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Storrar, Keenan A. T., M. S. Spring 2013    Resource Conservation 
 
 
Effectiveness of Straw Bale Check Dams at Reducing Post-Fire Sediment Yields from 
Ephemeral Channel Catchments 
 
Chairperson: Dr. Peter R. Robichaud 
 
  Increased sedimentation caused by post-fire flooding is a risk to people, homes, and buildings.  
The USDA Forest Service installs straw bale check dams in ephemeral channels to reduce 
sedimentation rates from small catchments.  We set out to study if straw bale check dams 
effectively reduce sedimentation rates from five paired catchments following the 2010 Twitchell 
Canyon Fire in south central Utah.  Each pair consisted of two adjacent catchments that had 
similar physical characteristics and areas, with catchment areas ranging from ~0.2 to 1.6 ha (~0.5 
to 4.0 ac).  For each pair we treated one catchment with four straw bale check dams per ha (two 
per ac) and left the other catchment untreated as a control.  Sediment yields produced from 
catchments during 2011 and 2012 were measured as well as the mass of sediment trapped by 
individual straw bale check dam structures.  We found straw bale check dams did not 
significantly reduce annual catchment sediment yields produced by 30-minute rainfall intensities 
(I30) equal to or less than 14 mm hr-1 (0.5 in hr-1), a 1-year return period event at the study area.  
The straw bale check dams were filled to sediment holding capacity early in the first post-fire 
year from sediment yields produced by 1- and 2-year I30 return period rain events, or by two rain 
events having less than 1-year I30 intensity return periods.  Three of the five paired catchments 
did not capture the total 2011 annual sediment yields because sediment retention structures used 
to measure catchment yields were overwhelmed by sediment during large rain events, however 
reliable measurements indicate annual sediment yields of 19.53 to 25.71 Mg ha-1 [8.71 to 11.47 t 
ac-1] passed over already full straw bale check dams.  Straw bale check dams were non-
functioning during the second post-fire year, allowing 3.74 to 13.12 Mg ha-1 [1.67 to 5.85  t ac-1] 
of sediment to pass over structures.  The mean mass of sediment trapped by individual straw bale 
check dams is 1.26 Mg (1.40 t).  At a treatment rate of four straw bale check dams ha-1 (two ac-

1), they trapped 5.87 Mg ha-1 (2.62 t ac-1) of sediment.     
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1.0 Introduction 

 For over a century, wildfires have played a prominent and often challenging role in forest 

management in the Western United States.  More homes are put at risk with the increasing size 

of wildfires and the encroachment of urban environments into forests susceptible to wildfire 

known as the wildland-urban interface.  Now the effects of wildfire are no longer confined to 

uninhabited forested landscapes, but are increasingly a risk to human life, homes, roads, and 

structures (Baker, 2009).  Large forest wildfire activity has increased in frequency and total area 

burned in the last two to three decades in the western United States (Westerling et al. 2006; 

Morgan et al. 2008).  Wildfires have been growing in size because of longer fire seasons and 

more forest material has been made available for burning.  Earlier spring snow melt has allowed 

fire ignition dates to be earlier in the season and drier, hotter summers have pushed fire 

containment dates to be later in the season.  This has caused the average fire season length from 

1987 to 2003 to be extended by 78 days compared to 1970 to 1986 (Westerling et al. 2006).  

Fires have also increased in size due to the buildup of forest biomass over large contiguous areas 

from forest management practices that include logging (Wilson and Dell, 1971) and fire 

suppression over the last century (Vaillant et al. 2009).   

 The wildland-urban interface in the West has experienced post-fire flooding and the 

increased sedimentation rates that have caused considerable damage to homes and infrastructure 

located even outside of burn perimeters (Gallup, 1975).  After the 2010 Shultz Fire burned in the 

mountains above Flagstaff Arizona, a storm producing 45 mm (1.8 in) of rain in 45 minutes 

triggered a massive flood carrying sediment, rocks, and  debris that ripped through 

neighborhoods sitting below the burned area, causing extensive damage to homes and businesses 

(Koestner et al. 2011).   Land managers are tasked with mitigating flooding and increased 
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sedimentation associated with post-fire environments using various treatments aimed at reducing 

these risks to people and structures (Napper, 2006).   

 Mitigation techniques to protect homes, roads, and structures from increased sediment 

yields are implemented on hillslopes, in small catchments, and in large watersheds.  For instance 

land managers install straw bale check dams in ephemeral channels to mitigate undesired effects 

of increased sediment yields from small catchments.  While these structures have been in use for 

over four decades (Foltz et al. 2009), previous studies have not shown if the treatment is 

successful at reducing a significant amount of ash and sediment from being transported out of 

burned catchments into higher order streams or onto alluvial fans (Ruby, 1997).   

1.1 Post-fire landscape response to rainfall 

 Wildfire changes surface hydrology and sediment transport rates in the burned area 

(Canfield et al. 2005, Smith and Dragovich, 2008; Jackson and Roering, 2009; Malvar et al. 

2011; Shakesby and Doerr, 2006).  While many surface processes such as wind contribute to soil 

erosion, the process of soil erosion discussed in this paper will refer to the transportation of soil 

aggregates or soil particles by water (Wondzell and King, 2003), and is quantified as sediment 

yield, or the measure of the mass of sediment eroded past a given point per length of time 

(Moody and Martin, 2009). 

 In the post-fire environment, surface runoff and sediment yields are directly related to 

burn severity thus, there is increased runoff and sedimentation with increased burn severity 

(Shakesby and Doerr, 2006).  Burn severity is a measure of the heat pulse that affects the soil and 

vegetation mortality rates (NWCG, 2006).  The effects within high burn severity areas are high 

soil heating, high vegetation mortality, and the loss of surface and subsurface organic matter 
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changing the hydrologic, microbial, and biogeochemical processes, which may take year to 

recover to pre-burn conditions (Lentile et al. 2006). 

 Rainfall amount and intensity are the primary drivers of sediment yields following a 

wildfire.  Rainfall intensity is the maximum amount of rain to fall within a 10-minute (I10), 30-

minute (I30), or 60-minute (I60) period during a rainstorm, standardized to one hour (Janusz, 

1986).  There is a large variation in rainfall intensities across the West, with regional climate and 

local topography often being the strongest influencing factor.  Moody and Martin (2009) divide 

the four climate zones of the Western US defined by Smith (1994) the Pacific, Sub-Pacific, 

Plains, and Arizona into four rainfall intensity boundaries (Low, Medium, High, and Extreme) 

according to the 2-year probability of receiving an event with a given 30-minute rainfall intensity 

(Iଷ଴
ଶ ୷୰). In an extensive review of past studies, they link annual post-fire sediment yields to 

rainfall intensity and show low sediment yields occur in regions with low rainfall intensities and 

high sediment yields occur in regions with high rainfall intensities.  For instance, the Plains-

Medium rainfall regime with an Iଷ଴
ଶ ୷୰ ranging from 19 to 36 mm hr-1 (0.8 to 1.4 in hr-1) had a 

median sediment yield of 250 Mg ha-1 (112 t ac-1), while in the Sub-Pacific-Low intensity rainfall 

regime with an Iଷ଴
ଶ ୷୰ range of 10 to 20 mm hr-1 (0.4 to 0.8 in hr-1) the median sediment yield was 

39 Mg ha-1 (17 t ac-1) (Moody and Martin, 2009).   Seasonal timing of sediment yields also vary 

by region depending on the climate.  In the Colorado Rockies, high-intensity events correlate 

well to large post-fire sediment yields during the monsoon rains in mid to late summer, while 

precipitation in the form of snow or frontal rain events have been shown to produce little erosion 

(Benavides-Solorio and MacDonald, 2005).  However, in southern California, heavy winter rains 

produce the maximum sediment yields, while sedimentation rates are at a minimum during the 

summer (Splitter, 1995; Moody and Martin, 2009).   
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1.2 Infiltration and overland flow 

 Wildfire reduces rainfall infiltration rates by altering soil and vegetation characteristics 

increasing surface runoff and sedimentation rates.  When rainfall reaches the ground surface it 

either infiltrates into the soil profile or runs off as excess precipitation, entraining and 

transporting sediment at the surface.  Infiltration rates determine the runoff amount and are 

largely determined by vegetation, soil texture, surface porosity, and soil water repellency, which 

can all be drastically altered in a post-fire environment (Brooks et al. 2003).   

 Wildfire reduces surface roughness causing increased surface runoff (Inbar et al. 1998; 

Malvar et al. 2011; Badía and Marti, 2008; Shakesby et al. 1993).  High surface roughness in 

unburned forests is attributed to surface litter, duff, and shrubs that capture rainfall and slow the 

rate at which water drains off a hillslope.  The slow drainage rate allows for water to infiltrate 

into the soil profile reducing surface runoff.  The consumption of vegetation by fire reduces 

surface roughness causing water to quickly runoff from hillslopes and ephemeral channels 

(Shakesby and Doerr, 2006; Moody and Martin, 2001).  In addition, fire combusts organic matter 

within the soil.  This combustion reduces soil texture because the roots and fungi that holds soil 

aggregates together are broken apart, further reducing surface roughness (Wondzell and King, 

2003).   

 Wildfire increases runoff by reducing surface porosity and soil structure.  The breakdown 

of soil aggregates reduces soil structure and texture, seals surface pores, and smoothes and 

compacts the soil surface (Neary et al. 1999).  A smooth and compact soil surface limits water 

infiltration, which adds to surface runoff (Meyer et al. 1992).   
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 Water repellent soil resulting from wildfire reduces soil infiltration rates and increases 

runoff rates (Shakesby et al. 2000).  Water beads up and sits on the surface of water repellent 

soils rather than soaking in (Wessel, 1988).  Soil water repellency is formed by the condensation 

of volatilized organic compounds onto cool soil aggregates within the soil profile (DeBano, 

2000).  These volatilized organic compounds are produced during the combustion of surface 

litter and duff.  The total amount and the type of organic matter consumed affect the spatial 

distribution (Pierson et al. 2008), depth, and severity of water repellency (DeBano, 2000).  

Combustion temperatures contribute to the depth of the water repellent layer that forms parallel 

to the soil surface (DeBano, 2000).  The water repellent layer can be of varying thicknesses and 

may be present directly at the surface or at a depth of a few centimeters (~1 to 2 inches) 

(DeBano, 2000; Woods et al. 2007; Shakesby et al. 2000).   

 Soil water repellency strongly contributes to surface runoff at the beginning of rainstorms 

because it is inversely related to soil moisture (DeBano, 2000; Shakesby et al. 1993).  In a 

rainfall simulation study Pierson et al. (2008) show a decrease in runoff over time as moisture 

was added to the soil profile and the severity of water repellency decreased.  At a rainfall 

application rate of 85 mm hr-1 (3.3 in hr-1) runoff peaked after 5.6 minutes with a minimum 

infiltration rate of 45 mm hr-1 (1.8 in hr-1).  After one hour of rainfall simulation, runoff had 

decreased to an infiltration rate of 57.6 mm h-1 (2.3 in hr-1) (Pierson et al. 2008).  The severity of 

water repellency decreased over time as water slowly infiltrated along preferential flow paths, 

adding moisture to the soil profile, and reducing the severity of the soil water repellency (Dekker 

and Ritsema, 1994). 
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 Reduced soil infiltration from these wildfire effects leads to excess rainfall during high 

intensity rain events.  Runoff has been shown to be significantly higher on burned plots than on 

unburned plots (45 % vs. 23 % respectively) in a rainfall simulation (Johansen et al. 2001).   

1.3 Erosion 

 Runoff from excess rainfall is the principal driver of soil erosion following wildfire.  The 

combustion of surface vegetation, litter, and duff exposes the mineral soil surface to rainfall and 

runoff causing significantly increased rates of soil erosion from hillslopes and channels (Brooks 

et al. 2003).  Soil erosion is the process of soil particle detachment from the soil surface and the 

transport of the detached soil particles downslope resulting in a loss of soil material 

(Hausenbuiller, 1972).  The rate of soil particle detachment is a function of the soil properties 

including soil texture, structure, organic matter and soil moisture (Hausenbuiller, 1972; Knapen 

and Poesen, 2010).There are two forms of soil erosion on hillslopes caused by flowing water.   

The first is water flowing in a thin uniform sheet across the surface that lacks preferential flow 

paths called interrill erosion.  The second is by the concentration of water with increasing 

interrill flow depth and/or the topographic convergence of hillslopes forming channels called rills 

or gullies (Willgoose et al. 1992; Hausenbuiller, 1972) (Figure 1).   

 The two mechanisms that detach soil particles and aggregates from the soil surface are 

rainsplash and concentrated flow.  Rainsplash is the primary detachment mechanism for interrill 

erosion (Knapen and Poesen, 2010).  Rainsplash detachment is driven by rainfall intensity and 

the raindrop’s kinetic energy (Hausenbuiller, 1972).  Rainsplash detachment during interrill 

erosion is accelerated by the presence of water repellent soils.  Water repellent soils experience 
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high detachment rates by raindrops impacting and breaking apart large sediment laden water 

beads resting on the water repellent surface (Terry and Shakesby, 1993).   

 The second mechanism for soil detachment is concentrated flow.  Concentrated flow both 

detaches and transports soil particles during rill erosion.  Post-fire hillslope erosion is 

predominately from rill erosion, which causes up to 80 percent of the total sediment loss from 

hillslopes (Robichaud et al. 2010).   

 Soil particles are detached during concentrated flow by shear stress exerted from water 

onto the soil surface (Dingman, 2009).  The threshold at which shear stress initiates particle 

motion at the soil surface is called the critical shear stress (Moody et al. 2005).  Wildfire reduces 

critical shear stress by reducing vegetation cover and by soil heating, leading to increased 

sediment erosion.  In a shallow channel flume study, Prosser and Slade (1994) found critical 

shear stress decreases in response to decreased vegetation.  While Moody et al. (2005) shows 

critical shear stress is high (>2.0 N m-2 [0.04 lb ft-2]) when soil is heated to moderate 

temperatures between 175o and 275 oC (347 o and 527 oF), and reduced (0.5 to 0.8 N m-2 [0.01 to 

0.02 lb ft-2]) when soil is heated to very high temperatures >275 oC (527 oF).   
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Figure 1.  Hillslope interrill, rill, and gully erosion.  Interrill erosion occurs as sheetwash 
overland flow, rill erosion is concentrated overland flow, and the concentration of flow from 
multiple rills forms gullies.  

 

 Post-fire soil erosion can be studied at a variety of scales.  Shakesby and Doerr (2006) 

grouped the scales often studied in the literature by four methods: ground height changes, 

bounded plots, sediment traps, and slope transects.  The methods to study erosion at these four 

scales include: point scale erosion pins (Smith and Dragovich, 2008), small hillslope plot 

sediment fences (Robichaud and Brown, 2002), large multi-hectare watersheds with sediment 

traps (Robichaud et al. 2008), and pre-/post-event surveys of channel cross-sections (Gabet and 
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Bookter, 2008; Keller et al. 1997).  Soil erosion is not necessarily influenced by the same factors 

at these differing scales; therefore, care must be taken when directly comparing rates at different 

scales.  In a review comparing many different scales, Scott et al. (1998) identified sediment 

yields as being inversely proportional to plot-areas.  One contributing factor to this inverse 

relationship is with larger plot-areas the total surface roughness and infiltration capacity increase 

causing mobilized sediment to be re-deposited before it can be measured at larger scales 

(Shakesby and Doerr, 2006).  At the smallest point scale using erosion pins (Smith and 

Dragovich, 2008), sediment is much more likely to be eroded away rather than deposited at the 

measurement location.  This translates to very large sediment yield rates when scaled up to mass 

per unit area (Mg ha-1, t ac-1).  In contrast, large scale sediment yields measured at watershed 

outlets are shown to be much lower than point erosion rates because re-deposition can occur 

prior to the sediment making it to the outlet, while hillslope fence plots fall in between these two 

extremes (Shakesby and Doerr, 2006).   

1.4 Catchment erosion 

 Rill erosion on burned hillslopes increases runoff rates, runoff velocities, and sediment 

erosion rates as compared to natural or undisturbed hillslopes.  Robichaud et al. (2010) studying 

rill erosion on natural forest soils vs. high burn severity soils shows significant increases in 

runoff rates (2.7 to 21 L min-1 [0.7 to 5.5 gal min-1]), in runoff velocities (0.016 to 0.31 m s-1 

[0.05 to 1 ft s-1]), and in sediment flux rates (1.3 x 10-5 to 1.9 x 10-3 kg s-1 [2.9 x 10-5 to 4.2 x 10-3 

lb s-1]).  On unburned hillslopes rills are disconnected from each other because high infiltration 

rates from vegetation slowing or stopping runoff reduces rill connectivity.  These barriers shorten 

rill lengths, keeping them from linking up along the slope length.  On hillslopes disturbed by 

wildfire, rills flow downhill for long lengths uninterrupted by barriers and can link up to form 
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extensive rill networks.  These highly efficient drainage networks start at or near the top of the 

hydrologic divide and continuously flow to the ephemeral channel at the base of hillslopes and 

out to the catchment outlet.   

 Sediment transported off hillslopes and into channels continues to work through the 

channel network both spatially and temporally (Moody and Martin, 2009).  During large erosion 

events, hillslope erosion introduced to the channel can overwhelm the transport capacity of flow 

within the channel forcing sediment to deposit out, causing aggredation on the channel bed 

(Keller et al. 1997).  However, if there is limited hillslope sediment supply to the channel, 

elevated flows may cause increased scour to the channel bed and banks (Canfield et al. 2005). 

The deposition and remobilization of sediment within channels may take place over a period of a 

few years or even hundreds of years (Moody and Martin, 2009; Willgoose et al. 1992; Keller et 

al. 1997; Legleiter et al. 2003; Inbar et al. 1998).  Sediment yield amounts from ephemeral or 

low order channels vary widely and occur as suspended sediment all the way to debris flows 

(Meyer and Wells, 1997).  Moody and Martin (2009) show large ranges in post-fire bedload 

sediment yields in channels of 14 to 300 Mg ha-1 (6.25 to 133.8 t ac-1) with a mean of 240 Mg ha-

1 (107 t ac-1) in the first two years after a fire.  Post-fire debris flows are unique from soil shear or 

slippage of one soil mass along a shear plane over a stationary soil mass (Hausenbuiller, 1972).  

In southern California, post-fire debris flows were shown to be correlated with short duration 

high intensity rain events (Kean et al. 2011).  During these rain events overland flow entrains an 

increasing amount of sediment while working its way out the catchment through the progressive 

bulking of sediment laden runoff, forming a debris flow (Gabet and Bookter, 2008).  Gabet and 

Bookter (2008) estimated progressively bulked debris flows in southwest Montana delivered as 
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much as 574 to 3655 m3 (750 to 4781 yds3) of sediment from low order catchments to the valley 

floor.   

1.5 Post-fire erosion mitigation 

 Sediment yields from ephemeral channels are a major concern to the USDA Forest 

Service Burned Area Emergency Response (BAER) teams who work to mitigate their destructive 

and dangerous effects by implementing channel treatments.  One channel treatment commonly 

used is straw bale check dams (Robichaud et al. 2000).  Straw bale check dams are made by 

tightly abutting straw bales end to end, keying each bale into the channel perpendicular to flow, 

and driving wooden stakes through each bale to secure it to the ground, forming a “U” shape 

structure across the channel (Napper, 2006).  The bottoms of the straw bales on each end extend 

far enough up onto the channel banks to sit 25 to 30 cm (~10 to 12 in) higher than the straw bale 

in the center of the structure, directing flow over the center straw bale spillway (Napper, 2006).  

Energy dissipaters or rocks and/or anchored logs are placed directly at the down-channel base of 

the structure to reduce the effect of flow over the spillway scouring the channel bed.  Straw bale 

check dams are designed to trap and store sediment mobilized within an ephemeral channel that 

is then released at a metered rate over a period of few years as the straw bales degrade (Tracy 

and Ruby, 1994; Napper, 2006).  Mitigation targets may call for multiple structures to be 

installed along the longitudinal channel profile when taking into account catchment size, burn 

severity, and predicted sediment yields.  The structures are spaced in the channel to maximize 

trap efficiencies by letting the trapped sediment from a lower dam extend enough up channel far 

enough to just touch the base of the next structure sitting higher in the channel (Napper, 2006).   

 Sediment trapped by straw bale check dams resembles the sediment trapped behind much 

larger concrete crib check dam structures, which serve the same purpose of trapping mobilized 
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sediment in the channel (Napper, 2006).  The trapped boulders, rocks, soil, and mud behind a 

concrete crib check dam is referred to as a debris cone with the point of the cone facing up-

channel and base of the debris cone resting against or contacting the up-channel face of the 

structure (Gallup, 1975).  A debris cone looks similar to pooled water behind the structure, 

however unlike the surface of water which is perpendicular to gravity or flat, the surface of a 

debris cone behind concrete crib check dams usually has a gradient of 0.7 of the original channel 

gradient (Gallup, 1975).  Other channel structures aimed at reducing ephemeral sediment erosion 

include log check dams, loose rock check dams, and rock gabion check dams (Tracy and Ruby, 

1994; Napper, 2006).  In the Mediterranean, log debris dams (LDDs) were installed in a post-fire 

environment to reduce ephemeral channel sediment yields (Fox, 2011).  These structures serve 

the same purpose as straw bale check dams of trapping and storing sediment mobilized in the 

channel.  While debris cones have been studied for a few channel treatments, there is no clearly 

defined value of the amount of sediment trapped within the straw bale check dam debris cones.  

Only one observational study attempts to estimate the volume of sediment trapped by straw bale 

check dams, but the trapped sediment volumes were  measured after the structures were fill to 

capacity giving only a rough estimate of trap volumes (Miles et al. 1989). 

 The sediment storage capacity of straw bale check dams, log debris dams, and concrete 

crib check dams is a function of the spillway height of the structure.  These channel treatments 

have a wide range of spillway heights with the smallest structures log and straw bale check 

dams, having spillways of 0.20 to 0.40 m (0.6 to 1.2 ft), and larger concrete crib check dams 

having spillways as high as 8 m (26 ft) (Gallup, 1975).  A straw bale check dam’s spillway 

height is limited to the width of a straw bale resting on its side, ~45cm (18 in), minus the depth 

the straw bale is keyed into the channel bed, ~10cm (4 in), for a spillway height of ~35cm (14 
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in).  Fox (2009) found gaps and holes within the log debris dams that had a mean structural 

spillway height of 105 cm (3.4 ft) captured sediment only to a mean height of 50 cm (1.6 ft) or a 

50% reduction in the structural storage capacity.  To reduce these negative effects of flow 

between straw bales and a reduction in straw bale check dam spillway height, excess loose straw, 

sticks, and rocks are tightly wedged in the gaps between abutting straw bales.  

 There is limited experimental knowledge on how to install straw bale check dams to 

effectively reduce sediment yields from burned catchments.  At construction sites, straw bale 

check dams have been effective when the catchment area for one structure is < 0.4 ha (1 ac), the 

flow does not exceed 0.3 m3 s-1 (11 ft3 s-1), and the trapped sediment is removed when the 

structure fills beyond halfway of its sediment holding capacity (Goldman et al. 1986).  Tracy and 

Ruby (1994) suggest straw bale check dams can be used in burned watersheds with an area of 

~65 ha (160 ac) or less.  Most notably these guidelines do not relate the amount sediment straw 

bale check dams will trap and prevent from exiting catchments and there are no studies showing 

straw bale check dams will capture a given amount of sediment when treated at a given rate per 

area.   

 Most often straw bale check dams are rated on an individual structure basis, such as a 

success or failure rating.  This rating is based on how much sediment a straw bale check dam 

structure captures, but even suggestions and evaluations with this commonly used rating system 

range widely.  Ruby (1997) suggests a treatment is unsuccessful in primary watersheds or small 

catchments if fine sediments and ashes are released into higher order channels.  Following the 

1991 Oakland Hills fire in California, 440 straw bale check dams were installed in channels and 

gullies (Collins and Johnston, 1997). The straw bale check dams failed if they had any of these 

following conditions after an erosion event: side cut or flow around structure, undercut, sediment 
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trapped and then re-eroded, moved or displaced from original position, and unfilled. Three 

months post-installation of structures, 43% to 46% were considered functioning, and after 4.5 

months 37% to 43% were considered functional, indicating an overall failure rate greater than 

50% (Collins and Johnston, 1997).  Following the 1987 South Fork Trinity River Fire 1300 straw 

bale check dams were installed (Miles et al. 1989).  On average the straw bale check dams 

trapped 1.1 m3 (41 ft3) of sediment and had a failure rate of only 13% from piping underneath or 

between straw bales (Miles et al. 1989).  Foltz (et al. 2009) synthesized interviews from 30 

BAER team engineers/hydrologists, unpublished literature and relevant publications for a post-

fire BAER road treatment handbook.  The report evaluated straw bale check dams at 10 sites and 

found ‘good to excellent’ performance at 60% of sites, ‘fair’ at 30%, and ‘poor’ at 10%.  The 

majority of these evaluations are lacking in that they do not relate how much sediment was 

transported past the individual structures even if the structures were considered functioning.   

 Increased sedimentation rates following wildfires have become a great risk to human life 

and property located in the wildland-urban interface.  Increased peak flows and sediment yield 

rates in response to high intensity rain events have devastating effects beyond the perimeter of 

the burned areas.  The use of straw bale check dams in post-fire ephemeral channels has been 

increasing over the past four decades (Foltz et al. 2009) to mitigate increased sedimentation rates 

from burned catchments.  However, there is no quantitative information on the ability of straw 

bale check dams treated in ephemeral channels to reduce sediment yields from burned 

catchments.   
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1.6 Principle research objectives 

1) Determine if there is a significant difference in sediment yields between catchments treated 

with straw bale check dams and untreated catchments taking into account rainfall intensities and 

hillslope erosion rates. 

2) Quantify the mass of sediment trapped by straw bale check dams and the mass of sediment 

scoured in the channel below straw bale check dams and relate these amounts to channel 

gradient. 

3) Relate the amount of sediment mobilized past straw bale check dams to the annual sediment 

yields from treated catchments to determine the trap efficiency of the treatment. 

4) Determine if straw bale check dams help to stabilize and protect the channel from knickpoint 

migration. 
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2.0 Methods 

2.1 Site description 

 This study was conducted within the burned area of the 2010 Twitchell Canyon Fire that 

burned 17,960 hectares (44,380 acres) at high elevations in the Tushar Mountains of south-

central Utah, from 20 July to 16 October (UT-FIF, 2010).    Dominant pre-fire vegetation at the 

study site included pinyon pine (Pinus edulis), juniper (Juniperus osteosperma), and gamble oak 

shrub (Quercus gambelii), with perennial grasses/forbs and mountain big sagebrush (Artemisia 

tridentata) dominating the understory (UT-FIF, 2010).  Soil types are highly erodible Aridic 

Argiustolls and Aridic/Typic Haplustolls (UT-FIF, 2010) (34 % sand, 65 % silt, < 1 % clay) 

derived from the Sevier River Formation parent material (Rowley et al. 2002), which is the only 

exposed bed rock unit at the study site.  The Sevier River Formation unit, within the Mount 

Belknap Volcanics series, is 100 to 300 m (~330 to 980 ft) thick, has a west-east strike, and a 

shallow dip of 15 ۫ to the north, allowing for a surfically continuous exposure in the area (Rowley 

et al. 2002, Cunningham and Steven, 1979).  Rowley (et al. 2002) describes the unit material as 

“gray, tan, yellow, white, pink, and light-green sandstone, pebbly to boulder conglomerate, 

mudstone, and siltstone of fluvial and locally lacustrine origin” interbedded with high-silica 

rhyolite, airfall tuff, and basalt (Cunningham and Steven, 1979).  The fluvial and lacustrine or 

river and lake deposits do not reflect current topographic features and were probably laid down 

in basins that existed prior to basin and range faulting (Rowley et al. 2002).  The interbedded 

extrusive igneous or volcanic rocks erupted from both the Mount Belknap caldera in the current 

Tushar Mountains, and the Red Hills caldera in the Antelope Range northwest of the Tushar 

Mountains 19 m.y.a. (Cunningham and Steven, 1979).   
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 The average annual rainfall at the study site is 500 to 550 mm yr-1 (~20 to 22 in yr-1) with 

the majority of precipitation occurring as snow (Utah State University, Climate Center, 2010).  

At the Kimberly Mine SNOTEL site located 4 to 4.5 km (2.5 to 2.8 mi) away and ~500 m 

(~1640 ft) higher in elevation (2783 m, 9130 ft), two thirds to four fifths of precipitation 

occurred as snow during the 2010-2011 and 2011-2012 water years (USDA, NRCS, 

http://www.wcc.nrcs.usda.gov, Kimberly Mine).  The regional climate is influenced by the 

northernmost extent of the Arizona and New Mexico monsoon precipitation regime during the 

summer (Higgins et al. 1998).  With precipitation brought up from southern Mexico beginning in 

early July and lasting into September, which ends the spring drought and tails off in the late 

summer (Higgins et al. 1997).  Winter precipitation is from frontal systems out of the Pacific 

Northwest (UT-FIF, 2010).  The point precipitation frequency estimate for the 10-minute rainfall 

intensity (I10) return period with 90% confidence intervals at the site given by Bonnin et al. 

(2006) are a 1-year I10 of 37 (32‑42) mm hr-1 [1.5 (1.3-1.7) in hr-1], a 2-year I10 of 48 (42‑55) 

mm hr-1 [1.9 (1.7-2.2) in hr-1], and a 5-year I10 of 66 (58‑76) mm hr-1[2.6 (2.3-3.0) in hr-1].  The 

point precipitation frequency estimate for the 30-minute rainfall intensity (I30) return periods 

with 90% confidence intervals are a 1-year I30 of 20 (18-23) mm hr-1 [0.8 (0.7-0.9) in hr-1], 2-

year I30 of 26 (23-31) mm hr-1 [1.0 (0.9-1.2) in hr-1], 5-year I30 of 37 (32-42) mm hr-1 [1.5 (1.3-

1.7) in hr-1] (Bonnin et al. 2006). 

2.2 Paired catchments  

 We conducted our study in small ephemeral channel catchments.  Ten ephemeral channel 

study catchments were paired, with each pair consisting of one treated and one untreated or 

control catchment.  Catchments ranged in size from 0.2 to 1.6 ha (0.5 to 4.0 ac) (Figure 2).  
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Figure 2. (Starting in top left of page with figure descriptions moving clockwise) 1. Twitchell Canyon Fire in 
south-central Utah.  2. Burned Area Reflectance Classification (BARC) map indicating burn severity, the study 
paired catchments are colored white and outlined in black.  3. Treated and control catchments within pair and the 
locations of hillslope plot boundaries, rain gauges, and catchment outlets.  

(UT-FIF, 2010) 

BARC Image / Color Scheme 
Natural Green … Unburned Areas (13 %) 

Teal  ... Low Severity Burns (20 %) 
Yellow … Moderate Severity Burns (14 %) 

Red … High Severity Burns (33 %)
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Figure 3.  Paired catchment E-F, the treated catchment (0.6 ha, 1.4 ac) is photo left and the 
control catchment (0.4 ha, 1.1 ac) is photo right.  The upper hydrologic divide along the ridge 
line bounds the top of the catchments, sediment retention structures bound the catchments at the 
base, and  catchment sides are at the divergence of overland flow into the catchment or not into 
the catchment. 

Adjacent paired catchments were similar in area, aspect, degree of channel incision, and hillslope 

and channel gradients, and were burned at high severity as defined in the ‘Glossary of Wildland 

Sediment retention 
structures 

Hydrologic divides 

Straw bale check 
 dams (x2) 
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Fire Terminology’.  All above-ground organic matter, such as larger fuel and duff, were 

consumed resulting in high vegetation mortality, reduced ground cover, and high soil heating 

(Figure 3) (NWCG, 2006). 

 Study catchment pairs exhibited similar traits and characteristics.  The study catchments 

are located between 2060 and 2250 m (6760 to 7380 ft) in elevation, and range in vertical scale 

(Willgoose et al. 1991) from ~50 to 80 m (~160 to 260 ft) measured from catchment outlet to the 

catchments highest hydrologic divide.  The relief or vertical scale of catchments within each pair 

is roughly equal with vertical differences ranging from 3 to 10 m (~10 to 33 ft).  Study 

catchments have steep headwalls and side slopes with an average gradient of 58 %, and a range 

of 41 to 78 %, that drain into ephemeral bedrock channels as steep as 50 % and as shallow as 23 

%, with an average gradient of 29 % (Table 1). 

Table 1. Catchment name and numbered pair, treatment, catchment area (ha [ac]), vertical scale 
of catchment (m [ft]) or the vertical height from the catchment outlet to the highest hydrologic 
divide, average channel slope (%) from the outlet up to the channel head, and channel length 
from the outlet to the channel head (m [ft]).   

 
The bedrock ephemeral channels begin high in the drainages and form from the topographic 

convergence of hillslopes, rills, and gullies over a distance of 4 to 9 m (13 to 30 ft) before they 

are fully defined.  Channel lengths range from 38 to 137 m (~125 to 450 ft) and drain at 

catchment outlets onto alluvial fans or into higher order ephemeral channels.  In the largest 

paired catchment (1.4 ha and 1.6 ha [3.5 ac and 4.0 ac]), the channels are incised to bedrock 1 m 

Catchment. Pair  Treatment  
Catchment 
area (ha [ac]) 

Vertical scale 
(m [ft]) 

Mean channel 
gradient (%) 

Channel 
length (m [ft]) 

A.1   Treated  0.5 [1.4]  56 [184]  23  85 [279] 
B.1  Control  0.6 [1.4]  59 [194]  27  48 [157] 
C.2  Control  0.2 [0.5]  53 [174]  47  52 [171] 
D.2  Treated  0.3 [0.7]  57 [187]  49  37 [121] 
E.3  Control  0.4 [1.1]  63 [207]  36  45 [148] 
F.3  Treated  0.6 [1.4]  69 [226]  32  50 [164] 
G.4  Treated  1.4 [3.3]  76 [249]  20  90 [295] 
H.4  Control  1.6 [3.9]  21 [69]  30  125 [410] 
I.5  Control  0.6 [1.5]  66 [217]  26  118 [387] 
J.5  Treated  0.7 [1.7]  71 [233]  33  130 [427] 
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(~3 ft) deep for distances of 30 m (~100 ft) in colluvial deposits before the outlet.  Paired 

catchments are located in two separate canyons, 1.2 km (0.75 mi) apart; with three pairs in 

Sevier Canyon and 2 pairs in Middle Canyon to the east.  In Sevier Canyon, the pairs have a 

southeast aspect and are spaced over a distance of 400 m (~1300 ft), on a southwest to northeast 

dipping ridge.  The pairs in Middle Canyon have a southeast aspect, are spaced 275 m (~900 ft) 

apart, and sit on a southwest to northeast dipping ridge. 

2.3 Straw bale check dams 

 One catchment within each pair was randomly selected for treatment with straw bale 

check dams at the beginning of the first post-fire year.  Each straw bale check dam was installed 

following BAER handbook guidelines (Napper, 2006), using three to five straw bales tightly 

abutted end to end and keyed or trenched 10 cm (~4 in) in to the channel bed and banks creating 

a U-shaped structure perpendicular to flow (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STRAW BALE CHECK DAM 
Plan view

FLOW

The bottoms of the end bales MUST 
be at least 30 cm (12 in) higher than 

the top line of the spillway bales. 

Wooden 
stakes 

Energy dissipater 
consisting of rocks. All bales are placed on 

their sides. 

Rocks, small branches, and 
excess straw are used to fill 

gaps between the straw bales. 

Figure 4.  Plan view structural diagram of straw bale check dam structure modified from Napper 
(2006).  Straw bale check dam structures open up-channel.  
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 We followed standard installation procedures.  Straw bales were 46 x 36 x 96 cm (18 x 

14 x 38 in) in size, weighed ~18 kg (40 lb), and were secured by two to three wooden stakes (2.5 

x 5 cm [1 x 2 in]) driven through each bale into the ground.  The bottoms of the straw bales on 

the ends of the U-shaped structure sat higher than the top of the straw bale in the middle of the 

structure, this directed flow in the channel over the structural low point in the center creating a 

spillway (Napper, 2006) (Figure 5).  The straw bale check dam structures were installed just 

upstream of catchment outlets (5 to 15 m [16 to 50 ft]) at a rate of 4 ha-1 (~2 ac-1) and were 

generally spaced 4.5 m (15 ft) apart (Figure 6). 

 

Figure 5.  Down-channel face of a straw bale check dam at ground level looking up-channel.  
Straw bales are keyed into the bed and banks to create a U-shaped structure that spans the width 
of the channel.  Bottoms of bookend straw bales (yellow arrows) sit vertically higher than top of 
the center spillway bale (yellow dashed line).  Energy dissipator rocks sit against the structure on 
the down-channel side below the center spillway to help reduce scour to the channel-bed.   

 

 

 

 

Energy Dissipater 

Straw bale
Wood stakes Flow 
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Figure 6.  Channel treated with straw bale check dams (SCD).  In a few instances the center 
spillway straw bales were positioned lengthwise or running parrallel with the channel when steep 
hillslopes and narrow channels prohibited the lengthwise placement of staw bales perpendicular 
to the channel as seen with SCD.2. Photo is looking down channel. 

2.4 Measuring catchment sediment yields 

 The sediment yields were measured at catchment outlets.  During the first and second 

post-fire years (2011 and 2012), the total bedload sediment yields eroded from catchments 

during each rain storm were captured in the ephemeral channel at the catchment outlets with 

reinforced sediment retention structures. The materials used to build the retention structures 

included standard framing lumber boards (10 x 4 x 305 cm [4 x 1.5 x 120 in]), wood stakes (5 x 

SCD.1 

SCD.2

Flow 

Sediment retention 
structure
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5 x 120 cm [~2 x 2 x 50 in]), welded mesh wire 5 x 10 cm mesh openings [2 x 4 in], 14 gauge 

wire, and high tensile strength woven geotextile fabric (US Fabrics, Cincinnati, OH).  Lumber 

framed structures spanning the channel widths were secured to the channel bed and banks with 

side walls extending out from the center spillway wall and angled slightly up-channel (Figure 7).  

The structures center spillway walls ranged in height from 90 to 150 cm (35 to 60 in) tall 

depending on the channels shape and depth in which the structure was installed.  Welded wire 

and geotextile fabric were secured to the up-channel face of the lumber frames and cornered at 

the lumber frame-ground contact to extend up the channel bed 1 to 3 m (~3 to 10 ft).      

 
Figure 7.  Lumber framing of sediment retention structure secured into the channel bed and 
banks with the added strength of wire mesh attached to the up-channel face.  Spillway wall is 
located in the center of the structure with side walls opening up-channel.  Photo looks up-
channel. 
 
This reduced the chance of flow undercutting the structure and provided a base reference to help 

distinguish between captured eroded sediment and the original channel bed.  Two sediment 

retention structures were built in tandem in each catchment’s channel to capture total bedload 

sediment yield during a rain event, and in two channels an additional third structure was added 

halfway into the 2011 season after sediment yields overtopped the original two structures (Figure 

8).    

Flow 
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Figure 8.  Tandem sediment retention structures in the channel.  Geotextile woven fabric was 
secured to the up-channel face of the framed structures and extends up-channel attached with sod 
staples to the bed and banks. Tandem structures increased the maximum sediment storage 
capacity of sediment retention structures.  Photo looks down-channel. 

 Sediment yields were measured using sediment retention structures.  Retention structures 

in treated catchments were installed far enough below the lowest straw bale check dam to not 

affect check dam function, but close enough to minimize sediment introduction to the channel 

downstream of the check dam from hillslopes or channel bed scour.  Sediment yields captured by 

retention structures were measured and removed from the retention structures using two different 

techniques depending on the captured sediment yield amount.  Small sediment yields were 

weighed using plastic buckets (20 l, 5 gal) and sub-sampled into sealed airtight plastic bags 

before discarding the excess measured sediment below and off to the side of the structures.  The 

sub-samples were taken back to the laboratory and oven dried over night at 105 oC to 

gravimetrically determine the soil water content, which was used to convert the wet mass of the 

Flow 
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field sediment yield to a final sediment yield dry mass (Cambardella et al. 1994).   For large 

sediment yields the sediment was removed by hand or mini-excavator (Kubota, KX161, 

Torrance, CA) after surveying the trapped sediment with a surveyor’s total station.  The total 

station (Topcon, GTS-2110, Livermore, CA) took twenty-five to fifty point measurements of the 

location of a prism mounted survey rod, in planar horizontal (x, y) and vertical (z) space relative 

to the known position of a #4 rebar monument off to the side of the channel, while it crisscrossed 

back and forth across the surface of the captured sediment.  The survey points were imported 

into surface topography software (Trimble Geomatics Office (TGO), Trimble Engineering and 

Construction, Dayton, OH) to build a surface using the finite element method, by connecting the 

surveyed points in a triangular network.  Pre-event surfaces were built for all sediment retention 

structures using data of surveyed retention structures and the up-channel bed and banks 

catchment area prior to the first event.  The volume of the captured sediment yields were 

determined by subtracting the pre-event surface from the post-event captured sediment yield 

surface.  To convert captured volumes to mass, two to five core bulk density (g cm-3) samples 

were taken within the captured sediment at depth intervals of 10 to 40 cm (~4 to 16 in), taking 

more samples for deposits with steep moisture gradients and fewer for drier deposits.   

 Final sediment analysis was done in a laboratory.  The oven dried bulk density mass of 

sample cores were used convert the volume of measured sediment at the corresponding depths 

they were taken at to a final dry mass (Robichaud and Brown, 2002).  Sediment yields were 

measured twice in two separate sediment retention structures using both the weighing bucket and 

survey measurement techniques.   The percent difference, or relative uncertainty, associated with 

the surveying technique was determined by comparing it to the most accurate direct 

measurement of the total sediment mass by weighing buckets (Robichaud and Brown, 2002).  
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Absolute uncertainty (±Δ), which is the measured sediment mass multiplied by the relative 

uncertainty is given for all sediment yields measured with the surveying method. 

2.5 Measuring rain events 

 We measured spring, summer, and fall rainfall events.  Five tipping bucket rain gauges 

recorded rain event duration, intensity, and total precipitation monitored continuously for the 

duration of the monsoon seasons for both the first and second post-fire years, from 10 Jun 2011 

to 8 Oct 2011 and 7 May 2012 to 26 Sep 2012.  Four rain gauges are located on the adjoining 

ridge between paired catchments, and one rain gauge is located on the far western ridge of a 

paired catchment (Figure 9).  Tipping-bucket rain gauges (8” Tipping Bucket Rain Gauge, 

RainWise, Bar Harbor, ME; HOBO Event Logger, Onset Computer Corporation, Bourne, MA) 

record volume (0.254 mm [1/100 in]) per time with a resolution of 0.5 seconds (Ciach, 2003).  

Rain data was standardized to tips per minute, and events were separated by the passing of a six 

hour time interval between consecutive tips.  Total precipitation (mm) [in], duration (min), and 

10-minute (I10) and 30-minute (I30) rainfall intensities were determined for each event and 

categorized according to their 10 minute intensities for 1, 2, and 5-year recurrence intervals 

(Bonnen et al. 2006).    
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Figure 9.  Tipping bucket rain gauge (~20 cm [8 in] opening) set level to the ground and located 
roughly half way up catchment ridge (monitored catchment in background).  The rain gauge was 
mounted to a plate of sheet metal attached to the top of a 10 cm (4 in) diameter PVC post.  The 
hollow PVC post was buried 45 cm (~18 in) into the ground, filled to the brim with soil, and 
secured with three guy-wires spaced at 120o that were attached to the post 140 cm (~55 in) from 
the ground surface and anchored at the ground with rebar to reduce systematic error of wind 
disturbance tipping the recording bucket. 

2.6 Measuring hillslope sediment erosion 

 We measured hillslope erosion rates in each catchment.  Hillslope erosion rates were 

measured during 2011 and 2012with one hillslope fence in each catchment, following the design 

by Robichaud and Brown (2002), and at two different randomly assigned contributing areas (m2) 

[ft2] within a paired catchment.  Sediment fences were built with a 3 m (~10 ft) wide opening 

positioned perpendicular to the slopes fall line, by driving wood stakes (5 x 5 x 120 cm [2 x 2 x 

50 in]) and securing geotextile woven fabric to the up-slope side, to capture the total sediment 

yielded from the contributing hillslope area.   Small contributing area (m2 [ft2]) hillslope plot 
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erosion rates were measured with a sediment fence near the uppermost hydrologic divide of 

catchments and large contributing area (m2 [ft2]) hillslope plot sediment delivery rates to the 

channel were measured with a sediment fence located at the hillslope base just above the defined 

channel. The catchment area of small hillslope fence plots ranged from 39 to 65 m2 (420 to 700 

ft2), averaging 50 m2 (540 ft2), with an average slope length 16 m (53 ft) and gradient of 50 %, 

and the catchment area of large hillslope fence plots ranged from 42 to 204 m2 (~450 to 2200 ft2), 

averaged 130 m2 (1400 ft2) and had an average slope length of 46 m (151 ft) and gradient of 50 

% (Table 2).  Sediment yields collected in hillslope fences were removed by hand with buckets 

(20 l, 5 gal), weighed and sub-sampled into sealed airtight plastic bags after each event, 

discarding excess weighed material directly below the fence.  In the laboratory, the water content 

was gravimetrically determined by oven drying sub-samples at 105 ۫ C and used to convert the 

sediment yields to a dry mass (Cambardella et al. 1994).   

Table 2.  Hillslope fence name and pair, fence location on catchment hillslope (upslope, base of 
hillslope), contributing area of hillslope (m2 [ft2]) draining into fence, slope length (m [ft]) from 
the hydrologic divide to the hillslope fence, and slope (%) above the hillslope fence. 
 

Hillslope 
fence.pair 

 
Fence location 

Contributing 
area (m

2 [ft2]) 
Slope length 

(m [ft]) 
Slope  
(%) 

A.1  upslope  29 [312]  11 [36]  53 
B.1  base of hillslope  116 [1249]  43 [141]  62 
C.2  upslope  22 [237]  11 [36]  61 
D.2  base of hillslope  108 [1162]  55 [180]  43 
F.3  upslope  64 [689]  21 [69]  43 
E.3  base of hillslope  276 [2970]  44 [144]  58 
G.4  upslope  227 [2981]  66 [217]  25 
H.4  base of hillslope  224 [2411]  64 [210]  46 
J.5  upslope  59 [635]  12 [39]  67 
I.5  base of hillslope  27 [291]  12 [39]  39 

 

2.7 Measuring straw bale check dam trap/scour volume and mass 

 Straw bale check dams were measured pre- and post-sediment yield events.  Straw bale 

check dams were surveyed both up- and downstream of straw bale check dam influence using 

the same technique described earlier with a surveyor’s total station set up over a # 4 rebar 
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monument and a prism-mounted survey rod.   The point location of the prism-mounted survey 

rod was recorded in planar horizontal (x, y) and vertical (z) space while it crisscrossed back and 

forth up the channel and over the structures, beginning below the scour zone influence of the 

lowest straw bale check dam and ending above the trap zone influence of the highest straw bale 

check dam in the channel; once at the time of installation 26 Jun 2011 and again at the end of the 

field season 10 Oct 2011.   

 We processed the survey data of straw bale check dams using computer software.  The 

survey data was imported into the surface topography software program, TGO, and surfaces 

were built for the base or pre-erosion event 26 Jun 2011 survey and the post-erosion events 

survey on 10 Oct 2011.  The volume of trapped sediment behind straw bale check dams was 

calculated by subtracting the pre-erosion events 26 Jun 2011 surface from the post-erosion 

events 10 Oct 2011 surface.  The method was reversed to determine scour below straw bale 

check dams, by subtracting the post-erosion events 10 Oct 2011 surface from the pre-erosion 

event 26 Jun 2011 surface.   Two bulk densities (g cm-3, lb ft-3) were taken within the trapped 

deposit behind each straw bale check dam at depths of 0-5 cm (0-2 in) and ranging from 25-30 

cm (10-12 in) to 35-40 cm (14-16 in), and one bulk density was taken in the channel bed scour 

zone (if scour was present) below each straw bale check dam.  Trapped sediment volumes were 

converted to dry mass (Mg m-3 [t ac-1]) from the mean oven-dried bulk density of samples taken 

in the  respective trapped deposit, and oven-dried bulk densities taken in the channel scour zone 

were used to convert scour volumes to dry to mass (Mg m-3 [t ac-1]) (Robichaud et al. 2008). 

2.8 Ground cover 

 Ground cover was measured in each catchment at the site.  Ground cover was measured 

in the spring and fall of 2011 and the fall of 2012 to quantify burn severity and vegetative re-
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growth in each catchment along one 40 m (131 ft) channel transect and two 40 m (131 ft) 

hillslope transects, using five 1 x 1 m (3 x 3 ft) plots evenly spaced at 0, 10, 20, 30, and 40 m (~ 

0, 33, 66, 98, 131 ft).  The plots had 100 points located  at the junctions of a 10 x 10 cm (4 x 4 

in) grid and the cover that fell below each point was chosen from a set of five variables (mineral 

soil, vegetation, litter, woody debris, rock) (Robichaud and Brown, 2002). 

2.9 Channel cross-sections 

 We measured channel stability over time with channel cross-sections.  Three to five 

channel cross-sections per catchment were established to measure channel stability or the 

degradation or aggradation of the channel bed over time (Keller, 1990).  In each catchment, 

monumented cross-sections perpendicular to flow and spaced every 30 m (~98 ft) were set using 

# 4 rebar monuments on the river left (RL) and river right (RR) sides of the channel (Harrelson et 

al. 1994), above the maximum potential flow discharge height.  An initial survey of channel 

cross-sections was done at the time of site installation, 26 Jun 2011, with a Global Positioning 

System (GPS) survey device that wirelessly communicated point location in X, Y, Z space to a 

reference receiver set up over a known rebar monument in the area (www.GPS.gov, accessed 14 

Oct 2012).  However, the GPS survey point data was not recorded on an exact line between the 

cross-section rebar monuments, which caused large uncertainties in cross-section heights in the 

steep gradient channels.  Thus, the initial survey data were not used here it was not possible to 

accurately compare the initial survey data, 26 Jun 2011, to the two following surveys on 27 Jul 

2011 and 6 May 2012, which fell exactly on a straight line between the rebar monuments.  Any 

change in bed height from 27 Jul 2011 to 6 May 2012 was attributed only to sediment erosion 

events during the 2011 summer and fall because no channel or hillslope erosion occurred 

between 10 Oct 2011 and 6 May 2012, during the 2011-2012 winter.    
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 The channel cross-sections were surveyed following methods described by Harrelson et 

al. (1994) on 27 Jul 2011 and 6 May 2012, relating vertical heights relative to the top of the RL 

and RR rebar monuments to cross-channel distances between RL and RR rebar monuments.  

Horizontal distance, x (+/- 0.05 m [+/- 0.16 ft]), was measured with a cloth tape measure strung 

taut between the RL and RR rebar monuments, always pulling the tape from 0 m on RL to the 

RR monument.  Horizontal distance points were chosen at varying spacing lengths to provide 

higher resolution (+/- 0.10 m [+/- 0.33 ft]) in the channel thalwag or active channel flow area and 

lower resolution (m +/- 0.50 m [+/- 1.64 ft]) at hillslope points unaffected by flow.  A metric 

scale stadia rod held plum measured the vertical height, y (+/- 0.01 m [+/- 0.03 ft]), from ground 

level up to a self-leveling laser level beam (PLS3 Point to Point Laser, Pacific Laser Systems, 

San Rafael, CA) projected at a known height over the tops of the RR and RL rebar monuments.  

Vertical heights were measured at the same horizontal distances along a cross-section profile in 

both surveys to better detect any change in channel bed elevation between surveys.    

 Areas were calculated for each cross-section profile for both survey dates.  First the 

cross-section measurements were standardized to the RL and RR rebar monuments by 

subtracting the instrument height or the height difference between the laser beam and the rebar 

monument top that sat higher in elevation, from the field data measurements.  The trapezoidal 

areas between adjacent horizontal measurements and their corresponding vertical measurements, 

working from RL to RR, were determined and summed to find the total cross-section area (Area 

by Coordinate Method, www.nrcs.usda.gov/technical/eng_spreads.html, accessed 20 Aug 2012).   

2.10 Straw bale check dam analysis 

 Trap efficiency (% of sediment) of straw bale check dams (SCDs) was analyzed for the 

first and second post-fire years in treated catchments.  This is the cumulative mass per unit area 
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trapped by straw bale check dams in a catchment compared to the potential catchment sediment 

yield or the total amount of sediment that would have eroded in the absence of the straw bale 

check dams.  Trap efficiency was calculated for 2011 with Equation 1.  Trap efficiency was 

calculated for 2012 by adding only the 2012 total annual sediment yield to the denominator in 

Equation 1.  I calculated trap efficient using: 

SCD Trap efficiency (%) = ( 
ఀ ௌ஼஽ ௧௥௔௣௣௘ௗ ௠௔௦௦ ሺெ௚ ௛௔షభሻ

ௌ஼஽ ்௥௔௣௣௘ௗ ௠௔௦௦ ሺெ௚ ௛௔షభሻା ்௢௧௔௟ ௖௔௧௖௛௠௘௡௧ ௦௘ௗ௜௠௘௡௧ ௬௜௘௟ௗ ሺெ௚ ௛௔షభሻ
 )  

 
(Equation 1) 

 
where, SCD trapped mass (Mg ha-1 [t ac-1]) is the sum of sediment mass trapped behind all the 

straw bale check dams in a catchment per unit area (Mg ha-1 [t ac-1]), at four straw bale check 

dams ha-1 (two ac-1), and total catchment sediment yield is the annual sediment yield (Mg ha-1 yr-

1 [t ac-1 yr-1]) from the treated catchment for 2011 for first year trap efficiency, and the 

cumulative sediment yield from the catchment during 2011 and 2012 for second year trap 

efficiency.  This equation assumes, in the absence of the straw bale check dams, 100 % of 

sediment trapped by the structures would have been transported, captured, and measured in the 

sediment retention structure at the catchment base.  In Sevier Canyon, where the annual sediment 

erosion rates were limited by sediment retention structure failure or overtopping during large 

erosion events, trap efficiency provides a conservative estimate of straw bale check dam 

effectiveness.   

 The paired catchment sediment yield ratio was determined with the equation: 

 

 

 

2011 Paired catchment ratio = 

ቆ
ଵሻି݄ܽ ݃ܯሺ ݏݏܽܯ ݀݁݌݌ܽݎܶ ܦܥܵ ൅ ݀݁ݐܽ݁ݎܶ ݐ݄݊݁݉ܿݐܽܿ ݐ݊݁݉݅݀݁ݏ ଵሻି݄ܽ ݃ܯሺ ݈݀݁݅ݕ

ݐ݄݊݁݉ܿݐܽܿ ݈݋ݎݐ݊݋ܥ ݐ݊݁݉݅݀݁ݏ ݈݀݁݅ݕ ሺ݃ܯ ݄ܽିଵሻ
ቇ 

(Equation 2) 
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Sediment retention structure failures or overtopping did not allow for paired catchment ratios to 

be calculated in Sevier Canyon, thus only two paired catchments from Middle Canyon were used 

in 2011.  Given the straw bale check dams were full at the start of 2012 the paired catchment 

ratio for 2012 pairs was: 

 

 

2.11 Particle size distribution analysis 

 We analyzed soil texture eroded from hillslopes and at catchment outlets.  Soil was 

repeatedly sampled for the five events in each of the four catchments in Middle Canyon in 2011.  

Sands, silts, and clays or sediment fines ≤ 6.0 mm (0.2 in) were sampled in hillslope fences and 

sediment retention basins in each catchment to characterize undispersed soil texture of hillslope 

erosion and catchment sediment yields (Gee and Bauder, 1986).  Samples were prepared by 

mixing the air dried soil bulk sample on a mixing tray for 2 to 3 minutes until homogeneous.  

Large samples were cut down to the appropriate size of ~70 g (0.15 lbs) by halving the sample 

twice into four equally sized piles.  A coin toss was used to randomly select two piles for further 

reduction through mixing and quartering to the desired sample size.  Excess soil was discard.  

The final 70 g (0.15 lbs) sample was halved, using the final randomly selected half of the soil 

bulk sample for the particle size analysis, and the other half was deposited in a labeled and sealed 

plastic bag for % organic matter content analysis and as a backup sample.  The sample was 

transferred to a 0.075 mm square mesh sieve sitting in a plastic basin.  De-ionized water was 

added to the basin only high enough to just contact the base of the soil sample resting on the 

screen and left for 20 minutes, or enough time for the sample to fully saturate by drawing water 

up through it.  The sample was then wet sieved with de-ionized water through thirteen square 

݋݅ݐܽݎ ݐ݄݊݁݉ܿݐܽܿ ݀݁ݎ݅ܽܲ 2012 ൌ ቆ
݀݁ݐܽ݁ݎܶ ݐ݄݊݁݉ܿݐܽܿ ݐ݊݁݉݅݀݁ݏ ଵሻି݄ܽ ݃ܯሺ ݈݀݁݅ݕ

݈݋ݎݐ݊݋ܥ ݐ݄݊݁݉ܿݐܽܿ ݐ݊݁݉݅݀݁ݏ ଵሻି݄ܽ ݃ܯሺ ݈݀݁݅ݕ
ቇ 

(Equation 3) 
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sieves sized (mm):  25.400, 19.000, 12.700, 6.300, 4.750, 3.350, 2.000, 1.680, 1.000, 0.425, 

0.250, 0.150, and 0.075.  The retained mass of soil in each sieve was transferred to small pre-

weighed tins and oven dried at 105 oC (221 oF).  The tin mass was subtracted from the mass of 

the dried retained mass and tin mass to determine the retained dry mass for the particular sieve 

size.  The mass passing 0.075 mm (3 x 10-3 in) was transferred to a 2000 mL (0.53 gal) beaker, 

de-ionized water was added to bring the water level to 2000 mL (0.53 gal), and the sample was 

left to sit overnight standardized the temperature of the water.  A vacuum pipette analysis was 

performed on the sample to determine the final mass of silt and clay (Gee and Bauder, 1986).  

The sample mass for each particle size was converted to percent finer starting with the largest 

sieve at 100% and progressing to the smallest measurement of 0.004 mm (2 x 10-4 in).  The mean 

D50 grain size where 50 % of the mass was finer than the given grain diameter was linearly 

interpolated where it fell between two sieve sizes using the equation: 

D50 = 10^(log(A) – log (B) • ቂ
ହ଴ି%஻ 

%஺ି%஻
ቃ + log(B))  

(Equation 4) 

where, A is the sieve size in mm larger than 50% finer, B is the sieve in mm smaller than 50% 

finer, %A is the percent finer than sieve A, and %B is the percent finer than sieve B.   Log 

transformation adjusts for the exponential distribution of % finer particle size 

(www.swrcb.ca.gov, accessed 15 Feb 2013). 

2.12 Percent organic matter content 

 We determined the amount of organic matter eroded in the sediment.  Percent organic 

matter was determined for all samples taken in Middle Canyon in 2011 using the additional 

mixed and split sample from the particle size analysis.  A sample of ~10 g (~0.02 lbs) was 
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weighed in grams to two significant figures in a pre-weighed crucible and placed into a 

combustion furnace at 450 oC (840 oF) and left overnight.  The crucible and sample were 

weighed after all organic matter was combusted within the sample and the percent organic matter 

content was gravimetrically determined by subtracting the crucible weight from pre- and post-

combustion sample mass.   

2.13 Statistical analysis  

 Sediment yields were repeatedly measured longitudinally through time at catchment 

outlets.  Sediment yields were analyzed on an annual basis to determine significance of treatment 

effectiveness in Middle Canyon for 2011 and in Sevier and Middle Canyons for 2012 (Ramsey 

and Schafer, 2002).  Paired catchment data from Sevier Canyon in 2011 were not analyzed for 

treatment effectiveness due to missing or incomplete data from all three pairs. In 2011, five 

repeated measures and in 2012 four repeated measures were sampled on the response variable of 

area normalized sediment yields at varying temporal lengths or unequally spaced number of days 

between events at catchment outlets.  Sediment yield were skewed right and unequally 

distributed.  Therefore, values were log-normalized, but first in order to log transform zero 

values 0.002 Mg ha-1 (half the smallest recorded erosion rate) was added to all sample values 

prior to transformation.   

 I constructed both generalized least squares and mixed effects models to analyze paired 

catchment sediment yield data.  For both these models, treatment type (control or treated) and 

paired catchment were used as explanatory variables, and fixed effects covariates believed to 

influence sediment yields were included thus creating a full model.  The area normalized 

sediment yield samples were grouped or nested by catchment allowing for within group variance 
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and were autocorrelated with a continuous time covariate, the number of days since fire 

containment that the event occurred (R Core Team, 2012; Zuur, 2009).  The full model was run 

while holding the fixed effects equal, using the Restricted Maximum Likelihood Estimation 

(REML) to allow for comparison between 1) a generalized linear fixed effect model with no 

random structure, 2) a random intercept mixed effect model, and 3) a random slope and intercept 

mixed effect model (Zuur, 2009).  The optimal model was chosen as having the lowest Akaike 

Information Criteria (AIC) value which measures the fit and adds penalties for the number of 

terms in the model (Zuur, 2009; Ramsey and Schafer 2009).  The best fitting full model with no 

random or a random structure was visually inspected for normality using quantile-quantile plots 

and for equal variance with residual verse fitted plots.   

 I dropped covariates from the full model if they were not significant and kept them if they 

were significant.  Backward selection tested for significant fixed effect covariates within the full 

model using maximum likelihood (ML) estimation.  Each fixed effect covariate was tested for 

significance (p < 0.05) in the progressively pared down full model when a non-significant fixed 

effect was dropped (Zuur, 2009).  The covariates tested for significance in the full model for 

straw bale check dam treatment effectiveness included: total event rainfall (mm), 10-min rainfall 

intensity (I10) (mm hr-1, in hr-1), 30-min rainfall intensity (I30) (mm hr-1, in hr-1), upslope and base 

of hillslope log-normalized erosion rates (Mg ha-1, t ac-1), channel and hillslope gradient (%), 

antecedent soil moisture or the sum of total rainfall (mm, in) that fell during the ten days leading 

up to the sediment yielding event, basin shape a unit-less relationship between catchment area 

and channel length, the interaction of year and upslope and year and base of slope log-

normalized erosion rates, and mineral soil cover in the channel, on the left hillslope, and the right 

hillslope.  Only one of the three rainfall variables were included in the model at a time after 
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inspection of a full model that included multiple rainfall covariates showed high correlation < - 

0.75, indicating a lack in independence.  Mineral soil was transformed by the arcsine square root 

for a more normal distribution (Lloret, 1998).  The final model was inspected for a low AIC 

value, normality, equal variance, and the final model residuals were plotted against each 

explanatory variable to check for equal distribution in spread.   

 Sediment yields were analyzed on a yearly basis to determine the final best fitting 

statistical model.  When the first and second post-fire years of Middle Canyon data were 

grouped, the interaction of year and log-normalized upslope erosion rates, and the interaction of 

year and log-normalized base of hillslope erosion rates had a significant effect on the model.  

This showed hillslope erosion rates were different between the first and second post-fire years, 

thus it was deemed appropriate to test for treatment significance on a yearly basis.  The repeated 

measure samples of sediment yields in Middle Canyon during 2011 were modeled with no 

random intercept component which had the lowest AIC = 66.54 (df = 11) compared to the 

random intercept (AIC = 68.54) and the random intercept and slope (AIC = 72.54) model 

structures.  This model was also logical choice because it had only four catchment groups 

making it difficult to accurately model the random variance component of nested catchment 

groups.  The I30 rainfall intensity fixed covariate was a better fit in the full model with an AIC = 

51.59 rather than I10 rainfall intensity with an AIC = 81.42.  Non-significant fixed effect 

covariates of channel and hillslope gradient (%), antecedent soil moisture, basin shape, base of 

hillslope log-erosion rates, and mineral soil cover in the channel and on the left and right 

hillslopes were dropped from the full model, which left only I30 and upslope fence log-

normalized sediment erosion rates as the only significant fixed effect parameters.  However, 

when extracting confidence intervals the optimization algorithms running applied to run the 
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REML were having estimates of covariance parameters that did not meet the requirement of 

positive definiteness at all iterative steps resulting in an error (West et al. 2007).  This was a 

result of the model being overparameterized due to the small sample size therefore, the lesser 

significant fixed effect covariate, log-upslope erosion rate, was dropped to leave I30 as the only 

fixed effect covariate. For the second post-fire year a random intercept model structure was the 

best fitting and was used to test for significance of treatment effect with log-normalized sediment 

yield data from Middle Canyon and Sevier Canyon data.   

 I used this same statistical modeling procedure with hillslope erosion rates, particle size 

distributions, and organic matter content.  I tested if there was a significant difference between 

upslope and base of hillslope fence log-normalized erosion rates.  I tested to determine if there 

were differences in mean D50 % finer particle size and organic matter content, between: upslope 

sediment to base of hillslope sediment; sediment at catchment outlets to hillslope sediment; and 

treated catchment sediment to control catchment sediment in Middle Canyon for 2011 and from 

2012 sediment samples from Middle Canyon that have been processed at the time of this writing.   

 I statistically analyzed trap volumes of straw bale check dams verses channel gradient, 

and the stability of the channels.  I used a linear regression model to determine if channel 

gradient had a significant effect on the mass of sediment trapped by straw bale check dams.  A 

paired t-test statistic tested for a significant difference in the repeated measure of mean cross-

sectional areas by catchment between the 27 Jul 2011 and 7 May 2012 survey dates.   

 I statistically analyzed mineral soil exposure and ground cover to help quantify burn 

severity at the site.  Prior to statistical analysis of the five ground cover variables, they were 

square-root or arcsine square-root transformed (Lloret, 1998).  For Spring and Fall 2011 and Fall 
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2012 ground cover, I used Welch Two Sample t-tests to assess significant difference between left 

and right hillslope transects and hillslope to channel transects for the five cover types.  Ground 

cover of left and right hillslope transects (looking down the channel) were grouped prior to 

testing for a significant difference between hillslope ground cover and channel ground cover.  A 

paired t-test was used to test for significant difference between repeated measures of: 2011 

Spring v. 2011 Fall “hillslope v. hillslope” and “channel v. channel”; 2011 Fall to 2012 Fall 

“hillslope v. hillslope” and “channel v. channel”.   Left and right (looking down channel) 

hillslope vegetation transects were significantly different in the Fall of 2012; these transects were 

individually tested against Fall 2011 left and right hillslope transects.  Statistical significance 

occurred if α ≤ 0.05.  I used the software R v.2.15 for all statistical analysis (R Core Team, 

2012). 
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3.0 Results 

3.1 Rain events 

 The area experienced roughly average rainfall during the two study years.  The mean 

monthly rainfall at the Snotel site from 1981 – 2012 during the months of April through 

September is 274 mm (10.8 in), making the total rainfall during the 2011 monitoring period 

similar to the mean rainfall for the area.  Rain gauges A-B (elev. 2190 m, 7185 ft), C-D (elev. 

2197 m, 7208 ft), and E-F (elev. 2236 m, 7336 ft) in Sevier Canyon, were 250 m (820 ft) apart 

with E-F located higher in the drainage than A-B (Figure 2).  Rain gauges G-H (elev. 2104 m, 

6902 ft) and I-J (elev. 2133 m, 6998 ft) in Middle Canyon were 120 m (390 ft) apart with G-H to 

the northeast and lower in the drainage than I-J. 

 In 2011 all the rain gauges received more rainfall, but had fewer high intensity rain 

events compared to the same period of monitoring during the 2012 monsoon season.  From 10 

Jun to 8 Oct 2011 the five rain gauges received 41 to 49 rain events and recorded 189 to 240 mm 

(7.4 to 9.4 in) of total rainfall (Table 3).  During the same time period in 2011, the nearby Snotel 

site 4 to 4.5 km (2.5 to 2.8 mi) and at elevation 2783 m (9130 ft) had 34 days with rainfall and 

recorded 277 mm (11 in) of precipitation.  From the 7 May to 26 Sep 2012, 129 to 164 mm (5.1 

to 6.4 in) of rainfall occurred during the 32 to 47 events across the gauges, while during the same 

period in 2012 the Snotel site recorded 246 mm (9.7 in) of precipitation.   
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Table 3. Paired catchment rain gauge, rain gauge elevation (m [ft]), monitored year, storm count, 
and total precipitation (mm, in) for the 5 paired catchment rain gauges.  The continuously 
monitored periods through the 2011 and 2012 monsoon seasons are 10 Jun - 8 Oct 2011, and 7 
May - 27 Sep 2012. 
 

 
 

 

 

 

 

 

 

 

 In 2011 Sevier Canyon received more high intensity rainfall events and precipitation 

compared to Middle Canyon.  Between the three gauges in Sevier Canyon, they received two 5-

year I10 return period events with the highest intensity of 16 mm (0.6 in) total 59 mm hr-1 (2.3 in 

hr-1), three 2-year I10 return period events, and two 1-year I10 return period events (Table 4).  In 

addition to these large events equal to or greater than a 1-year return period intensity, a range of 

41 to 49 events occurred at the three gauges during the season, with the vast majority of events 

having very low intensities and rainfall amounts (rain gauge E-F: Figure 10).   

 

 

 

 

Paired catchment 
rain gauge 

Elevation 
(m [ft])  Year 

No. of rain 
events 

Total rainfall 
(mm [in]) 

A‐B  2190 [7185]  2011  41  240 [9.4] 

2012  35  150 [5.9] 

C‐D  2197 [7208]  2011  42  199 [7.8] 

2012  36  144 [5.7] 

E‐F  2236 [7336]  2011  49  237 [9.3] 

2012  47  164 [6.4] 

G‐H  2104 [6902]  2011  41  189 [7.4] 

2012  32  129 [5.1] 

I‐J  2133 [6998]  2011  45  194 [7.6] 

2012  32  134 [5.3] 
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Table 4. Rainfall event date and post-fire year, monitored catchment pair, rainfall amount (mm, in), I10 
rainfall intensity (mm hr-1, in hr-1) and return period, I30 rainfall intensity (mm hr-1, in hr-1) and return 
period.  Sevier Canyon rain gauges: A-B, C-D, E-F.  Middle Canyon rain gauges: G-H, I-J. 

Event date  
{post‐fire year}  Pair 

Rainfall 
(mm) 

I10 
(mm hr‐1)  

[return period]* 

I30 
(mm hr‐1) 

[return period]* 

 
Rainfall 
(in) 

I10 
(in hr‐1) 

 [return period]* 

I30 
(in hr‐1) 

[return period]* 

15 Jun 2011 {1}  A‐B  14  43 [2]  28 [2]  0.6 1.7 [2]  1.1 [2] 

8 Jul 2011 {1}  A‐B  15  58 [5]  20 [1]  0.6 2.3 [5]  0.8 [1] 

C‐D  14  55 [2]  20 [1]  0.6 2.2 [2]  0.8 [1] 

E‐F  16  59 [5]  21 [1]  0.6 2.3 [5]  0.8 [1] 

G‐H  11  27  13  0.4 1.1  0.5 

I‐J  12  32 [1]  14  0.5 1.3 [1]  0.5 

27 Jul 2011 {1}  A‐B  8  18  10  0.3 0.7  0.4 

C‐D  7  17  9  0.3 0.7  0.4 

E‐F  8  18  10  0.3 0.7  0.4 

G‐H  8  20  9  0.3 0.8  0.4 

I‐J  8  18  9  0.3 0.7  0.3 

3 Aug 2011 {1}  A‐B  26  37 [1]  15  1.0 1.4 [1]  0.6 

C‐D  22  32 [1]  13  0.9 1.3 [1]  0.5 

E‐F  26  43 [2]  15  1.0 1.7 [2]  0.6 

G‐H  17  17  12  0.7 0.7  0.5 

I‐J  18  18  12  0.7 0.7  0.5 

25 Aug 2011 {1}  A‐B  10  32 [1]  19 [1]  0.4 1.3 [1]  0.7 [1] 

C‐D  8  29  16  0.3 1.1  0.6 

E‐F  9  27  17  0.4 1.1  0.7 

G‐H  8  27  15  0.3 1.1  0.6 

I‐J  8  27  15  0.3 1.1  0.6 

6 Oct 2011 {1}  A‐B  37  14  10  1.5 0.5  0.4 

C‐D  21  11  10  0.8 0.4  0.4 

E‐F  22  11  9  0.9 0.4  0.4 

G‐H  10  15  12  0.4 0.6  0.5 

I‐J  12  18  16  0.5 0.7  0.6 

16 Jul 2012 {2}  A‐B  15  47 [2]  23 [1]  0.6 1.9 [2]  0.9 [1] 

C‐D  16  52 [2]  24 [2]  0.6 2.0 [2]  1.0 [2] 

E‐F  15  52 [2]  24 [2]  0.6 2.0 [2]  1.0 [2] 

G‐H  24  53 [2]  38 [5]  0.9 2.1 [2]  1.5 [5] 

I‐J  26  61 [5]  41 [5]  1.0 2.4 [5]  1.6 [5] 

31 Jul 2012 {2}  I‐J  11  32 [1]  15  0.4 1.3 [1]  0.6 

1 Aug 2012 {2}  A‐B  6  37 [1]  13  0.3 1.4 [1]  0.5 

C‐D  7  38 [1]  13  0.3 1.5 [1]  0.5 

E‐F  7  40 [1]  14  0.3 1.6 [1]  0.5 

G‐H  8  49 [2]  17  0.3 1.9 [2]  0.7 

I‐J  8  44 [2]  16  0.3 1.7 [2]  0.6 

14 Aug 2012 {2}  A‐B  16  49 [2]  22 [1]  0.6 1.9 [2]  0.9 [1] 

C‐D  13  40 [1]  19 [1]  0.5 1.6 [1]  0.7 [1] 

E‐F  14  40 [1]  19 [1]  0.6 1.6 [1]  0.8 [1] 

G‐H  6  23  10  0.2 0.9  0.4 

I‐J  10  26  15  0.4 1.0  0.6 

24 Aug 2012 {2}  A‐B  7  37 [1]  13  0.3 1.5 [1]  0.5 

C‐D  7  41 [1]  14  0.3 1.6 [1]  0.6 

E‐F  8  44 [2]  15  0.3 1.7 [2]  0.6 

10 Sep 2012 {2}  A‐B  9  35 [1]  12  0.4 1.4 [1]  0.5 

C‐D  9  35 [1]  12  0.4 1.4 [1]  0.5 

E‐F  8  27  10  0.3 1.1  0.4 

G‐H  11  35 [1]  13  0.4 1.4 [1]  0.5 

   I‐J  11  37 [1]  14  0.4 1.4 [1]  0.5 

*I10 and I30 intensity return periods from: <http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=ut>  
 Lat: 38.526o, Long: -112.411 o  Accessed: 20 Jan 2013.  
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 During the summers rainfall often occurred in short bursts precipitated from cumulous 

clouds.  Short duration high intensity rain events were common for large events ≥1-year return 

periods, with most of the 2-year or 5-year I10 intensity return period events only registering as a 

1-year or less I30 intensity return period (Table 4).  Middle Canyon had a similar number of rain 

events as Sevier Canyon; in 2011 however, it had much lower intensity events with only one 1-

year I10 intensity event and no events having an intensity of a 1-year I30 return period.   

 

 

 
 
 
 Sevier and Middle Canyons received less rainfall and fewer events during the 2012 

monitoring season compared to the 2011 monitoring season (Table 3).  However, both canyons 

received a greater number of events with intensities equal to or greater than a 1-year I10 return 

period (Table 4).  Sevier Canyon received five 2-year I10 return period events, and nine 1-year I10 

return period events, but unlike in 2011 it did not receive a 5-year I10 return period event (Figure 
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Figure 10.  Rain events and corresponding 10-min (I10) and 30-min (I30) rainfall intensities 
from 10 Jun 2011 to 8 Oct 2011 for rain gauge E-F. 
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11).  Middle Canyon received a far greater number of high intensity events in 2012 compared to 

2011.  The two pairs received a total of one 5-year I10 return period event with 26 mm (1.0 in) 

total and an intensity of 61 mm hr-1 (2.4 in hr-1), three 2-year I10 return period events, and three 

1-year I10 return period events.  There were more I10 events that reached intensities equal to or 

greater than a 1-year return period than I30 events, and generally events had larger I10 return 

periods than I30 return periods.  On 16 Jul 2012 the pair G-H received 24 mm (0.9 in) at an I30 of 

38 mm hr-1 (1.5 in hr-1) equivalent to a 5-year return period event with an I10 of 53 mm hr-1 (2.1 

in hr-1) equivalent to a 2-year I10 return period.  This was the only event that had a larger I30 

return period than an I10 return period during the two seasons of monitoring.  Based on the events 

that produced sediment in the traps, an approximate threshold for detectable soil erosion was an 

I30 of 10 mm hr-1 (0.4 in hr-1) or an I10 of 15 mm hr-1 (0.6 in hr-1).  The number of events 

exceeding the I30 > 10 mm hr-1 (0.4 in hr-1) threshold ranged from eight to twelve events across 

the 5 rain gauges in 2011 and 2012.  
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3.2 Paired catchment sediment yields 

 Large sediment yields from catchments were typical for 2011.  The sediment retention 

structures were cleaned out five times during 2011 (Table 6 [a,b]).  The cleanout in pair A-B on 

26 Jul 2011 was the sum of two sediment yield events produced from a 2-year I30 return period 

event on 15 Jun and a 5-year I30 return period event on 8 Jul 2011.  The I30 rainfall intensity was 

found to be the best predictor of sediment yields and I will refer to this intensity when addressing 

sediment yields.  The rain event on 8 Jul 2011 caused sediment retention structures to be 

overwhelmed in 5 of the 10 catchments (all located in Sevier Canyon) causing sediment retention 

structures to fail or fill to the maximum storage capacity and be overtopped by sediment 

mobilized in the channel (Figure 12).   
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Figure 11.  Rain events and corresponding 10-min (I10) and 30-min (I30) rainfall intensities 
from 7 May 2012 to 27 Sep 2012 for rain gauge E-F.
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Figure 12.  Sediment overwhelmed the upper sediment retention structure and caused the lower 
sediment retention structure to fail in catchment F from a high sediment yielding 16 mm (0.6 in) 
1-year I30 21 mm hr-1 (0.8 in hr-1) return period event on 8 Jul 2011.  Overwhelmed and failed 
fences occurred only in Sevier Canyon due to the high sediment erosion rates during 2011.  The 
reliable sediment yield is the measurement of sediment in the upper fence shown here, and is a 
conservative estimate of the true sediment yield from the catchment during the rain event.   

 The second major sediment yield event on 3 Aug 2011 overwhelmed sediment retention 

structures in 3 of the 10 catchments, all of which were again located in Sevier Canyon.  These 

two very large events accounted for 88 to 97 % of the reliable sediment yields from the six 

catchments in Sevier Canyon in 2011.  The sediment yields from the other three events in 2011 

that accounted for 3 to 12 % of the annual yield were small and did not overwhelm the sediment 

retention structures.  Reliable sediment yields measured in overwhelmed sediment retention 

structures are conservative estimates limited by the size of sediment retention structure rather 

than the total sediment yield from the event.  The sediment yields measured using the surveying 

Flow 
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technique had a relative uncertainty of ± 4% compared to the direct measurement of sediment 

yields by weighing buckets.   

Table 5 a.) metric and b.) customary.  Annual sediment erosion rates in 2011 and 2012 from 
treated and control catchment pairs. 
 
  a. 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 

 During 2011 Sevier Canyon experienced much greater sedimentation rates than Middle 

Canyon.  In Sevier Canyon, we captured the total annual sediment only in control catchment B, 

which had an annual sediment yield of 33.49 (±1.4) Mg ha-1 yr-1 [14.94 (±0.6) t ac-1 yr-1] (Table 5 

a, b).  The sediment retention structures in Sevier Canyon experienced partial or full failures 

during large events, making direct comparison of sediment yields from control and treated 

catchments difficult.  Conservative annual sediment yields from the overwhelmed structures in 

catchments treated with 4 straw bale check dams ha-1 (2 ac-1) were 19.53 Mg ha-1 yr-1 [8.71 t ac-1 

yr-1], 20.62 Mg ha-1 yr-1 [9.20 t ac-1 yr-1], and 25.71 Mg ha-1 yr-1 [11.47 t ac-1 yr-1] for catchments 

A, D, and F, respectively.   

2011  2012 
Catchment  Mg ha‐1 yr‐1 (±∆)  Mg ha‐1 yr‐1 (±∆) 

pair  Treated  Control  Treated  Control 

A‐B  19.53*  33.49 (±1.4)  13.12 (±0.6)  6.21 (±0.2) 
C‐D  20.62*  ‐‐†  6.80 (±0.3)  10.23 (±0.4) 
E‐F  25.71*  ‐‐†  11.22 (±0.4)  34.18 (±1.4) 
G‐H  4.33 (±0.1)  12.93 (±0.5)  3.74 (±0.1)  13.11 (±0.6) 
I‐J  3.54  19.27 (±0.5)  11.99 (±0.6)  17.14 (±0.5) 

 
   2011  2012 

Catchment  t ac‐1 yr‐1 (±∆)  t ac‐1 yr‐1 (±∆) 

pair  Treated  Control  Treated  Control 

A‐B  8.71*  14.94 (±0.6)  5.85 (±0.2) 2.77 (±0.1) 

C‐D  9.20*  ‐‐†  3.03 (±0.1) 4.56 (±0.2) 

E‐F  11.47*  ‐‐†  5.01 (±0.2) 15.25 (±0.6) 

G‐H  1.93 (±0.1)  5.77 (±0.2)  1.67 (±0.1) 5.85 (±0.2) 

I‐J  1.58  8.60 (±0.2)  5.35 (±0.2) 7.64 (±0.3) 

* Total sediment yields were not captured during one or more rain events due to overtopping or partial failure of 
sediment retention structure.  Yields measured when sediment retention structure was overwhelmed provides a 
conservative estimate of erosion rates.  Absolute uncertainties not show for conservative sediment yield estimates. 
† Annual sediment yield is not shown due to sediment retention structures total failure during a storm. 
±∆ is absolute uncertainty associated with sediment yields measured using the surveying technique.  

b. 
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Table 6.  Event date and corresponding paired catchment area normalized sediment yield a.) Mg ha-1, b.) t ac-1.  The 8 Jul 2011 event 
overwhelmed or caused sediment retention structures to fail in five of the ten catchments, the other five held the total sediment yields. 
The 3 Aug 2011 event overwhelmed sediment retention structures in three of the ten catchments.  Sediment yields for treated and 
control catchments A.1, C-D.2, E-F.3 are from reliable sediment yield data that is limited by retention structure storage capacity rather 
than true sediment yield.  In Middle Canyon during 2011 is no significant difference between treated and control catchment sediment 
yields.  In Sevier and Middle Canyons in 2012 there is no significant difference between treated and control catchment sediment 
yields.  
a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
b. 
 

 
 

 

±∆ is absolute uncertainty of sediment yields measured using the survey technique; (±) bracket not shown if absolute uncertainty is < 0.05 or significant figure is equal to ±0. 
*Did not capture total sediment yield from event; either one silt fence failed and one silt fence held to give a conservative value, or both sediment fences “Failed”    
        and no sediment was captured.  If the survey technique was used to measure these sediment yields the error is not given. 
†Area normalized sediment yield is sediment accumulation from a 2-year I30 return period event on 15 Jun 2011 and a 1-year I30 return period event on 8 Jul   
        2011 because no cleanout of sediment retention structures occurred between the two dates. 

         Sevier Canyon           Middle Canyon    
Catchment pair  A  B  C  D  E  F  G  H  I  J 

Treated  Control  Control  Treated  Control  Treated  Treated  Control  Control  Treated 
Event date [post‐fire year]  Mg ha‐1 (±∆)  Mg ha‐1 (±∆)  Mg ha‐1 (±∆)  Mg ha‐1 (±∆)  Mg ha‐1 (±∆) 

8 Jul 2011 [1]  7.50*†  25.29 (±1.1)  Failed*  11.70*  Failed*  11.33*  2.55 (±0.1)  6.61 (±0.3)  11.39 (±0.5)  0.40 
27 Jul 2011 [1]  0.08  0.02  0.02  0.04  0.03  0.09  0.01  0.00  0.00  0.01 
3 Aug 2011 [1]  9.61*  7.30 (±0.3)  9.45  8.18  12.94*  12.97*  0.55  4.23 (±0.2)  5.45  1.43 
25 Aug 2011 [1]  0.28  0.22  0.11  0.20  0.08  0.05  0.52  1.16  0.53  0.54 
6 Oct 2011 [1]  2.06  0.66  1.03  0.50  1.16  1.27  0.70  0.93  1.90  1.16 

16 Jul 2012 [2]  0.02  0.01  0.22  0.02  0.06  0.04  0.00  0.09  2.26  1.09 
1 Aug 2012 [2]  1.51 (±0.1)  0.10  1.29  0.37  16.78 (±0.7)  1.40  3.17 (±0.1)  11.14 (±0.5)  12.38 (±0.5)  8.52 (±0.4) 
14 Aug 2012 [2]  10.54 (±0.5)  5.72 (±0.2)  8.28 (±0.4)  6.04 (±0.3)  16.83 (±0.7)  9.29 (±0.4)  0.01  0.07  0.31  0.18 
10 Sep 2012 [2]  1.05  0.38  0.43  0.38  0.51  0.49  0.56  1.81 (±0.1)  2.19 (±0.1)  2.20 (±0.1) 

         Sevier Canyon           Middle Canyon    
Catchment pair  A  B C D E F  G H I J

Treated  Control Control Treated Control Treated Treated Control Control Treated
Event date [post‐fire year]  t ac‐1 (±∆) t ac‐1 (±∆) t ac‐1 (±∆)  t ac‐1 (±∆) t ac‐1 (±∆)

8 Jul 2011 [1]  3.34*†  11.28 (±0.5) Failed* 5.22 Failed* 5.05*  1.14 (±0.1) 2.95 (±0.1) 5.08 (±0.2) 0.18
27 Jul 2011 [1]  0.04  0.01 0.01 0.02 0.01 0.04  0.01 0.01 0.00 0.00
3 Aug 2011 [1]  4.29*  3.25 (±0.1) 4.22 3.65 5.77* 5.78*  0.25 1.89 (±0.1) 2.43 0.64
25 Aug 2011 [1]  0.12  0.10 0.05 0.09 0.03 0.02  0.23 0.52 0.24 0.24
6 Oct 2011 [1]  0.92  0.29 0.46 0.22 0.52 0.57  0.31 0.41 0.85 0.52

16 Jul 2012 [2]  0.01  0.01 0.10 0.01 0.03 0.02  0.00 0.04 1.01 0.49
1 Aug 2012 [2]  0.68  0.04 0.58 0.17 7.49 (±0.3) 0.62  1.41 (±0.1) 4.97 (±0.2) 5.52 (±0.2) 3.80 (±0.2)
14 Aug 2012 [2]  4.70 (±0.2)  2.55 (±0.1) 3.69 (±0.2) 2.69 (±0.1) 7.51 (±0.3) 4.14 (±0.2) 0.00 0.03 0.14 0.08
10 Sep 2012 [2]  0.47  0.17 0.19 0.17 0.23 0.22  0.25  0.81 0.97 0.98
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 The 2011 sediment yields in Middle Canyon’s paired catchments G-H and I-J were much 

less than those in Sevier Canyon, allowing the sediment retention structures to capture the total 

annual sediment yield (Figure 13).  In Middle Canyon the mean annual sediment yield from 

catchments treated with 4 straw bale check dams ha-1 (2 SCDs ac-1) was 3.93 (±0.1) Mg ha-1 

[1.75 t ac-1 yr-1] and 16.10 (±0.5) Mg ha-1 [7.18 (±0.2) t ac-1 yr-1] from control catchments or a 76 

(±4) % reduction in sediment yield rates.  Middle Canyon pairs G-H and I-J had a mean 

treated:control paired catchment ratio of 0.51 (±0.02): 1 (Table 9).   

 

Figure 13.  Total sediment yield captured by sediment retention structures in catchment I.5 from 
an event on 8 July 2011.  Lower sediment yields in Middle Canyon allowed total annual 
sediment yields to be captured during the 2011 monitored period. 

 

 

Flow 
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 In Middle Canyon during 2011 there is no significant difference in sediment yields 

between catchments treated with straw bale check dams and those left untreated with a t-statistic 

-1.296 (df = 18, p = 0.216).  The modeled slope for a treated catchment was -1.00 with 95% 

confidence intervals of -2.665 to 0.657.  The I30 return period is a significant fixed effect 

covariate t = 2.79 (p = 0.015), having a slope of 0.513 and 95% confidence intervals of 0.119 to 

0.908 (Table 7a.).  The paired catchment ratios in Middle Canyon during 2011 were 0.36 (±0.01) 

to 0.67 (±0.03) with a mean of 0.51 (±0.02) (Table 9).   

Table 7.  Significance of straw bale check dam treatment in paired catchments using:  a) a 
generalized least squares model for 2011 Middle Canyon catchment sediment yields, b) a 
random intercept model for 2012 Middle Canyon and Sevier Canyon catchment sediment yields.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2011 Middle Canyon catchment sediment 
yields             
Generalized least squares model    

   95 % Confidence Intervals

Variable 
Slope 
value 

Standard 
error  t‐value  p‐value  lower   upper 

Intercept  ‐1.314  4.257 ‐0.309 0.762 ‐10.446  7.817 
pair  ‐1.121  0.779 ‐1.439 0.172 ‐2.793 0.550 

treatment: Treated  ‐1.004  0.774 ‐1.297 0.216 ‐2.665 0.657 
I30  0.513  0.184 2.790 0.015 0.119 0.908 

Degrees of freedom = 18    
Residual standard error = 1.448       

 

2012 Middle Canyon and Sevier Canyon catchment sediment yields      
Random intercept model 

   95 % Confidence Intervals

Variable  Slope value 
Standard 
error 

degrees of
 freedom  t‐value  p‐value  lower   upper 

(Intercept)  0.392  0.808 28 0.485 0.632  ‐1.264 2.047
pair  0.213  0.196 7 1.088 0.313  ‐0.250 0.676

treatment: Treated  ‐0.565  0.549 7 ‐1.029 0.338  ‐1.862 0.732
I30  ‐0.098  0.025 28 ‐3.858 0.001  ‐0.150 0.046

log(upslope erosion)  2.390  0.284 28 8.410 0.000  1.808 2.972

a. 

b. 
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 No sediment retention structures failed or overtopped during 2012, allowing accurate 

measurement of annual sediment yields in all ten catchments.  The sediment retention structures 

were cleaned out four times during the 2012 summer monsoon season.  Two of the four events in 

Sevier Canyon accounted for 92 to 98% of the total 2012 annual sediment yields from the six 

catchments.  The 2012 annual sediment yields from Sevier Canyon treated catchments ranged 

from 6.80 (±0.3) to 13.12 (±0.6) Mg ha-1 [3.03 (±0.1) to 5.85 (±0.2) t ac-1] (Table 5 [a,b]), and 

the range of annual sediment yields from control catchments was 6.21 (±0.2) to 34.80 (±1.4) Mg 

ha-1 [2.77 (±0.1) to 15.25 (±0.6) t ac-1].  The largest sediment yields occurred during the 14 Aug 

2012 rain event, but control catchment E also had a significant sediment yield during the 1 Aug 

2012 event (Table 6 [a,b]). 

 In Middle Canyon during 2012, both the control catchments in pairs G-H and I-J had 

larger annual sediment yields than treated catchments within the pairs.  In paired catchment G-H, 

treated catchment G had an annual sediment yield of 3.74 (±0.1) Mg ha-1 [1.67 (±0.1) t ac-1] 

(Table 5 [a,b]), and the control catchment H had an annual sediment yield of 13.3 (±0.6) Mg ha-1 

[5.85 (±0.2) t ac-1].  The 2012 sediment yields from paired catchment I-J were 11.99 (±0.6) Mg 

ha-1 [5.35 (±0.2) t ac-1] in treated catchment J and 17.14 (±0.5) Mg ha-1 [7.64 (±0.3) t ac-1] in 

control catchment I.  The event on 16 Jul 2012 had a 5-year return period I30 intensity in pairs G-

H and I-J and produced 0 to 13 % of the annual 2012 sediment yields in the four Middle Canyon 

catchments.  While the 31 Jul 2012 event in I-J and the 1 Aug 2012 event in G-H and I-J with I30 

intensities less than a 1-year return period produced 71 to 85% of the total 2012 annual sediment 

yield.   

 There was no significant difference t = -1.029 (df = 7, p = 0.338) in sediment yields 

between treated and control catchments in Sevier and Middle Canyons during the second-post 
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fire year in 2012 (Table 7b.).  The modeled slope of treated catchment sediment yields is -0.565 

compared to control catchment yields with 95% confidence intervals of -1.862 to 0.732.  The I30 

rainfall intensity is a significant covariate t = -3.858 (p < 0.001), with a modeled slope of -0.098 

and 95% confidence intervals of -0.150 to -0.046.  Log-upslope hillslope erosion is also a 

significant covariate t = 8.410 (p = 0.000), with a modeled slope of 2.390 and 95% confidence 

intervals of 1.81 to 2.97.  The 2012 paired catchment ratios for the five pairs in Sevier and 

Middle Canyons ranged from 0.29 (±0.01):1 to 2.11 (±0.01):1 with a mean of 0.82 (±0.2):1, and 

a median of 0.67 (±0.1):1 (Table 9). 

3.3 Hillslope erosion 

 In 2011 the annual hillslope erosion rates were generally higher than control catchment 

sediment yield rates (Table 7).  The majority (92 %) of annual erosion rates were from cleanouts 

early in the season from the 8 Jul and 3 Aug events (Table 8).  On one occasion in 2011, the 

erosion rates in paired catchment A-B were the sum of eroded sediment yields from two large 

rain events with intensities equal to or greater than a 1-year I10 return period intensities.   

Table 8.  Annual hillslope erosion rates (Mg ha-1 yr-1 [t ac-1 yr-1]) for 2011 and 2012, from 
upslope and base of hillslope fences by catchment pair. 

 

 

 

 

 

 
 

     2011 2012 
 

Hillslope 
fence pair 

(Mg ha‐1 yr‐1

[t ac‐1 yr‐1]) 
(Mg ha‐1 yr‐1  
[t ac‐1 yr‐1]) 

 
Upslope 

Base of 
hillslope  Upslope 

Base of 
hillslope 

Sevier 
Canyon 

A‐B  103.1 [46.0] 120.1 [53.6]* 25.2 [11.2] 47.3 [21.1] 
C‐D  22.2 [9.9] 25.6 [11.4] 14.2 [6.3] 9.9 [4.4] 

  E‐F  32.2 [14.4] 61.9 [27.6]* 11.0 [4.9] 44.8 [20.0] 

Middle 
Canyon 

G‐H  7.2 [3.2] 0.1 [0.1] 6.8 [3.0] 0.5 [0.2] 
I‐J  35.8 [16.0] 24.7 [11.0] 77.6 [34.6] 19.1 [8.5] 

 
* Hillslope fence was overwhelmed by sediment erosion during one or more rain events.  The erosion rate 
displayed is a conservative estimate of the true erosion rate. 
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 Overall hillslope fences captured the very high erosion rates during 2011, with only a 

couple fences being overwhelmed on a few occasions.  The fences at the base of hillslopes in 

catchments B and E were overwhelmed by sediment during the 8 Jul 2011 rain event, and 

hillslope fence E was overwhelmed again during the 3 Aug 2011 event.  The reliable erosion 

rates from these cleanouts are conservative values that reflect the maximum storage capacity of 

the hillslope fence rather than the true hillslope erosion rate.  Rocks and debris were detached by 

animal movement above hillslope fences A and J and deposited in the sediment fences before the 

last cleanout in Oct 2011.  This sediment was not measured; however the annual hillslope 

erosion rates were probably not too affected by this because the amount of sediment (< 6 kg [13 

lb]) discarded from the fences was only ~2 to 3 % of the total annual erosion rate.    I10 rainfall 

intensity was the best predictor of hillslope erosion and I will refer to this intensity when 

discussing hillslope erosion rates.   

 

 

 

 

 

 

 

 

 

 

 

 

 

         Sevier Canyon Middle Canyon 
Catchment pair  A  B  C  D  E  F  G  H  I  J 
Fence location 

upslope 
base of 
slope  upslope 

base of 
slope  upslope 

base of 
slope  upslope 

base of 
slope  upslope 

base of 
slope 

Event date 
{post‐fire year} 

(Mg ha‐1 
 [t ac‐1]) 

(Mg ha‐1 
 [t ac‐1]) 

(Mg ha‐1 
 [t ac‐1]) 

(Mg ha‐1 
 [t ac‐1]) 

(Mg ha‐1 
 [t ac‐1]) 

8 Jul 2011 {1}  87.6 
[39.1] 

84.3 
[37.6]* 

12.7 
[5.7] 

18.3 
[8.2] 

31.1 
[13.9]* 

22.9 
[10.3] 

5.1 
[2.3] 

0  12.1 
[5.4] 

23 
[10.3] 

27 Jul 2011 {1}  2.4 
[1.1] 

0.6 
[0.3] 

2.0 
[0.9] 

0.6 
[0.3] 

0.2 
[0.1] 

0.7 
[0.4] 

0.1 
[0.1] 

n/a  2.9 
[1.3] 

0.9 
[0.4] 

3 Aug 2011 {1}  12.4 
[5.5] 

33.1 
[14.8] 

6.1 
[2.7] 

6.1 
[2.7] 

24.8 
[11.1]* 

7.9 
[3.5] 

0.9 
[0.4] 

0  4.3 
[1.9] 

7.5 
[3.4] 

25 Aug 2011 {1}  0.6 
[0.3] 

0  0.8 
[0.4] 

0.1 
[0.1] 

0.1 
[0.1] 

0.1 
[0.1] 

0.5 
[0.3] 

0  4.3 
[1.9] 

4.2 
[1.9] 

6 Oct 2011 {1}  n/a  1.7 
[0.8] 

0.4 
[0.2] 

0.3 
[2.4] 

5.3 
[2.4] 

0.2 
[0.1] 

0.2 
[0.1] 

0  0.9 
[0.4] 

n/a 

                      
16 Jul 2012 {2}  n/a  3.4 

[1.5] 
1.1 
[0.5] 

0.3 
[0.2] 

0  n/a  0.1 
[0.1] 

0  11.4 
[5.1] 

25.5 
[11.4] 

1 Aug 2012 {2}  2.0 
[0.9] 

4.4 
[2.0] 

2.3 
[1.1] 

0.7 
[0.3] 

20.6 
[9.2] 

3.2 
[1.5] 

5.9 
[2.7] 

0.2 
[0.1] 

4.4 
[2.0] 

42.7 
[19.1] 

14 Aug 2012 {2}  22.6 
[10.1] 

38.6 
[17.2] 

9.5 
[4.3] 

8.1 
[3.7] 

23.7 
[10.6] 

7.4 
[3.3] 

0  0  0.3 
[0.2] 

0.3 
[0.1] 

10 Sep 2012 {2}  0.4 
[0.2] 

0.8 
[0.4] 

1.0 
[0.5] 

0.6 
[0.3] 

0.1 
[0.1] 

0.2 
[0.1] 

0.5 
[0.3] 

0.1 
 [0] 

2.7 
[1.2] 

8.8 
[3.9] 

*Hillslope fence overwhelmed by sediment erosion during event.   
n/a: animal disturbance introduced sediment into the fence it was not measured here. 

Table 9.  Hillslope erosion rates (Mg ha-1 [t ac-1]) in Middle and Sevier Canyons, with catchment 
pair, event date and post-fire year, and fence location. 
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 The early season 8 Jul 2012 and 3 Aug 2012 events accounted for 95 % of the annual 

erosion rate in Sevier Canyon for upslope fences A, C, and F and the slope length fences B, D, 

and E (Table 8).  The 2011 mean annual upslope erosion rate in Sevier Canyon was 52.6 Mg ha-1 

[23.5 t ac-1] with a range of 22.2 to 103.1 Mg ha-1 [9.9 to 46.0 t ac-1] and the mean annual 

hillslope erosion rate for fences at the base of hillslopes was 69.2 Mg ha-1 [30.9 t ac-1] with a 

range of 25.6 to 120.1 Mg ha-1 [11.4 to 56.3 t ac-1].   

 In Middle Canyon the 2011 annual hilllslope erosion rates were much less than in Sevier 

Canyon, allowing hillslope fences to capture the total erosion during each event (Figure 14).  In 

Middle Canyon the erosion rates varied widely for upslope fences of 7.2 and 35.8 Mg ha-1 [3.2 

and 16.0 t ac-1] and for base of hillslope fences of 0.1 and 24.7 Mg ha-1 [0.1 and 11.0 t ac-1].  The 

first cleanout on 26 Jul 2011 accounted for 65 % of annual erosion in upslope fences and 49 % of 

annual erosion for base of hillslope fences.  Mean hillslope erosion rates were higher than 

catchment sediment yields in Middle Canyon.  The representative mean annual hillslope erosion 

rate of the combined four upslope and base of hillslope fences was 17.0 Mg ha-1 [7.6 t ac-1], or 5 

% higher than the representative mean annual sediment yields from control catchments H and I 

of 16.1 Mg ha-1 [7.2 t ac-1].   
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Figure 14.  Hillslope fence G captured total sediment yield from an 11 mm (0.4 in) 27 mm hr-1 
(1.1 in hr-1) rain event on 8 Jul 2011 that was less than a 1-year I10 recurrence interval event.   

 A random intercept mixed effect model was the best fitting random component for log-

normalized hillslope erosion rates during 2011.  Log-normalized hillslope erosion rates for 

upslope fences and base of hillslope fences for Sevier and Middle Canyons are not significantly 

different t = 0.626 (df = 7, p = 0.55).  The fixed effect covariate I10 return period rainfall intensity 

fit the full model better than the I30 return period rainfall intensity (df = 8; I10 AIC = 172.12; I30 

AIC = 190.83).   Ten-minute intensity is a significant covariate t = 6.58 (df = 35, p < 0.001), and 

antecedent soil moisture is also a significant fixed effect covariate t = 4.34 (df = 35, p < 0.001).  

The modeled slope for the upper fence is 0.672 (95% CI; lower = -1.86, upper = 3.21).  Ten-
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minute rainfall intensity has a slope of 0.08 (95% CI; lower = 0.05, upper = 0.10), and 

antecedent moisture has a slope of 0.06 (95% CI; lower = 0.03, upper = 0.09). 

 Annual hilllslope erosion rates in 2012 were generally less than 2011 rates for all 

hillslope fences, except for upslope fence J in Middle Canyon (Table 8).  Upslope hillslope 

fences in Sevier Canyon had annual erosion rates range from 11.0 to 25.2 Mg ha-1 [4.9 to 11.2 t 

ac-1], and base of hillslope fences had erosion rates range from 9.9 to 47.3 Mg ha-1 [4.4 to 21.1 t 

ac-1].  Excluding hillslope fence E, 67 to 86 % of annual hillslope erosion in the five Sevier 

Canyon fences occurred during the 14 Aug 2012 event.  The events on 1 Aug 2012 and 12 Aug 

2012 in base of hillslope fence E accounted for 99 % of the annual hillslope erosion. 

 In 2012 Middle Canyon had a large range for annual upslope fence erosion rates.   The 

two upslope fences measured 6.8 and 77.6 Mg ha-1 [3.0 to 34.6 t ac-1] of sediment erosion, while 

the range for base of hillslope fences was 0.5 to 19.1 Mg ha-1 [0.2 to 8.5 t ac-1].  The 16 Jul 2012 

and 1 Aug 2012 events contributed 66 to 90 % to the annual sediment erosion rates.  2011 and 

2012 hillslope sediment erosion rates vs. I10 rainfall intensities shows erosion rates increase with 

higher intensity events (Figure 15).   
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Figure 15.  The relationship between 10-min maximum rainfall intensity (mm hr-1, in hr-1) and 
base of hillslope (downslope; squares) and upslope (triangles) erosion rates by year (2011 closed 
symbols, 2012 open symbols).     

 A random intercept mixed effects model was the most appropriate random structure for 

2012 log-normalized upslope and base of hillslope erosion rates.  There is no significant 

difference t = 0.650 (df = 7, p = 0.537) in hillslope erosion rates for upslope and base of hillslope 

erosion rates for Sevier and Middle Canyons during 2012.  I10 rainfall intensity was a better 

fitting covariate than I30 rainfall intensity (I10, AIC = 159.93, I30, AIC = 164.73).  The I10 rainfall 

intensity is a significant covariate in the model t = 2.86 (df = 26, p = 0.008), and antecedent soil 

moisture is also a significant covariate t= 2.29 (df = 26, p = 0.03).  The modeled slope for the 
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upper hillslope fence is 0.475 (95% CI: lower = -1.14, upper = 2.06).  The modeled slope for the 

covariate I10 is 0.08 (95% CI; lower = 0.03, upper = 0.13), and the modeled slope for antecedent 

soil moisture is 0.037 (95% CI; lower = 0.006, upper = 0.068). 

 Upslope and base of hillslope erosion rates were grouped by year because of the lack of 

significance between fence plots and are tested for a significant difference by year.  There is a 

significant difference t = -2.90 (df = 72, p = 0.005) between log-normalized hillslope erosion 

rates in 2011 compared to 2012.  Ten minute intensity rainfall is a better fit in the model than I30 

(I10, AIC = 311.20, I30, AIC = 336.31).  The I10 rainfall intensity is a significant fixed effect 

covariate t = 6.91 (df = 72, p < 0.001), and antecedent soil moisture is a significant fixed effect t 

= 4.53 (df = 72, p < 0.001) in the model.  The modeled slope for the response year is -0.89 (95% 

CI; lower = -1.51, upper = -0.28).  The modeled slope for I10 rainfall intensity is 0.078 (95% CI; 

lower = 0.06, upper = 0.10), and the modeled slope for antecedent soil moisture is 0.04 (95% CI; 

lower = 0.03, upper = 0.06).   

3.4 Straw bale check dams 

 All catchments were treated at a rate of 4 straw bale check dams per ha-1 (2 ac-1) at the 

beginning of 2011 and were filled with sediment early in the year. Catchments A, D, and F in 

Sevier Canyon had areas of ~0.3 to 0.6 ha (~0.7 to 1.4 ac) were treated with two straw bale check 

dams per catchment.  In Middle Canyon, treated catchment G with an area of ~1.4 ha (~3.3 ac) 

had six straw bale check dams and catchment J with an area of ~0.7 ha (~1.7 ac) was treated with 

three straw bale check dams. All the straw bale check dams in Sevier Canyon filled to sediment 

holding capacity or the height of trapped sediment behind the straw bale check dam was equal to 

the spillway height and overtopped during the 2-year and 1-year I30 intensity return period event 
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on 15 Jun 2011 and 8 Jul 2011 in catchment A respectively.  The SCDs filled to capacity during 

the 1-year I30 intensity return period event on 8 Jul 2011 in catchments D and F (Figure 16).   

 

 

Figure 16.  Channel F treated with 2 straw bale check dams that filled to capacity and were 
overwhelmed by a 16 mm (0.6 in), 21 mm hr-1 (0.8 in hr-1) I30 intensity 1-year return period 
event.  The majority of sediment trapped by straw bale check dams was a sandy loam, but large 
woody debris and cobble mobilized by overland flow were also trapped.  Photo looks down 
channel. 

 The 8 Jul 2011 event was less than a 1-year I30 intensity return period in Middle Canyon 

and it filled the majority of straw bale check dams to their maximum sediment holding capacity.  

In catchment G the event filled three of the six straw bale check dams to their sediment holding 

Flow
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capacity (Figure 17), and in catchment J the event filled two of the three straw bale check dams 

to maximum sediment holding capacity.   

 

Figure 17.  Straw bale check dam in catchment G filled to capacity during a 11 mm (0.4 in), 13 
mm hr-1 (0.5 in hr-1) I30 intensity rain event on 8 Jul 2011, which is less than a 1-year return 
period I30 intensity event.  Spillway rocks to reduce scour were undisturbed by flow.  Photo looks 
up-channel. 

 Even though structures were left empty after a sediment event had occurred, very fine silt 

and clay sediment was still transported out of the catchment.  In catchment G, the sediment 

retention structure captured 2.55 (±0.1) Mg ha-1 [1.14 (± 0.1) t ac-1] of sediment that was 

transported past three empty or partially full SCDs that sat lowest in the channel, closest to the 

catchment outlet (Figure 18).  In catchment J, the sediment retention structure captured 0.40 Mg 

ha-1 [0.18 t ac-1] of sediment that was transported past an empty SCD sitting the lowest in the 

Flow
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channel and closest to the catchment outlet.  These remaining partially full structures in treated 

catchments G and J were filled to their maximum sediment holding capacity during the 3 Aug 

2011 event that had less than a 1-year I30 return period intensity.   

 

Figure 18.  In treated catchment G, this sediment retention sturcture captured 2.55 Mg of 
sediment that was transported past three empty or partially full straw bale check dams that sat 
lowest in the channel closest to the catchment outlet, during the 8 Jul 2011 storm. 

 All straw bale check dams trapped a net positive amount of sediment because no 

structures failed or were displaced from where they were installed.  The mean volume of 

sediment trapped by straw bale check dams was 1.00 m3 (35.2 ft3) with a range of 0.29 to 2.22 

m3 (10.4 to 78.5 ft3) (Table 9).  The mean mass of sediment trapped by the straw bale check 

dams was 1.27 Mg (1.40 t) per structure with a range of 0.35 to 3.16 Mg (0.38 to 3.48 t) with an 

average bulk density of 9.86 Mg m-3 (616 lbs ft3) (Figure 19).  The mean mass of sediment 

trapped per catchment-area at a treatment rate of four straw bale check dams ha-1 (2 SCDs ac-1) 

was 5.87 Mg ha-1 (2.62 t ac-1) with a range of 3.40 to 10.48 Mg ha-1 (1.52 to 4.68 t ac-1).   

Flow



63 
 

 

 

Figure 19. a) empty straw bale check dam at time of installation.  b) same straw bale check dam 
filled to maximum sediment holding capacity with the height of trapped sediment equal to the 
spillway height. The volume of sediment trapped by this straw bale check dam was 0.64 m3 (22.7 
ft3) or a trapped mass of 0.79 Mg (0.87 t).  Below the spillway 0.04 m3 (1.4ft3) of sediment was 
scoured by flow or 0.05 Mg (0.05 t) of scoured mass.  

 

Flow

Flow

a) 

b) 
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Table 10.  Straw bale check dam (SCD) name and catchment pair grouped by canyon, the channel gradient (%), volume (m3 [ft3]) and mass (average 
bulk density of 0.986 Mg m-3) (Mg [t]) of sediment trapped behind individual straw bale check dams filled to capacity, mass of sediment trapped by 
straw bale check dams filled to capacity per unit-area when treated at a rate of four ha-1 (two ac-1), volume (m3 [ft3]) and mass (average channel bulk 
density of 1.208 Mg m-3) (Mg [t]) of sediment scoured below the spillway at the base of individual straw bale check dams filled to capacity, the net 
sediment storage effect of straw bale check dams filled to capacity (Mg [t]), and the mass sediment stored by straw bale check dams filled to capacity 
per unit area (Mg ha-1 [t ac-1]) when treated at the rate of four straw bale check dams ha-1 (two straw bale check dams ac-1), straw bale check dam trap 
efficiencies in 2011 and in 2012 (Equation 1), and 2011 paired catchment ratio (Equation 2) and 2012 paired catchment ratio (Equation 3). 

  

Catchment 
and straw 
bale check 

dam 
number 

Channel 
gradient 

Total 
volume of 
sediment 
trapped by 

SCD  
(m

3
 [ft

3
]) 

Total mass 
of 

sediment 
trapped by 

SCD  
(Mg [t]) 

Total mass of 
sediment 

trapped per 
unit‐area 
(Mg ha

‐1
  

[t ac
‐1
]) 

Total volume 
of channel‐
bed scoured 
below SCD 
spillway  
(m

3
 [ft

3
]) 

Total mass 
of channel‐

bed 
scoured 

below SCD 
spillway 
(Mg [t]) 

Total mass of 
sediment 
scoured 

below SCD 
per unit‐area 
(Mg ha

‐1
  

[t ac
‐1
]) 

Net effect of 
SCD on 

sediment: 
Trapped mass 
‐ scoured 
mass  

(Mg [t]) 

Net effect of 
SCD on 

sediment per 
unit‐area: 

Trapped mass ‐ 
scoured mass 

(Mg ha
‐1
  

[t ac
‐1
]) 

2011 
Trap 

efficiency 

2012 
Trap 

efficiency 

Treated:Control 
2011 paired 

catchment ratio 
(±Δ) 

Treated:Control 
2012 paired 

catchment ratio 
(±Δ) 

Sevier 
Canyon 

A1  17%  2.10 [74.3]  2.57 [2.84]  10.48 [4.68] 0.08 [2.9] 0.10 [0.11] 0.39 [0.17] 2.48 [2.73] 10.09 [4.50] 35%*  24%*  ‐‐  2.11 (±0.16) 

A2  2.22 [78.5]  3.16 [3.48]  0.10 [3.6] 0.11 [0.12] 3.05 [3.36]

D1  49%  0.35 [12.4]  0.51 [0.57]  3.45 [1.54] 0.01 [0.3] 0.01 [0.01] 0.51 [0.23] 0.50 [0.55] 2.94 [1.31] 14%*  11%*  ‐‐  0.67 (±0.06) 

D2  0.29 [10.4]  0.43 [0.47]  0.09 [3.2] 0.13 [0.14] 0.30 [0.33]

F1  32%  1.67 [59.1]  2.52 [2.78]  7.73 [3.54] 0.05 [1.8] 0.06 [0.07] 0.23 [0.10] 2.46 [2.71] 7.50 [3.35] 23%*  17%*  ‐‐  0.33 (±0.03) 

F2  1.19 [42.0]  1.74 [1.91]  0.06 [2.1] 0.07 [0.07] 1.67 [1.84]

Middle 
Canyon 

G1  15%  0.56 [19.9]  0.47 [0.51]  4.31 [1.92] 0.07 [2.5] 0.09 [0.09] 0.06 [0.03] 0.38 [0.42] 4.24 [1.89] 50%  35%  0.67 (±0.03)  0.29 (±0.02) 

G2  1.59 [56.1]  1.71 [1.88]  n/a n/a 1.71 [1.88]

G3  0.40 [14.1]  0.35 [0.38]  n/a n/a 0.35 [0.38]

G4  1.37 [48.5]  1.66 [1.83]  n/a n/a 1.66 [1.83]

G5  0.91 [32.0]  1.21 [1.33]  n/a n/a 1.21 [1.33]

G6  0.32 [11.2]  0.43 [0.48]  n/a n/a 0.43 [0.48]

J1  23%  0.44 [15.4]  0.49 [0.54]  3.40 [1.52] 0.03 [1.1] 0.04 [0.04] 0.17 [0.08] 0.45 [0.50] 3.23 [1.44] 49%  18%  0.36 (±0.01)  0.70 (±0.05) 

J2  0.90 [31.8]  1.00 [1.11]  0.02 [0.8] 0.03 [0.04] 0.97 [1.07]

J3  0.64 [22.7]  0.79 [0.87]  0.04 [1.4] 0.05 [0.05] 0.75 [0.82]

Mean  24%  1.00 [35.2]  1.27 [1.40]  5.87 [2.62] 0.06 [2.0] 0.07 [0.07] 0.27 [0.12] 1.22 [1.32] 5.60 [2.50] ‐‐  ‐‐  ‐‐  ‐‐ 

   Median  ‐‐  0.90 [31.8]  1.00 [1.11]  4.31 [1.92] 0.06 [2.0] 0.06 [0.07] 0.23 [0.10] 0.97 [1.04] 4.24 [1.82] ‐‐  ‐‐  ‐‐  ‐‐ 

* Trap efficiency given for reliable sediment yield data, however the true efficiencies are lower than the percentages shown, with catchments D and F closer to the true value. 
(±Δ) absolute uncertainty associated with paired catchment ratios is from sediment yields measured using the survey method. 
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 The trapped sediment debris cones were similar in appearance behind all the straw bale 

check dams.  The mean height of trapped sediment measured near the base of the up-channel 

face of a straw bale check dam to the surface of the sediment deposit was 0.32 m (1.0 ft), with a 

median of 0.26 m (0.9 ft) and a range of 0.16 to 0.80 m (0.5 to 2.6 ft). Channel gradient did not 

have a significant effect t = -1.177  (df = 12, p = 0.262) on the log-normalized mass of sediment 

trapped by straw bale check dams (Figure 20), with a modeled slope of -1.952 (95% CI; lower = 

-5.565, upper = 1.661).   

  

 

 

 

 

 

 

 

 

 

 

 

 

 There was very little scour below the spillway of straw bale check dams.  The mean 

volume of down-channel scour below the structural spillway of straw bale check dams was 0.06 

m3 (2.0 ft3), with a range of 0 to 0.10 m3 (0 to 3.6 ft3).  The mean mass of down-channel bed 

Figure 20.  Channel gradient (%) effect on the mass (Mg, t) trapped by straw bale check dams 
filled to sediment holding capacity or the height of trapped sediment behind a straw bale check 
dam is equal to the spillway height. 
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scoured was 0.07 Mg (0.07 t) with a range of 0 to 0.13 Mg (0 to 0.14 t).  The area normalized 

mean mass of channel-bed scoured due to the influence of 4 straw bale check dams ha-1 (2 ac-1) 

was 0.27 Mg ha-1 (0.12 t ac-1) with a range of 0.06 to 0.51 Mg ha-1 (0.03 to 0.23 t ac-1).  Gradient 

did not significantly influence t = 0.98 (df = 12, p = 0.35) the mass of sediment scoured below 

straw bale check dams.  The modeled slope was 0.10 (95% CI; -0.13, 0.33).   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Straw bale check dams stored a net positive sediment mass per treated catchment with a 

mean of 5.60 Mg ha-1 (2.50 t ac-1) and a range of 2.94 to 10.09 Mg ha-1 (1.31 to 4.50 t ac-1).  

Straw bale check dam trap efficiencies for 2011 are shown for Sevier Canyon, however their 

values reflect only reliable sediment yield data from structures that were overwhelmed by 

sediment during large erosion events.  Catchments D and F with efficiencies of 14 and 23%, 

respectively, reflect values closer to the true efficiency of straw bale check dams in Sevier 

Figure 21.  Channel gradient (%) effect on the mass (Mg, t) of sediment scoured below 
straw bale check dams. 
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Canyon because the sediment retention structures captured larger sediment yields before being 

overwhelmed compared to catchment A with a trap efficiency of 35% (Table 9).  Middle Canyon 

had trap efficiencies of 50% for catchment G and 49% for catchment J.  Trap efficiencies 

decreased in 2012 and had a range of 11 to 35%.  Trap efficiencies are a function of the total 

amount of sediment eroded from the catchment with high efficiencies when small amounts of 

sediment are eroded from the treated catchment and low efficiencies when large amounts of 

sediment are eroded from the treated catchment (Figure 21).  The efficiency of a straw bale 

check dam will go to 0 % if the straw bale fully biodegrades and the stored trapped sediment 

behind the bale is remobilized further down channel, which can take place over three or more 

years. 

  
 

 

3.5 Ground Cover  

 Hillslopes and channels had similar distributions of cover or exposure among the five 

ground cover types.  There was little change for both the hillslope and channel cover from spring 
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Figure 22.  Straw bale check dam trap efficiency (%) and total sediment yield for treated 
catchments during 2011 and 2012. 
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to fall in 2011 (Figure 22).  Mineral soil covered the largest area on hillslopes with 53 % in the 

spring (S) and 56 % in the fall (F).  The remaining ground cover for spring and fall hillslopes 

were rock cover (S-29 %, F-19 %), vegetation (S-10 %, F-18 %), woody debris (S-5 %, F-4 %), 

and litter (S-2 %, F-3 %).  The percentages of ground cover in channels from spring to fall were, 

mineral soil (S-37 %, F-42 %), rock cover (S-38 %, F-27 %), vegetation cover (S-16 %, F-26 %), 

and woody debris and litter collectively accounted for very little coverage (S-10 %, F-6%).  

Vegetation is considered the most important ground cover variable with regard to erosion rates 

because litter was not present in the first post-fire year and had minimal effect on erosion during 

the second post-fire year.  The significance of exposed mineral soil and vegetation cover is 

reported here, for additional inquiry of significance of the three other cover variables see Table 

10.  In the spring of 2011 there is a significant difference (t = 2.92, p = 0.007) between mineral 

soil cover on the hillslope and in the channel, this was also true in the fall of 2011 (t = 3.09, p = 

0.006) (Table 10).  There is a significant difference (t = -3.81, p = 0.001) in vegetation cover 

between the spring and fall of 2011.   
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Figure 23.   Percent ground cover of the five variables: mineral soil, rock, vegetation, woody 
debris and litter, shown for spring and fall of 2011 and fall of 2012.  Labels a and b indicate 
mineral soil exposure on hillslopes is significantly than channels.  Labels c and d indicate a 
significant difference in vegetation soil cover between hillslope and channel when.   

 Most of the ground cover or exposure variables remained unchanged from the fall of 

2011 to the fall of 2012.  The largest shift in hillslope cover from fall 2011 to fall 2012 was an 

increase in the percentage of area covered by vegetation (18 to 30%), and a decrease in mineral 

soil exposed (56 to 39%).  The other cover variables were relatively equal between fall 2011 and 

fall 2012, with slightly more rock cover (19 to 23%) and woody debris and litter had no change 

in cover.  The shift in ground cover in the channels was similar to the hillslopes from the fall of 

2011 to the fall of 2012, with the vegetation cover having the largest increase (26 to 43%) and 

the largest decrease was mineral soil exposed (42 to 26%).  The percent cover of rock, litter, and 

woody debris all changed 4% or less from fall 2011 to fall 2012.  There is a significant 

difference (t = 2.89, p = 0.009) in fall 2012 mineral soil exposed between the hillslope and the 

channel (Table 10).  There is a significant difference (t = 4.32, p < 0.001) between mineral soil 
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exposure on the hillslope between 2011 and 2012, and also in the channels between 2011 and 

2012 (t = 5.21, p = 0.001).  Vegetation varied greatly by aspect and year.  There is a significant 

difference (t = -2.15, p = 0.045) in vegetation cover between the Southeast and Southwest aspect 

slopes cover in the fall of 2012.  Hillslope aspects are not grouped when compared between 2011 

and 2012 because of this difference.  However, 2012 vegetation hillslope cover is grouped when 

compared against 2012 channel cover because it is considered a representative sample of 

vegetation on the hillslopes.  There was a significant difference between vegetation cover on 

Southeast aspects (t= -3.04, p = 0.01) and Southwest aspects (t = -5.32, p < 0.001) between 2011 

and 2012.  Vegetation cover on the hillslopes is significantly different (t = -2.20, p = 0.047) from 

the channels in 2012.  Finally, there is a significant difference (t = -4.04, p = 0.003) between 

vegetation cover in the channels from 2011 and 2012. 
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Mineral soil  Sample date  H0 : μ1 = μ2  t =  df =  p =  H0 ≠ μ1 ≠ μ2   95% CI 

2011  Lower Upper
Spring  SE hillslope = SW hillslope 0.986 16 0.339 ‐0.063 0.173
Spring  Hillslope = Channel 2.922 24 0.007 Significant  0.034 0.198
Fall  SE hillslope = SW hillslope ‐0.248 12 0.808 ‐0.096 0.076
Fall  Hillslope = Channel 3.090 18 0.006 Significant  0.033 0.175
Spring v. Fall  Hillslope  = Hillslope ‐1.118 19 0.278 ‐0.085 0.026
Spring v. Fall  Channel = Channel ‐1.870 9 0.094    ‐0.092 0.009

2012 
Fall  SE hillslope = SW hillslope 0.254 18 0.803 ‐0.113 0.144
Fall  Hillslope = Channel 2.889 20 0.009 Significant  0.039 0.240
2011 v. 2012  Hillslope  = Hillslope 4.322 19 0.000 Significant  0.091 0.261
2011 v. 2012  Channel = Channel 5.207 9 0.001 Significant  0.094 0.239

Vegetation  Sample date  H0 : μ1 = μ2  t =  df =  p =  H0 ≠ μ1 ≠ μ2   95% CI 

2011  Lower Upper
Spring  SE hillslope = SW hillslope ‐1.207 17 0.245 ‐0.166 0.045
Spring  Hillslope = Channel ‐1.684 17 0.111 ‐0.175 0.020
Fall  SE hillslope = SW hillslope ‐1.573 18 0.133 ‐0.200 0.029
Fall  Hillslope = Channel ‐0.924 13 0.373 ‐0.218 0.088
Spring v. Fall  Hillslope  = Hillslope ‐3.807 19 0.001 Significant  ‐0.158 ‐0.046
Spring v. Fall  Channel = Channel ‐1.886 9 0.092    ‐0.196 0.018

2012 
Fall  SE hillslope = SW hillslope ‐2.153 18 0.045 Significant*  ‐0.142 ‐0.002
Fall  Hillslope = Channel ‐2.201 13 0.047 Significant  ‐0.195 ‐0.002
2011 v. 2012  Right hillslope  = Right hillslope ‐3.036 9 0.014 Significant*  ‐0.230 ‐0.034
2011 v. 2012  Left hillslope = Left hillslope ‐5.324 9 0.000 Significant*  ‐0.207 ‐0.084
2011 v. 2012  Channel = Channel ‐4.044 9 0.003 Significant  ‐0.268 ‐0.076

Litter  Sample date  H0 : μ1 = μ2  t =  df =  p =  H0 ≠ μ1 ≠ μ2   95% CI 

2011  Lower Upper
Spring  SE hillslope = SW hillslope ‐0.247 16 0.808 ‐0.134 0.106
Spring  Hillslope = Channel ‐3.328 28 0.002 Significant  ‐0.179 ‐0.043
Fall  SE hillslope = SW hillslope ‐1.712 16 0.106 ‐0.242 0.026
Fall  Hillslope = Channel 0.404 28 0.689 ‐0.065 0.097
Spring v. Fall  Hillslope  = Hillslope ‐0.587 19 0.565 ‐0.082 0.046
Spring v. Fall  Channel = Channel 7.551 9 0.000 Significant  0.076 0.141

2012 
Fall  SE hillslope = SW hillslope ‐0.939 14 0.363 ‐0.097 0.038
Fall  Hillslope = Channel 1.113 17 0.281 ‐0.028 0.091
2011 v. 2012  Hillslope  = Hillslope ‐1.944 19 0.067 ‐0.146 0.005
2011 v. 2012  Channel = Channel ‐1.714 9 0.121    ‐0.127 0.018

Woody debris  Sample date  H0 : μ1 = μ2  t =  df =  p =  H0 ≠ μ1 ≠ μ2   95% CI 

2011  Lower Upper
Spring  SE hillslope = SW hillslope 0.164 18 0.872 ‐0.091 0.107
Spring  Hillslope = Channel 0.207 16 0.839 ‐0.085 0.103
Fall  SE hillslope = SW hillslope 1.250 18 0.227 ‐0.042 0.166
Fall  Hillslope = Channel 0.150 18 0.882 ‐0.084 0.097
Spring v. Fall  Hillslope  = Hillslope 3.194 19 0.005 Significant  0.015 0.073
Spring v. Fall  Channel = Channel 1.738 9 0.116    ‐0.013 0.095

2012 
Fall  SE hillslope = SW hillslope 0.855 17 0.404 ‐0.058 0.138
Fall  Hillslope = Channel 1.025 22 0.317 ‐0.037 0.108
2011 v. 2012  Hillslope  = Hillslope 0.341 19 0.737 ‐0.045 0.063
2011 v. 2012  Channel = Channel 0.969 9 0.358    ‐0.051 0.128

Rock  Sample date  H0 : μ1 = μ2  t =  df =  p =  H0 ≠ μ1 ≠ μ2   95% CI 

2011  Lower Upper
Spring  SE hillslope = SW hillslope 0.015 15 0.988 ‐0.137 0.139
Spring  Hillslope = Channel ‐2.289 28 0.030 Significant  ‐0.168 ‐0.009
Fall  SE hillslope = SW hillslope 1.777 18 0.092 ‐0.019 0.231
Fall  Hillslope = Channel ‐2.096 22 0.048 Significant  ‐0.196 ‐0.001
Spring v. Fall  Hillslope  = Hillslope 3.496 19 0.002 Significant  0.045 0.180
Spring v. Fall  Channel = Channel 2.839 9 0.019 Significant  0.021 0.184

2012 
Fall  SE hillslope = SW hillslope 1.297 16 0.213 ‐0.044 0.182
Fall  Hillslope = Channel ‐0.870 23 0.393 ‐0.119 0.048
2011 v. 2012  Hillslope  = Hillslope ‐1.514 19 0.147 ‐0.132 0.021
2011 v. 2012  Channel = Channel 0.632 9 0.543    ‐0.020 0.036

* SE hillslope and SW hillslope transects were significantly different; they were not grouped when tested between years for hillslope, but were grouped 
as one sample when tested against channel. 
H0 : μ1 = μ2 there is no significant difference between the two means. 
H0 ≠ μ1 ≠ μ2 the null hypothesis is rejected, there is a significant difference between the two means. 

Table 11.  Test for significance difference in ground cover between SE (Southeast) and SW 
(Southwest) hillslope aspects, and channels:  Spring and Fall of 2011 and Fall 2011 and Fall 
2012.  
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3.6 Channel cross-sections 

 Channel cross-sections measured channel stability or the resistance of the bed to scour or 

aggregation.  Three to five channel cross-sections were spaced 12 to 30 m (39 to 98 ft) apart in 

each catchment, with spacing and count dependent upon channel length (Table 12).  There was 

very little change in cross-sectional areas between the 26 Jul 2011 survey and 7 May 2012 

survey and no trend in the difference in areas between the two surveys (Figure 24).  The cross-

sectional areas increased in six of the channels from 26 Jul 2011 to 7 May 2012.  There was a 

mean decrease in three cross-sectional areas from 26 Jul 2011 to 7 May 2012 ranging from 0.03 

to 0.40 m2 (0.32 to 4.31 ft2).  Only one channel had no mean change between the two cross-

section surveys.  There is no significant difference t = 1.28 (df = 44, p = 0.206) (95% CI; lower = 

-0.003, upper = 0.015) in channel cross-sectional area between the two survey dates (Figure 25).   

Table12.  Catchment name and pair, number of cross-sections per catchment, mean spacing 
between cross-sections, mean cross-sectional area (m2, ft2) for 26 Jul 2011 and 7 May 2012 
surveys, and difference between survey date means.  Positive difference between surveys is 
attributed to channel scour, while negative difference between surveys is attributed to channel 
aggradation. 

 

 

 

 

 

 

 

 

 
* Percentages for reliable sediment yields from data of overwhelmed retention structures.   
 

 

 

Catchment 
channel 
cross‐
sections 

Cross‐
section per 
catchment 

Average distance 
between channel 
cross‐sections  

(m [ft]) 

26 Jul 2011 
Area  

(m2 [ft2]) 

7 May 2012 
Area  

(m2 [ft2]) 

Average 
difference in 
cross‐sectional 
area (m2 [ft]) 

Percentage of 2011 annual 
catchment sediment yield 
produced between survey 

dates (%) 

A.1  4  25 [81]  7.88 [84.9] 7.76 [83.5] 0.12 [1.3] 59*

B.1  4  13 [42] 
11.64 
[125.3] 

11.53 
[124.1]  0.11 [1.2]  36* 

C.2  4  17 [57]  3.14 [33.8] 3.18 [34.2] ‐0.03 [‐0.3] ‐‐

D.2  3  12 [41] 
19.19 
[206.6] 

19.60 
[210.9]  ‐0.40 [‐4.3]  43* 

E.3  3  19 [62]  2.17 [23.4] 2.13 [22.9] 0.04 [0.5] ‐‐
F.3  4  16 [52]  3.13 [33.7] 3.10 [33.4] 0.02 [0.3] 68*
G.4  4  30 [98]  5.51 [59.3] 5.54 [59.6] ‐0.03 [‐0.3] 44
H.4  5  30 [98]  6.05 [65.1] 5.98 [64.4] 0.07 [0.7] 48
I.5  5  30 [98]  6.90 [74.3] 6.85 [73.8] 0.05 [0.5] 41
J.5  4  30 [98]  7.53 [81.1] 7.54 [81.1] 0.00 89
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Figure 24.  Four channel cross-sections in catchment A with #1 being the lowest channel cross-
section up through #4 which is the highest channel cross-section in the catchment.  Mean change 
in cross-sectional area in this catchment was 0.12 m2 (1.3 ft2) 
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Figure 25.  Box plot of log-normalized channel cross-section areas (a) m2 b) ft2) for the two 
survey dates.     

3.7 Particle size analysis 

 There was relatively little change in mean D50 soil texture particle size during 2011 in 

Middle Canyon (Figure 26).  There was no consistent trend in particle size distribution for 

hillslopes or channels on an event by event basis.  Base of slope hillslope fences generally had 

the largest mean D50 soil texture particle size for each event.  Hillslope D50 soil texture particle 

sizes ranged in sizes from ~0.22 to 0.54 mm (0.009 to 0.021 in) during 2011 and were generally 

larger than annual channel sediment yield D50 particle sizes, which ranged from 0.1 to 0.3 mm 

(0.004 to 0.012 in). 

 The soil texture of eroded sediment from hillslopes and from yields at catchments was 

relatively the same across the catchments in Middle Canyon during 2011.  Hillslope and channel 

mean D50 values were log-normalized prior to statistical analysis due to large variation in soil 

texture among the samples (Table 13).  Sediment samples from the five events in Middle Canyon 

during 2011 from upslope and base of hillslope fences were tested for a significant difference in 
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mean log-D50 with the best fitting random intercept mixed model. There is no significant 

difference t = -0.247 (df = 1, p = 0.846) between log-D50.   

 

 

 The soil texture at catchment outlets was similar for both treated and control catchments.   

Mean log-D50 was tested for a significant difference between Treated and Control catchment 

sediment yields from the five events during 2011, using a generalized least squares model with 

no random component.  There is no significant difference t = 0.764 (df = 19, p = 0.456) in mean 

log-D50 between Treated and Control catchments.  There is no significant difference t = 1.512 (df 

= 16, p = 0.154) in mean log-D50 between hillslopes erosion and catchment yields using a 

generalized least square model. 
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Figure 26.  Mean D50 soil texture particle size for sediment yields from treated and control 
catchments, and sediment erosion in uplslope and base of hillslope fences by event date. 
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Table 13.  Output of statistical models to determine if a significant difference exists, H0: μ1 = μ2: 
(a.) log-normalized mean D50 for upslope fences = log-normalized mean D50 base of slope 
fences, (b.) log-normalized mean D50 in treated catchments = log-normalized mean D50 in control 
catchments, (c.) log-normalized mean D50 for hillslope fences = log-normalized mean D50 for 
channel catchment sediment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Particle size distribution analyses have only been completed for the first three events in 

Middle Canyon for 2012, with only hillslope fence samples having a complete data set.  Upslope 

and base of slope mean D50 particle sizes for 2012 ranged in size between the three events from 

2011 Middle Canyon                    

H0 = upslope fence log‐D50 = base of slope fence log‐D50     

Linear mixed‐effects model    

   95 % Confidence Intervals 

   Slope value  Std.Error  DF  t‐value  p‐value  lower  upper 

Intercept  ‐0.887  0.596  13  ‐1.489  0.160  ‐2.174  0.400 

pair  ‐0.282  0.690  1  ‐0.409  0.753  ‐9.046  8.481 

fence: upper  ‐0.170  0.690  1  ‐0.247  0.846  ‐8.934  8.593 

 

2011 Middle Canyon                 

H0 = treated catchment log‐D50 = control catchment log‐D50     

Generalized least squares fit model    

   95 % Confidence Intervals 

   Slope value  Std.Error  t‐value  p‐value  lower  upper 

Intercept  ‐1.494  1.064  ‐1.404  0.179  ‐3.750  0.762 

pair  ‐0.053  0.231  ‐0.231  0.820  ‐0.542  0.436 

treatment: Treated  0.176  0.231  0.764  0.456  ‐0.313  0.665 

     

Degrees of freedom = 19    

Residual standard error =  0.501             

 

2011 Middle Canyon                 

H0 = hillslope log‐D50 = channel log‐D50     

Generalized least squares fit model    

   95 % Confidence Intervals 

   Slope value  Std.Error  t‐value  p‐value  lower  upper 

(Intercept)  ‐2.074  1.042  ‐1.991  0.068  ‐4.324  0.177 

pair  0.186  0.247  0.752  0.465  ‐0.348  0.720 

log‐D50 hillslope  0.401  0.265  1.513  0.154  ‐0.171  0.973 

     

Degrees of freedom = 16    

Residual standard error = 0.457             

a) 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
c) 
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0.2 to 0.5 mm (0.009 to 0.019 in) (Figure 27), having a similar range to the mean D50 hillslope 

particle sizes in 2011.  There is no consistent trend in particle size between the two fence 

locations. 

 
Figure 27.  Mean D50 particle size for upslope and base of hillslope fence sediment erosion for 
the first three rain events during 2012.   
 

3.8 Organic matter content 

 Channel sediment yields had higher organic matter content than sediment in hillslope 

fences in Middle Canyon during 2011 for all events (Figure 28).  Organic matter content was 

roughly equal in hillslope fences for every event with a small range of 3.6 to 4.6 %.  Channel 

sediment yields had a larger range of organic matter content from 5.3 to 9.9 %.  Organic matter 

was content was higher in catchment sediment yields for the first two events, and decreased with 

additional events.  
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Figure 28.  Organic matter content in sediment erosion from hillslopes and channel sediment 
yields show for each event.   
 

 Hillslope and channel organic matter in the sediment were log-normalized prior to 

analysis.  A generalized least squares model found no significant difference t = 0.073 (df = 17, p 

= 0.942) in organic matter content between upslope and base of hillslope fence plots (Table 14).  

There is no significant difference t = 1.61 (df = 19, p = 0.128) in organic matter content between 

Treated and Control catchments using a generalized least squares model.   Hillslope and channel 

organic matter content is not significantly different t = 0.925 (df = 16, p = 0.372) using a 

generalized least squares model.  Soil samples from hillslopes and channel sediment yields in 

Middle Canyon were not been processed for organic matter content in 2012.   
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Table 14.  Statistical model results determining significant difference of H0: μ1 = μ2:  a) log-
normalized organic matter in upslope fences = log-normalized % organic matter in base of slope 
fences, b) log-normalized % organic matter in treated catchments = log-normalized % organic 
matter in control catchments, c) log-normalized % organic matter in hillslope fences = log-
normalized % organic matter in catchment sediment retention structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2011 Middle Canyon                    

H0 = log‐normalized treated catchment organics = log‐normalized control catchment organics 

Generalized least squares fit model    

   95 % Confidence Intervals 

   Slope value  Std.Error  t‐value  p‐value  lower  upper 

Intercept  ‐3.125  0.901  ‐3.467  0.003  ‐5.036  ‐1.214 

pair  0.051  0.195  0.259  0.799  ‐0.364  0.465 

treatment: Treated  0.314  0.195  1.607  0.128  ‐0.100  0.728 

     

Degrees of freedom = 16    

Residual standard error = 0.424                

 

2011 Middle Canyon                    

H0 = log‐normalized hillslope organics = log‐normalized channel organics    

Generalized least squares fit model    

   95 % Confidence Intervals 

   Slope value  Std.Error  t‐value  p‐value  lower  upper 

(Intercept)  ‐1.437  1.803  ‐0.797  0.440  ‐5.334  2.459 

pair  0.095  0.255  0.373  0.715  ‐0.455  0.645 

log‐hilllslope organics  0.529  0.572  0.925  0.372  ‐0.706  1.765 

     

Degrees of freedom = 16    

Residual standard error = 0.478                

 

a) 
 

2011 Middle Canyon                    

H0 = log‐normalized upslope fence organics = log‐normalized base of slope fence organics 

Generalized least squares fit model    

   95 % Confidence Intervals 

   Slope value  Std.Error  t‐value  p‐value  lower  upper 

Intercept  ‐2.450  0.501  ‐4.890  0.000  ‐3.524  ‐1.375 

pair  ‐0.169  0.110  ‐1.532  0.148  ‐0.405  0.068 

fence: upper  0.008  0.112  0.073  0.943  ‐0.232  0.248 

     

Degrees of freedom = 17    

Residual standard error = 0.205                

b) 

c) 
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4.0 Discussion 

4.1 Treated catchment significance 

 We found the straw bale check dam channel treatment did little to reduce post-fire 

sedimentation rates. Straw bale check dams were analyzed to determine if they had a significant 

effect at reducing post-fire sediment erosion from ephemeral channels during the first and second 

post-fire years.  In the first post fire-year there was no significant difference t = -1.296 (df = 18, 

p = 0.216) in catchment sediment yields between treated and control catchments.  The treatment 

did little to mitigate sediment produced from small and commonly occurring rain events at the 

site that were equal to or less than a 1-year I30 intensity return periods.  Instead, the straw bale 

check dams structures filled to sediment holding capacity during the first rain event with 

intensities equal to 1-year I30 (21 mm hr-1, 0.8 in hr-1)  and 2-year I30 (28 mm hr-1, 1.1 in hr-1) 

return periods.  In two treated catchments 56% of straw bale checks filled to sediment holding 

capacity during a rain event with less than a 1-year I30 intensity return period.  The remaining 

empty or partially full structures in these catchments were filled to capacity during a second 

event with less than a 1-year I30 intensity.  Given the straw bale check dams were already full at 

the beginning of 2012 there was no significant difference between treated and control catchment 

sediment yields.   

 Sedimentation rates varied greatly during the two year study.  More often the treated 

catchments had lower sediment yields within paired catchments, even when straw bale check 

dams were already full, such as during the second post-fire year.  The varying rate of sediment 

yields from paired catchments is most clearly seen in the paired catchment ratio.  For instance 

the paired catchment ratio in 2012 ranged from 0.29:1 to 2.11:1 across the 5 paired catchments.  
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The catchment ratio for all pairs was assumed to be 1:1 as it was not possible to establish a pre-

fire calibration period.   

 A number of environmental factors could have been influencing the large differences 

seen in paired catchment ratios that were not closer to a 1:1 ratio.  Rainfall events may have had 

unequal rainfall intensities within an area smaller than a paired catchment.  While it is assumed 

high intensity rain events are homogenous in intensity across the two adjacent catchments, the 1-

year I10 intensity return period event in paired catchment E-F on 1 Aug 2012 produced 16.78 

(±0.7) Mg ha-1 (7.49 [±0.3] t ac-1) of sediment in catchment E and only 1.40 Mg ha-1 (0.62 t ac-1) 

in catchment F.  This was most likely due to unequal distribution of rainfall amount and intensity 

across the pair during the event.  It may be possible to account for this in future studies by 

placing multiple rain gauges within each treated and control paired catchment.   

 Hillslope and/or channel processes may also move sediment incrementally out of 

catchments at different temporal and spatial rates.  A change in the ratio of paired catchment 

sediment yields can be seen in Middle Canyon from 2011 to 2012.  Pair G-H had a paired 

catchment ratio of 0.67:1 in 2011 change to 0.29:1 in 2012, and the paired catchment ratio in I-J 

of 0.36:1 in 2011 changed to 0.70:1 in 2012.   

 Another environmental factor potentially influencing the large difference in sediment 

yields could be soil properties within the catchments.  Treated catchment F had reliable annual 

sediment yield of 25.71 Mg ha-1 (11.47 t ac-1) in 2011 and maybe developed an efficient rill 

network that carried much of the loose or weakly held sediment for a 1-year I30 rain event from 

the soil surface.  While in catchment E maybe the efficient drainage network had not developed 

due to a deeper soil horizon of weakly held aggregates and thus a 1-year I10 return period rain 

event eroded much larger sediment yields.  Also, the number of channel heads and their locations 
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and the catchment shape may affect how efficiently sediment is transported out of the catchment.  

The Control catchment B is a wide catchment that has one large primary and two small 

secondary channel heads with their channels joining together halfway down the catchment, 

whereas treated catchment A is a more narrow catchment with one channel head initiating very 

high in the catchment that drains into a long continuous channel (Table 1).  The routing of 

hillslope runoff into one channel in catchment A may result in higher channel transport capacity 

rates compared to cumulative channel transport capacity rates for the three small channels in 

catchment B that split up the same amount of hillslope runoff.  This may be one reason why the 

A:B catchment ratio during the second post-fire year is 2.11 (±0.16):1.   

 When sediment is detached and mobilized it is difficult to disrupt or significantly reduce 

sediment the sediment erosion process that occurs on hillslopes and in channels.  While straw 

bale check dams did not significantly reduce sediment yields for rain events with an I30 intensity 

equal to or less than a 1-year return period, other treatments that have been tested to significantly 

reduce detached and mobilized sediment have found similar outcomes (Robichaud et al. 2008; 

Ruby, 1973).  Robichaud et al. (2008) found log erosion barriers (LEBs) significantly reduced 

catchment sediment yields by as much as 65 % in treated catchments compared to control 

catchments, with a data set largely made up of rain events with less than 2-year I10 intensity 

return periods.  However, no treatment effect was found for LEBs during rain events equal to or 

greater than a 2-year I10 intensity return period (Robichaud et al. 2008).  When considering large 

scale erosion barriers, it was found there was no significant difference in sediment yields 

between canyons treated with concrete crib check dams in Southern California and canyons left 

as controls (Ruby, 1973).  It was not possible to determine paired catchment treatment 

significance in Sevier Canyon due to sediment retention structure failures in 2011.  The three 
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treated catchments that received one to two rain events equal to or greater than 2-year I30 

intensity return periods in the first year had reliable annual erosion rates that ranged from 19.53 

to 25.71 Mg ha-1 (8.71 to 11.47 t ac-1) .  These erosion rates would probably not meet mitigation 

targets set by land managers who seek to reduce the effects of large post-fire sediment yields.   

 The finding of no significant difference between treated and control catchments runs 

contrary to the recommendation that straw bale check dams are effective at mitigating sediment 

yields produced from 2-year to 5-year I10 or I30 intensity return period rain events (Napper, 

2006).  The first factor directly influencing significance of treatment effect is treatment rate or 

number of straw bale check dams per catchment area.  After taking into account failure rates, 

which were 0% in the current study, but can be expected to be around ~20% (Napper, 2006) and 

even as high as 50% (Colins and Johnston, 1995); it may be assumed installing additional 

structures in a treated channel increases the potential trapped sediment storage capacity, thus 

increasing the potential to significantly reduce sediment yields from treated catchments.  

Montgomery and Dietrich (1988) show a catchment’s source area, the area from the channel 

head to the uppermost hydrologic divide, is inversely related to the channel gradient.  Therefore, 

shallower channel gradients with larger source areas and shorter channel lengths may limit the 

number of straw bale check dams installed in the defined channel.  This limitation may not allow 

for mitigation targets to be met if a large number of structures are called for.  Drier climates that 

tend to have larger source areas (Montgomery and Dietrich, 1988) and shorter channel lengths 

may also limit factor the channel space available to accommodate for high treatment rates of 

straw bale check dams.   

 The point at which straw bale check dams significantly reduce sediment yields is difficult 

to discern from the limited literature.  The lack of directly reporting treatment rates or the 
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number of straw bale check dams per catchment area does not allow for temporal and spatial 

cross-comparison of straw bale check dam treatment effectiveness.  One factor that may 

contribute to this absence is the failed or functioning rating given to individual structures and a 

tendency to mention cost per structure rather than cost per area (Miles et al. 1989; Collins and 

Johnston, 1995; Fox, 2009).  Goldman (1986) emphasizes catchment area has a direct effect on 

the structural integrity of straw bale check dams, yet the number of structures per area is most 

often indirectly reported.  The most accurate rate conversion is made from Fox (2009), where he 

identifies the catchment size and the number of channel treatments, in his case log debris dams 

(LDDs).  The treatment rates in his study are equal to one log debris dam per two ha (~one LDD 

per five ac) and roughly one log debris dam per four ha (~one LDD per ten ac).  A rough 

calculation of the treatment rate of straw bale check dams in California ranged from 8 to 11 

straw bale check dams per hectare (3 to 5 SCDs ac-1) (Collins and Johnston, 1995).    

 Treatment rates are often the starting place to estimate the predicted amount of sediment 

that will be mitigated from post-fire hillslopes, and treatment rate is commonly used in many 

post-fire treatment effectiveness studies and in management decisions. Ground cover treatments 

of seeding, straw mulches, and wood shreds are applied at mass per area (Robichaud, 2000; 

Groen and Woods, 2008, Cerdá, 2009).  Contour-felled log erosion barriers are reported by 

Robichaud et al. (2008) in densities (no. ha-1, no ac-1), and length per unit area (m ha-1, ft ac-1), or 

essentially a number count of felled-logs per area given an average tree length.  Suggested 

treatment rates of no less than one straw bale check dam per 0.4 hectare (1 ac-1) (Goldman, 1986) 

or sediment trapped in a lower straw bale check dam should extend to the base the straw bale 

check dam located directly above in the channel (Napper, 2006) address structural function 

aimed at reducing failure rates rather than measuring the treatment effectiveness at reducing 
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sediment yields.  It is important to standardize reporting methods of straw bale check dam 

treatment rate for many reasons including cross-comparison between quantitative studies and 

qualitative assessment by land managers.   

 A proposed standardized treatment rate is the number of straw bale check dams per area 

to allow for the comparison of the treatments effect on sediment yields from catchment outlets.  

This treatment rate can be compared with future studies having similar designs to determine the 

most effective straw bale check dam treatment rate (or channel treatment rate) to meet mitigation 

targets.  Treatment rate per area is the preferred standardization as opposed to a treatment rate of 

straw bale check dams per channel length.  Moody and Martin (2009) recognize “sediment 

erosion is not uniformly distributed across the landscape”, however, they chose mass per area 

(Mg ha-1, t ac-1) erosion rate as the most appropriate means for comparing erosion rates at the 

point, hillslope, and channel scales.  Given straw bale check dams are designed for channels it 

seems reasonable to choose a treatment rate of the number of straw bale check dams per length 

of channel.  There are benefits to relating treatment to channel length including ease in 

measuring from the lowest placed structure in the channel to the channel head with a cloth tape 

measure, rather than walking the perimeter of the catchment with a Global Positioning System 

device (GPS) to determine the area.  However, it is important the proposed standardized 

treatment applies to all post-fire case studies and applications.   

 The major drawback to treatment rate per channel length is a defined channel may not 

exist in the proposed treated catchment.  Germanoski and Miller (2004) classify upland basins 

into four groups, flood-dominated, deeply incised channels, fan-dominated, and pseudo-stable 

channels, based on a channels sensitivity to incision.  Miller et al. (2012) shows bedrock 

lithology or rock types and weathering pattern also influences the absence or presence of 
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surficial channels and categorizes the previous four groups into 13 process zones.  Of the 13 

process zones, it may be appropriate to treat five of these zones (bedrock hollow, incised hollow, 

unincised hollow, unfilled valley, bedrock valley) with straw bale check dams if high sediment 

yields are predicted to occur from these channels following wildfire.  A defined V-shaped 

channel exists in only one of these zones while the other channel are unincised and U-shaped 

making it difficult to accurately measure a channel length.  This makes standardizing the 

treatment rate of straw bale check dam per catchment area the most universal across these 

catchment channel types. 

4.2 Straw bale check dam function 

 A properly functioning straw bale check dam captures only a fixed amount of sediment.  

Our second objective determined the mean storage capacity of a straw bale check dam is 1.27 

Mg (1.00 m3) [1.40 t, 35.2 ft3], with a median of 1.00 Mg (0.90 m3) [1.11 t, 31.8 ft3].  These 

values reflect straw bale check dam sediment storage capacities found by Miles et al. (1989), 

who determined the average storage capacity to be 1.1 m3 (41 ft3) .  At the treatment rate of four 

straw bale check dams ha-1 [two SCDs ac-1] straw bale check dams trapped a mean mass of 5.87 

Mg ha-1 (4.4 m3 ha-1) [2.62 t ac-1, 157 ft3 ac-1].  Log debris dams treated at a rate of one log debris 

dam per four hectares stored 0.29 m3 (0.38 yr3) of sediment ha-1 (Fox, 2009).   

 The channel gradient did not have significant influence t = 1.177 (df = 11, p = 0.262) on 

the mass of sediment trapped behind straw bale check dams.  However, the amount of mass 

trapped by straw bale check dams tended to decrease with the increasing channel gradient, and 

given a larger sample size gradient may be found to have a significant effect.  In the treated 

catchments A and F, large woody debris (30 cm long x 10 cm diam.) and cobbles (> 10 cm 

diam.) mobilized by overland flow were trapped by the wooden stakes securing the straw bales 
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to the ground (Figure 29).  The debris trapped in the ‘trash rack’ increased the spillway height at 

the center spillway of the U-shaped structure and increased the straw bale check dam trap 

volumes.  However, the increased spillway height shifted the flow path to the new low point of 

the structure which was around the bottoms of the end straw bales causing flow to scour into the 

channel banks.  An effect opposite of the trash rack happened to log debris dam structures, where 

the trapped sediment height was half the structural height due to gaps within the structures 

reducing the sediment storage capacity.  It is important to tightly abut straw bale check dams 

together and fill voids between the bales with sticks, excess straw, and/or rocks to reduce the 

chance of flow between the straw bales.  

 

Figure 29.  ‘Trash-rack’ effect was caused by mobilized cobble and large woody debris being 
trapped by the stakes securing the straw bale check dams to the channel bed.   
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 Straw bale check dams filled with sediment are stable and change little in appearance as 

sediment is transported unmitigated over the structures and out the catchments.  The majority of 

straw bale check dams filled to maximum sediment holding capacity after the first (8 Jul 2011) 

event, but they changed very little in physical appearance as if no additional events had flowed 

through the channels.  However 43 to 68 % of reliable sediment yields measurements for the first 

post-fire year passed over the structures un-mitigated.   Structures held in place with no failures 

or major loss of trapped sediment by washing out during the first or second post-fire years.  

Inspection of straw bales in early May 2012 after the winter revealed minor decomposition of 

straw, and mostly intact.  Damage to roughly 3 structures occurred by wildlife (deer or elk) 

movement up and/or down the ephemeral channel corridor during 2011-2012 winter or 2012 

spring.   

4.3 Straw bale check dam treatment effectiveness 

Straw bale check dam efficiency was low at the site because of the very large post-fire 

sediment yields.  We determined with the third objective the catchment scale trap efficiency of 

straw bale check dams by relating total sediment trapped by straw bale check dams to total 

annual catchment sediment yield. The trap efficiency of straw bale check dams is a function of 

the annual sediment yields and treatment rate, and is the reason why there is a large range (14 to 

50 %) of trap efficiencies in treated catchments in 2011 as compared to 2012.  Since the 

treatment rate was kept constant across the site, the potential mass of sediment trapped per area 

was relatively equal between all treated catchments.  When low annual sediment yields occur as 

in Middle Canyon, there is little excess sediment available to be transported down channel once 

the straw bale check dams have filled to their sediment holding capacity, thus the trap efficiency 

was as high as 50%.  With high annual sediment yield rates there is a large amount of excess 
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sediment transported out of the catchment once straw bale check dams filled to their sediment 

holding capacity.  Sevier Canyon which had very high annual sediment yields in 2011 had straw 

bale check dam efficiencies as low as 14%.  

While trap efficiencies were low at this study site, I would expect straw bale check dams 

to have higher trap efficiencies in areas of the Western U.S. with low post-fire sediment yields 

from channels.  Trap efficiencies would probably be the highest in the Pacific and Sub-Pacific 

regions as described by Moody and Martin (2009).  The low to medium rainfall intensity regimes 

in these regions account for the lowest channel sediment yield volumes in the West (Moody and 

Martin, 2009).  In contrast trap efficiencies would be expected to be the lowest at this study area 

and in the Arizona rainfall regime that has the highest rainfall intensity events of the four major 

Western rainfall regimes.  The Arizona rainfall regime has the highest post-fire channel sediment 

yield volumes in the West (Moody and Martin, 2009).   

The range in trap efficiencies is seen in a channel treatment in Spain that has low post-

fire sediment yield.  While there was a low trap efficiency of 13% for log debris dams, they were 

treated at a very low rate of 1 per 4 ha (Fox, 2009).  Since the trap efficiency was not given by 

the author, I had to find this trap efficiency by applying values given within the paper to 

Equation 1.  I multiplied the median trap volume (1.28 m3, 45 ft3) by the number of structures in 

the treated catchment (eight) to find the total volume trapped per treated catchment.  I found 

potential catchment sediment yield by adding the total volume of sediment trapped by log debris 

dams per catchment to the volume of sediment trapped in the sediment basin at the watershed 

outlet.  I then divided the total volume of sediment trapped per treated catchment by the potential 

catchment sediment yield to determine the trap efficiency of the log debris dams.  Even though 

the treatment rate for this study was 17.5 times greater the treatment rate of Fox (2009), the trap 
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efficiencies are similar because the relationship of treatment rate to sediment yield rates were 

roughly equal at both the sites.   

4.4 Channel response to straw bale check dams 

 The sediment mobilized off hillslopes and through channels to catchment outlets had very 

little effect on the landscape function.  We determined that straw bale check dams did not reduce 

knickpoint migration because it was not present at the site.  While this is one of the two primary 

objectives of these structures (Tracy and Ruby, 1994), grade control was not necessary because 

of the stability of the channels.  Cross-sectional areas changed little suggesting channel beds 

were resistant to scour by flow and also had little aggregation.  Turowski et al. (2008) classified 

bedrock channels as being unable to widen, scour (or lower in elevation), or shift the bed unless 

the bedrock is eroded.  If the channels at the site were to fall into this classification, ‘tools’ or 

rocks introduced to the channel hillslopes or plucked from the channel bed would need to be 

transported by bouncing and sliding to erode enough bedrock to substantially alter the channel 

(Sklar and Dietrich, 2001).  Rocks present in sediment yields up to ~10 cm (4 in) along the B-

axis or the middle-length between the x-y-z axis of an oblong object, were captured in the 

sediment retention basins.  However, flow duration allowing the ‘tools’ to alter the bed probably 

did not last long enough to have any effect on altering the bed.   

 The thick bedrock unit at the site stabilizes the landscape making the ephemeral channels 

resistant to change.   The stable channels at the site are likely influenced by the characteristics of 

the Sevier River Formation rock unit, which appeared to be resistant to knick point migration.  

Knick point migration has been shown to be dependent on bed thickness with channel incision 

progressing in the direction of dip (Miller, 1991).  Channels in this study may be more resistant 

to knick points because they exist entirely within the Sevier River Formation, which is a massive 
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rock unit 100 to 300 m (~300 to 1000 ft) thick with little to no bedding plane throughout its unit 

thickness.  In addition all channels run roughly perpendicular to the dip of the unit probably 

hindering channel incision.  Using Miller et al. (2012) 13 process zones, this study channels fall 

into the unfilled valley category with a channel bed composed of bedrock as opposed to fill from 

surrounding hillslopes.  Straw bale check dams in stable ephemeral channels are resistant to 

failure and releasing stored sediment.  This allows for multi-year storage of trapped sediment for 

as long as the structural integrity of the straw within the bales allows.   

4.5 Ground cover 

 The rate of sedimentation across the site is a function of the limited vegetation cover 

across the hillslopes and in the channels.  Ground cover was reduced by combustion during the 

Twitchell Canyon Fire.  The reduction in live vegetation, litter such as leaves or dead grasses, 

and other organics that mitigated overland flow and soil erosion during high intensity rain events 

changed the hydrologic response of not only the studied catchments, but across the burned 

landscape.  The area of mineral soil exposed to raindrop impact and overland flow is the most 

critical to reduce to bring the landscape back to pre-fire conditions.  Mineral soil exposed to 

overland flow and raindrop impact was reduced from 2011 to 2012 by regrowth of vegetation by 

17 % on hillslopes.  The most noticeable regrowth was gamble oak shrub (Quercus gambelii) 

that had grown as much as a 30 cm (1 ft) in some patches by the fall of 2011 and by 60 to 90 cm 

(2 to 3 ft) by 2012.  The gamble oak shrub was much denser on north aspect hillslopes than on 

south aspect hillslopes.  Gamble oak reduced the surface area of exposed mineral soil primarily 

by quick regrowth of vegetation.  Grasses had a similar effect at reducing the surface area of 

exposed mineral soil.  The vegetative regrowth from annual grasses and gamble oak shrub were 

to two primary factors that increased vegetation cover in the first two post-fire years (18 to 30%).  
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Robichaud (2005) has shown exposed area of mineral soil needs to be ~25% or less before 

vegetation and litter have mitigative effects on the hydrologic response. While there is a 

significant difference in area of mineral soil reduced from fall of 2011 to fall of 2012, soil 

exposure needs to decrease by 15 to 20 % more before it is a low enough value before there is a 

noticeable reduction in erosion rates by raindrop impact and overland flow.  This may take a few 

more years depending on available rainfall for plant growth and seed availability to increase 

vegetation and litter cover.   

4.6 Particle size analysis and organic matter 

 Sedimentation rates from hillslopes and through channels were so great that the soil 

texture changed very little while being transported through the system.  There was little change 

in texture of eroded soil at both the hillslope scales and in between the treated and control 

catchments.  This may be from the high hillslope erosion rates and catchment sediment yields.  

During the brief period of high runoff rates and high erosion rates caused by large rain storms the 

catchments may have had increased connectivity between zones (Miller et al. 2012) or the 

hillslopes and channels, essentially homogenizing the soil texture throughout the catchment.  

There may have been little difference in the particle size distribution content because the thick 

bedrock unit has produced a constant soil texture from the base of the catchments to the tops of 

the ridges.  This would make a sample of soil texture that only moved 50 cm (~1.6 ft) the same 

as a sample of soil texture that been transported the length of the watershed.  Also, the soil type 

may not have strong aggregates because of the high sand content (~70 to 80 %) or mostly weak 

frictional forces holding sand grains together as opposed to strong electrostatic forces between 

clay particles.  This would break the weak soil aggregates down into primary particles more 
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readily when exposed to raindrop impact and/or during transportation, thus making a more 

homogenous soil texture.   

 The organic matter was not significantly different between the upslope and base of 

hillslope fences as well as between treated and control catchments.  Organic matter was probably 

evenly distributed throughout catchments prior to the fire, due to the relatively homogeneous 

mixture on pinion pines and junipers interspersed with mountain big sage brush prior to the burn, 

seen on unburned surrounding areas. 
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5.0 Conclusions 

 Sediment yields across the site were extremely high causing straw bale check dams to 

have little effect on reducing rates.  Catchments in Middle Canyon treated at a rate of four straw 

bale check dams ha-1 (two SCDs ac-1) did not significantly reduce sediment yields compared to 

paired control catchments during low intensity events with I30 intensities equal to or less than 21 

mm hr-1 (0.8 in hr-1).  Given all straw bale check dams were filled to sediment holding capacity 

and non-functioning at the beginning of the second post-fire year there was no significant 

difference in sediment yields between treated and control catchments during the second post-fire 

year.  Increasing the current treatment rate to significantly reduce or meet sediment yield 

mitigation targets may not be feasible if the defined ephemeral channel is too short to 

accommodate for high treatment rates.   

 Straw bale check dams filled to sediment holding capacity during the first and second 

sediment yield event and allowed large sediment yields to pass over the straw bale check dams.  

In Sevier Canyon, straw bale check dams were filled to sediment holding capacity during a 1-

year I30 (21 mm hr-1, 0.8 in hr-1) return period event in two catchments and by both a 2-year I30 

(28 mm hr-1, 1.1 mm hr-1) and 1-year I30 (20 mm hr-1, 0.8 in hr-1) return period event in the third 

catchment.  The reliable annual sediment yields from first post-fire year Sevier Canyon treated 

catchments show 19.53 to 25.71 Mg ha-1 (8.71 to 11.47 t ac-1) of sediment was transported past 

the straw bale check dams.  In Middle Canyon, 56 % of the empty straw bale check dams filled 

to sediment holding capacity by a rain event with less than a 1-year I30 (13 mm hr-1, 0.5 in hr-1) 

intensity return period.  The remaining empty or partially full straw bale check dams were filled 

by a second event that had an I30 intensity less than a 1-year return period.  The annual sediment 
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yield transported past straw bale check dams in Middle Canyon during the first post-year was 

3.54 to 4.33 (±0.1) Mg ha-1 [1.58 to 1.93 (±0.1) t ac-1].   

 The landscape of the study area was resistant to change despite the wildfire, allowing 

straw bale check dams fill to capacity and ephemeral channels to change little over the course of 

the study.  There were no failures of straw bale check dams during the two years of monitoring.  

The mean mass of sediment trapped by straw bale check dams filled to capacity was 1.27 Mg 

(1.40 t) per structure.  The mean mass of sediment trapped per catchment area at a treatment rate 

of four straw bale check dams ha-1 (2 SCDs ac-1) was 5.87 Mg ha-1 (2.62 t ac-1).  It is important to 

standardize treatment rate to the number of straw bale check dams per catchment area.  The 

mean amount of sediment scoured below the spillway of straw bale check dams was 0.06 Mg 

(0.07 t).  The straw bale check dams were installed in stable channels resistant to scour, which 

helped to prevent structural failures from spillway scour undermining the structure on the down-

stream side.  Straw bale check dam treatment was not need to stop or slowing knick point 

migration because the channels were stable and resistant to scour.   
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Appendix 

The data for this thesis is stored electronically on file at the USDA Forest Service, Rocky 
Mountain Research Station, in Moscow, Idaho 83843 under Dr. Peter R. Robichaud.  The file 
structure with a description of folder and file contents is as follows: 

Master folder: ‘’ delineates folder 

 ‘Twitchell’* 
 ‘Cover’ 
 ‘2011’ 

 Summer 2011 ground cover survey data and Fall 2011 ground cover survey data 
 ‘2012’ 

 Fall 2012 ground cover survey data 
 ‘CR10’ 
 Ultra sonic data for 2011 and 2012 that tells the depth behind the upper sediment 

retention structure in catchment H (TWHWD2) 
 ‘Cross Sections’ - Cross-section data spread sheets 
 ‘Field notebooks’ 
 Scanned copies of field notebooks with 2011 data from the Twitchell site 
 Copies of 2012 field data is found in the master Twitchell Canyon fire three ringed 

binder 
 ‘Maps’ –  
 .pfd maps of Middle and Sevier Canyons 
 ‘Garmin’ – all GPS data including catchment and hillslope perimeters, raingauge 

locations, hillslope fence locations. 
 ‘Moisture_Bulk density’ – bulk density samples taken in sediment deposits 
 ‘Photos’ – all photos from the site for 2011 through 2012, the file “Watershed 

areas__Photo numbers.xlsx” in ‘Twitchell’ gives information associated with each photo 
 ‘PSA and organics’ – PSA and organic matter data from Middle Canyon samples for 

2011 
 ‘Rain_data’ – ‘2011’ and ‘2012’ rain data organized by rain gauge with total rainfall, I10, 

and I30 intensities calculated for each event 
 ‘Sediment yields’ –  
 ‘2011’  

 catchment sediment yields and hillslope sediment yields: event by event basis  
 the master file with the yearly sediment yield data 
 all straw bale check dam data is found in: “2011__Sediment_yields_Feb-

26_2013.xlsx”  
 ‘2012’ catchment sediment yields and hillslope sediment yields: event by event 

basis, compiled yearly data 
 Master data spread sheet for statistical analysis 

 Trimble Geomatics Office Software on Bob Browns Dell laptop 
 Twtichell fire: Survey data of the Twitchell field site 

* ‘’ delineates folder from a file 


