC, 

2001).  

 Children have several strategies for solving proportional situations and solving 

proportions themselves.  Some of the different strategies children use to solve problems 

with proportional situations include dividing to find a unit rate, repeatedly subtracting the 

unit rate from the whole, using a series of operations that would result in equivalent 

fractions, and setting up proportions (Weinberg, 2002).  When students set up a 

proportion with a missing value, Weinberg (2002) identified three ways that they solve 

for the missing value: cross multiplication, isolating the variable using multiplication, and 

finding equivalent fractions. 

 Researchers agreed that the process of developing proportional reasoning is long-

term (Lamon, 2007).  Children begin by recognizing the relationships as multiplicative 

rather than additive.  Once this has been established, children need to be able to 

determine the invariants in the situation.  Understanding is further solidified as children 

are able to conceptualize rates (NRC, 2001). 

 Literature on the KCT of proportional reasoning was not as prolific as SCK or 

KCS, consisting of suggestions for teaching proportions.  Lamon (2007) claimed that 

students need to be pushed to look beyond obvious observations and that direct 
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instruction was necessary for the development of proportional reasoning.  Students 

needed to be taught when to apply and when not to apply proportional reasoning to a 

problem (Lamon, 2007; Weinberg, 2002), as well at the strengths and weaknesses of 

different strategies and their use in particular proportion problems (Weinberg, 2002). 

 Finally, the literature emphasized that proportional reasoning problems should be 

an integral part of the middle school curriculum.  All of NCTM documents indicated that 

proportions were an integral part of the curriculum connecting the mathematics taught in 

the middle grades (NCTM, 1989; 2000; 2006).  Proportions and proportional reasoning 

were identified as focal points in the grades six and seven curricula (NCTM, 2006). 

 Knowledge used by the student teachers to modify and incorporate the task.  The 

literature highlighted some of the knowledge the student teachers could have had as they 

designed Task 4; it was not expected that the student teachers possess all of the 

knowledge described in the literature.  Occasionally, there was evidence that the student 

teachers did not possess some of the knowledge they could have used.  First, they did not 

have a clear definition of what proportional reasoning entailed beyond being able solve 

proportional problems in context.  Furthermore, the student teachers did not indicate that 

they knew of the existence of different types of proportional reasoning problems nor did 

they know how different features of proportional reasoning problems made the problems 

easier or more difficult.  And although they knew that they wanted their students to 

develop the strategy of using proportions to solve problems, they were unsure how 

explicit they needed to be. 

 Table 19 shows the CCK the student teachers used to modify Task 4 as well as 

accompanying example statements.  The students knew that proportions could be used to 
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solve the task because they had used proportions to solve the task.  Additionally, the 

student teachers knew that first finding a unit rate, and then multiplying by the unit rate 

could solve the task because Abby had used that strategy to solve the original task.  They 

knew how to determine if two proportions were equivalent.  They also knew of different 

applications of proportions, such as the proportionality of the human body.   

Table 19 
  
Common Content Knowledge Used in Task 4 
 

CCK Example Statement 
Proportions can be used to 
solve the task. 
 

We each took this home and solved the problems 
separately, and I used proportions. 

The task can be solved by 
finding a unit rate and then 
multiplying. 
 

I did these problems without setting up a proportion. 

Proportions are equivalent 
ratios and can be set up 
many different ways. 
 

It just needed to be the same proportion.   

Different applications of 
proportions. 

So knowing someone's measurement from their waste to 
the floor knowing that the proportion is the same.  You 
should be able to figure out their height, if you have 
your height and measurement from waste to the floor. 

 

By solving the problems given to them by their cooperating teacher, the student 

teachers’ used CCK to identify the mathematics involved in the task.  The student 

teachers used proportions to solve the problems and decided that proportions were the 

fundamental mathematics of the task.  The equivalence of different proportions was also 

part of the fundamental mathematics of the task. 

Additionally, the student teachers repeatedly indicated that they thought that the 

students were using proportions to solve the problems, but that they were “doing it in 
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their head” (Abby, Interview 4).  The student teachers were projecting their solution 

strategy of setting up a proportion into what the students were doing to solve the problem.  

Abby also solved the problems by multiplying by the unit rate.  This CCK was used to 

anticipate student thinking. 

The student teachers’ SCK is listed in Table 20.  The student teachers knew that 

the task as it appeared in its original form would not force the students to use proportions 

to solve the task.  They also knew that there were advantages to the strategy of setting up 

a proportion.  Kristen identified organization as one advantage of setting up proportions.  

She felt that proportions, especially when used to do unit conversions, helped to keep the 

work organized.  The student teachers also knew how to identify the scalar multiplication 

strategy by looking at student work.  However, the student teachers continued to express 

the idea that the students were setting up the proportions in their heads.  

Table 20 
 
Specialized Content Knowledge Used in Task 4 
 

SCK Example Statement 
The task in its original form 
does not require the use of 
proportions. 
 

So the original problem gave them that scale factor, 
and we deleted that.  So they had to figure out 20.  

Advantages to using 
proportions to solve 
problems. 
 

And the spider one is more useful to have proportions, 
because there is more to keep track of.  It involves 
dividing and then multiplying and all these things. 

Features of student work 
where they used the strategy 
of finding a scalar 
multiplier. 

So it looks like all of them just divided by three to get 
the 66.6 and then you jump that much times your 
height. 

 

 As mentioned in Table 20, the student teachers knew that the task in its original 

form did not require the students to set up a proportion to solve the task.  The student 
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teachers used SCK to modify the task.  Originally, the task gave the students the unit rate.  

The student teachers knew that with this unit rate the students would not have to set up a 

proportion to solve the problem; they could just multiply given quantity by the unit rate 

to find the answer.  As a result of this knowledge, the student teachers modified the task 

by removing the unit rate and making the given rate more complex.  Additionally, the 

student teachers knew that one of the benefits of using proportions is that it helps to keep 

everything organized, especially when dealing with a lot of unit conversions.  

Consequently, the student teachers added more questions to the task to try to make the 

task more complex. 

 The student teachers’ KCS came primarily from their student teaching 

experiences (see Table 21).  The student teachers had observed that the students did not 

set up proportions to solve proportional reasoning problems.  Consequently, they knew 

that it was unlikely that students would set up a proportion to solve Task 4.  The student 

teachers also knew that their students would be able to solve Task 4 because they had 

observed their students solving similar problems in the past.  The most common strategy 

that the student teachers observed was that of finding the unit rate.  Additionally, the 

student teachers had heard the students talk about cross multiplication on some of the 

warm-up quizzes at the beginning of class.  The student teachers observed that the 

students likely did not know why cross multiplication worked.  The student teachers also 

knew that the students had never seen a proportion in their warm-up quizzes where the 

variable was in the denominator.  The student teachers anticipated that if the students set 

up a proportion to solve Task 4 with the variable in denominator, then the students may 

not be able to solve the proportion. 
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Table 21 
 
Knowledge of Content and Students Used in Task 4 
 

KCS Example Statement 
Students unlikely to set up 
proportions to solve 
problems. 

However, I also knew by previous exposure to 
proportion problems, that my students were not 
comfortable with setting up proportions to solve these 
problems. 
 

Students have good 
proportional reasoning. 

I knew, by previous problems and class work, that my 
students for the most part had quite good proportional 
reasoning. 
 

Most common strategy is to 
find a scalar multiplier. 

I guess once they figure out part of it, most of them 
were just multiplying instead of actually setting up 
those proportions. 
 

Common difficulties and 
misunderstandings include 
when the variable is in the 
denominator, equivalent 
proportions, definitions of 
terms, and a conceptual 
understanding of cross 
multiplication. 

There were many students actually that knew how to 
cross multiply, and so this was no problem for them 
because they just across multiplied and then it was out 
of the denominator. 

 

 The student teachers’ used KCS to anticipate student thinking and provide the 

teachers with a purpose for the task.  Knowledge of past strategies they had seen students 

employ was used to anticipate student thinking in the lesson plan.  Additionally, they 

believed that their students used their proportional reasoning skills to solve task, but were 

reluctant to set up proportions.  This was the student teachers’ purpose in teaching the 

lesson: to get the students to develop the strategy of setting up proportions to solve the 

task. 

 Table 22 lists two components of KCT the student teachers used to plan Task 4: 

strategies the student teachers used to get the students to set up a proportion, and how to 
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help students solve the proportion once it had been set up.  First, how to get the students 

to use proportions presented a problem for the student teachers.  They used their KCT to 

decide how they could promote the strategy.  They did not want to direct the students too 

much, so they did not imply a particular strategy in their directions.  Instead, they decided 

to give the students problems where they could use proportions and look for that type of 

student thinking to have presented at the board.  They also included examples of 

proportions in the problem-of-the-day and the warm-up given at the beginning of class.  

They thought that if the students saw proportions being used to solve unit conversions 

then students might use the strategy in the task as well. 

Table 22 
 
Knowledge of Content and Teaching Used in Task 4 
 

KCT Example Statement 
Get students to set up 
proportions by giving them 
more opportunities to solve 
problems where they could 
use proportions and have 
them do presentations. 
 

But we were hoping that at least some, we wanted the 
presentations to address that, that some people would 
say that they just need to multiply the numbers, so they 
would set up proportions and solve them. 

How to help students solve 
the problem once they have 
set up a proportion. 

I asked him what we would do if x was in the numerator 
and there was a number in the denominator. 

 

 Second, once the students had set up a proportion to solve the problem, the 

student teachers anticipated that the students might have difficulty solving some of the 

proportions, particularly when the variable was in the denominator of one of the ratios.  

The student teachers planned questions they could ask to help the students through these 

difficulties.  They also planned to use the thinking to discuss the equivalency of different  

proportions. 
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 There was one piece of curricular knowledge that was used by the student 

teachers: the state core can be a curricular resource.  They used this knowledge to 

determine the underlying mathematics.  They used the state core to find occasions when 

proportions could be used (e.g., similar triangles and unit conversions.  They also used 

Principles and Standards for School Mathematics (NCTM, 2000) to justify the inclusion 

of proportions in the curriculum.   

The student teachers used their pedagogical knowledge to encourage participation 

in the task and to manage the classroom (see Table 23).  The student teachers selected 

problems with an interesting context and avoided problems that would require the 

students to measure something (e.g. head circumference) or would make students 

uncomfortable (weight).  This selection was done to encourage students to participate in 

the task; they did not want the task to discourage the students from engaging.  They also 

planned to have the students create posters to present their thinking.  The rationale was to 

have the students teach one another and to create ownership of the task.   

Table 23 
  
Pedagogical Knowledge Used in Task 4 
 

Pedagogical Knowledge Example Statement 
Motivate students to work 
by giving them an 
interesting context, having 
them work in pairs, and 
giving each pair a different 
problem. 

And then maybe we thought the context was more 
interesting. 

Strategies for improving 
presentations 

First, I needed to convince the presenters that they 
needed to prepare with the intent to be able to teach 
their peers. . .  

Problems will take too 
much time if the students 
have to measure. 

This when we get into, because then they would have 
to take that measurement and we didn't want to take 
the time. 
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The student teachers also tried to avoid management issues by having the students 

work in pairs and giving the students different problems to work.  From their student 

teaching experience, the student teachers knew that the students were more willing to 

work in class if they were able to work with their peers.  Additionally, the student 

teachers indicated that they thoughts students learned better when they were able to 

discuss their ideas with their peers.  The student teachers had also learned that their 

students were more likely to work on the task if everyone in the class was not working on 

the same task.  If everyone in the class had the exact same task to work on, then some of 

the students would let other students in the class find the solution.  They thought that 

more students would participate if they had slightly different problems in the task. 
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Discussion and Conclusions 

This chapter includes discussion regarding both research questions as well as 

answers to those questions.  The question of how student teachers used their pedagogical 

and mathematical knowledge for teaching to design or modify tasks will be discussed 

first.  A discussion on the affects the student teachers’ knowledge had on the cognitive 

demands of the tasks will follow.  The chapter also explores the limitations of the study 

as well as implications for teacher education and future research. 

Evidence of Knowledge Used by the Student Teachers 

Prior to discussing how the student teachers used their knowledge to design and 

modify tasks, it is necessary to examine what knowledge was used in relation to the Hill 

et al. (2008) framework.  There was evidence that some of the knowledge domains were 

used quite frequently by the student teachers in the preparation of their tasks; these 

knowledge domains were KCS, CCK, pedagogical knowledge, and KCT.  On the other 

hand, there was little evidence that the student teachers used curricular knowledge or 

SCK in the way the research described (see Ball & Bass, 2000; Ball et al., 2005; Hill et 

al., 2008; Ma, 1999) to prepare the tasks.   

There was ample evidence that the student teachers used KCS in the preparation 

of their tasks.  The student teachers often discussed student strategies they had seen 

students employ as well as their students’ misconceptions.  In the case of all four tasks, 

knowledge of students’ misconceptions or lack of particular mathematical knowledge 

motivated the student teachers’ purposes behind the tasks: students did not have a 

relational understanding of the addition algorithm, students did not have a conceptual 

understanding of area, students struggled with subtracting integers, and students did not 
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know how to use proportions to solve problems.  The student teachers identified many 

examples of student thinking in relation to the mathematical topics they hoped to address 

through the use of the selected tasks. 

 There was evidence that the student teachers used their CCK in the planning of 

each task.  The student teachers used CCK to solve the problems in their tasks and to 

determine the mathematical topic of the task.  For example, the student teachers 

determined that proportions could be used to solve Task 4 because they themselves had 

used proportions to solve the task.  As will be discussed in more detail later, the student 

teachers also applied CCK in order to accomplish teacher moves that Hill et al. (2008) 

would claim require different knowledge than CCK, such as interpreting student thinking, 

anticipating student thinking, and determining the fundamental mathematics of the task.  

 The student teachers also discussed pedagogical issues and employed their 

pedagogical knowledge in the preparation of the tasks.  When planning their tasks, the 

student teachers would consider the size of student groups, how to get students to 

participate, and how to manage the classroom.  Although mathematics could influence 

such decisions, these considerations were never in relation to the mathematics of the 

lesson and were based purely on the student teachers’ pedagogical knowledge. 

 The student teachers used KCT to a lesser extent than CCK.  Although they knew 

that they were supposed to build on student thinking, their plans for such teacher moves 

were often vague, such as “facilitate the discussion by asking questions” (Lesson Plan 3).  

This description of how the student teachers planned to build on student thinking was so 

far removed from the mathematics that it was considered pedagogical knowledge rather 

than KCT.  Most often, KCT was used in the formative assessment of the lesson plan to 
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plan how the student teachers could help the students realize their misconceptions.  For 

example, in Task 1 the student teachers planned to ask specific questions about a 

student’s addition strategy to help the student realize their misconceptions about the 

addition algorithm. 

 The little use of curricular knowledge can most likely be attributed to the lack of 

control the student teachers had over the curriculum.  The student teachers were assigned 

to teach particular topics, and in some cases particular tasks, by their cooperating teacher.  

Thus the student teachers were not required to make curricular decisions and did not use 

much curricular knowledge.   

 Understanding how the particular topic the student teachers were teaching with a 

given task fit into the unit, into the subject, and into mathematics as a whole was 

curricular knowledge over which the student teachers did have control.  Although the 

student teachers used the state core and the NCTM website as curricular resources to 

identify topics the students had learned in previous years, they did not use the resources 

to help them determine how the topic fit into mathematics in general.   

 Although there is evidence that the student teachers used some SCK to design or 

modify the tasks, their SCK rarely aligned with SCK identified or discussed in the 

research.  Furthermore, if you apply Ma’s (1999) theory of profound understanding of 

fundamental mathematics to the student teachers’ SCK, the student teachers’ knowledge 

lacked the depth and breadth described by Ma.  For example, in planning Task 1 (adding 

ten different ways) the student teachers did not have the depth of knowledge to 

understand the fundamental use of the properties in the strategies they were teaching.  
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Nor did they have the breadth of knowledge to see the connection between algebra and 

arithmetic. 

 Ball et al. (2005) included knowledge of different representations of a 

mathematical concept as part of SCK.  The student teachers often had different 

representations for the mathematics in the task.  In Task 1 the student teachers had one 

representation of addition: that of combining sets.  The student teachers had two ways of 

representing operations on integers for Task 3: zero pairs and number lines. 

Connection between Teacher Knowledge and Teacher Moves   

Hill et al. (2008) illustrated the knowledge domains in their framework through of 

teacher moves.  For example, teachers used KCS to anticipate student thinking and to 

sequence instruction to align with ways students learn a mathematical topic.  They used 

KCT to build on student thinking and to remedy student errors.  Teachers used SCK to 

interpret student thinking and to explain and represent mathematical ideas. 

 Often, how the student teachers used their knowledge to plan or modify tasks 

aligned with the teacher moves identified by Hill et al (2008).  The student teachers used 

KCS to anticipate and evaluate student thinking.  Their knowledge of students’ common 

misconceptions provided the student teachers with motivation for the purposes of their 

tasks.  This motivation led to the use of KCT as the student teachers considered what 

experiences they should provide their students in order to remedy the misconceptions.  

The student teachers also used KCT to plan how to build on student thinking and to 

determine how much guidance or direction they should give the students in the directions 

of the task.  The student teachers used SCK to create problems in their tasks that would 

elicit particular mathematics and to create mathematical explanations. 
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 Naturally, there were times when the student teachers needed to perform a 

particular teacher move but lacked the knowledge to do so.  For example, in Task 1 the 

student teachers may have needed to anticipate student thinking but the only strategy they 

knew the students would use was “carrying”, so they used their CCK that they had gained 

from the article to anticipate additional student thinking.  These moments provided key 

insight into the knowledge on which the student teachers relied in order to perform 

teaching moves when they lacked the most valuable knowledge. 

Reliance on Common Content Knowledge 

Whenever the student teachers needed to perform a teacher move that required 

knowledge they lacked, the student teachers employed their CCK.  This way of using 

CCK was most often done in the case where SCK was lacking.  The student teachers used 

CCK to perform a myriad of teaching moves that Hill et al. (2008) included as part of 

other knowledge domains.  There was evidence that the student teachers used CCK to 

anticipate student thinking, construct a mathematical explanation, interpret student 

solutions, and identify the mathematical topic of the task rather than delving into the 

fundamental mathematics of the task.   

 Anticipating student thinking. On two occasions, the student teachers relied on 

CCK rather than KCS to anticipate student thinking.  The student teachers used CCK to 

anticipate different methods the students would use to approach the adding ten different 

ways task.  They also used CCK to predict how students would interpret debt in the 

subtracting integers task. 

In the adding ten different ways task, the student teachers anticipated two 

methods that the students would likely use to solve the problem.  They were aware that 
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students already knew the algorithm for adding multidigit numbers and would likely use 

the algorithm as one of their ways.  Additionally, the algorithm was the method the 

student teachers usually used to add multidigit numbers.  The other method the student 

teachers anticipated came from the article their cooperating teacher gave them to read and 

was characterized as an algebraic method.  This method involved partitioning the 

addends and recombining the partitioned pieces in different ways.  The student teachers 

did not know whether the students would partition and recombine the numbers when 

performing multidigit addition.  The student teachers used CCK rather than KCS to 

anticipate this particular student solution. 

In the subtracting integers task, the student teachers assumed that the students 

would interpret debt in terms of negative numbers.  This assumption was based on how 

the student teachers interpreted debt as well as how debt is interpreted by people in 

general.  Consequently, the student teachers designed an integer task in the context of 

money and debt.  The student teachers used their CCK rather than their KCS to predict 

how the students would interpret debt.  In fact, there is evidence in the literature that 

students will avoid the interpretation of debt as a negative integer (Ball, 1993). 

Constructing a mathematical explanation.  According to the framework, the 

construction of an explanation should involve SCK (Ball et al., 2005; Hill et al., 2008). In 

the case of the area task, the student teachers used their CCK to describe area and surface 

area.  When asked to construct a conceptual definition of area for students, Kristen used 

the word “inside” as part of the definition.  Compare the use of the word “inside” to the 

word “outside” used in Kristen’s conceptual definition of surface area.  Kristen admitted 

that these definitions were her own conceptualizations of area and surface area. These 
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conceptions were in common with how people of other professions view the terms.  

Although Kristen was attempting to construct an explanation for students, she used CCK 

in order to form the explanation rather than SCK.  

Interpreting student solutions.   The interpretation of student solutions often 

requires the use of SCK (Ball et al., 2005; Hill et al., 2008).  However, in the case of 

Task 4, the student teachers used CCK to interpret how students were solving the 

problems.  Prior to giving the students Task 4, the student teachers had given the students 

other tasks that required the students to reason proportionally in order to arrive at a 

solution.  The student teachers noticed that the students were not setting up proportions to 

solve the problems, but were using other strategies instead.  Not setting up proportions to 

solve the problems was of great concern to the student teachers as they were preparing 

the task.  The student teachers wanted the students to develop the strategy of setting up 

proportions to solve problems.  They were unsure how to accomplish this and decided 

that if they had the students create a poster to show their work, the students would set up 

proportions.  The student teachers interpreted the previous student solutions they had 

seen as the students setting up proportions in their head to solve the problem.  The 

student teachers were projecting their own solution strategy for solving the task onto 

what they observed students doing to solve the problems.  This is similar to what A. G. 

Thompson and Thompson (1996) found in their study of a middle school teacher 

interpreting the student’s conception of rate.  The student teachers were using CCK to 

interpret student thinking rather than SCK. 

Identifying the mathematical topic of the task.  Although not mentioned explicitly 

in the literature, the teacher move of determining the fundamental mathematics of the 
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task would involve the use of SCK.  Teachers have to decompose their mathematical 

knowledge in order to teach mathematics (Ball & Bass, 2000); this is something that is 

not in common with other professionals.  However, the student teachers were often 

unable to clearly articulate the fundamental mathematics involved in the tasks and instead 

relied on the mathematics they used to solve the problem to determine the mathematical 

topic of the task.  For example, the student teachers described the fundamental 

mathematics concepts of the proportional reasoning problems in their lesson plan as 

follows: “Understand the concept of proportions and how they can be used to solve for 

missing values” (Lesson Plan 4).  The student teachers’ description of the fundamental 

mathematics concepts was more of an identification of the mathematical topic they 

wanted to address with the task rather than the fundamental mathematics involved in 

proportional reasoning and setting up proportions.  Similar identifications of the 

mathematics topics can be found in the fundamental mathematics concept section of the 

lesson plans for the area and subtracting integers tasks.    

This conception of the fundamental mathematics as the topic the student teachers 

wanted the students to learn was echoed in the interviews with the student teachers.  Both 

student teachers described the fundamental mathematics of a task in general terms as 

“just kind of the core principles that come out through the task” (Kristen, Interview 4) 

and “the big mathematical ideas, the key concepts” (Abby, Interview 4).  The student 

teachers viewed the fundamental mathematics as the mathematical topic they wanted the 

students to learn by doing the task. 

This conception of the fundamental mathematics may be related to the student 

teachers’ lack of SCK.  In the case of all four tasks, the student teachers determined the 
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mathematical topic of the task by the mathematics the student teachers used to solve the 

task; they used their CCK.   

In planning the adding ten different ways task, the student teachers were unsure of 

the mathematical purpose of the task.  From the various data resources used, it seemed 

that the student teachers failed to identify the mathematical purpose for a variety of 

reasons.  First, they had not considered the importance of a clear, sound mathematical 

objective for the teacher and students to be a critical component of a worthwhile 

mathematical task (NCTM, 2007).  Although the student teachers did have a vague 

purpose motivated by the fact that most students do not understand the addition algorithm 

(KCS), they were uncertain how to use the student thinking to bring out the notion of 

place value in the algorithm (KCT).  In fact, their sole consideration for selecting student 

thinking to be presented was “creative” ideas, dependent upon the use of a variety of 

operations.  This indicated that they did not consider how their purpose could be achieved 

through the use of student thinking (KCT).  They also did not think deeply about the 

mathematics present in the task itself.  They were told by both their cooperating teacher 

and the article used to develop the task that the task could be used to lead into combining 

like terms.  However, it is evident from the interviews that they did not understand how 

the task related to combining like terms.  Consequently, they settled on a purpose of 

having the students prove the addition facts because “it's kind of a big deal to be able to 

prove things” (Kristen, Interview 1) in mathematics.  The student teachers used their 

CCK that reasoning and proof were things mathematicians do in order to determine the 

purpose of the task.   
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The student teachers had two purposes for the subtracting integers task: to 

develop a way to subtract that “made sense” and to help the students understand 

subtracting integers better.  Their purpose was motivated by the student teachers’ 

experiential CCK and KCS; their own experiences with subtraction were nonsensical and 

their students seemed be struggling with subtracting integers, especially when subtracting 

a larger number from a smaller number or subtracting a negative number.  The student 

teachers were assigned by their cooperating teacher to teach useful ways for subtracting, 

referring to partitioning the numbers in the subtraction problem in such a way that makes 

the subtraction easier.  Following the lesson and reflection meeting for Task 1, the 

student teachers realized that the students did not engage in any particular mathematics 

because the task itself did not elicit any particular thinking.  The student teachers learned 

that they, as teachers, need to have a clear purpose for using a task, and that the students 

also need to have a mathematical purpose for doing the task.  From their experiences with 

Task 1, they felt that they needed more of a purpose to Task 3 and its accompanying 

lesson.  Knowledge of subtracting integers was used by the student teachers when they 

partitioned and recombined the numbers in the subtraction problem and so the student 

teachers felt that integers would be a good purpose for the day’s lesson.   

The placement of the useful subtraction discussion before Task 3 confused the 

distinction between subtraction and negative numbers.  Conceptually, subtraction can be 

defined as “taking away” (which is how the student teachers described subtraction), so 

subtracting a negative number involves removing some of the negatives.  The student 

teachers relied on this conception to construct their task; the student teachers created a 

task where the students could “take away” some of their debt.  However, their discussion 
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of subtracting in useful ways did not use this conceptualization of subtraction.  In fact, it 

seemed to be counter to the conceptualization of subtraction as “taking away”.  For 

example, in order to perform the subtraction 63 – 29 which conceptually involves 

removing 29 positives from the set, the student teachers planned to rewrite the negative 

29, conceptually changing the problem to adding 29 negatives, as -20 – 6 – 3, once again 

changing the conceptualization of the problem.  Failure to consider how the 

conceptualization of the useful ways to subtract was counter to developing a conceptual 

understanding of integer subtraction indicated a failure to use aspects of their SCK.  They 

did not have adequate SCK to evaluate the alignment of their purpose and task because 

they had relied on CCK to identify the mathematical topic of the task. 

As the students had already been using proportional reasoning to solve problems 

in their classes, the purpose of the proportional reasoning task for the student teachers 

was to get the students to use the strategy of setting up proportions to solve problems 

involving multiplicative relationships.  Using their CCK, the student teachers determined 

that setting up proportions was the mathematical topic of the task because the student 

teachers had used proportions to solve the problems themselves.  However, they did not 

give the students problems that necessarily motivated the use of proportions; in fact, they 

included problems where a scalar multiplier could be identified easily, with one problem 

even involving fractions which would lead to the use of complex fractions when setting 

up a proportion.  The student teachers’ use of CCK to identify the mathematical topic of 

the task resulted in a misalignment between the task and the student teachers’ purpose in 

using the task. 
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The student teachers identified the mathematics of the tasks by the mathematics 

they used to solve the problems, or their CCK.  The student teachers did not have 

adequate SCK to determine the fundamental mathematics of the task and had to rely on 

their CCK.  They also used the state core to motivate, identify, and justify the 

mathematical purposes of the tasks.  Their reliance on the core could also be related to 

their lack of SCK.   There was no evidence in any of the tasks that they considered how 

their purpose aligned with the mathematics of the task beyond superficial consideration 

of the mathematical topic of the task. 

The Effect of Knowledge on the Cognitive Demand of the Task 

Factors Associated with a Decrease in Cognitive Demand 

 In the previous chapter, the results of the cognitive demand of the tasks were 

given.  Synthesizing the results of each task, common factors were associated with 

decreases in the cognitive demands.  These factors were expecting an explanation of what 

was done rather than a mathematical justification when the students presented their work, 

removing the connections to meaning from the task, providing students with ready access 

to relevant knowledge, and not tailoring the task to the level of the students. 

In the case of all four tasks, the student teachers expected an explanation of what 

was done rather than a mathematical justification.  In the case of Task 1, the explicit 

request for a justification in the original task was removed when the student teachers 

modified the task.  None of the other tasks in their written phase ever explicitly asked for 

a justification, although the lesson plan for Task 4 has the students create posters to 

demonstrate their solution.  Still, the student teachers expected an explanation of the 

students’ processes rather than a mathematical reason for each step in the process.   
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In Task 1 and Task 3, the student teachers removed possible connections to the 

meaning of the mathematics as the task passed through different phases.  In the former 

task, the student teachers removed meaning as the task passed from it original form to its 

modified form by not emphasizing the axiom, that if you add a set of equals to another set 

of equals then their sums will also be equal, and its connection to the meaning of 

addition.  In the latter task, the student teachers removed the connection to subtraction 

from the task as it passed from the written phase to the intended phase by placing a 

discussion on different ways of subtracting prior to giving the students the task.  In the 

discussion, the student teachers used subtracting positive numbers and adding negative 

numbers interchangeably; however, the two operations are conceptually different. 

The students’ access to relevant knowledge played a role in the decrease in 

cognitive demands of Task 1 and Task 4.  In the former task, the student teachers made 

the knowledge needed in order to successfully complete the task easily accessible to the 

students by teaching the students the method of partitioning prior to having them add the 

numbers and expected the students to continue to rehearse the procedure in ten different 

ways.  In the latter task, the student teachers hinted that the students should use 

proportions to solve the problem by incorporating proportion problems into the quiz at 

the beginning of the period.  The student teachers planned to discuss how the students 

solved the proportion problems in the quiz as a class prior to having them work on the 

task.  Thus, the student teachers made the knowledge necessary for successfully 

completing the task easily accessible to the students.   

Finally, in Task 1 and Task 2, the student teachers decreased the cognitive 

demand by not considering the cognitive level of the students in the design of the task.  In 
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Task 1, the students were expected to do arithmetic in different ways.  However, junior 

high students should be expected to generalize arithmetic and should be pushed to think 

more algebraically.  The student teachers did not adjust the task in this way to meet the 

needs of their students.  The latter task was designed to help the students gain a better 

understanding of area measurement.  However, according to the NCTM (2000) students 

this type of task would be more appropriate in the upper elementary grades rather than in 

the junior high grades.  Junior high students should be expected and prodded to develop 

and justify area formulas, which is more than was expected in the task. 

Impact of Knowledge on the Cognitive Demand 

 Given that the cognitive demands of the tasks changed as the tasks passed from 

one phase to another, it was natural to wonder whether the student teachers’ knowledge 

contributed to the decreases.  The analysis revealed that the decreases in cognitive 

demand could be attributed to a lack in the student teachers’ knowledge.  Additionally, 

the presence of a particular knowledge (e.g. CCK, KCS, KCT, etc.) did not necessarily 

lead to an increase in the cognitive demands of the tasks. 

 The student teachers’ expectations of the kinds of justifications they anticipated 

their students would give for the problems were along the lines of an explanation rather 

than a mathematical justification.  This was connected to the student teachers’ lack of 

mathematical content knowledge (which encompasses both CCK and SCK) as well as 

KCS.   Although the student teachers expected the students to give presentations of their 

thinking, the sample student presentations given in the lesson plans indicated that the 

student teachers did not have a clear picture of the type of thinking they wanted 

presented.  They were hoping for particular ways of solving the tasks, for example, 
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looking for students who set up proportions to solve the proportional reasoning task or 

looking for students who used the different operations creatively to add ten different 

ways.  The student teachers were more concerned with the process than the justification.  

In the interviews, the student teachers were asked to give examples of ideal justifications.  

The student teachers responses indicated that an explanation of the process was 

sufficient.  The expectation of an explanation rather than justification could be related to 

the student teachers’ knowledge in two ways: their own knowledge of mathematical 

justification was deficient, whether in general or in the particular cases of the tasks; or the 

student teachers were unsure the level of justification they could expect from the students 

(KCS).   

 Task 3 highlighted how a teacher could inadvertently remove meaning from a 

procedure due to a lack of teacher knowledge.  The task was disconnected from the 

underlying mathematics in two ways: the juxtaposition of the intended discussion of 

subtraction and the task in the lesson plan, and the task itself did not require the students 

to engage in the fundamental mathematics of operations on integers.  In Interviews 2 and 

3, both student teachers indicated that they understood the rules of subtracting integers; 

Kristen even had a number line representation for explaining how to subtract integers.  

The student teachers also understood how they could partition numbers in different ways 

in order to subtract numbers more easily.  Both of these pieces of knowledge are CCK.  

However, the decision to place a discussion on subtraction that confused subtracting 

positive numbers with adding negative numbers before a task intended to help the 

students conceptualize subtraction indicated that the student teachers were lacking SCK 

and KCT.  The student teachers needed to use SCK to realize that the discussion they had 
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planned removed the meaning of subtraction from the procedure they wanted to teach in 

the discussion by ignoring the conceptual changes from subtracting positive numbers to 

adding negative numbers.  The student teachers could have used SCK to modify the 

discussion so that it was consistent with the meaning of subtraction or they could have 

used KCT to not put the discussion and the task in the same lesson plan.  Even though 

Kristen indicated in her third interview that the task did not require the students to 

partition the numbers to subtract, she did not recognize that the strategy of partitioning 

the numbers was counter to the mathematical meaning that subtracting negative numbers 

involves removing negatives from the set she was trying to create through the use of the 

task.  

 Ironically, the student teachers tried to create Task 3 so that students would have 

to grapple with the issues of subtracting negative numbers.  They chose the context of 

money because it offered a situation to discuss negative numbers (i.e. debt) and what it 

means to subtract a negative number (remove some of your debt).  I argue that the student 

teachers used CCK in order to select the context for the task.  If they had used SCK, they 

may have recognized that the use of negative numbers was not necessary to solve the 

task.  Even though the student teachers had CCK, they needed SCK in order to increase 

or maintain the cognitive demand of the task. 

 Another reason for a drop in cognitive demand was the student teachers’ inability 

to tailor tasks to the cognitive level of their students.  This inability was best exemplified 

in Task 2.  The student teachers had created a task that held connections to underlying 

mathematical principles.  However, the student teachers did not have the KCS in order to 

determine whether the task was appropriately challenging for the students.   
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 A similar situation occurred in Task 1.  Although the student teachers had the 

KCS to realize the task would likely not be very challenging for the students, they lacked 

the SCK to make the task more challenging.  Specifically, the student teachers lacked 

knowledge of how the task could be used to generalize arithmetic and lead into a 

discussion on like terms.  The student teachers needed SCK in order to increase the 

cognitive demand of the task. 

 The accessibility of relevant knowledge for the students was another issue 

contributing to a decrease in cognitive demand.  In Task 4, the student teachers wanted 

the students to develop the strategy of setting up proportions to solve problems.  In order 

to get the students to use proportions, the student teachers made the knowledge of 

proportions more accessibly to the students by placing a problem involving proportions in 

the quiz.  This placement decreased the cognitive demand of the task.  In some ways this 

decrease can be traced to a lack of KCS.  The student teachers did not know that students 

are often reluctant to set up proportions.  More importantly, the student teachers lacked 

SCK.  The numbers in the task did not promote setting up proportions as a strategy, and 

in some ways it actually discouraged the use of the strategy.  Rather than using their SCK 

to consider how the numbers of the problems in the task could elicit a particular strategy, 

the student teachers decreased the cognitive demand of the task by making the knowledge 

of proportions less time-removed for the students.   

 Most of the time, the tasks experienced either a decrease in cognitive demand or a 

maintenance of an already lower-level cognitive demand.  The decrease in cognitive 

demand in the tasks could be linked to the student teachers’ lack of a particular domain of 
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knowledge.  Even though the student teachers used other domains of knowledge, they 

often lacked the SCK needed to prevent a decrease in the cognitive demands of the tasks.   

 Negative case analysis.  Mertens (2005) suggested that a negative case analysis 

adds credibility to a study because it provides additional support to the hypothesis.  While 

most of the tasks decreased in cognitive demand, there was one time when the cognitive 

demand of the task increased.  The student teachers were initially given a set of problems 

to serve as Task 4.  This initial form of the task was considered a procedures without 

connections task.  However, the student teachers felt that the task in that form would not 

elicit the student thinking they desired.  Consequently, the student teachers omitted the 

excessive information in the problems that made the task too easy.  This omission 

increased the cognitive demands of the task. 

 As this is a case when the cognitive demand of the task increased rather than 

decreased, it is important to consider the student teachers’ knowledge that contributed to 

the increase.  Even though the student teachers first used CCK to solve the problems 

themselves, doing so helped them recognize that the problems were relatively easy and 

there was no need to set up a proportion to solve them.  However, when Kristen 

suggested that they remove the information that made the task too easy she was no longer 

using CCK.  I submit that by identifying the components of the problem that made it so 

that the students would not use proportions, the student teachers were using SCK.   The 

knowledge needed to identify what made the task easy is not knowledge one would 

expect other professionals besides teachers to possess.  Thus, SCK led to an increase in 

the cognitive demand of the task. 
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Conclusions 

 The discussion earlier in the chapter described how the student teachers used their 

knowledge to design, modify, and plan how to incorporate the tasks into their lessons.  

They often used KCS, pedagogical knowledge, and CCK.  They occasionally used KCT 

and rarely used SCK and curricular knowledge.  Interestingly, the student teachers used 

their CCK to anticipate student thinking even though KCS would have been a more 

valuable knowledge domain to use.  Similarly, the student teachers used CCK to 

construct mathematical explanations, interpret student solutions, and identify the 

mathematical topic of the task.  Ball et al. (2005) indicated that such teaching activities 

required the use of SCK to effectively accomplish. 

The first research question asked how student teachers use their knowledge to 

design or modify mathematical tasks.  The analysis showed that the student teachers 

usually used their knowledge in ways that were common with how Hill et al. (2008) 

described (e.g., using KCS to anticipate student thinking, using KCT to remedy student 

misconceptions, using SCK to represent mathematics).  However, the student teachers 

used CCK to perform many teaching jobs that Hill et al. claimed required a knowledge 

domain different from CCK. 

 The cognitive demands of the tasks often changed as the student teachers 

modified or incorporated the task into their lesson plan. In most cases, there was a drop in 

the cognitive demands of the tasks.  Factors explaining these changes included expecting 

a explanation of the students’ thinking processes, removing connections to the 

mathematics from the task, providing the students with the knowledge needed to solve 
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the task, and not considering the developmental level of junior high students. These 

factors were associated with a lack of knowledge, usually SCK, in the student teachers.   

 The second research question asked how the student teachers’ knowledge 

impacted the cognitive demands of the task.  The analysis indicated that the presence of 

the student teachers’ SCK had the greatest impact on the cognitive demand of the task.  

When the student teachers were missing SCK and had to rely on CCK instead, the 

cognitive demand of the task descended.  However, when the students had SCK, as was 

the case in Task 4, the cognitive demands of the task increased.   

Limitations 

 This study was limited in the sampling of the participants in that only two student 

teachers were used.  It was limited in the data collection by only video recording the first 

day of each task, the timing of the interviews, and the due date of the reflection papers.  

The analysis in the study was in the use of only one researcher to code for knowledge and 

the need to infer the knowledge of the student teachers. 

 Initially, the study planned to sample two different pairs of student teachers.  

However, as mentioned in Chapter 3, the data from one pair of students was not useable.  

This meant that the results of this study came from one pair of student teachers.  

Although there was a plenty of data gathered on the two student teachers, the use of more 

student teachers would have provided a broader data set. 

 The researcher did not anticipate that the tasks planned by the student teachers 

would last for multiple days.  However, the length of the class periods often made it 

difficult for the student teachers to close a task in one day.   The researcher had only 

arranged to video record the first day of the task and consequently did not video record 
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all of the enacted phase of the task.  Originally, the researcher had intended to study the 

enacted phase of the task, but was limited to studying only the written and intended 

phases of the task. 

 The interviews occurred after the student teachers had taught the lesson and 

discussed the lesson in the reflection meeting.  There was a lag of about five or six days 

between the lesson and the interview.  Consequently, the student teachers may have been 

influenced by the reflection meeting and lesson, and misrepresented some of the 

knowledge that they used in the task.  It would have been nice to interview the student 

teachers within a day of their lesson.  It also would have improved the study if the 

interviews could have occurred prior to the enacted phase of the task so that the 

researcher could have collected more accurate data about what the student teachers had 

intended rather than what had happened. 

 There was also a lag in time between the reflection meeting and the reflection 

paper.  The student teachers had approximately one week to write the reflection paper.  

The reflection paper was not always focused on the lesson the student teachers taught, 

and consequently were not as valuable to this study.  Additionally, the student teachers 

sometimes wrote the reflection papers following their interviews with the researcher.  

Their papers then reflected some of the ideas that were discussed in the interviews.  It is 

difficult to know how much the interviews impacted reflection papers. 

 The study was also limited by the use of only one researcher to code the data.  

Although multiple raters were used to code the tasks, only one researcher coded the data 

for the different domains of knowledge.  The use of only one researcher impacts the 

reliability of the study.  As the knowledge had to be inferred from the data, other 
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researchers could have coded the data differently.  Additionally, as the knowledge had to 

be inferred from the data, it is impossible to know for sure exactly what knowledge the 

student teachers used to design, modify, and plan their tasks. 

Implications 

Implications for Future Research 

 This research project was a study of novice rather than experienced teachers.  

Although this study answers the question of how student or novice teachers use their 

knowledge when designing, modifying, and planning tasks, it does not answer how 

teachers in general use their knowledge. Beginning teachers may be more likely to lack 

the knowledge needed to accomplish certain aspects of their job and consequently rely on 

CCK.  However, the literature has suggested that even experienced teachers do not have 

sufficient knowledge for teaching, which could mean that experienced teachers continue 

to rely on their CCK (see Ball et al., 2001; Fennema & Franke, 1992; Mewborn, 2003).   

Future research should investigate whether experienced teachers continue to rely on 

CCK. 

Future research should also investigate how teachers who rely on CCK differ 

from teachers who do not.  One research article indicated that a student teacher failed to 

learn from her teaching experiences because she did not take the time to reflect on the 

experience (Borko et al., 1992).  If the student teacher had reflected on the teaching 

experience and the meaning of fraction division, would she have gained some SCK that 

she could have used later in her teaching?  Is reflection a characteristic that differentiates 

the teachers who have SCK from those who rely on CCK? 
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Additionally, could there be a difference in the type of knowledge elementary 

teachers rely on to supplement their SCK?  Research has indicated that elementary 

teacher are often more insecure about mathematics than secondary mathematics teachers.  

Would an elementary teacher rely on CCK or is there a different knowledge domain on 

which elementary teachers would rely?  Personal experience indicates that elementary 

teachers may rely on pedagogical knowledge when they lack SCK. 

 The data gathered in this study and scope of the project prevented the 

investigation of how the student teachers used their knowledge during the enacted phases 

of the tasks and how that knowledge impacted the cognitive demands of the task.  Stein et 

al. (2000) found that there was often a significant decrease in the cognitive demand of a 

task during the enacted phased of the task.  This change was likely impacted by the 

knowledge of the student teachers (Stein et al., 2007); precisely how the teacher 

knowledge impacts the transformation is still unknown. 

 This research project also did not study how student teachers select and evaluate 

tasks.  The student teachers were often given a task to teach the class, and at a minimum 

given a situation from which to create a task.  Thus, the student teachers did not fully use 

their knowledge to select worthwhile mathematical tasks.  Instead, the student teachers 

were forced to try to adapt the given tasks.  It would be interesting to study how student 

teachers and teachers in general use their knowledge to evaluate and select tasks for the 

classroom.  Osana et al. (2006) already suggested that there was a correlation between 

teacher knowledge and their ability to correctly evaluate tasks, but Osana et al. did not 

look at the kinds of knowledge the preservice teachers used to make their evaluations. 
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 Finally, future research should investigate how SCK is developed.  Is it something 

that can be taught to preservice teachers or can it only be learned through teaching 

experiences?   Answers to these questions will improve teacher education programs. 

Implications for Teacher Education 

 This was a study of how student teachers used their knowledge to plan and design 

tasks.  The findings indicated that the student teachers had not developed the SCK they 

needed to design and modify tasks and had to rely on CCK.  This has several implications 

for teacher education, the most important being how to get preservice teachers to develop 

SCK.   

 It would be impossible to teach preservice teachers all the SCK they would need 

in order to teach mathematics.  For one, there is not enough time in the teacher 

preparation program to cover all the material in depth.  Additionally, the SCK needed to 

teach has not been fleshed out in its entirety for all of mathematics, nor could it ever be.  

Therefore, simply adding more methods classes or content classes where the preservice 

teachers learn more about the mathematics they will be teaching is not enough.  The 

preservice teachers need to be given opportunities to develop SCK.  However, as research 

has not yet determined how SCK develops, it is difficult to know the types of experiences 

that would develop SCK. 

 Some possible experiences could include having preservice teachers evaluate and 

sort tasks.  Preservice teachers could also be asked to modify or change tasks so that they 

would be at a higher-level of cognitive demand.  Preservice teachers could also look at 

videos of teaching moments and discuss how the enacted phase of the task differed from 

the written or intended phases. 
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 Although not part of the scope of this project, there was some indication that the 

student teachers gained SCK during their student teaching experience.  The experiences 

that promoted the development of SCK were unique to the student teacher program of the 

university.  In the interviews with the student teachers, they indicated that they had 

gained SCK after teaching the lesson and reflecting on it in their reflection meetings, 

reflections papers, and discussions between themselves as well as discussions with their 

cooperating teacher.  This indicates that reflection may be key to the development of 

SCK and points to the adoption of student teaching programs and teacher education 

programs that promote reflection. 
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Appendix A: Lesson Plan Template 

 
Department of Mathematics Education Lesson Plan Template 

Cover Sheet 
  
Name Date:  
Lesson Title  
 
Fundamental Mathematics Concepts  
  
  
Requisite Mathematics 
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Lesson Sequence 
Unit Plan 
Sequence  Time Student Thinking and Responses Formative 

Assessment  
Launching Student Inquiry 

  
  
 
  

    
 
 
 

  

Supporting Productive Student Exploration of the Task  
  
 
 
 

    
  
 
 

  

Facilitating Discourse and Public Performances  
 
 
 
 

    
  
  
 

  

Unpacking and Analyzing Students’ Mathematics 
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Appendix B: Abby Interview Protocol 1 

 
Interview Protocol  
Student Teacher: Abby 
Lesson Date: September 20, 2007 
 

1. Who originally designed this task?  Did you modify it in any way?  Why did you 
choose the numbers 15, 27, and 42? 

2. Can you evaluate this task in terms of the students’ mathematical abilities?   
3. What were your main mathematical objectives in using this task?  
4. What types of student thinking did you want to see students come up with during 

the task? 
5. In the lesson plan, you titled the lesson Proving Addition Facts.  Could you give 

an example of an adequate justification? 
6. I’m going to show you some of the students’ presentations of their work.  After 

listening to their presentation, I want you to describe whether or not you think the 
student adequately proved their addition strategy. 
Segment 1 
Segment 2 
Segment 3 
(Segment 4) 

7. In the lesson plan, it states that another purpose of this task was to lead into 
combining like terms.  How could you use this student’s work to introduce 
combining like terms?   Could you create an example of the optimal student work 
you could use to introduce combining like terms? 

8. You showed a subtraction example to review ideas from the previous day.  
(Review the teaching segment.)  What do you think the student meant when he 
said, “plus 70”?  Could there be a mathematical reason? 

9. In the warm-up, there was a question about the divisibility rule for four.  In the 
reflection meeting, you said that you think you understand why four works.  
Could you describe that for me? 

10. In the warm-up, why didn’t it matter whether or not we performed the parenthesis 
or exponential operation first? 
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Appendix C: Kristen Interview Protocol 1 

 
Interview Protocol 
Student Teacher: Kristen 
Lesson Date: September 20, 2007 
 

1. In the reflection meeting, you said that your primary goal was to decrease the 
amount of complaining you had witnessed the day before.  Why do you think that 
so many students were complaining? 

2. Who originally designed this task?   
Did you modify it in any way?   
Why did you choose the numbers 15, 27, and 42? 

3. Can you evaluate this task in terms of the students’ mathematical abilities?   
4. What were your main mathematical objectives in using this task?  
5. What types of student thinking did you want to see students come up with during 

the task? 
6. In the lesson plan, you titled the lesson Proving Addition Facts.  Could you give 

an example of an adequate justification? 
7. I’m going to show you some of the students’ presentations of their work.  After 

listening to their presentation, I want you to describe whether or not you think the 
student adequately proved their addition strategy. 
Segment 1 
Segment 2 
(Segment 3) 

8. In the lesson plan, it states that another purpose of this task was to lead into 
combining like terms.  How could you use this student’s work to introduce 
combining like terms?   

9. Could you create an example of the optimal student work that you could use to 
introduce combining like terms? 

10. In the warm-up, there was a question about the divisibility rule for four.  In the 
reflection meeting, you said that you think you understand why four works.  
Could you describe that for me? 
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Appendix D: Abby Interview Protocol 2 

 
Interview Protocol 
Student Teacher: Abby 
Lesson Date: September 26, 2007 
 

1. Preparation 
a. In your lesson on “Proving addition facts”, you seemed to indicate that 

you were unsure of the purpose or the big mathematical ideas of the task 
you were teaching.  Is that correct? 

b. Prior to teaching the surface area lesson, did you feel that you understood 
the big mathematical ideas better than with the addition facts lesson?  
Why?  How did you prepare more? 

c. After having taught the lesson, do you (still) feel that you understood the 
big mathematical ideas of the lesson? 

d. How are you feeling about your preparation on the big mathematical ideas 
for tomorrow’s lesson? 

2. Discussion of Task A (24:30) 
a. When you were gathering students’ estimates of the area, did you think it 

was important to find out how the students found their estimates?  Why? 
b. When you first heard the estimate 3 1/8, what did you think about that 

answer? 
c. At the time, why did you decide not to ask the 3 1/8 group how they found 

their estimate? 
3. Discussion of Task B (33:00-37:00) 

a. What are some of the big ideas that students need to understand about 
area?  What does it mean to have a conceptual understanding of area? 

b. Do you think Mosiah understands area?  What does he understand, what 
doesn’t he understand? 

4. Warm-Up Problem 2 (8:00-8:40) 
a. What kinds of student thinking were you expecting students to use to solve 

this equation?  
b. Did you notice any of these strategies when you were wandering around 

the classroom? 
c. What is the value of the strategy the students used (“substituting different 

numbers”)? 
5. Warm-Up Problem 3 (8:40-10:00) 

a. How well do you think these students understood how to graph coordinate 
points? 

b. Do you think they could identify which quadrant the point is in without 
graphing the point? 

c. Do you think they could give the ordered pair of a graphed point 
(especially a point on one of the axes)? 
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Appendix E: Kristen Interview Protocol 2 

 
Interview Protocol 
Student Teacher: Kristen 
Lesson Date: September 26, 2007 
 

1. Preparation 
a. In your lesson on “Proving addition facts”, you seemed to indicate that 

you were unsure of the purpose or the big mathematical ideas of the task 
you were teaching.  Is that correct? 

b. Prior to teaching the surface area lesson, did you feel that you understood 
the big mathematical ideas better than with the addition facts lesson?  
Why?  How did you prepare more? 

c. After having taught the lesson, do you (still) feel that you understood the 
big mathematical ideas of the lesson? 

d. How are you feeling about your preparation on the big mathematical ideas 
for tomorrow’s lesson? 

2. Task A and Task B 
a. What were the big mathematical ideas of the area tasks? 
b. What does it mean to have a conceptual understanding of area? 
c. In task one, you asked the students to estimate the area using their unit 

square while in task two you asked them to find the exact area by 
unfolding their unit square and counting triangles.  Why did you suggest 
they use triangles to find the exact area? 

d. What does it mean to find an exact answer to area? 
3. Warm-Up Problem 1 (6:00-7:15) 

a. When explaining to the student why -11 and +7 didn’t work, you said 
“because we went 11 negative and only came back 7 positive.” How does 
this describe why the sum of -11 and 7 is not 4? 

b. Is there another way you could have described adding integers? 
c. Why did you choose to use a number line representation? 
d. Why is the product of -11 and 7 the same as the product of -7 and 11? 

4. Warm-Up Problem 2 (7:15-7:55) 
a. What kinds of student thinking were you expecting students to use to solve 

this equation?  
b. Did you notice any of these strategies when you were wandering the 

classroom? 
c. Why were you surprised when the student used a “working backwards” 

strategy? 
d. Although you had her explain her thinking, you didn’t discuss it anymore 

with the class.  Why did you decide not to discuss this idea more? 
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Appendix F: Abby Interview Protocol 3 

 
Interview Protocol 
Student Teacher: Abby 
Lesson Date: October 3, 2007 
 

1. Task 
a. What were your student learning objectives of this task? 
b. How did this task help accomplish ________ objective? 
c. How well did the students understand ____________ objective of the 

task? 
2. How did you feel about changing the order of the discussion and the task?  How 

do you feel the task and discussion went during the class? 
3. Why did you ask the question, “Could there be different solutions to the 

problem?” (26:20) Do you think the students understood why the answer is the 
same? 

4. Did Mosiah and Amber approach Tuesday the same way?  How were their 
approaches different? 

5. Why did you ask the question, “What does this 15 represent?”   
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Appendix G: Kristen Interview Protocol 3 

 
Interview Protocol 
Student Teacher: Kristen 
Lesson Date: October 3, 2007 
 

1. Task 
a. What were your student learning objectives of this task? 
b. How did this task help accomplish ________ objective? 
c. How well did the students understand ____________ objective of the 

task? 
2. Why did you decide to have the discussion first and then give the students the 

task? 
3. Partitioning Subtraction (18:00) 

a. Why did you use multiplication when you were repartitioning the problem 
$23-$18? 

b. Why would it be negative 10? 
c. What is the difference between subtraction and a negative number? 
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Appendix H: Abby and Kristen Interview Protocol 4 

 
Interview Protocol 
Student Teacher: Abby and Kristen 
Lesson Date: December 6, 2007 
 

1. How do you determine the fundamental mathematics in a task? 
a. What types of outside resources do you use to determine the fundamental 

mathematics in a task? 
b. How does the CORE help you determine the fundamental mathematics? 

2. What did you talk about when you were planning this task? 
3. How did you find the proportional reasoning problems you used for your task on 

Thursday? 
a. Why did you choose those particular problems over some of the other 

problems that were in the book? 
4. Are all these problems of equal difficulty? 

a. Which do you think are harder/easier? 
b. Why? 

5. How did you expect students to solve these problems? 
a. What are some other strategies the students could have used? 

6. What was your primary student learning outcome? 
a. How could problem 1 help students learn how to _________________? 
b. How could problem 2 help students learn how to _________________? 
c. How could problem 3 help students learn how to _________________? 
d. How could problem 4 help students learn how to _________________? 
e. Is one of these problems more likely than the others to lead students to set 

up a proportion to solve?  Why? 
7. How could you use these students’ work to set up a proportion? 
8. Why did you decide to give the groups different problems to solve? 
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Appendix I: Original Phase of Task 4 

 
If You Hopped Like a Frog . . .  

Frogs are champion jumpers.  A 3-inch frog can hop 60 inches.  That means the 
frog is jumping 20 times its body’s length.  How tall are you?  If you could jump 20 times 
your body length, how far could you go? 

 
If You Were as Strong as an Ant . . . 
 Ants may be ting, but they are great weight lifters.  An ant weighing 1/250 of an 
ounce can easily lift a bread crumb weighing 1/5 of an ounce.  That means the ant is 
lifting 50 times its own weight.  How much do you weigh?  If you could lift 50 times 
your weight, could you lift a 3,000-pound car? 

 
If You Had the Brain of a Brachiosaurus . . . 
 Large dinosaurs had tiny brains.  Brachiosaurus weighed about 80,000 kilograms, 
but its brain weighed only about 200 grams (0.2 kilograms).  So its body was about 
400,000 times as heavy as its brain.  What is your weight?  What would your brain weigh 
if it weighed 1/400,000 as much as your body? 

 
If You Scurried Like a Spider . . .  

Considering its length, a female house spider is faster than any other animal, even 
a cheetah.  It can move 33 times the length of its own body in 1 second.  If you could run 
33 times your body length in a second, how many feet per second could you run?  How 
long would it take you to run the length of a 100-yard football field?  How far could you 
run in one minute if you could keep up that pace? 

 
If You Swallowed Like a Snake . . . 
 Your lower jaw is hinged to your upper jaw, but a snake’s jaw is not.  If a snake 
wants to eat something big, it can simply drop its entire lower jaw to get its mound w-i-d-
e open.  A western diamondback rattlesnake with a head just 1 inch wide can swallow a 
whole gopher measuring 2 inches across.  That means the snake is eating something 
twice as wide as its head.  How wide is your head?  What could you swallow in the 
classroom that is twice as wide as your head? 

 
If You Ate Like a Shrew . . .  

Shrews are among the smallest of mammals, but their appetites are huge!  A 
shrew that weighs just 1/5 of an ounce eats about 3/5 of an ounce of yummy insects and 
worms each day.  That means it eats 3 times its own weight daily! How much would you 
be eating each day if you could eat like a shrew?   
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If You High-Jumped Like a Flea . . .  
A flea just 3 millimeters high can spring more than 200 millimeters into the air---

almost 70 times its own height.  The Statue of Liberty is 93 meters above the ground.  
Measure your height in centimeters and figure out how high you’d go if you could jump 
70 times your height.  How high could you jump?  Could you land on the top of the 
Statue of Liberty? 
 
If You Flicked Your Tongue Like a Chameleon . . . 

Chameleons are experts at standing still, unnoticed by unlucky insects.  When one 
flies by, . . . Zzzzzzzap!  Out goes a very long tongue.  The fly is now food.  A 1-foot 
chameleon may have a 6-inch tongue.  Its tongue is half as long as its body.  How long 
would your tongue be if you had a tongue like a chameleon’s?  What could you touch 
with your tongue from your seat? 
 
If You Craned Your Neck Like a Crane . . . 

A whooping crane that’s 4 feet tall (48 inches) has a 16-inch neck.  That means its 
neck is 1/3 the height of its body.  How tall are you?  How long would your neck be if it 
were 1/3 your height? 
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Appendix J: Modified Phase of Task 4 

 
If You Hopped Like a Frog . . . Frogs are champion jumpers.  A 3-inch frog can 
hop 60 inches.  If you could jump like a frog, how far could you hop in one jump?  
How many jumps would it take you to jump down a football field (100 yards)? 
How far would you go if you hopped 30 times? 
 
If You Scurried Like a Spider . . . Considering its length, a female house spider is 
faster than any other animal, even a cheetah.  It can move 165 times the length of 
its own body in just 5 seconds.  If you could run like a spider, how many feet per 
second could you run?  How long would it take you to run the length of a football 
field (100 yards)?  How far could you run in one minute if you could keep up 
your pace? 
 
If You Ate Like a Shrew . . . Shrews are among the smallest of mammals, but 
their appetites are huge!  A shrew that weighs just 1/5 of an ounce eats about 3/5 
of an ounce of yummy insects and worms each day.  How much would you be 
able to eat each day if you could eat like a shrew?  How many pounds of 
chocolate would you be able to eat in a week? 
 
If You High-Jumped Like a Flea . . . A flea just 3 millimeters high can spring 
more than 200 millimeters into the air.  If you jumped like a flea, how high could 
you jump?  The Statue of Liberty is 93 meters above the ground.  If you could 
jump like a flea, could you jump over the Statue of Liberty? 
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