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The Life History and Ecology of Riverine Sockeye Salmon (Oncorhynchus nerka) in a 
Large Floodplain River 
 
Chairperson:  Dr. Jack A. Stanford  
 
The productivity and life history diversity of salmonids is linked to the complexity of 
habitat in large floodplain rivers. Dynamic floodplain processes are driven by flow, 
sediment transport, cut and fill alluviation, woody plant succession, and ecosystem 
engineers, notably beavers, that create dynamic and biophysically complex off-channel 
rearing and spawning habitats. Sockeye salmon (Oncorhynchus nerka) display some of 
the most variable life history traits of all Pacific salmon, using lake and river rearing 
strategies throughout rivers of the northern Pacific Rim. However, sockeye management 
has primarily focused on the lake-type life history with minimal regard to the importance 
of the riverine form.  

In the Kwethluk River, Alaska, we identified both the lake (lake-type) and river 
(riverine) driven life histories. To elucidate the importance of lateral floodplain habitats 
to this species, we compared lake and riverine spawning habitat attributes, determined the 
densities, seasonal changes in length and weight, and diet of juveniles. We also quantified 
the amount of off-channel habitats that were available for spawning and rearing.  

We found that floodplain and lake spawning habitats had similar hydrological, 
physical, water chemistry attributes. Lake-type spawning occurred along the alluvial fans 
of the lake shoreline and in the outlet channel, whereas, riverine sockeye spawned 
exclusively in off-channel spring brooks and side channels. But, all spawning was located 
in areas dominated by upwelling ground water. We found that juvenile sockeye reared in 
spring brooks, beaver ponds, and backwaters of the river flood plain and that these 
habitats types made up over 70% of the available off-channel habitat.  The average 
density of floodplain rearing juveniles in the fall was between .02 to .54 fish ⋅ m-2 and a 
total of 165, 711 juvenile sockeye were rearing in the floodplain study reach.   The mean 
length of flood plain rearing juveniles in the fall of 2006 ranged from 57 to 66 mm and 
was similar to the mean length of ocean migrating smolts (68 mm) the following spring.  
The diet of juveniles rearing in off-channel habitats was dominated by zooplankton, but 
juveniles fed on a variety of invertebrate prey, while the diet of lake-type juveniles was 
dominated by zooplankton.     

We concluded that riverine sockeye take advantage of the complexity of large 
river systems and that floodplain habitats are key spawning and rearing habitats for this 
species. The riverine life history type may be an important part of large river systems 
throughout the Pacific Rim.                    
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INTRODUCTION 
 

The relationship between aquatic organisms and their environment has been traditionally 

viewed as a suite of ecosystem processes that change along a river continuum from 

headwaters downstream to the ocean (Vannote et al. 1980). River ecosystems, especially 

large floodplain rivers, are continually interacting within lateral, longitudinal, and vertical 

dimensions that connect habitat throughout the river corridor (e.g., Ward 1989a; Stanford 

1998).  Natural floodplain structure and function is driven by the temporal dynamics of 

flooding, sediment transport, cut and fill alluviation, wood deposition, plant succession, 

and ecosystem engineers, such as beaver (Castor canadensis) and are embedded within 

the geologic and geographic setting of the catchment basin.  These processes are the basis 

of a unifying theory of river ecosystems termed the Shifting Habitat Mosaic (SHM) 

(Stanford et al. 2005), whereby, biota benefit from a multitude of habitats that greatly 

increase opportunities for life history diversity, thus increasing biodiversity at all levels 

of trophic organization. The complexity of floodplain sections within the catchment 

setting are a primary determinant of  productivity and biodiversity in all rivers (Tockner 

and Stanford 2002).  

Pacific salmon (Oncorhynchus spp.) populations are regarded as an important 

ecological aquatic resource that enhance the productivity of aquatic and terrestrial 

ecosystems by bringing marine-derived nutrient subsidies (MDN) into freshwater 

environments (Wipfli et al. 1998; Chaloner and Wipfli 2002; Helfield and Naiman 2001; 

Gende et al. 2002; Schindler et al. 2003; Wipfli et al. 2003). However, urbanization, 

flood control, habitat disconnection and degradation, over-harvest, and mismanagement 

practices have resulted in many stocks becoming threatened or extinct (Nehlsen et al. 

1991; Gregory and Bisson 1996). The loss of floodplain connectivity has been found to 

be one of the key factors in the decline of the diversity and productivity of salmonids in 

large river systems (Beechie et al. 1994; Sommer et al. 2001; Hall and Wissmar 2004), 

yet fisheries managers often focus on the main channel habitats ignoring off-channel or 

lateral floodplain habitats.  

It is well known that the life histories of riverine fishes, and in this study 

particularly salmonid fishes, salmon and trout (Oncohynchus spp. and Salmo spp.) and 
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charr (Salvelinus spp.), are controlled by the dynamics of spawning and rearing habitat 

(e.g., Murphy et al. 1989; Schlosser 1991; Sommer et al. 2001; Fausch et al. 2002).  

Salmonids typically select spawning environments at a microhabitat scale which are set 

within a larger scale of environmental conditions (eg. Sowden and Power 1985; Lorenz 

and Eiler 1989; Geist and Dauble 1998; Baxter and McPhail 1999; Baxter and Hauer 

2000; Geist 2000). The hydrological, physical, and chemical (water chemistry) 

environmental attributes of these spawning habitats have a direct influence on the 

survival and success of incubating embryos (cf., Quinn 2005). More specifically, surface 

water-groundwater interactions (e.g., Witzel and MacCrimmon 1982; Baxter and Hauer 

2000; Geist et al. 2002), water depth and water velocity (e.g., Beland et al. 1982; Knapp 

and Preisler 1999), bed-sediment particle size (e.g., Hoopes 1972; Knapp and 

Vredenburg 1996), and water chemistry (dissolved oxygen, temperature, specific 

conductance, and pH)(e.g., Leman 1993; Geist and Dauble 1998; Geist 2000), have all 

been linked to redd site selection by spawning salmonids and the survival of embryos. 

The selection of habitat for spawning is not only linked to embryo survival, but 

also the subsequent habitat conditions that rearing off-spring will be exposed to after 

incubation (Burgner 1991). The time of the year that salmonids spawn is typically 

associated with water temperature regimes that facilitate the synchronization of juvenile 

emergence to coincide with prey abundance and favorable environmental conditions 

(e.g., temperature), that provide the best opportunity for juvenile growth and survival 

(e.g., Brannon 1987; Burgner 1991; Quinn 2005). Furthermore, the size that anadromous 

salmonids attain during their first year of growth and during the freshwater portion of 

their life cycle (from emergence to smoltification) plays a large role in over-winter 

survival and juvenile-to-adult survival in saltwater (cf., Quinn 2005).  

Sockeye salmon (Oncorhynchus nerka) display some of the most variable life 

history traits of all Pacific salmon and multiple freshwater life history strategies (or 

ecotypes) have been identified (e.g., Forester 1968; Wood et al. 1987; Burgner 1991; 

Wood 1995; Wood 2007). Traditionally, this species was regarded as having life history 

requirements linked to lacustrine ecosystems and the anadromous lake ecotype, termed 

“lake-type” hereafter, have long been found to spawn along the alluvial fans of lake 

shorelines or in fluvial channels that are connected to nursery lakes (e.g., lake outlets, 
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inlet streams or spring-fed tributaries) (e.g., Hanamura 1964; Ricker 1966; Foerster 1968; 

Burgner 1991; Leonetti 1997). The progeny of lake-type sockeye typically rear in lake 

environments for at least one year before migrating downstream (as smolts) to the ocean 

and the freshwater productivity of lake-type juveniles has been linked to the abundance 

of zooplankton prey populations (cf., Burgner 1991).   

In some rivers throughout the Pacific Rim, populations of sockeye salmon are 

known to spawn in riverine habitats that are not associated with lakes (Gilbert 1918; 

Semko 1954; Ricker 1966; Foerster 1968; Bugaev 1984; Craig 1985; Wood et al. 1987; 

Sharr et al. 1988; Lorenz and Eiler 1989; Russell et al. 1989; Eiler et al. 1992; Hall and 

Wissmar 2004). The progeny of these river ecotype or river-type (“riverine” hereafter) 

spawners either rear in riverine habitats for one to two years (Wood et al. 1987; Murphy 

et al. 1989; Wood 1995; Wood 2007) or migrate downstream as underyearlings to 

estuarine or marine ecosystems (“sea-type”) after spending a short time in freshwater 

(Wood et al. 1987; Heifetz et al. 1989; Murphy et al. 1997; Wood 2007).     

On the Kwethluk River in Alaska, we have found that floodplain spring brooks 

are one of the most productive habitats of the SHM and provide spawning and rearing 

habitats for a multitude of salmonid species (SaRON, unpublished data). Spring brooks 

are defined as alluvial flood channels that are predominantly fed by effluent hyporheic-

groundwater (Stanford et al. 2005) and when compared to the main channel, can provide 

a distinctly different suite of environmental conditions for spawning and rearing.   

The importance of floodplain habitats, particularly spring brooks, for spawning 

and rearing of sockeye, has not been thoroughly studied and most of the information on 

the life histories of riverine populations has been cursory (Lorenz and Eiler 1989; 

Murphy et al. 1989; Eiler et al. 1992) or limited to genetic stock comparisons with lake-

type (Beacham et al. 2004) or sea-type (Gustafson and Winans 1999) populations. During 

the 2004 and 2005 field seasons, SaRON scientists observed the riverine life history type 

in the Kwethluk River and in other rivers around the Pacific Rim, including the Kol and 

Utkholok Rivers, Kamchatka, and the Taku and Kitlope Rivers, British Columbia. In all 

cases, spawning and rearing of sockeye appeared to be occurring in shallow spring-fed 

habitats available in the flood plains of these large river systems. Yet, only three 
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published studies have described the ecology of riverine sockeye rearing (Murphy et al. 

1989) and spawning (Lorenz and Eiler 1989; Eiler et al. 1992) in the Taku River.  

   We hypothesized that lateral floodplain habitats are important spawning and 

rearing habitats for sockeye salmon in the Kwethluk River (Fig. 1) and expected that if 

this could be clearly documented that the results could be applicable to other rivers 

throughout the Pacific Rim with known riverine populations.  

 

 
 
Fig. 1. The conceptual foundation for our research of the freshwater life histories of 
Kwethluk River sockeye salmon. 
 

In preliminary work at the Kwethluk, we observed that sockeye salmon spawned 

in floodplain spring brooks ~120 km downstream from small headwater lakes that were 

described by local biologists as nursery lakes for lake-type sockeye (M. Rearden, 

USFWS, personal communication). We asked what habitat attributes are associated with 

spawning in spring brook habitats and was there gene flow between the lake and river 

types? Second, during SaRON across-site sampling events, we captured sockeye 

juveniles that clearly were rearing in floodplain spring brooks. Thus, we hypothesized 
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that once juveniles emerged from the gravels they would use floodplain habitats for 

rearing (e.g., spring brooks, beaver ponds, and backwaters) and that it seemed possible 

that the progeny of lake-type spawners might either stay and rear in the small spring-fed 

nursery lakes (traditional view) or disperse from these nursery lakes to rear in riverine 

habitats (e.g., Fig. 1). Likewise, we show elsewhere (McPhee et al. 2008, submitted) that 

sockeye collected in the lakes area of the upper Kwethluk, both from the spring-fed lakes 

and outlet channels (L in Fig. 2), are in fact genetically distinct from riverine sockeye 

using floodplain habitats in the lower river (R in Fig. 2).  

 

 
Fig. 2. Location of the Kwethluk River, a lower Kuskokwim tributary in Alaska, and the 
two primary study areas on the river.  Riverine sockeye were studied within the reach 
labeled R and lake-type sockeye were studied in the Boundary Lakes area labeled L. 
Boundary Lakes image provided by Google Earth.   

 5 



The objectives of this study were to; 1) determine what floodplain habitats are 

used by riverine sockeye for spawning and rearing; 2) quantify the amount of available 

floodplain spawning and rearing habitat using remote sensing tools; 3) describe and 

compare the hydrological, physical, and chemical (intergravel and surface water 

chemistry) attributes of spawning habitat used by lake-type and riverine sockeye and 

determine the size and freshwater age of adult spawners; 4) determine densities and 

population size of juveniles rearing in floodplain habitats; 5) compare the length, weight, 

and diet of juveniles rearing in lakes and floodplain habitats and the temperature patterns 

of floodplain rearing habitats; 6) compare the length and study reach wide population 

estimates of floodplain rearing juveniles in the fall to the length and number of ocean 

migrating smolts caught the following spring. 

 

STUDY SITE 

 

The Kwethluk River is one of six long-term research sites within the Salmonid Rivers 

Observatory Network (SaRON,www.umt.edu\flbs\Research\SaRON.html). SaRON is an 

international project that examines how habitat complexity, MDN, and flood plain 

processes drive aquatic and terrestrial productivity and biodiversity in very pristine 

salmon rivers around the Pacific Rim.  A majority of the rivers within SaRON are large 

gravel-bed rivers with expansive and biophysically complex flood plains characterized by 

abundant off-channel aquatic habitats that are the primary rearing areas for multiple 

species of salmon, trout, charr, and many other resident species.  SaRON is particularly 

interested in the positive feedback cycle of MDN that returning adults provide to their 

anadromous progeny and many other species that coexist in floodplain habitats. 

Moreover, a key goal of SaRON is to elucidate how salmonid life history diversity and 

productivity are linked to the complexity of lateral floodplain habitats. Thus, 

documenting how sockeye salmon and other species use complex floodplain 

environments of the Kwethluk River system for spawning and rearing is fundamental to 

the SaRON project.    

The Kwethluk River catchment (3,787 km2) is a pristine 5th order tributary of the 

Lower Kuskokwim River (total catchment 118, 000 km2) and is located within the Yukon 
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Delta National Wildlife Refuge (YDNWR), Alaska (Fig. 3). The YDNWR is the largest 

refuge in North America and encompasses 19.6 million acres (Fig. 3). Nearly, 25,000 

native Yup’ik Eskimos live within 42 villages spread throughout the refuge and village 

residents depend on the abundance of wild game (birds and mammals) and native fish 

species for subsistence living. The Kuskokwim River is largely pristine, being the 9th 

largest and one of the longest (1,165 km) free-flowing river in the United States 

(Richardson and Milner 2005) (Fig. 3). The human impacts within the Kuskokwim and 

Kwethluk River catchments are minimal. However, two gold mining operations are 

proposed outside the refuge boundaries on State Lands (D. Gillikin, USFWS, personal 

communication). The Donlin Creek mine is located in the head waters of the Kuskokwim 

River and the Kisaralik Lake mine is located in the headwaters of the Kisaralik River, the 

first tributary upstream of the Kwethluk. These proposed mines threaten the fish and 

wildlife populations that Kuskokwim residents depend on for survival.  

Commercial logging is not allowed within the refuge boundaries and the 

commercial fishing industry is very small compared to other areas of Alaska. However, 

village residents are allowed to harvest timber to heat their homes and subsistence fishing 

does have an impact on anadromous and resident fish populations throughout the refuge.  

The Kuskokwim watershed is primarily roadless, with the exception of short paved and 

dirt roads that connect housing communities within the small villages and towns 

throughout the refuge. Although, most towns and villages are set within the refuge, they 

are designated as private land managed and maintained by the local communities (Fig. 3). 

The only modes of transportation between the villages and small towns within the refuge 

are by airplane, helicopter, boat, and snow machines in the winter.                   
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Fig. 3. Map showing the locations of the Kwethluk (red box) and Kuskokwim (blue box) 
Rivers within the Yukon Delta National Wildlife Refuge (YDNWR) and the YDNWR 
boundary (outlined in green) and the private lands set within the refuge (in grey).  Map 
provided by Dan Gillikin, USFWS.  
 

The Kwethluk River originates in the Kilbuck Mountains (Kuskokwim Mountain 

Range) and flows northwesterly for ~222 km to its confluence with the lower 

Kuskokwim River, near the Kwethluk Village that supports ~720 residents (Miller et al. 

2007) (Fig. 2 and 3).  The upper river is a braided-anastomosing system with complex 

flood plains that can be >5 km wide. The lower 47 km of the river, from the USFWS fish 

counting weir described below to the confluence with the Lower Kuskokwim, is a 

meandering river that is influenced by tide hydrology of the lower Kuskokwim and its 

large estuary (Fig. 3).  The annual hydrologic cycle of the Kwethluk begins with spring 

flooding that is dominated by snow melt, to base flow during the summer and early-fall 
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with periodic spikes in the hydrograph resulting from summer rains, to fall floods 

resulting from coastal rain storms that move inland across the refuge.    

Permanent SaRON research sites are located in multiple floodplain habitat types 

throughout the river system, however, sockeye were most often observed in the R and L 

reaches shown in Fig. 2.  The two small headwater lakes are spring-fed and total ~17 ha 

(170,000 m2). Both lake outlets are connected to the main channel of the upper Kwethluk 

and gain substantial flow from upwelling groundwater from the outlets downstream to the 

confluence with the main channel. The lakes may be receiving phreatic (deep storage 

groundwater) inflow from upland sources, but the outlet streams are located within the 

river flood plain and likely are receiving ground water from the alluvial aquifer.  

The common vegetation on the Kwethluk flood plain includes alder (Alnus crispa 

and Alnus incana), cottonwood (Populus  balsamifera) , and willow (Salix arbusculoides, 

Salix pulchra, and Salix alexensis) forest stands. Although, birch (Betula papyrifera) and 

white spruce (Picea glauca) are found within the flood plain, they dominate the overstory   

in late-succession stands toward the floodplain boundaries. The upland is dominated by 

sphagnum tundra and low growing shrubs.  The dynamic interactions between flooding, 

sediment flux, and wood deposition, influence the spatial arrangement and successional 

stage (or chronosequence) of terrestrial vegetation throughout the Kwethluk River flood 

plain (Mouw et al. 2008, submitted). Moreover, beavers truncate the river driven 

chronosequence and create a unique, diverse, and highly productive patch mosaic of 

vegetation within this chronosequence (J. L. Chaffin, unpublished data).     

The main or primary channel is composed of run-glide-tailout-riffle habitat 

sequences (or hydrogeomorphic units) that are spatially arranged by dynamics of 

geomorphology and flow (Lorang and Hauer 2006). Over-bank flooding in the spring and 

fall drive erosion and deposition, and channel avulsion. Thus, the seasonal rise and fall in 

the hydrograph connects and disconnects off-channel habitats from main channel surface 

water. Once flooding recedes, some channels disconnect from surface water flows and 

become dominated by emergent ground water from the alluvial aquifer, resulting in a 

spring brook. This “spring” flow is connected at the downstream end to the main or 

secondary channels by the baseflow channel network of this braided-anastomosing river.  

Some tertiary or “side” channels also have reaches heavily influenced by groundwater 
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discharge. Beavers colonize both spring brooks and some side channels and dammed 

spring brooks and side channels create a mosaic of lentic habitats that add substantial 

complexity to the aquatic-terrestrial interface of the river flood plain (Fig. 2).   

Floodplain spring brooks, beaver ponds and groundwater-influenced reaches of 

side channels and backwaters provide spawning and rearing habitats for all five North 

American anadromous Pacific salmon species: chinook salmon (Oncorhynchus 

tshawytscha), chum salmon (Oncorhynchus keta), pink salmon (Oncorhynchus 

gorbuscha), coho salmon (Oncorhynchus kisutch), and sockeye salmon, which near the 

northern limit of their range in North America (Burgner 1991). Moreover, these habitats 

support resident populations of rainbow trout (Oncorhynchus mykiss), Arctic grayling 

(Thymallus arcticus), dolly varden (Salvelinus malma), round whitefish (Prosopium 

cylindraceum), northern pike (Esox lucius), Alaska blackfish (Dallia pectoralis), slimy 

sculpin (Cottus cognatus), and ninespine stickleback (Pungitius pungitius). Salmon 

populations on the Kwethluk River are highly depended upon for subsistence living by 

members of the Organized Village of Kwethluk at the mouth of the river and other lower 

Kuskokwim residents. 

The U.S. Fish and Wildlife Service (USFWS), Kenai Fishery Resources Office, 

operates a resistance board fish weir (Tobin 1994) on the Kwethluk River to enumerate 

annual returns of salmon. The weir is located ~88 river km upstream from the confluence 

with the lower Kuskokwim River (Harper and Watry 2001; Roettiger et al. 2002; 2003; 

2004; 2005; Miller et al. 2007) (Fig. 2) and adult salmon spawning migrations are 

monitored and species biological samples are collected throughout the season. Annual 

escapement reports for sockeye salmon in 1992, 2000, 2002-2004, 2006, and 2007 

indicate that peak spawning escapement at the Kwethluk weir occurs from the end of 

June to mid-July and that the returns of sockeye salmon to the Kwethluk are small 

compared to other species encompassing only 1%, 2.4%, 0.4%, 1.7%, 2.5%, 6.8%, and 

5.5% of the total salmon escapement, respectively (Harper 1998; Harper and Watry 2001; 

Roettiger et al. 2003; 2004; 2005; Miller et al. 2007) (Table 1). However, returns of 

sockeye appear to be increasing during the time of record.  
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Table 1. Kwethluk weir escapement estimates and percent of the returning run by 
species, as well as total escapement estimates for the years of weir operation 1992, 2000, 
2002-2004 and 2006-2007. Note: 2007 escapement estimates are preliminary. Weir 
picket spacing was increased after 1992 so pink salmon estimates are rough estimates at 
best 

Year Chum % Chinook % Sockeye % Pink % Coho % Total 
Escapement

1992 30,595 23.0 9,675 7.3 1,316 1.0 45,952 34.5 45,605 34.2 133,143 

2000 11,691 27.0 3,547 8.2 1,049 2.4 1,407 3.2 25,610 59.2 43,304 

2002 34,681 51.0 8,395 12.3 272 0.4 1,415 2.1 23,298 34.2 68,061 

2003 41,812 24.8 14,474 8.6 2,928 1.7 1,885 1.1 107,789 63.8 168,888 

2004 38,646 28.0 28,604 20.7 3,491 2.5 3,053 2.2 64,216 46.5 138,010 

2006 47,490 47.9 17,618 17.8 6,732 6.8 1,685 1.7 25,664 25.8 99,189 

2007 54,913 58.8 12,927 13.8 5,148 5.5 626 0.7 19,743 21.2 93,357 

 

 

METHODS 

 

Objectives 1and 2: Lake and River Spawning, Floodplain Rearing, and Quantity of 

Spawning and Rearing Habitat Available to Sockeye Salmon  

 

River flow 

 

To assess the hydrologic regime that occurs during spawning migration, stage height 

(cm) was recorded daily using a staff gauge to calibrate hourly data obtained with a 

Global Water (model# WL16) pressure transducer.  Using periodic flow measurements 

with a Sontek ADP (Acoustic Doppler Profiler) and handheld Flowtracker (ADP and 

Flowtracker, Sontek/YSI San Diego, California), which use Acoustic Doppler technology 

to determine velocities, we obtained a stage-total Q relationship that predicted river flow.  
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Spawning sites and adult counts in the Boundary Lakes, floodplain spring brooks, and 

side channels 

 

We conducted preliminary surveys in 2005 and found riverine sockeye spawning in 

spring brooks and side channels that were dominated by hyporheic-groundwater flow 

(Table 2). We then used our 2005 observations as a guide and surveyed the entire SaRON 

study reach and the Boundary Lakes area for spawning adults (Table 2).  Adults were 

counted, spawning behavior was documented, redd locations were mapped, and marked 

for detailed study described below (Table 3). 

 
Table 2. Observations of floodplain spawning sockeye during the 2005 field season and 
system wide spawning surveys of riverine and lake-type spawning adults during the 2006 
field season. Note: (-) sex of individual fish was not determined and 2005 surveys were 
preliminary.   
       

Habitat Type Sites Males Females Totals  Carcass Redds 
2005 Surveys       
Spring brook 6 38 48 86 14 47 
Side channel 1 12 10 22 1 10 
Main channel ~25 km 0 0 0 0 0 
Total Riverine Spawners 7 50 58 108 15 57 
       
2006 System Surveys       
Spring brook 12 223 221 444 6 202 
Side channel 9 22 38 60  37 
Side channels w/o fish 29      
Spring brook w/o fish 17      
Backwater w/o fish 12      
Beaver ponds w/o fish 22 0 0 0 0 0 
Main channel ~31 km 0 0 0 0 0 
Totals Riverine Spawners 79 245 259 504 6 239 
       
Boundary Lake (BL)  - - 100 7  
Boundary Lake 2 (BL2)  - - 88 0 40 
Boundary Creek (BC)  - - 379 237 ~97 
Boundary Spring brook (BOS)  - - 205 371 - 
Boundary Lake 2 Outlet (B2O)  - - 15 0 10 
Total Lake-type Spawners  - - 787 615 ~147 
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Table 3. Habitats selected for detailed study in 2006. Columns represent the habitat type, 
GPS coordinates of sites in UTM’s (Zone 4), and the life history data collected. Note: 
(Yes) detailed research was conducted or (No) detailed research was not conducted. (NP) 
no adults were observed during spawning surveys and no juveniles were found during 
spring, summer, or fall sampling periods. GA is a smaller spring brook channel arm of 
GS.  When individual site comparisons are made hereafter, LK_ refers to lake study sites, 
SB_ refers to spring brook study sites, BP_ refers to beaver pond study sites, and BW_ 
refers to backwater study sites.      

Habitat Type Easting Northing 
Spawning 
Behavior Juvenile Ecology 

Lake and Outlet (LK_)     
Boundary Lake (BL) 444504 6659716 No Yes 
Boundary Lake 2 (BL2) 444619 6660333 Yes Yes 
Boundary Creek (BC) 444417 6659692 Yes No 
Boundary Spring brook (BOS) 444514 6659814 No No 
Boundary Lake 2 Outlet (B2O) 444624 6660412 No No 
     
Spring brooks (SB_)     
Elbow Spring brook (EO) 390485 6687057 NP NP 
Lost Duck Spring brook (LD) 387901 6688898 NP NP 
Merganser Spring brook (MO) 386939 6689891 NP Yes 
Bunyan Spring brook (BS) 383870 6695931 Yes Yes 
Green Acres Spring brook (GA) 383606 6695576 No Yes 
Green Acres Spring brook (GS) 383603 6697278 Yes No 
Shannon's Side Channel (SH) 383983 6700397 Yes No 
Nerka Spring brook (NS) 383556 6699517 No Yes 
Scott's Spring brook (SS) 383363 6701932 Yes No 
Mack's Spring brook (MS) 383811 6704458 Yes No 
Parafluvial Spring brook 1 (PS) 384629 6705649 No Yes 
     
Beaver Ponds (BP_)     
Upper Elbow Beaver Complex (UE) 392515 6686142 NP Yes 
Elbow Beaver Complex (EC) 390485 6687147 NP Yes 
Salix Beaver Complex (SC) 386757 6690133 NP Yes 
Picea Beaver Complex 387125 6689012 NP NP 
Lost Duck Beaver Complex (LB) 387898 6688940 NP Yes 
Paleo Beaver Complex (PO) 386300 6690722 NP Yes 
Camp Beaver Complex (CB) 385547 6691051 NP Yes 
Tyson's Beaver Complex (TC) 385965 6690986 NP Yes 
Green Acres Beaver Complex (GB) 383494 6695620 NP Yes 
Alces Beaver Complex (AC) 383746 6699555 NP Yes 
Vortex Complex (VC) 383408 6699694 NP NP 
Vortex II Beaver Complex (VW) 383389 6699726 NP Yes 
     

 
Continued on next page 
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Table 3. Continued  

Habitat Type Easting Northing 
Spawning 
Behavior Juvenile Ecology 

Backwaters (BW_)     
Elbow Backwater (EB) 390496 6687305 NP NP 
Sleepy Frisco Backwater (SF) 389152 6688485 NP Yes 
Beaver Backwater I (BB) 383969 6699479 NP Yes 
Nip Backwater (NB) 383649 6695231 NP Yes 
Beaver Backwater II (BW) 384411 6692211 NP Yes 
Beaver Backwater III (BR) 386621 6690299 NP Yes 
Lower Backwater (LW) 384408 6704989 NP Yes 
     
Main Channel Shallow Shoreline      
Elbow Main Channel (EM) 390492 6687300 NP NP 
Midway Main Channel (MW) 383794 6695522 NP NP 
Lower Main Channel (LS) 384594 6706029 NP NP 
          

 

 
 
Fig. 4. Specific sites selected for study of juvenile ecology in the primary study reach 
(A), including spring brooks (closed circles in A, example in B), beaver ponds (triangles, 
C) and backwaters (squares, D).  Images are from SaRON satellite imagery (Quickbird) 
used to quantify the areal extent of each habitat type. 
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Juvenile rearing sites 

 

Juvenile sockeye were captured in 2004 and 2005 in multiple spring brook research sites 

and in a beaver pond in 2005. Based on these observations, in 2006 we continued 

investigations in the SaRON sites and added two additional spring brooks, 12 beaver 

ponds, and six backwater habitats for detailed study of juvenile ecology described below 

(Table 3; see Fig. 4 B-D for habitat examples).      

 
Abundance of off-channel habitat 

 

Satellite (Quickbird imagery) data consisting of four multi-spectral bands (blue - 450 to 

520 nm, green – 520 to 600 nm, red -630 to 690 nm, NIR – 760 to 900 nm) at a 2.4 m 

spatial resolution and a panchromatic band at a 0.6 m spatial resolution were acquired for 

the primary floodplain study reach (R in Fig. 2).  The imagery was used to determine the 

total amount (ha) of main channel and off-channel habitat in the Kwethluk River (D. 

Whited, Flathead Lake Biological Station, unpublished data).  

Ground truth data (e.g., real time GPS positions, classified habitats, and measured 

depth and velocity) were collected in multiple habitat types (e.g., spring brooks, side 

channels, main channel, shallow shorelines, backwaters, and beaver ponds) and at 

multiple scales throughout the study reach.  Using the ground truth data, a supervised 

classification was performed to isolate and extract water surfaces from the surrounding 

land areas.  The extracted water was then converted from raster to vector format and 

discrete aquatic habitats were manually delineated (e.g., spring brooks, beaver pond, and 

backwater) from the water surface coverage using ArcGIS software (Arcmap v. 9.2, 

ESRI, Inc.).  Main channel shallow shore (depth and velocity < 0.5 m) was classified 

using ground truth data collected with a Sontek ADP and Flowtracker.  The total area 

(ha) was then calculated for each particular aquatic habitat. 

We quantified the number of spring brook, side channel, beaver pond, and 

backwater habitats within the study reach and converted the area from ha to m2 , thus 

quantifying amount of available spawning and rearing habitat for riverine sockeye in the 

primary study reach.    
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Objective 3: Habitat Attributes of Lake and Floodplain Spawning and Size and 

Freshwater Age of Spawning Adults 

 

Surface water-groundwater exchange  

 

Spawning sockeye appeared to be selecting upwelling areas in the floodplain spring 

brooks and side channels during our preliminary 2005 surveys (Table 2). Piezometers 

were used to describe the surface water-groundwater exchange at specific redd locations, 

in areas not used by spawning adults, and to characterize the intergravel microhabitat 

variables that may be associated with redd placement by female sockeye in detailed study 

sites.  Piezometers were installed in pairs, one in the redd and one outside the redd, at all 

flood plain and lake study sites. However, in the lake outlet study site, 17 piezometers 

were installed in redds and 12 were installed outside redds (12 pairs and 5 additional 

redds). This was due to a high concentration of spawners and no evident areas that were 

undisturbed.   

We used a modified piezometer design after Baxter et al. (2003). A 2.1 cm 

diameter x 152 cm long piezometer was constructed out of clear Schedule 40 Polyvinyl 

Chloride (PVC) pipe (Harvel Plastics, Inc.).  A perforated section of the piezometer was 

created by drilling 30 evenly spaced 3/32 in diameter holes over the bottom 15 cm 

section of the piezometer and the bottom was plugged with a cork stopper. Following 

Baxter et al. (2003), piezometers were installed using PVC peizometer driver. (Fig. 5A-D 

shows the installation method). Disrupted bed sediments around the piezometer were then 

tamped down to make sure that only hyporheic-groundwater is flowing into the 

piezometer. A Tempo® universal hand pump was then used to clear the wells of fine 

sediments that infiltrated the piezometer during installation and ensure its communication 

with hyporheic-groundwater.    

 

 

 16 



 
 
Fig. 5. (A-D) Method used for installing piezometers using the driver system (modified 
from Baxter et al. 2003).  (A) The pounding cap is attached to the driver and driven into 
the streambed with a sledge hammer.  (B) The steel driving rod is then removed while the 
imbedded sleeve is held in the bed sediments.  (C) The clear PVC piezometer is then 
slide into the metal sleeve and (D) held in place while the metal sleeve is removed.  (E) 
Stilling well/measuring device designed to obtain accurate measurements of the 
differences in head used to calculate VHG. (F) iButton capsule used to record redd 
temperatures.  
 

Piezometers were used to describe the vertical movement of hyporheic-

groundwater and surface water and calculate the Vertical Hydraulic Gradient (VHG). 

VHG is a measurement that describes a positive (upwelling or hyporheic-groundwater 

discharge) pressure gradient or negative (downwelling or surface water recharge) 

pressure gradient of hyporheic-groundwater surface water exchange (Lee and Cherry 

1978; Freeze and Cherry 1979; Geist 2000; Baxter et al. 2003; Dahm et al. 2006) and is 

calculated using the equation: 

 

(1) VHG=Δh/Δl 
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where Δh is the difference in head between the water level in the piezometer and the 

water level of the stream (the difference in hydraulic head, recorded in cm) and Δl is the 

depth at which the first row of the perforations are placed into the streambed (the 

difference in elevation head, recorded in cm) (Baxter and Hauer 2000; Baxter et al. 

2003).    

 We designed a modified stilling well/measuring device (after Baxter et. al. 2003), 

to measure the differences in piezometer and stream water levels (Fig. 5E).  A meter stick 

was attached to the front of a 2.54 cm x 2.54 cm x 1 m long board and a clear (non-

perforated) piezometer (stilling well) was attached to the side of the measuring board 

with zip-ties. The stilling well/measuring device was placed parallel to the installed 

piezometer (perpendicular to stream flow) and two sliding zip-ties were used as 

measurement place holders.     

We estimated the horizontal hydraulic conductivity (Kh) of the streambed by 

using a modified falling head slug test following Baxter et al. (2003) and using the 

equation: 

 

(2) ⎥⎦
⎤

⎢⎣
⎡
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where =is the inside diameter of the piezometer, piezometerd tΔ = the time it takes for a 

known volume of water to move through the stream sediments, ho=is the starting head in 

the piezometer at a single time ( tΔ ), and h=the final head measurement. The falling head 

test was conducted by attaching a clear, graduated, pitcher that was fitted with a nylon 

coupler and a radiator hose that fit over the top of the piezometer. The piezometer was 

filled stream water and the pitcher was filled with a known volume of stream water (3.5 

L). We recorded the time (S.ss) that it took for pitcher to empty. This measurement gave 

an estimate of the flow of water through the pore spaces of the streambed sediments or 

horizontal hydraulic conductivity (Kh). 
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We calculated the vertical hydraulic conductivity (Kv) following Anderson and 

Woessner (1992) and Dahm et al. (2006) using the equation: 

 

(3)  )10.0(hv KK =

 

this is assuming that vertical hydrologic conductivity (Kv) values are ~10% of the Kh. 

Based on the Kv values, we calculated the specific discharge (q; cm3 ⋅ cm-2 ⋅ s-1 or cm ⋅ s-1) 

or the flux rate of upwelling hyporheic-groundwater or the downwelling of stream 

surface water at redd and outside redd piezometer locations, using the equation presented 

by Dahm et al. (2006): 

 

(4)  )(VHGKq v=

 

Water depth and velocity in redds  

 

Water depth is important in rivers where freezing and desiccation can occur during the 

incubation period. Likewise, stream bed scour during high water events can have 

detrimental effects on egg survival (Montgomery et al. 1996; Devries 1997; Rennie and 

Millar 2000).  We measured redd nose velocity (cm. s-1) (taken 10 cm upstream of the 

redd ) and redd depth (m) at each redd at five floodplain spawning sites to determine if 

there was a correlation between the depth and velocity of areas that riverine sockeye 

build redds. Nose velocities were measured with a handheld SonTek Flowtracker. 

 

Bedform and bed-sediment particle size 

 

Surface water-groundwater exchange is influenced by bed slope and morphology at the 

reach and channel unit (run-glide-tailout-riffle) scales (Baxter and Hauer 2000). We 

measured channel gradient (or slope) with a laser level in channels with spawning 

sockeye and without, to determine if riverine spawning sockeye spawned in areas of 

concave or convex streambed morphology.  
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We conducted a modified, Wolman (1954) pebble count at each spawning 

location to calculate the median (D50) particle size of bed-sediments in sockeye redds 

and areas outside redds. Sediment samples were used as an index to determine mean D50 

of bed sediments used by sockeye to construct redds and to evaluate the percentage of 

fine sediments in and outside of redds.  We randomly selected 10 sediment samples from 

each redd and the area outside the redd, by blindly reaching into the water with one finger 

and measuring the first sediment that was touched, using a Gravelometer. The 

Gravelometer is a template that contains 12 square holes of common sediment sieve size 

classes. However, the template size classes fit a range of sizes (e.g., a particle that fit 

through the 5.7 mm template square, but not the 4 mm, could be any size in between 

those two diameters). Therefore, we calculated the average diameter between template 

size classes to eliminate any measurement bias and used those values to calculate the 

mean D50. We classified sediment sizes ≤4 mm as fine sediments (including sand and 

silt) and were expressed as a percent of the 10 rocks collected for each redd.   

 

Surface and intergravel water chemistry  

 

We measured the temperature (ºC), specific conductance (μS⋅cm-1), pH, and dissolved 

oxygen (DO) (mg⋅L-1 and % saturation), of the surface water and hyporheic-groundwater 

using an OAKTON® (Model #35630-02) multi-probe (temperature, specific 

conductance, pH) meter and an OAKTON® 300 (Model #35641) dissolved oxygen 

meter. Surface water samples were collected by simultaneously placing meters into the 

stream water and intergravel water samples were extracted from the piezometers using a 

MASTERFLEX® (model #7518-02) perastaltic pump that was mounted onto a 

rechargeable handheld drill (Woessner 2007). Water was pumped from the piezometer 

into a 300 ml beaker and allowed to continuously overflow until readings stabilized 

(Geist 2000). Water quality point measures were collected form lake study sites during a 

3 day period (08/07/06 and 08/09/06) and from floodplain study sites within an 11 day 

period (09/3/06 to 09/14/06). 
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Spawning site surface water and redd temperatures and main channel versus spring 

brook annual temperature patterns in relation to life history    

 

Surface water temperatures were continuously recorded every hour using Vemco (model 

MiniLog-T) and HOBO® (Model # U20-001-01) water level/temperature loggers placed 

on the bottom of the spawning channels and at a two sites in the main river.  Vemco 

surface water temperature loggers were installed in the lake sites on 08/09/06 and 

08/10/06 and recorded temperatures for a 49 to 50 day period. We installed four HOBO® 

temperature loggers and one Vemco temperature logger in floodplain sites from 08/03/06 

to 09/12/06 and recorded temperatures for 30 to 70 days.  

Intergravel temperatures were recorded every hour using Dallas Thermochron 

iButton temperature loggers (Model # DS1921Z-F5) that were encased in a perforated 

2.54 cm dia. x 5.08 cm long PVC capsules (iButton capsule) (refer to Fig. 5F above). 

IButton capsules were attached to heavy-duty (8 gauge) red colored wire and installed by 

threading the wire into an inverted (open-end) piezometer and using the same methods 

for piezometer installations as above.  The iButton capsule acted like a “bottle rocket” 

wherein, the capsule stuck out from the end of the piezometer and was inserted to a depth 

of 22-26 cm (within the range of the perforations) near the redd nest pocket adjacent to 

the piezometer. The piezometer was then wiggled out, while the capsule remained seated 

in the bed sediments.  Ibutton capsules were installed in 10 redds in lake study sites on 

08/09/06 and 08/10/06 and in five redds that were randomly selected (odd or even redds) 

from the 10 redds that were measured for other spawning habitat attributes in floodplain 

study sites from 09/03/06 to 09/14/06. 

We attempted to compare mean daily temperature and mean degree days (or 

cumulative mean daily temperatures above 0 ºC) of redds in flood plain and Boundary 

Lake detailed study sites over a 50 day period. However, we were not able to get a full 50 

days from flood plain and the lake outlet detailed study sites. In order to compare all sites 

for the same amount of time (50 days), we extrapolated all floodplain sites back to 

08/21/06 (observed peak spawning) and the lake outlet back a day to 08/09/06.  

The temperatures in lake outlet redds during a three day period after installation 

did not change more than .3 ºC (mean=0.1 ºC, SE=0.04, range 0 to 0.3) in any of the six 
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redds where iButtons were recovered. Thus, in order to synchronize the date that lake and 

lake outlet redd iButtons began recording, we used the mean daily temperature of 

08/10/06 for 08/09/06.  In floodplain sites, we used the mean daily temperature from the 

time period of actual data collected (between 28-35 days). This is an acceptable 

estimation because mean daily temperatures were reasonably stable in floodplain study 

sites (mean change=1.2 ºC, SE=.2 ºC, range=0 to 3.2 ºC, n=22), although the 

extrapolations potentially resulted in a slight underestimation of  the mean daily 

temperature and degree days experienced by incubating riverine sockeye embryos. 

 We examined the general temperature patterns associated with the riverine life 

history (peak spawning, embryo incubation, fry emergence, and smolt migration), by 

comparing annual mean daily surface water temperatures of the main channel (n=1) and 

spring brook (n=3) from mid-august 2005 to early-September 2006 and main channel 

(n=2) and spring brook (n=7) surface water from early-September 2006 to mid-October 

2007. 

We calibrated iButton temperature loggers using temperature baths against an 

ASTM thermometer, with a three point calibration (0.5, 10, 20 ºC). IButton temperature 

loggers typically overestimated temperature by 0.1 to 0.5 °C (Johnson et al. 2005). 

However, variation in Vemco temperature loggers were generally ≤ 0.1 °C that of the 

temperature bath.  We calibrated a HOBO® temperature logger against a Vemco 

temperature logger in the field and found that differences ranged from 0.0 to ±0.9 ºC, 

with an average difference over a 21 day period of 0.3 ºC). 

 

Adult size and freshwater age  

  

We collected spawning and spent adults using hook-n-line and dip-nets, to determine size 

of spawning riverine and lake-type, males and females and to collect scales for freshwater 

age analysis. Likewise, tissues samples were collected for genetic analysis used in other 

studies (McPhee et al. 2008, submitted).  The lengths (mm) of female and male spawning 

riverine and lake-type sockeye were measured from the middle of the eye to the end of 

the hypural bone (MEHP). Scale samples were mounted onto gummed tape, which were 

then secured to the back of 3”x 5” acetate scale impression slides (Wildco part #112-
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A27) and pressed using a heated, hydraulic scale press. A digital image of the scale 

impression was then made using a dissecting scope with a mounted digital camera. The 

freshwater and saltwater annuli were then identified to determine the years spent in 

freshwater, for both riverine and lake-type spawning adults.    

 

Objective 4: Densities and Population Size of Juveniles Rearing in Floodplain Habitats  

 

Seasonal fish densities and population estimates  

 

Spring brooks, beaver ponds, and backwaters were selected throughout the SaRON study 

reach for investigation into juvenile sockeye rearing ecology (refer to Table 3 for detailed 

study sites and Fig. 4A for flood plain locations). We obtained population estimates and 

calculated densities of juvenile sockeye (fish ⋅ m-2) inhabiting five spring brook sites in 

the spring, summer, and fall (refer to Fig. 4B for an example).  Ten beaver ponds (refer to 

Fig. 4C for an example) and three backwaters (refer to Fig. 4D for an example) were also 

sampled three times during the field season in late-spring, late-summer, and fall.  In 

addition, three backwater habitats were sampled in the fall.  

Lotic study sites were sampled using a Smith-Root (Model # LR-24) backpack 

electrofisher and a closed population 3-pass (depletion) sampling design was employed 

over a 25-50 m long reach. Sampling reaches were blocked at the top and bottom ends 

with 5 mm diameter mesh nets. To determine the density of juveniles (fish ⋅ m-2) we 

measured the channel wetted width (channel metrics) at four-six transect locations along 

the electrofishing reach and those measurements were used to estimate the total area (m2) 

of the reach.   The number of juveniles captured during each electrofishing pass was 

entered into the program CAPTURE (www.mbrusgs.gov/software) (Pollock 1991; Lancia 

et al. 1996; Pine et al. 2003) which calculated population estimates on each sampling 

occasion and at each site.   

 We used closed population depletion minnow trapping to sample beaver ponds 

and three of the backwaters (Bryant 2000) because beaver ponds and three of the 

backwaters were too deep (>1.5 m) for backpack electrofishing.  We placed 48-50 Gee 

minnow traps (Model # 125-G10) evenly throughout a blocked sampling reach and baited 
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each trap with salmon roe that was enclosed in perforated film canisters.  Traps were 

operated for three, two hour trapping sessions at each study site.  Trapping reaches 

ranged from 17 to 50 m in length and channel metrics were also measured at four-six 

locations along each reach.   

Lake-type juvenile sockeye were collected by electrofishing the lake littoral zones 

of the two headwater lakes, during a single sampling session in the summer (refer to 

Table 3 for detailed study sites).   

 

Objective 5: Comparisons of Length, Weight, and Diet of Lake and Floodplain Rearing 

Juveniles and Temperature Patterns of Floodplain Rearing Habitats 

 

Juvenile length, weight, and diet 

 

Juvenile sockeye fork lengths were measured to the nearest mm using a fish measuring 

board and weight was measured to the nearest 0.1 g using a Ohaus Scout® Pro (model # 

SP2001) 2000 g digital scale. Length and weight measurements were obtained from all 

juvenile sockeye that were captured during electrofishing and minnow trapping sessions 

and were used to compare the size of juvenile sockeye rearing in different habitat types 

throughout the season. 

To assess the diet of juveniles rearing in different habitats, we quantified the 

stomach contents from a subsample of fishes collected as described above. Gut 

dissections were preformed in the field, samples were preserved, and prey items were 

later identified to order or family.  The length (mm) of each prey item was measured at 

10-20x magnification using a dissecting scope and ocular micrometer. Dry mass 

estimates (mg) of different prey taxon were estimated using published length-dry mass 

regression equations (Nalepa and Quigley 1980; Rosen 1981; Sage 1982; Culver et al. 

1985; Sample et al. 1993; Burgherr and Meyer 1997; Granihar 1997; Benke at al. 1999) 

and each prey taxon is presented as a precent of total invertebrate dry biomass. 
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Floodplain rearing habitat temperature patterns 

 

We compared surface water temperature patterns from 06/21/06 to 06/01/07 to determine 

the thermal regime that flood plain rearing juveniles experienced during the spring, 

summer, fall, and winter seasons of the year in different habitats. Vemcos and HOBOS® 

were installed in three of the spring brooks and five of the beaver ponds that were 

selected for detailed study, as well as, two main channel sites (used as backwater 

comparisons).    

 

Objective 6: Length Comparisons Between Floodplain Rearing Juveniles and Ocean 

Migrating Smolts and Fall Juvenile Density Expansions 

 

We compared the mean lengths of floodplain rearing juveniles in the fall of 2006 to 

ocean migrating smolts in the following spring of 2007. These comparisons were used to 

assess if fall juveniles were significantly smaller than smolts, potentially leading to lower 

over-winter survival. We also determined if smolts had met the 50 mm size threshold 

limits needed for 100% to survival in saltwater (Heifetz et al. 1989) and how the size of 

spring smolts compared to literature values reviewed by Burgner (1991) for lake-type 

populations.  Smolt data was obtained from The United States Geological Survey 

(USGS), which operated two downstream migration smolt traps from 04/26/07 to 

05/31/07 at the USFWS weir site (Fig. 2). 

We used fall density data and the total habitat area (m2) quantified from the 

remote sensing (see habitat quantification methods above), to estimate the total number 

of juvenile sockeye rearing within the study reach and to make some comparisons to the 

numbers of smolts caught during the USGS smolt trapping operation. 

 

Statistical Analysis 

 

The length of riverine and lake-type adults were compared using Mann-Whitney U tests 

because they would not meet the assumptions of t-tests. Comparisons between spawning 

habitat attributes in redds and areas outside redds were made with parametric paired 
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sample t-tests or non-parametric Wilcoxon signed ranks tests when data would not meet 

the assumptions of t-tests.  Correlations between redd depth and velocity were analyzed 

using Spearman’s rho bivariate correlations. Spawning habitat attributes between site 

comparisons, were made using either parametric one-way ANOVA’s or non-parametric 

Kruskal-Wallis one-way ANOVA’s, when data would not meet the assumptions of 

ANOVA. When significant differences were found between sites, Tukey or Tamhane’s 

T2 pairwise comparisons were made. The length and weight of juveniles rearing in 

different habitat types were compared seasonally and to smolts (fall juveniles only) using 

One-way ANOVA and Tukey pairwise comparisons.  All statistical tests were two-tailed 

and alpha was set to 0.05 for statistical significance. 

 

RESULTS 

 

Objectives 1 and 2: Lake and River Spawning and Quantity of Spawning and Rearing 

Habitat Available to Sockeye Salmon 

 

River flow 

 

The main channel of the Kwethluk River remained covered in ice until the end of April to 

Early-May (http://aprfc.arh.noaa.gov/php/brkup) in 2006. Spring runoff followed breakup 

and the hydrograph declined to base flow in early-July which lasted till early-October, 

when fall flooding ensued. However, periodic storm events raised the hydrograph for 

short time periods throughout the summer (data not shown).  Sockeye salmon peak 

escapement at the USFWS weir (refer to Fig. 2) occurred during the week of 07/02/06 to 

07/08/06 (Miller et al. 2007) and coincided with the falling limb of spring runoff. 

However, sockeye passed by the weir from 07/02/06 to 09/02/06 and presumably moved 

throughout the river system during that time period.  Sockeye were routinely observed 

staging in backwaters at the lower ends of spring brooks and side channels where they 

were later observed spawning. 
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Spawning sites and adult counts in the Boundary Lakes, floodplain spring brooks, and 

side channels 

 

Boundary Lakes Area (L in Fig. 2) - During the period of 8/06/06 to 08/10/06, we 

observed lake-type sockeye spawning in Boundary Lake (BL), Boundary Creek (BC) (the 

Boundary Lake outlet), a small spring brook (Boundary Spring brook (BOS)) that flowed 

into BC, Boundary Lake 2 (BL2), and the outlet of Boundary Lake 2 (B2O) (Fig. 6).  We 

counted a total of 787 spawning adults plus 615 carcasses in the Boundary Lakes area 

and out of those 787 spawning adults, 100 were observed spawning in BL, 379 in BC, 

205 in BOS, 88 in BL2, and 15 in B2O (refer to Table 2). Of the 608 carcasses observed 

in BC and BOS, 75% were obviously killed by bears (e.g., teeth punctures, claw scrapes, 

and partially eaten).  

 

Kwethluk River - In 2005, we observed riverine sockeye spawning in six spring brooks 

and a side channel (refer to Table 2) within the SaRON study reach (R in Fig. 2).  In 

2006, we surveyed the entire study reach for spawning sockeye and we observed 

exclusive use of spring brooks or side channels in addition to the Boundary Lakes (refer 

to Table 2; Fig. 4B for an example of a spring brook). Even though we concentrated our 

flood plain studies to the SaRON study reach and the Boundary Lakes area of the 

catchment, we did observe riverine sockeye spawning in floodplain spring brooks during 

our float down from the Boundary Lakes on 08/10/06 through 08/11/06.  

During our reach wide spawning surveys, we found riverine sockeye were 

actively spawning in 12 of the 29 spring brooks and in 9 of the 38 side channels 

(secondary and tertiary) that we surveyed (refer to Table 2).  We also surveyed 12 

backwaters where sockeye adults were staging or resting during migration, but no 

spawning was observed and no sockeye were observed spawning anywhere in the main 

channel (refer to Table 2). We documented a total of 504 adult riverine sockeye (245 

males and 259 females) spawning in specific off-channel areas of the flood plain (refer to 

Table 2).  Crews in 2007, observed spawning adults in these same habitats but the 

extensive survey of 2006 was not repeated. 
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Fig. 6. Enlarged view of the Boundary Lakes area of the upper Kwethluk River.  
Spawning (closed circles) and non-spawning (open circles) reaches are shown. Areas 
where groundwater springs fed the two lakes (line arrows) and surface water-
groundwater exchange (block arrows) are shown. The values represent the total number 
of piezometers that were measured for VHG. Note: BL has a beaver dam that is a partial 
barrier and the small lake adjacent to BL2 has a beaver dam that is a full barrier. BOS 
and B2O were not measured, but upwelling was observed. Boundary Lakes image 
provided by Goggle Earth.  
 

Abundance of off-channel habitat  

 

Based on our habitat classification methods described above, there was 1,279,070 m2 of 

off-channel habitat available to floodplain spawning and rearing sockeye within the 

SaRON study reach (~30 km long-R in Fig. 2) and composed 46% of the total aquatic 

habitat. Spring brooks and side channels made up 26.3% (335,773 m2, n=180) and 27.3% 

(348,677 m2, n=42) of the available off-channel habitat, respectively. Beaver complexes 

(a series of beaver ponds) made up the highest percent of off-channel habitat (40.0%, 
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n=101) and provided 515,701 m2 of off-channel habitat. Backwater habitats were not as 

prevalent as other off-channel habitats and made up only 4.0% (55, 966 m2, n=65) of the 

available off-channel habitat. 

 

Objective 3: Habitat Attributes of Lake and Floodplain Spawning and Size and 

Freshwater Age of Spawning Adults 

 

Surface water-groundwater exchange  

 

In all cases, riverine and lake-type sockeye constructed redds in areas where ground 

water was upwelling (Fig. 7).  We observed that in the Boundary Lake outlet (LK_BC) 

study site, lake-type sockeye were spawning in three distinct reaches and that redds were 

placed in areas that were upwelling or neutral but never in areas or reaches that were 

downwelling (losing) (Fig. 6). We found no significant differences comparing VHG in 

and areas adjacent to redds in both lake-type sockeye study sites (exact p-values=.344 

and .891, Wilcoxon signed ranks test) (Fig. 7). VHG transects were conducted in two of 

the three non-spawning reaches (Fig. 6), and we found that these were indeed areas of 

downwelling surface water (Fig. 7).  Likewise, VHG in riverine sockeye redds and areas 

adjacent to redds were not significantly different (exact p-values >.10 for all sites, 

Wilcoxon signed ranks test) (Fig. 7). Riverine sockeye did not spawn in areas with 

downwelling (losing) or neutral VHG readings, similar to what we found in the lake 

outlet study site (Fig. 7).   

Overall, we did not see marked differences in hydraulic conductivity (Kh) or 

specific discharge (q).  Estimates of Kh ranged from 3.55 ⋅ 10-3 cm ⋅ s-1 to 5.65 ⋅ 10-2 cm ⋅ 

s-1 (n=50) in floodplain redds, from 1.65 ⋅ 10-2 cm ⋅ s-1 to 4.05 ⋅ 10-2  cm ⋅ s-1 (n=10) in 

lake shoreline redds, and from 2.48 ⋅ 10-2 cm ⋅ s-1 to 4.65 ⋅ 10-2  cm ⋅ s-1 (n=16) in lake 

outlet redds . The Kh in riverine sockeye redds was not significantly higher than in lake-

type sockeye redds (p-value>.050 for all site comparisons, ANOVA).  Likewise, Kh was 

not significantly different in redds than areas outside redds (p-value>.100, ANOVA). The 

q of redds from all sites ranged from 1.0 ⋅ 10-5 cm ⋅ s-1 to 5.55 ⋅ 10-3 cm ⋅ s-1.  However, 

SB_SH had significantly higher q in redds than areas outside of redds (exact p-
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value=.048, Wilcoxon signed ranks test) and pairwise comparisons found that SB_SS 

(mean=5.68 ⋅ 10-4 cm ⋅ s-1) had higher q than SB_GS (mean=9.58 ⋅ 10-5 cm ⋅ s-1) (p-

value=.026, Kruskal-Wallis ANOVA).  
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Fig. 7. Vertical Hydraulic Gradient (VHG) (cm) calculated from piezometers placed in 
sockeye redds, in areas outside redds, and in areas where sockeye were not spawning in 
Boundary Creek (NO LK_BC) (n=2) and in floodplain sites (NO SB_FP) (n=3).  Note: 
Two sockeye redds had VHG values that were outliers (LK_BL2=1.93) and 
(SB_SS=.56). These redds were excluded from this graph to display the overall 
relationships of VHG, but were included in statistical analysis.  
 

Water depth and velocity  

 

We found that the water depths (m) at which riverine sockeye and lake-type sockeye 

placed redds ranged from .12 m to .83 m.  Redd depths ranged from .20 to .83 

(mean’s=.28 to .55, SE=.02 to .07, n=10 at each site) in floodplain sites, from .12 m to 

.61 (mean=.27, SE=.03, n=10) in the lake outlet study site, and .22 m to .74 m 

(mean=.55, SE=.06, n=10) in lake study site. Riverine sockeye redds in SB_BS, SB_GS, 
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and SB_SH were constructed in deeper water than in LK_BC (p-value<.010 for all, 

ANOVA), but SB_BS, SB_GS, SB_SH, and SB_SS redds were not deeper than redds 

constructed in LK_BL2 (p-value >.050 for all, ANOVA).  Redd nose velocities (cm ⋅ s-1) 

were not collected in the lake outlet study site, but floodplain spawning sites had nose 

velocities that ranged from 0 to 28.3 cm ⋅ s-1.  We found no correlation between redd 

depth and nose velocity in floodplain spawning sites (Spearman’s rho (ρ= -.432 to -.104, 

p-value >.100 for all sites).  

 

Bedform and bed-sediment particle size  

 

Riverine and lake-type (lake outlet) sockeye primarily spawned within run and glide 

habitats of concave bedform and exclusively in areas of upwelling groundwater, as stated 

above. In some riffle habitats sockeye spawned along channel margins, typically near 

small spring channels (<1m wide) or spring seeps that emerged from the stream bank. 

The gradient of riverine sockeye spawning reaches ranged from .02 cm ⋅ m-1 to .14 cm ⋅ 

m-1 and non-spawning reaches ranged from .10 cm ⋅ m-1 to .27 cm ⋅ m-1. Thus, the 

associated bedform was linked to the slope of the habitat and the surface water-

groundwater exchange that was measured.  

Sediment size classes that were measured in riverine and lake-type, lake, sockeye 

redds ranged from <4-90 mm in diameter.  Median (D50) sediment size of redds and 

areas outside redds were compared using paired samples t-tests.  Redd sediments were 

larger in SB_SH (p-value=.012) and SB_MS (p-value=.032) than areas outside redds 

(Fig. 8). ANOVA pairwise comparisons between sites revealed that SB_BS redds had 

significantly larger sediments than LK_BL2 (p-value=.007), SB_SS (p-value=.030), and 

SB_MS (p-value=.018) redds (Fig. 8).  No data was collected for individual redds in the 

lake outlet due to time constraints.  We found fine sediments in only 4 of the 60 redds 

that we sampled and fines made up between 10% and 40% (mean=22.5%, SE=8%) of the 

redd sediments. However, in areas outside redds we found fine sediments made up 

between 10% and 100% (mean=45.8%, SE=4.9%, n=40) of the sediments.    
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Fig.  8. Mean median sediment (grain) sizes (D50) of LK_BL2 and floodplain redds and 
areas outside redds. Note: Sediment sizes were not collected for individual redds or areas 
outside redds for LK_BC. In LK_BL2 one area outside the redd contained 90% fine 
sediments, so D50 could not be calculated and in SB_SS four areas outside redds had 
100% fine sediments.  
 

Surface and intergravel water chemistry  

 

Water chemistry point measures were compared in redds, areas adjacent to redds, and to 

the surface water using Wilcoxon signed ranks tests.  Temperatures (ºC) in redds were 

not significantly different in areas outside redds (exact p-value’s >.05 for all sites) and all 

redd temperatures were significantly colder compared to surface water (exact p-value’s < 

.020 for all sites), except for SB_SS (exact p-value=.899) which was closer to surface 

water (Table 4). 
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Table 4. Mean water quality measures of LK_BC, LK_BL2, lake spawning sites and 
SB_BS, SB_GS, SB_SH, SB_SS, and SB_MS floodplain spawning sites. Measures were 
taken from piezometers placed in redds and outside redds as well as, the surface water 
surrounding those piezometers.  

 
Temp.  

°C SE 
 Conductivity 

(μS ⋅ cm-1) SE pH SE 
DO 

 (mg ⋅ L-1) SE 
DO 

(% sat) SE 

LK_BC           
Redds 5.2 2.75 153.0 7.49 7.25 0.12 8.2 1.86 70 16.00 
Outside redds 5.6 2.73 153.5 5.22 7.20 0.07 7.2 1.36 60 9.76 
Surface 9.8 0.93 145.4 1.95 7.22 0.06 9.4 0.64 82 5.85 

LK_BL2           
Redds 4.4 0.78 154.1 3.92 7.47 0.07 8.5 0.62 69 5.03 
Outside redds 5.2 1.17 153.2 2.21 7.43 0.09 8.6 1.26 70 11.93 
Surface Water 5.6 0.50 152.5 2.75 7.52 0.11 9.9 0.50 83 4.00 

Floodplain Sites           
SB_BS           

Redds 6.5 0.44 112.0 0.21 6.90 0.04 6.2 0.20 55 1.96 
Outside redds 6.5 0.42 112.3 0.27 6.83 0.03 6.2 0.24 53 2.38 
Surface water 8.4 0.08 111.7 0.17 6.73 0.07 8.3 0.10 73 1.03 

SB_GS           
Redds 7.7 0.34 108.8 0.42 7.02 0.03 5.5 0.54 50 5.00 
Outside redds 7.9 0.27 108.7 0.48 6.86 0.03 5.6 0.53 50 4.73 
Surface water 9.2 0.08 110.8 0.15 7.01 0.04 10.0 0.23 90 2.20 

SB_SH           
Redds 6.9 0.57 110.6 1.32 7.00 0.01 5.4 0.40 47 3.47 
Outside redds 6.6 0.63 110.3 1.24 6.87 0.02 5.4 0.53 46 4.22 
Surface water 8.5 0.15 112.7 0.34 7.06 0.01 9.4 0.34 84 2.84 

SB_SS           
Redds 5.5 0.33 105.4 0.23 6.57 0.02 2.6 0.11 23 1.23 
Outside redds 5.3 0.30 105.8 0.28 6.55 0.01 2.6 0.10 22 0.83 
Surface water 5.6 0.09 109.3 0.51 6.78 0.04 4.5 0.10 39 0.67 

SB_MS           
Redds 5.8 0.72 103.0 1.42 6.83 0.04 7.4 0.56 66 4.87 
Outside redds 5.8 0.58 102.9 1.43 6.74 0.05 7.5 0.43 64 3.21 
Surface water 9.0 0.12 111.9 0.47 6.88 0.05 10.1 0.31 88 2.37 

           

 

Specific conductance (μS ⋅ cm-1) was not different in and outside of redds (exact 

p-value’s > .100, for all sites) (Table 4).  Specific conductance was lower in SB_GS (p-

value=.005), SB_SS (p-value=.002), and SB_MS (p-value=.002) redds than the surface 

water (Wilcoxon signed ranks tests) (Table 4).  Specific conductance was higher in lake-

type sockeye redds compared to redds in all floodplain spawning sites (p-value<.001 for 

both sites, Kruskal-Wallis ANOVA) (Table 4). Mean pH was significantly higher in lake-
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type redds than in any of the floodplain spawning sites (p-value<.001 for both sites, 

Kruskal-Wallis ANOVA) (Table 4).    

 Dissolved oxygen (DO; mg ⋅ L-1) was not significantly different in floodplain or 

lake redds and areas outside redds (paired samples t-test, p-value >.100 for all sites) 

(Table 4).  However, redds in the lake outlet had significantly higher DO then areas 

outside redds (paired samples t-test, p-value=.032) (Table 4). This was most likely caused 

by the high concentration of spawning adults in the outlet, creating a series of  “dunes” or 

back to back redds that increased surface water flow through the redds.  Further analysis, 

showed that lake redds had significantly higher DO levels compared to all floodplain 

sites (p-values < .050), except SB_MS (p-value=.928) and that the lake outlet redds had 

significantly higher DO levels than SB_GS (p-value=.017) and SB_SS (p-value< .001) 

(ANOVA) (Table 4). Although, SB_SS redds had the lowest DO of all sites, we 

conducted a spot check 30 days later and mean DO increased by 4.0 mg ⋅ L-1 (Mean=6.6 

mg ⋅ L-1, SE=.68, n=10), in fact the mean DO in all floodplain sites increased between 2.1 

to 5.2 mg ⋅ L-1 when checked  ≥ a month later.   

 

Spawning site surface water and redd temperatures and main channel versus spring 

brook annual temperature patterns in relation to life history    

 

Surface water mean daily temperatures in the lake outlet steadily decreased from 10.2 at 

the time of spawning to 7.0 ºC and from 6.2 to 4.5 ºC in the lake (Fig. 9).  Surface water 

mean daily temperatures in declined from 10.0 to 6.3 ºC to 5.0 to 4.0 ºC in flood plain 

detailed study sites (Fig. 9). In mid-October a large decrease in surface water 

temperatures was caused by fall flooding (Fig. 9) and during that time the main channel 

dropped to 2 ºC (data not shown).  

We compared the mean daily temperatures of redds using Kruskal-Wallis 

ANOVA and found that floodplain spring brooks had significantly warmer redd 

temperatures than the lake environments (p-value=.004, p-value=.008, and p-value<.001, 

respectively), although SB_GS had warmer redd temperatures than SB_SS (p-

value<.025) (Fig. 10A).  However, the 95% CI of the mean daily temperatures of the lake 

outlet redds encompassed the redd temperatures of all floodplain sites and the lake, and  
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Fig. 9. Mean daily surface water temperatures of flood plain (solid color lines) and lake 
(dashed color lines) spawning sites that coincides with recorded redd temperatures. 
 

had the highest variability (1.8 to 10.7 ºC) (Fig. 10A).  We found the same between site 

differences when comparing mean degree day’s (Fig. 10B). In general, some riverine 

sockeye redds had between .9 and 6.4 ºC higher redd temperatures and 100.9 and 251.1 

more incubation degree days then the lake, lake-type, sockeye redds. 
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Fig. 10. (A) Means of the mean daily temperature and (B) the mean degree days that 
incubating riverine and lake-type sockeye embryos experienced during a 50 day period.  
Values above error bars represent the number of redd temperature loggers used in 
analysis at each site.  

 

Annual temperature patterns showed that spring brooks were generally warmer 

during the winter and cooler during the summer, than main channel surface water (Fig. 
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11). During the winters of 2005-2006, spring brook surface water temperatures ranged 

from 0.0 to 6.8 °C (mean of daily means=1.1, SE=0.1, n=187 days) when the main 

channel was 0.0 °C and during the winter of 2006-2007, spring brook surface water 

temperatures ranged from 0.0 to 6.4 °C (mean of daily means=1.5, SE=0.1, n=166 days) 

when the main channel was between 0.0 and 0.3 °C (Fig. 11).  

 

 
 
Fig. 11. Annual surface water temperature patterns in relation to riverine sockeye life 
history.  Main channel and spring brook surface waters were compared from mid-August 
2005 through October 2007 and described when peak floodplain spawning was observed 
(clear arrows), relative fry emergence (black arrows), and peak smolt migration (grey 
star) occurred in the SaRON study reach. Temperature patterns are reported as 7-day 
averages of the mean daily temperature. Spring brook maximums and minimums are 
reported as 7-day average maximums and minimums.  
 

The surface water temperatures of some spring brooks did drop to 0.0 °C during 

the winter (see Fig. 11, spring brook minimums), but we were able to recover three 

iButton capsules that were lost during the 2006 mid-October flooding (see above). One of 

the iButtons recorded temperatures till mid-November and two of the iButtons continued 

recording temperatures until the first of December.  The mean, mean daily intergravel 
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redd temperatures, were 4.1 to 4.2 °C warmer than the spring brook surface water at 0.0 

°C (data not shown). 

Peak spawning in floodplain spawning sites occurred during the same time frame 

in 2005 and 2006 and appeared to coincide with spring brook water becoming warmer 

than main channel water (Fig. 11). We estimated that riverine sockeye fry emergence 

occurred from late-April to early-June and that it also coincided with increasing water 

temperatures (Fig. 11).  We based this estimate on the size of fry captured in floodplain 

spring brooks in the spring of 2006 (see spring length data below) and on the USGS trap 

catch data which also caught newly emerged sockeye juveniles (not migrating to the 

ocean; see adult scale analysis below) from 04/29/07 through 05/31/07, with a mean fork 

length of 29 mm (range 26 to 33 mm, n=98). This size range is typical range for juveniles 

that had recently emerged from redds (Murphy et al.1988; Heifetz et al. 1989; Burgner 

1991; Quinn 2005). Sockeye smolts (migrating downstream to the ocean) were caught on 

04/26/07 through 05/31/07, with the peak catch occurring on 05/18/07 (S. Burril, USGS, 

Alaska Science Center, unpublished data) (Fig. 11).  

 

Adult size and freshwater age  

 

The average lengths of lake-type and riverine females were 485 mm (SE=4, n=44) and 

481mm (SE=4, n=29), respectively.  Riverine females were not significantly larger than 

lake-type females (exact p-value=.607). However, we did find that riverine males 519 

mm (SE=5, n=26) were significantly larger in average length than lake-type males 481 

mm (SE=9.42, n=43) (exact p-value=.045). Adult scale analysis confirmed that riverine 

(n=40) and lake-type adults (n=25) had reared in freshwater for at least one year and in 

some cases both riverine (n=8) and lake-type (n=8) sockeye had reared in freshwater for 

two years.    
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Objectives 1 and 4: Habitats Used by Juveniles for Floodplain Rearing and Juvenile 

Densities and Population Size  

 

Juvenile rearing sites, seasonal fish densities, and population estimates 

 

Juvenile sockeye were found rearing in five of the seven spring brooks, 10 of the 12 

beaver ponds, and six of seven backwaters that were studied (refer to Table 3; refer to 

Fig. 4B-D for habitat examples). No juvenile sockeye were found rearing along the 

shallow shoreline of the main channel at any of the three sites sampled or during any of 

the three seasonal sampling periods, or in either of the two brown water tundra tributaries 

that were sampled during the same time periods. A total of 243 hours was spent trapping 

beaver ponds and 171 hours was spent electrofishing lotic floodplain habitats, during 

SaRON across site sampling. All sockeye collected were young-of-the-year (YOY) and 

no yearling (1+) juveniles were collected indicating that the downstream migration of 

sockeye smolts going to the sea, occurred early in the spring (as noted in Fig. 11).  

Our study of juvenile densities and population size was focused on five floodplain 

spring brooks (spring, summer, and fall sampling) and in the fall, three backwaters and 

three beaver ponds that captured enough juveniles and could be easily reached from the 

research camp.  There were between .05 to .51 fish ⋅ m-2 rearing in spring brooks in the 

spring (two sites) and .24 to .68 fish ⋅ m-2 in spring brooks in the summer (three sites). In 

the fall, there were between .27 to .54 fish ⋅ m-2 in spring brooks (four sites), .03 to .19 

fish ⋅ m-2 in backwaters (three sites), and .02 to .07 fish ⋅ m-2 in beaver ponds (three sites) 

(Fig. 12A).  Our population estimates varied (Fig. 12B) for the spring brooks, 

backwaters, and beaver ponds, but in the fall, spring brooks had higher population size 

estimates than backwaters and beaver ponds.  

We caught a total of 79 juvenile sockeye in beaver ponds over the course of three 

sampling periods (late-spring, late-summer/early-fall, and fall) and 180 hours of minnow 

trapping. In the three deeper backwaters that were sampled using minnow traps, during 

the same time periods, we caught a total of 37 juveniles, in 54 hours of minnow trapping. 

However, during one late-spring beaver pond trapping session we only caught two 

juvenile sockeye in the minnow traps, but counted 51 during snorkeling surveys.  
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Fig. 12. (A) The density (fish ⋅ m-2) and (B) population estimates for riverine sockeye 
juveniles rearing in SB_MO (spring, summer, and fall), SB_BS (summer and fall), 
SB_GA (fall), SB_NS (spring), and SB_PS (summer and fall) spring brooks and BW_SF, 
BW_NP, and BW_LW backwaters (fall only), and BP_GB, BP_LB, BP_EC beaver 
ponds (fall only) floodplain habitats. Note: No Data=Flooding prevented  closed 
population electrofishing in three of the five spring brooks in the spring and in the 
summer and fall too few fish were captured to estimate population size or reliable density 
estimates.   
 

Likewise, during another minnow trapping session we only caught four juvenile sockeye, 

but counted 33 during snorkeling surveys. Thus, we concluded that juvenile sockeye were 

not particularly attracted to the roe in the minnow traps and this limited our ability to 

determine fish densities and obtain population estimates.      

 

Objective 5: Comparisons of Length, Weight, and Diet of Lake and Floodplain Rearing 

Juveniles and Temperature Patterns of Floodplain Rearing Sites  

 

Juvenile length and weight 

 

We pooled sampling sites by rearing habitat type and season for length and weight 

comparisons (refer to Table 3 for detailed study sites). In early-spring, spring brook 

rearing juveniles were 27 to 43 mm long (mean=33, SE=.3, n=140) and weighed from .1 

to .8 g (mean=0.3, SE=.01, n=140), in the summer, juveniles were 37 to 65 mm long 

(mean=49, SE=.3, n=264) and weighed from .5 and 2.5 g (mean=1.1, SE=.02, n=264), 

and in the fall juveniles were 43 to 70 mm long (mean=58, SE=.3, n=246) and weighed 
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from .8 to 3.1 g (mean=1.8, SE=.03, n=246) (Fig. 13A-B).  Juveniles rearing in beaver 

ponds in late-spring were from 50 to 59 mm long (mean=54, SE=1, n=8) and weighed 

from 1.1 to 1.9 g (mean=1.4, SE=0.1, n=8), in late-summer/early-fall, were 60 to 77 mm 

long (mean=67, SE=1, n=13) and weighed from 1.9 to 4.6 g (mean=2.8, SE=.2, n=13), 

and in the fall, were 52 to 77 mm long (mean=66, SE=1, n=58) and weighed from 1.4 to 

3.90 g (mean=2.5, SE=.1, n=58) (Fig. 13A-B).  Backwater rearing juveniles in late-spring 

were 42 to 55 mm long (mean=49, SE=2, n=7) and weighed from 0.8 to 1.1 g (mean=1.1, 

SE=0.1, n=7), in late-summer/early fall, were 32 to 75 mm long (mean=54, SE=2, n=34) 

and weighed from .2 to 3.9 g (mean=1.6, SE=.1, n=34), and in the fall, were 32 to 72 mm 

long (mean=57, SE=1, n=86) and weighed from .2 to 3.6 g (mean=1.7, SE=.1, n=86) 

(Fig. 13A-B). 

Spring Summer Fall
0

20

40

60

80 SB BP BW LK

A

Season

M
ea

n 
Fo

rk
 L

en
gt

h 
(m

m
)
± 

SE

Spring Summer Fall
0

1

2

3

4 SB BP BW LK

B

Season

M
ea

n 
W

ei
gh

t (
g)

± 
SE

Fig. 13. (A) Mean length (mm) and (B) mean weight (g) of juveniles rearing in spring 
brooks (SB), beaver ponds (BP), backwaters (BW), and the Boundary Lakes (LK) by 
season.  Note: Spring brooks were sampled in early-spring (06/19/06-06/22/06), summer 
(07/26/06-08/15/06), and fall (09/2406-10/03/06). Beaver ponds were sampled in late-
spring(07/05/06-07/11/06), late-summer/early-fall (09/01/06-09/14/06), and fall 
(10/01/06-10/08/06). Backwaters were sampled in late-spring (07/08/06-07/13/06), late-
summer/early-fall (08/18/06-09/05/06), and fall (09/23/06-10/07/06). The Boundary 
Lakes were only sampled during the summer on 08/09/06 and 08/10/06.  
 

During the summer sampling period, lake-type juveniles rearing in both Boundary 

Lakes were from 39 to 64 mm long (mean=55, SE=.7, n=45) and weighed from .6 to 2.8 

g (mean=1.6, SE=.1, n=45) (Fig. 13A-B).  Lake-type juveniles were significantly larger 

in both mean fork length and mean weight (p-value’s<.020 for both comparisons, for all 

sites) in the summer than all floodplain spring brooks. We did not make statistical 
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comparisons of mean fork lengths and weights of juveniles rearing in beaver ponds and 

backwaters to spring brooks or lake rearing juveniles because of the differences between  

sampling periods in the spring and summer (some sites were >two weeks). It does appear 

that sockeye juveniles were larger in fork length and weight in backwaters and beaver 

ponds than juveniles rearing in the spring brooks in the spring and beaver pond rearing 

juveniles were larger in fork length and weight than spring brook, backwaters, and lake 

rearing juveniles in the summer (Fig. 13A-B).   

Juveniles rearing in beaver ponds in the fall were significantly larger in fork 

length than juveniles rearing in backwaters (p-value<.001) and spring brooks (p-

value<.001) and weighed significantly more compared to backwaters and spring brooks 

(p-value<.001 for both) (Fig. 13A-B)  However, juveniles rearing in spring brooks had 

significantly higher mean fork lengths than those rearing in backwaters (p-value=.047), 

but were not significantly different in mean weight in the fall (p-value=.168) (Fig. 13B). 

Scale analysis confirmed that larger fish (n=20) in all habitat types were YOY and 

comparisons were made on the same age class.      

 

Juvenile diet  

 

Juvenile sockeye rearing in spring brook, beaver pond, and backwater habitats ate mostly 

zooplankton and various small macroinvertebrates (Fig. 14A-B). Lake-type juveniles 

primarily ate zooplankton (Fig. 14A-B). Interestingly, flood plain and lake rearing 

juveniles were both feeding on Chydorid cladocerans, but they were, Alona in the lakes 

and Eurycerus in floodplain habitats. We were able to determine that the floodplain 

cladoceran was Eurycerus lamellatus, but the lake cladoceran was so small and immature 

that species identification could not be determined. Both Eurycerus lamellatus and the 

unknown Alona species are known to be pond, littoral, and bottom dwelling zooplankton 

(Smith 2001), but have been found to inhabit groundwater and hyporheic zones (Dumont 

1995; Dumont and Negrea 1996).  

Juvenile feeding in floodplain spring brooks, beaver ponds, and backwaters was 

compared for the entire season. Zooplankton was present in 77.8%, 43.5%, and 62.5% of 

the stomachs sampled in spring brooks (n=90), beaver ponds (n=23), backwaters (n=40), 
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respectively. Spring brook rearing juveniles had a larger percent of zooplankton biomass 

(dry mass in mg) in their diet (50.7%, SE=4.5%), than juveniles rearing in backwaters 

(31.4%, SE=5.8%), and beaver ponds (28.9%, SE=8.6%) throughout the sampling season 

(Fig. 14A). However, spring brook rearing juveniles had a smaller percent of aquatic 

macroinvertebrate biomass (including Gastropods) in their diet (39.9%, SE=4.3%) 

compared to beaver pond (61.8%, SE=8.7%) and backwater (66.7%, SE=5.9%) rearing 

juveniles (Fig 14A). Winged and identified terrestrial invertebrates made up a small 

percent of the overall biomass in juvenile sockeye diets, but were eaten by juveniles 

rearing in all habitat types (Fig. 14A).   

Zooplankton were present in 100% of the stomachs analyzed and made up 71.7% 

(SE=6.6%, n=15) and 97.7% (SE=1.8%, n=30) of the prey biomass in BL and BL2, lake 

rearing juveniles, respectively (Fig. 14A-B).  Winged and identified terrestrial 

invertebrates were present in 40% of the BL juveniles and made up 25.6% (SE=6.5%, 

n=30) of the prey biomass (Fig. 14A-B). The prey biomass in the diet of beaver pond 

rearing juveniles switched from 56.2% (SE=18.5%, n=6) zooplankton in the summer to 

80.2 % (SE=8.5%, n=12) aquatic invertebrates in the fall. Winged, identified terrestrial, 

and unknown invertebrates were fed on in the fall, but not in the spring in beaver pond 

rearing juveniles (Fig.14B). On the contrary, the biomass of zooplankton in the diet of 

spring brook rearing juveniles increased from 42.5% (SE=7.7%, n=30) in the summer to 

60.0% (SE=6.3, n=46) in the fall and winged and identified terrestrial invertebrates were 

still part of the diet of spring brook rearing juveniles in the fall (Fig. 14B). Backwater 

rearing juveniles fed primarily on aquatic macroinvertebrates making up 60.0% 

(SE=19%, n=5) and 70.4% of the prey biomass in the summer and fall, respectively (Fig. 

14B).         
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Fig. 14. (A) Precent biomass (dry mass in mg) of invertebrate prey taxon throughout the 
season (6/19/06 to 10/08/06) and (B) from summer to fall in the diet of sockeye rearing in 
spring brooks (SB), beaver ponds (BP), backwaters (BW),  Boundary Lake 2 (BL2), and 
Boundary Lake (BL) habitats (lake’s are summer only).  Note: ZOO=Cladocera (Alona 
and Eurycerus), Ostracoda, and Copepoda, AQT=aquatic macroinvertebrates  
(Plecopterans (stoneflies), Trichopterans (caddisflies), Ephemeropterans (mayflies), 
Hydracarinids (water mites), Ceratopogonids (biting midges), Chironomids 
(midges),Tipulids (craneflies), and Gastropoda (aquatic snails)), WNG/TERR=winged 
invertebrates of either terrestrial or aquatic origin, Hymenoptera (wasps), Hemiptera (leaf 
hoppers), and Arachnids (spiders), UNK=Collembola (spring-tails) and Coleoptera 
(beetles) larvae that were not defined as aquatic or terrestrial. Values above bars represent 
the number of fish used for diet analysis. Bars represent ± one standard error of the mean.  
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Floodplain rearing habitat temperature patterns 

 

Temperature pattern comparisons between floodplain rearing habitats revealed that 

beaver pond and back water rearing juveniles experience a similar thermal regime 

throughout the year, where as, spring brook rearing juveniles experience a significantly 

different thermal regime than both beaver ponds and backwaters.  The mean daily 

temperature that juveniles experienced in spring brooks 06/21/06 through 10/01/06 was 

significantly colder (mean=8.4 ºC, SE=.2 ºC) than those experienced in beaver ponds 

(mean=10.7 ºC, SE=.2 ºC, p-value<.001) and backwaters (mean=10.4 ºC, SE=.2 ºC, p-

value<.001) (Fig. 15A).  During the fall, winter, and into early-spring (10/01/06-

06/01/07) spring brooks were significantly warmer than beaver ponds and backwaters (p-

value<.001 for both) (Fig. 15A).  During the same time periods, beaver ponds and 

backwaters had between 200 and 244 more cumulative degree days than spring brooks 

and between 199 and 230 less cumulative degree days than spring brook rearing juveniles 

(Fig. 15B). 
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Fig. 15. (A) Monthly 7-day average of the average mean daily temperatures and (B) 
average monthly degree days for spring brook (SB) (n=3), beaver pond (BP) (n=5), and 
backwater (BW) (n=2) juvenile rearing sites. Note: Temperature loggers from the main 
channel were used for BW comparison to SB and BP. Error bars are ± one standard error 
of the mean.  
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Objectives 6: Length Comparisons Between Floodplain Rearing Juveniles in the Fall and 

Ocean Migrating Smolts the Following Spring and Juvenile Density Expansions    

 

Size of smolts versus fall YOY 

 

A total of 655 smolts were caught during a 36 day period by USGS personnel operating 

smolt traps at the USFWS weir site. As stated above, the first smolt was caught on 

04/26/07 and peak catch (104) was on 05/18/07 and 30 smolts were caught on the 

05/31/07 (last day of trap operation).  All smolts were 1+ year old fish with a mean fork 

length of 68 mm (range 55 to 84 mm, n=121) (Fig. 16), had met the 50 mm minimum 

size range for 100% saltwater survival (Heifetz et al. 1989), and were within the range 

(54-203 mm) of 1-3 year old lake-type smolts (reviewed by Burgner 1991; Koenings et 

al. 1993).   
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Fig. 16. Mean fork length comparisons between juvenile sockeye rearing in spring brook 
(SB), beaver ponds (BP), and backwaters (BW) in the fall of 2006 to smolts (1+ year old 
sockeye juveniles migrating downstream to the ocean) that were caught in the USGS 
Kwethluk River smolt traps in the spring of 2007. Note: The numbers above the size 
range bars represent the number of fish captured and measured in each habitat type and 
the number of smolts that were measured during the smolt trapping operation at the 
USFWS weir. Data provided by S. Burril, USGS, Alaska Science Center. Note: (*) p-
value<.001.      
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Juveniles rearing in beaver ponds in the fall had attained smolt size (>99%) and 

were not significantly smaller in mean length than smolts captured the following spring, 

however smolts were significantly larger than spring brook and backwater rearing YOY 

in the fall (Fig.16). On the contrary, we compared the length frequency distributions for 

fall YOY spring brook and backwater rearing juveniles and 76% of spring brook and 

74% of backwater rearing juveniles had reached smolt size in the fall. These results 

suggest that fish rearing in all floodplain rearing habitat types had relatively high over-

winter survival. 

  

Fall juvenile density expansion 

 

By expansion of density data to total habitat area quantified from the remote sensing we 

estimated that there was an average of 136,466 juvenile sockeye rearing in spring brooks, 

23,909 juvenile sockeye rearing in beaver ponds, and 5,336 juvenile sockeye in rearing in 

backwaters in the fall of 2006. Based on our age analysis of adults, juveniles rear in the 

Kwethluk for at least one year, thus, there were a lot more juvenile sockeye rearing in the 

flood plain in the fall than was caught by the smolt trapping operation in the following 

spring. Our estimates suggest that floodplain habitats could be responsible for a larger 

proportion of the total smolt production and that there were probably more smolts than 

what was captured.  

 Based on our study reach wide population estimates above and if over-winter 

survival was between 10% and 26%, the total estimated number of ocean migrating 

juveniles in 2007 from the SaRON study reach would be between 16,571 and 43,085 

smolts (Koenings and Kyle 1997). Likewise, 92% of the measured smolts were at or 

above the size threshold of 60 mm in length which has been found to be a size threshold 

that has a smolt-to-adult survival rate of 13% (Koenings et al. 1993). Based on this 

survival rate and assuming that smolts had meet that size range, between 2,154 and 5,601 

adults would return to the Kwethluk River from smolts produced in the SaRON study 

reach. These estimates of returning adults are close to the returns that are counted during 

the USFWS weir operations (refer to Table 1) even though our estimates are only from 

riverine sockeye in a relatively short section of the Kwethluk River. Our estimates 
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suggest that more sockeye are being produced than is currently counted by USFWS weir 

operations and commercial and subsistence harvest levels may have a larger impact on 

sockeye populations than is currently recognized.        

 

DISCUSSION 

 

 The diversity and abundance of lateral flood plain habitats within the Kwethluk River 

clearly proved to be important for spawning and rearing riverine sockeye. We found that 

adult riverine sockeye move throughout the entire river system, but spawn exclusively in 

off-channel spring brook and side channel habitats, where as in the two other riverine 

sockeye studies, spawning occurred in the main channel, terrace tributaries, side 

channels, and upland sloughs (Lorenz and Eiler 1989; Eiler et al. 1992).  Within the 

SaRON study reach, over 50% of the available off-channel habitat was composed of 

spring brooks and side channels. These results show that there is an abundance of riverine 

spawning habitat available throughout the Kwethluk River and overall a lot more 

spawning habitat for riverine sockeye compared to lake-type sockeye.  

In the Taku River, juvenile sockeye were primarily found rearing in main channel 

sloughs, tributary mouths, beaver ponds, and upland sloughs of the river flood plain 

(Murphy et al. 1989). However, we found riverine sockeye reared exclusively in spring 

brooks, beaver ponds, and backwaters. These habitats made up over 70% of the available 

off-channel habitat and within the SaRON study reach, there is over five times more river 

rearing habitat (907,440 m2) than the lake rearing habitat (170,000 m2). However, in 2007 

another upper Kwethluk spring-fed lake was found to support lake-type sockeye (M. 

McPhee, Flathead Lake Biological Station, personal communication) and the total lake 

rearing habitat may be slightly underestimated.            

Our results showed that lake-type sockeye spawned in the alluvial fans and outlets 

streams of Boundary Lakes, which is has been shown for many lake-type populations 

(c.f., Burgner 1991). Within spawning research sites, 100 % of riverine and 85 % lake-

type sockeye redds were constructed in areas dominated by hyporheic-groundwater, 

which has also been found by others, to be a key attribute of riverine (Lorenz and Eiler 

1989) and lake-type (e.g., Foerster 1968) spawning habitats. However, sockeye have been 
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found to spawn in areas that more dependent in wave action than upwelling groundwater 

in lakes (Leonetti 1997).    

We found no correlation between the water depth and velocity where riverine 

sockeye constructed redds which as been reported by others (Hoopes 1972; Burgner 

1991), but water depth was probably a contributing factor in the high bear predation in 

the Boundary Lake outlet. We did not see much variation in the sediments used in redd 

construction between sites, although the D50 found in sockeye redds were within the size 

range found in other lake-type sockeye studies (reviewed by Keeley and Slaney 1996). 

But, lake-type sockeye have been found to spawn in a variety of sediment types, ranging 

from coarse granitic sand to large boulders, where in sockeye do not build a redd and 

simply deposit their embryos in sand or crevices between large boulders (Foerster 1968; 

Kerns and Donaldson 1968; Olsen 1968). Thus, sockeye can virtually spawn in any type 

of bed-sediment and in some cases, excavated areas where the stream bed was composed 

of 100% fine sediments to find upwelling areas. These results suggest that water depth, 

water velocity, and bed-sediments are not the key habitat attributes that determine redd 

placement by sockeye but rather a function of what is available within habitats dominated 

by upwelling hyporheic-groundwater. We and others (e.g., Baxter and Mcphail 1999; 

Baxter and Hauer 2000; Geist 2000; Geist and Dauble 1998) suggest that surface water-

groundwater exchange should be included when assessing habitat suitability, 

conservation, and restoration for sockeye and other salmonid spawning habitats in rivers 

and lakes.  

The water chemistries between redds and areas adjacent to redds in any riverine 

or lake-type spawning sites did not vary considerably.  All redds contained levels of DO 

and pH that were above the 5.0 mg⋅L-1 and 4.5 lethal levels found for salmonids (Crisp 

1993). Furthermore, we showed that riverine and lake-type sockeye did not spawn in 

areas with downwelling surface water-groundwater exchange. These results suggest that 

spawning riverine and lake-type sockeye do not select spawning habitat at a microscale, 

but rather at a larger, more reach scale. Specific conductance readings taken in riverine 

sockeye redds and in the surface water, showed that the upwelling groundwater in redds 

was closer to surface water than to phreatic groundwater of the alluvial aquifer (Geist and 

Dauble 1989; Geist et al. 2002). These results suggest that the hyporheic-groundwater 
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flow paths within spawning channels were probably relatively short and predominantly 

recharged by the main channel.  

The benefits of upwelling groundwater to incubating embryos, has been 

documented in salmonids (Sowden and Power 1985; Leman 1992; Curry et al. 1995; 

Cope 1996; Baxter and McPhail 1999). In 1999, Baxter and McPhail found that bull trout 

selected areas of upwelling groundwater and that these areas provided consistently higher 

over-winter incubation temperatures leading to higher over-winter survival. Although, we 

couldn’t extensively document the temperature patterns throughout the incubation period 

in riverine or lake-type sockeye redds, the few iButtons that did continue recording into 

the winter, suggests the same temperature pattern. If floodplain intergravel redd 

temperatures remained at 4.0 ºC throughout the incubation period, than riverine sockeye 

embryo survival to emergence would be around 40 to >96 % (Murray and Mcphail 1988; 

Beacham and Murray 1989)  In general, some spring brook spawning and rearing sites 

were over 6 ºC  warmer than the main channel during the winter and never dropped to  

0 ºC, suggesting that both riverine sockeye embryos and juveniles in these sites may have 

higher over-winter survival than main channel spawning salmonids, during the harsh 

winter conditions of southwestern Alaska.        

We found that riverine sockeye redds had higher temperatures and an increased 

number of degree days than lake (lake-type sockeye) redds however, the rate of 

embryonic of development is not constant in relation to temperature (Alderice and Velsen 

1978). Sockeye embryos have evolved incubation strategies that adjust to declining 

temperatures and compensate by increasing development rate per unit of temperature 

decrease (Brannon 1987). Thus, with the offset of spawning time between riverine and 

lake-type sockeye we would expect lake-type sockeye embryos to compensate for the 

drop in temperatures and emerge nearly a month earlier. This difference in emergence 

time may have some explanation for the increased size that we documented in lake 

rearing sockeye compared to spring brook rearing sockeye in the summer.  

Scale anaylsis from adults confirmed that both riverine and lake-type sockeye 

over-wintered in the Kwethluk and that floodplain rearing sockeye were indeed riverine 

and not sea-type.  The mean lengths of floodplain rearing juveniles in the fall were nearly 

the equal to (or greater than) what Murphy et al. (1989) found during their flood plain 
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habitat surveys of the lower Taku River (mean=58 mm) and what Robins et al. (2005) 

showed for over 40 years of lake-type sockeye data from Lake Aleknagik, Alaska. 

Juveniles rearing in beaver ponds and some backwaters were considerably larger than 

springbrook rearing juveniles. However, because we did not find any adults spawning in 

these habitats, this could be attributed to a difference emergence time, giving older age 

(in days or potentially weeks) juveniles a growth advantage over spring brook juveniles 

that emerged later.  Nonetheless, springbrook rearing juveniles had an absolute growth 

rate in length of .23 to .27 mm ⋅ d-1, showing that sockeye rearing in spring brooks grow 

very rapidly and reached sizes similar to backwater and beaver ponds in the fall, even 

though they may emerge later.   

The temperatures in all habitat types were within the 5-17 ºC “zone of efficiency” 

for >20% conversion of food to flesh found by Brett (1971a) for sockeye rearing under 

constant temperatures. However, we found that beaver ponds and backwaters had higher 

water temperatures during the summer and were closer to the optimum growth efficiency 

of 11.5 ºC (Brett 1971a), but dropped to 0 ºC for most of the winter compared to spring 

brooks. These results suggest that spring brook rearing juveniles might be able to feed 

and grow more during winter and may have higher over-winter survival than fish in other 

habitat types.        

The lengths and weights of sockeye smolts that rear in large nursery lakes around 

the Pacific Rim are highly variable, but the lengths all of the Kwethluk smolts that were 

measured in 2007 were within the range for age 1 and 2 lake-type smolts (cf., Burgner 

1991). Likewise, the mean length of Kwethluk River sockeye smolts were nearly the 

same mean length (65 mm) and within the range (45 to 88) that was reported by Murphy 

et al. (1988) for Taku River smolts. Moreover, over 90% of smolts were at or above the 

60 mm size threshold size that has been found when Alaska sockeye lakes are believed to 

be at carrying capacity (Koenings and Kyle 1997) and leads to a mean smolt-to-adult 

survival rate of 13% in northern latitudes (Koenings et al. 1993). These results suggest 

that both riverine and lake-type juveniles reach a size range during there first year of 

growth that produces smolts that have a high chance for saltwater survival.               

  Lake-type sockeye are considered a specialized predator, preying predominantly 

on zooplankton as juveniles and make copepods and cladocerans the mainstay of their 
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diet (Forester 1968; Eggers 1978; Burgner 1991). The productivity and decline of lake-

type populations has been linked to the abundance of zooplankton populations in sockeye 

nursery lakes (e. g., Burgner 1991; Koenings and Kyle 1997). On the contrary, this study 

is the first to describe and quantify the diet of river rearing sockeye and our results 

showed that riverine sockeye are more of an opportunistic predator, feeding on a variety 

of invertebrate prey.  Yet, floodplain habitats also provide sockeyes preferred prey and 

zooplankton is utilized by multiple species of salmonids rearing in floodplain habitats (T. 

Tappenbeck, unpublished data). There can be up to seven different species fish rearing in 

one site, with total fish densities ranging from 1.4 to 4.6 fish ⋅ m-2. It may be this 

opportunistic feeding strategy that allows sockeye to coexist and thrive within these 

habitat types, in the face of substantial interspecific competition for food resources.     

Riverine populations have higher genetic diversity and lower population structure 

than lake-type populations (Gustafson and Winans 1999, Beacham et al. 2004).  These 

findings have led some to hypothesize that riverine sockeye are the primary colonizing 

form of the species and play a dominant role in sustaining sockeye populations in 

dynamic glacial systems (Wood et al. 1987; Wood 1995; Wood 2007).  Genetic and 

population structure analysis by McPhee et al. (2008, submitted) on Kwethluk sockeye 

discussed herein revealed three pertinent things: 1) riverine populations did indeed have 

higher genetic diversity and weaker population structure than lake-type populations; 2) 

estimates of Ne (effective population size) were not primarily responsible for the 

differences in population structure suggesting, increased straying of riverine populations; 

3) riverine populations were more closely related to riverine populations from the Taku 

River, British Columbia, Canada than the lake-type populations within the same 

catchment, suggesting that lake-type and riverine sockeye may have colonized the 

Kwethluk River separately or that lake-type populations may have branched off from the 

colonizing riverine population. 

Our study coupled with the genetic results of this companion study underscores 

the importance and ability of riverine sockeye populations to thrive within the dynamic 

floodplain landscapes of large rivers. Moreover, the alteration of spawning and rearing 

habitat by beaver is prevalent throughout the catchment. We observed beaver’s damming 

spring brooks that were used in previous years by spawning riverine sockeye and in one 
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case beaver’s dammed a spring brook after sockeye had spawned (T. Tappenbeck, 

personal observation). However, in the following year juvenile sockeye were documented 

rearing in the newly created beaver pond. Likewise, in 2006, beavers built a dam that 

partially blocked the Boundary Lake outlet and limited lake spawning. While, in 2007, 

beavers completely dammed the outlet of Boundary Lake and no adults were observed 

spawning within the lake (M. McPhee, Flathead Lake Biological Station, personal 

communication). Thus, the behavior of beavers and the heterogeneity of floodplain 

habitats in the Kwethluk, may drive small scale colonization events where by, roving 

populations of riverine sockeye annually search for new habitats to spawn. Where as, 

lake-type sockeye have high site fidelity and home tightly to the Boundary Lakes in 

which they reared. This may prove to be detrimental to lake-type populations when lake 

spawning and rearing habitats become unavailable or decrease in productivity (Schindler 

et al. 2005) and it may be the riverine life history strategy that allows sockeye 

populations to persist in rivers with dynamic floodplains and ecosystem engineers.         

Sockeye salmon have evolved life histories that thrive in the complex habitats of 

large flood plain rivers. Lake, river, and sea -type life histories can be found within the 

same catchment (Wood et al. 1987; Murphy et al. 1997) and over 50% of the rivers 

around the Pacific Rim are large complex floodplain river systems (M. Luck, Flathead 

Lake Biological Station, unpublished data). Thus, the dynamic landscapes of these river 

systems provide opportunities for life history and genetic diversity, allowing multiple 

populations with distinct life histories strategies, to coexist within the same river system.  

Life history diversity is a natural advantage in the face climate and other environmental 

changes that could otherwise cause extinction (Schindler et al. 2003). We conclude that 

riverine sockeye take advantage of the complexity of large river systems and that 

floodplain habitats are key spawning and rearing habitats for this species. This life history 

strategy may more important in sustaining sockeye salmon populations throughout the 

Pacific Rim than is currently acknowledged.     
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RECOMMENDATIONS FOR FUTURE STUDY 

 

Our study showed that lateral floodplain habitats are important spawning and rearing 

habitats for sockeye salmon in the Kwethluk River. We recommend that fisheries 

managers obtain a better understanding if how many river systems within the Kuksokwim 

River catchment and throughout the Pacific Rim, support riverine sockeye populations. In 

2006, the Commercial Fisheries Division of the Alaska Department of Fish and Game 

(ADF&G) began an upper catchment wide radiotelemetry study to investigate which 

upper Kuskokwim River tributaries sockeye salmon returned to spawn. They found that a 

majority of the upper Kuskokwim River sockeye were returning to the Holitna River 

(which has no nursery lakes) and Telaquana Lake (of the Stony River catchment), which 

supports a large lake-type population (Sara Gilk, ADF&G, personal communication). 

This research began because of our observations and work on the Kwethluk River and the 

fact that in 2005 a tributary of the Holitna River, the Krogrukluk River had record returns 

of over 37,000 sockeye (Jasper and Molyneaux 2007). The work of ADF&G and SaRON, 

which is expanding to other river systems around the Pacific Rim, will help determine the 

overall contribution of riverine populations to the total sockeye salmon production in the 

Kuskokwim River and around the Pacific Rim.  We recommend that both riverine and 

lake-type sockeye populations be separately managed and monitored during commercial 

and subsistence harvests. While, completing detailed studies of the spawning and rearing 

ecology of riverine sockeye within the Kuskokwim River and other rivers around the 

Pacific Rim.    

In river systems, such as the Kwethluk River, understanding how growth rates and 

accumulated energetic reserves or nutritional condition (i.e., stored lipids) available for 

over-winter survival and smoltification of juvenile riverine sockeye compare to juvenile 

lake-type sockeye are important to continue to understand how floodplain rearing habitats 

compare in productivity to lake rearing habitats. Our scale analysis of Kwethluk River 

adults showed that both riverine and lake-type sockeye reared in the Kwethluk River for a 

least one year.  However, juveniles migrate to the ocean before we begin field research in 

the spring. We recommend that (1+) year-old ocean migrants be captured during USGS 

smolt trap operations. Scales and otoliths should be collected from a subsample of 
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migrating fish and otolith microchemistry analysis should be conducted to determine 

where each fish reared (lake or river), based on the water chemistry analysis (or 

signature) of the Boundary Lakes and floodplain habitats.  Once, microchemistry analysis 

is completed and fish are sorted into their respective rearing habitats and life history 

types, an analysis of nutritional condition and growth rates can be determined for riverine 

and lake-type juveniles.   

 We observed that once sockeye salmon spawned in spring brooks and side 

channels dominated by ground water, an apparent release of nutrients ensued and there 

was a noticeable increase of algae on rocks in sockeye redds. We recommend a study into 

how sockeye and other species that spawn in off-channel habitats dominated by 

groundwater upwelling, facilitate the release of nutrients by disturbing the bed-sediments, 

thus making more nutrients available to aquatic and terrestrial plants and animals. This 

study would increase our understanding of how salmon function as ecosystem engineers. 

It may be that salmon increase the release of nutrients from the ground water or 

hyporheic water that would otherwise be released very slowly through normal hydrologic 

processes. Likewise, it may be that sockeye and other species that spawn in off-channel 

habitats may directly spread MDN throughout the flood plain, rather than fall flooding, 

which may occur after peak salmon die-off. Thus, bringing nutrient rich flesh and eggs to 

aquatic and terrestrial organisms that would otherwise be obtained from indirect 

pathways (e.g., surface water-groundwater interactions and through food web transfer) 

and potentially increasing the overall productivity off-channel habitats.      
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