
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2013 

Camouflage mismatch in seasonal coat color due to decreased Camouflage mismatch in seasonal coat color due to decreased 

snow duration: Will snowshoe hares keep up with climate snow duration: Will snowshoe hares keep up with climate 

change? change? 

Marketa Zimova 
The University of Montana 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Zimova, Marketa, "Camouflage mismatch in seasonal coat color due to decreased snow duration: Will 
snowshoe hares keep up with climate change?" (2013). Graduate Student Theses, Dissertations, & 
Professional Papers. 4160. 
https://scholarworks.umt.edu/etd/4160 

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F4160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/4160?utm_source=scholarworks.umt.edu%2Fetd%2F4160&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


CAMOUFLAGE MISMATCH IN SEASONAL COAT COLOR DUE TO DECREASED 

SNOW DURATION: WILL SNOWSHOE HARES KEEP UP WITH CLIMATE CHANGE? 

By 

MARKETA ZIMOVA 

B.S., Charles University, Prague, Czech Republic, 2009 

 

Thesis 

presented in partial fulfillment of the requirements 

for the degree of 
 

Master of Science 
in Wildlife Biology 

 
The University of Montana 

Missoula, MT 
 

January 2014 
 

Approved by: 
 
 

Dr. L. Scott Mills, Chair 
Wildlife Biology Program, Department of Ecosystem and Conservation Sciences 

 
Dr. Doug Emlen, Committee Member 

Wildlife Biology Program, Division of Biological Sciences 
 

Dr. Michael Mitchell, Committee Member 
Montana Cooperative Wildlife Research Unit 

 
 



ii 
 

Zimova, Marketa, M.S., January 2014                             Wildlife Biology 
 
Title: Camouflage mismatch in seasonal coat color due to decreased snow duration: Will 
snowshoe hares keep up with climate change? 
 
Chairperson:  Dr. L. Scott Mills 
 

ABSTRACT 
 
 As wild species face anthropogenic stressors, they will either adapt, shift their 
geographic range, or decline, perhaps towards extinction.  The relative scope of these 
responses has not been well studied, especially for climate change where geographic range 
shifts and population declines have been widely discussed but the potential for adaptation 
mostly ignored.  Adaptation to anthropogenic stressors can occur through phenotypic 
plasticity and/or evolution.  My thesis first establishes, based on field studies of wild 
snowshoe hares, a novel and high-profile stressor directly linked to climate change.  The 
stressor arises from a decrease in snow duration due to climate change, which causes 
seasonal coat color molt of individual hares to become mismatched with their background.  
The immediate adaptive solution to this form of camouflage mismatch is phenotypic 
plasticity, either in phenology of seasonal color molts or in behaviors that reduce mismatch 
or its consequences.  Based on nearly 200 snowshoe hares across a wide range of snow 
conditions and two study sites in Montana, USA that differed in elevation and climate, I 
found minimal plasticity in response to mismatch between coat color and background.  I 
found that molt phenology varied between study sites, likely due to differences in 
photoperiod and climate, but was largely fixed within study sites where seasonal changes in 
phenology were limited across years of very different snow duration.  Hares exhibited some 
plasticity in the rate of the spring molt in response to immediate snow conditions but 
temperature or snow cover were not strong modifiers of the white-to-brown molt 
phenology.  I also found no evidence that individual hares modify their behavior in response 
to color mismatch.  Hiding and fleeing behaviors and immediate microsite preference of 
hares were more affected by variables related to season, site, and concealment, than by color 
mismatch.  Although hares do not appear to be responding to camouflage mismatch with 
behavioral plasticity, adaptation could also occur through evolutionary changes facilitated by 
natural selection.  We found that the raw material for natural selection to act on does exist in 
our populations in the form of individual variation in coat color phenology and consequently 
in color mismatch.  We also found high fitness costs of coat color mismatch, with hares 
suffering 3 to 7% lower weekly survival rates when mismatched against their background.  
Coupling these fitness costs to local estimates of increased seasonal color mismatch as snow 
duration decreases in the future, we predict that annual hare survival will decline up to 12% 
by mid- and 24% by late century.  Such changes in survival are sufficient to cause increasing 
hare populations to decline strongly towards extinction, with annual population geometric 
growth rate decreasing by 11% (24%) by mid (late) century.  We conclude that plasticity in 
molt phenology and behaviors in snowshoe hares is insufficient for adaptation to 
camouflage mismatch, and that potential adaptive responses to future climate change will 
have to be facilitated by natural selection.  These results form the basis for future work to 
evaluate whether evolution by natural selection can operate fast enough to prevent decline of 
this species.  



iii 
 

ACKNOWLEDGEMENTS 
 

There are many people I would like to thank for their work, support, and 

encouragement which made this project possible.  First and foremost, I would like to thank 

to Scott Mills for admitting me into the Wildlife Biology Program at the University of 

Montana, and for his extraordinary guidance and encouragement as an advisor, mentor, and 

friend.  With a deep gratitude I owe him for teaching me the way to see the 'big picture' in 

our field, for lending me constant encouragement to pursue my scientific interest, and for 

helping me to find strength to overcome challenges in my professional and personal life.  I 

am honored and incredibly grateful to work with such a dedicated, passionate, and 

outstanding biologist.   

I would also like to thank my committee members Mike Mitchell and Doug 

Emlen for their help with my thesis, and for always taking time amidst busy 

schedules to provide me with guidance and encouragement.  I am most fortunate to 

have been able to work with both of you.   

I greatly appreciate the statistical guidance from Paul Lukacs and his post-

doctoral student Josh Nowak, who both exhibited immense patience when 

navigating me through the wild lands of Bayesia.  Next, I thank to Paulo Celio Alves 

for his advice and support with my research, and for the many conversations we had 

regarding leporids’ ecology, conservation, and life in general.  I’m also indebted to 

Jeff Good, Zef Melo Ferreira, and Dan Vanderpool for sharing their genetics 

expertise, and resources, and for teaching me how to become an RNA extraction 

guru. 

Next, I would like to say a tremendous “thank you” to my field research 

assistants and the many volunteers who participated in this project.  I’m deeply 



iv 
 

indebted to Kyle Garrison, Kyle Christopher, and David Nikonow for introducing me to the 

joys of snowshoe hare fieldwork and for teaching me sarcasm.  Next, I’m deeply grateful to 

Brandon Davis, James Goerz, Ashlee Hevly, Tucker Seitz, Skyler Suhrer, and Sean Sultaire 

for not only the many beautiful pictures of my favorite animal, but also for their friendships.  

I also thank the Gardiner field crew, particularly to: Jen Alberts, Eric Elkins, Greg Reed, and 

Molly Runyon for their high quality work, and dedication in such extreme field conditions.  

I’d also like to thank the countless helpful volunteers that aided with the project and helped 

to make it a success.  

I deeply appreciate the help from U.S. Forest Service in the Seeley Lake and 

Gardiner Ranger districts.  I am particularly indebted to Dan Tyers and Jeremy Zimmer at 

the Gardiner Ranger Station for their expertise and generosity, which made our field efforts 

possible.  

I also want to thank my labmates who became great friends over the years. They 

gave me an excellent scholarly and emotional support and advice, and kept me going 

through it all.  These greats include Julie Betsch, Ellen Cheng, Alex Kumar, Tammy 

Mildenstein, Tempa Tshering, and Tshewang Wangchuk.  I am also very thankful to Joel 

Berger for his example of commitment to conservation, and to his students Stefan Ekernas 

and Nick Sharp, who provided their wisdom, support, and humor not only at the Mills-

Berger lab joint meetings. 

My time at the University of Montana would not have been nearly as enjoyable or 

productive without the support and interaction of fellow graduate students.  Many of you 

have become lifetime friends and I owe you my deepest thanks for your encouragement and 

assistance of every kind, especially to: Lorie Baker, Sonja Christensen, Daniella Dekelaita, 

Megan Kosterman, Clay Miller, Wibke Peters, Rebecca Smith, and Jeff Stetz.  Special thank 



v 
 

you also goes to my dear friends Scott Colunga and Jackie Meade.  I would not have 

been able to get this far without your help and support.   

I would also like to give my deepest thanks to Jeanne Franz, who besides 

assisting with all things related to surviving graduate school, filled a role of a dear 

mom in Missoula.  I would also like to thank Catherine Redfern from the CFC 

Accounting office and Vanetta Burton from the Montana Cooperative Wildlife 

Research Unit for all their assistance with grants and travel, and for their good 

hearts.  Also thanks to Robert Logan from the CFC IT Department for his expert 

technical assistance.  

Next, I would like to thank my family for their unconditional love, 

understanding and support throughout my life, and for always letting me know that 

they are there for me, wherever I am in the world.  For all that you have done and 

continue to do, thank you.  Special thanks to mom, dad and my grandfather Zdenek 

for fostering an interest in nature from my earliest days.  Last, but not least, thank 

you to the snowshoe hares for putting up with us as we learned about their amazing 

lives- and deaths- in two of the most beautiful study sites in Montana.   

Funding for this work came from the U.S. Geological Survey, National 

Science Foundation, and Montana Bureau of Land Management (BLM).  

  



vi 
 

Table of Contents 
Abstract .................................................................................................................................................. ii 

Acknowledgements ............................................................................................................................. iii 

List of Tables ..................................................................................................................................... viii 

List of Figures ....................................................................................................................................... x 

Chapter 1: Introduction ....................................................................................................................... 1 

Literature Cited ................................................................................................................................ 5 

Chapter 2 ............................................................................................................................................... 7 

Introduction ...................................................................................................................................... 8 

Materials and Methods .................................................................................................................. 10 

Study Area .................................................................................................................................. 10 

Capture and Handling .............................................................................................................. 11 

Moult Phenology ....................................................................................................................... 11 

Anti-predatory Behaviours ....................................................................................................... 12 

Statistical Analysis ..................................................................................................................... 13 

Results ............................................................................................................................................. 16 

Phenology ................................................................................................................................... 16 

Concealment .............................................................................................................................. 18 

Flight Initiation Distance ......................................................................................................... 19 

Resting Spots ............................................................................................................................. 20 

Discussion ....................................................................................................................................... 21 

Literature Cited .............................................................................................................................. 26 

Electronic Supplemental Material: .............................................................................................. 33 

Chapter 3 ............................................................................................................................................. 39 

Main text ......................................................................................................................................... 40 

Individual variation ................................................................................................................... 41 

Survival cost of mismatch ........................................................................................................ 41 

Future survival and population growth rate projections ..................................................... 44 

Potential role of natural selection ........................................................................................... 45 

References and Notes: .................................................................................................................. 47 

Supplementary Materials: .............................................................................................................. 54 

Materials and Methods: ................................................................................................................. 54 

Study Area .................................................................................................................................. 54 

Capture and handling ................................................................................................................ 55 

Survival and color contrast monitoring ................................................................................. 55 



vii 
 

Statistical Analysis ..................................................................................................................... 56 

Appendix A ......................................................................................................................................... 65 

Introduction .................................................................................................................................... 67 

Results and Discussion ................................................................................................................. 71 

Materials and Methods .................................................................................................................. 74 

Field Methods ............................................................................................................................ 74 

Molt Phenology Analysis .......................................................................................................... 74 

Future Coat Color Mismatch................................................................................................... 76 

Snow and Climate Modeling .................................................................................................... 76 

References ....................................................................................................................................... 79 

Supplementary Materials ............................................................................................................... 88 

 
  



viii 
 

LIST OF TABLES 
 
Chapter 2. 

Table S2. Set of best models tested to explain variation in concealment (Conc) for hares at 

the Gardiner and Seeley Lake sites, MT (9/17/2009 – 7/9/2012)..............……........34  

Table S4. Effects of season, site and colour contrast at 1 m (Contrast1m) on concealment 

(Conc) according to the best model...................................................................................36  

Table S5. The best models tested to explain variation in FID for hares at the Gardiner and 

Seeley Lake sites, MT..………….…..……..………………..........................................37  

Table S6. Effects of concealment (Conc), sex, site, season, and colour mismatch at 10-m 

radius (Mismatch10m) around hares on flight initiation distance (FID) according to 

the best model.………………………………………..………......………...............38 

 

Chapter 3. 

Table 1.  Results from 11 a priori models used to assess the survival costs of seasonal color  

contrast.…………...……..........................................................................................…….50 

Table S1.  11 a priori models testing specific predictions to assess the fitness costs of seasonal  

color contrast..........................................................................................................................64 

 

Appendices. 

Appendix A. Mills, L. S., M. Zimova, J. Oyler, S. Running, J. T. Abatzoglou and P. M.  

Lukacs (2013). Camouflage mismatch in seasonal coat color due to decreased snow 

duration. Proceedings of the National Academy of Sciences of the United States of 

America 110(18): 7360-7365.….…..………..................................................…………65 

Table S1. Names of CMIP5 models used in the analysis.…………................……………...90  



ix 
 

Table S2. Number of days of expected hare mismatch, where mismatch is defined as ≥60%  

difference between hare coat color (based on average phenology across the 3 years of 

field data) and the modeled snow presence/absence..……….......................................91  

Table S3. Number of days of expected hare mismatch, where mismatch is now defined as  

 ≥40% and greater or equal ≥80% difference between hare coat color (based on  

average phenology across the 3 years of field data) and the modeled snow 

presence/absence.......................................................................................................….......92  

Table S4. Snow model parameter values before and after calibration........................................93 

 
 
  



x 
 

LIST OF FIGURES 

Chapter 2. 

Figure 1.  Coat colour phenology, snow cover, and degree days at the Gardiner study site, 

MT (9/17/2010 – 7/9/2012), with fall seasons on the left and spring seasons on the 

right. ….…..…...........................………….....................................................................…30  

Figure 2.  Spring moult phenology reaction norms of hares at the Gardiner study site, MT 

(9/17/2010 – 7/9/2012)……………………………………………......…........….31 

Figure 3.  Probability of presence of a hare at a resting site with percentage of snow cover at 

the Gardiner and Seeley Lake study sites, MT (9/17/2009 – 7/9/2012).……..........32  

Figure S1. Spring 2012 phenology data from Gardiner study site……………..………........33 

Figure S3. Effect of colour contrast within 1-m radius on hares’ concealment at the Gardiner 

and Seeley Lake study sites, MT (9/17/2009 – 7/9/2012).………… ...........…........35 

 

Chapter 3. 

Figure 1. Mean estimated individual color contrast of radiocollared snowshoe hares from 

August 2010 to July 2012 at Gardiner, MT (A) and from August 2009 to June 2012 

at Seeley Lake, MT (B).............…….....................................................................……….51 

Figure 2. Effects of individual color contrast on weekly snowshoe hare survival probability 

as estimated by a univariate model including individual contrast (Table 1).................52 

Figure 3. Simulated snowshoe hare annual survival probability under different color contrast 

scenarios...................... …….…..………………...............................................................53 



xi 
 

Figure S1. Individual molt phenology from August 2010 to July 2012 at the Gardiner, MT 

(top) and from August 2009 to June 2012 at the Seeley Lake, MT (bottom) study 

sites..............................................………………………...................................................61 

Figure S2. Effects of population color contrast on weekly survival probability as estimated 

by a univariate model including population contrast (Table 1)...………………........62 

 

Appendices. 

Appendix A. Mills, L. S., M. Zimova, J. Oyler, S. Running, J. T. Abatzoglou and P. M.  

Lukacs (2013). Camouflage mismatch in seasonal coat color due to decreased snow 

duration. Proceedings of the National Academy of Sciences of the United States of 

America 110(18): 7360-7365.….…..…………………..................................................72 

Figure 1. Seasonally color changing species around the world. ………..…........…………...83  

Figure 2. Types of contrast between seasonal coat color and snow background.……...........84 

Figure 3. Modeled baseline and future snow conditions.……..……........................………...85 

Figure 4. Coat color phenology, snow cover, and degree days.……..........................................86 

Figure 5. Projections of increasing seasonal color mismatch in the future…..……................87  

Figure S1. Modeled baseline and entire ensemble of future snow conditions..........................88  

Figure S2. Posterior Bayesian probability distributions of the molt phenology parameters for  

 different years resulting from the change point analysis.................................................89  

 

 

 

 

 



1 
 

CHAPTER 1: INTRODUCTION 

The warming of the climate system and its effects on organisms are unequivocal.  Global mean air 

temperatures have risen by about 0.74°C over the last 100 years and the warming is expected to 

accelerate in the future (Solomon et al. 2007).  In temperate regions the rises in air temperatures is 

reducing duration of snow cover, with later onset of snow in the fall and earlier loss of snow in the 

spring (Brown and Mote 2009, Pederson et al. 2011, Kapnick and Hall 2012).  The decreased 

duration of snowpack represents a new, potentially severe stressor for at least eleven animal species 

undergoing seasonal coat color molts.  

In ecosystems with seasonal snow cover, color molting from brown to white presumably 

provides background matching, a form of crypsis that minimizes color contrast between the animals 

and their surroundings.  Snowshoe hares (Lepus americanus), a key prey species of boreal forests, 

undergo seasonal coat color molts to avoid predator detection.  The mistiming between ground 

snow cover presence and photoperiod-induced color molts results in camouflage mismatch during 

spring and fall.  White animals on non-snowy background (or vice versa) are extremely conspicuous 

and would appear to be easier to detect by a visually hunting predator. 

Seasonally molting species, including snowshoe hares, may successfully respond to 

camouflage mismatch by individual phenotypic plasticity or evolution.  Phenotypic plasticity, the 

range of phenotypes expressed by a genotype in different environmental conditions, is the most 

immediate adaptive solution to the rapid pace of climate change (Gienapp et al. 2008).  In some 

cases, plasticity in circannual behavior and other traits has explained most of the observed change in 

phenology (Przybylo et al. 2000, Valtonen et al. 2011) and has been shown to maintain or increase 

fitness (Berteaux et al. 2004, Charmantier et al. 2008, Ozgul et al. 2010).  The obvious adaptive 

solution to decreased snow cover would be to adjust the phenology of the color molts to the 

changed snow conditions.   
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Another form of phenotypic plasticity in response to color mismatch or its potential costs 

would be individual adjustments in certain anti-predatory behaviors.  Ptarmigans (Lagopus lagopus and 

L. mutus), a widely distributed color molting species, modify their behaviors in response to color 

mismatch (Steen et al. 1992, Montgomerie et al. 2001).  Snowshoe hares rely strongly on their crypsis 

to avoid predation; they sit completely still with minimal attempts at hiding or concealment and do 

not flee until immediate danger arises.  Intuitively, this strategy is maladaptive when selection of a 

microsite results in mismatch between coat color and background.  One possible behavioral 

modification that could reduce camouflage mismatch is selection of microsites that match the hares’ 

coat color.  Alternatively, mismatched hares might achieve effective camouflage by selecting sites 

associated with cover provided by dense understory, trees, or rocks.  Finally, because hares rely on 

both crypsis and flight, mismatched hares may increase the distance at which they flee when 

approached by a predator, thus minimizing the potential consequences of camouflage mismatch.   

Separate from or in combination with phenotypic plasticity, color molting species may adapt 

to camouflage mismatch through natural selection.  Adaptive changes on the genetic level have 

successfully facilitated adaptation to recent climate change (Nussey et al. 2005, Bradshaw and 

Holzapfel 2008).  Evolution of a trait proceeds fastest when populations are under strong selection 

and when the trait is variable and heritable.  For hares, the selective cost of mismatch is unknown 

but expected to be strong, as previous research on mice demonstrated high fitness costs and strong 

selection against contrasting coloration (Dice 1947, Kaufman 1974, Linnen et al. 2009, Vignieri et al. 

2010).  Further, considerable variation in the seasonal coat color in hares at the individual and 

population level suggests the potential for natural selection.  Both the timing and rate of the molts 

varies between individuals (Grange 1932, Aldous 1937, Severaid 1945).  At the population level, 

snowshoe hares (and indeed other species with seasonal coat color change [Hall 1951, Hewson 1958, 

Hansen and Bear 1963]) show geographic variation in seasonal coat color, indicating local adaptation 
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to regions with less predictable winter snow.  Snowshoe hares on the Pacific coast (coastal 

Washington and Oregon, U.S. and southern British Columbia, Canada), maritime areas without 

continuous winter snow cover, retain brown coat color all year (Dalquest 1942, Nagorsen 1983).  

Finally, the heritable component of molt phenology is not well established, but limited captive 

studies indicate a strong genetic component of molt initiation (Severaid 1945).   

In my Master’s thesis I describe color mismatch between snowshoe hares’ coat color and 

their surroundings, and provide an evaluation of hares’ adaptive potential to this novel climate 

change induced stressor.  This thesis consists of an appendix and two main chapters.  The appendix, 

published in 2013, identifies color mismatch in hares as a new form of seasonal mistiming induced 

by climate change, provides an evaluation of phenotypic plasticity in the phenology of the color 

molts, and projects future frequencies of color mismatch under different climate change scenarios.  

The paper depends strongly on data collected during my M.S. research and is the first description of 

the seasonal coat color change phenomenon.  The reason this paper is not a main chapter of my 

thesis is that my advisor (L.S. Mills) is the primary author, because he began work on this topic 

before I became his student.  

In Chapter 2, I extend the exploration of phenotypic plasticity in coat color molt phenology 

to an independent replicate study site and conduct additional analysis of modifiers of molt 

phenology.  I then examine for the first time how snowshoe hares’ anti-predatory behaviors may be 

modified in response to color mismatch.  Collectively, this chapter evaluates the adaptive potential 

of snowshoe hares to minimize color mismatch and its consequences through phenotypic plasticity.   

Finally, to complete the evaluation of hares’ adaptive potential, in Chapter 3, I quantify the 

fitness costs of color mismatch.  I first describe the current levels of individual variation in coat 

color molt phenology and consequently in the degree of color contrast over time between 

individuals and their surroundings.  I then test a series of hypotheses to quantify the fitness costs of 
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color contrast using innovative approaches to model and accommodate for the weekly varying 

individual color contrast variable.  Lastly, I simulate future survival rates under downscaled snow 

cover reduction scenarios using the estimated fitness cost of color contrast and projected 

frequencies of color contrast resulting from future reductions in snow cover duration. 

Overall, this research enhances our knowledge on how an ecologically important species is 

affected by a novel stressor and enables us to predict how it will respond.  The focus is on adaptive 

potential of snowshoe hares to a newly identified phenological mismatch induced by climate change, 

but the methods and implications are much more general.  At least eleven other color molting 

species (including arctic fox [Vulpes lagopus] and several species of weasels [Mustelidae spp.]), 

collectively distributed across the temperate and arctic regions of the planet, are likely experiencing 

camouflage mismatch.  The research methods and results described here can be directly applied to, 

or motivate research on, any other color molting species.  At a broader level, this work addresses the 

question of how much a species can adapt in place to climate change and what mechanisms can 

facilitate its adaptive response.  Finally, due to the high visual appeal of this research, it lends itself to 

fostering awareness and enhancing public knowledge of potential impacts and responses of wildlife 

to climate change.   

The following thesis chapters are formatted for publication in peer-reviewed scientific 

journals.  As all of the work contained in this thesis reflects the efforts of many important 

collaborators (see Acknowledgements section above), I use the collective “we” throughout the 

thesis. 
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Summary: As duration of snow cover decreases due to climate change, species undergoing seasonal 

colour moults can become colour mismatched with their background.  The immediate adaptive 

solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or 

in behaviours that reduce mismatch or its consequences.  We observed nearly 200 snowshoe hares 

across a wide range of snow conditions and two study sites in Montana, USA, and found minimal 

plasticity in response to mismatch between coat colour and background.  We found that moult 

phenology varied between study sites, likely due to differences in photoperiod and climate, but was 

largely fixed within study sites with only minimal plasticity to snow conditions during the spring 

white-to-brown moult.  We also found no evidence that hares modify their behaviour in response to 

colour mismatch.  Hiding and fleeing behaviours and resting spot preference of hares were more 

affected by variables related to season, site, and concealment by vegetation, than by colour 

mismatch.  We conclude that plasticity in moult phenology and behaviours in snowshoe hares is 

insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate 

change will require natural selection on moult phenology or behaviour.   
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INTRODUCTION 

Phenological shifts in plant and animal populations have been linked widely to climate 

change [1, 2].  Pressing questions of interest include how these phenological shifts link 

mechanistically to climate variables and whether the observed shifts are adaptive.  Although 

evolution by natural selection is a possible means of adaptation, the most immediate adaptive 

solution to the rapid pace of climate change is phenotypic plasticity [3], the range of phenotypes 

expressed by a genotype in different environmental conditions.  In some cases, plasticity in 

circannual behaviour and other traits has explained most of the observed change in phenology [4, 5] 

and has been shown to maintain or increase fitness [6].  For instance, plasticity in phenology of egg 

laying in a population of great tits (Parus major) in the United Kingdom was adaptive in minimizing 

phenological mismatch with food sources, thereby maintaining population growth [7]. 

Snowshoe hares (Lepus americanus), and at least nine other mammal species globally, undergo 

seasonal moults to a white or brown coat to match the presence or absence of snow.  Background 

matching is a crypsis strategy that reduces risk of detection by predators [8, 9].  In recent decades, 

persistence of snow cover in the Northern Hemisphere has decreased due to increased air 

temperatures and more precipitation falling as rain instead of snow [10-12].  In a recent study of the 

mistiming between presence of ground snow cover and seasonal colour moults in snowshoe hares, 

strong background mismatch was documented during spring and fall, and predicted to greatly 

increase in the future [13].  White animals on non-snowy backgrounds are extremely conspicuous 

and would appear to be easier to detect by a predator that hunts visually.  Both individual behaviours 
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and population dynamics of hares are overwhelmingly shaped by predation, which can comprise 85-

100% of mortality [14].   

Snowshoe hares might be able to minimize fitness costs of seasonal mismatch in camouflage 

through plasticity in the phenology of coat colour moults.  Timing of moult in fall and spring is 

presumably initiated by photoperiod, but temperature and possibly presence of snow may affect the 

rate of the change [15-17].  Mills et al. [13] showed average timing of the fall and spring moult in 

snowshoe hares in Montana to be fixed across years with disparate snow cover, with some plasticity 

in the rate of spring moult, once the white-to-brown transition had been initiated. 

Separate from or in combination with phenological shifts, hares might be able to modify 

their behaviour to minimize the mismatch of coat colour or its potential costs.  Snowshoe hares rely 

strongly on their crypsis to avoid predation, with minimal attempts at hiding in vegetation (here 

referred to as concealment).  In contrast to other lagomorphs in the region that stay brown during 

the winter (i.e., Mountain cottontails [Sylvilagus nuttallii] or pikas [Ochotona  princeps]), snowshoe hares 

do not build burrows for escape underground.  Rather, during the day, hares sit completely still at a 

resting spot and do not flee until immediate danger arises.  Intuitively, this strategy is maladaptive 

when selection of a resting spot results in mismatch between coat colour and background.  Steen et 

al. [18] observed that willow ptarmigans (Lagopus lagopus) moulting from white to brown plumage 

during snow melt fed in areas that matched their coloration, even though areas selected for optimal 

crypsis often offered less nutritious food.  Similarly, hares could be resting during the day at spots 

where background colour is similar to their coat colour, and thus reduces colour contrast.  Whether 

hares are able to recognize their coat colour and choose resting spots that match it is not known.  

Alternatively, mismatched hares might achieve effective camouflage by selecting resting spots 

associated with cover provided by dense understory, trees, or rocks, as suggested by [19].  Finally, 
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because hares rely on both crypsis and flight, mismatched hares may increase the distance at which 

they flee when approached by a predator [20].  Crypsis in prey species decreases the risk perceived 

by an animal and thus consequently can decrease flight initiation distance (FID) [21, 22].  For 

example, round-tailed horned lizards (Phrynosoma modestum), whose colouring resembles small stones, 

displayed shorter FIDs on rocky substrates than on uniform sand, likely as a response to higher 

crypsis among rocks [23].  Similarly, hares mismatched to their background might perceive higher 

predation risk and flee sooner (longer FID). 

Here we provide an evaluation of the adaptive potential of snowshoe hares to minimize 

negative effects of colour mismatch through phenotypic plasticity in moult phenology and 

behaviour.  Mills et al. [13] found little plasticity in seasonal coat colour change at a single study site 

(Seeley Lake, MT).  Here we extend that investigation to a second site which differed considerably in 

climate and photoperiod, and compare moult phenologies at both sites.  Next, we analyse at both 

sites variables influencing moult phenology, and explore reaction norms in moult phenology.  Lastly, 

we examine, whether anti-predatory behaviours are being modified in response to colour mismatch 

and consequently evaluate whether behavioural plasticity may ameliorate negative effects of colour 

mismatch.  

MATERIALS AND METHODS 

Study Area 

We conducted our research at two sites in western Montana, USA separated by 

approximately 330 km: the Seeley Lake study site (used in [13]) in the Lolo National Forest (Morrel 

Creek drainage) and the Gardiner study site in the Gallatin National Forest (Bear Creek drainage).  

The Gardiner study site is about twice as high in elevation (2400 to 2700 m ASL) as the Seeley Lake 
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study site (1300 to 1450 m ASL).  This elevation difference leads to cooler temperature and longer 

duration of snow cover in the Gardiner study site; snowpack persists at the Gardiner site from late 

October until May [24], compared to December to April at the Seeley Lake site [13].  The Seeley 

Lake site (Lat.= 47.23, Long.= -113.43) is 240 km further north than the Gardiner site (Lat.= 

45.08, Long.= -110.57).  

Both sites are temperate boreal coniferous forest on U.S. Forest Service lands with little to 

no permanent human habitation, and logging being the primary land use.  Common predators of 

hares in the sites include Canada lynx (Lynx canadensis), bobcat (L. rufus), coyote (Canis latrans), red 

fox (Vulpes vulpes), American marten (Martes americana), great horned owl (Bubo virginianus), and 

northern goshawk (Accipiter gentilis). 

Capture and Handling 

We captured hares at each study site throughout the year in live traps (Tomahawk Live Trap 

Company, Tomahawk, WI), then ear-tagged, weighed and sexed each individual; hares weighing over 

900 g (=199 individuals) were fitted with VHF radiocollars (weight ≤ 40 g, Wildlife Materials, 

Murphysboro, IL, USA; [25, 26]).  All handling procedures were approved by the University of 

Montana Animal Care and Use Committee (Protocol No. 021-10SMWB-051110).  

Moult Phenology  

At the Gardiner site, we applied the methods used by Mills et al. [13] at the Seeley Lake site, 

of visually locating hares weekly using radiotelemetry to quantify coat colour phenology and colour 

contrast between hares and their background.  We monitored 51 hares (32 different hares in 2011, 

and 31 in 2012) at the Gardiner study site and 148 hares (43 different hares in 2010, 63 in 2011, and 

58 in 2012) at the Seeley Lake study site.  The percentage of white coat colour (% whiteness) and the 
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percentage of ground snow cover within 1- and 10-m radii circles centred at each hare’s resting spot 

(% snow cover) were visually estimated in 20% increments with a standardized protocol of 

observation and photographs to control for light conditions and distance.  All final percentages were 

visually estimated by a single observer using primarily the photographs, and secondarily the field 

visual estimates when the quality of the photograph was insufficient, did not show the whole hare’s 

body, or the photograph was absent.  We classified animals that just initiated or nearly completed 

the moult as 5% or 95% white.  We measured colour contrast as the difference between per cent 

whiteness of the hare and the per cent snow cover.  It is not known at which scale crypsis may be 

perceived by either prey or predators; thus we measured colour contrast within the 1- and 10-m radii 

circles.  We chose these radii because we felt that they were reasonable approximations of the finest 

and coarsest scales at which crypsis could be effective (i.e., crypsis would be completely ineffective 

at <1 m, and completely effective at >10 m).  A positive contrast indicated a white hare on a non-

snowy background, whereas a negative value indicated a brown hare on a snowy background.  We 

considered a hare mismatched when the absolute difference (here referred to as contrast) between 

its coat colour and background was at least 60% [see 13 for consideration of other thresholds], as at 

this threshold hares began to clearly stand out against their surroundings.  

Anti-predatory Behaviours 

We evaluated behaviour of each located hare at both sites.  For hares stationary at a resting 

spot we visually estimated concealment as the percentage of the hare’s body concealed by vegetation 

at four levels (1= 0- 25% of body concealed to 4= 75- 100% concealed), from the direction from 

which the hare was initially sighted and from a low angle (approx. 1 m above ground, mimicking the 

view of common mammalian carnivores).  To estimate FID, observers approached a hare at a 

consistent walking pace (approximately 0.5 m/s) until the hare fled or the observer was within 3 m 
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of the hare.  We used a digital laser rangefinder (Leupold, Beaverton, OR, USA) to estimate FID to 

the nearest meter. We used a minimum approach distance of 3 m to minimize disturbance to the 

hare; hares that did not flush at the 3-m distance were recorded as “no flush” and were not 

disturbed further.  The maximum distance at which we were able to estimate distance reliably in the 

forest was 20 m.  

Finally, we tested whether hares randomly chose spots to rest with respect to minimizing 

colour contrast or snow presence in their immediate vicinity.  We estimated percentage of snow 

cover (20% increments) at eight, non-overlapping subsections of the 10-m radius circle around each 

hare by photographing the ground from where the hare rested at each cardinal and inter-cardinal 

direction to create eight ‘pie slices’.  Snow cover and colour contrast at these eight ‘available’ spots 

were compared to that in the 1-m radius immediately surrounding the hare’s resting spot; we 

excluded from analysis resting spots where all subsections and the resting spot were entirely snow-

covered or snow-free, as these cases provided no information on whether the chosen resting spot 

differed from the surroundings.  Our final sample sizes for this analysis yielded a total of 251 

observations from 77 individual hares.   

Statistical Analysis 

Moult phenology 

We used a mixed effects change point analysis to estimate the population mean initiation and 

completion dates of coat colour change phenology in the Gardiner site (as previously done for the 

Seeley Lake site [13]), and to test for the effects of snow, temperature, and sex on moult phenology 

at both sites.  We assessed temperature as the rate of seasonal cooling in the fall and warming in the 
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spring; we calculated degree days for each day as the cumulative sum of mean temperature below 

0°C in the fall (September–December) and above 0°C in the spring (March–June).  

We were able to document individual moult phenology over >1 fall or spring moult for none 

of the hares at the Seeley Lake site and only seven individuals in the Gardiner site due to the high 

mortality rates typical of snowshoe hares [25, 27] and due to incomplete detection.  We plotted coat 

colour observations over time of those seven individuals for visual assessment of the reaction norm 

(range of phenotypes produced by a particular genotype in different environmental conditions) in 

the moult phenology.  

Concealment   

To test whether concealment behaviour increased with colour contrast we fitted linear mixed 

effects models in software R version 2.15.2 (R Development Core Team, 2012) using the package 

lme4 [28].  We included the identity of individual hares as a random effect to control for variation 

among individuals.  We included the fixed effects of coat colour (per cent whiteness), snow cover 

around hares (at 1 and 10-m radius), coat colour contrast (at 1 and 10-m radius; ranging from -100 

to 100), coat colour mismatch (at 1 and 10-m radius), site, sex and season.  Coat colour mismatch 

was a categorical variable distinguishing between positive (white hare on brown background: 

contrast ≥ 60), negative (brown hare on white background: contrast ≤ -60) and no mismatch (-60 < 

contrast < 60).  Further, to examine whether the two different types of contrast and mismatch 

(positive and negative) had equivalent effects, we established an absolute contrast covariate (ranging 

from 0 to 100) and a binary categorical covariate for absolute mismatch (mismatch: contrast ≤ -60 

and contrast ≥ 60 versus no mismatch:  -60 < contrast < 60).  In addition to linear terms, we used 

quadratic terms to allow for the possibility of a curvilinear response of concealment to contrast.  We 

differentiated seasons separately for the two sites based on local climate (Seeley Lake: winter [Dec- 
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Mar], spring [Apr- May], summer [Jun- Aug], fall [Sep- Nov]; Gardiner: winter [Nov- Apr], spring 

[May- Jun], summer [Jul- Aug], fall [Sep- Oct]).   

Because hare whiteness and snow cover at both the 1- and 10-m radius around hares were 

highly correlated for most of the year (r ≥ 0.8), we considered each separately in model construction.  

Whiteness and contrast as well as snow cover and contrast were not highly correlated (r ≤ 0.1 and r 

≥ -0.5, respectively) and so were both present in some models.  To test for habituation in 

concealment behaviour to human observers we ran a univariate linear mixed model, with 

concealment as a function of number of location attempts per hare (including unsuccessful 

sightings) and individual hares coded as random effects to control for variation among individuals.   

We selected a set of best models (within 2 ΔAICc) fitted with maximum likelihood using 

AICc criterion [29].  The precision of model parameters was based on a sample (100,000 iterations) 

from the posterior distribution of the fixed effects parameters using a Markov Chain Monte Carlo 

approach (function mcmcsamp) to determine if the 95% highest posterior density (HPD) intervals 

included zero.  

Flight initiation distance  

We used Cox proportional hazards regression [30] to test whether FID increased with colour 

mismatch.  Our data were a form of time-to-event data, with flight the event of interest and 

observations with no flight response at the maximum approaching distance of 3 m classified as 

right-censored data.  We fitted the models using the package survival [31] in R.  We included the 

same covariates and potential correlations among them as in the previous analysis: whiteness, snow 

cover around hares, colour contrast (regular and absolute), colour mismatch (regular and absolute), 

site, sex, season, and concealment.  We also tested for potential habituation in FID behaviour as in 



16 
 

the previous analysis.  The proportional hazard assumption was tested using score test and 

scatterplots of scaled Schoenfeld residuals.  We selected a set of best models (within 2 ΔAICc) fitted 

with maximum likelihood using AICc criterion. 

Resting spots 

To test whether hares chose resting spots randomly with respect to colour contrast and 

snow cover, we fitted separate mixed effects models with fixed effects of colour contrast and snow 

cover.  The models were fitted with binomial error distribution and a logit link function in R using 

the package lme4 [28].  The binomial dependent variable coded as one for the immediate resting 

spot (1-m) and zero for the eight other available ‘pie slices’ within the 10-m radius of the hare.  The 

identity of individual hares and the date of when each hare was located were included as random 

effects to control for variation among individuals and to specify a nested design of the nine spots 

available to a hare at each location.  We compared importance of the tested predictors using the 

statistical significance of the fixed effects slopes and the models’ AICc. 

RESULTS 

Phenology 

The colour moult phenology analysis at the Gardiner site in two years that differed strongly 

in amount of snowpack indicated that drivers of this circannual trait, and plasticity across different 

snow years, were similar to our previous findings at the Seeley Lake study site [13].  The fall moult 

for hares in the Gardiner site was fixed across 2011 and 2012 both for initiation date and rate of 

change (overlapping confidence intervals among initiation and completion dates; Figure 1).  For the 

spring moult, we detected plasticity in the rate of the white-to-brown moult.  The completion date 
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of the spring moult occurred 19 days later in 2011, consistent with the month longer snow duration 

in that year (Figure 1).  

Analysis of the spring initiation date in the Gardiner site was compromised by a small 

sample size in spring 2012.  Specifically, only three radiocollared hares were alive between May 4th 

and May 30th, as 16 out of 19 hares were depredated in April and early May, and new hares were not 

collared until early June (see the electronic supplementary material S1).  Thus, the model likely 

underestimated the initiation date of the spring 2012 moult, leading to the 95% credible intervals of 

initiation dates between the two years being separated by 1 day in timing (Figure 1). 

The limited sample size in spring 2012 also restricted our analysis of the effects of snow 

cover, temperature, and sex on the rate of the spring moult in the Gardiner site by biasing model 

results.  Thus, we combined the Gardiner site data and the Seeley Lake site data from springs 2010-

2012 to test for the effects of the covariates on the spring moult rate using a larger sample size.  

Snow cover was negatively related to the rate of change, but the magnitude of the effect was small.  

A change from 100% to 0% snow shifted the average completion date of the spring moult by only 3 

days (βSnow= 0.054, SD= 0.015).  Temperature also had an effect on the rate of the moult, but the 

coat colour phenology model with temperature (degree days) as a covariate predicted that the span 

from 0°C to 23.1°C (the highest daily average temperature during the spring moult period) explained 

only a 1-day modification of the completion date of the spring moult (βTemp= 0.15, SD= 0.016).  

Lastly, when testing for the effects of sex on spring moult rate at the two sites, the sex-skewed 

spring data from the Gardiner site in 2012 positively biased the estimate.  In spring 2012, five out of 

the seven hares observed to change to 5 or 0% white were females, which indicated that females 

completed the spring moult 14 days earlier than males.  By contrast, omitting the Gardiner spring 

2012 data resulted in a minimal influence of sex on the rate of the spring moult, with females 

completing the spring moult on average 2 days earlier than males (βSex= -4.43, SD= 5.27).   
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We observed a large difference in the timing of the coat colour moult phenology between 

our two study sites.  For each year, hares at the Gardiner site initiated fall moults by about two 

weeks earlier in the fall and by a month later in the spring, corresponding to cooler temperatures and 

longer lasting snowpack in the Gardiner site.  However, the duration of the colour moults was very 

similar across sites with fall and spring moults lasting on average 39.9 days (SD= 3.22) and 41.9 days 

(SD= 7.00), respectively. 

Finally, our limited data for the seven individuals that were observed over multiple seasons 

at the Gardiner site also indicated no plasticity in the fall but some in the spring rate of moult.  

According to the plots, reaction norms of the six hares that we observed over two disparate falls 

displayed similar phenologies, differing by only 0- 10 days between the two falls (Figure 2a).  In 

contrast, the one hare which was observed over two springs had moult phenologies that differed 

between springs by 15-20 days, comparable to the range of plasticity observed across all six 

individuals in the fall moult (Figure 2b).   

Concealment 

Contrary to our predictions, hares did not conceal themselves more with increasing colour 

contrast; rather, the level of concealment was mostly affected by season and site.  First, we detected 

habituation to human observers, as concealment began to significantly decrease with number of 

location attempts when hares were located more than 9 times.  Therefore, we truncated the dataset 

to include only the first 9 observations per hare which yielded a total of 731 observations from 139 

radiocollared individuals at the two sites.  Each individual was observed an average of 4.6 occasions 

(SD= 2.5).   

The best model included season, site, and quadratic form of colour contrast at 1 m (see the 

electronic supplementary material S2 for the set of best models tested).  The other three best models 
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included one additional term each: snow at 10 m, whiteness, and snow at 1 m (in order) that had 

positive effects on concealment, but their 95% highest posterior density (HPD) intervals included 

zero.  The significant quadratic relationship of contrast on concealment was in the opposite 

direction than expected, with highest concealment at medium levels of positive colour contrast and 

reduced concealment at high negative and high positive contrasts (βContrast= 0.0051, SD= 0.0021; 

βContrast
2= -0.000085, SD= 0.000026) (see the electronic supplementary materials S3 and S4).  

Concealment varied seasonally, and hares were on average concealed by 25% more in the summer 

and 8% more in the fall than in the winter, but not significantly different in the spring than in the 

winter.  Concealment was significantly different at the two sites; hares at the Seeley Lake site were 

on average 11% more concealed than at the Gardiner site.   

Flight Initiation Distance 

Hares did not flee at farther distances with increasing mismatch as we predicted, but rather 

their concealment level, season, and site variables played important roles in predicting their FID.  

We detected habituation to human observers, as FID began to significantly decrease with number of 

location attempts when hares were located more than 5 times.  Therefore, we truncated the dataset 

to include only the first five observations per hare which yielded a total of 284 observations from 91 

radiocollared individuals.  Each individual was located on average 2.9 occasions (SD= 1.4).   

Our set of best models included concealment, site, season, sex, and either contrast or 

mismatch (see the electronic supplementary material S5 for the set of best models tested).  The 

model results can be interpreted as the increase in probability of flight initiation throughout the 

distance within which we measured the FID response (=20 m).  Our first, second, and sixth best 

model included mismatch at 10 m.  Hares matched with their background were 5.6 times more likely 

to flee than brown hares on snowy background (hazard ratioNegativeMismatch= 5.62, SE= 1.72), but there 
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was no difference for white hares on brown background (hazard ratioPositiveMismatch= 1.62, SE= 1.39; 

see the electronic supplementary material S6 for a list of coefficients from the best model).  A 

similar trend was observed in the fourth and fifth best model that included absolute mismatch at 10 

m scale, where matched hares were about 2 times (4th best model: hazard ratioAbsMismatch= 2.02, SE= 

1.33; 5th best model: hazard ratioAbsMismatch= 1.87, SE= 1.33) more likely to flee than mismatched 

hares.  The third best model included a linear relationship with colour contrast at 1 m.  Hares were 

0.77% more likely to flee with each 1% decrement in colour contrast (hazard ratioContrast= 1.01, SE= 

1.00). 

Concealment significantly decreased flight distance; with each 25% increment in body 

concealed hares were 26% less likely to flee.  There was a significant difference in FID at the two 

sites; hares at the Gardiner site were 89% more likely to flee than hares at the Seeley Lake site.  

Season appeared in all best models but only summer was significantly different from winter; hares 

were 21% more likely to flee in summer than in winter.  Sex was present in all best models as it 

improved model fit but was not significant in any of them.  Similarly, snow at 1 m around hares and 

whiteness were present in three models of the best models set but their effects were not significant 

in any.  According to the score tests and scatterplots of scaled Schoenfeld residuals, there was no 

evidence of non-proportional hazards in any of the terms in the best models.   

Resting Spots 

Hares were not more likely to rest at spots within their immediate vicinity where colour 

contrast was reduced but instead preferred spots with relatively little snow.  Colour contrast was an 

important predictor of presence but hares were located at spots that resulted in higher colour 

contrast relative to the available spots within 10-m radius of the hares (β= 0.0076, SD= 0.0022).  

Further, we found strong evidence that hares were more likely to be found at spots with less snow 
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cover.  The probability that a hare would be found at a spot with no snow cover was 3.92 times 

higher than at a spot with complete (100%) snow cover (β= -0.016, SD= 0.0019, Figure 3).  The 

model which included snow cover received more support than the model including colour contrast 

(ΔAICc= 63) or the null model (ΔAICc= 72). 

DISCUSSION 

Across a wide range of snow conditions and two study sites, snowshoe hares demonstrated 

little plasticity for modifying coat colour phenology or behaviours to track seasonal snowpack.  The 

fixed initiation dates of coat colour moults are consistent with a photoperiod modulator of timing, 

as occurs for other circannual processes [32-34].  We observed no plasticity in the rate of the fall 

brown-to-white moult on both the population (Figure 1) and individual level (Figure 2).  Consistent 

with the findings of [13], we found plasticity in the rate of the spring white-to-brown moult with 

mean completion dates shifted by 19 days across two years of different snowpack.  Additionally, we 

observed plasticity in the individual rate of moult in the spring.  The one hare which was observed 

over two springs at the Gardiner site displayed different moult phenology each year, with a 

difference in spring moult rates nearly as large as observed across all of the six individuals over 

multiple fall moults (Figure 2).   

The mechanisms for a fixed fall moult phenology and only limited plasticity in the spring 

rate are unclear.  One explanation for plasticity in the spring moult could be an elevated predation 

rate in the spring (Zimova et al., In Prep), placing higher selection pressure to adjust the rate of the 

spring moult as a means of optimizing camouflage against immediate snow conditions.  Further, 

hares might simply be able to trace the change in the snow conditions better in the spring than in 

the fall.  Over three years and two study sites, we observed four substantial snow fluctuations (> 

30% and in the opposite direction of the seasonal change) in the weekly average snow cover around 
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hares in the falls and only one such fluctuation in the springs.  Thus, the spring change in the snow 

conditions might be more predictable compared to fall snow change, where early snowfalls are often 

followed by full melt-out before continuous winter snow cover builds up. 

We did not detect any strong variables influencing the rate of the spring white-to-brown 

moult.  Despite the more consistent snow change in the spring, our change point analysis indicated 

that snow cover explained only about a 3-day shift in the average spring completion date.  

Temperature also was not a strong regulator of the spring moult rate as it only explained a 1-day 

shift in the completion date.  Finally, the rate of moult in the spring was not significantly influenced 

by sex, with females completing the spring moult on average two days earlier than males. The faster 

colour moult for females is consistent with previous observations [13, 35, 36].  

The spring and fall moults across the different study sites were similar in duration, each 

lasting about 40 days.  Despite this similarity in moult length and limited coat colour plasticity within 

sites, natural selection appears to have aligned the moult phenology to correspond to average local 

climate at each site.  Although the Gardiner site is slightly south of the Seeley Lake site, and 

therefore has a similar or slightly longer photoperiod, the higher elevation of the Gardiner site leads 

to considerably longer lasting snowpack.  As might be expected with the longer snowpack, hares in 

the higher elevation Gardiner site obtained their white coats sooner in the fall and retained them 

longer in the spring.  Elevational and latitudinal gradients have been shown to affect the timing of 

the moults in several leporid species.  Watson [15] showed that mountain hares (L. timidus) 

occupying high elevations became white earlier, turned dark later, and became whiter in winter than 

those at low elevations.  Similarly, latitudinal differences were observed in museum specimens [37], 

where snowshoe hares from northern latitudes moulted from brown to white earlier in the fall and 

retained the white coat longer.   
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We found that hares did not modify their hiding behaviour in a manner that reduced colour 

contrast at either the 1- or 10-m radius scale.  If our assessment of the range at which predators 

visually perceive hares is correct, then hares mismatched to their surroundings within a radius of up 

to 10 m (an area of 314 m2) are more vulnerable to detection.  The relationship between 

concealment and colour contrast suggested that hares most concealed themselves when their coats 

were about 40% whiter than their immediate (1-m radius) background (40% contrast) and least 

when brown hares were on snowy backgrounds (-100% contrast; see the electronic supplementary 

material S3).  Because the effect size was small this relationship may represent weak biological 

importance.  Overall, concealment levels of hares seemed to be most affected by season and site, 

which may be good proxies for available hiding cover.  Hares were more concealed in the summer 

and fall when leafy vegetation in the understory provided more horizontal cover than in the winter 

and spring when leafy vegetation was either absent or covered by snow. 

Second, we did not find evidence for hares responding to colour contrast at either the 1- or 

10-m radius scale by fleeing at a farther distance from a potential threat.  FID of positively 

mismatched hares (white hares on brown background) was no different than for matched hares; 

negatively mismatched hares (brown hares on snowy background) consistently had the shortest FID.  

On the contrary, concealment had a strong effect on FID; hares that were most concealed stayed 

still longest.  Shorter FIDs with high concealment likely represented decreased perceptions of risk, 

as has been reported, for example, for pygmy rabbits (Brachylagus idahoensis; [22]).  Seasonally, hares 

fled at longer distances in the summer than in the winter, consistent with our field observations that 

hares seemed to be more active in the summer (see also [38] who observed lowest activity for hares 

in winter).  Longer flight distance in summer is also consistent with the general expectation that prey 

flees at farther distances when in better body condition [21].  Indeed, our personal field observations 

of hares during winter are that they generally appear calmer when approached, flee less even if they 
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are fully exposed, and often have their eyes closed, perhaps a strategy to save energy during winter 

periods of food limitation.  Additionally, hares might perceive less predation risk in winter as their 

low foot loading provides a likely escape advantage from potential carnivores on snow [39]. 

Lastly, we found no evidence of hares preferring resting spots with colour background that 

would reduce colour contrast.  On the contrary, hares were more likely to be found at spots within 

their immediate surroundings that increased their colour contrast with the background within 10-m 

radius.  This is likely result of their overall preference to rest at spots with little snow cover.  We 

noticed this behaviour during field observations; when snow cover was heterogeneous on the 

landscape, hares were located at non-snowy spots such as under logs or in tree wells.  

Thermoregulation may therefore be playing an important role in resting spot choice.   

Finally, we note several caveats and assumptions.  First, our choices of 1- and 10-m radius of 

snow cover around hares might not represent the spatial scale of perceived colour contrast for hares 

and/or their predators.  We did not consider larger areas than 10-m radius for estimating colour 

contrast based on the assumption that visual detection of hares by predators at such scales was 

unlikely in these relatively dense forests.  Second, because little is known about the drivers of the 

circannual rhythm of the moult, our measurements of moult regulators (e.g. snow cover, cumulative 

sum of temperature degree days) may not capture the correct regulators of colour moult phenology 

in the wild.  Likewise, hares may be pursuing behavioural strategies to reduce colour contrast that we 

did not measure.  Hares and many of their predators are primarily crepuscular and nocturnal, and 

thus hares could be deploying anti-predatory strategies that minimize colour contrast during the 

main periods of activity.  For example, hares could be foraging during the night preferentially at 

areas that match their coat colour or they could be modifying their FID in response to colour 

contrast during those times of the day.  Finally, our use of human observers as a proxy for predators 

assumes that FID response to humans is the same as to hares’ natural terrestrial predators.   
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Nevertheless, across multiple years, two study sites, a wide range of snow conditions, and 

nearly 200 hares monitored in the wild, we find no evidence that hares perceive coat colour 

mismatch and act to shift concealment or flight behaviours or immediate microsite choice.  We also 

confirm that moult initiation dates are fixed across years of different snowpacks, even as the moult 

phenology is locally shaped within regions by a combination of photoperiod and climate.  Given the 

prospect for substantially decreased snowpack duration in the future due to climate change [13, 40], 

it seems that the most likely avenue for reducing camouflage mismatch or its potential predation 

consequences in local populations is evolutionary shifts in moult phenologies or anti-predatory 

behaviours.  
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Figure 1.  Coat colour phenology, snow cover, and degree days at the Gardiner study site, MT (9/17/2010 – 7/9/2012), with fall seasons 

on the left and spring seasons on the right. (a) Weekly average of observed coat colour of 51 hares (2010 [red], 2011 [black], and 2012 

[blue]). Dotted lines show the results of Bayesian change point analyses, giving the 95% credible intervals for the mean dates of initiation 

and completion of the colour moult for each season each year.  (b) Weekly average of observed snow cover in a 10-m radius around each 

hare.  (c) Degree days as a measure of cooling trend in the fall and warming trend in the spring. 
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Figure 2.  Spring moult phenology reaction norms of hares at the Gardiner study site, MT 

(9/17/2010 – 7/9/2012).  (a) Fall coat colour moult phenologies of six individual hares observed 

over two falls.  (b) Fall (left) moult reaction norms of the individuals shown in panel (a) combined, 

and spring (right) moult reaction norm of one hare observed over two springs. Each coloured line 

represents reaction norms of a different individual in year 2011 (dashed line) and either 2010 or 2012 

(full lines).  
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Figure 3.  Probability of presence of a hare at a resting site with percentage of snow cover at the 

Gardiner and Seeley Lake study sites, MT (9/17/2009 – 7/9/2012).  Dashed lines show 95% 

confidence intervals.  
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ELECTRONIC SUPPLEMENTAL MATERIAL: 

 
S1. Spring 2012 phenology data from Gardiner study site.  Dots represent coat colour 

observations of hares radiocollared during the previous seasons (red dots) and in May and June 2012 

(blue dots).  Vertical black full lines show estimated mean initiation and completion dates with 95% 

credible intervals (dashed black lines) based on the change point analysis.  Dotted black line shows 

estimated slope of the change.    
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S2. Set of best models tested to explain variation in concealment (Conc) for hares at the 

Gardiner and Seeley Lake sites, MT (9/17/2009 – 7/9/2012).  AICcWt stands for AICc weight, 

and LL for log likelihood. 

# Model K AICc Δ AICc AICcWt LL 

1 
Conc ~ Season + Site + Contrast1m 

+ Contrast1m2 
9 2122.85 0.00 0.35 -1052.30 

2 
Conc ~ Season + Site + Contrast 

1m + Contrast 1m2 + Snow10m 
10 2124.70 1.86 0.14 -1052.19 

3 
Conc ~ Season + Site + Contrast 

1m + Contrast 1m2 + Whiteness 
10 2124.77 1.93 0.13 -1052.23 

4 
Conc ~ Season + Site + Contrast 

1m + Contrast 1m2 + Snow1m 
10 2124.77 1.93 0.13 -1052.23 
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S3. Effect of colour contrast within 1-m radius on hares’ concealment at the Gardiner and 

Seeley Lake study sites, MT (9/17/2009 – 7/9/2012).  Relationship is based on coefficients from 

the best model according to AIC (see the electronic supplementary material S4). 
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 S4. Effects of season, site and colour contrast at 1 m (Contrast1m) on concealment (Conc) 

according to the best model.  95% HPD are the 95% highest posterior density intervals for the 

coefficients. Variables with statistically significant effects are identified by two asterisks (**). 

Conc ~ Season + Site + 

Contrast1m + Contrast1m2 Coefficient SD 95% HDP 

Season (spring) -0.13 0.15 (-0.46, 0.099)

Season (summer)**  1.00 0.26 (0.45, 1.47)

Season (fall)**  0.33 0.11 (0.11, 0.54)

Site (Seeley Lake)**  0.43 0.12 (0.23, 0.65)

Contrast1m**  0.0051 0.0021 (0.0012, 0.0092) 

Contrast1m2** -0.000085 0.000026 

(-0.00014, -

0.000036) 
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S5. The best models tested to explain variation in FID for hares at the Gardiner and Seeley 

Lake sites, MT. Conc is concealment. AICcWt stands for AICc weight, and LL for log likelihood. 

# Model K AICc Δ AICc AICcWt LL 

1 
FID ~ Conc + Sex + Site + 

Season + Mismatch10m  
8 1577.35 0.00 0.15 

-

780.42 

2 

FID ~ Conc + Sex + Site + 

Season + Mismatch10m + 

Snow1m 

9 1577.63 0.27 0.13 
-

779.48 

3 
FID ~ Conc + Sex + Site + 

Season + Contrast1m 
7 1577.99 0.64 0.11 

-

781.79 

4 
FID ~ Conc + Sex+ Site + Season 

+ AbsMismatch10m  
7 1578.62 1.27 0.080 

-

782.11 

5 

FID ~ Conc + Sex+  Site + 

Season + AbsMismatch10m + 

Snow1m 

8 1578.69 1.34 0.080 
-

781.08 

6 

FID ~ Conc + Sex + Site + 

Season + Mismatch10m + 

Whiteness 

9 1579.28 1.93 0.060 
-

780.31 
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S6. Effects of concealment (Conc), sex, site, season, and colour mismatch at 10-m radius 

(Mismatch10m) around hares on flight initiation distance (FID) according to the best 

model.  Variables with statistically significant effects are identified by two asterisks (**). 

 Model: FID ~ Conc + Sex + Site 

+ Season + Mismatch10m 

Hazard 

Ratio P-value 95% CI 

Conc** 1.26 0.00059 (1.10, 1.44)

Sex (female) 1.06 0.73 (0.77,1.45)

Site (Seeley Lake)** 1.89 0.0054 (1.21, 2.97)

Season (spring) 0.88 0.64 (0.53, 1.47)

Season (summer)** 0.21 0.00054 (0.086, 0.51) 

Season (fall) 1.17 0.54 (0.71, 1.95)

Mismatch10m (positive) 1.62 0.14 (0.85, 3.07)

Mismatch10m (negative)** 5.62 0.0014 (1.95, 16.18) 
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Title: High fitness costs of seasonal camouflage mismatch in snowshoe hares suggest future 
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Abstract:  Reduction in snow duration represents a direct potential stressor for species undergoing 

seasonal color molts.  Over 3 widely disparate snow years in 2 study regions, we found high fitness 

consequences of color mismatch for wild snowshoe hares, with weekly individual survival rates 

reduced by 3-7%.  In the absence of adaptive changes in the molt phenology, by midcentury these 

fitness costs coupled to decreasing duration of snow season are projected to decrease annual survival 

by 12% by mid-century and 24% by late-century.  Such changes in survival are sufficient to cause 

increasing hare populations to decline strongly towards extinction, with annual population geometric 

growth rate decreasing by 11% (24%) by mid (late) century.  While we establish color mismatch as a 

powerful case for joint attribution of biological consequence to anthropogenic climate change, we 

also find high individual variation in the trait that might enable microevolutionary response to future 

seasonal mismatch. 

One Sentence Summary: Climate change-induced seasonal camouflage mismatch is projected to 

decrease annual survival and population growth rates by about a quarter by the end of the century. 

Draft manuscript for Science 
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MAIN TEXT 

Duration of seasonal snow cover on earth is rapidly decreasing as a result of anthropogenic 

greenhouse gas emissions, with later onset of snow in the fall and earlier loss of snow in the spring 

(1, 2).  For at least 10 mammal species occupying ecosystems with seasonal snow cover, color 

molting from brown to white presumably provides background matching, a form of camouflage that 

minimizes color contrast between the animals and their surroundings to avoid predator detection.  

Photoperiod-induced change of seasonal coat color, and subsequent mismatch in the face of 

decreasing snowpack, could be expected to have strong fitness consequences for individuals and 

populations as white prey species become increasingly exposed to brown snowless backgrounds in 

the future (3).  

Individual and population fitness costs have rarely been quantified for any climate-induced 

phenologic mismatch (4-6) and may be especially severe for snowshoe hares (Lepus americanus), where 

predation comprises 85- 100% of mortality (7) and shapes both population dynamics and behaviors 

(8, 9).  Further, we previously found minimal plasticity in molt phenology to track seasonal 

snowpack or in anti-predatory behaviors to minimize camouflage mismatch (10) for 2 snowshoe 

hare populations, implying a 4-8 fold increase in color mismatch by the end of the century as snow 

cover decreases under various climate scenarios (3).  Because seasonal coat color mismatch occurs at 

local spatial scales and is not confounded by interactions with other anthropogenic stressors or by 

organism mobility or life cycle complexities, this trait lacks the controversial aspects of joint 

attribution (11-14); in this case the trait serves as a strong test of whether a clear anthropogenic 

climate change stressor (decreased snow duration) results in detection of a biologically critical impact 

(increased mortality) in a wild population.  

Here, we quantify individual and population consequences of color mismatch using weekly 

observations on 186 radiocollared hares over 3 years at 2 sites separated by >300 km in the US 
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Northern Rockies.  First, we describe the individual variation in the coat color molt phenology and 

consequent color contrast between hares and their surroundings.  Second, we quantify the survival 

costs of increased color contrast using several different hypotheses.  Next, we project future survival 

and population growth rates, given the estimated fitness costs of color contrast and future snow 

cover reductions under a scenario without future plasticity or microevolution to reduce mismatch or 

its consequences.  Lastly, we discuss the potential of microevolutionary response to rescue hares 

from the dire climate change consequences. 

Individual variation 

Within-population individual variation in seasonal color molt phenology, and resulting 

mismatch with the background, was considerable (15-17).  On average, for 7 weeks out of a year we 

found >50% differences in percent white of coat color among individuals sampled in one week.  

Anecdotally, in the field it was not uncommon on the same day and site to observe hares with the 

full range of coat colors, ranging from just initiating the molt to almost completely color changed.  

When combined with mean snow cover at each site, the individual variation in coat color phenology 

resulted in individual variation in color contrast [difference between % white of an individual and % 

coverage of snow cover (18)], with maximum weekly difference in color contrast among individuals 

exceeding 50% for on average 4 weeks out of a year.   

Survival cost of mismatch 

To assess the mortality consequences of increased color contrast, we tested a series of a priori 

hierarchical known fate survival models (table S1).  First, we predicted that hares with higher color 

contrast each week will have lower survival.  This prediction was highly supported, providing strong 

evidence for decreased survival for individuals in weeks when they were highly contrasted with 

background color.  According to this model, annual and weekly survival probability at the two sites 
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was 0.10 (SD= 0.026) and 0.96 (SD= 0.0050), respectively, and the effect size of color contrast on 

survival was -0.95 [95% CRI= (-1.82, -0.035)] on the logit scale (Fig. 2, Table 1).  Such effects 

indicate that during weeks when hares are color mismatched (color contrast >60%) weekly survival 

probability proportionally decreases by 3.27- 6.53%.   

Second, we tested whether hares that have higher lifetime propensity to be color contrasted 

with their background (= higher average color contrast during each hare’s monitoring period) have 

lower survival.  Interestingly, an individual’s color contrast propensity had no effect on hares’ 

survival, likely because most of the time hares were not mismatched with their background and thus 

contrast propensity index was similarly very low for all hares (Table1).   

Next, we predicted lower survival during weeks of high population color contrast (= average 

weekly color contrast of all individuals at each site) than during weeks when hares match their 

background.  We found some support for negative effect of population color contrast on weekly 

survival (Table 1, fig. S2).  This population contrast has lower explanatory power than weekly 

individual color contrast, probably because of the large individual variation in color contrast, with 

some hares almost 100% contrasted to their surroundings while others match perfectly on the same 

week (Fig. 1).  Further, population color contrast exceeded 60% for only 1 week out of a year on 

average. 

Lastly, we tested whether hares’ survival was higher during years with snow conditions most 

similar to the recent past.  Coat color molt phenology of hares is locally shaped by latitude and 

elevation and corresponding snow conditions (17, 19).  Thus, we predicted higher survival in years 

closest to historic mean snow phenology.  Specifically, we predicted that hares would have the 

highest survival in 2012 as the snow conditions were most similar to the climatic mean of recent past 

(1970- 1999) in terms of both snow cover duration and snow water equivalent (SWE) (3).  However, 

the amount of color contrast did not vary between years with widely varying snowpacks (P2011= 
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0.066, P2012= 0.11), and we did not find differences in survival across years (Table 1) (18).  We 

suggest that the high level of individual variation in the molt phenology maintains constant annual 

survival even in years when snow conditions vary considerably from the climactic mean.  If natural 

selection directionally selects for individuals having shorter periods with white coats, thereby 

decreasing population-level variation in the trait, then the loss of among-year buffering may make 

populations more vulnerable to extreme weather events with long snow seasons. 

Next, we further explored the effects of color contrast in relation to other covariates 

possibly affected or complemented by color contrast.  We first tested for effects of 4 seasons 

(winter, spring, summer, fall) and month, because hare survival has been shown to vary over the 

year, with lowest survival during the spring and fall periods of color contrast occurrence (9).  We 

found weekly survival to be fairly high and stable during the winter, dropping sharply in April and 

May, and steadily increasing over the summer before peaking in the fall (fig. S3).  When we included 

individual weekly color contrast in the univariate model with month, color contrast had a strongly 

negative effect on survival and improved model by providing additional explanatory power to the 

temporal variation in survival (Table 1).  Although seasonal changes in predation pressure and food 

types likely contribute to the spring survival decrease, coat color contrast evidently plays a 

substantial role as well.  First, the two months associated with lowest survival in spring are those 

with highest color contrast.  Also, the strong individual fitness costs associated with hares of 

changing color contrasts monitored through these same months support contrast per se as a driver of 

decreased spring survival.  Next, the univariate model with 4 seasons provided some evidence that 

color contrast negatively affects hare survival, despite the peak in hare survival in the fall during 

which hares also experience color contrast.  The basis of the increased survival in the fall remains 

unclear, but apparently other biological mechanisms, including top-down (e.g. predation) and 

bottom-up (e.g. foraging) dynamics, overwhelm the signal of color contrast.  
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Lastly, based on findings that males retain the white coat longer than females (3, 15, 16), 

which in turn might produce fitness differences between the sexes, we tested for an additive effect 

of sex and weekly individual color contrast on hares’ survival.  We did not find evidence for males 

having lower survival, but again, individual weekly color contrast was strongly negative in the model 

(Table 1).  

Future survival and population growth rate projections 

Because this phenologic mismatch lacks the confounding alternative anthropogenic factors 

that often cloud the connection between a climate forcing and biological effect, a pressing question 

relevant to policymaking is how increased anthropogenic climate forcing in the future would affect 

snowshoe hares in the future, assuming coat color phenology remains as it is currently.  Without 

adaptive shifts in the molt phenology or its phenotypic plasticity, projected consequences for hare 

populations will be considerable.  Using our field-estimated effect size of color contrast on survival 

(18), we find a steep survival decrease as current coat color phenology confronts additional weeks of 

color contrast in the future (Fig. 3).  We have shown previously that hares will confront decreased 

snowpack duration that will increase their mismatch (color contrast >60%) by up to 4 additional 

weeks by mid-century and up to 9 additional weeks by the end of the century (3).  With this many 

more weeks of mismatch, we project that annual survival would proportionately decrease by 12% by 

mid-century and by 24% by late century (Fig. 3).   

A related way to envision the consequences of increased mortality due to mismatch is at the 

population level, where λ represents both the annual geometric growth rate and the population mean 

fitness (20-22).  Again, assuming current molt phenology unchanged into the future, we can extend 

our measured costs of mismatch on weekly survival rate to projected future changes in λ.  We 

decremented spring and fall survival rates based on the cost of mismatch for the predicted increase 

in number of weeks of mismatch (3) and projected them through a matrix population model along 
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with other previously field-estimated vital rates for an adjacent snowshoe hare population (18).  The 

population growth rate for that baseline hare population went from strongly increasing (λ=1.14) to 

nearly stationary by mid-century (an 11 % decrease in annual growth rate).  By late century this 

population would be catastrophically declining, experiencing a 24% decrease to λ=0.87.  Thus, 

despite the fact that the demographic cost of mismatch is only relevant for a few weeks per year, its 

severe mortality consequences and the expected longer duration of mismatch in the future imply 

serious effects that would cause healthy, growing populations to decline towards extinction.  

Potential role of natural selection 

Importantly, future population dynamics consequences could be ameliorated if natural 

selection acts to minimize color mismatch either through shifting molt phenology or increasing its 

plasticity.  Documented strong selection on coat color leading to cryptic background matching (23) 

and recurrent evolution of seasonal camouflage in seasonally variable environments suggest high 

potential for microevolutionary change in response to color mismatch.  Further, selection on body 

color has been recently demonstrated in tawny owls (Strix aluco), probably  in response to altered 

snow conditions by climate change, although the fitness advantages of the color morphs are unclear 

(24).   

The color contrast regression coefficient from the univariate survival model with individual 

contrast can also be interpreted as a directional selection coefficient on the trait (25).  The negative 

value of -0.95 (Table 1) of color contrast on survival indicates strong selection for decreased color 

contrast in hares and its magnitude is particularly striking when compared to other selection 

coefficients documented in natural populations with a median strength of absolute value of 0.16 (26, 

27).  Further, if the observed phenotypic variation between individuals is a result of heritable genetic 

variation, natural selection for reduced mismatch could occur.  Whether and how much of the 

variation in molt phenology is heritable remains unknown, but limited captive studies indicate a 
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strong genetic component of the molt phenology (16).  Further, snowshoe hares (and other species 

with seasonal molts) show geographic variation in the occurrence and timing of seasonal coat color 

molts, indicating local adaptation to regions with less predictable winter snow (28, 29). 

In short, in the emerging framework for identifying vulnerability to evaluate conservation 

responses to climate change (30) we can now state with high certainty that snowshoe hares (and 

likely other seasonal coat color changing species) will have substantial exposure to decreased 

snowpack as an anthropogenic stressor, and that sensitivity to this exposure is high in the form of 

decreased survival, population mean fitness, and population growth rate.  Although we find ample 

material on which natural selection could act to ameliorate fitness consequences of coat color 

mismatch, a deep understanding of the genomic basis of seasonal coat color change is required to 

determine adaptive capacity, or the potential for evolutionary rescue, in the face of rapid 

anthropogenic climate change. 
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Table 1.  Results from 11 a priori models used to assess the survival costs of seasonal color contrast.  Models are ordered by Δ DIC (DIC= 1 

Deviance Information Criterion; an estimate of expected predictive error analogous to frequentist Δ AIC).  Covariate coefficients are the 2 

regression coefficients from the model reported on the logit scale.  When only one coefficient is reported for a multivariate model, it is for 3 

the color contrast covariate.  95% CRI are the 95% credible intervals analogous to frequentist confidence intervals. Bolded model 4 

represents the selection coefficient of color contrast on survival. 5 

 6 

# Survival model Δ  DIC DIC 
Covariate 
coefficient 

95% CRI 

11 S = Month + Individual contrast 0.0 943.6 -1.21 (-2.22, -0.12) 
10 S = Month 2.6 946.2 - - 

6 S = Season 18.9 962.5 

 0.68 SeasonSummer (0.11, 1.30) SeasonSummer 

 1.14 SeasonFall (0.60, 1.69) SeasonFall 

 0.84 SeasonWinter (0.39, 1.29) SeasonWinter 
7 S = Season + Individual contrast 19.0 962.6 -1.00 (-2.07, 0.14) 
9 S = Constant 24.5 968.1 - - 
2 S = Individual contrast 25.4 969.0 -0.95 (-1.82, -0.035) 
3 S = Population contrast 25.5 969.1 -0.70 (-1.65, +0.37) 
4 S = Individual contrast propensity 28.5 972.1  0.93 (-3.58, 5.64) 
1 S = Site 30.5 974.1  0.004 (-0.54, 0.52) 

5 S = Year 35.5 979.1 
 0.13 Year2011 (-0.65, 0.84) Year2011 

-0.32 Year2012 (-1.09, 0.38) Year2012 

8 S = Sex + Individual contrast 278.5 1222.1
 0.15 SexMale (-0.23, 0.54) SexMale 

-0.95 Contrast (-1.80, -0.02) Contrast 
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 7 

8 
Fig. 1.  Mean estimated individual color contrast of radiocollared snowshoe hares from August 2010 9 

to July 2012 at Gardiner, MT (A) and from August 2009 to June 2012 at Seeley Lake, MT (B).   10 
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 11 
Fig. 2.  Effects of individual color contrast on weekly snowshoe hare survival probability as 12 

estimated by a univariate model including individual contrast (Table 1).  Dashed lines indicate 95% 13 

credible intervals.  The effect size was extrapolated across the entire range of color contrast. 14 
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 15 
Fig. 3.  Simulated snowshoe hare annual survival probability under different color contrast 16 

scenarios.  Full lines represent mean annual survival and dashed lines 95% credible intervals.  17 

Different colors indicate different degrees of weekly individual color contrast.   18 
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Materials and Methods 20 

Figures S1-S3 21 

Table S1 22 

References (30-37) 23 

MATERIALS AND METHODS:  24 

Study Area 25 

We conducted our research in two areas in Western Montana, separated by about 330 km: 26 

Seeley Lake study site [used in (3)] in the Lolo National Forest (Morrel Creek drainage) and Gardiner 27 

study site in the Gallatin National Forest (Bear Creek drainage).  The Gardiner study site is about 28 

twice as high in elevation (2400 to 2700 m ASL) as the Seeley Lake study site (1300 to 1450 m ASL).  29 

This elevational difference leads to cooler temperatures and longer duration of snow cover in the 30 

Gardiner study site; continuous snowpack persists at the Gardiner site from late October until May 31 

at the Gardiner site (31) and from December to April at the Seeley Lake site (3).  The Seeley Lake 32 

site (Lat.= 47.23, Long.= -113.43) is 240 km further north than the Gardiner site (Lat.= 45.08, 33 

Long.= -110.57).  34 

Both areas have little to no permanent human habitation, with moderate logging being the 35 

primary land use.  The Seeley Lake study site is characterized by alternating 2.6 km2 sections of clear 36 

cuts and mildly thinned to mature closed stands that create heterogeneous hare densities and 37 

population growth rates (9).  Large portions of the Gardiner study site contain thinned forest stands 38 

resulting from extensive timber harvest during the 1940s and 1970s (31), with the rest of the site 39 

characterized by mature forest types.   40 
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Dominant tree species at both areas include Lodgepole pine (Pinus contorta), Douglas fir 41 

(Pseudotsuga menziesii), subalpine fir (Abies lasiocarpa), Engelmann spruce (Picea engelmannii), and in 42 

Gardiner also whitebark pine (Pinus albicaulis).  The common hare predators at both sites include 43 

Canada lynx (Lynx canadensis), bobcat (L. rufus), coyote (Canis latrans), red fox (Vulpes vulpes), 44 

American marten (Martes americana), great horned owl (Bubo virginianus), northern goshawk (Accipiter 45 

gentilis), and red-tailed hawk (Buteo jamaicensis). 46 

Capture and handling 47 

 Hares were captured continuously throughout the year in live traps (Tomahawk Live Trap 48 

Company, Tomahawk, WI), then eartagged, weighed and sexed.  Hares weighing > 900 g were fitted 49 

with VHF radiocollars (Wildlife Materials, Murphysboro, IL) equipped with mortality sensors.  The 50 

radiocollars weighing < 40 g were below the well-accepted radiocollar threshold of 5% of the 51 

animal’s body weight (32).  All handling procedures were approved by the University of Montana 52 

Animal Care and Use Committee (Protocol No. 021-10SMWB-051110).  53 

Survival and color contrast monitoring 54 

We monitored weekly survival status using radiotelemetry of a total of 186 radiocollared 55 

hares, including 136 in the Seeley Lake study site from July 4, 2009 to June 16, 2012 and 50 in the 56 

Gardiner study site from August 8, 2010 to June 16, 2012.  When a mortality signal was detected, the 57 

individual was located to determine the cause of death.  We confirmed 124 (67% of total) predation 58 

related mortalities.  Mortalities within 10 days of capture or obviously not caused by predation (i.e. 59 

hare body found intact) were right censored (24 individuals).  An additional 17 individuals were right 60 

censored due to radiocollar failure or permanent emigration out of the study area.  61 

We attempted to visually locate all hares once a week using radiotelemetry to quantify coat 62 

color phenology and color contrast between hares and their surroundings at the two sites following 63 
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the methods of Mills et al. (3).  The percentage of white coat colour (% hare whiteness) and the 64 

percentage of ground snow cover within 10-m radius circle centred at each hare’s resting spot (% 65 

snow cover) were visually estimated in 20% increments with a standardized protocol of observation 66 

and photographs to control for light conditions and distance.  Animals that just initiated or nearly 67 

completed the moult were classified as 5% or 95% white.  All final percentages were visually 68 

estimated by a single observer using primarily the photographs, and secondarily the field visual 69 

estimates when the quality of the photograph was insufficient, did not show the whole hare’s body, 70 

or the photograph was absent.  We measured colour contrast as the difference between the percent 71 

of white coat colour and the percent of snow cover.  We considered a hare mismatched when this 72 

difference was > |60|% [see (3) for consideration of other thresholds], as at this threshold hares 73 

began to clearly stand out against their surroundings. 74 

We used t-tests to test whether the degree of variation in coat color varied between the 2 75 

populations of snowshoe hares and between the fall and spring seasons, assuming unequal variance 76 

between two samples.  Linear univariate regression models with year as a covariate were used to test 77 

whether the variation in coat color and the amount of color contrast varied between the three years. 78 

We found that the degree of variation was equal between the populations (P= 0.48), seasons (P= 79 

0.11), and across the 3 years (P2011= 0.32, P2012 =0.63).   80 

Statistical Analysis 81 

Color contrast modeling 82 

 Because we could not quantify coat color of each hare every week, we modeled missing 83 

observations of  coat color using  a logistic growth model and subsequently derived molt initiation, 84 

completion date and rate of molt for each hare.  A fixed effect year was incorporated to allow for 85 

years to vary.  Weekly individual color contrast was calculated as the absolute difference between the 86 
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individual’s coat color and a weekly mean snow cover at each site.  Weekly mean snow cover was 87 

calculated from all snow cover observations collected during that week in a 10-m radius circle 88 

around each observed hare at the respective site.  Color contrast was defined on an absolute scale to 89 

allow estimation of mortality costs for both brown hares on white snowy backgrounds and white 90 

hares on brown backgrounds.  We also calculated weekly population color contrast as the average of 91 

all individual color contrasts at each site each week.  Lastly, we calculated color contrast propensity 92 

as a measure of an individual’s tendency to be contrasted with its background by averaging all the 93 

modeled weekly color contrasts experienced by each animal.   94 

Survival analysis 95 

To quantify the effects of color contrast on hares’ survival, we tested a series of a priori 96 

hierarchical known fate survival models (table S1).  We first tested whether the mean survival of the 97 

two study populations (Seeley Lake and Gardiner) is equal by including study site as a categorical 98 

covariate.  We found negligible differences in survival between the Seeley Lake and Gardiner 99 

populations (Table 1), allowing us to pool all 186 individuals together for the rest of the analyses.  100 

Next, we tested the hypothesis that color contrast negatively affects hares’ survival using four 101 

different univariate models.  First, we incorporated the model estimating weekly varying individual 102 

color contrast with its associated variance into the hierarchical survival model.  Second, we included 103 

weekly varying population color contrast (= weekly mean of all hares within a site).  Third, we 104 

included individual’s color contrast propensity (= the mean individual’s weekly color contrasts 105 

during each individual’s monitoring period).  Lastly, we included categorical variable year (2010, 106 

2011, and 2012) as a proxy for different snow conditions. 107 

Next we tested a set of models including covariates that are potentially affected or 108 

complemented by color contrast (= month, season, and sex).  Month was included as a random 109 

effect.  Season was a categorical covariate differentiated separately for the two sites based on local 110 
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climate (Seeley Lake: winter [Dec- Mar], spring [Apr- May], summer [Jun- Aug], fall [Sep- Nov]; 111 

Gardiner: winter [Nov- Apr], spring [May- Jun], summer [Jul- Aug], fall [Sep- Oct]).  Lastly, we 112 

included weekly color contrast to each of these three models and determined using deviance 113 

information criterion (DIC; Bayesian equivalent to AIC) (33), whether color contrast provided 114 

additional explanatory power to the variation in survival.   115 

All the hierarchical known fate survival models had linear predictors of the form: 116 

                             	 , β β , ∗ , ⋯ γ                                  (1) 117 

Where phi is the expected monthly survival estimate given the covariate x and the estimated effects 118 

β and γi is an individual level random effect.  Error was assumed to be distributed according to a 119 

Bernoulli distribution.  We included an individual level random effect to account for the repeated 120 

measures design and a lack of independence among individuals (34).  Modeling at the individual level 121 

allowed us to account for staggered entry and right censoring of individuals.  The model was fitted 122 

within a Bayesian framework which eased implementation of random effects and the simultaneous 123 

modeling of missing covariate values and derived parameters.  We obtained posterior distributions 124 

along with their 95% credible intervals (CRI) using Markov chain Monte Carlo (MCMC) methods 125 

(35).  Uniform priors were implemented on all parameters so that the inference was dominated by 126 

the information in the data.  Convergence was assessed using the Gelman and Rubin potential scale 127 

reduction statistic   (36) and visual inspection of the plotted chains and posteriors.  The  values 128 

were ≤ 1.1 for all parameters after running three parallel chains of length 100,000 and discarding the 129 

first 50,000 as burn-in.  We thinned such that every 10th observation was retained for parameter 130 

estimation.  All continuous variables were centered and scaled.  All analyses were conducted in 131 

JAGS software (37), run from R 2.15.2 (R Development Core Team, 2012) via the R2jags package 132 

(38). 133 
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Future survival simulations 134 

 We simulated future annual survival rates under different color contrast scenarios.  Survival 135 

estimates were calculated by sampling the posterior distributions of the estimated slope and 136 

intercept of color contrast from the survival model including weekly individual color contrast 137 

(model # 2, Table 1) in the following way:  138 

       	 β β ∗ weekly	color	contrast                (2) 139 

Annual survival rates were obtained by multiplying weekly survival estimates; for each future color 140 

contrast scenario we modified the number of weeks of the year with no color contrast and either 20, 141 

40, 60, 80, or 100% contrast.  The resulting survival rates were then plotted along with their credible 142 

intervals.  The credible intervals resulted from sampling the posterior distributions of the estimated 143 

parameters. 144 

Future population growth rate projections 145 

Next, we used the survival rates calculated in the previous section to estimate proportionate 146 

reduction in weekly survival due to mismatch by dividing weekly survival when color contrast is 0% 147 

by weekly survival rate when color contrast is 60%.  This reduction value represents a decrement in 148 

weekly survival for each additional week in the future where absence of snow leads to color contrast 149 

of 60%, the lowest contrast at which we consider hares to appear mismatched.  We note that this 150 

decrement is conservative, because for some weeks with no snow hares will reach color contrast 151 

>60%, and survival costs also occur when color contrast is <60%. 152 

   We predicted hares to experience more weeks of mismatch in the future, with 1.3 additional 153 

weeks of 60% color contrast in the fall and 2.4 weeks in the spring at mid-century and 2.6 additional 154 

weeks in the fall and 5.9 weeks in the spring by late century using the emission scenario 8.5 (3).  155 

Seasonal survival rates at mid-century and late-century were calculated for juveniles and adults by 156 

exponentiation of weekly survival rates under 0% and 60% contrast by their respective predicted 157 
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number of weeks at mid-century and late century.  Baseline vital rates (stage-specific reproduction 158 

and seasonal survival) and an associated matrix population projection model were based on a hare 159 

population monitored 1999- 2002 within 20 km of the Seeley Lake population in the current study 160 

(9), with λ = 1.14.  To calculate λ for the future time periods we projected the population matrix 161 

retaining these baseline vital rates, but replacing juvenile and adult spring and fall survival rates with 162 

the projected seasonal survival rates for mid- and late century. 163 
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 164 

 165 

Fig. S1:  Individual molt phenology from August 2010 to July 2012 at the Gardiner, MT (top) and from August 2009 to June 2012 at the 166 

Seeley Lake, MT (bottom) study sites.  Each colored line represents modeled phenology of a different individual. 167 
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Fig. S2.  Effects of population color contrast on weekly survival probability as estimated by 

a univariate model including population contrast (Table 1).  Dashed lines indicate 95% 

credible intervals.  The effects size was extrapolated across the entire range of color contrast.
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Fig. S3.  Monthly survival averaged over 3 years at both sites as estimated by the model 

including month as a random effect.  Dashed lines represent 95% credible intervals of the 

estimated survival probability.  
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Table S1.  11 a priori models testing specific predictions to assess the fitness costs of 

seasonal color contrast.  

# Survival model Prediction 

1 S = Site Hares’ survival will differ between the two populations. 

2 S = Individual contrast 
Hares’ survival will be lower when individuals have higher color 
contrast. 

3 S = Population contrast Hares will have lower survival during weeks of high color 
contrast. 

4 
S = Individual contrast  
propensity 

Hares with higher color contrast propensity will have lower 
survival. 

5 S = Year 
Hares will have lower survival when snow conditions differ from 
the climatic mean. 

6 S = Season Hares’ survival will be lower during spring and fall. 

7 S = Season + Individual 
contrast 

Hares’ survival will be lower during spring and fall and when 
individuals have higher color contrast. 

8 S = Sex + Individual contrast 
Hares’ survival will be lower for males and when individuals have 
higher color contrast. 

9 S = Constant Hares’ survival will be constant over time. 

10 S = Month Hares’ survival will vary monthly. 

11 S = Month + Individual 
contrast 

Hares’ survival will vary monthly, and will be higher when 
individuals have higher color contrast. 

 
 
 
  



65 
 

APPENDIX A 
 
Title: Camouflage mismatch in seasonal coat color due to decreased snow duration  

Authors: L. Scott Mills1, Marketa Zimova1, Jared Oyler2, Steven Running2, John 

Abatzoglou3, Paul Lukacs1  

Affiliations:  

1 Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, 

University of Montana, Missoula, Montana. 

2 Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, 

Montana. 

3 Department of Geography, University of Idaho, Moscow, Idaho. 

 

Corresponding Author: L. Scott Mills;  Wildlife Biology Program, Department of 

Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana .   

Phone: (406) 243-5552.  

Email:  LScott.Mills@umontana.edu 

 

Classification: Biological Sciences 

Minor categories: Environmental Sciences;  Ecology 

 

Proceedings of the National Academy of Sciences of the United States of America 

110, 7360 (2013).



66 
 

Abstract:  Most examples of seasonal mismatches in phenology span multiple trophic levels, 

with timing of animal reproduction, hibernation or migration becoming detached from peak 

food supply.  The consequences of such mismatches are difficult to link to specific future 

climate change scenarios because the responses across trophic levels have complex 

underlying climate drivers often confounded by other stressors.  In contrast, seasonal coat 

color polyphenism creating camouflage against snow is a direct and potentially severe type of 

seasonal mismatch if crypsis becomes compromised by the animal being white when snow is 

absent.  It is unknown whether plasticity in the initiation or rate of coat color change will be 

able to reduce mismatch between the seasonal coat color and an increasingly snow-free 

background.  We find that natural populations of snowshoe hare exposed to three years of 

widely varying snowpack have plasticity in the rate of the spring white-to-brown molt, but 

not in either the initiation dates of color change or the rate of the fall brown-to-white molt.  

Using an ensemble of locally downscaled climate projections, we also show that annual 

average duration of snowpack is forecast to decrease by 29-35 days by mid-century and 40 - 

69 days by the end of the century.  Without evolution in coat color phenology, the reduced 

snow duration will increase the number of days that white hares will be mismatched on a 

snowless background by 3 – 8 fold.  This novel and visually compelling climate-change 

induced stressor likely applies to >9 widely distributed mammals with seasonal coat color. 
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INTRODUCTION 

Shifts in annual timing of life history events are a common response of plant and 

animal populations to climate change (1, 2).  In many cases these phenological shifts span 

multiple trophic levels, creating mistiming as animal reproduction (3), hibernation emergence 

(4, 5) or migration (6) become detached from peak timing of food or habitat structure (7).  

The consequences of such mismatches are difficult to link to specific outcomes under future 

climate change because the multi-trophic level responses have complex underlying climate 

drivers that are often confounded by other anthropogenic stressors.   

A much more direct phenological mismatch could occur for the 9 or more widely 

distributed mammal species that molt seasonally from brown to white so that coat color 

tracks the presence of snow (Fig. 1).   A decrease in the number of days with seasonal snow 

on the ground is one of the temperate region’s strongest climate change indicators (8, 9).  

Because the circannual seasonal color polyphenism is likely regulated by photoperiod (10), 

an inflexible pattern of coat color change in the face of shortened snow seasons would 

presumably lead to increased mismatch between a winter white coat and a non-snowy 

background.  In the same way that cases of mismatch in animal camouflage are high profile 

(e.g. [11]), seasonal coat color mismatch produces a striking visual metaphor for direct 

effects of climate change (Fig. 2).  This novel form of phenological mismatch due to climate 

change also leads to immediate implications for fitness and population persistence because 

coat color matching in mammals is known to be a critical form of crypsis from visually 

hunting predators (12). 

We investigated whether current levels of plasticity in the initiation or rate of coat 

color change would be able to reduce mismatch between the seasonal coat color and an 

increasingly snow-free background expected in the future.  Our target organism was wild 
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snowshoe hares (Lepus americanus), a member of the most widespread genus showing 

seasonal coat color change (Fig. 1).  Snowshoe hares are a key prey item in northern North 

America food webs and an essential prey for the U.S. Threatened Canada lynx (Lynx 

canadensis), making it an appropriate focal species for understanding functional mismatches 

among interacting species under climate change (13).  Both individual behaviors and 

population dynamics of hares are overwhelmingly shaped by predation, which comprises 85-

100% of mortality in different regions and different years (14).  For example, hares move 

less and die more when illuminated to predator under a full moon on snow (15), and they 

tend to avoid risky canopy gaps within closed forests (16).  At the population level, 

differences in adult survival in different stand structure types are sufficient to dampen 

population cycles in their southern range (17, 18). 

 The pervasive influence of predation on hares implies strong selection on their 

cryptic coloration (19) and against sustained seasonal mismatch in coat color (17, 20).  

Indeed, naturalists have long noted the remarkable concordance between phenology of hare 

seasonal coat color change and the presence of snow across elevational, latitudinal, and 

seasonal gradients (21-23).   

 Although local adaptation to reduced snow through natural selection is possible for 

any trait enduring a phenological mismatch, the most immediate adaptive solution to 

minimize seasonal color mismatch is through plasticity (3, 6, 24).  For example, male rock 

ptarmigan (Lagopus mutus) exhibit behavioral plasticity to reduce conspicuousness by soiling 

their white plumage after their mates begin egg-laying in spring, a phenomenon likely 

underlain by tradeoffs between sexual selection and predation risk  (25).   A more direct 

avenue for plasticity to reduce mismatch when confronted by reduced snow duration would 

arise from plasticity in the initiation date or the rate of the seasonal coat color molts.  It is 
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not known how much plasticity exists in these traits, nor how much seasonal color mismatch 

is expected in the future as snow cover lasts a shorter time in the fall and spring.  

 An evaluation of plasticity in response to changing snow conditions requires that the 

seasonal coat color trait be exposed to a wide range of snowpacks representative of past 

extremes and applicable to the future. We took advantage of a serendipitous triplet of 

consecutive winters (2010-12) at our U.S. Northern Rockies study site in western Montana 

that spanned among the shortest and longest snow years in the recent past.  We monitored 

148 different snowshoe hares over the study period (43 different hares in 2010, 63 in 2011, 

and 58 in 2012), using radiotelemetry to locate hares weekly to quantify coat color phenology 

and the snow around each hare (see Methods and Materials).  The percentage of white color 

of hares and the percentage of snow cover within 10-m of each hare were quantified in 20% 

increments with a standardized protocol of observation and photographs.  We classified 

animals that just initiated or nearly completed the molt as 5% or 95% white; rate of molt was 

based on the number of days between the initiation date and completion date.   A hare was 

considered mismatched when the contrast between its coat color and background was at 

least 60% [mismatch = (hare % white - ground % white) ≥ 60%].  

We used a repeated-measures change point analysis (26) to estimate the population 

mean initiation and completion dates of hare coat color change for each of the three years 

(see Materials and Methods).  Bayesian credible intervals (analogous to frequentist 

confidence intervals) for the initiation and completion date of both spring and fall color 

molts were derived from the change point analysis, providing explicit statistical tests across 

years of the population reaction norm for initiation and rate of coat color change.  Further, 

we used the model to test for other potential modifiers of the circannual coat color rhythm, 

including temperature, percent snow around hares, and gender.  
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To quantify how these three years differed in snow cover and how they compared to 

the recent past and expected future, we developed ecologically relevant downscaled snow 

duration and temperature models applicable to our study area (Methods and Materials).  We 

modeled daily snow water equivalent (SWE) at our site for the recent past (1970-1999) and 

present (2010, 2011, and 2012) using a locally calibrated temperature-index snow model (27).  

The daily temperature and precipitation values needed to drive the model were estimated 

using a topographically-informed interpolation of surrounding weather station observations 

(28).  To quantify the rates of seasonal cooling and warming in the three years, we calculated 

a cumulative sum of degree days below 0⁰C in the fall (Sept- Dec) and above 0⁰C in the 

spring (Mar-Jun).  Annual snow season duration was calculated as the longest annual period 

of temporally continuous snow cover from July to June.   

To assay prospective snow conditions at our study site, we next drove the snow 

model using a change factor approach that perturbs observed interpolated weather station 

data for our site using an ensemble of climate projections.  A total of  19 different climate 

models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) were 

used under two representative concentration pathways (RCP) experiments including 

medium-low (RCP4.5) and high (RCP8.5) forcings (Table S1).  Projected changes in average 

monthly temperature and precipitation, downscaled to our sites, were summarized and 

examined for two future 30-year time periods (“mid-century”=2030-2059; “late-

century”=2070-2099) relative to a recent (1970-1999) baseline.  The snow model was then 

driven separately for each of the 19 models and RCP scenarios producing a total of 38 

different outcomes for both mid- and late-century (Figure S1). 
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RESULTS AND DISCUSSION 

The three sampled years (2010, 2011, and 2012) spanned the range of snowpacks for 

the recent past (1970-1999 baseline) in terms of both number of days with snow on the 

ground (Fig. 3a) and SWE (Fig. 3b).   Furthermore, the range of SWE across these years 

included the expected mean for the mid-century and for one of the two late-century forcing 

scenarios (Figure 3b).  Collectively, the retrospective and prospective snow modeling 

confirms that the three winters we sampled exposed the color polyphenism to drastic 

differences in snow amount and duration that approached the extremes of the recent past 

and to a lesser extent the future.  These field conditions provided a powerful test, for a 

natural population, of the potential for plasticity in the circannual rhythm of coat color molt 

to reduce camouflage mismatch between white hares and increasingly brown backgrounds in 

the fall and spring.  

  Across these three years with vastly different snow conditions, the initiation date of 

the color molts was fixed both in the fall and spring (overlapping Bayesian confidence 

intervals among annual initiation dates across the 3 years; Figs. 4a and S2), consistent with a 

photoperiod driver for this circannual trait (2).  Also, the rate of coat color change (number 

of days between initiation and completion dates) in the fall was fixed (overlapping 

confidence intervals among completion dates; Fig. 4a), taking about 40 days each year for 

hares to transition from brown to white.  In contrast to initiation dates and the fall rate of 

change, plasticity in the rate of color change was apparent in spring (non-overlapping 

confidence intervals among completion dates);  in concert with the substantially longer snow 

season in 2011, hares completed the molt from white to brown 16 days later in 2011 

compared to 2010 (Figs. 3a, 4, S2).   
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The fixed initiation dates of molt, with plasticity only in spring rate of molt from 

white to brown, would result in increased coat color mismatch as snow seasons shorten 

under future climate change.    Our ensemble prospective snow modeling  results indicate 

that, relative to the recent past, for a medium-low (high) emissions scenario, the main winter 

snowpack at our study site will persist for 29 (35) fewer days by the mid-century and 40 (69) 

fewer days by the late-century (Fig. 3a, 5).   Consistent with previous observational and 

sensitivity analyses of North American snow cover (8, 29), this projected decrease in 

snowpack duration is dominated by changes in spring snow cover (Fig. 5). 

Linking this decreased snow duration to our average observed hare phenology and 

conservative definition of mismatch (≥60% difference between hare coat color and snow 

cover) translates the reduced snow days into a measure of future mismatch between white 

hares and brown ground: without an evolved shift in initiation of the seasonal molt, coat 

color mismatch of white hares on brown snowless backgrounds will increase by as much as 

4-fold by the mid-century and by 8-fold by the late-century under the high emission scenario 

(Fig. 5, Table S2). 

 With the expected compromised camouflage due to lack of plasticity in molt 

initiation dates and only limited plasticity in spring rate of color molt, key unresolved 

questions include the environmental variables that underlie the plasticity in the rate of the 

white to brown coat color molt in spring, and more generally the potential to modify the 

circannual rhythm of seasonal coat color molt through genetic and epigenetic mechanisms 

(30). Environmental drivers of the reaction norm of coat color molt are unknown; however 

other circannual processes synchronized by photoperiod may be affected by modifiers such 

as temperature and snow presence (31).  Our simple indices describing temperature and 

snow presence in our natural hare populations appeared to rank consistently with rate of 
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spring molts across the 3 years; for example molt from white to brown was slowest in spring 

2011, which was both the coldest spring of the 3 years and had the longest lasting snowpack 

(Fig. 3, 4).  In the statistical models, however, the biological effects across individuals and 

years for these putative modifiers were relatively small (Materials and Methods).  For the 

coat color phenology model with percent snow as a covariate, a change from 100% to 0% 

snow shifted the average completion date of molt from white to brown by only 4 days.  

Similarly, the coat color phenology model with temperature (degree days) as a covariate 

predicted that the span from 0⁰C to 15.4⁰C (the highest daily average temperature during the 

spring molt period) explains only a 3 day modification of the completion date of molt from 

white to brown.  In comparison to the 16 days difference between completion dates between 

springs 2010 and 2011, these indices appear to be minimally informative as drivers of the 

reaction norm in the rate of spring coat color molt.  Additionally, the rate of molt in the 

spring was slightly influenced by sex, with females completing the spring molt on average 

3 d earlier than males.  Previous studies have similarly suggested faster color molt for 

females (32, 33).  

As a threshold trait with distinct initiation and rate components that determine 

crypsis, coat color mismatch is a more direct climate change-induced phenological stressor 

than the trophic-level asynchronies usually discussed.  The compelling image of a white 

animal on a brown snowless background can be a poster child for both educational outreach 

and for profound scientific inquiry into fitness consequences, mechanisms of seasonal coat 

color change, and the potential for rapid local adaptation.   
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MATERIALS AND METHODS  

Field Methods  

The study area (Morrell Creek) is located in the U.S. Northern Rockies near Seeley 

Lake, Montana at an elevation of about 1400 m (Lat.= 47.23, Lon.= -113.43).  The area is 

temperate boreal coniferous forest comprised of an array of uncut and harvested stands 

mostly on US Forest Service lands that are largely unpopulated.  Hare densities in this region 

vary but tend to be less than 2 hares/ha (34). Snowshoe hares were live-trapped using 

Tomahawk traps (Tomahawk Live Trap Company, Tomahawk, WI) and fitted with 

radiocollars (Wildlife Materials, Murphysboro, IL) (17).  We monitored weekly 148 

radiocollared hares over the study periods (43 different hares in 2010, 63 in 2011, and 58 

different hares in 2012).  As animals died new individuals were radiocollared, year-round and 

throughout the study.  Wild snowshoe hares generally have low annual survival rates (17, 35), 

limiting the expression of individual plasticity across >1 year.  Of our 148 different animals 

monitored, only 7 survived for >1 fall or spring molt and only one survived for >1.5 years 

after collaring; because of incomplete detection and temporary emigration of radiocollared 

animals we were not able to document consecutive spring or fall molts for any of these 7 

hares.   

Molt Phenology Analysis 

We used a repeated-measures change point analysis to estimate the initiation date 

and rate of coat color change.  Change point analyses are similar to standard linear mixed 

models such as ANOVA with the addition of a parameter estimating the timing of a change 

in pattern (= molt initiation date).  We considered individual hares to be the primary 

sampling unit (random effects) with repeated measures through time of coat color for each 
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hare.  Because hare mortality, temporary emigration and incomplete detection punctuate 

individual hare phenologies, and new individuals must be staggered into the analysis as 

others die, we chose to fit the model with Bayesian methods to more cleanly handle the 

random effect of individual hares than could be done with maximum likelihood.   

We fit the change point regression model with Markov chain Monte Carlo (MCMC) 

in WinBugs (36).  Inference was made from 5 chains of 100,000 MCMC iterations after 

discarding 10,000 burn-in iterations.  We used the Gelman-Rubin statistic to test for chain 

convergence, which was achieved (R≤ 1.1 for all data sets). Slopes of the regression line 

prior to initiation date and after completion date were fixed to zero (0% white in summer 

and 100% white in winter).  To quantify phenology of coat color change across days for each 

year, we included in the model parameters for initiation date (change point in the fixed 

slope) and slope of the change, and ran models separately for each combination of observed 

season (fall and spring) and year (2009, 2010, 2011 and 2012).  Completion date was derived 

from the regression line as the date it reaches the slope fixed at zero [fall  completion date = 

100 / (β +  initiation date); spring completion date = -100 / (β  +  initiation date)]. Resulting 

means and credible intervals (the Bayesian analog of confidence intervals) (as shown in Fig. 

4a) were used to test for statistically significant differences between years in initiation and 

completion dates and slopes of change. Further, the posterior probability distributions of the 

derived parameters confirmed the significant differences between years (Figure S2).   

Next we ran a series of change point regression models using spring data pooled 

across the 3 years to determine effect of each of the following covariates on the rate of the 

molt:  snow (% snow cover within 10m radius around each individual hare on the date coat 

color was measured), temperature (sum of daily averages above 0⁰C)  and gender. The effect 

size of these covariates on the rate of the molt (number of days between the initiation and 
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completion date) was then derived from how the slope of the molt changed across the range 

of the covariate [molt rate = (-100 - β1* Covariate value)/β], where β indicates the slope of 

the molt and β1 indicates the slope of a covariate.  The range of values for the snow was 0 to 

100% snow (β1= 0.093, sd= 0.02), for temperature from 0⁰C to 15.4⁰C (= highest daily 

maximum during spring) (β1= -0.354, sd= 0.015); and gender was binary (1= females, 0= 

males) (β1=-7.402, sd= 6.678).  

Future Coat Color Mismatch 

To estimate the increase in mismatch extent under future snow conditions we used 

average observed phenology of hares across the three years of study to calculate the number 

of days during which hares would be mismatched during the recent past, and in the future 

(mid-century and late-century) (Table S2). We explored the sensitivity of our threshold 

defining mismatch (60% white hare on a snowless background) by also projecting number of 

days of mismatch using 40% and 80% thresholds (Table S3). 

Snow and Climate Modeling 

Daily SWE was modeled at the site from 1970-2012 using a form of the soil water 

assessment tool (SWAT) temperature-index snowfall-snowmelt model (27) with 

modifications to the calculation of a snowmelt rate factor detailed by (37).  Model 

parameters were calibrated to 23.5 years (1989-2012) of daily SWE observations from a 

nearby snow telemetry (SNOTEL) weather station 25 km to the west (Table S4). 

Interpolation of daily temperature and precipitation from surrounding weather stations was 

conducted via empirically modeling the effect of elevation on temperature and precipitation 

as described by (28).  A total of 41 surrounding stations from 7 to 91 km from the site were 
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used to interpolate temperature while 38 stations from 7 to 89 km away were used for 

precipitation.  

Compared to site observations, the annual modeled snow on date (first day of the 

snow season), was 2, 2, and 4 days too late in fall 2009, 2010, and 2011, respectively. The 

annual modeled snow off date (last day of the snow season), was 12 days too early in spring 

2010, 1 day too late in spring 2011, and 4 days too early in spring 2012.  The larger 

difference between the model and observations in spring 2010 was mainly due to a late 

spring snowfall.  Observed snow cover was 2.5% on April 24th, close to the modeled snow 

off date of April 22nd, but then new snowfall extended the season to May 4th before snow 

cover reached 0% (Fig. 3b).   

Climate projections from 19 CMIP5 models were summarized by projected change 

in average monthly minimum temperature, maximum temperature, and precipitation in the 

mid-century (2030-2059) and late-century (2070-2099) relative to the recent past (1970-1999) 

using inverse distance weighting from the native resolute of each climate model to the study 

area.  Projected changes for both the representative concentration pathways RCP4.5 

(moderate-low emissions scenario) and RCP8.5 (high emissions scenario) were applied to the 

daily interpolated historical temperature and precipitation values to statistically downscale 

the projections to the site.  This type of downscaling removed possible climate model bias, 

but assumed that future weather would have the same variability as the recent past.  The 

locally-calibrated snow model was run for each 30-year future time period, climate model, 

and RCP combination to test the degree to which future snow conditions could change at 

the site. 
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Figure 1| Seasonally color changing species around the world. Geographical distributions of 

9 mammal species with seasonal coat color changes from brown to white in at least some 

populations. Species include Arctic fox (Alopex lagopus), collared lemming (Dicrostonyx 

groenlandicus), long-tailed weasel (Mustela frenata), stoat (M. erminea), snowshoe hare (Lepus 

americanus), mountain hare (L. timidus), Arctic hare (L. arcticus), white-tailed jackrabbit (L. 

townsendii), and Siberian hamster (Phodopus sungorus). Additional species with seasonal coat 

color change (eg least weasel; Mustela nivalis) are not shown.  Maps derived from IUCN 

redlist metadata (http://www.iucnredlist.org/technical-documents/spatial-data#mammals). 
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Figure 2| Types of contrast between seasonal coat color and snow background. 

Radiocollared snowshoe hares from this study showing: a, 100% contrast (mismatch); b, 

60% contrast  (mismatch); c, 0% contrast (no mismatch); d, 0% contrast (no mismatch). 
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Figure 3| Modeled baseline and future snow conditions. a, Length of the main snow season 

for the 3 observation years (black horizontal lines) and boxplots of snow season length for 

the recent past (1970-1999) baseline (blue shading) and future time periods (mid-century = 

2030 – 2059; late-century = 2070-2099) and emissions scenarios (orange shading = RCP4.5, 

red shading = RCP8.5). Future boxplots represent entire population of results from 19-

member climate model ensemble. Bold horizontal lines are the median and diamonds are the 

mean. b, is the same as (a) except for annual maximum snow water equivalent.  
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Figure 4| Coat color phenology, snow cover, and degree days. a, Weekly average of 

observed coat color for a population of wild snowshoe hares in each of 3 years [2009 (blue), 

2010 (red), 2011 (black) and 2012 (green)], with fall seasons on the left panel and springs on 

the right. Dotted lines show the results of Bayesian change point analyses, giving the 95% 

credible intervals for the mean dates of initiation and completion of the color molt for each 

season each year.  b, Weekly average of observed snow cover in a 10-m radius around each 

wild hare for each of the 3 years (fall on left and spring on right). c, Degree days as a 

measure of cooling trend in the fall and warming trend in the spring  at our study site for 

each of the 3 years. 

  



87 
 

 

Figure 5| Projections of increasing seasonal color mismatch in the future. The black line for 

all panels shows average phenology of hare seasonal color molt across the 3 years of the field 

study. The blue line shows mean modeled snow duration for the recent past (1970-1999).  

The orange and red lines show the future (mid-century and late-century) mean modeled 

snow duration for different emissions scenarios. The gray highlighted regions represent coat 

color mismatch, where white hares (≥60%) would be expected on a snowless background. 

As the duration with snow on the ground decreases in the future, mismatch will increase by 

as much as 4-fold in the mid-century and 8-fold in the late-century.  
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SUPPLEMENTARY MATERIALS 

 
Figure S1. Modeled baseline and entire ensemble of future snow conditions.  a, Boxplots of 

snow season duration for the 1980s baseline (blue shading) and for each climate model 

ensemble member in the future time periods and emissions scenarios (orange shading = 

RCP4.5, red shading = RCP8.5). Climate model ensemble members are identified in Table 

S1. Within each boxplot, bold horizontal lines are the median and diamonds are the mean.  

Horizontal lines in each time period/scenario are the overall ensemble mean. b, is the same 

as (a) except for annual maximum snow water equivalent. 
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Figure S2. Posterior Bayesian probability distributions of the molt phenology parameters for 

different years resulting from the change point analysis.  Posterior distributions of initiation 

dates (a), completion dates (b) and slopes (c) of spring (right side panels) and fall (left side 

panels) coat color molts color coded for years 2009 (blue), 2010 (red), 2011 (black) and 2012 

(green line). The peaks in the distributions indicate the most probable means of the 

parameters and the overlap in the distributions represents the probability of the parameters 

being equal. 
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Table S1. Names of CMIP5 models used in the analysis. 
 

Modeling Center (or Group)  Model Name Model Letter 
Beijing Climate Center, China 
Meteorological Administration 

BCC-CSM1.1 A 

Canadian Centre for Climate Modelling 
and Analysis 

CanESM2 B 

National Center for Atmospheric 
Research 

CCSM4 C 

Centre National de Recherches 
Meteorologiques / Centre Europeen de 
Recherche et Formation Avancees en 
Calcul Scientifique 

CNRM-CM5 D 

Commonwealth Scientific and Industrial 
Research Organization in collaboration 
with Queensland Climate Change Centre 
of Excellence 

CSIRO-Mk3.6.0 E 

LASG, Institute of Atmospheric 
Physics, Chinese Academy of Sciences 
and CESS,Tsinghua University 

FGOALS-g2 F 

NOAA Geophysical Fluid Dynamics 
Laboratory 

GFDL-CM3 G 
GFDL-ESM2M H 

NASA Goddard Institute for Space 
Studies 

GISS-E2-R I 

Met Office Hadley Centre HadGEM2-ES J 

Institute for Numerical Mathematics INM-CM4 K 

Institut Pierre-Simon Laplace 
IPSL-CM5A-LR  L 
IPSL-CM5A-MR  M 

Atmosphere and Ocean Research 
Institute (The University of Tokyo), 
National Institute for Environmental 
Studies, and Japan Agency for Marine-
Earth Science and Technology 

MIROC5 N 

Japan Agency for Marine-Earth Science 
and Technology, Atmosphere and 
Ocean Research Institute (The 
University of Tokyo), and National 
Institute for Environmental Studies 

MIROC-ESM-
CHEM 

O 

MIROC-ESM P 

Max Planck Institute for Meteorology MPI-ESM-LR Q 

Meteorological Research Institute MRI-CGCM3 R 

Norwegian Climate Centre NorESM1-M S 
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Table S2. Number of days of expected hare mismatch, where mismatch is defined as ≥60% 

difference between hare coat color (based on average phenology across the 3 years of field 

data) and the modeled snow presence/absence. Recent past = 1970-1999; mid-century = 

2030-2059; late-century= 2070-2099. Emission scenarios: 4.5 = moderate-low; 8 = high. 

 

  Recent past
Mid Century 

4.5 
Mid Century 

8.5 
Late 

Century 4.5 
Late 

Century 8.5 

  60% 60% 60% 60% 60% 

# days of 
mismatch in fall 

9 15 18 19 27 

# days of 
mismatch in 

spring 
0 13 17 20 41 

# days total  9 28 35 39 68 

-fold to recent 
past 

1 3 4 4 8 
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Table S3. Number of days of expected hare mismatch, where mismatch is now defined as 

≥40% and ≥80% difference between hare coat color (based on average phenology across 

the 3 years of field data) and the modeled snow presence/absence. Recent past = 1970-1999; 

mid-century = 2030-2059; late-century= 2070-2099. Emission scenarios: 4.5 = moderate-

low; 8 = high. 

 

 Recent past
Mid Century 

4.5 
Mid Century 

8.5 
Late 

Century 4.5 
Late 

Century 8.5 

  40% 80% 40% 80% 40% 80% 40% 80% 40% 80% 

# days of 
mismatch in fall 14 2 20 8 23 11 24 12 32 20 

# days of 
mismatch in 

spring 
0 0 20 9 24 13 27 16 48 37 

# days total  14 2 40 17 47 24 51 28 80 57 

-fold to recent 
past 

1 1 3 9 3 12 4 14 6 29 
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Table S4. Snow model parameter values before and after calibration. 
 
Parameter Initial Value  Calibrated Value  
 
Snowfall Temperature (°C): cutoff daily 
average temperature for precipitation as 
snow vs. rain 

 
1.0°C 

 
1.0°C (held constant23) 

 
Snowmelt Base Temperature (°C): daily 
average temperature at which snowpack will 
melt 

 
0.0°C 

 
0.0°C (held constant23) 

 
Snowpack Temperature Lag Factor: factor 
that controls influence of current daily 
average temperature on snowpack 
temperature compared to previous days 

 
0.5 

 
0.05 

 
Minimum Melt Factor for Snow on 12/31 
(mm/°C) 

 
4.0 mm/°C 

 
0.0 mm/°C 

 
Maximum Melt Factor for Snow on 6/21 
(mm/°C) 
 

 
6.5 mm/°C 

 
3.2 mm/°C 
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