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Luce, Morgan, M.S., December 2013     Wildlife Biology 
 
Exotic invasive plants drive different ecosystem processes than natives in Montana 
grasslands. 
 
Chairperson:  Ragan M. Callaway 
 
Invasion is associated with unexpected increases in aboveground net primary productivity 
and altered ecosystem function, including increased nitrogen availability and 
cycling.  These shifts are well documented, however many previous studies have been 
observational, focused on a single plant species, or have not examined belowground 
microbial communities.  I combined field and experimental techniques to examine 
changes in productivity and ecosystem function, and the abundance of ammonia-
oxidizing bacteria (AOB) for the exotic invaders Bromus tectorum, Centaurea stoebe, 
Euphorbia esula, and Potentilla recta.  To quantify effects of these invasive species on N 
cycling and AOB abundance we compared soil from invaded and native communities in 
the field and in an experimental garden.  AOB are bacteria responsible for a rate-limiting 
step in nitrification.  We found that invasion was associated with increased abundance of 
AOB across all species of invader.  For other variables, the magnitude of response to 
invasion varied by species, but we found in general invasion was associated with 
increased aboveground net primary productivity and soil nitrogen cycling.  In addition 
results from the experimental garden suggest some species of invader may drive increases 
observed in the field.  Finally we report on a novel relationship between aboveground net 
primary productivity and soil NO3-N indicating that invaders may drive ecosystem 
processes in ways different from native communities.
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INTRODUCTION  

Exotic plant invasions can dramatically alter the composition and functioning of invaded 

ecosystems (Vitousek et al. 1990, Vilà et al. 2011) and are often associated with local 

decreases in native plant abundance and diversity.  Somewhat counter-intuitively, these 

decreases in diversity after invasion usually correspond with substantial increases in 

annual rates of aboveground net primary productivity (ANPP) and concomitant increases 

in plant-available nitrogen (N) pools and fluxes (Ehrenfeld 2003, Liao et al. 2008, Rout 

& Callaway 2009).  In a 2008 meta-analysis, Liao et al. (2008) found that invasion was 

associated with increases of 83% in ANPP, 17% in soil NO3-N, and 53% in nitrification 

rates across ecosystems and invader life histories.  However, several important gaps 

remain in current understanding of the relationship between invasion and ecosystem 

function.  First, little is known about concomitant shifts in the belowground soil 

microbial community that may help to us understand links between increased 

productivity and altered ecosystem function.  Many studies have focused solely on 

aboveground mechanisms to explain increased productivity, such as plant life history, 

traits, and litter decomposition rates (Liao et al. 2008).  Second, most, studies of 

relationships among invasion, ANPP, and N cycling are correlative and thus have the 

potential to be confounded if invaders preferentially colonize nutrient-rich sites (but see 

Maron and Marler 2008, Zavaleta et al., Maron et al. in press,).  Third, as emphasized by 

Liao et al. (2008), there are limitations to the interpretation of syntheses from many 

studies done in different ways over different times, and the timescale of how invaders 

affect ecosystem properties is unknown.  
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If invasion is a cause of increased ANPP and N cycling rates, there are several 

potential mechanisms by which abundant invaders could boost productivity and rates of 

N cycling.  First, invasive species may experience less herbivory than native species 

(Keane and Crawley 2002, Agrawal et al. 2005, Tallamy 2010, Schaffner et al. 2011), 

resulting in higher observed ANPP simply because less biomass is removed.  Second, 

fundamental differences in the traits of invaders and the traits of natives (Baker 1965, 

Liang et al. 2006, Castro-Diez et al. 2013) may result in increased productivity due to 

species-specific differences in timing, quality, or amount of energetically rich inputs to 

the soil. Third, an increased supply of easily mineralizable organic matter due to a change 

in litter quality could result in short-term dramatic turnover of soil microbial biomass 

resulting in a pulse of elevated available N in the soil (Kuzyakov et al. 2000).  However, 

these mechanisms fail incorporate the contribution of soil N-cycling bacteria to rapidly 

occurring but long lasting increases in ANPP and N cycling within established invaded 

patches.  There are examples of increases in nitrogen fixation following invasion 

(Vitousek et al. 1987, Musil 1993; Rout et al. 2013) but these studies tend to focus on the 

introduction of novel species that harbor N-fixing bacteria rather than species which rely 

on free-living N-fixers or inorganic N cycled from organic N.   

Here we explore another possible link between increased ANPP and N cycling 

associated with invaders.  Invaders might drive generally consistent shifts in the 

microbial community resulting in increased N availability, particularly increased 

abundance of in the functional group responsible for a rate-limiting step in the N cycle, 

ammonia-oxidizing bacteria (AOB).  Nitrifiers, including AOB, are affected by access to 

NH4-N (Carney et al. 2004), soil moisture, soil pH (Stephen et al. 1998), and soil 
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temperature (Avrahami et al. 2003).  In addition to these environmental factors, AOB are 

responsive to processes such as competition and available niche space.  Invasion is 

associated with shifts in other components of the soil microbial community including 

arbuscular mycorrhizal fungi (Lekberg et al. 2013) and pathogens (Morris et al. 2007, 

Kulmatiski et al. 2008).  Such shifts in abundance of other components of the microbial 

community could potentially free up resources allowing AOB to increase in abundance.  

The role of soil bacterial functional groups in N cycling (van der Heijden et al.  

2008) and the mechanics of this cycling (Hart et al. 1994, Cabello et al. 2009) are well 

understood.  However we know very little about how invasion might change the 

composition, abundance, and function of these groups (Rout & Callaway 2009).  In 

particular, ammonia-oxidizing archea (AOA) and bacteria (AOB) perform a rate-limiting 

step in nitrification, part of the process by which organic matter is made available for 

uptake by plants and microbes.  While AOA numerically dominate soils, AOB tend to 

drive nitrification in relatively nutrient rich systems such as grasslands (Di et al. 2009).  

Other studies have shown that exotic invasions can be associated with increases in AOB, 

which has the potential to affect gross nitrification (Hawkes et al., 2008, Booth et al., 

2003, but see Evans et al., 2009).  Thus the abundance and activity of AOA and AOB 

have the potential to play an important and largely unexplored role in ecosystem 

functioning in response to invasion.  

Here we asked if invasion drives increases in NPP, N pools, and N cycling, and 

hypothesized that increases in productivity and ecosystem function following invasion 

would be associated with increased abundance of AOB.  To this end we compared these 

processes in 1) paired patches of adjacent invaders and natives in the field, 2) in 
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experimentally established plots of monocultures of invaders and established plots of 

native mixtures of species, and 3) by measuring the abundances of AOB in invaded and 

native patches.   

  

METHODS  

Focal invasive species of field and experimental garden studies 

 We selected four invasive plant species that represented different plant families, 

life history strategies, and distributions.  First, Bromus tectorum (cheatgrass) is a 

widespread, highly invasive annual distributed throughout the American West.  Bromus 

tectorum has been associated with increased AOB and increased N cycling rates and pool 

sizes (Svejcar & Sheley 2001, Sperry et al. 2006).  Second, Centaurea stoebe (spotted 

knapweed) is an abundant, highly invasive, perennial forb throughout much of the Rocky 

Mountain West.  Third, Euphorbia esula (leafy spurge) is a deep- rooted, perennial 

invasive forb, which occurs throughout grasslands of the Northern Great Plains and 

Rocky Mountains.  Finally, Potentilla recta (sulfur cinquefoil) is a perennial forb 

distributed throughout the Northern United States with heavy infestations from the 

Mountain West to the Great Lakes region (Rice 1999).  Invasion by each of these species 

has been correlated with decreases in native species richness (Ortega & Pearson, 2005).  

 

Field site information and sampling design 

 We established field sites within grasslands in the Missoula and Bitterroot valleys 

of western Montana.  Mean annual precipitation is 36 cm, with the majority falling as 
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rain in May and June.  The mean annual temperature is 43°F.  Soils consisted of fine to 

gravelly, loamy, Argixerolls and Haploxerolls. 

We utilized a paired plot design to examine differences between invaded and 

native patches both within and among target invasive species.  For each of the 4 target 

invasive species, plots were established in 8 densely invaded naturally occurring mono-

dominant patches.  Patches ranged in size from 5x5 meters to greater than 25x25 meters.  

Each of these 32 invaded patches was then paired with an adjacent patch that was 

dominated by native species and in which none of the invasive species occurred.  Patch 

pairs were matched for elevation, aspect, slope, and landscape position to minimize 

difference in environmental factors.  The maximum distance between invaded and native 

plot centers was 15 m and we avoided obviously disturbed areas for any sampling..  Soil 

and biomass samples were taken in early June 2012 within three 0.25 m2 plots located 

within each patch: two m from the center at the cardinal directions N, E, S.  

 

Field Soil Sampling and Biogeochemical Analysis 

Eight soil cores were taken in a systematic fashion using an Oakfield probe (0-10cm 

depth) from each plot.  Soil cores were pooled within each of the three plots within each 

invaded or native patch and these composited sub samples were immediately frozen and 

stored at -80°C until extraction to determine abundance of ammonia oxidizing archea 

(AOA) and bacteria (AOB).  Remaining soil was stored at 4°C for up to 4 days preceding 

biogeochemical analysis. .   

 Each pooled soil sample was subdivided for the following analyses: inorganic N 

pools, net and potential nitrification, microbial biomass, pH, total carbon and N.  
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Gravimetric water content was determined for all soil samples, and raw data have been 

corrected and are reported on a !g/g oven dry soil basis for each nutrient.  To determine 

inorganic N pools, extractions of inorganic N were performed in the lab using 2M KCl 

(Hart et al. 1994).  Fifteen mL of soil was added to 100mL of 2M KCl, shaken on an 

orbital shaker for 1 hour, allowed to settle overnight, filtered, and frozen until analysis.  

Determination of NO3-N and NH4-N from filtrates were analyzed colorimetrically using a 

Synergy 2 Microplate Reader (BioTek, USA) after Weatherburn and Doane(1967) and 

Horwath(2003) for NH4-N and NO3-N, respectively. 

 We determined net nitrification using the buried bag field method (Hart et al. 

1994).  During initial soil sampling an additional intact soil core was collected, placed 

inside of a breathable polyethylene bag, loosely closed using a twist tie to allow gas but 

not water exchange, and reburied.  After 28 days we collected bagged soil cores from the 

field.  Pre- and post-incubation samples were extracted with 2M KCl and analyzed as 

described above. 

We determined nitrification potential for each plot using the shaken slurry method 

(Hart et al. 1994).  Nitrification potential is a net measurement the conversion of 

ammonium (NH4-N) into nitrate (NO3-N) by the soil nitrifier community less inhibitory 

properities of the soil and microbial ammonium uptake.  We chose to include this 

measurement as net nitrification is affected by the abundance of nitrifiers, microbial 

uptake, and inhibitors, but also by highly variable abiotic factors including; water 

availability, pH, NH4-N availability, uptake of NO3-N and NH4-N by plants and microbes, 

and such variability can mask differences among sites and treatments.  Nitrification 

potential, in contrast, normalizes all abiotic factors, allowing a more precise estimate of 



!
!

)!

capacity of the microbial community.  A composite sample was formed from the 3 soil 

samples from each patch.  We added 15g of this composite to100 mL of 1 mM phosphate 

buffer solution (pH 7.2) and 1.5 mM (NH4)2SO4 in 250 mL flask covered with perforated 

parafilm which was shaken on an orbital shaker.  From this aliquots were sampled, 

centrifuged, and supernatant frozen at 2,4,22, and 24 hours.  Determination of NO3-N 

from aliquots was performed using micro-plate analytical technique described above. 

 Microbial biomass was determined by extracting 2 subsamples from each pooled 

sample taken in each patch.  One 15mL subsample was extracted by adding 50 mL 0.5 M 

K2SO4, shaking for 1 hour on an orbital shaker, settling overnight, filtered, and frozen 

until analysis. A second subsample was fumigated for 5 days with ethanol-free 

chloroform (Horwath & Paul 1994) and then extracted in the same manner as above.  

Determination of non-purgable organic carbon (NPOC) and total nitrogen (TN) were 

determined using a Shimadzu TOC-V TN Analyzer (Shimadzu Corporation, Kyoto, 

Japan).  Un-fumigated sample TN and NPOC values were subtracted from post 

fumigation TN and NPOC values to determine microbial biomass nitrogen and carbon for 

each sample. 

 The soil remaining from each sample was air-dried and then ground to a fine 

powder using mortar and pestle. We measured pH on this air-dried soil in 0.01 M CaCl2, 

using a 1:1 (w/v) soil: liquid ratio (Accumet Dual Channel pH/Ion/Conductivity Meter).  

Total Carbon and Nitrogen of a subset of soil samples were determined using a CE 

Elantech elemental analyzer (Eager Xperience Ver. 1.1 September, 2009). 

 In early July 2012 we collected intact cores for modified acetylene reduction 

analysis of the free-living N fixer soil community from each of the sites following the 
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method of Reed et al. (2007).  Briefly, we collected 3 intact cores from each patch by 

driving a 55 mL, 2.54 cm diameter acrylic tube into the soil.  We capped the bottoms of 

the tubes with stoppers and transported them to the lab.  There, we stimulated the 

microbial community by placing the tubes under lights for 12-hour cycles and misting 

with DI water.  After 48 hours we fitted all experimental units with a one-hole stopper 

fitted with a septa, and injected acetylene to 10% headspace by volume and incubated for 

12 hours.  The ethylene concentration of 1mL gas sub samples was analyzed using a (GC 

name and information).    

 

Plant Biomass Analysis – Field plots 

We estimated aboveground net primary productivity (ANPP) at our sites by 

measuring peak standing biomass.  We clipped all plant material at ground level from all 

plots in at peak biomass production in July 2012.  This time period captures biomass 

produced by dominant native grasses and perennial invasive forbs in our system, but may 

miss a relatively small proportion of biomass produced by early season ephemeral forbs.  

Biomass was dried at 70°C for 72 hours and then weighed.  We harvested live biomass 

produced in the current year, so that our samples approximated net aboveground primary 

production for that year. A subset of each biomass sample was ground and analyzed for 

total Carbon and Nitrogen using a CE Elantech elemental analyzer (Eager Xperience Ver. 

1.1 September, 2009).    
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Abundance of AOB and AOA – Field plots 

We explored potential changes in the microbial community coupled with N 

cycling and increases in available NO3-N by quantifying the abundances of AOB and 

AOA in soils from the invaded and native paired field plots.  The three plots within each 

invaded and native field patch were combined to form a composite sample.  Genomic 

DNA was extracted from approximately 0.25 g of soil from each composite sample using 

the Mo Bio Powersoil kit (Carlsbad, CA, USA).  Extracted DNA suspended in 100 µL of 

sterile elution buffer was stored at -80°C, packed in dry ice, and transported to the French 

National Institute for Agricultural Research, Dijon France for qPCR analysis of the 

abundance of functional marker gene amoA in AOB and AOA.    

 

Experimental garden plots 

 To determine if invaders caused shifts in productivity and ecosystem function 

observed in field studies we also collected soil and plant biomass from an experimental 

common garden located at the MPG Ranch in Florence, MT (lat: 46°40'48.92"N, long: 

114° 1'40.73"W).  This common garden was located near our field sites and was 

surrounded by a similar native community to that in our native field plots.  This 

experiment was established in spring, 2011 and consisted of 25, 2x2 m plots planted with 

monocultures of 64 seedlings each of 4 invasive species discussed above or mixtures of 

natives (n=5 for each treatment).  The native mix consisted of nine common dominant 

grasses and forbs (additional information on the site information, species, and 

establishment is in Supplementary Attachment 1).  The experimental garden received 

supplemental water during the first year but no water was added thereafter.  In mid-June 
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2012, in each of the 25 plots, we randomly located 2 0.25 m2 subplots and collected soil 

and estimated ANPP by collecting aboveground plant peak biomass following the 

protocol described above for the field study.  Soil samples were subsampled for the 

following analyses; inorganic N pools, net nitrification and microbial biomass.  However, 

we did not include an estimate of ANPP for E. esula due to substantial herbivory by 

Apthona lacertosa and A. nigriscutis, two biological control insects. 

  

Statistical Analyses  

For field data we analyzed ANPP, NO3-N, NH4-N, and potential nitrification with 

generalized linear mixed model with invaded species as a fixed factor and Site and Site x 

Pair as random factors.  This model accounts for potential spatial autocorrelation of 

patches, as well as the paired nature of our study.  We then used contrasts to compare 

invaded and native patches for each species of invader.  Distribution of means were 

visually inspected and checked for normality using Generalized Chi-Square / DF fit test.  

Data were log transformed when necessary to satisfy assumptions of approximate normal 

distribution of means and homoscedasticity.   

 For the regression of ANPP and soil NO3-N we performed a stepwise multiple 

regression ANPP was the sole significant factor in the invaded treatment, Site and 

Species were both not significant factors.  We then ran ANOVA on both native and 

invaded observation groups, and ran additional ANOVA on models test for significant 

differences in intercept and slope among invaded and native groups. We also reported R2 

values for each group.  
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 For experimental garden data, a one-way ANOVA with species as a fixed factor 

was used to compare differences in ANPP, NO3-N, NH4-N, and net nitrification across 5 

plant communities (4 invaded monocultures and mixed native community).  Tukey’s post 

hoc analysis was used to determine differences among species (!=0.05).   

All means and standard deviations are reported as raw data rather than 

transformed data to facilitate comparison with other published studies.  Significance is 

defined as (P<0.05).  Statistical analyses were performed using SAS (GLIMMIX module, 

SAS ver. 9.1) and R (version 1.40, 2011). 

 

RESULTS  

Field Study 

Aboveground net primary productivity (ANPP) was 74% higher in invaded patches 

compared to native patches (Fig. 1a; FINVADED=33.47, df=1,28, P<0.0001).  At the 

individual species level, B. tectorum-dominated patches produced 70.9% more biomass 

(t=3.57, df=46.66, P=0.003), C. stoebe produced 63.4% more (t=3.90, df=46.49, 

P=0.001), and E. esula produced 200.4% more (t=6.66, df=46.51, P<0.0001), as 

compared to native patches.  Biomass in P. recta-invaded patches was not higher than 

native patches (t=-0.23, df=42.25, P=0.82). 

Extractable soil NO3-N was 103% higher in invaded patches compared to native 

patches (Fig. 1b; FINVADED=34.23, df=1,53, P<0.001).  At the individual species level B. 

tectorum-dominated patches were associated with a 42.3% increase in NO3-N (t=4.00, 

df=56, P=0.0008), C. stoebe with a 124.2% increase (t=3.96, df=57, P=0.0008), and E. 

esula with a 193.2% increase (t=5.81, df=57, P<0.0001), as compared to native patches.  
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NO3-N concentrations in soil beneath P. recta did not differ from those in paired native 

soil samples (t=1.03, df=54.01, P=0.31).  

The ratio of inorganic N to total N in invaded patches was 183% that of native 

patches (Supplemental Table 1).  At the species level, B. tectorum was associated with a 

89.3% increase N:TN (t=436, df=8.12, P=0.04), C. stoebe  with a 125.2% increase (t=429, 

df=10.9, P=0.03), and E. esula with a 51.4% increase (t=468, df=6.8, P<0.04).  The ratio 

of N:TN in soil beneath P. recta did not differ from that in paired native soil.   

We did not find significant differences for more than one species of invader for 

any other measured variables (Supplemental Table 1).    

 

Nitrogen cycling – field study 

 In the field, the nitrification potential of native soil patches was 59% higher 

compared to native patches (Fig. 4; FINVADED=13.48, df=1,30, P<0.001).  Nitrification 

potential was 52.2% greater in C. stoebe-dominated patches ( t=1.93, df=47.31, 

P=0.0592), patches of E. esula produced 88.0% greater nitrification potential (t=3.63, 

df=47.44, P=0.0007), and P. recta 93.7% greater (t=2.86, df=43.43, P=0.0065) compared 

to native patches.  The nitrification potential in soil beneath B. tectorum did not differ 

from that in native soil (t=0.28, df=47.77, P=0.78). 

 

NPP, soil NO3-N, and invasion in the field 

 In addition to significant increases in ANPP, N pools, and nitrification potential, 

the relationship between biomass production and N pools differed among invaders and 

native patches (F=4.5, df=1,59, P=0.038).  In invaded soil, ANPP was positively 
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correlated with soil NO3-N pool and there was no significant effect of invader identity 

(Fig. 3; FINVADED=30.71, df=1,29, P<0.001, R2 = 0.51).  In contrast, in soil occupied by 

native species there was no significant relationship between ANPP and with soil NO3-N 

pool (Fig. 3; FNATIVE=1.56, df=1,30, P=0.221, R2 = 0.05). 

 

Characterization of amoA AOB and AOA Field 

 Abundance of functional marker gene amoA in AOB in invaded patches was 4.69 

times higher compared to native patches (Fig. 5a; FINVADED=66.79, df=1,28, P<0.0001) At 

the species level, B. tectorum–dominated patches demonstrated an increase of AOB of 

620% (t=5.80, df=44.21, P<0.0001), C. stoebe 330% (t=5.55, df=44.16, P<0.0001), E. 

esula 282% (t=4.46, df=47.43, P<0.0001), and P. recta 225% (t=3.54, df=41.17, 

P<0.001) as compared to native patches.  For P. recta there was a strong trend for 

increased AOA abundance (Fig. 5b; t=1.92, df=43.85, P=0.061). 

 

Experimental garden 

Aboveground net primary productivity of planted native plots averaged 727.3 ± 148.5 

g/m-2, much higher than average ANPP of native patches in the field (Fig 2a; see Fig. 1a 

for comparison).  There was a 57% increase in ANPP in invaded relative native plots in 

the common garden, but this varied significantly among species and this general shift was 

driven solely by C. stoebe (Fig. 2a; Fspecies=53.286; df=3,16; P<0.001).  Centaurea stoebe 

had higher ANPP than natives (Fig. 2a; t=6.75, df=4.95, P=0.001), whereas B. tectorum 

had lower ANPP than native plots (Fig. 2a; t=6.98, df=4.98, P<0.001).  Potentilla recta 
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did not significantly increase ANPP and E. esula biomass values are not reported because 

an introduced biological control beetle, Aphthona sp. heavily grazed these plots.   

Extractable NO3-N in soil from native plots in the garden averaged 8.5±2.7 µg g-1.  

This was 2.3 times the extractable NO3-N measured in native patches in the field.  The 

amount of increase in NO3-N in invaded plots varied significantly by species and was 

driven by E. esula (Fig. 2b; t=4.77, df=4.19, P=0.008).  Centaurea stoebe trended 

towards significantly higher amounts of NO3-N (Fig. 2b; t=2.23, df=4.12, P=0.08), and B. 

tectorum and P. recta did not significantly alter NO3-N.  

 

DISCUSSION  

 Many studies have reported positive correlations between exotic invasion and 

ecosystem productivity (see Liao et al. 2008) and here we found similar correlations in 

the field and experimental evidence that one invasive species caused increases in ANPP 

and available NO3-N.  Furthermore, our consistent field patterns of greater concentrations 

of soil N-cycling bacteria in soils associated with invaders suggests that shifts in 

belowground microbial communities may play a general role in increased ANPP and soil 

NO3-N.  Finally, we found a stronger and steeper positive regression relationship between 

ANPP and soil NO3-N for invaders than for natives, indicating that invaders may affect 

ecosystem function in different ways that native communities.  Our results contribute to a 

growing body of evidence that shows fundamental differences in how invaders and 

natives affect ecosystem processes (Hawkes et al. 2008, Liao et al. 2008, Lee et al. 2012).   

Some of our results were general across species, such as reported in Liao et al. 

(2008), but caution is warranted in over-generalizing because the magnitude of invader-
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native differences in the field differed substantially among species, varying from no 

effect (P. recta) to a 200% increase in ANPP, (E. esula), a 28% (P. recta) to 193% (E. 

esula) increase in NO3-N, no effect (B. tectorum) to a 91% (P. recta) increase in 

nitrification potentials, and a 266% (P. recta) to 620% (B. tectorum) increase in the 

abundance of AOB.  Our field results correspond well with the increases in ANPP 

reported by Liao et al. (2008) for many species, but the increase in soil NO3-N we 

measured associated with invasion was greater than that reported in their meta-analysis.  

Our experimental findings demonstrated that several invasive species caused 

substantial increases in ANPP and soil NO3-N, and importantly that these changes 

occurred before the end of only a second growing season.  Native ANPP and soil NO3-N 

were much greater in the experimental garden than in the field; however, the effect of 

invasion on ANPP and soil NO3-N were similar.  The effects of individual species 

differed to some degree between the field sampling and the common garden experiment.  

Centaurea stoebe had consistent positive effects on ANPP and NO3-N in both scenarios, 

but B. tectorum had strong effects in the field on ANPP but not in the experimental 

garden.  Conversely, P. recta had no effect on ANPP in the field but significant effects in 

the experimental garden.  We excluded the value of ANPP for E. esula because of 

substantial destruction by Apthona lacertosa and nigriscutis, two species of biological 

control insects.  Interestingly, NO3-N increased dramatically under E. esula in the field 

and in the experiment, but this increase may have been affected by heavy grazing of this 

species. The effects of B. tectorum and P. recta on NO3-N were generally consistent in 

both scenarios.  Our findings are consistent with previously published studies showing 

increases of NO3-N associated with invasive grasses and shrubs (Hawkes et al. 2006, 
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Kourtev et al. 2002, Evans et. al. 2001), but variation between the field results and 

garden results for the same species suggests conditionality in these ecosystem effects that 

in turn warrants substantially broader investigation.  In this context, Thorpe & Callaway 

(2011) C. stoebe tended to depress soil NO3-N flux (as measured by resin capsules) and 

nitrification potential.  Their results highlight the importance of both temporal dynamics 

influencing patterns observed in natural systems as well as differences between field, 

greenhouse, and experimental garden results.  Our results are consistent with 

experimental studies that reported increased ecosystem productivity (Maron & Marler 

2008), and potential nitrification (Lee et al. 2011) associated with invasion. 

To our knowledge our comparison of the relationship between native and invaded 

ANPP and soil NO3-N (Fig. 3) is novel.  ANPP accounted for 51.4% of the variation in 

NO3-N in invaded soils.  The mechanisms responsible for this correlation remain unclear; 

however, there are several potential mechanisms.  First, it is possible that the differences 

in ANPP reported here and elsewhere are due to disproportional avoidance of invasive 

species by native generalist herbivores.  However, it is not clear why an increase in 

ANPP via escape from consumers would correspond with a rapid increase in soil NO3-N 

and AOB abundance such as we found in the common garden experiment.  Second, 

invasiveness may correlate with common traits among invaders that promote either 

greater acquisition or more rapid cycling of N.  For example, it is possible that invaders 

in general have tissue stoichiometry that promotes rapid N cycling and thus promotes 

increased AOB and soil N.  In this context, Sardans et al. (2010) compared 35 native and 

38 exotic (whether invasive or not was not reported) species in Hawaii and found that in 

general exotic species had greater photosynthetic capacities and N content, and lower leaf 
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mass per area than natives.  Finally, the consistent increase in AOB associated with each 

of the four invasive species suggests the possibility of belowground processes that drive 

changes to N cycling and a reorganization of the soil microbial community.  

Although it is not entirely clear why invasive species from different plant families 

with different life history strategies would have such generally consistent effects on soil 

biogeochemistry, several possible mechanism are possible.  Plants can affect soil bacteria 

by altering temperature, moisture, and pH (Wardle et al. 2004).  For example, increases 

in the pH of wild and agricultural soils correspond with increased rates of net N 

mineralization, potential nitrification, and overall N availability (Carney et al. 2004, 

Curtin et al. 1998, De Boer & Kovalchuk 2001).  If shared traits of invaders cause 

consistent and rapid changes in soil moisture or temperature it is possible that this would 

drive consistent changes in the abundance of AOB.  Escape from above and belowground 

consumers in general may make a larger portion of plant fixed carbon available for 

uptake by microbial community.  Alternately, invasive species often experience much 

weaker feedbacks from soil biota than native species (Kulmatiski et al., 2008), and this 

combined with escape from soil pathogens (Maron et al., in press), decreased (Broz et al. 

2007) or increased (Lekberg et al., 2013) diversity or abundance of beneficial AMF, or 

promotion of other free living microbial groups (Batten et al., 2004), could result in an 

overall shift in balance of competition within the soil microbial community (Morris et al., 

2007).   In addition, changes in the composition of the AOB community itself may result 

in altered efficacy or function of that community (Carney et al., 2004).  In general, the 

mechanism may be a combination of a decrease in pathogenic or antagonistic 

components of the soil community and an increase in beneficial organisms, such as AOB.  
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The composition of the soil microbial community and abundance of free-living microbes 

affect plants in natural systems through mineralization of and competition for nutrients 

(van der Heijden et al., 2008).  To be clear, we do not know the mechanism behind 

consistent increases in the abundance of AOB in our study, but increased abundances of 

this group and resulting alterations to ecosystem function may contribute to invasive 

success in our study system.  

A better understanding the effect of increases in abundance of beneficial soil 

microbes, rather than just lack of antagonistic soil microbes is needed to fully understand 

the role of soil communities in plant invasions (Reinhart & Callaway 2006).  The soil 

microbial community is dynamic and may vary in response to competition and resource 

limitation in ways that are similar to responses in plant communities.  Shifts in the 

microbial community can in turn influence the abundance of particular plant species or 

groups of plants in ways that appear to differ between invaders and natives (see also 

Kulmatiski et al., 2008).  Our results contribute to a growing understanding of how plants 

affect ecosystem functioning through tight links with beneficial N-cycling soil bacteria, 

nitrogen cycling, and ecosystem productivity. 
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Figure Legends 

 

Figure 1.  Net primary productivity (a) and soil extractable NO3-N (b) of Bromus 

tectorum, Centaurea stoebe, Euphorbia esula, and Potentilla recta and respective native 

paired plots in the field.  Error bars represent ± 1 SE, and asterisks denote significant 

difference in mean between the invaded plot and native paired plot.   

 

Figure 2.  Net primary productivity (a) and soil extractable NO3-N (b) of Bromus 

tectorum, Centaurea stoebe, Euphorbia esula, and Potentilla recta native plots in the 

experimental garden.  Error bars represent ± 1 SE and different letters represent 

significant differences in post hoc comparisons (!=0.05).  

 

Figure 3.  Relationships of soil extractable NO3-N and aboveground net primary 

productivity (ANPP), in the field.  In a stepwise multiple regression ANPP was the sole 

significant factor in the invaded treatment.  Not significant in native treatment.  In the 

invaded ANPP explained 51% of variation in soil extractable NO3-N.  

 

Figure 4.  Nitrification potential of Bromus tectorum, Centaurea stoebe, Euphorbia esula, 

and Potentilla recta and respective native paired plots in the field.  Error bars represent ± 

1 SE, and asterisks denote significant difference in mean between the invaded plot and 

native paired plot.   
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Figure 5.  Relative abundance of amoA genes from ammonia oxidizing bacteria (AOB) 

(a) and ammonia oxidizing archea (AOA) (b) in soils under patches of Bromus tectorum, 

Centaurea stoebe, Euphorbia esula, Potentilla recta, and paired native plots for each 

invader in the field.  Error bars represent ± 1 SE, and asterisks denote significant 

difference in mean between the invaded plot and native paired plot.   

 

Supplemental Information Attachment 1.  Details regarding experimental garden plot 

establishment and species identity. 

 

Supplemental Table 1.  Means (SE) of all measured variables for all invaded and native 

field plots.  Bold text denotes significant differences among invaded and native means for 

that species 
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Figure 2. 
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Figure 3.   

 

 

Soil 
NO
3-N 
(µg 
g

-1
) 

G 

Aboveground Net Primary Productivity (g m
-2

) 

Invaded 
Native 



!
!

$+!

Figure 4 
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Figure 5. 
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Supplemental Information 1. 
 
All seeds except for B. tectorum were sown on 15-16 April, 2011, in a 

soil:peat:vermiculite:sand (1:1:1:2, v:v) mixture.  The soil was collected from underneath 

B. tectorum, C. stoebe, E. esula, P. recta and remnant natives at three locations on MPG 

Ranch to ensure that microbes that normally associate with the target species were 

present in the media mixture.  Bromus tectorum was planted in the same mixture on 6 

April, 2011, placed in the refrigerator for one month to simulate winter and ensure 

flowering, and brought to the greenhouse on 6 May.  All exotic seeds were collected on 

MPG Ranch in 2010 and all native seeds were purchased from local sources.  Seedlings 

were grown under ambient light and 17-24 °C and fertilized two times with 

approximately 5 mL of half-strength Hoagland solution (Machlis and Torrey, 1956).  We 

transplanted all seedlings into 2 x 2 m plowed plots on 2-3 June, 2011 using a replicated 

block design (n=5). Bromus tectorum, C. stoebe, E. esula, P. recta were planted in 

monocultures using 64 seedlings per plot, whereas the native plots received seven 

Pseudoroegneria spicata, Elymus elymoides, Kolaria macrantha, Bouteloua gracilis, 

Penstemon strictus, Linum lewisii, Erigeron speciosus, Gaillardia aristata, and Achillea 

millefolium each and one extra randomly selected seedling to make the total number the 

same as in the exotic plots.  All plots were watered when needed in 2011 to enable good 

establishment, but not in 2012.   
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Supplemental Table 1. 

 
 

Invaded Native Invaded Native Invaded Native Invaded Native

ANPP (g M-2) 229.5 (32.3) 140.3 (15.7) 219.2 (27.9) 128.2 (18.7) 316.1 (33.1) 105.2 (13.6) 139.7 (17.7) 145.8 (17.6)

NH4-N (µg g -1  soil) 6.2 (0.9) 4.6 (0.4) 4.2 (0.5) 3.3 (0.3) 7.5 (1.2) 3.1 (0.3) 5.8 (1) 5.9 (1.1)

NO3-N (µg g-1 soil) 7.7 (1.1) 3.4 (0.5) 8.3 (1.5) 3.8 (0.5) 10.2 (0.9) 4.3 (1.2) 4.7 (0.9) 3.6 (0.6)

Inorganic N:TN 0.003 (0.0004) 0.002 (0.0004) 0.004 (0.0008) 0.002 (0.0008) 0.003 (0.0005) 0.001 (0.0005) 0.001 (0.0001) 0.001 (0.0001)

MB NPOC (µg C g-1 soil) 153.9 (15.1) 127.1 (10.1) 112.5 (9.7) 120.3 (7.5) 165.9 (17.5) 112 (4.1) 169.5 (23.8) 162.3 (23.3)

MB TN  (µg g-1 soil) 33.3 (4.3) 26.5 (3.1) 23.3 (2.7) 24.3 (2.2) 35.9 (4.4) 23.5 (1.3) 35.5 (5.6) 34.2 (6.5)

Soil TC (ppm) 45743 (3104) 46603 (9876) 31597 (2512) 29663 (3463) 54756 (6999) 31982 (2206) 73426 (18493) 53094 (26758)

Soil TN  (ppm) 4206 (189) 4475 (959) 2818 (221) 2780 (320) 5052 (674) 3039 (290) 6840 (1816) 4852 (2415)
Net Nitrification                 
(µg g-1  day-1 ) 1 (0.13) 0.76 (0.1) 0.76 (0.11) 0.6 (0.05) 0.89 (0.13) 1.05 (0.18) 1.23 (0.15) 0.78 (0.09)
Nitrification Potential                  
(µg g-1  day-1 ) 11.4 (2.1) 7.5 (1) 8.8 (1.4) 8.2 (0.8) 13.9 (2.6) 7.4 (0.9) 16.2 (4.2) 8.4 (1.3)

ARA (µmol g-1 hour-1) 2.83 (0.5) 3.4 (0.8) 2.76 (0.26) 3.4 (0.7) 2.42 (0.26) 4.6 (2.3) 3.18 (0.5) 4.3 (1.1)

AOB (g -1 soil x 106) 3.94 (0.36) 0.91 (0.19) 4.37 (0.27) 0.6 (0.12) 2.17 (0.26) 1.34 (0.78) 2.2 (0.48) 0.6 (0.1)

AOA (g -1 soil x 106) 19.47 (5.62) 20.37 (3.35) 17.81 (2.69) 14.51 (2.13) 13.55 (3.26) 11.94 (1.43) 27.5 (5.92) 15.04 (2.62)

16S bact (g-1  soil x 109) 37.57 (5.56) 33.67 (3.9) 31.51 (4.43) 23.98 (2.19) 31.62 (3.53) 20.79 (2.19) 52.53 (10.62) 30.33 (5.23)

16S arch (g-1  soil x 108) 9.89 (2.35) 10.09 (1.36) 8.93 (1.26) 7.81 (0.87) 8.29 (1.66) 5.5 (0.46) 16.17 (3.5) 7.72 (1.48)

Plant TN (ppm) 14595 (1710) 8879 (426) 5996 (194) 7916 (539) 17709 (1942) 7644 (236) 9174 (410) 7775 (1159)

Plant TC (ppm) 448783 (2144) 425222 (4661) 432944 (5169) 423849 (2616) 451218 (1792) 426785 (3259) 443975 (1891) 427874 (3086)

MB C:N Ratio 4.8 (0.2) 4.9 (0.2) 5.1 (0.4) 5.1 (0.3) 4.7 (0.1) 4.9 (0.2) 4.9 (0.2) 5 (0.2)

Plant TC:TN 31.4 (3.1) 47.9 (1.7) 72.3 (1.8) 54 (3.6) 26.5 (2.4) 55.8 (1.3) 48.6 (2.1) 57.5 (8.6)

Soil TC:TN 10.8 (0.2) 10.4 (0.08) 11.2 (0.1) 10.6 (0.12) 10.9 (0.3) 10.6 (0.39) 10.8 (0.4) 10.8 (0.09)

Soil pH 5.96 (0.04) 5.9 (0.04) 6.02 (0.05) 6.13 (0.08) 6.15 (0.05) 5.95 (0.03) 6.07 (0.11) 5.92 (0.13)

C. stoebe B. tectorum E. esula P. recta


