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Epstein, Joshua A., M.S., Summer 2009                                        Environmental Studies 
 
Upstream Geomorphic Response to Dam Removal: The Blackfoot River, Montana 
 
Committee Chair: Dr. Andrew Wilcox 
 
 
     As dam removal is increasingly used as a tool to restore rivers, developing a 
conceptual and field-based understanding of the upstream fluvial response is critical. 
Using empirical data and modeling, I investigated the spatial and temporal pattern of 
reservoir sediment erosion and upstream channel evolution of the Blackfoot River, MT, 
following the 8 m base level reduction caused by the removal of Milltown Dam. Field 
data collected include surveys of channel bed topography and water surface elevation 
profiles which were integrated into a flow modeling approach. Headward erosion 
extended 4.5 km upstream of the dam site during the first five months following the dam 
removal. In the lower 1.8 km of the reservoir, up to 3 m of highly mobile silt and sand 
was evacuated. Upstream, the river incised into a coarse deltaic sediment deposit (D50 
70mm) in the upper reservoir. The analysis of erosion through the hydrograph shows that 
the channel incised up to 2 m in some locations and maximum volumetric erosion of 
260,000 m3 was reached several days after the flood peak (286 m3/s, 3.5 year return 
interval). Net erosion following the dam removal, accounting for both scour and 
deposition, was 150,000 m3 across the 5 km study reach. The modeling-based water 
surface elevation analysis revealed the intra-hydrograph pattern of erosion that otherwise 
would have been missed by comparing pre- and post-removal cross section topography. 
The post-removal evolution of the lower Blackfoot was heavily influenced by 
confinement of the channel and the above average discharge. Widening was associated 
with areas of local aggradation, whereas narrowing was associated with degradation—a 
finding similar to those from previous flume experiments. 
  
 
Key words: Dam removal, reservoir sediment erosion, upstream geomorphic response, 
base level, large woody debris. 
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I. INTRODUCTION 

 

Caught at the crossroads of declining ecosystem services, decaying infrastructure, 

and increasing interest in ecological restoration, the U.S. has entered into an era of dam 

removal (Doyle et al. 2008). Dam removal is perhaps the largest of available options to 

restore rivers, but in many cases has a significant potential to restore or enhance 

ecosystem services valued by society (Graf 2002, Pizzuto 2002). Despite decades of dam 

removal practice, there are few detailed studies performed before and after such projects 

are completed to enhance our understanding of river response (Doyle et al. 2002). From 

planning stages to execution, perhaps the most critical element to dam removal projects is 

the fate of sediment stored behind a given dam (Shuman 1995, Cui and Wilcox 2008). 

The fate of reservoir sediment can be the costliest and least certain component of a dam 

removal, and is therefore of interest to scientists and policy-makers (Cui and Wilcox 

2008). Reservoir sediments may be a source of contamination, interact with certain life 

history stages of aquatic organisms, or affect adjacent communities. Furthermore, the 

questions surrounding the evacuation of reservoir sediment is coupled with the how a 

channel upstream of a given dam will evolve.  

This study will focus on the upstream sediment dynamics including erosion of 

reservoir sediment and the evolution of the newly reclaimed Blackfoot River above 

Milltown Dam. The Milltown Dam removal is part of the larger > $100 million dollar 

multi-year Superfund remediation effort. While significant resources were allocated to 

feasibility studies to prepare for the dam removal and mechanical excavation of 

contaminated sediments, significant questions surrounding the fate of reservoir sediment 

and the upstream response of rivers remain for scientists and policy-makers to consider in 

future dam removals. For example, in the first spring runoff following the removal of the 

dam, 180,000 m3 of contaminated sediments eroded from the upper portion of the Clark 

Fork arm of Milltown reservoir (Wilcox et al. 2008). The 180,000 m3 is equivalent to 

∼4500% of the volume predicted to be eroded from the upper reservoir area by the pre-

removal modeling efforts (Envirocon 2004). The spatial component of the upstream 

response was not captured by the modeling efforts applied to the problem of predicting 

reservoir sediment erosion to manage contamination. 
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Fluvial Sediment Dynamics and Base Level 

Building a dam creates a reservoir where sediment transport capacity is greatly 

reduced. Annual sediment loads supplied from upstream hill-slope and fluvial processes 

are trapped by the low velocity slack-water behind a dam, filling the reservoir with 

sediment over time (Graf 1999, Graf 2002). When a dam is removed, the sediment 

balance tips in the opposite direction: the system’s capacity to transport sediment is 

increased while having a large supply in the reservoir sediment deposit. Dam removal 

reactivates sediment supply to downstream river reaches in a sediment pulse (or series of 

several pulses) as the reservoir deposit erodes. The post-removal sediment pulse may be 

orders of magnitude higher than typical seasonal sediment flux in a given river system, 

because of the potentially large reservoir sediment deposit and the unique geomorphic 

context which can lead to flux of large volumes at high transport rates (Major et al. 

2008). 

 The concept of base level is useful in placing upstream geomorphic response to 

dam removal into a theoretical context. Given upland watershed processes and climate 

operating within normal levels of variability, rivers tend toward an equilibrium base 

level, defined as the level below which a river cannot down-cut (Leopold and Bull 1979). 

Base level is considered to be a downstream control on rivers, a reduction of which will 

cause upstream degradation or incision (Knighton 1998). Base level changes can occur 

over geologic time scales through tectonically driven uplift which may create landscapes 

in a transient state (Crosby and Whipple 2006, Bishop 2005). The rapid decrease in water 

surface elevation caused by dam removal can be considered as a change in local base 

level (Doyle et al. 2002). Such a case may constrain the upstream fluvial response to a 

shorter time scale than in other physiographic settings, such as in bedrock systems. For 

example, a study of upstream migrating incision into networks of bedrock channels found 

climate-driven base level fall propagated knickpoints upstream over 18,000 years 

(Crosby and Whipple 2006).  

 Base level may change due to naturally occurring processes at the confluence of 

two rivers through altered climate and discharge (Leopold and Bull 1979) or changes in 

incision rates at the main-stem river (Crosby and Whipple 2006). Base level for streams 
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flowing into lakes can be set by long-term fluctuations in lake level driven by climatic 

variations (Galay 1983, Figure 1). 

 
Figure 1. Idealized diagram of base level fall from a reduction in lake or reservoir elevation. 
Progression of upstream erosion through time ( t = 1  through 4). Adapted from Galay 1983. 

 

Furthermore, changes in sea level and anthropogenic disturbances such as water 

diversion, dam construction, reservoir regulation and dam removal are additional drivers 

of base level change. In the case of dam removal, the base-level drop reduces the 

downstream control on the stored reservoir sediment (Doyle et al. 2002) and will initiate 

upstream geomorphic response such as incision and headward migrating knickpoints 

(Larue 2008). Other potential responses include changes in slope, surface sediment 

textures, roughness, sinuosity or lateral channel migration resulting in altered aquatic and 

associated riparian habitats (Leopold and Bull 1979). Furthermore, the literature has been 

summarized to predict that the effect of base level fall will be most pronounced when it 

occurs rapidly and the upstream channel is confined (Knighton 1998). 
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Conceptual Model of Reservoir Sediment Erosion and Channel Evolution 

 Channel evolution following base level reduction has been explored both in the 

field and laboratory by several authors (Begin 1981, Schumm 1984, Simon and Hupp 

1987, Begin 1988, Doyle et al. 2002, Doyle et al. 2003, Cantelli et al. 2004). Channel 

evolution models (CEMs) that originate in empirical studies of incised sand-bed channels 

have been applied to dam removal (Doyle et al. 2002, See Figure 2). Accordingly, 

headward migrating channel degradation increases bank height above a lowering bed 

surface, leading to channel widening driven by bank failure (which is controlled by bank 

angle, height, and sediment cohesion properties). Sediment contributed to the channel 

from widening (bank failure) can mitigate the effects of degradation, or where critical 

discharged for downstream transport of bank material is reached, greatly increase the 

total amount of sediment evacuated from a given stream reach (Doyle et al. 2002). Flume 

experiments on dam removal found erosional narrowing to occur during the initial 

incision into the reservoir deposit (Cantelli et al. 2004, Cantelli et al. 2007). As the flume 

channel rapidly incised into the reservoir sediment deposit, the channel actually narrows 

before widening.  

 Following perturbation of the system through base level change, it would be 

expected that fluvial response would lead to some state of equilibrium. One field study 

described upstream channel response to base level rise approaching a new equilibrium 

state with a similar slope to the pre-perturbation channel. The development of an 

upstream sediment wedge resulting from dam construction extended 1.5 km upstream 

after 25 years and adjusted to 83% of the initial slope (Van Haveren et al. 1987, Knighton 

1998). In the case of dam removal, it may be possible that post-removal channel 

equilibrium would reach a slope similar to pre-dam conditions at a different mean bed 

elevation following degradation. 

It has also been shown that in some sand-bed systems, upstream channel 

evolution following base-level fall is governed by the migration rate of a knickpoint 

(Doyle et al. 2002). A knickpoint is a point of dramatic slope increase in the longitudinal 

profile of a stream inclusive of small rapids through the spectrum to a vertical waterfall  

(Brush and Wolman 1960, Crosby and Whipple 2006). Knickpoints migrate upstream 

over a variety of timescales depending on the individual case, and are often formed by 
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base level fall. A knickpoint may maintain its shape and move upstream as a stepped 

knickpoint. Alternatively, it may get longer and less steep if the top of the knickpoint 

erodes faster than the base, creating a rotating knickpoint (Stewart 2006). Flume 

experiments investigating “blow and go” removal of a dam with results up-scaled to 

gravel-bed rivers support the rotating knickpoint phenomena (Cantelli et al. 2004). Field 

observations of low-head dam removals in sand bed, low gradient systems in the mid-

west found both stepped and rotating knickpoints migrating upstream through reservoir 

sediment deposits (Doyle et al. 2003, Cheng and Granata 2007, Evans 2007, Major et al. 

2008).  Furthermore, knickpoint form is also controlled by how the sediment eroded from 

the face moves downstream. Stewart (2006) proposed that knickpoints may evolve in 

four possible modes following dam removal: 1. rotating with diffusion, 2. rotating with 

dispersion, 3. stepped with diffusion, or 4. stepped with dispersion (Figure 3). As the 

literature covering fluvial response of fine-bed channels to base level reduction is more 

developed, there is some disagreement on what form a knickpoint will take in gravel bed 

rivers. Furthermore, it is possible for erosion of reservoir sediment to occur without the 

formation of a knickpoint. In the removal of Saeltzer Dam on Clear Creek, California, 

headcutting was not observed in the coarse sediment exposed to high discharge (Cui and 

Wilcox 2008). 
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Figure 2. Channel evolution model for upstream response to dam removal from 
Doyle et al. 2003, based on incising channels. Modifications for larger reservoir 
and mixed sediment composition of reservoir deposit may be needed for this 
study. 

 
 Studies applying a diffusion model showed that base-level reduction may cause 

degradation along the length of the channel equal to the amount of base level fall, 

maintaining a stream with the same slope (Begin 1988, Knighton 1998). Application of 

these results to the Blackfoot this would predict degradation on the order of 8 m (Begin 

1988). It was noted that heterogeneous sediment and armoring could produce different 

results. The BFR has both heterogeneous sediment, and complications of variable 

roughness (bedrock, large woody debris, rip-rap banks, and bridge piers). Additionally, 

the diffusion model results may be inappropriate for application to large unconfined 

alluvial rivers that can alter sinuosity and roughness preventing the signal of base level 

fall from migrating far upstream (Knighton 1998), but perhaps more applicable to the 

constrained BFR channel.  
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Figure 3. Four potential knickpoint migration patterns proposed by Stewart (2006). 
Sediment transported downstream is predicted to move via diffusion at high Froude (Fr), 
and translation at low Fr (from Stewart 2006). 

 
 Recent studies of dam removal have centered on low gradient sand-bed, with the 

exception of the removal of Marmot Dam from the Sandy River in Oregon. Marmot Dam 

was removed from the Sandy River, a tributary to the Columbia River, on October 19, 

2007. Of the 730,000 m3 of sand and gravel stored behind the dam, 100,000 m3 eroded 

within 48 hours of the dam breaching through a combination of headward  and lateral 

erosion of the unconsolidated banks of the newly incised channel (Major et al. 2008). A 

knickpoint formed at the coffer-dam, which migrated 500 meters in the 48 hour time 

period. The combination of a steep channel (0.006 - 0.009 m/m) and a discharge of 30% 

above the mean annual discharge allowed for rapid incision of the channel into the 

reservoir sediment deposit. 

 

 

II. THE PROBLEM 

 

The primary objectives of this study are to better understand (1) the spatial and 

temporal pattern of reservoir sediment erosion, (2) how a gravel-bed river channel 

evolves upstream of a dam removal. In light of the literature reviewed, I would like to 

explore the applicability of channel evolution models to a confined, mountain gravel-bed 

channel. The Blackfoot is a confined, gravel-bed mountain river which flowed into the 

reservoir behind Milltown Dam from 1907 to 2008. In the Blackfoot arm of Milltown 
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Reservoir, a fine (silt-sand) deposit accumulated in the lower portion and a coarse deltaic 

deposit pro-graded downstream in the upper end of the reservoir (additional study site 

information is detailed in the following section).  

I hypothesize that two distinct phenomena will be seen in the upper and lower 

Blackfoot reservoir reflecting erosion of two bed sediment types. The fine sediment 

deposit in the lower reservoir will erode rapidly during the rising limb of the first 

hydrograph these sediments are exposed to. Investigation of the processes initiated by 

dam removal in mountain gravel bed rivers may enhance our understanding of how rivers 

respond to such actions. In the case of dam removal leading to a rapid increase in 

sediment transport capacity with a large sediment supply, I hypothesize that cross 

sectional area (A) is the dominant variable changing through the first hydrograph 

expected to erode reservoir sediments.  The comparison of observed water surface 

elevations (WSEobs) to modeled elevations (WSEmodel) will be used to reveal the process 

of reservoir sediment erosion through the 2008 hydrograph. 

 Furthermore, I would like to explore whether reservoir sediment erosion 

following dam removal can be described by an exponential decay function, where erosion 

is a function of time and a decay constant (α). Furthermore, roughness and grain size are 

the key factors that will control the decay constant (α) in the case of the BFR due to the 

limited lateral migration potential and existence of features that will contribute to 

roughness (large woody debris, bedrock, etc.). The data set gathered in this study 

provides the opportunity to test the ability of an exponential decay function to describe 

reservoir sediment erosion. 

Three different approaches were devised to elucidate the surface textural response 

and the pattern of reservoir sediment erosion in the BFR following the removal of 

Milltown Dam: (1) a surface sediment texture analysis, (2) a net morphological change 

analysis, and (3) an analysis of the upstream response through the 2008 spring runoff. A 

combined flow modeling and field measurement approach was devised to understand the 

intra-hydrograph patterns of erosion patterns following the breaching of Milltown Dam. 

By exploring this method, I hoped to achieve a higher temporal resolution to fill in the 

gap between the two base flow topographic surveys.  
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III. STUDY SITE 

 

 The Blackfoot River (BFR), MT, is a tributary to the Clark Fork River (CFR) and 

drains an area of 5,931 km2 (Figure 4, Rothrock et al. 1998). The BFR flows through 

glaciated meadows in the upper watershed, moving downstream through conifer forest 

and wetlands, open ranch and timbered areas, then between steep forested slopes with 

some narrow canyon sections in the lower river before it meets the CFR (Figure 5). The 

lower BFR is naturally confined to a narrow active zone bounded by steep mountains and 

canyon walls on either side of the channel. Adjacent development and road projects have 

further confined the river in some reaches. 

Milltown Dam was constructed in 1907 at the confluence of the Blackfoot and 

Clark Fork Rivers. One hundred years later, in March of 2008, the dam was breached 

allowing the BFR and CFR to flow freely, exposing more than 100 years of accumulated 

reservoir sediment in the BFR to river erosion. The Milltown project is unprecedented in 

size and complexity. The 20 m high, 200 m long dam stored approximately 4.6 x 106 m3 

of sediment in the reservoir, which filled during a 300-500 year flood in 1908. Mine 

tailings were transported downstream by the 1908 flood largely filling Milltown reservoir 

with sediment. Decades later, Milltown Reservoir became the nation’s largest EPA 

Superfund site (EPA 2004). The removal of Milltown Dam has garnered substantial 

attention because of the presence of contaminated sediments in the Clark Fork arm of 

Milltown Reservoir, but river erosion of uncontaminated sediments from the Blackfoot 

arm has provided an opportunity to examine upstream geomorphic response.  

In addition to Milltown Dam, a second and smaller dam influenced the lower 

BFR. The Stimson Dam, 2 km upstream of Milltown Dam was constructed in 1884 to 

supply power to the adjacent lumber mill, and to catch harvested timber floated down the 

Blackfoot during log drives (Figures 6, 7). The two dams created distinct backwater 

effects. The Stimson Dam converted the lower BFR into a reservoir-tailwater reach. 

Approximately 20 years later the creation of Milltown reservoir flooded the Stimson 

reservoir (Milltown water surface elevation surpassed the elevation of the Stimson 

reservoir at high discharge). The net result after 1907 was an increase in the base level at 

the mouth of the BFR, altering local geomorphology, hydrology and ecology in ways 
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typically associated with dam construction (e.g., Dynesius and Nilsson 1994, Graf 1999, 

Ward and Stanford 1995). Furthermore, the human-induced recruitment of large woody 

debris to the channel from logging operations upstream left a legacy of > 10,000 

individual logs in the lower 3 km of the BFR (Figure 6). At the time of the dam removal, 

the large woody debris was located on the bed and buried in the coarse reservoir sediment 

deposit in the upper reservoir. 

The BFR reservoir provides a unique case as it has two spatially distinct sediment 

deposits: silt and sand up to 3 m deep in the lower 2000 m of the reservoir (Envirocon 

2004), and a coarse gravel-cobble deltaic deposit at the upstream end of the reservoir 

prograding downstream (typical form of reservoir deltaic sediment deposits, Figure 8). 

The lower 2500 m of the reservoir is the most confined, with maximum confinement in a 

500 m section where a rip-rap bank narrows the channel against a bedrock wall. The 

staged removal of Milltown dam has lowered the reservoir water surface elevation, and 

base level controlling the upstream channels, from 2006-2008. In 2006, the reservoir was 

drawn down by 4m to begin the mechanical removal of contaminated sediment from the 

CFR arm of the reservoir. The March 2008 breaching of Milltown dam lowered the local 

base level by an additional 5 m. Studies commissioned by the EPA and state agencies 

estimated 150,000 – 229,000 m3 of reservoir sediment accumulated in the BFR over the 

life of the dam (Envirocon 2005). 

 



 11

 
Figure 4. Overview map of the upper Columbia River basin in Western Montana. The Blackfoot 
watershed is outlined in red and meets the Clark Fork River West of Missoula and immediately 
upstream of the former site of Milltown Dam. 
 

 
Figure 5. Aerial photo of the Milltown Dam area. Locations of Milltown and Stimson 
Dams indicated, in addition to location of contaminated sediment removed as a part of 
superfund remediation program in the Clark Fork arm of Milltown Reservoir. NAIP 
2004. 
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Figure 6. River of wood: cut timber fully 
covering the Blackfoot River in Bonner 
adjacent to the Stimson Mill following the 
1908 flood (The Montana Collection, 
Mansfield Library, The University of 
Montana). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
Figure 7. Photographs of the Stimson Dam site on the BFR in the early 1900’s (left) and after its removal in 
2005 (right).  Photos: Montana Environmental Information Center. 
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Figure 8. Conceptual diagram of headward erosion of the two distinct reservoir sediment deposits and 
evolution of water surface elevation from 2004 through the Milltown Dam breach in 2008.  

 
 

IV. METHODS 

 

To investigate the upstream response of the BFR following the removal of 

Milltown Dam, three approaches were used: (1) a surface sediment texture analysis, (2) a 

Spring –Fall 2008 net morphological change analysis, and (3) an analysis of erosion  

through the 2008 spring runoff. To achieve a higher temporal resolution that fills in the 

gap between the two base flow topographic surveys, a combined flow modeling and field 

measurement approach was devised to analyze the pattern of reservoir sediment erosion.  

In order to evaluate morphological changes, I measured cross sections throughout 

the study reach. The BFR-CFR confluence is located in the middle of the Superfund 

remediation and dam removal site with active construction equipment and crews working 

at the time this study was done. This made some of the lower river inaccessible for field 

data collection. The study reach for this project began 900 m upstream of the dam site 

and extended to 5 km upstream of the dam. Approximately 6 km upstream of the dam, 

the BFR changes from a gravel-cobble, alternating pool riffle channel to a plane-bed 

channel with cobbles and boulders. Focusing field efforts on the lower 5km of the BFR 

was logical given this distinct change in channel type above 6 km and limited time to 

survey in the Spring of 2008. Cross sections were established in areas that could be 

surveyed at base-flow (Q < 17 m3/s). 
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 Conventional cross section surveying techniques (total station, survey-grade 

GPS) were used. Cross sections were surveyed using a Leica Total Station TPS300 and 

Trimble Real Time Kinematic (RTK) GPS units (R7, 5800 receivers) with maximum 

horizontal and vertical precision of GPS data of 0.003 – 0.03 m. Seven cross sections 

were established within the area influenced by Milltown Reservoir in addition to six cross 

sections upstream (Figure 9). Wade-able cross sections were surveyed in riffles and tail-

outs of pools. Boat-based surveys were done in areas that were too deep to wade and had 

suitable surfaces for setting static line anchors. Cross section data were used to develop 

longitudinal thalweg profiles. 

The response of surface sediment to the change in base level was evaluated using 

pebble counts or soil cores done in the Spring and Fall of 2008. Wolman 100-particle 

counts (Wolman 1964) were used where surface texture was > 2mm, and a soil corer in 

the fine deposit in the lower reservoir where individual grains were smaller than 2 mm 

(mean D50 of 0.2 mm). Bed sediment from the fine reservoir deposit was sieved and the < 

.5 mm fraction was analyzed using a laser diffractometer (Malvern Mastersizer particle 

size analyzer). Grain size data were used to assess changes in bed surface texture and 

grain mobility throughout the study reach at a variety of discharges. Grain mobility was 

calculated for the two reservoir deposits: the fine deposit in the lower 1.8 km, and the 

coarse deposit in the upper reservoir. The 2003 Wilcock and Crowe sediment transport 

function in the Bedload Assesment in Gravel-bedded Streams (BAGS) software was used 

(Pitlick et al. 2007). I used BAGS to assess grain mobility throughout the study reach, to 

develop an understanding of where and when particles started moving. BAGS calculates 

sediment transport rates and incipient motion using six substrate and surface-based 

transport models. The Wilcock and Crowe 2003 surface-based equation was selected due 

to its ability to model transport of both fine (<2mm) and coarse sediment. Among the six 

models in BAGS, Wilcock and Crowe 2003 best represents the influence of sand on 

gravel transport (Wilcock et al. 2001, Wilcock and Crowe 2003). Reach-average grain 

size data were combined by averaging percent-finer-than intervals from individual grain 

size distributions. 
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Figure 9. 2004 USDA NAIP aerial photo of the study area. Cross section locations denoted 
respectively by red lines. 
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Figure 10. 2008 hydrograph for the Blackfoot River. Closed points show 
water surface elevation (WSE) survey dates, and open dots show repeat 
cross section survey dates at base flow. 
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Water Surface Elevation (WSE) Analysis  

In order to evaluate spatial and temporal patterns of reservoir sediment erosion, an 

approach using flow modeling and water surface profile surveys was used. Water surface 

profiles were surveyed in the lower 4 km of the BFR throughout the 2008 Spring runoff. 

RTK-GPS units were used to survey water surface profiles at both left and right wetted 

edges of the channel when possible (Figure 10). This analysis was performed to 

supplement the morphological change analysis from Spring 2008 to Fall 2008. The proxy 

for erosion using this approach is the deviation of a modeled water surface elevation from 

the observed elevation, from which local scour or deposition can be calculated (Figure 

11).  

In order for the analysis based on observed water surface elevations to be applied 

to erosion, I reviewed the relationship between channel height and other physical 

parameters for a given channel. I used the discharge form of the Manning equation: 

 
n

SAhQ
2/13/2

=   (1) 

where Q is discharge (m3/s), and is a function of flow area, A in (m2); average depth, h in 

(m); slope, S in (m/m); and roughness, Manning’s n, (dimensionless). By rearranging 

equation (1), h can be solved for: 
2/3

2/1 ⎥⎦
⎤

⎢⎣
⎡=

AS
Qnh  (2) 

Channel height (h in relation to a datum or WSE) can fluctuate due to changes in 

discharge, slope, roughness, and area. Based on equation 2, three potentially dynamic 

variables, n, A, and S control h. In order for changes in WSE from the modeled WSE to 

be used in analyzing the pattern of erosion the primary dynamic variable would have to 

be A. Changes in WSE in a reach where erosion of reservoir sediments is expected, and 

confinement of the channel would prevent widening, degradation would conceivably 

cause an increase in A and a lowering of WSE.  

 

HEC-RAS Modeling 

            HEC-RAS is used for 1-dimensional hydraulic modeling of natural and altered 

systems (HEC 2008).  The purpose of using HEC-RAS in this study was to evaluate the 
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elevation surveys, and therefore not used in the HEC-RAS analysis. The model river 

network represents the lower 3.8 km of the BFR.  From Arc, the model network was 

exported and brought into the HEC-RAS interface. Expansion and contraction 

coefficients were set to recommended values of 0.1 and 0.3 respectively (HEC 2008). 

The model was calibrated to measured pre-erosion WSEs at base-flow when the Spring 

2008 survey was done using n values within the range expected for gravel-bed rivers 

(Table 1). Flows ranging from 12 – 277 m3/s were routed through the network using the 

steady flow analysis tool in order to model WSE at each cross section. Downstream 

boundary conditions were set to known pre-erosion WSEs at Spring 2008 base-flow.  

To evaluate changes in channel width, HEC-RAS was used to model a 1.5 year 

return interval flow (187 m3/s) through both Spring and Fall 2008 model networks. 

Channel widening is of interest as the literature depicts widening as a common theoretical 

and observed upstream response to dam removal. 

Model 
Parameters   

Cross 
Section 

Distance Upstream of 
Milltown Dam (m)

HEC-RAS 
n

*XIII 4877
*XII 4389
*XI 4359

X 3784 0.026
IX 3367 0.03

VIII 3320 0.04
VII 3076 0.06
VI 2014 0.065
V 1554 0.02
IV 1528 0.02
III 1330 0.03
II 1260 0.02
I 935 0.035

 
Table 1. Cross sections and distances upstream of Milltown Dam. Manning’s n values 
input into HEC-RAS modeling framework. 
*Cross section upstream of water surface elevation analysis reach. 
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Date              Q (m3/s) 
3/11/2008 13 

3/17/2008 14 

3/23/2008 14 

3/29/2008 14 

3/31/2008 13 

4/1/2008 13 

4/9/2008 14 

4/12/2008 16 

5/15/2008 104 

5/20/2008 277 

6/1/2008 209 

6/12/2008 136 

6/24/2008 154 

6/27/2008 127 

7/10/2008 71 

7/20/2008 40 

9/5/2008 24 
 
Table 2. Discharges modeled through the Spring  
2008 topography from USGS Blackfoot River  
near Bonner Station (#12340000). 
 
 
Exponential Decay 

 Estimates of the temporal pattern of reservoir sediment erosion were used to test 

the applicability of an exponential decay function. Exponential decay functions are used 

to describe decay of a substance or material at a rate proportional to the initial quantity, 

based on time, and a decay constant. In the case of modeling sediment release following 

dam removal, the rate of decay of an initial quantity of reservoir sediment (or erosion) is 

hypothesized to follow an exponential decay as a function of a decay constant (α); time 

(t); and the initial volume of sediment (Vi). Analyzing the reservoir sediment erosion and 

fitting it to an exponential decay function may help address some key questions. For 

example, it is unknown what influences the decay constant (α): grain size, roughness, or 

channel geometry.  
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At any given time, t, the change in the volume of sediment (∂V/∂t) is a function of 

α, a decay constant and Vi, the initial volume of sediment such that (Qs, the flux of 

sediment out of the reach, m3/t, at a given time, t): 

           
t

is eVV
t
VQ ααα

∂
∂ −−=−==

    

The decay constant, α, can also be viewed as a sediment transport constant, as the 

decay in this case is erosion (m3). 

 

V. RESULTS 

  

In the first spring runoff following the removal of Milltown Dam, the fine 

sediment accumulated in the lower 1.8 km of the BFR was largely evacuated. The river 

incised into the coarse sediment deposit and transported gravel and cobbles to the lower 

reservoir and out of the study reach once the critical discharge was reached. In the lower 

reservoir area, gravel deposited as the BFR flushed out fines and re-established its 

channel while being supplied with coarse material. This reach developed alternating point 

bars with a series of mid channel bars (Figure 12).  

 

Sediment Surface Texture and Mobility 

 Surface sediment texture coarsened by two orders of magnitude in the lower 1.8 

km of the reservoir, and generally became finer upstream (Figure 13-17). The largest 

changes in grain size occurred in the lower reservoir, where median grain size increased 

by 10 to > 10,000 percent (Figure 16). Gravel and cobble (D50 13-60 mm) deposited after 

the silt and sand deposit was evacuated from the lower reservoir area. Furthermore, 

sediment patches sampled at ≥ 4 km upstream showed little change from Spring to Fall 

2008 (Figure 15).  

The grain mobility analysis performed in BAGS shows that the silt-sand deposit 

was mobile at virtually all discharges. The fine deposit was likely scoured out of the 

study reach well before the peak discharge on May 20. Upstream, the coarse bed was 

mobilized at discharges ranging from 32 - 369 m3/s (Figure 18). 

(3) 
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Figure 12. The lower 2 km of BFR in 2004, 2006 and 2008. The Milltown Dam 
site is located in the lower left of the image. NAIP 2004, 2006. Flow is 
from right to left. 

 

2004 Pre-Removal 

2006 Pre-Removal, 4m drawdown 

2008 Fall, Post-Removal 
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Figure 13. Mean surface textures for Spring 2008 (solid line) and Fall 
2008 (dotted line) for the fine sediment reservoir deposit in the lower 1.8 
km (XS I – V) of the study reach composed of silt and sand.  
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Figure 14. Mean surface textures for Spring 2008 (solid line) and 
Fall 2008 (dotted line) in a zone of local upstream fining (cross 
sections VII and VIII, 3.0- 3.8 km upstream of Milltown Dam). 
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Figure 15. Mean surface textures for Spring 2008 (solid line) and Fall 
2008 (dotted line) 4.4 km (XS XII)  upstream of the dam site, where 
surface texture showed little response. 
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Figure 16. Percent change in the median grain size illustrating the coarsening of 
the bed in the lower reservoir. Fining (negative values)  not depicted in this log-
scale figure. 
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Figure 17. Change in bed surface texture (D50) from Spring to Fall 2008. 
Vertical line at 1800m denotes gravel-silt/sand transition before the 2008 
spring runoff. As of Fall 2008, entire study reach is gravel-cobble. 
 

 
Figure 18. Qcrit, or discharge necessary to mobilize the Spring 2008 bed 
sediment shown by their distance from the Milltown Dam site. Fine 
sediment in the lower reservoir is mobile at all discharges, while higher 
discharges are needed upstream, where the bed consists of coarse material 
(gravel and cobble). 
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Net Morphological Change Analysis  

Although no knickpoint was observed, the comparisons of pre- and post-removal 

cross section data show that an incisional pulse extended 4.5 km upstream of the 

Milltown Dam site (and 2 km above of the upper extent of the reservoir, Figure 19, 20). It 

is possible that a knickpoint did develop, but was not detected by the methods employed 

in this study. Bed lowering was found from the lower reservoir 4.5km upstream, with the 

exception of local net aggradation at 1.5 km where a pool filled. The maximum bed 

lowering occurred at cross section VII (3 km) where a vegetated bar was eroded, the 

channel incised and the main channel thalweg migrated 80 m across the active zone 

(Figures 21, 23). Due to the confined nature of the lower BFR, minimal channel widening 

occurred based on the analysis of channel widths at a 1.5 year flood discharge. 

Alternatively, the mean change in channel width observed was narrowing by 3.1 m. 

Maximum narrowing of 16.8 m occurred at cross section VII, 3 km upstream of the dam 

site (Figure 22). The comparison of pre-erosion (Spring 2008) and Fall 2008 cross 

sectional topography reveals the net change in cross sectional area. Based on the spring 

and Fall 2008 topographic surveys, I estimated that net volumetric erosion from the 2008 

runoff was 150,000 m3.  
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Figure 19. Spring-Fall 2008 change in cross sectional area (based on repeat cross 
section surveys) shown versus distance upstream of Milltown Dam (x). Negative 
and positive changes in cross sectional area show local scour (-) and deposition 
(+). The geomorphic response extended 5 km upstream of the dam, and 2 km 
beyond the upstream limit to the reservoir. 
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Figure 20. Longitudinal profile showing Spring and Fall 2008 bed elevations based on repeat 
cross section surveys. Headward erosion extended 4.5 km upstream. 
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Figure 21. Spring 2008 (solid line) and Fall 2008 (dotted line) cross sections shown for 
Cross section VII. At this site, 3 km upstream of the dam, bed lowering of up to 2m was 
observed. The thalweg migrated 80 m across the active channel.  
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Figure 22. Distance upstream of Milltown Dam plotted against change in 
channel width from Spring to Fall 2008 at 1.5 year return interval flow 
(187 m3/s). 

 

 2008                       2008  
Spring                        Fall 



 28

 
Figure 23. Time series aerial photography of  the reach located 2 – 
3.5km upstream of Milltown Dam. NAIP 2004, 2006. Red line is cross 
section VII—downstream end of the vegetated bar that was eroded in the 
Spring 2008 runoff. Flow is from top right to bottom left. 
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∆WSE Analysis 

Figure 24 shows the spatial and temporal patterns of reservoir sediment erosion 

using the flow modeling method. The pre-erosion condition was effectively modeled and 

shown using the WSE analysis. The ∆WSE approach shows that the entire modeled 3.7 

km reach eroded at some point. It appears that both erosion and deposition happened 

concurrently at different locations in time and space. Figure 25 shows that modeled 

volumetric erosion occurred rapidly during the rising limb of the hydrograph, peaking 

close to June 11. This point of maximum modeled bed lowering occurred just after the 

peak of the 2008 hydrograph. The flow modeling approach developed to quantify 

reservoir sediment erosion throughout the 2008 hydrograph showed a similar spatial 

pattern of erosion seen in the pre-erosion (Spring) and Fall base-flow morphological 

comparison (Figure 19, 24). At the log jam complex 1.5 km upstream, the ∆WSE failed 

to capture the net aggradation, as the increase in roughness caused by the log jams was 

not modeled in HEC-RAS. The temporal pattern of erosion shows that significantly more 

erosion may have occurred than can be captured by the net volumetric change. The HEC-

RAS results indicate that the maximum erosion occurred on June 1, eleven days after the 

peak in the hydrograph, by which time a total of 260,000 m3 had been eroded from the 

lower 4.5 km of the BFR (Table 2, Figure 25). After the BFR returned to base-flow in the 

fall, the net volumetric change was 72,000 m3 as of 9/5/08 (Q= 24 m3/s). Based on the 

flow modeling approach, the peak erosion of 260,000 m3 on June 1 represents 115% - 

174% of the initial volume of reservoir sediment stored in the BFR arm of Milltown 

Reservoir (Envirocon 2005). Longitudinal profiles derived from water surface profiles 

surveyed are shown in Figure 26, for comparison with the pre-removal reservoir WSE. 
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The 8 m base level reduction is evident in the evolution of the water surface through the 

2008 hydrograph. 

 

Distance Upstream of Milltown Dam (m)

500 1000 1500 2000 2500 3000 3500 4000

D
el

ta
 W

SE
: W

SE
ob

s-
W

SE
m

od
el

 (m
)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Calibration
9/5/08, 24.1
7/10/08, 70.8
6/27/08, 127.4
6/1/08, 209.3
5/20/08, 277.2
5/15/08, 103.9

gravel/cobblesilt/sand

A

B
C

D

E

F

Date, Q (m3/s)

F
E
D
C
B
A

 
 
 
 

 
 
 

 
 

 
 
 

 

Figure 24.  ∆WSE curves throughout the hydrograph 
plotted against distance upstream. The bold dashed 
calibration line shows WSEmodel fits the WSEobs at 
Spring 2008 baseflow. A, the gray dash-dotted line, is 
the earliest date and associated discharge modeled. F, 
the solid black line, is the latest discharge modeled, 
from 9/5/08. Note the vertical line representing the 
gravel-sand transition in the Spring of 2008. 
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Figure 25. Mean ΔWSE, 2008 hydrograph and volumetric erosion through the 
hydrograph. Solid points show increasing erosion, and white points show 
sediment deposition during the falling limb of the hydrograph.  
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Figure 26. Water surface profiles throughout the 2008 hydrograph shown with the 2003 
reservoir water surface. Dates for water surface profiles surveyed in 2008 listed with 
discharge (m3/s). 
 
 
 
Exponential Decay 

The exponential decay hypothesis was tested by fitting two exponential decay 

functions to match volumetric erosion estimates. Decay curves that fit ∆WSE and net 

morphological change analysis erosion estimates had α values of 0.06 and 0.0058 

respectively (Figure 27). First, to show the peak erosion of 260,000 m3 as of June 11, 

2008, an exponential decay curve was fit to the modeled data (before deposition 

occurred) using an α value of 0.06. This is a rapid rate of decay in comparison to the 

more gradual erosion shown by the curve fitted to the net morphological change of 

150,000 m3. Fitting the decay functions to these data shows a range of predictions for the 

full evacuation of the stored reservoir sediment in the BFR: 2 - 17 months. 
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Figure 27. Exponential decay functions fit through the ∆WSE  and net 
morphological change estimates of volumetric erosion. The pattern of erosion in 
the time period examined does not appear to exponential. However, subsequent 
years may prove that erosion may show an exponential decay pattern. 

 
Decay 
Constant 

% Eroded (t, days) 
 

α 50% 95% 
0.0059 118 518

0.06 12 65
 

Table 3. Estimated time (t, days) for the reservoir sediment  
deposit to decay using three different values for α, ranging  
from < 3 months  to several years. 
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VI. SENSITIVITY ANALYSIS 

 

 In order to evaluate the appropriateness of using a ΔWSE analysis to detect local 

scour or aggradation, a sensitivity analysis was performed to evaluate the potential 

contribution of changes in Manning’s n and S (slope) to the ΔWSE calculations. The 

main purpose of the sensitivity test was to determine how much of ΔWSE could be 

accounted for by changes in S and n without eroding or depositing sediment to drive 

changes in cross sectional area (A). For assessing the sensitivity of WSE to slope, repeat 

calculations were performed using equation (2), holding all other variables fixed. To test 

WSE sensitivity to roughness, repeat runs of the Steady Flow Analysis in HEC-RAS was 

done. The parameters S and n were incrementally varied from 2%-100%, and the 

resulting change in h was calculated as a percentage of ΔWSE for a given cross section. 

The sensitivity analysis shows that WSE is not sensitive to changes in roughness, 

and slightly more sensitive to changes in slope. A doubling of slope contributed 20% 

ΔWSE for most stations evaluated, and up to 50% for only a few (Figure 28). Doubling n 

could only account for a maximum of ~10% ΔWSE. Although the sensitivity test results 

illustrate the complexity of using WSE changes to assess bed sediment dynamics, they 

indicate that changes in S and n cannot solely explain the fluctuations in WSE. 

As changes in roughness is shown to have a minimal effect on the WSE analysis 

results, the potential dilution of the results by changes in slope were computed at two 

discharges (24 and 127 m3/s) in order to express the accuracy of the ΔWSE. Figure 29 

illustrates the potential contribution of a 100% increase in slope to the ΔWSE analysis. 

Generally, a doubling of slope could only explain a fraction of the total deviation 
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between observed and modeled WSE.  However, at cross section IV, a 100% increase in 

slope actually overwhelms the effect. Repeat topographic surveys showed that the 

channel aggraded at cross section IV.  

 
 

 
Figure 28. Sensitivity 
analysis of h to changes 
in A. Slope, and B. 
Manning’s n. A 100% 
increase in Manning’s n 
could account for ~10% 
of ΔWSE, while a 25% 
change in slope may 
account for 20% of 
ΔWSE. 
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Figure 29. ΔWSE with sensitivity analysis results incorporated for (A) 6/27/08 (Q 
= 127 m3/s) and (B) 9/5/08 (Q = 24 m3/s). The potential maximum dilutive effects 
of a 100% change in slope is illustrated by these two ΔWSE analyses. The black 
area represents the proportion of ΔWSE that can be explained by a 100% change 
in slope. The black and grey areas added together represent the total ΔWSE. 
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VII. DISCUSSION 

Net Morphological Change vs. WSE Analysis 

  The ΔWSE and flow modeling approach to tracking the process of reservoir 

sediment erosion through the 2008 hydrograph generated a similar pattern to that 

observed in the morphological comparison derived from spring and fall topographic 

surveys. The modeling approach reveals more information about how much erosion may 

have happened between the spring and fall topographic survey dates. Headward erosion 

lowered the bed and was followed by aggradation during the falling limb of the 

hydrograph. The final base-flow erosion estimate from the modeling approach under-

predicts volumetric erosion in comparison with the estimate derived from the topographic 

surveys (72,000 m3 vs. 150,000 m3). Quantifying changes in fluvial bedforms from 

observed water surface elevations is somewhat of a simplification of complex interacting 

variables (n, S, A). Furthermore, it is possible that the modeling-based approach behaves 

differently at different points in the hydrograph. During the Spring 2008 flood peak (286 

m3/s on 5/21/2008), the ΔWSE analysis could lead to over-prediction of volumetric 

erosion, while at low discharge (i.e. 24 m3/s on 9/5/08) the volumetric erosion may be 

under-predicted. Perhaps the resulting temporal analysis should be used more as a range 

in volumetric erosion, rather than a single estimate. Furthermore, the sensitivity analysis 

results show that where ΔWSE is small or near zero, a doubling in slope overwhelms any 

signal that can be extracted from the WSE analysis. The above average discharge and 

significant erosion throughout the reach made changes in cross sectional area the largest 

driver of ΔWSE. 
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Furthermore, the WSE method may have missed some of the erosion in the lower 

reservoir due to the potential rapid changes in slope and roughness in the fine sediment 

reservoir deposit. The calculated changes in cross sectional area can only be estimates in 

cases where the WSEobs was lower than the original minimum bed surface. Computing 

∆A for such cases becomes more of a low-bound estimate rather than an exact 

calculation. This is a potential explanation for the deviation between the Fall 2008 base-

flow volumetric erosion estimate (based on WSE) and the calculation from repeat cross 

section surveys, 72,000 and 150,000 m3 respectively. The model-based calculation 

represents a lower bound, as the ∆WSE may represents other geomorphological changes 

in addition to a potential increase of cross sectional area (scour). 

 The volumetric erosion estimates based on the net morphological change and the 

ΔWSE approach are consistent with those derived from observed bedload measurements. 

Bedload was sampled at the bottom of the study reach on two days before the peak (5/17, 

5/18/2008) and two after the peak (5/26, 5/27/2008). Transport rates ranged from 41 – 

1500 m3/day. A rating curve based on the bedload samples taken during the 2008 

hydrograph suggest evacuation of 150,000 to 300,000 m3 using bedload : washload ratios 

of 1:5 and 1:10 respectively (Johnsen 2009). 

  The total volumetric change calculated through the hydrograph reaches its peak 

during the falling limb (Figure 25). This is consistent with hysteresis found in sediment 

transport, where transport rates are higher on the falling limb due to a lag time in the 

creation and destruction of bed roughness elements (Figure 30, Lee et al 2004, Kuhnle 

2006). Hysteresis seen in the BFR is likely due to the time taken for material eroded from 

the coarse sediment deposit to transport out of the reach. The maximum volumetric 
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change, as seen on June 1 (Figure 25), would only reflect the evacuation of the coarse 

material once it was flushed out of the study reach. 

 
 
Figure 30. Hysteresis seen in 
volumetric erosion plotted 
against discharge (Q). This 
finding is consistent with 
sediment transport studies 
documenting similar patterns of 
hysteresis in sediment transport 
(Kuhnle 2006). 
 
 
 
 
 
 
 
 

 
Erosion Predictions vs. Observations 

During the Milltown Superfund Remediation initial stages, a subcontracted 

engineering firm modeled erosion using HEC-6 (USACE 1993). Although HEC-6 is a 1-

dimensional modeling framework which cannot model channel widening, it likely was an 

appropriate model for application to the confined lower BFR where the potential for 

channel widening is small. In feasibility studies, the reservoir deposit was estimated to be 

150,000 - 229,000 m3. A variety of bed and flow conditions were run in HEC-6 which 

produced a range of sediment transport estimates using the Ackers-White equation 

(Ackers and White 1974). The HEC-6 results were used to make predictions of total 

sediment transport over a four-year period, starting with the initial reservoir draw-down 

through the full removal of Milltown Dam. The peak erosion derived from the WSE 

analysis exceeds the range predicted by pre-dam removal studies done for Milltown. The 

260,000 m3 of erosion I estimated from the period of March – September 2008 accounts 
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for 115% to 140% of the total HEC-6 erosion predicted to occur over a period of 4 years 

following the dam removal (Envirocon 2004). 

 

Sediment: Texture and Mobility 

Upstream, fining occurred in three out of four sites sampled. At cross section VII, 

this can be explained by the erosion of a high vegetated bar, reducing the variation in bed 

elevation (see Figure 22). Coarsening was expected at cross sections I and II resulting 

from incision however fining was observed. This may be because the patches re-sampled 

may not best represent the new cross section morphologies at these sites. Furthermore, it 

is important to consider how much the above average peak discharge—flood peak return 

interval of 3.5 years—may have contributed to the sediment transport versus the dam 

removal. It has been shown that because of the unique geomorphic context of dam 

removal and headward erosion, high rates of transport can occur at moderate discharge 

(Major et al. 2008). However, when discharge is high (∼ bankfull discharge, Q > 1.5 – 2 

year return interval) does more erosion occur, or just more sediment delivered from 

upstream? 

Grain mobility assessed using the Wilcock and Crowe model in BAGS show that 

bed sediment in the upper reservoir was not likely mobilized below (< 100 m3/s, Figure 

18). Alternatively, the fine material in the lower reservoir was mobile at all discharges 

which indicates that much of the sand and silt deposit likely was transported early in the 

2008 hydrograph. This would suggest that during the rising limb of the hydrograph, 

below 100 m3/s, large particles were not mobilized and supplied to the lower reservoir 

area. Conceptually, as larger particles are delivered to the lower reservoir, changes in 
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local shear stress (in this generally less steep reach) could cause such particles to fall out 

of transport and armor the fine bed. It is likely that the time lag between incipient motion 

of coarse material, and it’s eventual delivery to the lover 1.8 km of the reservoir, would 

have been large enough to allow for even more time for erosion of the fine sediment 

deposit. 

 

Exponential Decay 

Although the pattern of erosion observed in the BFR did not follow an 

exponential decay, testing the applicability of exponential decay to reservoir sediment 

erosion revealed some interesting questions and limitations. How should an exponential 

decay function (which by nature is decaying an initial volume) be used to model a 

complex process that involves both erosion and deposition? Ignoring sediment 

deposition, we could say that 95% of the reservoir deposit had been eroded 65 days 

following the dam removal (Table 3, Figure 26). However, this overlooks the complexity 

of a longer-term adjustment and erosion of coarse sediment from the upper reservoir, and 

from upstream reaches as headward erosion progresses. Should an exponential decay 

model be used to describe total export of sediment, or to approximate volumetric changes 

(i.e. erosion and deposition)? I did not contemplate how deposition would confuse the 

erosion signal and more generally how deposition of sediment is a process that cannot be 

predicted by a mathematical function that only decays (erodes). As shown in the 

HEC/WSE analysis results, deposition during the falling limb of the hydrograph strongly 

influenced the signal. Deposition of sediment in the study reach will be an integral part of 

the upstream response as the BFR nears a new equilibrium state. 
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 My observations of the erosion in the BFR are limited to one spring runoff cycle. 

This is both a challenge within the year, and in a multi-year time frame. Erosion is not 

occurring during the greater part of a given year. Although it is possible that an 

exponential decay may summarize erosion over one year, it will show that erosion 

continues to happen when, in reality, discharge is not sufficient to mobilize bed sediment. 

This alone may indicate that exponential decay is inappropriate for this application. 

Tracking the erosion over a longer period of time (i.e. 2 - 5 years) may ultimately follow 

an exponential decay. However, the data showing erosion and deposition dynamics from 

Spring – Fall 2008 do not show a pattern of exponential decay.  

 

Widening vs. Erosional Narrowing 

It appears that in a confined channel, bed degradation may lead to channel 

narrowing, while zones of aggradation can drive widening. In the BFR, local degradation 

was observed to further entrench the channel, causing the width to decrease (evaluated at 

a 1.5 year flood discharge). The location of maximum bed degradation corresponds with 

maximum channel narrowing (cross section VII , 3 km upstream). The absence of 

widening in the analysis of channel width pre- and post-removal at a 1.5 year flood 

should be treated differently than widening as a mechanism of reservoir sediment 

erosion. I observed failing vertical or near-vertical, unconsolidated banks on the rising 

limb of the 2008 hydrograph (Figure 28). Widening certainly acted as a mechanism to 

erode reservoir sediment, as noted in other studies (see Figure 17, Doyle et al. 2003, 

Cantelli et al. 2004, Evans et al. 2007). Although the analysis of channel widths at a 1.5 

year return interval (RI) did not show that significant widening had occurred in the study 
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reach, the observations in the BFR do support the Doyle et al. 2003 proposed conceptual 

model for channel evolution following dam removal. Although the confined nature of the 

BFR set a boundary on potential lateral response, widening was one of the processes 

observed to evacuate reservoir sediment.  

Furthermore, channel narrowing seen in locations with the greatest degree of bed 

lowering may support the Cantelli flume experiment results. As the data collected in this 

study do not match the spatial and temporal resolution of the collected in a flume 

environment, it is impossible to verify whether the accompanying numerical model is a 

good fit for the response of the BFR (Cantelli et al. 2007).  

 

Knickpoint 

Although no knickpoint was detected, it is clear that a pulse of erosion migrated 

upstream through the two distinct reservoir deposits. It is possible that two different and 

concurrent knickpoints may have formed at the downstream end of the two reservoir 

deposits and met as the lower knickpoint reached the upper. At the time of the dam 

breaching in March of 2008, a knickpoint was observed moving through the coffer dam 

and upstream to the confluence of the BFR and CFR. It is difficult to say exactly what 

happened when it hit the split of the two channels. The CFR side of the confluence led to 

a rip-rap bypass channel with an immobile bed. If a knickpoint did continue up the BFR, 

then it would have immediately run into a series of highway, railroad, and pedestrian 

bridges. These structures could have dissipated a knickpoint. The data do not show the 

existence of a knickpoint moving through either sediment deposit.  



 

It is u

(see F

which

have 

could

analy

 
Figure
large m
progre
vertica
to the 

unclear whic

Figure 3). G

h stabilized 

moved throu

d have march

ysis may be p

e 31. Repeat ph
mid channel ba
ession of 5/3/08
al bank (indica
channel for do

ch of the four

iven the pres

certain parts

ugh the reac

hed upstream

possible to e

hotography at t
ar formed in th
8 to 5/20/08 sh

ated by the red 
ownstream tran

r knickpoint

sence of coa

s of the bed, 

ch. It is possi

m, stopping 4

explore this p

the Stimson Da
he 2006-2008 p
hows how the c
oval) made of 

nsport. 

ts may have 

arse material

it is unlikely

ible that a ro

4.5 km upstr

possibility. 

am site (2 km u
period, and erod
channel widene
f unconsolidate

been presen

l and abando

y that a stepp

otating knick

ream of the d

upstream of Mi
ded in the 2008
ed through th e
d coarse mater

nt, if at all, in

oned bridge p

ped knickpo

kpoint with d

dam. Further

illtown dam), w
8 runoff peak. 
e mid-channel b
rial contributed

4

n the BFR 

piers 

int could 

diffusion 

r data 

 

where a 
The 
bar. The 
d sediment 

44



 45

Monitoring and Future Restoration 

Tracking the adjustment of the BFR to the new base level condition should be a 

multi-year endeavor. The BFR will continue to be in a transient state over several years 

until it reaches a new equilibrium. Perhaps the most dramatic period of response will be 

the Fall 2008 - Fall 2009 period depending on the size of the spring flood peak. During 

the Fall of 2008, contractors hired by the Montana Department of Natural Resource 

Conservation removed individual logs and several old bridge piers. These objects had 

partitioned shear stress away from grains on the bed. As these elements of roughness are 

removed from the channel, more shear stress will act upon the bed sediments allowing 

the river to more efficiently transport sediment downstream. 

 The lower BFR is a naturally and anthropogenically constrained channel. 

Following the removal of Milltown Dam and the subsequent erosion of reservoir 

sediment, the bed has lowered and the river is entrenched to a greater degree. From a 

flood management perspective, this is a good thing as the possibility for a large spring 

runoff to overflow the banks and affect adjacent property is very low. However, longer-

term restoration of the lower portion of the watershed could include giving back some 

adjacent property to the river corridor. The most dramatically altered section is adjacent 

to the Stimson Lumber Mill property where the channel has been pushed against a 

bedrock and scree slope by a steep rip-rap bank. This is also the location of 

polychlorinated biphenyl (PCB) contamination on the industrial property. After the 

remediation of the contaminated site, giving back some of the Stimson property to the 

river corridor would continue river restoration efforts started by the removal of Milltown 

Dam. The lower BFR is comprised of a sequence of riffles and pools. The 500 m stretch 
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along the Stimson property is a narrow, high velocity section that is an anomaly in 

comparison to less impacted adjacent reaches. The bankfull channel width in the 

narrowed reach is ∼18 to 30 m, compared to ∼30 to 105 m in the 2km reach upstream. 

Furthermore, in the lower 1.8 km, vertical banks from 0.5 to 3 m tall remain on the 

northwest side of the channel. These banks could be viewed as a hazard to recreational 

users of the river. It is possible that some active management or restoration of those 

banks could be appropriate including bank setbacks and re-vegetation. 

 

2006 Reservoir Drawdown and the Stimson Dam Removal 

The upstream response of the BFR to the removal of Milltown Dam began before 

the March 2008 breach. The removal of Stimson Dam in 2005 followed by the 2006 3.4 

m reservoir drawdown created the conditions to initiate the upstream response and the 

erosion of coarse reservoir sediment. As approximately 2 km of the BFR was still a part 

of Milltown reservoir from 2006 -March 2008, the fine sediment deposit remained intact 

in the reservoir reach. Although the BFR did begin its adjustment before I collected any 

data, I feel that my field efforts from Spring – Fall 2008 captured the majority of the 

response as the majority of the sediment remained in the study reach until after March 

2008 with the additional 4.6 base level reduction (8 m total base level change 

from 2006 –March 2008). Any coarse sediment mobilized from the upper end of the 

reservoir (the portion of the river that began flowing after the 2006 drawdown) before 

2008 could not have been transported below ∼2 km above the dam. A 13 m deep scour 

hole below the Stimson Dam was filled with gravel and cobbles during the 2005-2008 

period, as evidenced by field observations and comparisons with bathymetry data from 
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2003 (Envirocon 2004). It is possible that some incision into the reservoir sediment 

occurred, however monitoring of the BFR during this time period was not performed by 

Milltown contractors or others. The majority of sediment mobilized from the study reach 

during the 2005-2008 period can be viewed as a transfer within the reach. 

 

Challenges 

The analysis of erosion through the hydrograph was complicated by the challenge 

presented by surveying river bed topography at moderate-to-high discharges in medium-

sized alluvial systems. Typical survey techniques are limited to flows at which cross 

sections can be waded or measured using a static line from which a small boat can be 

fixed. Boat based surveying techniques typically employed in large river systems were 

not well suited to the BFR. Without the installation of fixed cableways (such as at USGS 

gauging stations), other infrastructure, or specialized equipment, surveying at high flows 

is not possible. Furthermore, river hazards created by several thousand logs and other 

debris (mill saw blades, metal debris, bridge piers, and a submerged vehicle) made using 

motorized boat surveying techniques impractical at high discharges. Given such 

restrictions to surveying at high flows, only topographic data collected at base-flow 

conditions was available for analyzing the upstream response. 

 

Comparison to other Dam Removals 

In relation to recent dam removals documented by various investigators, the 

sediment release from the BFR following the removal of Milltown Dam presents a 

distinct case study.  My results show that a large proportion of the reservoir sediment that 
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accumulated in the lower BFR was evacuated in the first 5 months following the removal 

of Milltown Dam. Depending on the variety of estimates for both the amount of sediment 

stored, and my erosion estimates, 75% - 175% of the reservoir deposit eroded during the 

5 month time frame of this study. Given that the BFR is still several years away from 

reaching a new equilibrium and will likely evacuate a significant volume of sediment 

during the 2009 Spring runoff period, the total volumetric export may greatly exceed the 

initial reservoir sediment deposit size.  

Compared to published studies of dam removals in recent years, this represents 

one of the more rapid rates (if not the most rapid rate) of reservoir sediment flushing 

(Table 4, Figure 33). The studies summarized in Table 3 reported 4 – 14% of reservoir 

sediment flushed following the removal of dams from low gradient, fine sediment 

systems, with the exception of Marmot Dam which flushed a larger proportion of the 

coarse reservoir deposit (43% in 3 months). This comparison is not exhaustive given the 

variety of physiographic settings each dam removal was performed within. In order to 

enhance this comparison, it would be useful to explicitly account for discharge, grain 

size, slope, the initial volume of sediment at the time of dam removal, and the 

morphology of the reservoir sediment deposit at each of these dam removals.  

Marmot Dam The removal of Marmot Dam from the Sandy River, OR, presents 

the most appropriate comparison given the similarity of the two systems: confined gravel-

bed rivers. As described earlier, 100,000 m3 of reservoir sediment was eroded following 

the breaching of Marmot Dam in 48 hours at moderate discharge (Q ∼ 50 m3/s, which is 

30% above the mean annual flow of 38 m3/s). A comparable discharge on the BFR would 

be 57 m3/s (mean annual flow is 44 m3/s). Peak discharge of 287 m3/s was reached on 
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May 21, 2008, exposing the reservoir sediments to much higher discharge in comparison 

to the 48 hour period following the Marmot Dam removal.  

The hydrology of the Sandy and BFR differ significantly. The Sandy’s 

hydrograph is determined by large rain events and snowmelt from the Cascades. The 

Sandy River near Marmot, Oregon (USGS station # 14137000) typically shows a flashy 

pattern from Fall through June or July, spiking with rain events throughout that time. 

Peak discharge may occur in Fall, Winter or Spring due to the influence of both rain 

events and snowmelt. Alternatively, the BFR is a typical snowmelt driven river system 

with peak discharge typically occurring in May or June. 

Two primary factors differentiate the conditions and response on the Sandy and 

Blackfoot Rivers: channel slope and the morphology of the reservoir sediment deposit. 

The Sandy River at Marmot Dam is a high gradient, confined channel (slope 0.06 - 0.09) 

and the sediment deposit extended up to the dam itself (Figure 32). Alternately, the lower 

BFR near Milltown Dam had a lower gradient (slope = 0.001-0.005) and an elongated 

reservoir sediment deposit with spatially distinct zones of fine and coarse sediment (see 

Figure 8). The less compact sediment deposit and the lower slope in the BFR made the 

response more dependent on high flows, whereas results from the Marmot Dam removal 

show that moderate discharge mobilized a large volume of sediment. The grain mobility 

analysis for the BFR shows that much of the coarse sediment would not have been 

mobile at 57 m3/s, which is equivalent to the 30% of mean annual discharge that eroded 

15% of the Marmot Dam sediment in only 48 hours. Furthermore, a knickpoint 

developed at the Marmot coffer dam site moved 500 meters upstream in the first 48 hours 

(Major et al. 2008). The morphology of the sand and gravel deposit included a steep 
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Dam  River  Drainage 
Area (km2) 

Dam 
Height (m) 

Reservoir 
Sediment  

Reservoir 
Sediment 
Storage (m3) 

Sediment 
Evacuated 
(m3/time) 

Slope 
(m/m) 

Observed Upstream Response  Knickpoint 

1Rockdale 
Dam 

Koshkonong 
(WI)  360  3.3  silt‐sand  287,000 

40,000  
m3/ 

∼8 months  0.0007  Headcutting  YES 

1LaValle Dam  Baraboo (WI)  575  2  silt‐sand  140,100 

10,200 m3/ 
∼1 month 

0.0005 
Incision into reservoir deposit, bed 
lowering   NO 

2St. Johns 
Dam 

Sandusky 
(OH)  3637  2.2 

Sand‐
gravel  200,000  N/A  .0001 

Decrease in slope after sand filled 
pools, zones of erosion and deposition 
upstream of dam   NO 

3Saeltzer Dam 
Clear Creek 
(CA)  720  4.6 

Gravel‐
cobble  N/A  N/A  N/A  Incision, lateral erosion  NO 

4IVEX Dam   Chagrin (OH)  692  7.4 
Fine 
sediment  236,000 

23,700‐31,300  
m3/ 2 months 

N/A 
Incision, widening, Modified Doyle 
2003 CEM  YES 

5Marmot Dam  Sandy (OR)  1300  14 
sand‐
gravel  730,000 

100,000 
m3/48 hrs, 

300,000 m3/ 
3 months 

0.006 ‐ 
0.009 

Headward and lateral erosion, bank 
failures, widening through reservoir 
deposit,  
Q ∼50 m3/s  YES 

6,7Miltown 
Dam (CFR) 

Clark Fork 
River  9430  20  Silt‐sand 

> 
5,000,0

00 

180,000 
5 months 

0.0012 
– 

0.0028 

Widening, channel migration across 
historic floodplain, headward erosion 
2.6 – 2.8 km upstream of the dam site  NO 

Milltown Dam 
(BFR)*  

Blackfoot 
(MT)  5931  20 

silt‐sand, 
gravel‐
cobble 

175,000 ‐ 
229,000 

150,000 ‐
260,000 m3/ 
5 months, 

 
0.0012 
‐ 0.005 

Narrowing, headward erosion 4.5 km 
upstream of the dam in first 5 months, 
3.5 year RI peak (287 m3/s)  NO 

*Excluding sediments accumulated in the Clark Fork Arm of Milltown Reservoir 
 
Table 4. Review of detailed dam removal studies from around the U.S. Adapted from 1Doyle et al. 2003, 2Cheng and Granata 2007, 3Ferry and Miller 2003, 
4Evans 2007, 5Major et al. 2008, 6Wilcox et al. 2008, 7Brinkerhoff 2009 . IVEX was a dam failure that has been compared to “blow and go” dam removal. 
NOTE: although a knickpoint developed in the coffer dam at the time of the breaching of Milltown Dam, it is unclear what happened to it as it moved upstream 
and reached the complex of bridges in the lower BFR, and the entrance to the rip-rap bypass channel in the Clark Fork River.  
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Clark Fork Arm of Milltown Dam Intensive management of the contaminated 

sediments in the Clark Fork arm of Milltown reservoir prevented the CFR from 

responding naturally to the base level lowering. However, there are differences between 

the BFR and CFR that warrant some exploration and comparison of how each of these 

two rivers have responded. Unlike the confined BFR, the CFR is a broad, complex 

floodplain reach. Based on historical documents and hand-drawn maps, it has been shown 

that the ∼5 km reach immediately upstream of Milltown Dam had a complex multiple 

channel plan-form with islands and bars (Woelfle-Erskine 2008). Furthermore, the 

reservoir sediment in the CFR is largely composed of the fine sediment that originated 

upstream and filled the reservoir following the 1908 flood. 

In the months leading up to the breach of Milltown Dam, the CFR was diverted 

into a rip-rap bypass channel to keep the channel away from ongoing mechanical removal 

of contaminated sediments. Although much of the contaminated sediments in the CFR 

were protected by immobile banks and grade control, 180,000 m3 of contaminated 

sediment was eroded from the upper portion of the reservoir as the channel migrated 

across the broad floodplain (Wilcox et al. 2008). Field observations show that some 

banks migrated more than 200 m in the first spring runoff following the dam removal. 

The unconfined alluvial valley that the CFR occupies illustrates how rivers will adjust 

their plan-form via channel migration given a new base level condition. Alternatively, in 

systems like the BFR or the Sandy River, the confinement of the channel forces the 

primary modes of adjustment to be slope and grain size. 

The 180,000 m3 that eroded in 2008 is a small proportion of the total reservoir 

sediment stored in the CFR (3-4 %). Due to the contamination of the CFR sediments, 
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approximately one-third of the > 5,000,000 m3 of reservoir sediment was mechanically 

excavated and was not available for river erosion. It is also possible that the wide alluvial 

valley setting would contribute to a slower rate (in comparison to the BFR) of reservoir 

sediment evacuation upstream of a removed dam. If a channel is unconfined and able to 

migrate, the migration rate of the channel would determine the rate at which the reservoir 

sediment would be eroded.  

 

Implications for Other Systems 

 The results of this study should be considered in the context of the following 

controls on the upstream response: 

• Slope (S)  
• Discharge following the dam breach (Q)  
• Grain size (D)  
• Roughness (n) 
• Initial volume of sediment (Vo) 
• Confinement of the channel  
• Morphology of the reservoir sediment deposit  

 

Perhaps the most efficient way to encourage the evacuation of sediment behind a dam is 

to do so in a confined channel with sufficient slope and discharge. The comparison of the 

Marmot and Milltown Dam removals illustrates that a compact sediment deposit in a 

steeper channel required only moderate flows to flush sediment quickly. The shape of the 

sediment deposit was critical for providing the conditions to propagate a knickpoint 

upstream and evacuate sediment rapidly. Alternatively, the spread-out reservoir sediment 

deposit in the BFR lacked the steep slope and likely did not result in a headward 

migrating knickpoint. However, the BFR had sufficient discharge to achieve a rapid rate 

of reservoir sediment evacuation. 
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Roughness was a strongly interacting variable in controlling the geomorphic 

response of the BFR to the removal of Milltown Dam. In the lower reservoir, channel 

morphology, deposition, and surface texture response were strongly linked to the 

roughness (shear stress partitioning) caused by log jams that organized in the lower 

reservoir (Figure 31). The roughness in the channel is thought to have slowed the 

downstream transport of reservoir sediment f rom the lower reservoir area and increased 

habitat heterogeneity in the newly reclaimed BFR. The integration of natural or 

constructed logjams in an evolving reservoir after a dam removal could provide a useful 

tool to manage the ensuing sediment pulse, foster channel complexity, and increase 

habitat heterogeneity for aquatic organisms. 

 

 
 

Figure 34. Lower BFR flowing for the first time since 1907 conversion to reservoir. Distinct sediment and 
vegetation banding shows phased reduction in base level, starting in 2006, and recently completed by the 
coffer dam breaching on March 28, 2008 (Photo taken  4/8/2008) 

 



 55

VIII. CONCLUSION 

 

The observations and processes described in this study may be useful in other 

dam removals and human induced or natural reductions of base level in river systems. 

Observed water surface elevations can be used to approximate the erosion and elucidate 

patterns (spatial, temporal) through a known pre-disturbance topography. However, a 

more robust integration of changes in slope and roughness could help improve a flow 

modeling approach’s ability to provide specific estimates in place of what I consider to be 

a range of estimates produced in this study. Furthermore, it appears that in a confined 

mountain channel, headward migrating erosion may drive channel narrowing, where bed 

lowering further entrenches the channel into the confined active zone. Narrowing was 

most pronounced at cross sections with the largest magnitude of incision or bed lowering. 

Alternatively, local sediment deposition may be a mechanism causing some widening in 

such systems. 

In summary, following the removal of Milltown Dam, I observed the following 

response of the Blackfoot River: 

• Headward erosion extended 4.5 km upstream of the dam site in the first 5 months 
following the removal of Milltown Dam. 

 
• A large proportion of BFR reservoir sediment was evacuated in the first 5 months (a 

range of 75%-175% of estimated reservoir sediment deposit).  
 
• ∆WSE analysis show that entire initial volume of reservoir sediment (Vo) eroded in the 

first 100 days following the dam breach. 
 
• Response was influenced by confinement of the channel, shear stress partitioning by 

LWD, and above-average discharge (287 m3/s, 3.5 year RI). 
 
• The flow modeling WSE analysis seems to be a reasonable approach and provided 

insight into the pattern of erosion through the 2008 hydrograph. 
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Future Directions 

A quantitative assessment of the effects of large woody debris on the BFR would 

help develop the important role of roughness in the geomorphic response. This could be 

done using the high resolution air photos acquired in the Fall of 2008, in combination 

with some existing methods to account for flow resistance from wood in channels 

(Wilcox et al. 2006). Furthermore, some of the water surface profile data could be further 

explored in an attempt to locate a knickpoint signal. Also, because the channel will likely 

continue adjusting over the next few years, repeating cross section surveys and 

acquisition of aerial photography will help show how BFR continues to evolve and reach 

a new state of equilibrium. Furthermore, acoustic backscatter or Laser In-Situ Scattering 

and Transmissometery sensors could be installed to measure suspended sediment exiting 

the lower BFR (Gray et al. 2003), for comparison with data sets from the USGS gauging 

station upstream (1234000), and the station downstream on the CFR (12340500). 
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APPENDIX II: GPS DATA 
 
Cross Section Endpoints 
 

XS 

LEFT,  
RIGHT 
BANK NORTHING (m) EASTING (m) ELEVATION (m) 

I LB 5195178.190 280412.059 996.528 
 RB 5195089.003 280428.991 993.973 
II LB 5195220.775 280739.838 997.488 
 RB 5195134.691 280745.823 993.728 
III LB 5195212.319 280809.260 993.038 
 RB 5195132.641 280817.565 994.004 
IV LB 5195239.652 280998.052 998.257 
 RB 5195149.244 281018.633 994.240 
V LB 5195241.480 281016.129 996.419 
 RB 5195155.819 281046.419 992.313 
VI LB 5195437.388 281406.577 997.563 
 RB 5195374.575 281451.592 992.636 
VII LB 5195415.850 282378.782 1000.150 
 RB 5195330.015 282504.381 997.364 
VIII LB 5195609.324 282473.540 1001.366 
 RB 5195575.822 282570.991 996.487 
IX LB 5195657.152 282498.946 1001.888 
 RB 5195615.008 282590.356 996.058 
X LB 5196008.978 282755.632 998.610 
 RB 5195911.458 282789.424 1001.142 
XII LB 5196381.472 283202.879 1004.966 
 RB 5196270.827 283193.439 998.336 
XIII LB 5196379.322 283232.525 1001.861 
 RB 5196271.265 283224.812 1001.244 
XIV LB 5196565.467 283526.208 1004.525 
 RB 5196517.933 283663.921 1006.835 

 
All data are in UTM 12 North, North American Datum 1983, using the GEOID Model 
2003. 
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Sediment Sampling Locations 
 

XS NORTHING (m) EASTING (m) ELEVATION (m) NOTES 
XIII 5196535.959 283560.075 996.052 pc 
XII 5196308.905 283227.209 994.195 pc 
XI 5196289.973 283178.348 994.703 pc 
X 5195940.170 282774.567 994.076 pc 

IX 5195652.475 282564.543 992.465 pc 
XIII 5195588.640 282540.567 992.068 pc 
XII 5195316.176 282437.679 991.540 pc 
XI 5195393.505 281384.146  pc 

V.A 5195207.180 281067.338 999.360 pc 
V.B 5195196.594 281081.780 999.378 pc 

V 5195207.481 281032.549  sc 
IV 5195198.906 281006.162  sc 
III 5195193.115 280808.284 986.894 sc10 
II 5195170.450 280744.040 986.712 sc7 
II 5195181.237 280743.167 986.643 sc8 
II 5195199.788 280743.287 987.041 sc9 
I 5195161.152 280415.343 986.434 sc1 
I 5195160.886 280414.741 986.561 sc2 
I 5195161.078 280413.844 986.569 sc3 

 
 
All data are in UTM 12 North, North American Datum 1983, using the GEOID Model 
2003. SC = soil core, PC = pebble count. 
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Appendix III: Exponential Decay Derivation 
 
 
Qs  flux of sediment out of the reservoir reach, m3 /day 
Vo  initial volume of sediment, m3 
α  decay constant, dimensionless 
t, time, days 
 
 

V
t
V α∂

−=
∂                    (3) 

 
Rearranging equation 3: 

t
V
V

∂−= α∂
                   (4) 

 
 
And taking the natural logarithm of V we show that 

ctV +−= αln         (5) 
 

cteetV α−=)(         (6)        
 
At time zero,  

  
c

o eVV ==               (7) 
 
Therefore, 

t
os eVV

t
VQ ααα

∂
∂ −−=−==     (8) 

 


