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ABSTRACT 
 
 
 The wolf populations in Europe are mostly divided between the largely 

undeveloped countries of Eastern Europe, and the more developed Western European 

nations. Poland holds a special importance as a geographical link joining these 

populations into one contiguous population. The territories of two wolf packs in 

southwestern Poland were examined through the collection of scat data. Core areas were 

then defined using fixed-kernel density estimation techniques and 50% isopleths. Habitat 

variables were then compared between core plots and non-core plots. Scat marking of 

both packs resembled the Hot Spots pattern of marking proposed by Zub et al. (2003), 

rather than the Olfactory Bowl pattern suggested by Peters and Mech (1975). Core plots 

in both territories were found to be located significantly farther from primary roads than 

non-core plots, while core plots in one territory were also located significantly farther 

from human built-up areas than non-core plots. No significant differences were found in 

forest cover, elevation, or road density between core and non-core plots. These findings 

suggest that in a region with high human densities and increased levels of human 

penetration into the forest, wolves may more intensely utilize areas that minimize their 

exposure to frequent human disturbances, while adapting to occasional disturbances.  
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INTRODUCTION AND RESEARCH OBJECTIVES 
 

Carnivores hold a special place in the hearts of many people. None is a better 

example than the wolf, Canis lupus. The wolf is both loved and hated in the imaginations 

of many—regarded as a symbol of wilderness, an artifact of something special that has 

been nearly lost, and a sign of the return of wild nature; or, serving as a symbol of 

destruction, cost, and problems for others. Because of the polarizing effect of carnivores 

such as wolves, carnivore conservation has been highly controversial and riddled with 

challenges. 

Research during the past few decades has illustrated the importance of large 

carnivores to many different ecosystems (McLaren & Peterson 1994; Wilcove et al. 

1986; Post et al. 1999; Berger et al. 2000). Carnivores both directly (Terborgh 1988; 

Estes et al. 1998) and indirectly (Kotler et al. 1993; Brown et al. 1994) reduce numbers 

of prey, either by consuming the prey, or by acting as a motivation for prey animals to 

change their normal behaviors (favorite habitats, time of feeding, group size, etc.). These 

effects can be observed at several trophic levels. One classic example of this is the study 

conducted by McLaren and Peterson (1994) in which they found that predation by wolves 

in Isle Royale’s boreal forests resulted in changes in both the numbers and behavior of 

moose (Alces alces), which in turn, also affected the recruitment and growth rates of 

balsam fir and other woody plants. After wolves disappeared from Yellowstone National 

Park, overstory recruitment of aspen stopped as the elk (Cervus elaphus) population grew 

and essentially browsed the aspen saplings to death (Ripple and Larson 2000). After wolf 

reintroduction to Yellowstone in 1995, researchers found that preferred habitat of the elk 

had shifted due to the presence of the wolf (Fortin et al. 2005), and as a result, aspen 

reestablished in many areas. Regarding an ever-increasing important topic, Wilmers and 
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Post  (2006) found that wolves may help mitigate the effects of global warming in 

Yellowstone by ensuring that carrion always exists for scavenger species, despite mild 

winters. 

Large carnivore conservation presents several challenges, including the large 

territories required for effective conservation (Pletscher et al. 1991; Blanchard & Knight 

1991; Beier 1993; Craighead et al. 1982; Mattson et al. 1991). Due to the large migratory 

distances of species such as the wolf, it is difficult to set aside tracts of land that are large 

enough to contain all required habitats. In most cases, migratory corridors, or smaller 

sections of land that can be temporarily used by animals to move from one habitat to 

another, become extremely important (Beier and Noss 1998, Bennett 1990, Rabinowitz 

and Zeller 2010).   

Another important challenge in achieving effective large carnivore conservation is 

the problem of human/wildlife conflict (Mishra 1997, Fredriksson 2005). Human beings 

are occupying areas that they had not previously inhabited, taking away valuable habitat 

from many species. As a result, humans are experiencing more encounters with wildlife, 

and when the species in question is a carnivore, such as a wolf or a grizzly bear, an 

element of danger also exists. Therefore, large carnivores have aroused strong feelings 

among people that live with them, as well as among those that live in other areas but 

dream of seeing them. As the human population continues to expand its reach into the 

remotest parts of the world, a pressing challenge is finding ways that people and 

carnivores can coexist. 

Wolves were exterminated from most areas of northern and western Europe 

during the last two centuries, reaching their lowest numbers in the 1940’s to the 1960’s 

(Salvatori and Linnell 2005). Since the end of the 1960’s, many populations have started 
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to recover and reoccupy some of their former range, such as in northern Italy, France, 

Spain, Germany, and Switzerland (Salvatori and Linnell 2005). Throughout Europe, most 

areas suitable for wolves are located in mountainous regions where climatic and 

geomorphologic conditions render the areas less favorable to human development 

(Massolo and Meriggi 1998; Salvatori et al. 2002). The wolf is classified as a species of 

least concern in the 2010 Red List of the IUCN (Mech & Boitani, 2010), while CITES 

(Convention on International Trade in Endangered Species of the Wild Fauna and Flora) 

lists the wolf as a species of Lower Risk or Least Concern, except for the Mexican wolf 

population (Extinct in the Wild), the Iberian population (Lower risk: conservation 

dependent), the Italian population (Vulnerable), and populations in Bhutan, Pakistan, 

India, and Nepal, which are all listed in Appendix I, meaning that they are in danger of 

extinction (Salvatori and Linnell 2005). 

Under the Bern Convention (Convention on the Conservation of European 

Wildlife and Natural Habitats, 1979), wolves are listed in Appendix II as a strictly 

protected species, meaning that both the wolf and its habitats are fully protected. 

However, enforcement of this convention is a responsibility of the individual parties and 

individual countries may create specific exceptions. This has happened in Bulgaria, the 

Czech Republic, Finland, Latvia, Lithuania, Slovenia, Slovakia, Spain, and Turkey, who 

have all signed the Bern Convention, but where wolves continue to remain unprotected 

(Salvatori and Linnell 2005). 

Canis lupus has been protected in Poland since April 1998. At the present, the 

wolf population in Poland is estimated to number 750 individuals (Nowak and Myslajek 

2011). Wolf populations are found in the northeastern region of Poland, including the 

protected Bialowieza Primeval Forest, the southern region including the Polish 
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Carpathians (this wolf population is shared with Slovakia and Ukraine), and also in 

western Poland in a region bordering Germany.  

The wolf population inhabiting the Beskidy Mountains of southern Poland is in 

the most danger. There, the population is limited to only a handful of packs. Greater 

densities of roads in southern Poland and more human-occupied areas have resulted in 

less suitable habitat than that in the northern part of the country (Jedrzejewski et al. 

2005). In addition, many packs in this southern region inhabit border areas, where they 

are vulnerable to hunting during certain parts of the year.   

Many studies have been conducted focusing on the presence of wolves in areas 

and several habitat suitability models have been constructed (Mladenoff et al. 1995; 

Massolo and Meriggi 1998; Glenz et al. 2001; Jedrzejewski et al. 2008). However, wolf 

presence in no way guarantees that a wolf population will survive or thrive in an area, as 

the population inhabiting the Beskidy Mountains in southern Poland demonstrates. In 

areas like the Beskidy Mountains, where human presence is a regular occurrence, optimal 

habitat does not exist. If wolf populations are to survive, those core habitats most 

important to wolves need to be identified and protected. Wolf-occupied areas have been 

identified, but a need exists for a finer-scale analysis of wolf territories in order to 

determine more subtle effects of habitat parameters and human influence on those areas 

wolves utilize most often. 

Theuerkauf et al. (2003) studied the selection of den, rendezvous, and resting sites 

by wolves in the Bialowieza Forest in Poland. They found that habitat characteristics 

were less important in the selection of these sites than the spatial distribution of forest, 

public roads, and towns and villages. The Bialowieza Forest is a distinctly different study 

site than those in southern Poland. Approximately 100 km2 of the Bialowieza Forest is 
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protected as a national park, with half of that area strictly protected as a core area, where 

no motorized traffic is allowed and human entry is by permit only (Theuerkauf et al. 

2003). The rest of the forest is used more intensely, yet human density is only 

approximately 7 inhabitants/km2 in the forest itself, and 70 persons/km2 in the areas 

surrounding the forest. In comparison, this study took place in southern Poland, where 

human density is much higher (average of 143 persons/km2) and there are no restrictions 

on human entry (Jedrzejewski et al. 2005). How do wolves select these important habitats 

in an area in which it is nearly impossible to escape human disturbance? Would they 

choose thick forest cover and habitat quality over human avoidance, or would they seek 

to avoid people, even if that means inferior habitat? 

This study seeks to aid in identifying those areas most valuable to wolves in this 

population through the analysis of scat locations within the territories of two wolf packs. 

Habitat variables, including physical, biological, and spatial attributes, will be recorded in 

areas heavily utilized by wolves and then compared to the same variables in areas utilized 

less intensely. In this way, variables that appear to most influence the value of an area to 

a wolf pack will be identified and used to predict areas of higher value for wolves in 

regions with high human presence. The information gathered from this study may be used 

to guide future conservation measures and increase the probability of their effectiveness.  

The objectives of this paper are to: 

1) Examine whether the patterns of wolf scat marking in two wolf pack 

territories could be classified as the olfactory bowl pattern proposed by Peters 

and Mech (1975); or the hotspots pattern proposed by Zub et al. (2003); 

2) Identify any “core” areas within each wolf territory through kernel density 

estimation and map them using a GIS; 
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3) Compare any core areas to other areas within the territories by using a GIS to 

map and examine several habitat variables, including road densities, locations 

of built-up areas, forest cover, elevation, and distance to primary roads; and 

determine which variables appear to be the most important for core selection. 
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STUDY AREA 
 

The Beskidy Mountains of southern Poland include two mountain ranges: the 

Silesian Beskidy Mts. and the Zywiecki Beskidy Mts. (Figure 1). These two mountain 

ranges are part of the western-most range of the Polish Carpathian Mountains. The 

Carpathian Mts. contain the largest continuous wolf population in Central Europe, 

covering parts of Romania, Ukraine, Slovakia, and Poland (Salvatori et al. 2002). The 

study area covers approximately 745 km2.  

The elevation of the study area ranges from 300 to nearly 1600 meters above sea 

level (Nowak et al. 2005) and the forest community consists mostly of Norway spruce 

(Picea abies) and beech (Fagus silvatica), with spruce monocultures mostly dominating 

the higher elevations. The study area receives significant amounts of snow, with snow 

remaining in the valleys approximately 80 days per year and up to 160 days per year on 

the higher, north-facing slopes (Nowak et al. 2005).  

The region is densely populated by humans (average of 150 people/km2), 

particularly in villages located in the valleys and along the lower mountain slopes 

(Nowak & Myslajek 2004). In comparison, Poland as a whole has a mean population 

density of 124 people/ km2 (Jedrzejewski et al. 2005). There are few nature reserves in 

the study region and most of the forest is exploited for logging, with logging roads 

penetrating nearly every area of forest. A large number of meadows and fields exist in the 

higher elevations as a result of past livestock grazing activities, and some of these areas 

are still used today. However, in general, livestock raising is now uncommon and exists 

on a much smaller scale, with only small flocks of sheep and herds of goats occasionally 

present. Numerous recreational hiking trails, a few ski areas, and several small vacation 

cabins and lodges bisect the forest. The region receives heavy human traffic, especially 
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during the summer months. During the fall months (late September to November), large 

numbers of people travel into the forest to collect mushrooms. The mean density of 

public roads within the study area is 1.3 km/km2 (Nowak et al. 2008). 

Other large carnivores are also present in the region. Eurasian lynx (Lynx lynx) 

inhabit areas in eastern and southeastern Poland (Jedrzejewski et al. 2005; 

Niedzialkowski et al. 2006), while brown bears (Ursus arctos) occupy areas of the 

Carpathian Mountains in southeastern Poland (Jakubiec and Buchalczyk 1987). Both of 

these species, in addition to the wolf, are protected. 

The Silesian Beskidy Mountains were naturally recolonized by wolves in 1996 

(Nowak et al. 2008), while in the Zywiecki Beskid Mountains, small numbers of wolves 

existed prior to protection, mostly along the Polish-Slovakian border areas (Nowak et al. 

2008).  Nowak et al. (2008) found the number of wolves in the Zywiecki Beskid region 

to vary between 9 and 14 wolves over a 5- year period from 1998-2003. Within the same 

period, the wolf population in the Silesian Beskidy area fluctuated as the breeding pair of 

the Grapa pack repopulated the area in 1996, and then steadily grew when they 

successfully reproduced in 1998 and following years. In the spring of 2002, the pack split 

into two groups, with the original parents remaining in the area, while three individuals 

established a territory in an adjacent area (Nowak et al. 2008). Overall, the wolf 

population within the study area grew at a rate of approximately 8% per year, with the 

Silesian Beskidy population growing at a mean rate of 28% and the population of the 

Zywiecki Beskid region mostly remaining stable (Nowak et al. 2008).  

This study will focus on the territories of two wolf packs, the Grapa pack and the 

Halny pack (Figure 2). Five wolf packs inhabit the region around the study area; 

however, due to problems associated with accessibility, border crossing logistics, and 
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lack of data, only the territories of these two packs were examined for this study.  The 

Grapa pack occupies a territory within the Landscape Park of the Silesian Beskid 

Mountains, while the Halny pack inhabits a territory that lies within the Zywiecki 

Landscape Park, bordering the Slovakian border.  

 

 

FIGURE 1: MAP OF POLAND WITH STUDY AREA MARKED  

(Modified from Google Earth, 2011) 

 

 

 

 

 

 

Study Site 
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FIGURE 2: MAP OF PACK TERRITORIES (adapted from Nowak et al. 2008) 
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GRAY WOLF (Canis lupus) ECOLOGY  
 
 

SOCIAL STRUCTURE AND REPRODUCTION 
 
Wolves live in family-based social groups called packs, normally consisting of a 

male, female, newborn and older pups, and occasionally adults from other packs (Mech 

1970). The breeding pair of wolves in the pack, also called the “alpha” wolves, generally 

guides the pack and takes responsibility for the division of labor within a pack (Mech 

1970).  The males usually act as the hunters and are responsible for providing food, while 

the females serve as caretakers for the pups in the pack (Mech 1999). The alpha pair 

breeds once per year, normally between the months of January and April (Mech 1970). 

Breeding begins at 2 to 3 years of age and the average litter size is 4-7 pups  (Person and 

Russell 2009; Fuller 1989; Mech 1970; Okarma et al. 1998). Denning typically occurs in 

sandy soils where dens can be excavated, or under roots of fallen trees (Theuerkauf et al. 

2003, Mech 1970, Fuller 1988). Rendezvous sites are also used as places where young 

wolves remain for several days, waiting for the adults of the pack to return from hunting 

excursions. These are mostly located in areas located far from roads and with at least 

some forest cover (Theuerkauf et al. 2003; Ballard and Dau 1983). 

The number of individuals in a pack can vary greatly, both between packs and 

from year to year. This variation depends on a combination of factors, including 

successful reproduction, survival of pups, individual dispersal rates, and availability of 

prey (Mech 2007; Fuller 1989). It is common for wolves not belonging to the breeding 

pair of their pack to disperse during the spring months in an effort to form their own 

pack. This generally occurs when the dispersers reach two or three years of age (Fritts 

and Mech 1981, Fuller 1989). These dispersers often travel several hundred kilometers to 

find new territories and other dispersers of the opposite sex, resulting in the formation of  
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a new pack (Gese and Mech 1991; Fuller 1989). Dispersion is extremely important in 

maintaining a wide gene pool between packs, lessening the chances for inbreeding. 

Unlike many other large carnivores, wolves are extremely adaptable animals in 

many respects. This is partly due to their ability to quickly replace their numbers when 

given the chance. Wolves reach sexual maturity at an early age and are capable of 

producing large litters. They are able to modify pack structure in response to changing 

levels of mortality and regional prey abundance. Wolves accomplish this through altering 

fertility levels, the dispersion of individuals from one area to another, and changing their 

tolerance of other wolves in neighboring areas (Fritts and Mech 1981). 

 
TERRITORY AND HABITAT 
 
 When it comes to habitat, wolves are very adaptable animals, basically able to 

occupy any habitat that can sustain their prey (Mech 1995). Some studies suggest that the 

main limiting factor for wolves, after human tolerance, is prey availability (Fuller et al. 

1992, Carroll et al. 2000). In the northern Apennines in Italy, wolf presence was 

positively influenced by the availability of ungulate prey (Massolo and Meriggi 1998, 

Ciucci et al. 2003). In India, wolves were found to inhabit an alluvial plain and mosaic of 

croplands and grasslands in order to take advantage of large ungulate populations (Jethva 

and Jhala 2004).  

Each wolf pack establishes a territory in which they hunt, raise pups, and defend 

from other packs. Mech (1970) found that two factors are mostly responsible for 

determining how large a pack territory is: the number of wolves in a pack, and the 

abundance of prey within a territory. In territories where prey is scattered and less 

abundant, territory size must be larger to ensure that there is enough prey to feed the pack 

(Ashenafi et al. 2005; Fuller 1989). In Poland, the average territory size of a wolf pack is 



 16 
 
 

 

200 km2 (Jedrzejewski et al. 2007), whereas territory size in winter in Minnesota ranged 

from 78-153 km2 (Fuller 1989). Okarma et al. (1998) observed home ranges of 141-168 

km2  from May-September in the Bialowieza Primeval Forest in Poland, while winter 

home ranges in the same area varied from 99-271 km2. Fritts and Mech (1981) found that 

wolf packs in northwestern Minnesota used the same territories during both summer and 

winter, averaging 344 km2 in area. A review of home ranges of Eurasian wolves done by 

Okarma et al. (1998) found the largest home ranges in northern Scandinavia (415-500 

km2) and the smallest home ranges in areas of southern and central Europe (80-240 km2). 

The researchers found that territories were largest in low-density colonizing populations, 

while packs living in established populations tended to have smaller home ranges.  

Within each territory, wolves select a core area. This area is where a wolf pack 

spends the majority of its time, particularly during the denning and pup-rearing periods. 

Other areas within the core area are also selected for rendezvous sites, or areas in which 

young wolves wait for adult wolves to return from a hunt; and resting sites, where wolves 

rest for a short time, but do not return to. In a study done in the Bialowieza Primeval 

Forest, located on the Polish-Belarussian border, Okarma et al. (1998) found that core 

areas comprised 11-23 km2 and made up 5-13% of the total home range. Also in the 

Bialowieza Forest, Jedrzejewski et al. (2007) found that the average core area comprised 

17% of the average territory. Silva and Talamoni (2004) found that maned wolves in 

Brazil used a core area that equated to 3.8% of their total territory. Person and others 

(1996) reported that wolves in southeastern Alaska occupied territories of 280 km2, and 

core areas of 124 km2 (44.2% of the territory). In northwestern Minnesota, Fritts and 

Mech (1981) detected seasonal changes in the intensity of use of different parts of 

territories. 
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Wolves, like many large mammals, mark their territories using several different 

methods, including urine, scat, and ground scratching (Peters & Mech 1975, Mech and 

Boitani 2003, Barja et al. 2004). These marks are very important in olfactory 

communication.  Wolves mark in order to assert dominance over other wolves, for 

marking territories to warn other wolves of their presence, for spatial orientation, and in 

the pair-bonding process (Peters & Mech 1975; Rothman & Mech 1979; Harrington 

1981; Asa et al. 1984; Paquet & Fuller 1990; Vila et al. 1994). Intensity of marking can 

be affected by the presence of marks from other individuals, by the presence of specific 

landmarks (e.g. tree stumps), and by other stimuli (Peters & Mech 1975).  

The different methods of marking have been studied frequently (Peters & Mech 

1975; Paquet 1991; Asa et al. 1985), including the use of scat to mark territories (Zub et 

al. 2003). Two main theories concerning the pattern of territory marking by wolves with 

scat exist, the olfactory bowl pattern (Peters and Mech 1975), in which wolves equally 

distribute scats along the edges of their territory, and the hotspots pattern (Zub et al. 

2003), in which wolves densely mark certain areas within their territories they deem the 

most valuable.  Due to the energy required to mark locations with scats, it would make 

sense that those areas marked with wolf scats are considered to be the most valuable to 

them, whether they are territory boundaries or possible den sites. Barja et al. (2005) 

examined the patterns of wolf scat marking along roads within territories and found that 

Iberian wolves tended to leave scats on conspicuous objects in territory areas outside the 

den area. Asa et al. (1985) found that captive wolves deposited most of their feces near 

the gate to their enclosure, where their caretakers entered. Many studies have found that it 

is common for wolves to deposit scat at junctions (Barja et al. 2004; Vila et al. 1994). 

Several researchers (Barja et al. 2004; Vila et al. 1994) have proposed that wolves do this 
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to maximize the chances of the scats being detected by other animals, including other 

wolves. This pattern of marking also reduces the number of scats needed to mark 

territories, thus minimizing the energetic costs of territory marking (Zub et al. 2003).  

 
DIET 
 

 Wolves can be classified as opportunistic predators, as they prey on animals that 

take the least energy to kill. As a result, most wolf kills are the injured, young, or old 

individuals of prey populations  (Mech 1970).  In this way, wolves help keep prey 

populations healthy and improve the gene pool of prey species over time by preying on 

genetically inferior individuals. Depending on the habitat and prey species available, 

wolves may primarily prey on different ungulate species, such as moose, elk, deer, 

caribou (Rangifer tarandus), or in the unique example of the coastal wolves of Canada, 

they may even prey on salmon (Mech 1970, Fuller 1989; Darimont and Paquet 2002). In 

the Far East of Russia, wolves were found to mostly prey on red deer, while taking 

smaller percentages of wild boar and roe deer. Fuller (1989) found that beaver were an 

important secondary prey during the spring months. 

 In areas with low densities of prey populations, wolves may result to preying on 

livestock (Mech 1995; Meriggi and Lovari 1996). Wolf depredation on livestock has 

proven to be a very significant challenge to human tolerance of wolves, particularly in 

areas where high depredation rates occur. However, the perception of wolves as livestock 

killers is generally exaggerated (Bangs et al. 1995) and modified animal husbandry 

practices often help reduce depredation by wolves (Mech et al. 2000; Gula 2008).    
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THE WOLF AS A TOP CARNIVORE 

As a top predator within an ecosystem, the wolf has a significant impact on a 

variety of other species within the ecosystem, including the overall biodiversity of the 

system. As already mentioned, wolves help to regulate prey populations, particularly 

ungulates, by culling weaker individuals. In the absence of a top predator like the wolf, 

ungulate populations are able to explode. Because of the vast amounts of vegetation eaten 

by ungulates and other herbivores, certain species of vegetation can become depleted, 

causing the populations of smaller herbivores that normally feed on these species to 

collapse. The end result is a simplified food web and a loss of biodiversity (Terborgh et 

al. 1999).  

In addition to the overpopulation of large herbivores as a result of the absence of a 

top carnivore like the wolf, meso-predators, such as the coyote, are also able to increase 

in numbers. As meso-predators tend to be more generalists in regard to diet, an explosion 

in their numbers can lead to a decline in the numbers of many species, thus also reducing 

biodiversity. 

The presence of wolves not only helps deter the loss of biodiversity through the 

overpopulation of large herbivores and meso-predators, but can also help increase 

biodiversity. Wolves, as large carnivores, often leave behind carcasses for other 

scavengers to prey on (Wilmers et al. 2003). Omnivores, like grizzly bears, and other 

carnivores are likely to benefit from increased carrion availability (Murie 1944). 

 
EFFECTS OF HUMAN ACTIVITIES ON WOLVES 
 

Historically, the wolf has been greatly affected by human activity. In the early 

1900s in the United States, wolves were exterminated throughout most of their historic 

range through the use of poisons, trapping, and organized wolf hunts, and large bounties 
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were paid for each wolf pelt that was collected (Lopez 1978). Similar occurrences took 

place in Europe over the last two centuries, and most wolf populations in Western Europe 

collapsed, reaching a low in the 1940’s to 1960’s (Salvatori and Linnell 2005). 

Recently, the indirect effects of humans have had the most significant detriment 

to wolves. Large carnivores often are considered good indicators of ecosystem integrity 

and health because of their sensitivity to landscape disturbances (Carroll et al. 2000; 

Landres et al. 1988). With increasing development occurring all over the world, forests 

are being destroyed and humans are starting to extend their reach into areas that had 

previously been mostly undisturbed. Habitat fragmentation, which is the subdivision of a 

large contiguous habitat into smaller fragments, is occurring at a faster pace now than at 

any other time in history. This is very harmful, in particular, to species like the wolf that 

require large tracts of land to survive (Noss 2001; Carroll et al. 2001). Habitat 

fragmentation results not only in habitat loss, but also a reduction in the existing habitat 

patch size and the isolation of the remaining habitat fragments. The end result is a 

collection of isolated, unviable animal populations because of a loss of genetic variability 

over time (Duke et al. 2001; Paquet et al. 2001; Pimm et al. 1988). In response to the 

threat of habitat fragmentation and isolation of animal populations, biologists have begun 

proposing the creation and protection of migratory corridors to facilitate genetic 

exchange between isolated populations (Maehr 1990; Paquet et al. 2001).  

Several studies have shown that wolves tend to avoid developed areas and areas 

with high densities of roads (Jedrzejewski et al. 2004, Jedrzejewski et al. 2005, 

Mladenoff et al. 1995,Theuerkauf et al. 2003, Theil 1985). Fuller et al. (1992) found that 

nearly 90% of the wolves in Minnesota were located in townships with human densities 

less than 4 people per square kilometer. Jedrzejewski et al. (2004) found that the amount 
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of forest cover, which is often associated with the extent of development in an area, was 

very important to wolf presence. From these studies, one can conclude that wolves tend 

to avoid humans when given the chance. 

Humans are also responsible for direct mortality of wolves. In the western 

Carpathian Mts. in Poland and Slovakia, culls, including hunting mortality within the 

Slovakian regions and management actions taken by state forestry agencies, accounted 

for 83% of all recorded wolf deaths during an 8-year study (Nowak et al. 2008). When 

combined with collisions with motor vehicles (11%), humans were responsible for nearly 

all recorded deaths. Fritts and Mech (1981) also found that humans were directly 

responsible for the majority of wolf deaths in their study in Minnesota.  

 
THE WOLF IN POLAND 
 

Presently, Poland represents the western border of the contiguous geographic 

range of wolves in Europe (Boitani 2000; Jedrzejewski et al. 2004; Okarma 1993, 

Okarma 1997) (Figure 3). Situated between the largely undeveloped countries of Eastern 

Europe, where large populations of carnivores still exist, and the countries in Western 

Europe, where many populations of large carnivores have been eradicated or struggle to 

survive (Jedrzejewski et al. 2008), Poland can serve as a valuable link between these 

populations and habitats. The wolf has been protected throughout Poland since 1998, and 

current estimates put the wolf population at around 750 individuals (Nowak and Myslajek 

2011). Viable wolf populations permanently inhabit the eastern part of the country, 

including Bialowieza Primeval Forest, near the Belarussian border (Theuerkauf et al. 

2003). However, only a few packs and lone individuals inhabit western Poland, and many 

do not remain for more than a few years (Wolsan et al. 1992; Jedrzejewski et al. 2002).  

Southern Poland, including the Polish Carpathian Mountains, is also home to wolves 
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(Figure 4). On average, approximately 30 wolves inhabit the region each year (Nowak 

and Myslajek, pers. comm.). Average pack size in the southern mountains during the 

study period was approximately 4 wolves, with a maximum of 6 (Nowak and Myslajek 

pers. comm.).  

In Poland, the majority of wolf populations inhabits managed forests 

(Jêdrzejewski et al. 2002), mostly consisting of coniferous plantations of pine, Pinus 

silvestris, in lowland areas and spruce, Picea abies, in mountains (Nowak et al. 2005). 

Roe deer, Capreolus capreolus comprises the majority of the ungulate community 

(>60%) in most of these exploited forests (Nowak et al. 2005, from Budna and 

Grzybowska 2000). In southern Poland, the wild ungulate community is made up of three 

species: roe deer, red deer (Cervus elaphus), and wild boar (Sus scrofa).  Red deer was 

reported as being the most preferred prey in other regions in Poland, such as the 

Bialowieza Forest in eastern Poland (Jêdrzejewski et al. 1992, 2000, 2002) and the 

Bieszczady Mts, in the southeastern part of the country,(Śmietana and Klimek 1993), as 

well as in the study area (Nowak et al. 2005). 

 The average territory size of a wolf pack in Poland is approximately 200 km2 

(Jedrzejewski et al. 2007).  In the western-most region of the Polish Carpathian 

Mountains, where the study site is located, Nowak et al. (2008) found the average wolf 

pack territory to cover approximately 158 km2.  In their 8-year study, Nowak et al. (2008) 

observed that in the Silesian Beskid Mountains, where no human hunting pressure 

occurred, the wolf population increased at an average rate of 28% per year. However, in 

the Żywiecki Beskid Mountains, where wolf territories overlapped with areas in Slovakia 

where hunting was allowed, no increase in population numbers was seen. Throughout the 

entire study area, mean population growth was 8% per year (Nowak et al. 2008). 
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 The main threats to the future of the gray wolf in Poland are loss of habitat and 

planned development of transportation infrastructure. Wolves inhabiting the southern part 

of the country face significantly denser human settlements and transportation routes than 

those found in the north of Poland (Jedrzejewski et al. 2005). Wolves occupying the 

study area in southern Poland are also forced to contend with the threat of hunting, as the 

territories of many of these packs overlap areas in Slovakia, where wolf hunting is legal 

for two and a half months each year (Nowak et al. 2008).  Compared with an average 

annual population growth rate of 28% in areas located completely within Poland, packs 

with territories extending into Slovakia failed to grow in numbers during the same 8-year 

period (Nowak et al. 2008). In fact, culling accounted for 83% of the recorded wolf 

mortalities in the region during this study period. Clearly, hunting within some wolf 

territories in southern Poland significantly impacts population numbers.  
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Figure 3: Wolf Distribution in Europe (adapted from Salvatori and Linnell 2005). Wolf occurrence is 
shown in black. 
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Figure 4: Wolf Presence in Poland (adapted from Salvatori and Linnell 2005) 
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DETERMINING WOLF TERRITORY AND CORE AREAS 
 

The first step in identifying valuable areas for wolves is the determination of a 

territory or home range. This is basically the measure of how much space a wolf pack 

uses. The classic method of doing this involves creating Minimum Convex Polygons 

(MCPs) to encompass different percentages (i.e. 50%, 75%, 95%, etc.) of animal location 

data. Generally, the 95% or 100% level is used to define an animal’s territory (the 

smallest polygon that encompasses either 95% or 100% of all animal locations). The 

advantage of MCPs is that they are easily compared between studies and are the most 

commonly used method for estimating territory or home range sizes (Harris et al. 1990). 

Recently, advances in technology have enabled researchers to estimate territories 

and home ranges in new ways using contouring methods. These nonparametric methods 

are valuable in estimating complex probability density distributions and are capable of 

handling multiple centers of activity (Hemson et al. 2005). In short, these methods differ 

from MCPs by indicating centers of activity and how intensely different areas of an 

animal’s range are used. The most commonly used and most reliable method is known as 

kernel density estimation, which describes the probability of finding an animal in a given 

place. This method consists of placing a kernel (a probability density) over each data 

point in the sample and then superimposing a rectangular grid over the data. A density 

estimate is obtained at each grid intersection by averaging the densities of all the kernels 

that overlap that point. Data records located near the point of evaluation will have a 

greater influence on the estimated density value than records located further away. 

Therefore, areas in which a large number of records exist will have a higher density 

estimate than those areas where there are only a few records. Home range estimates or 

core estimates are derived by drawing contour lines, or isopleths, based on the summed 



 27 
 
 

 

volumes of the kernels at grid intersections (Rodgers and Kie 2007). These isopleths 

define home ranges at different probability levels. A variety of kernel methods exist, 

including the standard bivariate normal curve, the Epanechnikov, the uniform, the 

triangular, the biweight, and the triweight kernels. However, they all give essentially the 

same results (Epanechnikov 1969; Worton 1989; Wand and Jones 1995). 

An important consideration when performing kernel density estimations is the 

width of the kernels, often known as the bandwidth or smoothing parameter (h). The 

bandwidth basically is what tells the software how far to look from one data point for 

other data points. Narrow kernels result in nearby data records having the greatest 

influence on the density estimate, therefore illustrating fine detail of the internal structure 

of a home range (Seaman and Powell 1996). However, extremely small values of h tend 

to undersmooth in outer density isopleths, resulting in discontinuous “islands” (Hemson 

et al. 2005). Wide kernels give the general shape of the data distribution, but are not 

suitable to fine scale analysis. Since the size and shape of home ranges and core areas 

produced from using different values of h can differ so greatly, the selection of an 

appropriate h value is of great importance.  

When performing fixed kernel estimation, where the bandwidth remains constant, 

a common method for selecting the appropriate bandwidth is the process of least squares 

cross- validation (LSCV). This process includes the inspection of several different 

bandwidths and then the selection of the bandwidth that yields the minimum squared 

distance between the fitted surface and the target surface (Hemson et al. 2005).  This 

function is given by the equation: 
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where dij is the distance between the ith and jth points and h is a value of the smoothing 

parameter examined. 

 Another common method for determining the appropriate smoothing parameter in 

kernel density estimation is the reference smoothing factor (href). This function is given 

by the equation: 

 href = σn –1/6 

where n is the number of locations and σ is the standard deviation of the x coordinates, 

with y coordinates transformed throughout the calculations to have the same standard 

deviation (Worton 1989). 

 If a fixed bandwidth is unsatisfactory, adaptive kernel density estimation can be 

performed. This involves varying the bandwidth used to search for neighboring data 

points. Adaptive kernels are generally used when the use of a fixed bandwidth would 

result in undersmoothing in areas with sparse observations while oversmoothing in areas 

with many observations (Kerm 2003). In an adaptive kernel analysis, a density estimate is 

initially performed with a fixed bandwidth to obtain a general idea of the density at each 

observation point. After this initial calculation is performed, the bandwidth value is 

changed inversely with the density of observations (Kerm 2003). A larger h value is used 

over observations in areas of low density, while a smaller h value is used in areas with 

higher densities of observations. However, due to the increased complexity of performing 

an adaptive kernel density estimation, as compared to a fixed kernel estimation, and the 

scarcity of computational tools for performing such an analysis, fixed kernel methods are 

more frequently used (Davies et al. 2011).  
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METHODS 

 
The study site was surveyed for the presence of wolf scats from 1 January 2005 

through 31 December 2007 by the founders of The Association for Nature WOLF, Sabina 

Nowak and Robert Myslajek. I assisted in data collection from February 2006 to 

December of 2007. During this period, the territories of two wolf packs in the region 

(based on the findings of Nowak et al. 2008) were explored through hiking and 

snowshoeing on existing recreational hiking paths and logging roads in the area (Figures 

5 and 6). The territories were delineated in a previous study by Nowak and Myslajek 

(pers. comm.) by creating 100% Minimum Convex Polygons encompassing all recorded 

evidence of wolf presence, including scat locations, urine marks, track locations, howling 

locations, and wolf kills. Topographic maps of the area, scaled to 1:50,000, were used to 

locate all possible hiking trails and logging roads within each wolf pack territory. Many 

studies have shown that wolves tend to utilize dirt roads and trails, particularly during 

winter, as they provide easier routes of travel (Mech 1970; Fritts and Mech 1981; Paquet 

et al. 1996; Ciucci et al. 2003).  

Researchers attempted to find and record data on each wolf scat located on or near 

these paths and roads. When wolf tracks were found crossing these trails and roads, the 

tracks were followed to inspect whether any scats were located at a location along the 

tracks. Trails and roads were sampled in a non-systematic fashion, as weather and road 

conditions occasionally resulted in some areas being inaccessible. This resulted in areas 

with easier points of access having much higher survey intensity than other areas, 

although efforts were made to survey the entire territories (Figure 7) where possible (the 

location of nearly half the Halny territory within Slovakia prevented survey of this area). 

On occasion, surveys were also conducted in areas adjacent to but outside territory 
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boundaries to observe whether wolves were utilizing these areas. Using GPS units, 

records were made on the location of each scat site. Each scat was removed from the trail 

after records were taken, so as to avoid pseudoreplication. GPS coordinates for each scat 

were then inputted into ArcGIS 9.3 (ESRI, Redlands, CA) and analyzed.  

 
 
 

 
 

Figure 5: Grapa Territory  
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Figure 6: Halny Territory  
 
 

 
 

 
 

Figure 7: Tracking surveys conducted within study area, 2005-2007. 
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OBJECTIVE 1: OLFACTORY BOWL VS. HOT SPOTS PATTERN OF MARKING 
 
ArcGIS 9.3 (ESRI, Redlands, CA) was used to examine the locations of wolf 

scats in relation to one another. In total, 177 scats were recorded during the three-year 

study period: 125 within the territory of the Grapa pack, and 52 within that of the Halny 

pack (see Tables 13 and 14, Appendix). Single fixed- kernel density estimation was used 

to analyze scat locations in each wolf pack territory. This analysis was performed using 

the Home Range Tools extension developed for ArcGIS 9.3 by Rodgers et al. (2007).  

For the kernel analysis, I chose to use a fixed bandwidth equal to href, or the 

reference bandwidth (Worton 1995) I decided against the use of an adaptive kernel 

because researchers have shown that in simulation studies, adaptive kernels tend to 

produce contours with more bias than did fixed kernels (Worton 1995, Seaman and 

Powell 1996). The method of calculating the bandwidth through the process of Least 

Squares Cross Validation (LSCV) was not chosen because when this h value was used, 

only small islands of areas with higher densities of scats were created and no core area 

was detected (Figures 6 and 7). Steiniger et al. (2010) also observed that hLSCV was 

unacceptable when examining home ranges of grizzly bears in Alberta, Canada. Hemson 

et al. (2005) found that hLSCV failed more than half the time when examining data sets 

consisting of more than 100 points, while also failing when examining intensively-used 

areas, such as core areas.  

Based on the findings of Peters and Mech (1975), we would expect to see scats 

mostly concentrated around the perimeters of the territories of each pack, as these areas 

are the most vulnerable and most likely to be penetrated by wolves from other packs 

(Olfactory Bowl Pattern). However, Zub et al. (2003) found that wolves only marked 
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certain areas within their territories that seemed to be more valuable to them, producing a 

hot spots pattern of marking. 

Because scat locations were recorded over a period of three years, I had hoped to 

do separate analyses for each year, in addition to analyzing the data set as a whole, in 

order to detect whether any annual changes existed. However, due to an insufficient 

number of scat records, this proved to be impossible. In the case of the hot spots pattern 

found by Zub et al. (2003), those sites heavily marked would correspond to den sites, 

pup-rearing sites, and rendezvous sites, all comprising a core area where the wolves spent 

most of their time.  

If areas with significantly higher densities of scats than surrounding areas were 

found, then these areas would be considered “hotspots,” suggesting that these packs scat 

mark core areas more than territory boundaries. 

 
OBJECTIVE 2: IDENTIFICATION OF CORE AREAS 
 
After a single fixed- kernel density estimation was performed using the Home 

Range Tools extension (Rodgers et al. 2007) to ArcGIS 9.3, core areas were identified as 

areas contained within 50% probability isopleths, meaning the smallest area that yielded 

a 50% probability of finding a wolf scat in the area.  Okarma et al. (1998) used 50% 

MCPs when looking at radiolocations to determine core areas. Person and others (1996) 

used MCPs including 75% of radiolocations to find core areas of wolves in southeastern 

Alaska. When studying Canada lynx, Burdett et al. (2007) found that core areas 

corresponded to 60% isopleths of radiolocations. I chose to use 50% isopleths to 

determine core areas because I wanted to be certain the area I was analyzing was located 

in a core area. Jedrzejewski et al. (2007) also used 50% MCPs to define core areas in 
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their study of wolves in the Bialowieza Forest, Poland. Area values were calculated for 

each core using ArcGIS 9.3. 

 
OBJECTIVE 3: COMPARISON OF HABITAT PARAMETERS ASSOCIATED 
WITH HUMAN PRESENCE BETWEEN CORE AREAS AND NON-CORE 
AREAS  

 
Satellite imagery and land cover data for southern Poland was obtained from 

CORINE land cover data (European Environment Agency 2006) at a resolution of 100 

meters. Using ArcGIS 9.3, 17 random circular plots within each wolf pack territory were 

generated, with 5 of those occurring within the territory’s defined core area, and the 

remaining 12 located within the territory but outside the core area.  Plot area was chosen 

based on the maximum area that would allow 5 plots of a given area to fit within the 

defined core area. This would likely differ between territories as I was expecting to find 

core areas of different sizes in each territory. Each randomly selected plot was examined 

in relation to 6 habitat parameters: 1) habitat type, 2) percent forest cover, 3) mean 

elevation, 4) density of roads (both public-use and special-use roads, such as logging 

roads and other roads closed to the public) and high-use trails, 5) distance to nearest 

primary road or highway, and 6) straight-line distance to nearest built-up area (defined as 

any area consisting of more than 5 human-inhabited dwellings).   

These particular parameters were chosen because they are good approximates of 

human presence in these areas. Jedrzejewski et al. (2005) found that wolves in southern 

Poland selected habitats with more forest cover (mean 50.5%) and smaller densities of 

villages, railways, and roads. Road density has also been shown to negatively influence 

the presence of wolves (Mech 1989; Mech 1995; Maldenoff et al. 1995; Theil 1985) in 

several other areas. The density of roads and trails was examined, rather than the distance 

to the nearest road or trail, because of the small size of the study area and because 
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numerous roads and trails bisect the area. It is extremely difficult to find an area of any 

significant size within the study area that is void of any roads or trails. Therefore, if the 

presence of roads and trails was a factor in core area selection, it would more likely be 

that the wolves were choosing to utilize areas with fewer roads and trails rather than areas 

distant from any. In areas where few roads and trails exist, the distance to any road or 

trail would seem more appropriate. However, the distance to the nearest primary highway 

was chosen because primary highways are good indicators of frequent human-use, 

whereas smaller roads in the mountains may only indicate seasonal or occasional use. 

Similar studies of wolf habitat suitability have also analyzed the distance to the nearest 

water source (Kusak et al. 2005), as this is important for wolf survival. However, many 

of these studies were conducted in areas where water sources were scarce. The area for 

this study is very mountainous, with numerous streams flowing down to the valleys in 

nearly every area.  Therefore, this parameter was not believed to be a limiting factor in 

core area suitability, and was not analyzed during this study.  

All forest cover data were obtained from CORINE land cover data (European 

Environment Agency 2006). These data were classified into 44 different habitat types 

(see Table 17, Appendix). In addition, data for broadleaf forest, coniferous forest, and 

mixed forest cover were combined to obtain forest cover values for each plot. All other 

habitat types were classified as non-forest cover. Mean elevation for each sample plot 

was calculated using ArcGIS 9.3 to analyze a raster produced from a digital elevation 

model of the study area obtained from the National Imagery and Mapping Agency.  The 

raster was converted into polygons and the areas and elevations of all polygons located 

within each random plot were then calculated and a weighted average was obtained. Road 

densities (km/km2) were calculated by digitizing aerial photos of the study area obtained 
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from Google Earth (Google Earth Inc., Mountain View, CA). Shapefiles of the random 

plots generated in ArcGIS 9.3 were imported into Google Earth, and then all 

distinguishable roads and trails within each plot were digitized and measured. Densities 

were calculated in km/km2.  Distance to the nearest built-up area was also calculated in 

Google Earth. This distance was measured from the center of each random plot to the 

nearest area containing at least five human-built structures. I decided not to use the 

Corine land cover data for this analysis because of its scale of 100m x 100m, and I was 

unsure if a small group of houses or structures would be detected at that scale. A primary 

highway layer was obtained from CloudMade data, derived from OpenStreetMap, 

(available, at mapcruzin.com) and using ArcGIS 9.3, the distance from the center of each 

random plot to the nearest primary highway was measured. 

 Habitat parameters found within core plots and those found in plots located 

outside core areas were statistically compared using the Mann-Whitney U-test.  This test 

was chosen because it does not assume a normal distribution of the data, can compare 

unequal sample sizes, and because it compares medians rather than means. I felt this was 

important as it was difficult determining exact distance measurements from plot centers 

to the nearest built-up areas, and a statistical test examining how medians compare rather 

than means would be less sensitive to small discrepancies in measurement. 

 
RESULTS 
 

 OLFACTORY BOWL VS. HOT SPOT MARKING PATTERN 
 
In total, 177 scats were analyzed within both wolf pack territories: 125 within the 

territory of the Grapa pack , and 52 within that of the Halny pack.  Initially, in addition to 

testing whether the olfactory bowl or hot spots pattern prevailed, I had also hoped to test 

whether there was an annual change in this pattern within each territory. However, due to 
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the small sample sizes and the inconsistencies in survey intensity between packs and also 

between years, this was not possible. Yearly totals can be found in Table 1.  

 
 
 

 2005 2006 2007 TOTALS 

GRAPA 78 12 35 125 

HALNY 35 5 12 52 

TOTALS 113 17 47 177 

 
Table 1: Numbers of scats found within each wolf pack territory, by year, over the 

3-year study period 

 
 
 
 
The small number of scats found within all territories during 2006 was a result of 

very low sampling intensity. This was mostly due to the lack of volunteers and personnel 

available for tracking surveys. Recorded scat numbers increased during 2007 as survey 

intensity increased. Scat numbers were greatest for the Grapa pack (71% of total, n= 

125), as the territory of this pack was the most accessible, allowing for increased survey 

intensity. Fewer scats were consistently found in the Halny territory due to difficulty of 

access and its location in the Slovakian border region. 

One area in particular seemed to be very important for the Grapa pack, an area 

referred to as Hala Radziechowska. This area consists of a high ridgeline running through 

a large, open meadow. A major hiking trail bisects this area and 40 scats (32%) were 

found along or within 150 m of a 1.3 km stretch of this hiking trail. An area of only 0.4 

km2, comprising only 0.3% of the total territory area, contained nearly 1/3 the total 

number of scats found within the territory. Single scat locations and small groups of 2-4 
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scats were occasionally recorded outside this area, but there were no discernible 

groupings any larger than this (Figure 8). 

Fixed-kernel density estimations were performed on scat locations of each pack, 

in order to detect any areas with significantly higher scat densities than surrounding 

areas. Reference bandwidths were used in all analyses. 

The Grapa pack pattern of scat marking showed high densities of scats in a single 

area (Figure 9). This result suggests that the wolves of the Grapa pack were scat marking 

in hot spots, rather than in a uniform fashion around the territory periphery, as would 

have been observed if the olfactory bowl marking pattern was present.  

 

 

 

Figure 8: Grapa scat locations (Modified from Google Earth, 2011) 
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Like the Grapa wolves, the Halny wolves also seemed to scat mark most heavily 

in a single area (Figure 10). Two groups of scats were observed in this area. The first 

group was along a hiking path for approximately 700 meters, where 12 scats were 

deposited (23% of the total). The second group was along another hiking trail, for a 

distance of approximately 660 meters, where 11 scats (21%) were recorded. These two 

hiking paths were separated by a distance of only 575 meters. Therefore, 44% of the total 

Figure 9: Fixed Kernel Density Analysis – Grapa Pack. 
Bandwidth of href = 540.313m was used. 
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number of scats was found in an area of roughly 0.49 km2, or approximately 0.3% of the 

total territory size (Figure 10), which is very similar to the pattern of scat marking by the 

Grapa pack. No scats were found along the southwestern border of the Halny territory, 

which was the only border adjacent to another territory. This would seem to refute the 

Olfactory Bowl pattern, and support the Hot Spots pattern. However, we need to be 

careful with these data because only a small section of the adjacent territory borders was 

surveyed, as much of the area is located in Slovakia, where tracking was prohibited.  

Fixed kernel density analysis showed the presence of one hot spot where scat 

density was much higher than surrounding areas (Figure 11). This area encompassed both 

trails mentioned above along which several scats were found. Therefore, we can only 

conclude that from the limited data collected, the Hot Spots pattern seems to be more 

prevalent.  

 

 

Figure 10: Halny scat locations (Modified from Google Earth, 2011) 

 

Slovakian Border 

 



 41 
 
 

 

 

 

 

 

Figure 11: Fixed Kernel Density Analysis – Halny Pack. The Home Range Tools 
extension (Rodgers et al. 2007) for ArcGIS was used to transform the x and y 
coordinates to obtain similar variances. After transformation, the href bandwidth of 
0.517m was used. 
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IDENTIFICATION OF CORE AREAS 

 Kernel density analysis performed on scat locations of each wolf pack yielded 

areas of higher density than surrounding areas. Isopleths were produced at the 50%, 90%, 

and 95% levels. Based on previous studies, isopleths at the 50% level were considered to 

delineate core areas.  

 The 50% isopleth produced from the kernel density analysis of the Grapa scat 

locations covered an area of 8.29 km2 (Figure 12). This constituted 6.8% of the whole 

territory area (122 km2).  

 The 50% isopleth produced with the Halny scat data covered an area of 5.68 km2 

(Figure 13), which comprised only 3.2% of their territory (175 km2). Table 2 shows the 

areas of the isopleths generated during fixed-kernel density estimations of both pack’s 

scat locations. 

 

Areas of Isopleths (km2) 

Isopleth Grapa Pack Halny Pack 

50% 8.29 5.68 

90% 36.13 26.78 

95% 53.64 36.69 

 

Table 2: Areas of Isopleths Generated By Fixed-Kernel Density Analysis Using A Reference Bandwidth 
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Figure 12: Isopleths Produced from Fixed-Kernel Density Estimation, Grapa Pack. 
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Figure 13: Isopleths Produced from Fixed-Kernel Density Estimation, Halny 
Pack.  
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COMPARISON OF HABITAT PARAMETERS TO DETERMINE 
RELATIONSHIP BETWEEN SCAT LOCATIONS AND EXTENT OF 
HUMAN PRESENCE 

 
Fixed-kernel density analysis produced core areas of 8.29 km2 and 5.68 km2 for 

the Grapa and Halny packs, respectively. Based on these areas, I chose to generate 

circular random plots of size 0.785 km2 (radius = 0.500 km) for the Grapa territory and 

0.502 km2 (radius = 0.548 km) for the Halny territory. These sizes were chosen to enable 

the generation of five random circular plots within each core area, and 12 outside the core 

areas in each territory (Figures 14 and 15), to allow for subsequent habitat analysis.  
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Figure 14: Random points and plots generated in 
Grapa territory. 5 random points were generated 
within core area, and 12 outside. Then circular plots 
with radius of 0.500 km were created around these 
points. 
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Figure 15: Random points and plots generated  in 
Halny territory. 5 random points were generated 
within core area, and 12 outside. Then circular plots 
with radius of 0.500 km were created around these 
points. 
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LAND COVER 

 GRAPA PACK 

Table 3 shows that coniferous forest comprised the majority of area within both 

core plots (mean = 54.7%) and non-core plots (mean = 63.5%).  Core plots, on average, 

included more area of broad-leaved forest (19.9%) than did non-core plots (1.9%), and a 

Mann-Whitney U-test (see Table 18, Appendix) showed this result to be significant (z =  

2.0028, p > 0.0226). Core plots also tended to have more mixed forest cover (mean = 

18.6%) than non-core plots (6.9%), although this wasn’t significant at the 95% level (z = 

1.3472, p > .089). Both core and non-core plots showed similar areas of transitional 

woodland-shrub (core mean = 6.8%; non-core mean = 8.0%). Areas of discontinuous 

urban fabric, non-irrigated arable land, and agricultural area were rare in both core and 

non-core plots, with only a few plots containing any. Both core (mean = 93.2%) and non-

core plots (mean = 72.3%) were characterized by high percentages of forest cover.  
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Grapa Pack      

 Core Plots  Non-Core Plots 

Land Cover Mean (%) Min-max   Mean (%) Min-max 

Broad-leaved 
forest 19.9 0 - 60.8  1.9 0 - 16.5 

Coniferous 
forest 54.7 33.4 - 91.1  63.5 0 - 100 

Mixed forest 18.6 0 - 36.3  6.9 0 - 60.1 

Transitional 
woodland-
shrub 6.8 0 -25.1  8.0 0 - 33.6 

Natural 
grasslands 0 0 - 0  0 0 - 0 

Complex 
cultivation 
patterns 0 0 - 0  5.5 0 - 23.4 

Discontinuous 
urban fabric 0 0 - 0  5 0 - 51.9 

Land principally 
occupied by 
agriculture, with 
significant 
areas of natural 
vegetation 0 0 - 0  2.4 0 - 28.3 

Non-irrigated 
arable land 0 0 - 0  6.8 0 - 52.5 

Forest Cover 93.2 74.9 - 100  72.3 0 - 100 

Non-Forest 
Cover 6.8 0 - 25.1   27.7 0 - 100 

 
Table 3: Land Cover for Random Plots, Grapa Territory. Forest cover values 
include broad-leaved forest, coniferous forest, and mixed forest cover.  
Non-forest cover includes all other types of land cover. 
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 HALNY PACK 
 
 Both core and non-core plots within the Halny territory mostly consisted of 

coniferous forest (Table 4). Mean percentage of coniferous forest cover in core plots was 

71.5%, while only slightly lower in non-core plots (58.8%). Core plots consistently 

contained more area of mixed forest cover (mean = 25.0%) than non-core plots (mean = 

6.6%), but this difference was not shown to be significant (z = 1.792, p > 0.0366). Both 

core and non-core plots had very little broad-leaf forest cover (core mean = 0.5%; non-

core mean = 4.7%). Non-core plots consisted of more transitional woodland-shrub (mean 

= 19.9%) than did plots within the core area (mean = 3.0%), although this difference did 

not prove to be significant (z = 1.2649, p > 0.103). Two non-core plots had large areas of 

land categorized as complex cultivation patterns, while this land cover was not found in 

any other non-core plot or core plot. Small areas of non-irrigated arable land and 

agricultural land were found in a small percentage of the non-core plots, but were not 

found within core plots. Both core (mean = 97.0%) and non-core (mean = 70.0%) plots 

were characterized by large percentages of forest cover. This difference (see Table 19, 

Appendix) proved to be significant at the 94% level (z = 1.8974, p> .0289).  
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Halny Pack      

 Core Plots  Non-Core Plots 

Land Cover Mean (%) Min-max   Mean (%) Min-max 

Broad-leaved 
forest 0.5 0 - 2.6  4.7 0 - 56.6 

Coniferous 
forest 71.5 53.7 - 86.8  58.8 7.9 - 100 

Mixed forest 25.0 0 - 44.7  6.6 0 - 56.6 

Transitional 
woodland-
shrub 3.0 0 - 15.0  19.9 0 - 83.6 

Natural 
grasslands 0 0 - 0  7.6 0 -63.7 

Complex 
cultivation 
patterns 0 0 - 0  0 0 - 0 

Discontinuous 
urban fabric 0 0 - 0  2.0 0 - 23.8 

Land principally 
occupied by 
agriculture, with 
significant 
areas of natural 
vegetation 0 0 - 0  0.4 0 - 4.7 

Non-irrigated 
arable land 0 0 - 0  6.8 0 - 52.5 

Forest Cover 97.0 85 - 100  70.0 16.1 - 100 

Non-Forest 
Cover 3.0 0 - 15.0   30.0 0 - 83.9 

 
Table 4: Land Cover for Random Plots, Halny Territory. Forest cover values 
include broad-leaved forest, coniferous forest, and mixed forest cover.  
Non-forest cover includes all other types of land cover. 
 

 
 

ELEVATION 

 
GRAPA PACK 

 
 Elevations within core plots were more uniform compared to those within non-

core plots. Mean elevation of core plots ranged from 823m - 974m, while the range of 

non-core plots was 493m - 1135m (see Table 5). Most of the core area included 

mountainous areas, with few areas of valley bottoms (Figure 16). Non-core plots included 
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more valley bottoms, but also a few of the higher peaks not located within the core area. 

Mean elevation of core plots (909m) was slightly higher than that of non-core plots 

(830m). Mann-Whitney U-tests (Table 20, Appendix) showed no significant difference (z 

= 0.8433, p > 0.1995) between the two groups.  

 

 
GRAPA PACK 

Core Plots Non-core Plots 

Plot Elevation (m) Plot Elevation (m) Plot Elevation (m) 

Core1 887 Terr1 693 Terr7 633 

Core2 823 Terr2 632 Terr8 1014 

Core3 974 Terr3 736 Terr9 493 

Core4 928 Terr4 790 Terr10 959 

Core5 934 Terr5 1135 Terr11 926 

    Terr6 1093 Terr12 854 

 
Table 5: Mean elevations for random plots within the Grapa territory. 
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Figure 16: Topography of the Grapa Core Area. Core is delineated in blue. 

(Modified from Google Earth, 2011) 

 
 

HALNY PACK 
 
 Similar to those of the Grapa pack, the Halny core plots seemed to be more 

consistent in elevation, with a range of 861 m – 1191 m (Table 6), than non-core plots 

(670 m – 1345 m). Core plots were concentrated around the higher elevations of the 

mountains and did not include valley bottoms (Figure 17), yielding a higher mean 

elevation (1072 m) than non-core plots (976 m). However, a Mann-Whitney test (Table 

21, Appendix) showed no significant difference (z = 0.5270, p > 0.2991).  
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HALNY PACK 

Core Plots Non-core Plots 

Plot Elevation (m) Plot Elevation (m) Plot Elevation (m) 

Core1 1191 Terr1 1345 Terr7 670 

Core2 1066 Terr2 932 Terr8 1241 

Core3 861 Terr3 1267 Terr9 1141 

Core4 1101 Terr4 785 Terr10 836 

Core5 1141 Terr5 862 Terr11 676 

    Terr6 1191 Terr12 762 

 
Table 6: Mean elevations for random plots within the Halny territory. 
 
 
 
 
 

 
 
Figure 17: Topography of the Halny Core Area. Core is delineated in blue. 

(Modified from Google Earth, 2011) 
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STRAIGHT-LINE DISTANCE TO BUILT-UP AREAS 

 
 GRAPA PACK 
 
 Core plots were located anywhere from 2136 m to 3729 m away from the nearest 

built-up area (any area consisting of 5 constructed buildings or more). One non-core plot 

actually contained a built-up area (Figure 18). The plot located the greatest distance from 

a built-up area was found in the core, at a distance of 3.7 km (Table 7). Core plots were 

located an average of nearly 3 km from built-up areas, while non-core plots were located 

closer to built-up areas, at an average of 1.1 km. A Mann-Whitney test (Table 20, 

Appendix) indicated that this difference was significant (z = 2.6056, p > 0.0046). 

 

Figure 18: Distance to nearest built-up area from each random plot, Grapa Territory. Red lines indicate 
the nearest straight-line distance from the center of each circular plot. If no red line is shown for a plot, 
the center of that plot is located in a built-up area. (Modified from Google Earth, 2011) 
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  GRAPA PACK   

  Distance (m)   Distance (m)   Distance (m) 

Core 1 2136 Terr 1 494 Terr 7 108 

Core 2 3338 Terr 2 252 Terr 8 2316 

Core 3 3729 Terr 3 572 Terr 9 0 

Core 4 3008 Terr 4 1641 Terr 10 1264 

Core 5 2609 Terr 5 3209 Terr 11 1214 

    Terr 6 1853 Terr 12 582 

Mean 2964       1125 

 
Table 7: Straight-line distances to human built-up areas from core plots and non-core (territory) 

plots, Grapa territory. 
 
 
 HALNY PACK 
 
 The nearest core plot to a built-up area was located at a distance of approximately 

1.17 km, while the nearest non-core plot was approximately 0.24 km away (Table 8).  

Core plots ranged from 1.17 – 3.0 km away from the nearest built-up areas, while non-

core plots had a larger range of 0.24 – 3.7 km (Figure 19). Core plots were located a 

mean distance of 2.1 km from the nearest built-up area, while non-core plots were a mean 

of 1.8 km away. Mann-Whitney tests (Table 21, Appendix) showed no significant 

difference (z = 0.5270, p > 0.2991). 

 

  HALNY PACK   

  Distance (m)   Distance (m)   Distance (m) 

Core 1 2589 Terr 1 3158 Terr 7 238 

Core 2 1168 Terr 2 2150 Terr 8 3714 

Core 3 3031 Terr 3 3380 Terr 9 2066 

Core 4 2240 Terr 4 638 Terr 10 1992 

Core 5 1700 Terr 5 1088 Terr 11 323 

    Terr 6 2840 Terr 12 562 

Mean 2146       1846 

 
Table 8: Straight-line distances to human built-up areas from core plots and non-core 

(territory) plots, Halny territory. 
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Figure 19: Distance to nearest built-up area from each random plot, Halny Pack. Red lines indicate the 
nearest straight-line distance from the center of each circular plot.  
(Modified from Google Earth, 2011) 
 

ROAD DENSITY 

 GRAPA PACK 

The extent of roads within plots varied greatly, from just over 1 km to nearly 9.5 

km. Both the plot characterized by the lowest density of roads and the plot with the 

highest density of roads were non-core plots (Table 9). Mean road density was found to 

be higher within non-core plots (5.40 km/km2), although a Mann-Whitney test revealed 

that the difference was not significant (z = 1.2649, p > 0.1030) (see Table 20, Appendix).  
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  GRAPA PACK   

  
Road Density 
(km/km

2
)   

Road Density 
(km/km

2
)   

Road Density 
(km/km

2
) 

Core 1 3.45 Terr 1 1.38 Terr 7 10.06 

Core 2 2.32 Terr 2 5.22 Terr 8 3.25 

Core 3 5.30 Terr 3 2.36 Terr 9 12.01 

Core 4 3.99 Terr 4 5.03 Terr 10 4.61 

Core 5 1.89 Terr 5 3.97 Terr 11 6.99 

    Terr 6 3.94 Terr 12 5.96 

Mean 3.39       5.40 

 
Table 9: Road densities within core plots and non-core (territory) plots, Grapa territory. 
 
  

HALNY PACK 

 Much lower road densities were found within plots located in the Halny territory 

(Table 10). No roads were located within four of the plots, including two within the core 

area, and two outside the core. The highest road density was found within a non-core plot 

(6.61 km/km2), as were the next three highest road densities. The majority of plots were 

characterized by road densities of 1.0 - 3.0 km/km2. Differences in road densities between 

core and non-core plots were not significant (Mann Whitney U-test, z = 0.8960, p > 

0.1851) (see Table 21, Appendix).  

 

  HALNY PACK   

  
Road Density 
(km/km

2
)   

Road Density 
(km/km

2
)   

Road Density 
(km/km

2
) 

Core 1 0.00 Terr 1 0.00 Terr 7 1.51 

Core 2 3.40 Terr 2 2.47 Terr 8 0.00 

Core 3 0.30 Terr 3 0.00 Terr 9 5.41 

Core 4 1.49 Terr 4 2.61 Terr 10 6.61 

Core 5 2.37 Terr 5 3.78 Terr 11 1.47 

    Terr 6 2.95 Terr 12 4.96 

Mean 0.97       1.69 

 
Table 10: Road densities within core plots and non-core (territory) plots, Halny territory. 
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DISTANCE TO NEAREST PRIMARY ROAD 

 GRAPA PACK 

 Random  plots were located anywhere from approximately 0.10 - 5.2 km away 

from the nearest primary road (Table 11). Four non-core plots were located less than a 

kilometer from the nearest primary road, while the closest core plot to a primary road was 

located at a distance of approximately 3.7 km.  All core plots were located greater than 

3.5 km away from any primary road, while only two non-core plots were located at that 

distance. Core plots were located an average distance of 4.6 km from the nearest primary 

road, while non-core plots averaged a distance of only 1.9 km. A Mann-Whitney U-test 

(Table 20, Appendix) indicated that core plots were located significantly farther from 

primary roads than non-core plots (z = 2.9515, p > 0.0016).  

Grapa Pack             

  Distance (km)   Distance (km)   Distance (km) 

Core 1 4.31   Terr 1 2.08   Terr 7 0.50 

Core 2 5.06   Terr 2 0.31   Terr 8 3.28 

Core 3 4.92   Terr 3 4.30   Terr 9 0.13 

Core 4 3.78   Terr 4 2.27   Terr 10 1.48 

Core 5 5.20   Terr 5 1.88   Terr 11 4.02 

      Terr 6 2.43   Terr 12 0.24 

Mean Core Distance (km) 4.65      

Mean Territory     
Distance (km) 1.91          

 
Table 11: Core and Non-core plot distances from nearest primary road, Grapa Territory. 
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HALNY PACK 

 Only two plots within the Halny territory were located closer than 1 km from the 

nearest primary road, and both were non-core plots (Table 12). Non-core plots ranged in 

distance from 0.2 – 6.0 km to the nearest primary road, with an average of nearly 3.7 km. 

Core plots, in contrast, were generally located much farther from primary roads, ranging 

from 5.3 – 7.8 km, with an average of 6.4 km. A Mann-Whitney U-test (Table 21, 

Appendix) showed this difference to be significant (z = 2.5298, p > 0.0057).  

Halny Pack             

  Distance (km)   Distance (km)   Distance (km) 

Core 1 7.28   Terr 1 2.92   Terr 7 0.39 

Core 2 5.74   Terr 2 3.14   Terr 8 5.90 

Core 3 7.81   Terr 3 2.79   Terr 9 5.35 

Core 4 6.21   Terr 4 0.21   Terr 10 6.05 

Core 5 5.31   Terr 5 4.50   Terr 11 2.35 

      Terr 6 5.68   Terr 12 5.01 

Mean Core Distance (km) 6.47      
Mean Territory     
Distance (km) 3.69          

 
Table 12: Core and Non-core plot distances from nearest primary road, Halny Pack. 

 
 
 
 
 
 
 
 
 
 
 
 



 61 
 
 

 

 
 
Figure 20: Territories and Core Areas of the Grapa Pack and Halny Pack, in relation to primary roads 
(shown in purple). 
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DISCUSSION 
 

 
 OLFACTORY BOWL VERSUS HOT SPOTS MARKING PATTERNS: 
 
 GRAPA PACK 
 
 I found that the hot spots pattern of territory marking, suggested by Zub et al. 

(2003), more accurately described the marking patterns of both the Grapa and Halny wolf 

packs within the study area than did the olfactory bowl pattern proposed by Peters and 

Mech (1975). This hot spots pattern was most obvious in the Grapa territory, since the 

majority of scats were recorded there. This was most likely a function of increased survey 

intensity, as this was the most accessible territory and the closest to any significant town. 

The Grapa territory was also the most easily surveyed because of its location completely 

within Polish borders, making thorough sampling possible.  

The Grapa territory is bordered to the north by the territory of the Bukowy pack 

(see Figure 2, page 13), and if the Olfactory Bowl pattern existed, I would have expected 

to see more marking along this territory boundary line. There are two possible 

explanations for the Grapa’s marking in hot spots: The first is that the majority of Grapa 

scats found were found along two different sections of trails, both located within a short 

distance of one another. Not only are these two sections in proximity to one another, but 

they are also two of the more popular hiking trails in the area and located close to a 

junction where several hiking trails converge. Many researchers have observed that 

wolves tend to heavily mark junction areas (Vila et al. 1994; Barja et al. 2004; Zub et al. 

2003). This could be one possible explanation for a high density of scats in the area, as 

this would maximize the probability that any wolves from other packs traveling in the 

area and using hiking trails as travel paths would find them. However, the other possible 

explanation is that more scats were found in this area because of the fact that it is an area 
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where many hiking trails converge, and therefore, sampling intensity was likely higher in 

this area. As most scats were deposited in the winter months (Table 13, Appendix), any 

wolf movement on or near the trail system or roads within the territory should have been 

detectable and tracks could have been followed to determine any other existing scats 

located away from trails and roads.  

There are also two explanations for the lack of scats found in the periphery 

regions of the Grapa territory. The first explanation is the proximity of the Grapa territory 

to heavily-occupied human areas all along the eastern territory boundary. This likely 

results in the Grapa wolves not utilizing this area nearly as much as some of the other 

areas within their territory. Zub et al. (2003) found that wolf scat deposition rates were 

similar in areas with similar utilization rates, based on radiolocations. This would suggest 

that we wouldn’t find as many scats within this periphery area due to the likelihood that 

this area is under-utilized by the Grapa wolves. 

The second explanation for the lack of scats observed near the territory 

boundaries of the Grapa pack is that there are no bordering wolf pack territories 

immediately adjacent to the Grapa territory (Figure 2, page 13). The nearest wolf pack 

territory is the Bukowy territory. However, there is a bustling town separating the Grapa 

and Halny territories, and therefore, similar to the heavily-occupied areas adjacent to the 

eastern Grapa territory boundaries, these areas are likely under-utilized by the Grapa 

wolves. The Grapa wolves would probably not need to worry about scat marking this 

location, as the probability that the Bukowy wolves would cross through the town of 

Szczyrk and enter the Grapa territory is low.  

The most logical explanation for the Grapa wolves’ pattern of hot spot scat 

marking is that the area most heavily marked corresponded to a core area. This area likely 
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would have been an area where a den was located or where the majority of pup raising 

occurred. According to Zub et al. (2003), this would have been the most important area 

for the Grapa wolves, and therefore, the most heavily marked with scats. In fact, when 

looking at separate data provided by Nowak and Myslajek (pers. comm.) on den locations 

and pup-rearing sites for the Grapa pack during the study period, it is clear that the 

majority of scats found within the Grapa territory were concentrated around one of two 

pup-rearing areas (Figure 21). This correlation provides further evidence of the hot spots 

marking pattern. 

 

 

Figure 21: Grapa scat locations (shown in red) in relation to den locations 
    and pup-rearing areas, 2005-2007. 
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 HALNY PACK 

 The hot spots pattern of scat marking also seemed to dominate the territory 

marking of the Halny pack.  From Figure 10 (page 40), we can see that the Halny wolves 

seemed to scat mark most heavily in a single area, but in two separate groups. These 

groups were both along hiking paths and were only separated by a distance of 575 meters. 

No scats were found along the southwestern border of the Halny territory, which was the 

only border adjacent to another territory (the Czort Pack; refer to Figure 2, page 13). This 

would seem to refute the Olfactory Bowl pattern, and support the hot spots pattern. 

However, I have less confidence in this conclusion than that concerning the Grapa 

wolves. Only a small section of the adjacent territory borders was surveyed, as much of 

the area is located in Slovakia, where tracking was prohibited. Therefore, the survey 

intensity was much higher in areas located in Poland, and as a result, we were much more 

likely to find scat locations within the interior of the territory, rather than the periphery 

regions.  

 The most accessible, and therefore, the most heavily surveyed region of the Halny 

territory was the northwestern portion of the territory. The territory borders in this region 

were all in closer proximity to towns and villages than most of the other boundary 

regions. As the probability of rival wolves entering this area was very small, there would 

be no reason for the Halny wolves to mark this area. Peters and Mech (1975) mostly 

examined two wolf pack territories that were surrounded by other territories when they 

proposed their Olfactory Bowl marking pattern. Since the Halny territory only borders 

one other pack territory, this would be the only periphery where we would expect to see a 

significant number of scats, and not territory boundaries that border human-occupied 

areas.  
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As with the Grapa pack, data on den locations and pup-rearing areas (Nowak and 

Myslajek, pers. comm.) showed that these areas corresponded to the areas most heavily 

scat marked (Figure 22). The single pup-rearing area found, like the scat locations, was 

possibly a result of the increased survey intensity within the Polish section of the Halny 

territory. However, these findings are in agreement with the explanation of Zub et al. 

(2003) that wolves tend to concentrate scat marks in areas most valuable to them. 

 

 

Figure 22: Halny scat locations (shown in red) in relation to den locations  
    and pup-rearing areas, 2005-2007. 
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IDENTIFICATION OF CORE AREAS: 

 GRAPA PACK 

Fixed-kernel density estimation was performed using the reference bandwidth of 

540.3 meters. The resulting 50% isopleth yielded an area of 8.29 km2. Based on the 

findings of Zub et al. (2003), this would also correspond to the area where 50% of 

radiolocations would be if radio-tracking would have been conducted. Okarma et al. 

(1998) considered the core area of wolf packs in the Bialowieza Primeval Forest in 

Poland to be the area containing 50% of radio locations.  Therefore, this same area, 

determined through fixed-kernel density of scat locations, was considered to be the core 

area.  At 8.29 km2, this area constitutes only 6.8% of the total territory size of the Grapa 

pack. However, this is similar to the findings of Okarma et al. (1998). They found core 

areas made up 5-13% of the total territory area in the Bialowieza Forest. Jedrzejewski at 

al. (2007) found that the average core area comprised 17% of the average territory in 

another study, while Silva and Talamoni (2004) found that maned wolves in Brazil used a 

core area that equated to 3.8% of their total territory. Person and others (1996) reported 

that wolves in southeastern Alaska occupied territories of 280 km2, and core areas of 124 

km2 (44.2% of the territory). The size of the Grapa core area in relation to total territory 

size is on the lower end of the range found by other researchers likely because of the 

different landscapes in which the studies were conducted. Approximately 100 km2 of the 

Bialowieza Forest is protected as a national park, with half of that area strictly protected 

as a core area, where no motorized traffic is allowed and human entry is by permit only 

(Theuerkauf et al. 2003). The national park area is nearly the size of the entire Grapa 

territory (100 km2 versus 122 km2) and the strictly protected core is nearly half the size. 

The areas surrounding the Grapa territory are populated with twice the density of people 
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(143 persons/km2) (Jedrzejewski et al. 2005) than the areas surrounding the Bialowieza 

Forest (70 persons/km2) (Theuerkauf et al. 2003) and there are no restrictions on human 

entry. In Southeastern Alaska, Person (1996) found core areas that were larger than the 

entire Grapa territory. Human intrusion was obviously much lower there than in the 

Grapa territory. In contrast, the Grapa pack, inhabiting the accessible mountains of 

southern Poland, where forestry operations, hikers, and even vehicles penetrate the forest, 

have a much smaller area to find solitude and protection.   

In their study of maned wolves in Brazil living within a private nature reserve 

surrounded by ecotourism development, Silva and Talamoni (2004) found smaller core 

areas (equal to only 3.8% of total territory size) than the Grapa core area. This is likely a 

more accurate comparison, based solely on the extent of human activity within the study 

areas. 

In examining how the calculated core area of the Grapa pack compares to the den 

locations and pup-rearing areas found by Nowak and Myslajek (pers. comm.), we can see 

that the core area contains one of the pup-rearing areas (Figure 23). This also provides 

confidence that the core area found through the fixed-kernel density analysis is accurate.  
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Figure 23: Grapa scat locations (shown in red), den locations, and 

pup-rearing areas in relation to the core area (delineated in black). 
 
 
 
 
 HALNY PACK 

 Fixed-kernel density estimation using the reference bandwidth of 0.517 m, 

transformed to produce x and y coordinates with similar variances, yielded a 50% isopleth 

encompassing an area of 5.68 km2. This represented an area equal to 3.2% of the total 

size of the Halny territory. Although the 90% isopleth contained an area of nearly 5 times 

as large as the 50% isopleth (26.78 km2) (Table 2, page 42), it only contained a little 

more than a handful of additional scat locations than the 50% isopleth.  Therefore, the 

50% isopleth was considered as delineating the Halny core area. 
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 Due to the remoteness and difficulty in access of the Halny territory when 

compared to the Grapa territory, I had expected to see a Halny core area comprising a 

larger percentage of the total territory than the Grapa core. As mentioned before, studies 

examining wolf core areas generally found that core area size was inversely related to the 

extent of human activity within the territory and surrounding areas (i.e. the more human 

activity within an area, the more a wolf pack tended to concentrate their core within a 

smaller area). The Halny core area may have been smaller in relation to the total territory 

size than that of the Grapa core area as a result of sampling bias. The region in which 

most of the Halny scats were found was the region that was surveyed most intensely, due 

to the ease of accessibility in comparison to other regions. Areas near the border, besides 

being difficult to access due to long distances, were also sparsely surveyed because of 

border crossing issues. Therefore, possibly another area with dense collections of scats 

existed within the portion of the territory located in Slovakia, and through further study, 

this area could possibly be determined to be the core.  

 Figure 24 (page 71) yields support that the core area found through fixed-kernel 

density analysis represents a true core area. The pup-rearing area for the Halny pack 

during the study period was located within the determined core area. This is reasonable in 

that the area most densely scat marked, and the area where most pup-raising occurred, 

would be part of the most valuable area to the Halny wolves. 

 Assuming that the core determined in this study through fixed-kernel analysis is 

the actual core area of the Halny pack, the most probable explanation for the small size of 

the core in relation to the rest of the territory is that the Halny wolves were trying to 

avoid Slovakian hunters near the border regions. In Slovakia, wolves can be hunted for 

two and a half months each year (Nowak et al. 2008). Because they are protected in 
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Poland year-round, the Halny wolves may have chosen to locate their core area within 

Poland, basically cutting the territory size in half (Figure 24). When this is considered, 

the Halny core area is roughly the same size in relation to the size of the territory as the 

Grapa core in relation to the Grapa territory. 

 

 

Figure 24: Halny scat locations (shown in red), den locations, and 
    pup-rearing areas in relation to the core area (delineated in blue). 

      The Polish-Slovakian border is shown in yellow. 
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HABITAT PARAMETERS OF CORE AREAS IN RELATION  

TO HUMAN PRESENCE 

 LAND COVER 

GRAPA PACK 

 The only significant difference found between core and non-core plots regarding 

land cover involved the amount of broad-leaved forest cover. Core plots had significantly 

higher percentages of broad-leaved forest cover than non-core plots (z = 2.0028, p > 

0.0226).  However, non-core plots contained slightly more coniferous cover than core 

plots, and there was no significant difference in overall forest cover between core and 

non-core plots. This would suggest that there is something attractive about broad-leaved 

forest.   However, among the five core plots, only 2 had any significant amount of broad-

leaved forest cover (Table 17, Appendix), and in only one of those did broad-leaved 

forest constitute the majority of land cover. Therefore, broad-leaved forest cover was not 

distributed throughout the core area, but rather concentrated in a small area. What, if 

anything, would lead the Grapa wolves to select a core area with a larger percentage of 

broad-leaved forest cover?  

Perhaps this choice had to do with preferences for den selection. Because most of 

the scats recorded in this study were found in the winter months (October – May), the 

delineated core area probably was associated with denning sites.  However, wolves have 

been found to dig burrows to den, as well as use fallen trees (Nowak et al. 2008). 

Therefore, it does not seem likely that this would explain the large percentage of broad-

leaved forest cover within two of the core plots.  
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Perhaps the Grapa wolves were only following their main prey species, red deer 

(Cervus elephus) and roe deer (Capreolus capreolus), down into the broad-leaved forests, 

where the deer were feeding. It has been documented that wolves will utilize valley 

bottoms and lower areas during the winter more than other times of the year because that 

is where many of their prey species tend to congregate during the winter in order to more 

easily find food. However, Barancekova et al. (2010) found that in the Czech Republic 

and Germany, coniferous trees made up a slightly larger portion of the roe deer diet than 

broad-leaved trees. This would seem to suggest that roe deer would not select these 

patches of broad-leaved forest in order to feed on the trees, but rather avoid the valley 

bottoms where they are more likely to encounter humans. They could find conifers to 

feed on at the higher elevations. However, studies by Cransac et al. (2001) and Latham et 

al. (1999) on roe deer diet preferences found that the deer heavily fed on heather and 

brambles, which both grow in sunny, open habitats. Sherlock and Fairley (1993) found 

that heather was also an important food source for red deer in the winter. Broad-leaved 

trees such as beech and oak often start growing in these areas, and their young shoots are 

a favorite food for roe deer in the spring (Cransac et al. 2001). This proximity to favorite 

prey species would be particularly beneficial to the Grapa wolves in the late spring when 

pups are born. The Grapa pack only consisted of 2 or 3 wolves during this study, and 

therefore, the pack could not afford having to cover large distances in order to obtain 

food. Therefore, the combination of young broad-leaved tree shoots and the presence of 

brambles and heather in these sunny, open areas may attract roe deer, and in turn, attract 

the Grapa wolves as well.  
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 HALNY PACK 
 
 No significant differences in land cover between core plots and non-core plots 

were found. When compared to the Grapa territory plots, there was much less available 

broad-leaved forest cover, which may explain why the Halny wolves didn’t select a core 

containing significantly more cover of this type than surrounding areas – they didn’t have 

that option. Forest cover between core and non-core plots differed quite a lot, although 

this didn’t quite prove to be significant at the chosen level of certainty. However, this 

suggests that the Halny wolves may have located their core area in a region with thick 

forest cover, as this area was available to them on the Polish side of the border, where 

hunting pressure on wolves is significantly less than on the Slovakian side. 

 

ELEVATION 

 GRAPA PACK 

 Mann-Whitney U-tests showed no significant difference in elevation between 

core and non-core plots. I was expecting to find that core plots were located at higher 

elevations than non-core plots in the wolves’ attempts to avoid human disturbances. 

However, this is not what I found. Higher elevations are much harsher environments 

during the winter months, where significant amounts of snow can accumulate. In 

addition, the highest point within the Grapa territory is a peak named Skrzyczne, at an 

elevation of 1257 m. Skrzyczne is also one of the highest peaks in the Polish part of the 

Silesian Beskidy Mountains. This would seem like a good place for a wolf pack to locate 

a core area, particularly if they are trying to avoid people. However, Skrzyczne is 

different – on the top of the peak is a huge lodge, and the mountain receives heavy use 

during the winter because it has been converted into one of the largest ski resorts in 
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Poland, with a funicular railway servicing the top. This would be the last place a wolf 

pack would want to be during winter. The resort is also a popular hiking destination in 

the summer, and therefore, any wolves in the area would likely avoid using the area for 

any significant amount of time in any season. 

 In addition to the popularity of Skrzyczne, the highest parts of the Grapa territory 

are joined together by a popular trail network that receives heavy human traffic during 

the summer (Figure 25).  This trail network includes the trails to/from the top of 

Skrzyczne, where hikers are able to take a chairlift up from the town of Szczyrke during 

the summer to gain easy access to the high country trails. The accessibility of the high 

mountains within the Grapa territory, both in the summer and the winter, most likely 

forces the Grapa pack down into intermediate areas where they can avoid people, yet still 

have relatively easy access to prey. 

 

Figure 25: Grapa territory (delineated in blue), scat locations (red), core area (black), and the high 
mountains within the area. The green lines indicate major hiking trails. Note that the trails run along 
the spine of the highest mountains in the region, including the highest point, Skrzyczne, located near 
the top of the territory. (Modified from Google Earth, 2011) 
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 HALNY PACK 

 The territory of the Halny pack was on average approximately 150 m higher than 

that of the Grapa pack. No significant difference was found in elevation between core 

plots and non-core plots. This would lead us to believe that elevation played no part in 

the Halny wolves’ selection of this area. However, a closer examination suggests that this 

might not necessarily be accurate. The highest points in the territory are all in the 

Slovakian part, or within a 1-kilometer distance of the border. This is where Pilsko (1429 

m) is found. Once again, Slovakian regions are open to hunting for 2.5 months each year, 

so it is more likely that given a choice, the Halny wolves would locate a core area within 

Poland, where they wouldn’t have to worry about encountering hunters. These high 

elevations bring very difficult conditions during the winter as well. Prey species move 

down lower where they are able to find food, and the Halny wolves may follow them, as 

other researchers have found (Paquet et al. 1996).  

Excluding the Slovakian part of the territory, there are two other main areas of 

higher elevations within the territory. A hiking lodge exists in one of these areas (Figure 

26). This hiking lodge (Rysianka Schronisko) is located in the second highest part of the 

territory within Poland. This lodge receives significant use during the summer, as it is an 

overnight shelter. The lodge is closed during winter. The traffic that surrounds this lodge, 

and on the trails leading up to it, would probably discourage the Halny wolves from using 

this area as a core area.    

The highest part of the territory within Poland is near Romanka (1366 m). 

Although much less accessible than Skrzyczne in the Grapa territory, Romanka also has 

four major hiking trails leading to its peak, including one from the hiking lodge 

mentioned above. The core area of the Halny pack is located just below the top of 
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Romanka. This is possibly the highest the Halny wolves could go before encountering 

more people. 

 

 

Figure 26: Halny Territory. The highest point, Pilsko, is located in the Slovakian part of the territory 
(yellow line shows the national border). Rysianka Schronisko, an overnight hiker shelter, is located in 
the middle of the territory on the Polish side The core area is located below Romanka, the highest point 
within the Polish part of the territory. (Modified from Google Earth, 2011) 

 
  

 

STRAIGHT-LINE DISTANCE TO THE NEAREST BUILT-UP AREA 

 GRAPA PACK 

 In comparison to non-core plots, core plots were located significantly farther from 

the nearest built-up areas. Several of the non-core plots were within 500 meters of the 

nearest built-up area, probably as a result of the Grapa wolves following roe and red deer 

down into agricultural areas during the winter months. In contrast, core areas likely 

contain den sites, which wolves would want to locate as far from people as possible. This 
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is a challenge in a landscape such as this, in which human areas basically surround a wolf 

territory. While utilizing other areas of the territory at night, as found in other studies 

(Theuerkauf et al. 2003), for hunting and traveling, the core area is nearly always located 

in areas where human presence is minimal. The location of the core area probably gave 

the Grapa wolves the best compromise between close proximity to a food source and 

avoidance of people. 

  
HALNY PACK 

 
 Mann-Whitney U-tests showed no significant difference in straight-line distance 

to the nearest built-up area between core and non-core plots in the Halny territory. Within 

the Polish part of the territory, there were no other areas that were significantly farther 

from a built-up area than the core area. However, there were areas on the Slovakian side 

that were located a greater distance from the nearest built-up area. These sites were not 

surveyed due to border crossing issues. The constant traffic of hikers in the area of the 

Rysianka schronisko would discourage a core area in that part of the territory, and along 

with the two towns of Zabnica and Sopotnia Wielka, would limit the areas available to 

wolves away from people. The border areas, based solely on the fact that they are located 

farther away from built-up areas than any other areas in the territory, would seem like a 

good place for a core area. In considering this, it seems that there must be another reason 

why the core area is not located in the border region. One possible reason is that the 

presence of hunters in the fall months causes the Halny wolves to avoid the area. There is 

also the possibility that there is a core area located in the border region, but due to 

decreased sampling intensity, we were not able to detect it.  
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ROAD DENSITY 

 

 GRAPA PACK 

 Within the territory of the Grapa wolves, core plots tended to have lower densities 

of roads as compared to non-core plots, although this difference was not shown to be 

significant through Mann-Whitney U-tests. Both core plot road densities (mean = 3.39 

km/km2) and those of non-core plots (mean = 5.40 km/km2) were much higher than road 

densities found in other wolf pack territories in other studies. In his study in north-central 

Minnesota, Fuller (1989) found that no wolf territories had road densities larger than 0.72 

km/km2. Mladenoff and others (1995) found that wolf packs in Wisconsin inhabited 

territories with an average road density of only 0.23 km/km2. These data illustrate how 

much of the forest in the Silesian Beskidy Mountains is penetrated by humans. There are 

no areas within the Grapa territory of any size with similar road densities to those found 

in the studies mentioned above. Both Mladenoff and Fuller only examined roads open to 

the public and maintained roads, and therefore, these values are likely to be lower than 

those found in this study, where all roads and trails, regardless of use, were examined. 

However, this study illustrates that the Grapa pack’s options for choosing areas of low 

road density are incredibly limited. 

  
HALNY PACK 

As with the Grapa plots, no significant difference in road densities was found 

between core plots and non-core plots. Road densities throughout the Halny core and the 

territory as a whole were approximately 1/3 of those found in the Grapa territory. This is 

probably due to the higher elevations found in the Halny territory. The steeper slopes of 

the region also create complications in road construction. In addition, the fact that the 
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territory is in a border region likely results in fewer roads, as roads are not permitted to 

cross the border. Despite much lower road densities than the Grapa territory, these 

densities were still high compared to those found in other studies. Even the core area had 

higher road densities than the highest densities found in any wolf territory in the Fuller 

(1989) study. These data, along with those of the Grapa pack, suggest that the wolves 

living in this mountainous region of southwestern Poland have learned to adapt to higher 

road densities than most studied packs within the U.S. solely out of necessity. It is nearly 

impossible for them to find areas that aren’t penetrated by roads. Although not 

statistically significant, the packs did seem to locate core areas in places where roads 

were not so extensive.  

 

DISTANCE TO NEAREST PRIMARY ROAD 

 
 GRAPA PACK 
 
 Mann-Whitney U-tests revealed that core plots were located significantly farther 

from any primary roads than non-core plots. This would suggest that the Grapa wolves 

have grown accustomed to secondary roads within their territory, as the road density 

analysis revealed that it was nearly impossible for them to find any areas with low road 

density. However, they are still wary of primary roads where there is a fairly consistent 

amount of traffic. The secondary roads within the territory are mostly logging roads, and 

are used only occasionally. There are very few All-Terrain Vehicles (ATVs) used in the 

area, so most motorized activity within the forest is from temporary and localized logging 

operations.  

 Distances to primary roads were greater than distances to nearest built-up areas, 

also suggesting that the Grapa wolves have grown used to certain levels of disturbance, 

but this does not include heavy traffic. 
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 Paquet et al. (1999) used 1-km buffer areas around roads to delineate core 

security areas for a wolf reintroduction feasibility study in Adirondack Park. They stated 

that previous findings (Chapman 1977; Paquet et al. 1996) suggested that this distance 

reflected the distance at which human activities are known to disturb wolves. Therefore, 

when looking at the results of this study, we can either assume that these core areas just 

coincidentally occur in the middle of the territories, where the distance to the nearest 

primary road is more likely to be greater, or that there was a specific avoidance of the 

roads themselves. Looking at Figure 20 (page 61), one can clearly see that the Grapa core 

is not located directly in the center of their territory. If it were, the distances to the nearest 

primary roads would be considerably smaller. Therefore, I conclude that there was a 

specific avoidance of primary roads by the Grapa pack. 

  
HALNY PACK 
 

 More support for a specific avoidance of primary roads is provided by the 

location of the Halny core area. In the Halny territory, core plots were also found to be 

located significantly farther from primary roads than non-core plots. Distances were 

nearly 50% longer when compared to those of the Grapa plots. This is partly due to the 

larger territory size of the Halny pack (175 km2) compared to the Grapa territory (122 

km2), as pack territories rarely contain primary roads. Even the Grapa territory, located in 

an area where secondary road density is nearly 6 times the highest density found within 

Minnesota wolf pack territories, only contains a few small sections of primary roads 

(Figure 20, page 61).  Like the Grapa core plots, plots within the Halny core area were 

located farther from primary roads than from built-up areas. This lends more support for 

the argument that both the Halny wolves and the Grapa wolves have developed a certain 
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tolerance and resilience to human disturbance because that is what they have been forced 

to do in a human-dominated landscape. 
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UNCERTAINTIES AND ASSUMPTIONS 

 While this study provides a more detailed picture as to why the Grapa and Halny 

packs locate their core areas in the places they do, we need to be careful because of  

many uncertainties associated with this study. The first uncertainty concerns the territory 

boundaries themselves. The boundaries were taken from a study by Nowak et al. (2008), 

in which the researchers used 100% MCPs to delineate the territories. While this is a 

common practice, there is also the possibility that an individual wolf from each pack had 

made a single exploratory trip to an area outside the pack’s actual territory, for some 

reason or another. Because 100% MPCs were used, this would result in a larger territory 

size than the actual territory size. This would result in the possibility that some of the 

random plots analyzed in this study, most notably the plots located around the territory 

edges, were actually not part of the territory at all, and therefore, the comparisons 

between core and non-core plots would not be completely accurate. However, I believe 

that the general findings would not be significantly different than those found in this 

study. The location of the core areas would not be affected, and would still be located in 

the interior of the territories, away from primary roads and built-up areas. Only the non-

core plot locations would possibly be affected, and this is really no different than the 

generation of random plots within the territory. There is an equal chance of random plot 

generation producing other non-core plots farther from primary roads and built-up areas.  

 Another point of uncertainty concerns the inconsistency of survey intensity within 

and between pack territories. The Grapa territory was surveyed more intensely than the 

Halny territory due to its proximity to the base of operations. It was much more 

accessible, particularly in bad weather, because of its lower elevation, and also could be 

surveyed more thoroughly because of its location completely within Polish borders. This 



 84 
 
 

 

is the reason most scats recorded in this study came from the Grapa territory. In addition 

to differences in survey intensity between territories, there was also inconsistency within 

the territories themselves. Most sampling was carried out by hiking along a logging road 

or hiking trail and attempting to find scats, or if scats weren’t present, tracks that could be 

followed and hopefully lead to scats in another area of the forest. Some hiking trails were 

easier to access than others, particularly in the winter when most of the sampling 

occurred. Because most sampling occurred by following hiking trails, the areas where a 

number of hiking trails converged were probably sampled the most. This could have 

resulted in more scats being found in these areas due to increased surveying intensity. In 

fact, most scats recorded in the Grapa territory were found in an area where three hiking 

trails converged. This may have simply been a result of sampling bias. 

 Roads and trails nearer to villages were sampled more heavily, and therefore, we 

were much more likely to find scats in these areas than in areas located farther from 

villages. Obviously this could skew the results of scat locations, and therefore, affect the 

determination of core areas. However, because the areas located nearer to villages were 

sampled more intensely, any scats located further within the territories that were missed 

would only contribute to core areas located further from built-up areas. In this way, I 

would expect the differences between core and non-core plots to only be more 

significant. This is particularly true in the case of the Halny pack, whose territory 

straddles the Polish/Slovakia border. Because of the legal issues involved in crossing 

over to Slovakia to sample, and also the remoteness of the border itself, both the border 

region and the Slovakian portion of the territory were not sampled thoroughly. Other 

studies have found that wolves tend to locate cores along border areas because of 

decreased human activity (Findo and Chovancova 2004). In fact, in a study conducted 
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over a period of 8 years, Nowak et al. (2008) found that the core area of the Halny pack 

was located near the border area. They used the distribution of scat locations, track 

locations, prey remains, den locations, resting places, and howling surveys to determine 

this core area. This was clearly a more thorough study. However, Nowak’s study 

concluded 4 years before the commencement of this study, so there is the possibility that 

the core area of the Halny pack changed during this time period. This could be due to 

some disturbance in the border area, a change in the distribution of red or roe deer, or 

perhaps some other reason. 

Core areas were determined through fixed-kernel density analysis, and one 

important aspect of this analysis is the bandwidth that is chosen. In this study, I chose to 

use the reference bandwidth, href. Both Worton (1995) and Seaman and Powell (1996) 

argued that analyses using the reference bandwidth overestimate home range sizes, and 

they argued for the application of the bandwidth produced from least squares cross-

validation (LSCV). However, when the LSCV bandwidth was applied, no core areas 

were apparent, only small islands around each scat location. Steiniger et al. (2010) also 

found that hLSCV was unacceptable when examining home ranges of grizzly bears in 

Alberta, Canada. Hemson et al. (2005) found that hLSCV failed more than half the time 

when examining data sets consisting of more than 100 points, while also failing when 

examining intensively-used areas, such as core areas. Core areas produced from fixed-

kernel analysis using the reference bandwidth produced core areas equal to 6.8% and 

3.2% for the Grapa and Halny packs, respectively. Both values represent the smaller end 

of the spectrum when compared to other studies, so likely represent at least a portion of 

the true core areas, if not the entire core areas. I would be a little more cautious about the 
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chosen bandwidth if the kernel analysis produced significantly larger core areas in 

relation to  territory sizes (i.e. 20% or greater).  

 The Halny pack faces one significant challenge that the Grapa pack does not have 

to deal with, and that is the danger posed by Slovakian hunters. The effects of hunting 

activities on the Halny wolves are uncertain. Nowak et al. (2008) found that hunting 

accounted for the deaths of 15 wolves in this area within a 4-year period, accounting for 

83% of all wolf mortality. Hunting numbers and mortality estimates were not obtained 

for the period of this study, but with such a high toll taken on the Halny wolves by 

hunting, it would not be unreasonable to assume that a core area would be located away 

from the border in order to minimize chance encounters with hunters. The effects on core 

selection of the Halny pack remain uncertain, but further studies looking at the areas most 

visited by Slovakian hunters and numbers of wolf kills in the area have the potential to 

shed some light on this. 

 Within both territories, the effects of logging activities on core selection are also 

unknown. Because of the high densities of roads within both territories, but particularly 

the Grapa territory, logging occurs throughout the territories. Logging activities, 

locations, and times were all difficult to document, and therefore, their effects on core 

area selection are difficult to determine. Depending on the extent of logging in different 

locations within the territories, core areas may have been altered during the study period. 

Due to the relatively small sample sizes over the course of the 3-year period, these 

changes would have been hard to detect, as it was necessary to group all scat locations 

from one pack together to get an overall picture. In order to detect any change in the 

location of core areas, more intensive sampling would have been required each year to 

record sufficient scat samples for that year.  
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 In addition to the possibility of a change in core area location from year to year, 

there is also the possibility that the size of the core area changed, not just on an annual 

basis, but on even a seasonal basis. Person et al. (1996) found that home ranges of wolves 

in southeastern Alaska were 50% smaller in the months of April through August, when 

denning and pup-rearing occurred, than in winter. Since many studies determine the size 

and location of core areas through MCPs and kernel density isopleths, at either the 50% 

or 75% probability levels, this would also result in a decrease in the size of the core area. 

Therefore, it is safe to assume that the size of core areas also changes as wolves utilize 

different areas more heavily during different seasons. Because of the small numbers of 

scats found during each season, the detection of any change in size to the core area would 

not be observed. 

 Another variable not examined in this study is ungulate numbers. Therefore, we 

are unsure as to the effects of ungulate numbers and behavior on core selection and 

territory utilization by both the Grapa and Halny packs. Other studies have found that 

wolves tend to follow prey species to lower elevations during the winter (Paquet et al. 

1996). As mentioned earlier, this would help explain why pack core areas, determined 

through scat concentrations, were located in intermediate elevations and not at the highest 

elevations within the territories. 

 Some uncertainty also existed in the measurement of road distances and densities. 

These measurements were obtained by digitizing aerial images from Google Earth 

(Mountain View, California). Because some regions of the territories were more densely 

forested than others, it was at times difficult to determine whether roads existed in these 

areas with thick canopy cover. It is possible that small sections of roads were not 

recorded due to not being able to be detected through aerial imagery. This would result in 
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slightly modified road density values, with more heavily-forested plots possibly having 

higher road densities than what was recorded. However, the overall findings would likely 

remain unchanged, as this most likely limited to small sections of roads in only a few 

plots, if any. 

 Because roads and trails were found using aerial images, no distinctions were 

made concerning the amount of use any one road or trail received. Therefore, roads and 

trails that are used frequently were grouped with those that rarely receive any use. The 

result is that only the actual presence of a road or trail was examined, rather than whether 

the road or trail received actual use. This could have a large effect on habitat utilization 

by wolves in both packs, and not be accounted for in this study. 

 This study was conducted in an area with low densities of both wolves and wolf 

packs. There were few areas where the territory of one wolf pack directly bordered that of 

another pack. This may have contributed to the findings of a hot spots pattern of marking 

rather than the Olfactory Bowl pattern. In their study, Peters and Mech (1975) examined 

a region with many different bordering wolf pack territories. In this case, the wolves of 

one pack may have felt that it was important to mark the peripheries of their territory as a 

warning to wolves from other packs. In this study, neither the Grapa wolves nor the 

Halny wolves had to be concerned with neighboring wolf packs, and therefore, might 

have not felt the need to mark their territory borders. 

 The final uncertainty is associated with weather conditions during the study 

period. Weather conditions, and in particular, snowfall amounts, can have important 

effects on habitat utilization by wolves. Fuller (1991) found mobility of wolves in 

Minnesota tended to decrease with winter severity. Paquet et al. (1996) also suggested 

that wolves may have difficulty traveling in snow depths greater than 50 cm due to their 
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low chest heights. Weather conditions would also be a major determinant of habitat use 

by ungulate species during the winter, which would significantly affect where wolves 

spend their time. Severe winters would congregate ungulates in the lowlands, while mild 

winters may allow ungulates to remain up higher and still find enough food. Snow cover 

data (National Climatic Data Center) for southwestern Poland for the study period 

indicate that the winter of 2005 was an abnormally harsh winter, with daily snow cover at 

an elevation of 857 m in February recorded at an average of nearly 55 cm, compared to 

only 29 cm in the same month in 2004. Most scats analyzed in this study were recorded 

in 2005, and therefore, if Grapa or Halny wolves chose different core areas that year 

because of the harsh weather, the kernel-density analysis would have been biased toward 

this location. However, Figure 27 (Appendix) shows that the scat locations recorded from 

January-March 2005 for the Grapa wolves were found in the same area as those scats 

found in 2006 and 2007, and therefore, I believe that the kernel density analysis revealed 

an accurate core area for the Grapa pack, and not just a core area used in the winter of 

2005.  
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CONCLUSION 

 The findings of this study suggest that human activity is having an effect on the 

behavior of both the Grapa pack and the Halny pack. The Grapa pack selected a core area 

that was significantly farther from human built-up areas than other random plots within 

their territory. No similar significant difference was found in the Halny territory, but 

within the Polish part of their territory, there were no other areas located farther from 

built-up areas that could have been chosen. A core area could have been located in the 

Slovakian part of the territory, where the distance to the nearest built-up areas would 

have been even greater, but border issues made sampling there difficult. 

 The only significant difference between core plots and non-core plots found in 

both territories was the distance to the nearest primary road. In both the Grapa and Halny 

territories, core plots were found to be significantly farther from primary roads than non-

core plots. These distances were frequently smaller than those to the nearest built-up 

areas, suggesting that the avoidance of primary roads is more of a factor in core selection 

than proximity to people.  

 More research should be conducted in order to provide a clearer picture of the 

behaviors and preferences of the Grapa and Halny wolves. Probably the most valuable 

information would be obtained through use of radio or GPS collars. Daily movements 

could be observed and core areas, based on time spent in certain areas, could be more 

accurately defined. Such data collected from the Halny wolves could also tell us how 

hunting within the Slovakian part of their territory affects their movement, particularly in 

the fall months. This would also provide valuable data concerning their use of the 

Slovakian part of their territory, as compared to the Polish part, which we were not able 

to be survey in this study, but remains a large question.  
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 The viability of the wolves in both the Grapa and Halny packs remains uncertain. 

If hunting within Slovakia continues to account for 83% of mortality in the Zywiecki 

Landscape Park (Nowak et al. 2008), where the Halny territory is located, then the 

likelihood of population growth in that region is minimal. The Zywiecki Landscape Park 

contains the territories of three wolf packs, all straddling the Polish-Slovakian border. 

Therefore, a certain extent of connectivity exists between these territories, helping to 

provide some level of resilience against a sudden population collapse.  

 No such connectivity exists within the Silesian Beskidy Range, where the Grapa 

territory is located. The Bukowy pack is the only other pack to inhabit the area, and their 

connection to the Grapa pack is uncertain due to the location of a resort town between the 

territories. Although situated completely within the Polish borders, and therefore, not as 

prone to hunting mortality as the Halny wolves, the Grapa pack has limited room to 

roam, and the opportunity for individual wolves to disperse into new areas is minimal due 

to the multiple centers of urban activity surrounding the area.  

 In the few years since this study concluded, the bark beetle has devastated huge 

stands of spruce in the Silesian Beskidy Mountains, the location of the Grapa territory. 

This has led to increased fragmentation in the landscape and decreased cover in many 

forest patches, limiting areas suitable for wolf utilization. Although not examined in this 

study, this could have a significant effect on the behavior of the Grapa wolves.    

 It seems that the Grapa pack and Halny pack have both learned to adapt to a 

certain level of human activity within and around their territories. In many cases, this has 

been forced upon them. While it is nearly impossible for them to completely avoid 

people, both packs seem to have selected core areas that minimize high levels of frequent 

disturbance, like those associated with primary roads, and in the case of the Grapa pack, 
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also human built-up areas. Because of the limited connectivity of the Grapa wolves to 

other wolf packs, and the vulnerability of the Halny wolves to Slovakian hunters, it seems 

imperative that the existing habitat be protected from any excessive development and that 

there is a need for more cooperation between Poland and Slovakia in the area of wolf 

management. The density of roads in southern Poland is already much higher than in the 

north of Poland, and extensive road development is being planned for the near future 

within the region (Nowak and Myslajek, pers. comm.). This could be a disaster for the 

wolves within the study region, as both packs clearly avoided primary roads. Highway 

traffic in Poland has more than doubled in the last decade (Niedzialkowski et al. 2006 ), 

and this is a worrying trend. Connections to other populations are also a concern, 

particularly for the Grapa pack. A great deal of research should be conducted on the 

planned road development in order to minimize impacts in areas that could be valuable to 

wolves and other carnivores within the region. Research on structures such as wildlife 

over/underpasses should also be reviewed in order to provide these structures in the most 

beneficial areas to promote carnivore migration and movement. This is particularly 

important in the case of the wolf populations in Poland, which help link larger 

populations in the countries of Eastern Europe, with smaller populations found scattered 

throughout the more developed countries of Western Europe. If these measures are not 

taken, the Grapa pack and Halny pack might be seeing their last years in the region. If 

these measures are taken, and further research is conducted in protecting areas large 

enough for the wolves to fulfill all their biological needs and maintain connections with 

other Polish and Slovakian populations, then the Grapa and Halny packs may survive. 

They have already shown that they are capable of adapting to a great deal.   
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Date 
Longitude 

(E) 
Latitude 
(N)   Date 

Longitude 
(E) 

Latitude 
(N)   Date 

Longitude 
(E) 

Latitude 
(N) 

1/17/2005 19.0036 49.6651   5/11/2005 19.0506 49.6422   4/16/2007 19.0699 49.6189 

1/17/2005 19.0089 49.6340   5/11/2005 19.0508 49.6428   4/17/2007 19.0700 49.6318 

1/18/2005 19.0090 49.6341   5/11/2005 19.0508 49.6428   4/17/2007 19.0710 49.6436 

1/18/2005 19.0111 49.6528   5/11/2005 19.0512 49.6432   4/17/2007 19.0730 49.6330 

2/4/2005 19.0121 49.6728   5/11/2005 19.0513 49.6424   4/23/2007 19.0748 49.6353 

2/5/2005 19.0134 49.6529   5/11/2005 19.0517 49.6437   4/23/2007 19.0749 49.6339 

2/5/2005 19.0165 49.6530   5/11/2005 19.0519 49.6439   4/23/2007 19.0751 49.6332 

2/7/2005 19.0242 49.6799   5/11/2005 19.0524 49.6443   4/23/2007 19.0751 49.6332 

2/7/2005 19.0348 49.6092   5/11/2005 19.0524 49.6445   4/23/2007 19.0757 49.6339 

2/8/2005 19.0362 49.6140   5/13/2005 19.0525 49.6408   4/24/2007 19.0757 49.6365 

2/8/2005 19.0367 49.6111   7/7/2005 19.0537 49.6411   4/25/2007 19.0774 49.6323 

2/8/2005 19.0390 49.6496   8/6/2005 19.0563 49.6461   5/7/2007 19.0775 49.6380 

2/8/2005 19.0393 49.6491   8/6/2005 19.0570 49.6495   5/9/2007 19.0777 49.6385 

2/8/2005 19.0399 49.6137   10/2/2005 19.0571 49.6464   5/9/2007 19.0780 49.6391 

2/17/2005 19.0410 49.6298   10/2/2005 19.0571 49.6463   5/22/2007 19.0796 49.6320 

2/17/2005 19.0422 49.6850   10/2/2005 19.0594 49.6652   5/22/2007 19.0810 49.6502 

2/17/2005 19.0428 49.7066   11/9/2005 19.0594 49.6652   5/22/2007 19.0818 49.6486 

2/17/2005 19.0438 49.6050   11/9/2005 19.0600 49.6497   5/25/2007 19.0834 49.6296 

2/17/2005 19.0462 49.6356   11/9/2005 19.0609 49.6530   5/25/2007 19.0834 49.6296 

2/17/2005 19.0462 49.6362   11/9/2005 19.0609 49.6530   5/25/2007 19.0869 49.6457 

2/18/2005 19.0464 49.6340   11/9/2005 19.0609 49.6680   5/25/2007 19.0876 49.6331 

2/18/2005 19.0464 49.6366   11/9/2005 19.0609 49.6281   6/5/2007 19.0890 49.6452 

2/18/2005 19.0465 49.6371   11/23/2005 19.0610 49.6499   8/2/2007 19.0894 49.6451 

2/18/2005 19.0465 49.6382   11/24/2005 19.0612 49.6671   8/8/2007 19.0948 49.6346 

2/22/2005 19.0465 49.6346   11/24/2005 19.0617 49.6312   10/21/2007 19.0951 49.6347 

2/22/2005 19.0465 49.6352   12/8/2005 19.0630 49.6299     

2/22/2005 19.0465 49.6369   12/8/2005 19.0631 49.6506     

2/22/2005 19.0465 49.6350   12/8/2005 19.0632 49.6547     

2/22/2005 19.0465 49.6380   5/11/2006 19.0646 49.6763     

2/22/2005 19.0466 49.6306   5/14/2006 19.0648 49.6325     

2/23/2005 19.0466 49.6378   8/4/2006 19.0654 49.6264     

2/23/2005 19.0468 49.6384   8/4/2006 19.0663 49.6321     

2/23/2005 19.0470 49.6388   8/4/2006 19.0664 49.6562     

2/23/2005 19.0471 49.6389   8/9/2006 19.0665 49.6471     

2/23/2005 19.0472 49.6391   8/9/2006 19.0669 49.6660     

2/23/2005 19.0474 49.6395   8/17/2006 19.0670 49.6668     

2/24/2005 19.0481 49.6390   9/24/2006 19.0671 49.6708     

4/24/2005 19.0485 49.6399   9/30/2006 19.0672 49.6670     

4/24/2005 19.0489 49.6293   12/13/2006 19.0675 49.6660     

4/24/2005 19.0489 49.6402   12/16/2006 19.0676 49.6526     

4/24/2005 19.0492 49.6427   2/3/2007 19.0678 49.6290     

5/2/2005 19.0492 49.6404   4/11/2007 19.0678 49.6288     

5/11/2005 19.0493 49.6410   4/11/2007 19.0679 49.6326     

5/11/2005 19.0495 49.6417   4/11/2007 19.0681 49.6323     

5/11/2005 19.0497 49.6277   4/12/2007 19.0683 49.6319     

5/11/2005 19.0497 49.6436   4/12/2007 19.0686 49.6526     

5/11/2005 19.0500 49.6457   4/12/2007 19.0686 49.6306     

5/11/2005 19.0500 49.6453   4/12/2007 19.0687 49.6567     

5/11/2005 19.0503 49.6425   4/12/2007 19.0687 49.6763     

5/11/2005 19.0505 49.6422   4/14/2007 19.0699 49.6189     

Table 13:  Grapa Pack Scat Data 
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Date 
Longitude 

(E) Latitude (N)   Date 
Longitude 

(E) Latitude (N) 

2/9/2005 19.21593 49.583224   10/12/2005 19.24874 49.571588 

2/9/2005 19.21779 49.583719   10/12/2005 19.24973 49.573139 

2/9/2005 19.21834 49.584429   10/12/2005 19.24985 49.572621 

2/9/2005 19.23086 49.583481   10/12/2005 19.25016 49.573258 

2/9/2005 19.23152 49.584120   10/12/2005 19.25356 49.565692 

3/27/2005 19.26448 49.574837   10/12/2005 19.25382 49.566136 

3/27/2005 19.26655 49.575897   10/12/2005 19.25383 49.566581 

3/27/2005 19.26819 49.576285   10/12/2005 19.25409 49.567081 

3/27/2005 19.26983 49.576394   10/12/2005 19.25780 49.574082 

3/27/2005 19.27138 49.576726   7/16/2006 19.25383 49.565800 

3/31/2005 19.23283 49.566762   7/16/2006 19.26341 49.573610 

3/31/2005 19.23429 49.567586   8/15/2006 19.25714 49.568805 

3/31/2005 19.24176 49.572767   8/15/2006 19.26669 49.579695 

3/31/2005 19.25198 49.565779   10/1/2006 19.21849 49.558975 

3/31/2005 19.25307 49.565541   5/12/2007 19.14869 49.557790 

3/31/2005 19.25316 49.566013   5/12/2007 19.15094 49.556970 

3/31/2005 19.25982 49.571903   5/13/2007 19.17491 49.580060 

10/12/2005 19.23860 49.548090   5/14/2007 19.22377 49.591670 

10/12/2005 19.24511 49.568290   5/14/2007 19.25470 49.568420 

10/12/2005 19.24548 49.568767   5/14/2007 19.26288 49.573430 

10/12/2005 19.24610 49.568965   5/14/2007 19.26739 49.583010 

10/12/2005 19.24653 49.569402   5/14/2007 19.26740 49.582970 

10/12/2005 19.24677 49.569999   5/14/2007 19.26744 49.582420 

10/12/2005 19.24708 49.570676   7/24/2007 19.23190 49.554988 

10/12/2005 19.24764 49.571112   8/15/2007 19.25107 49.564290 

10/12/2005 19.24819 49.571350   8/15/2007 19.26924 49.587560 

 
Table 14: Halny Pack Scat Data 
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Grapa Pack              

              

  Core1 Core2 Core3 Core4 Core5 MEAN               

Broad-leaved 
forest 5.2% 31.0% 2.3% 0.0% 60.8% 19.9%        

Coniferous forest 33.4% 39.9% 70.1% 91.1% 39.1% 54.7%        

Mixed forest 36.3% 29.1% 27.5% 0.0% 0.0% 18.6%        

Transitional 
woodland-shrub 25.1% 0.0% 0.1% 8.9% 0.1% 6.8%        

Natural 
grasslands 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%        

Complex 
cultivation 
patterns 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%        

Discontinuous 
urban fabric 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%        

Land principally 
occupied by 
agriculture, with 
significant areas 
of natural 
vegetation 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%        

Non-irrigated 
arable land 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%        

                

                

  NC1 NC2 NC3 NC4 NC5 NC6 NC7 NC8 NC9 NC10 NC11 NC12 MEAN 

Broad-leaved 
forest 0.0% 1.2% 16.5% 0.0% 0.0% 0.0% 0.0% 4.8% 0.0% 0.0% 0.0% 0.6% 1.9%

Coniferous forest 99.6% 29.6% 31.5% 66.4% 97.0% 51.9% 58.5% 88.8% 0.0% 39.9% 100.0% 98.6% 63.5%

Mixed forest 0.0% 0.0% 0.0% 0.0% 0.0% 16.0% 0.0% 6.4% 0.0% 60.1% 0.0% 0.0% 6.9%

Transitional 
woodland-shrub 0.0% 0.0% 17.4% 33.6% 3.0% 32.1% 10.5% 0.0% 0.0% 0.0% 0.0% 0.0% 8.0%

Natural 
grasslands 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Complex 
cultivation 
patterns 0.3% 16.7% 6.3% 0.0% 0.0% 0.0% 23.4% 0.0% 18.9% 0.0% 0.0% 0.8% 5.5%

Discontinuous 
urban fabric 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 7.6% 0.0% 51.9% 0.0% 0.0% 0.0% 5.0%

Land principally 
occupied by 
agriculture, with 
significant areas 
of natural 
vegetation 0.0% 0.0% 28.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.4%

Non-irrigated 
arable land 0.1% 52.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 29.3% 0.0% 0.0% 0.0% 6.8%

 
Table 15: Land Cover Composition of Core and Non-core Plots, Grapa Territory 
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Halny Pack              

              

  Core1 Core2 Core3 Core4 Core5 MEAN               

Broad-leaved 
forest 0.0% 2.6% 0.0% 0.0% 0.0% 0.5%        

Coniferous 
forest 85.0% 53.7% 55.3% 86.8% 76.7% 71.5%        

Mixed forest 0.0% 43.7% 44.7% 13.2% 23.3% 25.0%        

Transitional 
woodland-
shrub 15.0% 0.0% 0.0% 0.0% 0.0% 3.0%        

Natural 
grasslands 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%        

Complex 
cultivation 
patterns 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%        

Discontinuous 
urban fabric 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%        

Land principally 
occupied by 
agriculture, with 
significant 
areas of natural 
vegetation 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%        

Non-irrigated 
arable land                     

                

  NC1 NC2 NC3 NC4 NC5 NC6 NC7 NC8 NC9 NC10 NC11 NC12 MEAN 

Broad-leaved 
forest 0.0% 0.0% 0.0% 56.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.7% 

Coniferous 
forest 100.0% 79.6% 76.4% 43.4% 27.9% 19.6% 31.5% 100.0% 72.2% 94.8% 51.8% 7.9% 58.8% 

Mixed forest 0.0% 0.5% 8.1% 0.0% 0.0% 56.6% 0.0% 0.0% 0.0% 5.2% 0.2% 8.3% 6.6% 

Transitional 
woodland-
shrub 0.0% 19.9% 15.3% 0.0% 72.1% 0.0% 0.0% 0.0% 27.8% 0.0% 20.4% 83.6% 19.9% 

Natural 
grasslands 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 63.7% 0.0% 0.0% 0.0% 27.6% 0.0% 7.6% 

Complex 
cultivation 
patterns 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Discontinuous 
urban fabric 0.0% 0.0% 0.0% 0.0% 0.0% 23.8% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2% 2.0% 

Land principally 
occupied by 
agriculture, with 
significant 
areas of natural 
vegetation 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 

Non-irrigated 
arable land 0.1% 52.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 29.3% 0.0% 0.0% 0.0% 6.8% 

 
Table 16: Land Cover Composition of Core and Non-core Plots, Halny Territory 
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Continuous urban fabric Agro-forestry areas 

Discontinuous urban fabric Broad-leaved forest 

Industrial or commercial units Coniferous forest 

Road and rail networks and 
associated land Mixed forest 

Port areas Natural grasslands 

Airports Moors and heathland 

Mineral extraction sites Sclerophyllous vegetation 

Dump sites Transitional woodland-shrub 

Construction sites Beaches, dunes, sands 

Green urban areas Bare rocks 

Sport and leisure facilities Sparsely vegetated areas 

Non-irrigated arable land Burnt areas 

Permanently irrigated land Glaciers and perpetual snow 

Rice fields Inland marshes 

Vineyards Peat bogs 

Fruit trees and berry plantations Salt marshes 

Olive groves Salines 

Pastures Intertidal flats 

Annual crops associated with 
permanent crops Water courses 

Complex cultivation patterns Water bodies 

Land principally occupied by 
agriculture, with significant areas of 
natural vegetation Coastal lagoons 

UNCLASSIFIED LAND SURFACE Estuaries 

UNCLASSIFIED WATER BODIES Sea and ocean 

 NO DATA  

 
Table 17: Corine Land Cover Classifications 
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  Sum of Ranks       

  Core (%) Non-Core (%) 

Mann- 
Whitney U 
Statistic 

z Statistic 
(corrected for 

ties) Probability > z 

Broadleaf Forest 64 89 49.0000 2.0028** 0.0226 

Coniferous Forest 39.5 113.5 24.5000 0.5798 0.281 

Mixed Forest 51 69 36.0000 1.3472 0.089 

Transitional Woodland Shrub 50.5 102.5 35.5000 0.5798 0.281 

Complex Cultivation Patterns 30 123 15.0000 1.5811 0.0569 

Discontinuous Urban Fabric 40 13 25.0000 0.527 0.2991 

Land Principally Occupied by 
Agriculture 42.5 110.5 27.5000 0.2635 0.3961 

Non-irrigated Arable Land 37.5 115.5 22.5000 0.7906 0.2146 

Forest Cover 53 89 32.0000 0.5664 0.2856 

Non-Forest Cover 34.5 18.5 19.5000 1.1068 0.1342 

      

Table 18: Land Cover Statistics, Grapa Pack    

** indicates significance at the 95% level     

 
 
  Sum of Ranks       

  Core (%) Non-Core (%) 

 
 

Mann-Whitney 
U Statistic 

z Statistic 
(corrected for 

ties) Probability > z 

Broadleaf Forest 48 105 33.0000 0.3162 0.3759 

Coniferous Forest 53 100 38.0000 0.8433 0.1995 

Mixed Forest 62 91 47.0000 1.792 0.0366 

Transitional Woodland Shrub 33 120 18.0000 1.2649 0.103 

Complex Cultivation Patterns 40 113 25.0000 0.527 0.2991 

Land Principally Occupied by 
Agriculture 37.5 115.5 22.5000 0.7906 0.2146 

Non-irrigated Arable Land 42.5 110.5 27.5000 0.2635 0.3961 

Forest Cover 63 90 48.0000 1.8974 0.0289 

Non-Forest Cover 29 124 14.0000 1.6865 0.0458 

      

Table 19: Land Cover Statistics, Halny Pack     
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  Sum of Ranks       

  Core (%) Non-Core (%) 
Mann- Whitney 

U Statistic 

z Statistic 
(corrected 
for ties) Probability > z 

Elevation 53 100 38.0000 0.8433 0.1995 

Straight-line Distance to 
Nearest Built-up Area 65 71 50.0000 2.6056** 0.0046 

Road Density 33 120 18.0000 1.2649 0.103 

Distance to Nearest 
Primary Road 73 80 58.0000 2.9515** 0.0016 

            

      

Table 20: Results of Mann-Whitney U-tests of Habitat Parameters, Grapa Pack  

** indicates significance at the 95% level    

 
  Sum of Ranks       

  Core (%) Non-Core (%) 
Mann- Whitney 

U Statistic 

z Statistic 
(corrected 
for ties) Probability > z 

Elevation 50 103 35.0000 0.527 0.2991 

Straight-line Distance to 
Nearest Built-up Area 50 103 35.0000 0.527 0.2991 

Road Density 36.5 116.5 21.5000 0.896 0.1851 

Distance to Nearest 
Primary Road 69 84 54.0000 2.5298** 0.0057 

            

      

Table 21: Results of Mann-Whitney U-tests of Habitat Parameters, Halny Pack  

** indicates significance at the 95% level    
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Figure 27: Scat locations recorded within the Grapa territory. Those scats 
found between January 2005 and March 2005 are highlighted, showing 
similar locations to other scats found in subsequent years. 
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Figure 28: Random plots within the Grapa Territory. 
 NC = Non-core, C = Core. 
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Figure 29: Random plots within the Halny Territory. 
 NC = Non-core, C = Core. 
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Figure 30: Random plots within the Grapa territory, with red lines marking road 
locations. 
 
 

 
 
Figure 31: Random plots within the Halny territory, with red lines marking road 
locations. 
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