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Turnquist, Brian, M.S., Fall 2011 Forest Biometrics 

Assessment of Prediction Bias in Crown Biomass Equations for Important Conifer Species of the 
Inland Northwest 
 
Chairperson:  David L.R. Affleck 

 Prediction equations are used worldwide to estimate the amount of biomass at the tree, 
stand, and landscape level.  These estimates provide valuable information to land managers for 
use in fire modeling, land tax assessments, carbon emission offsets, and timber sale 
contracting. To this end, several crown biomass equations have been developed for local, 
regional, and national scale biomass estimation across the United States.  The prediction 
equations most commonly used in the inland northwest, USA, were developed by Brown (1978) 
and Jenkins et al. (2003).  Because of the widespread application of these equations for 
managerial and scientific use, crown mass data for several important conifer species were 
collected and used to examine the direction and magnitude of bias associated with predictions 
made from the diameter-based equations of Brown and of Jenkins et al.  A total of 140 trees of 
4 different conifer species were sampled, providing 725 individual unbiased estimates of total 
crown mass.  Regression analyses were run on differences between crown mass estimates and 
the Brown and Jenkins et al. equation predictions to determine whether any bias was present.  
Results of the regression analysis determined that bias was present in both equation sets.  
Brown’s equations were found to over-predict the crown mass of ponderosa pine (Pinus 
ponderosa) and western larch (Larix occidentalis), and under-predict the crown mass of 
Douglas-fir (Pseudotsuga menziesii) and lodgepole pine (Pinus contorta).  Further, it was found 
that the magnitude of the bias increased with diameter at breast height (DBH) for all species 
but western larch.  The Jenkins et al. equations were found to over-predict the crown mass of 
Douglas-fir and western larch, while no significant bias existed for lodgepole pine or ponderosa 
pine.  Again, the magnitude of bias was generally found to increase with DBH.  Bias correction 
models are presented which, if used within the inland northwest, could potentially increase the 
accuracy of these equations.  
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Glossary 

 

BA.  Basal Area.  This is a measurement of the density of the forest around the sample trees.  It 

is a ratio describing the aggregate area of wood at breast height (1.37 m) relative to 

total land area, and is expressed as m2/ha (ft2/acre). 

BCM.   Bias Correction Model.  The bias correction model is a DBH-based regression fit to 

describe the trend in differences between equation predictions and RBS field estimates. 

BLC.  Height to the Base of the Live Crown.  The base of the live crown is defined as the point on 

the stem where live branches extend into at least two quadrants of the tree’s trunk.  

Height to the BLC may or may not be the same as the height of the lowest live branch. 

CB.  Crown Biomass.  Total crown mass including all branches, live or dead, foliage, cones, and 

tree top from 5 cm stem diameter.    

CR.  Crown Ratio.  A ratio of the amount of a tree’s total length that is occupied by the live 

crown.  This ratio can be ocularly estimated on standing trees, or computed by dividing 

crown length by the tree height. 

CL.  Crown Length.  This is the distance from the base of the live crown to the top of the tree, 

calculated by subtracting the base of live crown from the down height. 

DBH.  Diameter at Breast Height.  The girth of the tree stem measured at 1.37 meters (4.5 feet) 

above the base of the uphill side of the tree. 

DBLC.  Diameter of the tree stem measured at the height of the base of the live crown.   

HT.  The height of the tree, measured with a cloth tape, is the total length of the tree measured 

after the tree has been cut and is lying on the ground. 
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INW.  Inland Northwest.  The region referred to as the inland northwest stretches from the 

Cascade Mountains in Washington and Oregon, north from the Blue Mountains in 

Oregon and the Snake River in Idaho, and east to the continental divide in Montana and 

Idaho, south of the Canadian border. 

LLB.  Lowest Live Branch.  This branch is the lowest live branch in the tree’s crown.  Its height 

from the ground is measured; also, this is where RBS begins. 

RBS.  Randomized Branch Sampling.  This is the general sampling strategy used to estimate the 

crown biomass of selected trees in this research project. 
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Chapter 1 

 

Introduction 

 

 Forests cover a vast area in the inland northwest (INW) region of the USA.  These forests 

are used for timber production, recreation, ecosystem services (such as the provision of 

freshwater), and can potentially be used for bioenergy feedstock, or to offset carbon emissions 

through a cap and trade carbon credit system (Daniels, 2010).  Because of the intensive use of 

forest resources for the support of human culture, adequate measures or estimates of forest 

biomass are necessary to determine growth and yield of a stand for long-term management 

objectives, or to accurately inventory what is on site to assign a fair value to the volume that is 

to be removed.    

One facet of science is the continuing review of past studies in an effort to validate the 

assumptions used and conclusions reached.  This review is very important for keeping the 

wealth of information active and up to date with new findings.  More importantly, it allows us 

to discern which scientific articles and ideas are useful to the topic at hand, such as which 

biomass prediction equations are accurate and useful for use in any particular area.  In an effort 

to measure the crown biomass of major tree species in the inland Rocky Mountain west, 

previously published prediction equations, both regional and local in scope, were researched.  

The most widely used of these equations were identified and a sampling strategy was 

implemented to evaluate the equations’ biases and accuracies.   
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Many biomass prediction equations currently in use supply a tree-level estimate of 

crown, stem, or total tree mass.  These predictions are then scaled up to the stand or landscape 

level to get a sense of how much biomass is resting on a given area.  Often, the equations allow 

one to estimate the portion of a tree’s overall mass found in different components such as 

foliage, branches, or stem bark.  An alternative approach is to directly estimate stand level 

biomass, using measures of stand density, average tree height, and average diameter at breast 

height (DBH).  Using a tree-level approach potentially offers more information to land managers 

for applications such as uneven-aged management or fire hazard reduction projects where tree 

distribution data are required and total stand biomass is of limited utility.  

 However, it is difficult for individual land managers to collect and create their own set of 

biomass prediction equations because of the destructive nature of the methods needed for 

measurements of mass, as well as the cost and time required for the processing and drying of 

plant materials.  As a result, land managers may have to rely on published equations to 

estimate the biomass in their forests, with no ready means of verifying whether the prediction 

equation they are using is appropriate.  Furthermore, many biomass equations produced were 

not intended for commercial use, were based on small or poorly-distributed samples, or were 

simply created in an area far removed from where they are being considered for application.   

To address these issues, data collected for this study came from several different tree 

species over a wide range of diameter classes from a plethora of site types and locations 

throughout the region during two successive field seasons.  Further, sample trees were 

collected from several different land ownerships, including corporate, federal, state, and tribal 

lands.  By collecting a large and distributed sample in this way, the hope was that the bias of 
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selected biomass prediction equations could be evaluated for the region as a whole, reducing 

the possible associations that may exist for different trees growing under isolated conditions, 

managerial or otherwise, and providing expansive results that can be used throughout the 

planning area.  To put it another way, while it may be true that trees of a given species and a 

set DBH growing on moist sites have heavier crowns than trees with similar attributes growing 

on dry sites, an assessment of the average, across-site properties of a particular biomass 

equation can be made if trees are selected from across different site types.   

 The specific objectives of this research project were (1) to research the scope and 

limitations of previously developed crown biomass equations for commercial tree species of the 

INW, (2) to develop and implement a crown sampling protocol, and to describe crown biomass 

allometries for Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta), ponderosa 

pine (Pinus ponderosa), and western larch (Larix occidentalis), and (3) to investigate the 

magnitude and sources of bias in the most widely used crown biomass equations in the INW.  
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Chapter 2 

 

Literature Review 

 

2.1 Overview  

 

There is a considerable amount of research that has been conducted in the area of 

standing tree biomass at many different levels. Interest in describing relationships of tree 

crown biomass to several variables such as DBH, tree height, or stand density has waxed and 

waned since the late 1950s during periods of economic uncertainty and high energy costs. Since 

that time, it has been speculated that tree biomass may be useful for describing site 

productivity (Lefsky et al., 2005), sequestering carbon (Hoen and Solburg, 1994), deriving 

renewable energy (Buchholz et al., 2011), or modeling fire behavior and impact.  

Worldwide, there are numerous studies that look at tree biomass for a range of study 

objectives over a variety of species and site conditions. Nationwide, much of the work has been 

done in specific regions, and mostly for management intensive, commercial rotation forestry 

where maximizing merchantable products is priority. Within the inland northwest (eastern 

Washington, northern Idaho, western Montana), there has been very little work done. Two 

major sets are most commonly used within the region, Brown (1978) and Jenkins et al. (2003), 

for large scale forest management.  Because of the widespread use of these two major 

equation sets, as well as the lack of knowledge about other biomass equations available, the 

purpose of this literature review is to identify methods used to create biomass equations within 

the region, to review sampling design and sizes, to identify site characteristics and applicability 
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in other areas, to determine inefficiencies and shortfalls, and to recognize interesting points 

that stand out within past studies.  

 

2.2 Background Information  

 

To prepare reliable estimates of biomass for the myriad of resource uses and 

management decisions to be made, we must first have accurate regression equations for each 

species of interest. Site specific equations have been found to have substantial errors when 

used outside the area where they were produced (Feller 1992). To provide reliable, accurate 

estimates at a large scale, regional equations must encompass a range of site, stand, and tree 

conditions for a land manager to be confident in the predictions; to some extent this has been 

done, as discussed below. However, the validity of many of the equations produced is 

questionable considering the generally small sample sizes and small range of sample sites for 

any given species due to the time required for destructive sampling, creating equations that 

may not be useful across a wide in other areas.  

There are various literature reviews available that have compiled a great deal of the 

published biomass equations for the majority of commercial tree species in North America, as 

well as for the Pacific Northwest (Jenkins et al. 2004; TerMikaelian and Korzukhin 1997). One 

issue with these large reviews is their disregard for different sampling methods or techniques of 

equation development.  Also, they fail to identify the particular regions that an equation may 

have been built for; often an equation is created for a specific stand type or management 

purpose, creating equations that are utterly site specific.  
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Probably the most well known compilations of biomass equations for North American 

tree species are Jenkins et al. (2004) and Ter-Mikaelian and Korzukhin (1997). Jenkins et al. 

(2004) is a US Forest Service technical report which explains certain transformations that were 

applied to produce some degree of conformity among the equations it lists. It lists various 

component equations which provide predictions for components such as live branches, foliage, 

stemwood and stembark (there are 37 component classes listed).  Overall, it indexes 169 

published biomass equations for Douglas-fir (Psuedotsuga menziesii), 41 for lodgepole pine 

(Pinus contorta), 29 for ponderosa pine (Pinus ponderosa), and 8 for western larch (Larix 

occidentalis). Ter-Mikaelian and Korzukhin describe similar equation transformations for 

conformity. Their database lists various biomass component equations: 29 for Douglas-fir, 6 for 

lodgepole pine, 9 for ponderosa pine, and 3 for western larch. These equations were developed 

from data collected in disparate locations all over North America, and not all may be suitable 

for use within the region.  

 

2.3 National Scale Estimators  

 

In developing potentially the most widely used national scale estimators, Jenkins et al. 

(2003) sought to smooth the estimation of biomass at the landscape scale. Destructively 

sampling a vast number of trees of every species and diameter over a range of site conditions 

throughout the country would be very expensive and time consuming. Instead the authors 

compiled a list of 2,456 biomass equations for 104 different tree species across the United 

States and, through a meta-analysis, produced a small set of biomass equations for various 

species groupings.  
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A modified meta-analysis approach based on a study by Pastor et al. (1984) was used by 

Jenkins et al. (2003) to accumulate the long list of biomass equations into a small set useful for 

large scale applications. Equations were built for species groupings, for example all pine species 

use a single equation. The biomass equations compiled were DBH-based, and any equations 

using other variables were not considered in the final analysis. If these compiled equations 

were log transformed, any bias correction factors available were not used. To ensure the 

resulting national-scale biomass estimators would be useful over a range of size classes, existing 

large diameter equations were included, and in some cases pseudo-data were created for large 

trees by extrapolating beyond the diameter limits of the original studies. Equations to estimate 

the fractions of total aboveground biomass were created for foliage, merchantable stem wood, 

stem bark, and coarse roots. Branch biomass equations were not produced because this 

component can be obtained by subtraction.    

While the compiled list of biomass equations provided for the potential estimation of 

several tree components, there are some potential prediction errors that are difficult to 

quantify when compiling existing equations in this way. These include: (1) application of 

equation coefficients developed for one species (or group of species) to another species (or 

group of species); (2) the use of sample trees and wood density samples not representative of 

the target population because of factors such as size range of sample trees and stand 

conditions; (3) statistical errors associated with estimated coefficients and the forms of the 

selected equations; (4) inconsistent standards, definitions, and methodology; (5) use of indirect 

estimation methods that compound errors; and (6) inherited measurement and data processing 

errors. 
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Disregarding the errors in methodology used to create these prediction equations, 

consider the fact that these biomass estimators are created from equations built for a range of 

locations, site types, stand conditions, and study objectives.  As a result, it was assumed that 

the final equations would be useful at the landscape scale.  However, they may have large 

errors in local applications, and would likely yield poor estimates of an individual tree’s 

biomass. Another potential limitation of Jenkins et al. (2003) biomass equations is that they 

were fitted on the logarithmic scale and no correction was made for the bias that accrues when 

predictions are made in arithmetic units (Beauchamp and Olson, 1973). Also, there is a lack of 

data, within this study and nationally, concerning the biomass of large trees. Furthermore, 

there has been no published account of any attempts to verify the accuracy of these equations. 

Considering the use of these equations as part of the Forest Inventory and Analysis (FIA) 

program (Woodall et al. 2011), and their resulting impact on management decisions, further 

inquiry is necessary.  

 

2.4 Regional Scale Estimators 

 

2.4.1 Inland Northwest  

 

A widely used set of species-specific equations were produced by Brown (1978).  The 

equations and methods were also presented in an earlier paper by Brown and Johnston (1976).  

The goal of Brown’s project was to construct biomass equations for various standing tree 

components by filling in size and species gaps of the studies completed by Storey et al. (1955) 

and Fahnestock (1960), which contained some pioneering research about the relationships 
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between crown weight and bole diameter. By combining data from these studies with new 

sample trees, Brown was able to increase the sample size used to build his equations, as well as 

cut down on time required for sampling.  

Tree measurements were collected by Brown (1978) in 14 different locations across 

Idaho and Montana, over 3 successive field seasons (April to October). The sites were described 

as “poor-to-good sites and from low-to-high stand density conditions throughout western 

Montana and northern Idaho.” The trees were picked randomly, but were not accepted if “they 

were (1) open-grown or wolf trees; (2) extremely lopsided in the crown; (3) deformed 

excessively by disease; (4) heavily defoliated; and (5) broken topped.”  

Brown (1978) visually divided the tree crowns into two or three sections, which were 

then clipped while the tree was standing by tree climbers and weighed (live and dead separate) 

entirely with a hanging sling scale. From each section a single live and dead branch was selected 

that appeared to be average in size. These branches were then divided into 1, 10, and 100 hour 

fuel size segments (0-0.6 cm, 0.6-2.5 cm, 2.5-7.5 cm), and foliage. Components were weighed 

separately, green and dried, to produce ratios and moisture contents for determining dry 

weight totals for the entire tree. Most of the trees sampled by Brown were of DBH 30 cm (12 

inches) or less, with about half of those being less than 5 cm in DBH. All remaining tree data 

came from Storey et al. (1955) and Fahnestock (1960).  

The study by Storey et al. (1955) looked at 13 different tree species in 4 states (CA, ID, 

NC, NV) over a range of site conditions. Data collected in Idaho was collected on the Priest River 

Experimental Forest in northern Idaho. Only crown data was collected (nothing of stem 

characteristics), as the primary goal of the study was to identify relationships among crown 
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characteristics. Trees were selected that were healthy and not deformed or damaged. A 

selected tree was split into five sections based on total tree height, and any branches below the 

level of the top of the first section (below the top 80% of the crown) were removed (tree 

pruned to 4 sections). Each remaining crown section was then clipped and weighed, then 

eventually dried and moisture contents calculated. The authors found great variability in crown 

weights between different sites. The study produced some biomass equations, though these 

required measurements of the diameter at the base of the live crown, rendering them 

impractical.  

Fahnestock (1960) sought to quantify the amount of logging slash that can be expected 

from a single tree to determine possible disposal methods and costs. All trees of nine different 

species were sampled on the Priest River Experimental Forest in northern Idaho. Individual 

trees were measured in the same fashion as the Storey et al. (1955) study; in fact the  

two studies were done in collaboration. Dry weight of green material was determined by 

assuming 100% moisture content. Limited data was published with the booklet; rather it was 

more of an informative or educational pamphlet on the dangers of logging slash.  

A preliminary assessment of the accuracy of Brown’s (1978) equations was made by 

Gray and Reinhardt (2003) for Douglas-fir, white fir (Abies concolor), lodgepole pine, ponderosa 

pine, subalpine fir (Abies lasiocarpa), and incense cedar (Calocedrus decurrens). The widespread 

use Brown’s (1978) equations to generate canopy characteristics for many fuels models 

prompted this study. Gray and Reinhardt collected new crown biomass data from 5 different 

study locations, the Salmon-Challis National Forest (ID), Lolo National Forest (MT), Lewis and 

Clark National Forest (MT), Coconino National Forest (AZ), and the Blodgett Forest Research 
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Station (CA). Sites were chosen by local managers which were “to be prone to crown fire – 

dense, often multi-storied stands” (Gray and Reinhardt, 2003; p. 1).  All trees were sampled 

inside a circular plot that was randomly placed within a stand. Every branch on every tree was 

weighed, and 10% of branches were selected to break down into components for ratio 

estimation. Predictions for each tree were made using Brown’s (1978) DBH-based equations. 

Graphical analyses indicated that the equations for white fir and lodgepole pine made accurate 

predictions, while the predictions for incense cedar (made from Brown’s equation for Thuja 

plicata) and Douglas-fir tended to under-estimate the actual crown biomass. With ponderosa 

pine the equations generally over-estimated the biomass, though the four trees with the largest 

DBH sampled were under-estimated by Brown’s equation.  

 

2.4.2 Biomass Estimators for Neighboring Regions  

 

Some work has also been conducted in regions bordering the INW.  For example, 

regional biomass equations were produced for 22 tree species in British Columbia by Standish 

et al. (1985). The objective of their study was to produce generalized equations in order to 

quantify the amount of forest biomass available in British Columbia in both old-growth and 

second-growth stands. A total of 1155 trees were sampled over the majority of British 

Columbia, excluding the far northern region and the Queen Charlotte Islands. Both coastal and 

interior trees were included to produce regional equations.  

Sample trees were selected proportional to provincial volume inventory for tree species, 

but Standish et al. (1985) sampled a minimum of forty trees for each species over a wide range 

of stand, site, and geographic conditions. Also, they attempted to gather sample trees equally 
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among DBH and height classes within each species, and to disperse those size classes over the 

range of areas where the species are found. Measurements of DBH and height were taken 

before felling. Once a tree was felled measurements were taken directly of height, crown 

length and width, age at 30 cm diameter, and DBH outside bark.  

Standish et al. (1985) cut the bole into two meter sections and weighed these in the 

field, except for very large sections, which were measured in the field for volume to estimate a 

mass in the lab using mass-to-volume ratios created by the other sample sections. Live 

branches were sorted into three basal diameter classes and weighed in full. Two branches from 

each diameter class were then selected randomly and broken down into different components 

(dead, foliage, large and small diameter branch-wood). Portions were returned to the lab to 

obtain moisture contents and estimate dry weights of the total.  

Standish et al. (1985) evaluated several different biomass prediction models, from a 

simple model using only DBH and height to models that also included tree volume, which was 

found to have significant effects on some of the model estimates. Overall, these equations may 

be useful for regional scale estimation in the inland Rocky Mountain West. However, the use of 

coastal tree data (for some species) to build the regression equations may produce biased 

estimates, though for Douglas-fir separate equations were produced for interior and coastal 

trees.  

The Cascade mountain region of western Oregon and Washington was the focus of the 

research by Gholz et al. (1979). Producing regional biomass equations for several different 

species of trees, shrubs, and herbs was their primary goal. They attempted to include a range of 

site conditions and size classes for creation of the equations. However, study sites were limited, 
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and data was mined from several other research papers and projects to produce the final 

biomass equations. Methods outlined in this paper are scattered and unclear, and it appears 

that sampling methods vary, which may have caused some discrepancies in final prediction 

equations. Sample sizes for equations range from 2 to 99 trees. In general, it appears that for 

the tree species sampled, methods were similar to that of Brown (1978), where the crown was 

divided into equal parts, each section weighed in full, and a single randomly selected branch 

was used to determine proportions of different components (foliage, small and large diameter 

branchwood).  

Because the methodology of Gholz et al. (1979) is difficult to follow, these equations 

cannot be recommended for use. Also, because this region receives a greater amount of 

precipitation than the inland northwest, and considering differences in other factors such as 

growing season length, temperature, and nutrient availability, which may cause major 

variations within species, the equations produced by Gholz et al. (1979) may not be suitable for 

use east of the Cascades. 

 

2.5 Localized Estimators  

 

Regression models for predicting lodgepole pine biomass components were produced 

by Johnston (1977). The study produced equations for two separate sites of differing site 

indexes on the Lubrecht Experimental Forest. Both sites were high elevation and in the 

subalpine fir habitat series (Pfister, 1977). Sample trees were chosen using a pseudo-random 

scheme; transects were run across the selected sites, with random intervals between sample 

points. A single tree that was not deformed, damaged or forked was chosen at each point. Only 
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live material and cones were collected. All branches were bagged and brought to the lab where 

they were dried and weighed. The bole was divided into four sections, diameters measured at 

each end of the section, and a 1 cm disk cut from the bottom of each. The models predicting 

crown components (leaf, cone, branch) for both locations are poor due to high standard errors 

of the model coefficients. However, a reliable model of total crown biomass was produced for 

one site, though it is obviously site specific and may not be suitable for use throughout the 

entire region.  

Local, site- and stand-specific biomass equations were produced by Cochran et al. 

(1984). The study area was a pre-commercially thinned, even-aged, second-growth ponderosa 

pine stand in central Oregon. The sample size was 23 trees. This was a Forest Service study, 

with the goal to produce an equation that accurately estimated standing biomass of ponderosa 

pine to determine forest productivity and nutrient cycling in common second-growth forest 

stands that result from intensive clear-cut logging practices in Oregon.  

Cochran sampled healthy intermediate to dominant trees over a range of DBH classes (5 

to 38 cm) chosen from two study locations 18 km apart. Crowns were divided into 3 sections, 

and all foliage and branches were separated and weighed for each section. Samples were dried 

for moisture contents and to obtain dry weight estimates for entire trees. The volume of 

sample discs removed at various locations along the bole was determined by water 

displacement. Crown biomass equations were produced, but would likely not be suitable for 

use as a regional biomass estimator for the inland northwest due to the site specific nature of 

the study. Also, the management of the forest in the study area has created highly uniform 

conditions that are otherwise uncommon across the region. It should again be noted that any 
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studies produced in coastal regions will likely produce equations ill-suited for use in the inland 

empire.  

A study by Krumlik (1974) consisted of 24 sample trees taken in the south coastal region 

of British Columbia near Vancouver. Two plots were established and trees selected randomly 

within the plot boundaries. Measurements of DBH, height, crown ratio, base of live crown were 

taken while the tree was standing. Branches were divided into 100 hour (diameter > 2.5 cm) 

and 10 hour (0.6 cm < diameter < 2.5 cm) fuel classes as well as 1 hour fuels (diameter < 0.6 cm) 

with attached foliage. The whole crown was broken down and weighed, with the exception of 

twigs with foliage, which were subsampled to obtain a 10% sample of the total weight of this 

component. Fresh branch weights were taken; oven-dried measurements were also obtained. 

Overall, the methods are similar to those described in previous studies. Here, since the trees 

are from the coastal region, the equations would likely not be useful within the region.  

 

2.5.1 Locally Interesting 

 

Biomass regression models for various tree components (needles, stembark, stemwood, 

branchwood, stumpwood, and stumpbark), as well as for total above ground tree biomass were 

produced for Douglas-fir by Marshall and Wang (1995). Objectives of this study were not 

limited to the construction biomass equations for interior Douglas-fir, but also to the 

quantification of biomass in each of 6 permanent plots, and ultimately the assessment of 

whether stand density has an impact on the form of biomass equations. Sixty trees were 

sampled on the Alex Fraser Research Forest of the University of British Columbia. Ten trees 

were sampled near each of 6 permanent sample plots with the hope that conditions were equal 
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to those which existed within the plot boundaries. It was found that there was a significant 

difference in the coefficients of the equations compiled for each plot density grouping (lowest, 

medium, and highest density groups with 2 plots in each group), suggesting that the input of 

stand density, or some factor affected by it, may improve the accuracy of a biomass equation.  

Again extending the use of biomass research, in a study by Monserud and Marshall 

(1999), three northern Idaho conifer species (Douglas-fir, ponderosa pine, western white pine 

(Pinus monticola)) were sampled on the Priest River Experimental Forest to learn about crown 

characteristics. The objective of the study was to create allometric equations to estimate leaf 

area, leaf biomass, and branch biomass for use in creating process based models of forest 

productivity. Trees were selected using a fixed basal area factor, stand density was evaluated 

prior to felling, and standard height and DBH measurements were taken. Crown competition 

factors (CCF; Krajicek et al., 1961) were calculated for each tree. Selected trees were void of 

obvious defects, spanned a range of size classes within the stand, and grew in areas not 

populated by other tree species.  

Once a tree was felled, the crown was divided into four quarters, and two branches 

were selected from each quarter. The first branch was chosen randomly, and was then paired 

with a second antithetical branch. That is, the second branch was on the opposite side of the 

bole and crown, and of approximately equal distance from the center of the crown. The 

intention of this strategy was to create a negative correlation between the weights of the two 

branches so as to reduce overall sampling variation. These branches were divided into foliage 

and branch components and weighed for ratio estimation of whole-crown component weights 

(each quarter was weighed in full to have a measure of total crown weight). Equations for 
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branch- and tree-level estimates were produced, requiring several different variables, beyond 

DBH and height, which may be very difficult to obtain in practice. For tree-level estimates, two 

sets of equations were built, one set requiring DBH, stand density, and crown competition 

factor, the other requiring several other variables including basal area of sapwood at DBH, 

which again, is difficult to obtain.  

 

2.6 Comparative Studies  

 

A study by Feller (1992) compared site specific biomass equations to generalized 

regional equations. Using the regional equations produced by Standish et al. (1985) the 

objective was to compare estimates of high and low quality sites for Douglas-fir and western 

redcedar to site-specific and regional equations. Poor sites had trees that were described as 

having “poor” growth and low nitrogen contents, and good sites had trees with “good” growth 

and high nitrogen contents. Trees of each species were taken from two locations, one good site 

and one poor.  

Feller’s (1992) methods were similar to those of Brown (1978), where the crown was 

divided into three parts, each part weighed in full, though then three branches were randomly 

selected from each section and separated into foliage and remaining branch material to 

determine ratios for the whole tree. The branch segments were then oven-dried to determine 

moisture contents and dry weights for the whole tree. All dead branches were weighed 

together, with a single sample taken for moisture content. Discs were cut from the midpoint of 

each crown section in large trees, and at certain intervals on small trees, and measured for 

relative density and weight. Tree roots were also excavated and weighed.  
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Feller (1992) trimmed the large dataset that produced the regional equations by 

eliminating trees not sampled in the coastal region, extreme outlying points, as well as data 

they thought clearly “could not possibly have represented a real tree” (Feller, 1992, p. 11). 

Using their own data, they formed regression equations which they compared to the regional 

biomass equations. The equations were compared using methods described by Zar (1984), first 

addressing whether residual variances were equal, then whether slopes were equal, and finally 

whether vertical positions on the graph were equal.  It was found that geographical and site 

quality differences significantly affected the biomass equations produced, with the biggest 

difference occurring on the poor quality site.  Evidently, more extreme sites have a higher need 

for site specific equations. However, costs associated with creating site specific biomass 

equations may outweigh the benefits, making the case for regional biomass equations stronger.  

The use of Brown’s (1978) equations in the Fire and Fuels Extension of the Forest 

Vegetation Simulator (FVS-FFE; Reinhardt and Crookston 2003) prompted Keyser and Smith 

(2010) to evaluate whether current estimators of canopy bulk density, mass, and height are 

suitable for predicting fire behavior in Black Hills ponderosa pine. As mentioned previously, the 

sample tree data used to create Brown’s (1978) equations were collected west of the 

continental divide, whereas Keyser and Smith gathered their data east of the continental divide. 

While there may be some bias related to using the Brown (1978) equation for ponderosa pine 

crown mass outside its intended range, it is useful to know how well this equation performs.  

Destructive sampling was completed on 80 trees in 16 different stand types throughout the 

Black Hills National Forest.  In an effort to gain information about the vertical profile of the 

crown, sample trees were broken up into ten equal vertical segments on the tree stem. 
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Standing tree measurements were taken prior to felling. Within each segment biomass was 

separated into foliage and branches by fuel category, weighed green, and bagged to obtain dry 

weights. The data collected was then used to create localized biomass equations for ponderosa 

pine foliage and 1 hour fuels (<1/4”) in the Black Hills. Results of the study pointed to large 

differences between localized biomass equation estimates and regional estimators. Compared 

to the localized equations produced, Brown’s (1978) equations consistently underestimated 

crown foliage and 1 hour fuels and canopy bulk densities, three important variables for 

predicting fire behavior. The authors concluded that localized equations are necessary for 

proper approximation of biomass and fire behavior.  

 

2.7 Conclusions  

 

Much of the work completed in the area of biomass sampling and quantification was 

done in the late 1970s and early 1980s during a period of energy crises and higher than usual 

energy costs similar to current market conditions. It seems the interest in biomass waxes and 

wanes with the price of oil. It may be that the interest in quantifying biomass will again fall to 

the back burner. While the use of biomass as an energy source may not remain popular, 

biomass and crown allometric equations remain useful management and scientific tools.  

The biggest issue associated with regional biomass equations currently used in the INW 

is the lack of sample coverage.  More sites are necessary, over a range of stand densities and 

conditions, and geographic and elevation variations must be included for a fully comprehensive 

biomass equation. Also, a mix of land ownerships would be helpful to address potential effects 

of different management practices on the growth of trees. Overall, it may be best to set up a 
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system of biomass data collection, where every timber sale adds a few trees that are 

destructively sampled and uploaded to a server which continuously updates biomass equations 

to enhance accuracy and precision over time.   

Within the region described as the INW, only two sets of prediction equations are 

widely used in practice.  These are the sets published by Brown (1978) and Jenkins et al. (2003).  

Because of their use across the region and their application in governmental and private 

management decisions, these equations will be the focus of this project.  Figure 2.1 illustrates 

the form of selected crown biomass equations from these two publications.  While all of the 

equations illustrated are DBH-based there are three peculiarities to point out.  First, Brown’s 

(1978) equation for Douglas-fir has a kink at DBH 42.5 cm (17”) where a separate crown 

biomass equation was specified for large DBH trees.  Second, Jenkins et al. (2003) provides only 

one crown biomass equation for all pine species, illustrated in both the lodgepole pine and 

ponderosa pine panels.  A third interesting point to mention is that the Jenkins et al. (2003) 

equation for western larch is an equation for a group of species (the Cedar/larch group) that 

includes larch species (Larix laricina and Larix occidentalis) as well as cedar, juniper, and 

sequoia species (Calocedrus decurrens, Chamaecyparis spp., Thuja spp., Juniperus virginiana, 

Sequoiadendron giganteum).   
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Figure 2.1.  Crown biomass prediction equations for each of four 
species of interest in this project.  Brown’s (1978) equations are 
denoted by solid lines; Jenkins et al. (2003) equations are dashed.  
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Chapter 3 

 

Methods 

 

3.1 Stand and Tree Selection 

 

   Trees selected for sampling came from a number of stand locations across the INW.  

Results for this project are intended to be an indicator of the usefulness of Brown’s (1978) and 

Jenkins et al. (2003) crown biomass equations for species within the region.  Funding members 

of the project include federal, state, and tribal forest management agencies, as well as private 

forest companies.  These members made their land available for biomass sampling.  Yet owing 

to physical difficulties in accessing certain lands and to the destructive nature of the biomass 

measurements to be taken, it was not possible to draw a probability sample of forest stands 

across the region.  Instead, efforts were made to ensure that stands were selected throughout 

the geographic extent of the region and across the ranges of elevations and habitat series 

(Pfister, 1977) present.  Ultimately, stands were located with the assistance of local land 

managers according to the tree species and size classes desired.  To minimize the financial loss 

associated with the destructive measurements some stands were part of active or planned 

logging sales, but others were in undesignated second growth forest.  None of the stands had 

been treated (e.g., thinned or burned) in the previous 10 years.  

 Within a selected stand, potential sample points were established at 50 m intervals on 

the Universal Transverse Mercator (UTM) grid.  Points within 25 m of the nearest road were 
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dropped.  At the remaining sample points, an angle gauge with a basal area factor of 2.3 m2/ha 

(10 ft2/ac) was used to identify candidate trees for biomass sampling.  Candidate trees had to 

be live trees with a DBH of at least 5 cm.  Also, trees were considered unacceptable for 

sampling if they had broken tops, forked tops, mechanical damage, marked defoliation, or 

significant mistletoe damage.   

 At each point up to 2 trees were selected uniformly at random from the set of identified 

candidate trees.  If there was only 1 or 2 candidate trees identified at a sample point then one 

or both of the candidates were selected.  After all trees were selected at a particular point, 

standing tree measurements of DBH, total height, and BLC were taken, and crown ratio was 

estimated.  Once these measurements had been taken, the tree was felled in the best possible 

location, with the field crew first clearing the landing zone of other trees and debris to ensure 

that broken branches could be reconstructed.  Data from several major commercial tree species 

was collected during the sampling season.  Only four tree species, Douglas-fir, lodgepole pine, 

ponderosa pine, and western larch, are used throughout this research as data for these species 

was compiled first.    

 

3.2 Randomized Branch Sampling 

 

 Having selected and felled the sample trees, a randomized branch sampling (RBS) 

protocol was then used to estimate foliage and branch wood biomass.  Beginning at the lowest 

live branch on the stem, the bole was divided into 1 meter segments until the 5 cm top was 

reached (i.e., until the bole had tapered to a diameter of 5 cm).  Along each 1 m segment, the 

diameter and height of each live branch was measured, as was the bole at the top of the 
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segment.  Once these diameters had been measured, the diameters were input into a program 

written on TI-84+ © calculator.  The program calculated selection probabilities for each branch 

and for the stem at the top of the segment based on the diameters.  Specifically, conditional 

selection probabilities were made proportional to branch or stem cross-sectional area (i.e., 

diameter2): 

              
       

  
         (1) 

where     denotes the diameter at node j (j = 0 for the stem at the top of the segment and j = 1, 

2, 3, …, n for branches along the segment) on segment i, and     is an indicator of node 

selection (1=selected; 0=else).  A set of pseudo-random numbers was then generated by the 

calculator to select one or more nodes (branches or stem) on the segment under consideration 

using a list sampling procedure.   

 The probability of equation (1) is conditional on the RBS procedure extending up the 

stem and reaching segment (i – 1).  The unconditional probability of selecting branch j on 

segment i is therefore 

                                                  (2) 

For example, the conditional probability of selecting branch 1 in segment 3 if there are exactly 4 

branches in the segment (see Fig. 3.1) is 

                
       

      
       

       
      

     (3) 

and the associated unconditional probability of selection is: 

                                               (4) 
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Figure 3.1.  Schematic of the RBS protocol.  Each branch diameter 
(xij; j>0) is measured, as is the stem diameter (xi0) at the top of the 
one meter segment.  Any branches selected are removed; if the 
stem is selected then sampling proceeds to the next segment.   

 

 The RBS protocol used is an unequal probability, with replacement design.  Since 

multiple branches were selected independently on each tree, any given branch on those trees 

had the possibility of being selected multiple times.  However, given the probability-

proportional-to-size design, branches with larger cross-sectional areas were more likely to be 

selected, an important design consideration given that larger branches carry a larger fraction of 

total crown mass.   

A minimum of 5 branches were selected on each tree, with the number of branches 

selected increasing to as many as 8 branches depending on tree DBH.  Specifically, all trees 

below 25 cm DBH had 5 branches selected.  An additional branch was then selected for each 10 

cm increase in DBH so that trees up to 35 cm had 6 branches selected, trees with DBH up to 45 

cm DBH had 7 selected, and any larger trees had 8 branches selected.  Once a branch was 
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selected, it was removed from the tree and divided into different components.  Branch wood 

was divided into segments of different diameter classes based on fire time lag classes (i.e., into 

1, 10, and 100 hour fuels) and foliage was separated.  All materials were stored in paper bags 

until they could be oven dried at 105°C to a constant weight.   

 

3.3 Data Analysis 

 

3.3.1 Crown Biomass Estimation 

 

 Using the unconditional selection probabilities determined in the course of sampling, 

branch weights were expanded to estimate the total weight of the tree crown. For each tree 

sampled, 5 to 8 independent branch-level estimates of crown biomass were produced.  In the 

case of tree i, for branch j, the branch weight, bij, can provide an unbiased estimate of crown 

mass, mR,i, such that: 

        
   

          
 (5) 

Combining these using a Hansen-Hurwitz estimator (Hansen & Hurwitz, 1943), an averaged 

crown mass estimate for each tree can be calculated, where n is the number of branches 

sampled on any given tree: 

       
 

 
       

 
    (6) 

Each branch-level estimate (and of course the average of all branch-level estimates for 

each tree) approximates the amount of live and dead biomass in the crown, including the mass 

of the stem above a 5 cm diameter.  Each branch-level estimate can be considered 
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independently; alternatively, the average of these estimates, supplemented with an estimated 

standard error, can be used.  In the data analysis below, individual branch-level estimates were 

not combined.  Yet for simplicity, some of the figures show the averaged crown weight estimate 

(equation 6) for each tree.  

 

3.3.2 Preliminary Data Analysis 

 

 Using the standing and down tree measurements recorded for each tree, relationships 

among different tree variables were assessed.  For each species a graphical analysis of DBH, 

total height (HT), height at the base of the live crown (BLC), height of the lowest live branch 

(LLB), diameter at the base of the live crown (DBLC), height of the 5 cm top, and average 

estimated crown biomass (   ) was completed for each species to determine if any 

relationships among the different tree variables were present.  An assessment of which of 

these variables were highly correlated was needed for subsequent regression analyses.  Where 

deviations occurred from the normal array of points, trees were identified for further analysis.   

Across all species, and for the entire sampling region, DBH and HT were strongly 

positively related, an association commonly known among foresters.  It is also important to 

note that DBH has a strong positive relationship to most measurements of tree dimension, with 

a few exceptions.  Lodgepole pine, for instance, does not vary too widely in crown length over 

the full range of DBHs sampled.  It was during this initial assessment of tree and crown 

characteristics that an increasing variability in crown mass as a function of tree size became 

evident.  
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3.3.3 Analysis of Differences Between Equation Predictions and Field Estimates 

 

Since the purpose of this study is to determine whether the crown predictions produced 

by the equations of Brown (1978) and Jenkins et al. (2003) are unbiased, the analysis directly 

examined the differences between field estimates and equation predictions.  Only DBH based 

equations were considered (Table 3.1), although only Brown (1978) produced separate crown 

biomass equations that included other covariates.  Brown (1978) formed separate equations for 

live crown mass and dead branch mass; also, for some species, these equations were size-class 

dependent (i.e., one equation was developed for trees larger than a certain DBH and another 

equation for smaller trees).  The equations in Jenkins et al. (2003) predict total aboveground 

tree biomass, from which stemwood and stembark fractions must be removed to compute 

crown mass.   

Table 3.1.  Brown (1978) prediction equations evaluated for bias as part of this 
study.  Equations were added so that each tree had a total predicted crown 
biomass including live and dead crown weight.  DBH in inches; biomass in 
pounds.   

Species Equation 

Douglas-fir 
     Live Crown < 17” 
     Live Crown > 17” 
     Dead Branches 

 
Exp(1.1368 + 1.5819 × ln(DBH)) 
1.0237 × DBH2 - 20.74 
0.01094 × DBH3 

Lodgepole pine 
     Live Crown (LC) 
     Dead Branches > 10” 
     Dead Branches < 10” 

 
Exp(0.1224 + 1.8820 × ln(DBH)) 
1.235 × LC 
0.026 × DBH - 0.025 

Ponderosa pine 
     Live Crown 
     Dead Branches 

 
Exp(0.268 + 2.074 × ln(DBH)) 
Exp(2.8376 × ln(DBH)) - 3.7398 

Western larch 
     Live Crown 
     Dead Branches > 4” 

 
Exp(0.4373 + 1.6786 × ln(DBH)) 
1.1 × LC 
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Table 3.2.  Jenkins et al. (2003) prediction equations evaluated for bias as part of 
this study.  Equations were added so that each tree had a total predicted crown 
biomass including live and dead crown weight.  DBH in centimeters; biomass in 
kilograms.   

Species Equation 

All Species 
     Stem Wood Ratio (SWR) 
     Stem Bark Ratio (SBR) 

 
Exp(-0.3737 - 1.8055/DBH) 
Exp(-2.098 - 1.1432/DBH) 

Douglas-fir 
     Total Tree (TT) 
     Crown 

 
Exp(2.2304 + 2.4435 × ln(DBH)) 
TT × (1 - SWR - SBR)  

Lodgepole pine 
     Total Tree 
     Crown 

 
Exp(-2.5356 + 2.4349 × ln(DBH)) 
TT × (1 - SWR - SBR) 

Ponderosa pine 
     Total Tree 
     Crown 

 
Exp(-2.5356 + 2.4349 × ln(DBH)) 
TT × (1 - SWR - SBR) 

Western larch 
     Total Tree 
     Crown 

 
Exp(-2.0336 + 2.2592 × ln(DBH)) 
TT × (1 - SWR - SBR) 

 
 

None of the equations shown in Table 3.1 or 3.2 were used independently.  Rather, they 

were used together for each species to predict total crown mass for any given tree.   The 

compilation of components provided predictions of total crown mass: 

      = Brown’s (1978) predicted total crown mass for tree i 

       = Jenkins’ et al. (2003) predicted total crown mass for tree i 

Recognizing the variability in crown mass between trees, as well as the variability 

between RBS estimates of crown mass within a tree, differences were computed at the branch-

level such that: 

                     (7) 

                     (8) 



 

 

  
30 

 
  

Since      is unbiased for the true crown mass of tree i (mi), these differences are unbiased 

estimators of the bias of the crown prediction equations applied to individual sample trees.  

That is, for any tree i 

                                       (9) 

The result is that if the       are on average positive, there is an indication that Brown’s 

(1978) equation is under-predicting crown mass.  Conversely if the       are negative, there is 

an indication that Brown’s (1978) equation is over-predicting crown mass.  Since the RBS field 

estimates are subject to sampling error it cannot be observed whether the crown mass of any 

individual tree is either over-predicted or under-predicted.  But, looking at the overall trends in 

      and       for each species as a function of various tree dimension it is possible to produce a 

model that describes the magnitude of the bias in any given prediction equation.   Following 

this logic, the goal is to look at trends in       and       as a function of (1) all measured tree 

dimensions and (2) DBH alone.  The latter set of trends define bias correction models (BCM) 

that could be used to increase the accuracy of predictions computed by the equations of Brown 

(1978) and Jenkins et al. (2003) when applied in the region of interest.  

 

3.3.4 Regression Analyses 

 

 Using the differences calculated for each sample tree, two types of regression analyses 

were undertaken.  The first thing to note is that variation in crown mass was not constant 

throughout the data, so homoskedasticity could not be assumed.  As a result, all models utilized 

a power function to model crown mass variance as a function of DBH, regardless of whether 
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DBH was included as a predictor of mean crown biomass.  All analyses were done with R, using 

the nlme package (Pinheiro et al., 2011) which allows for mixed-effects modeling strategies and 

non-constant error variance. Regression models were produced which attempted to 

characterize the differences between observed levels of crown biomass and predicted levels 

using either Brown’s (1978) or Jenkins et al (2003) equations.     

The first type of regression analysis undertaken for each species was the exploratory 

correction model (ECM), which began with common measured tree dimensions as covariates.  

Also included were tree-level random effects and a power function parameterizing increasing 

residual variation with increasing DBH.  Starting with a model which contained DBH, DBH2, HT, 

DBLC, and CR as covariates, all 20 possible model combinations which include these variables 

were examined. Lowest corrected Akaike information criterion (AICc) was used to select the 

best three models.  Interactions between different variables were not considered, and 

multicollinearity was ignored.  The purpose of this type of regression was to determine whether 

any variables were as or more valuable than DBH in describing variability among the       and 

     .  Another goal of these regressions was to take note of any across-species trends 

associated with any particular tree attributes that might be important in describing crown mass 

and creating more accurate prediction equations.       

The second type of regression carried out examined only DBH effects.  Because the 

Brown (1978) and Jenkins et al. (2003) equations under scrutiny are DBH-based, it was 

ultimately decided that the BCM describing       and       only contain DBH.  Further, DBH is 

strongly related to nearly any other tree measurement.  Again, these regressions included tree-

level random effects and in all cases it was found that a non-constant DBH-based variance 
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power function was needed to accommodate the dispersion patterns of the data.  Again, the 

model selection criterion used was the lowest AICc method.  The resulting BCMs had the 

general polynomial form: 

                         
           

               (10) 

                         
           

               (11) 

where: 

            
    (12) 

             
   (13) 

              
             (14) 

              
             (15) 

and these random terms are presumed mutually independent. 

For DBH-based regressions, the BCM was selected using a backward selection procedure 

where higher polynomial terms were removed if AICc was lower and residual plots showed no 

lack of fit.  
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Chapter 4 

 

Results and Discussion 

 

4.1 Distribution of Sample Data 

 

Sample trees were collected from 16 stands in western Montana, northern Idaho, and 

eastern Washington (Fig. 4.1).  Effort was made to sample trees from a range of stand types, 

habitat series, aspects, and elevations (Tables 1 and 2).  Trees were sampled in 6 different 

habitat series (obtained from digital raster data; US Forest Service, 2002), elevations ranging 

from 744 to 1911 m, on all four major aspects.   

 

Figure 4.1.  Locations of selected stands across the inland northwest. 
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Table 4.1.  Habitat series distribution of selected trees.   

   Species 

Habitat Series Douglas-fir Lodgepole 
pine 

Ponderosa 
pine 

Western 
larch 

Douglas-fir 24 10 39 21 
Grand fir 5 9   
Redcedar 2 1  2 
Spruce 2   6 
Subalpine fir 4 6 1 5 
Western hemlock 3    

Total 40 26 40 34 

 

 

Table 4.2.  Elevation and aspect distribution of selected trees.  

   Aspect 

Elevation North East South West Total 

600   17 6 23 
800  2 10 6 18 
1000 1 6 2 2 11 
1200 7 15 27 14 63 
1400 4 4 4 1 13 
1600  6 2  8 
1800 2   2 4 

Total 14 33 62 31 140 

      
 
 

After two successive field seasons of data collection, a total of 140 sample trees with 

725 branch-level estimates of crown biomass were obtained for this analysis.  The sample trees 

range from 5.0 to 61.5 cm in DBH (Table 4.3) and from 4.63 to 35.99 m in height.  Of the 140 

trees, 40 were Douglas-fir, 40 ponderosa pine, 26 lodgepole pine, and 34 western larch.  For 

Douglas-fir there were 221 individual branch-level estimates of crown biomass; for ponderosa 

pine, 200; for lodgepole pine, 129; for western larch, 175. 
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Table 4.3.  Species and DBH distribution of selected trees. 

   Species 

DBH (cm) Douglas-fir Ponderosa 
pine 

Lodgepole 
pine 

Western 
larch 

5-9.9 5 4 3 3 
10-14.9 4 4 3 5 
15-19.9 4 6 5 6 
20-24.9 6 5 5 6 
25-29.9 5 4 2 3 
30-34.9 3 4 4 3 
35-39.9 5 4 1 3 
40-44.9 2 2 2 1 
45-49.9 3 3 1 3 
50-54.9 1 2  1 
55-59.9 1 2   
60-64.9 1    

Total 40 40 26 34 

 
 
 By selecting trees from across a large geographic area and over a range of site variables, 

the idea was to test the validity of the Brown (1978) and Jenkins et al. (2003) equations, shown 

in Tables 3.1 and 3.2, for a range of site conditions found within the region.  Then, if any of 

these equations are found to be biased or inaccurate for the region, more effort can be put into 

further data collection and warrant the creation of new prediction equations for publication 

and use. 

 

4.2 Estimation of Crown Biomass in Douglas-fir  

 

 Douglas-fir is a major commercial timber species in the inland northwest.  It is a 

relatively shade-tolerant species in this region and a large portion of the region falls within the 

Douglas-fir habitat series (Pfister et al., 1977).  Further, many stands found throughout the 

region have seen an increase in Douglas-fir composition due to substantial fire suppression 
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activities since the turn of the century (Arno, 1980).  Thinning activities and fuels reduction 

projects in ponderosa pine/Douglas-fir forest often aim to remove Douglas-fir from the 

overstory and understory, either to reduce ladder fuels or to favor the growth of other species.  

Overall, Douglas-fir is a focal management species for timber production, is common 

throughout the INW, and requires the use of accurate prediction equations.    

 Among the selected trees there is a strong positive relationship between height and 

DBH (r=0.93), as well as between crown length and DBH (Fig 4.2, r=0.84).  However, some of 

the trees (shown in red in Fig. 4.2) deviate markedly from the overall allometric relationships.   

For example, the 50.9 cm DBH tree has a height that would be expected, though it has a very 

short crown length, as well as a low average estimate of crown mass, suggesting that trees with 

short crowns have less crown mass.  In another example, the 58.5 cm DBH tree which has a 

shorter crown length, possibly due the fact that it is shorter than expected, has an average 

estimated crown mass that is not unusual for its DBH.  This suggests that height and crown 

length have no impact on crown mass.  Further, the 46.5 cm DBH tree that has both an 

expectable height and crown length, but has a very high average estimate of total crown mass.    

These deviations from trends may be due to factors which are difficult to ascertain.  The 

46.5 cm and 58.5 cm trees were both sampled on Lubrecht Experimental Forest (MT) in 

Douglas-fir habitat, while the 50.9 cm tree was sampled near Garnet, not far from Lubrecht in 

subalpine fir habitat (a higher site which may be why the crown mass estimate is low). The 

point is that there are many variables, often not measureable, that may affect the total crown 

mass of any given tree.  
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Figure 4.2. Tree and crown characteristics of Douglas-fir sample trees; 
trees outlying in at least one dimension are shown in red.  Average-tree 
estimates of crown mass are shown in the lower panel.   

 

 Further review of Douglas-fir data shows that crown biomass estimates are quite 

variable within a tree.  As mentioned previously, every tree has between 5 and 8 individual 

branch-based estimates of crown biomass, so for any given tree there is a range of estimates.  

Figure 4.3 highlights the variability within and among trees, with both branch-level (blue) and 

average-tree (red) estimates shown.  It is clear that branch-based estimates vary widely and 

that their variability increases with tree DBH.   
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Figure 4.3.  Douglas-fir crown mass estimates from field sampling (blue 
points are branch-level estimates, red points are average-tree estimates), 
Brown’s (1978) equation (solid line), and Jenkins et al. (2003) equation 
(dashed line).   

 

 The prediction equations from both Brown (1978) and Jenkins et al. (2003) are also 

traced in Fig. 4.3.  These predictive equations supply similar estimates up to a DBH of 

approximately 20 cm but deviate considerably for larger trees.  Regression analysis of the 

differences between field estimates and each of these two prediction equations began by 

running regressions on all combinations of variables and finding the models with the lowest 

three AICc.  Focusing first on Brown’s (1978) equation, a model containing DBH, DBH2, and 

DBLC terms was found to be most powerful in terms of explaining differences between field 
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estimates of crown biomass and predictions from that equation. The best DBH-based model for 

describing the expected difference, or bias, as it will be called from here on, contained linear 

and quadratic DBH terms.  This model, listed in Table 4.4 and plotted in Fig. 4.4, showed the 

lowest AICc for DBH-based models.  The Pearson residuals from the model fit were also well-

behaved, displaying no marked trends in location or dispersion (Fig. 4.5).   

A point-wise 95% confidence envelope drawn in Fig. 4.4 around the fitted bias 

correction model (BCM) for Brown’s (1978) equation indicates a slight negative bias for trees in 

the 12-18 cm DBH range but a positive and increasing bias for trees above 30 cm.  That said, 

there appears to be some lack of fit in the quadratic bias correction model in trees above 50 

cm, and this is likely due to the high variance of crown biomass estimates in that region.  

However, no pronounced lack of fit is evident in the standardized residual plot (Fig. 4.5). 

Regarding the crown biomass equation of Jenkins et al. (2003), it was found that both 

DBH and DBLC terms were significant in modeling the differences of this equation relative to 

field estimates.  The best DBH-based model contained only a linear DBH effect (Table 4.4; Fig. 

4.4).  Standardized residuals for the latter model are shown in Fig. 4.5, and again show no 

marked trends in mean or variance.  A 95% confidence envelope around the fitted bias 

correction model indicates that there is appreciable negative bias in the crown biomass 

equation of Jenkins et al. (2003) for trees exceeding approximately 15 cm DBH.  
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Figure 4.4.  Differences between field estimates and equation-based predictions of crown 
biomass from Brown (1978; left) and Jenkins et al. (2003; right) for Douglas-fir.  The fitted 
bias correction model (solid line) and 95% point-wise confidence envelope (grey) are also 
shown.   

  

 
Figure 4.5.  Pearson residual plots for the Douglas-fir bias correction models created for the 
crown biomass equations of Brown (1978; at left) and Jenkins et al. (2003; at right). 

 
In Fig. 4.2, a tendency for large DBH trees with relatively short crowns to have smaller 

than average estimates of crown mass is illustrated.  This tendency suggests that a measure of 

crown ratio or crown length should be included in any prediction equation for crown biomass.  
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In Fig. 4.6 a positive relationship between crown ratio and equation bias emerges for large DBH 

trees (each panel contains an equal number of trees, grouped by small, medium, and large DBH 

trees).  That is, differences between field estimates of crown biomass and the equations of both 

Brown (1978) and Jenkins et al. (2003) appear to be insensitive to crown ratio for small DBH 

trees, but for large DBH trees large positive (negative) differences are associated with larger 

(smaller) crown ratios.  Thus both equations overestimate the crown biomass of large DBH 

trees with small crowns.      

  

Table 4.4.  Bias correction models for Douglas-fir and associated model selection 
statistics.  Bold models were the selected BCMs and are illustrated in Fig. 4.4.   

Prediction Equation Model Differences Function AICc 

Brown (1978) 
 

 
ECM 
 
 
 
BCM 

 
7.80 - 4.15×DBH + 0.08×DBH2 + 2.38×DBLC 
15.30 - 4.84×DBH + 0.08×DBH2 - 0.13×CR + 3.36×DBLC 
9.17 - 3.64×DBH + 0.08×DBH2 + 2.18×DBLC - 0.52×HT 
 
-2.47 
-34.78 + 1.94×DBH 
18.84 - 3.21×DBH + 0.09×DBH2 
40.85 - 7.04×DBH + 0.27×DBH2 - 0.002×DBH3 

 
2050 
2051 
2052 

 
2113 
2102 
2089 
2101 

Jenkins et al. (2003)  
ECM 
 
 
 
BCM 

 
1.17 - 2.25×DBH + 2.29×DBLC 
8.78 - 2.95×DBH - 0.13×CR + 3.23×DBLC 
-0.11 - 2.13×DBH - 0.004×DBH2 + 2.34×DBLC 
 
-6.57 
8.29 - 0.85×DBH 
10.81 - 1.20×DBH + 0.01×DBH2 
30.27 - 4.61×DBH + 0.17×DBH2 - 0.002×DBH3 

 
2046 
2047 
2048 

 
2093 
2078 
2086 
2099 
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Figure 4.6.  DBH conditioning plots of Douglas-fir crown ratio against 
difference between field estimates and equation-based predictions of crown 
biomass from Brown (1978; top) and Jenkins et al. (2003; bottom).    
Rightmost panels show data from trees with DBH > 29.5 cm. 

 
 

4.3 Estimation of Crown Biomass in Lodgepole Pine  

 

 Lodgepole pine is generally a higher elevation species which tends to grow in large, 

dense, even-aged stands.  A fire adapted species, lodgepole pine often grows in stands that 

experience large, stand replacing fires with between fire intervals ranging from 1 to 300 years 

depending on site and stand conditions (Arno, 1980).  Lodgepole pine maintains a niche in drier 

areas of poor, rocky soils, in near sub-alpine zones.  However it can be found in many other 
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sites, as well as included in mixed species, uneven-aged stands.  For the most part, according to 

the sample trees selected for this study, lodgepole pine have short crowns (i.e. small crown 

ratios), are not very tall relative to other species for the same DBH, and tend to be diameter 

limited (it is difficult to find lodgepole pine much larger than 50 cm DBH). 

 Among the lodgepole pine sampled, there are strong relationships between DBH and HT 

(r=0.91), DBLC (r=0.89), and crown mass (r=0.88).  Figure 4.7 illustrates the major 

characteristics for these sample trees.  No tree really stands out as being relatively tall given its 

DBH.  There is only a slight trend between DBH and crown length, but for the most part 

lodgepole pine sampled in this study seem to have a crown length of 5 to 12 meters regardless 

of DBH or height.  Only one tree, colored in red, really stands out due to its extremely long 

crown, while in other regards it seems to be a normal mid-sized tree.  This tree was the only 

lodgepole pine sampled in the Swan Valley, northwest of Missoula, MT, on moist grand fir 

habitat.  This may again suggest the variability among trees due to site differences which are 

difficult to measure. 
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Figure 4.7.  Tree and crown characteristics of lodgepole pine sample 
trees; trees outlying in at least one dimension are shown in red.  The 
lower panel describes a relationship between DBH and average crown 
mass estimates for each tree.   

  

As with Douglas-fir, the range of crown mass estimates produced by each branch had a 

wide degree of variability (Fig. 4.8).  However, with lodgepole pine, the variability among 

estimates is fairly high even in smaller DBH trees and increases with size.  The great degree of 

variability among individual branch estimates selected from a given tree could be associated 

with the crown structure of lodgepole pine.  In this species, it seems that some branches tend 

to be very large and overgrown, compared to other branches of a similar diameter on the same 
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tree.  Though there is increasing variability with increasing DBH, there remains a strong positive 

trend between DBH and individual branch-based estimates of crown mass.   

 

Figure 4.8.  Lodgepole pine crown mass estimates from field sampling 
(blue points are branch-level estimates, red points are average-tree 
estimates), Brown’s (1978) equation (solid line), and Jenkins et al. (2003) 
equation (dashed line).  

 

Models fit for lodgepole pine are listed in Table 4.5.  For regressions of the differences 

between RBS field estimates and Brown’s (1978) equation prediction, the ECM was found to 

include DBH, DBH2 and DBLC. For the best DBH-based model, a linear mixed effects model with 

a DBH-based power function to model variance was fit which incorporated both linear and 

quadratic DBH terms.  While this model does not have the lowest AICc (though it is close), this 
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model was favored because its residual plot (Fig. 4.10) showed no trend or lack of fit.  Both the 

intercept model and linear DBH model shown in Table 4.5 had residual plots which showed 

trends which suggested a lack of fit for the smallest and largest DBH trees.  Where AICc 

provides information about global model fit, residual plots do a better job of describing local fit.  

Because it is important to have a BCM that has good global and local fit, and therefore works 

for any DBH, the quadratic DBH model was selected.   

Figure 4.9 illustrates the best DBH-based model, including a 95% point-wise confidence 

interval around the estimated bias.  For trees smaller than 30 cm DBH, the estimated bias is not 

significantly different from zero, which would suggest that no bias is present in predictions 

produced by Brown’s (1978) equation at these sizes.  Beyond 30 cm DBH, the bias is significant 

and increasing rapidly, although the variance of the differences as well as the estimated bias is 

also large, causing the confidence interval to be wide.  Again, a residual plot for this model fit 

(Fig. 4.10) does not show any marked trend.   

For differences from Jenkins et al. (2003) equation predictions, the ECM included only 

DBLC.  The best DBH-based model (Fig. 4.9) incorporated linear and quadratic DBH terms.  As 

with the BCM for Brown’s (1978) equation, this model does not have the lowest AICc, but 

rather has a residual plot which shows no marked trend or lack of fit.  Also, the intercept and 

linear DBH models have residual plots which show a strong trend, and local lack of fit for small 

and large DBH trees.  However, looking closely at the BCM (Fig 4.9), there is a failure to 

adequately explain a trend in the differences between equation predictions and individual 

crown estimates as a function of DBH.  The grey 95% confidence envelope illustrated overlaps 

zero, suggesting that the Jenkins et al. (2003) equation for lodgepole pine is unbiased.   
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Table 4.5.  Bias correction models for lodgepole pine and associated model selection 
statistics.  Bold models were the selected BCMs and are illustrated in Fig. 4.9.   

Prediction Equation Model Differences Function AICc 

Brown (1978) 
 

 
ECM 
 
 
 
BCM 

 
10.68 - 3.24×DBH + 0.08×DBH2 + 1.57×DBLC 
-20.28 + 1.83×DBLC 
-14.45 - 1.32×DBH + 0.07×DBH2 - 0.50×DBLC - 0.39×CR 
 
1.61 
-11.79 + 0.79×DBH 
17.99  - 2.53×DBH + 0.08×DBH2 
2.22 + 0.26×DBH - 0.06×DBH2 + 0.002×DBH3 

 
983 
984 
985 

 
1102 
1101 
1103 
1114 

Jenkins et al. (2003)  
ECM 
 
 
 
BCM 

 
-10.99 + 0.90×DBLC 
-9.94 - 0.58×DBH + 1.67×DBLC 
4.01 - 2.10×DBH + 0.04×DBH2 + 1.56×DBLC 
 
0.49 
-2.61 + 0.18×DBH 
10.95 - 1.37×DBH + 0.04×DBH2 
3.56 - 0.07×DBH - 0.03×DBH2 + 0.001×DBH3 

 
981 
983 
984 

 
1094 
1097 
1102 
1114 

 
 

  
Figure 4.9.  Differences between field estimates and equation-based predictions of crown 
biomass from Brown (1978; left) and Jenkins et al. (2003; right) for lodgepole pine.  The 
fitted bias correction model (solid line) and 95% point-wise confidence envelope (grey) are 
also shown.   



 

 

  
48 

 
  

 
Figure 4.10.  Pearson residual plots for the lodgepole pine bias correction models created 
for the crown biomass equations of Brown (1978; at left) and Jenkins et al. (2003; at right). 

 
 

The notion that the Jenkins et al. (2003) equation for all pine species (including, but not 

limited to, loblolly pine (Pinus taeda), whitebark pine (Pinus albicaulis), and ponderosa pine) is 

unbiased for lodgepole pine is quite interesting.  What it suggests is that all pine species have 

on average an equal crown weight for any given DBH, or at least that lodgepole pine is the 

average of pine species.  Most people would not look at a lodgepole pine and a ponderosa pine 

side by side and make that assumption.  Another intriguing note is that Brown (1978) sampled 

only three trees to build the equation for lodgepole pine.  The remainder of his lodgepole pine 

data came from Storey et al. (1955) and Fahnestock (1960), which contained sample trees 

collected from the Priest River Experimental Forest in northern Idaho, Mt. Shasta in California, 

and various locations in Nevada.  The lack of coverage for this species, the collection of only 

three sample trees, and the potential error related to the use of multiple sampling schemes 

may be an indication of the source of bias associated with the prediction equation produced. 
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4.4 Estimation of Crown Biomass in Ponderosa Pine  

 

 Ponderosa pine are most productive and remain the dominate species on lower 

elevation, dry sites.  Typically forming open, uneven-aged stands, the ponderosa pine is also a 

fire adapted species, though it historically maintained a shorter average fire-free interval of 

between 5 and 20 years, with only rare stand replacing fire events (Arno, 1980).   Due to its 

mostly open grown stand characteristics, ponderosa pine have wide, long crowns, large 

outstretched branches with long needles and low amounts of 1 hour fuels (branches don’t 

taper, rather they just foliate) indicated by the data collected for this study.  As elevation and 

moisture increase, ponderosa pine begins to compete with Douglas-fir for nutrients and water, 

where Douglas-fir tends to replace ponderosa pine as the climax species (Arno, 1980).  

Ponderosa pines have very thick ablative bark, which flakes off during fires to protect the tree 

cambium (Butler et al., 2005), and often grows to very large diameters.   

 Characteristics of ponderosa pine sampled for this study are shown in Fig. 4.11.  Strong 

relationships are seen between DBH and HT (r=0.92), crown length (r=0.86), and crown mass 

(r=0.82).  For the relationship between DBH and HT, there is more variability among trees of 

similar DBHs than what is seen in the other species, possibly due to site, stand, or growing 

conditions.  For crown mass, there is a great degree of variation at larger DBHs, but similar 

levels of variation are not seen in the other dimensions.  Some trees have high estimates of 

crown mass compared to others of similar DBH.  Very interesting are the two trees marked in 

red.  One tree has a DBH of 51.4 cm, is 32.4 m tall, and has a crown length of 16.6 m; the other 

tree has a DBH of 51.7 cm, stands 33.5 m tall, and has a crown length that spans 16.5 m.  These 

two trees were located in the same stand near Ronan, MT, and are nearly identical in all 
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respects, except that they have widely different estimates of crown mass.  The larger of the two 

trees has the highest estimate of crown mass among the ponderosa pine sampled and, as seen 

in Fig. 4.12, has the highest amount of variability among individual branch estimates of any 

ponderosa pine sampled.     

 
Figure 4.11.  Tree and crown characteristics of ponderosa pine sample 
trees; trees outlying in at least one dimension are shown in red.  Average-
tree estimates of crown mass are shown in the lower panel.   
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Figure 4.12.  Ponderosa pine crown mass estimates from field sampling 
(blue points are branch-level estimates, red points are average-tree 
estimates), Brown’s (1978) equation (solid line), and Jenkins et al. 
(2003) equation (dashed line). 

 

 For individual branch estimates of crown mass there is again a great degree of variability 

(Fig. 4.12).  While there is relatively little variation among estimates for small DBH trees 

compared to large DBH trees, the amount of variation among estimates increases with DBH, 

and seems to hit a point at around 25 cm where the variability starts to explode.  Looking again 

at the two trees with diameters of about 52 cm, the ranges of estimates differ considerably and 

only barely overlap.  This extreme example points out the potential variability in crown mass 

estimates that can be produced by the RBS sampling scheme used, as well as the potential 
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degree of difference in crown structure from one tree to another.  What this means is that 

while any equation cannot accurately predict the crown mass of any given tree, it can hopefully 

impart some sense of how much mass, on average, trees of a given size have across a large 

area, and thereby provide a reliable estimate of the total mass in a particular stand or region.   

      

Table 4.6.  Bias correction models for ponderosa pine and associated model selection 
statistics.  Bold models were the selected BCMs and are illustrated in Fig. 4.13.   

Prediction Equation Model Differences Function AICc 

Brown (1978) 
 

 
ECM 
 
 
 
BCM 

 
4.64 - 2.48×DBH - 0.03×DBH2 - 0.54×HT + 4.09×DBLC  
    - 0.17×CR 
-5.75 - 1.76×DBH - 0.03×DBH2 - 0.29×HT + 3.00×DBLC 
-5.44 - 2.31×DBH - 0.03×DBH2 + 3.26×DBLC 
 
-10.27 
6.35 - 1.04×DBH 
-0.51 - 0.04×DBH - 0.03×DBH2 
-2.93 + 0.57×DBH - 0.07×DBH2 + 0.001×DBH3 

 
 

1827 
1831 
1833 

 
1916 
1898 
1911 
1925 

Jenkins et al. (2003)  
ECM 
 
 
 
BCM 

 
2.41 - 2.06×DBH - 0.57×HT - 0.16×CR + 3.95×DBLC 
4.24 - 2.45×DBH + 0.01×DBH2 - 0.54×HT + 3.23×DBLC  
     - 0.13×CR 
-6.04 - 1.74×DBH + 0.01×DBH2 + 2.98×DBLC - 0.29×HT 
 
0.47 
-2.46 + 0.29×DBH 
-0.85 - 0.04×DBH + 0.01×DBH2 
-2.83 + 0.47×DBH - 0.02×DBH2 - 0.001×DBH3 

 
1827 

 
1828 
1831 

 
1901 
1904 
1911 
1925 

 
 

Regressions for differences from RBS field estimates and Brown’s (1978) equation 

predictions were produced and are shown in Table 4.6.  The best ECM contained DBH, DBH2, 

HT, DBLC and CR. The BCM contained only a linear DBH term (Fig. 4.13).  The estimated bias 

trend immediately departs from zero, and increases with DBH.  The 95% point-wise confidence 



 

 

  
53 

 
  

interval for the estimated bias does not include zero beyond 10 cm DBH.  The Pearson 

standardized residual plot for the model (Fig. 4.14) shows no defined trend.   

For differences between field estimates and Jenkins et al. (2003) equation predictions, 

the best ECM included DBH, HT, CR, and DBLC.  However, the BCM contained only an intercept 

(Fig. 4.13).  The estimated bias is small, only 0.45 kg, and remains constant for all sizes of DBH.  

As with other species, variability is large and increases with DBH, but the differences appear to 

be centered about zero.  Figure 4.13 illustrates the bias correction model and a 95% point-wise 

confidence interval.  While it is difficult to see, the confidence interval does contain zero.  A 

residual plot for the regression describes no strong trend or lack of fit (Fig. 4.14).  

In the plots presented in Fig. 4.13, it is difficult to see the bias associated with either 

equation.  Where Brown’s (1978) equation has an increasing overestimation, hitting a 

maximum bias of -53.7 kg within the data range, Jenkins et al. (2003) equation has constant 

underestimation of only 0.47 kg.   Remarkable is the fact that Jenkins et al. (2003) equation is 

only found to be biased by this small amount, and the confidence envelope also includes zero.  

For the largest ponderosa pine sampled, a 57.7 cm tree (expected to have a crown mass of 327 

kg) the bias corresponds to a 0.14% error.  It seems that the slight amount of bias here, when 

paired with the lack of bias associated with the pine equation for lodgepole pine, basically 

states that for the most part, the two species have equivalent crown mass for a given DBH.   

Using the BCM fit for the Jenkins et al (2003) equation, the crown mass of a 35 cm pine 

tree, which on average weighs 104 kg, would be underestimated by 0.47 kg, or a 0.45% error 

for the ponderosa pine; and an underestimation of 8.7 kg, or an 8% error for the lodgepole 

pine.  Given that the direction of bias is the same for both species, as well as the fact that the 
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BCM for each species is not large for a given tree DBH, and remembering that the confidence 

interval for these BCMs includes zero, it again seems reasonable to have only one equation to 

predict pine crown mass, at least in the case of these two species growing in the INW.    

   
Figure 4.13.  Differences between field estimates and equation-based predictions of crown 
biomass from Brown (1978; left) and Jenkins et al. (2003; right) for ponderosa pine.  The 
fitted bias correction model (solid line) and 95% point-wise confidence envelope (grey) are 
also shown. 
 

 
Figure 4.14.  Pearson residual plots for the ponderosa pine bias correction models created 
for the crown biomass equations of Brown (1978; at left) and Jenkins et al. (2003; at right). 
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To further illustrate the notion of using only one equation for both ponderosa pine and 

lodgepole pine, it is helpful to look at a graph which contains both species (Fig 4.15).  The plot 

shows the general trend in crown mass estimates for each species to be fairly consistent, and it 

is only where lodgepole pine tend to be DBH limited that the trend ends.   

 

Figure 4.15.  Plot of average crown mass estimates for ponderosa pine 
(blue points) and lodgepole pine (red circles).  A smoother trend is 
drawn through each species, where the solid line is ponderosa pine and 
lodgepole pine is represented by the dashed line. 
 
 

For ponderosa pine there is again some association in the differences between RBS field 

estimates and equation predictions in relation to crown ratio conditioned upon DBH.  Figure 
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4.16 illustrates a trend in the differences against crown ratio in the group of trees with the 

largest DBHs, where the crown masses of trees with lower crown ratios are apparently being 

over-estimated and the masses of trees with higher crown ratios are being under-estimated.  

Noting that the regression fits shown in Table 4.6, one including only crown ratio, and another 

including both DBH and crown ratio, were found to be significant predictors of the differences 

between field estimates and equation predictions, it is possible that an equation used to 

describe ponderosa pine crown mass should also utilize some factor associated with crown 

ratio or crown length. 

 

 
Figure 4.16.  DBH conditioning plots of ponderosa pine crown ratio against 
difference between field estimates and equation-based predictions of crown 
biomass from Brown (1978; top) and Jenkins et al. (2003; bottom).    Right 
panels show data from trees with DBH > 31.7 cm. 
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4.5 Estimation of Crown Biomass in Western Larch  

 

 Western larch is a shade intolerant species growing on moister sites throughout the 

region.  It is a deciduous conifer species that loses its small, light leaves in the early to mid fall.  

Western larch is also a fire adapted species, having fire resistant ablative bark similar to 

ponderosa pine; it grows in stands with a historic average fire-free interval of between 25 and 

50 years (Barrett et al., 1991).  Western larch grows best in open, uneven aged stand 

structures, in either single species or multi-species stands.  Western larch can often be found 

growing among other moisture loving tree species such as Douglas-fir.  It can be a very long-

lived species, and dominates moist, north- and east-facing slopes in mid-range elevations across 

the landscape.   

 Western larch sampled for this study came from several different locations in Montana, 

with the vast majority coming from Lubrecht Experimental Forest and the Flathead, Kootenai, 

and Lolo National Forests.  There is a strong positive relationship between DBH and HT (r=0.89), 

crown length (r=0.76), and crown mass (r=0.86, Fig. 4.17).  Western larch had a wide amount of 

variability in crown lengths for any given DBH, but had a positive, and seeming asymptotic 

relationship between crown length and mass.  Western larch does have the lowest crown mass 

for any given DBH in relation to all other tree species sampled for this study, which is likely 

related to the fact that it is a deciduous species, producing small light leaves that it loses every 

fall, and also the fact that it is a very efficient self-pruner with very small amounts of dead 

branch wood found within the crowns of sample trees.   

Again there are two trees in particular, colored in red (Fig. 4.17), one with a DBH of 46.7 

cm, HT of 21.48 m, and crown length of 19.8 m, and the other with a DBH of 46.6 cm, HT of 
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29.0 m, and crown length of 11.1 m.  The tree with the larger DBH has an average estimated 

crown mass of 157 kg, while the smaller has an average estimated crown mass of 54 kg.     

 
Figure 4.17.  Tree and crown characteristics of western larch sample 
trees; trees outlying in at least one dimension are shown in red.  Average-
tree estimates of crown mass are shown in the lower panel.   

 
  

As with all other tree species, the within-tree variability among branch estimates of total 

crown mass is large, especially as DBH increases (Fig. 4.18).  However, variability seems to be 

much less with western larch than any other species, possibly because average crown mass 

tends to be much lower.  With the exception of 2 outlying estimates of crown mass which are 

greater than 200 kg, the majority of points lie in a group of between 50 and 150 kg for large 
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DBH trees.  In Fig. 4.18, the Jenkins et al. (2003) equation lies above the majority of crown mass 

estimates at all levels of DBH, while Brown’s (1978) equation seems to cut through the scatter.   

 
Figure 4.18.  Western larch crown mass estimates from field sampling 
(blue points are branch-level estimates, red points are average-tree 
estimates), Brown’s (1978) equation (solid line), and Jenkins et al. 
(2003) equation (dashed line). 

 

 As with the previous three species, regressions fit for differences between RBS field 

estimates and the two equation predictions utilized a mixed-effects, heterskedastic modeling 

scheme.  Models fitted are described be found in Table 4.7.  In describing departures from 

Brown’s (1978) equation, a regression containing DBH, DBH2, CR, and DBLC was found to be the 

best ECM.  However, the best DBH-based model contained only an intercept, which is not 



 

 

  
60 

 
  

technically DBH-based, except for variability, which was still modeled as a function of DBH.  

Figure 4.19 illustrates the model fit, enclosed in a 95% point-wise confidence interval which 

does not contain zero at any DBH.  This result implies that the Brown (1978) equation has an 

equal bias across the DBH range of the sample trees, which is different from any other results 

found, where bias tends to increase with DBH.  A residual plot shows no general trend 

associated with lack of model fit (Fig. 4.20). 

Table 4.7.  Bias correction models explored for western larch and associated model 
selection statistics.  Bold models were selected BCMs and are illustrated in Fig. 4.19.   

Prediction Equation Model Differences Function AICc 

Brown (1978) 
 

 
ECM 
 
 
 
BCM 

 
11.05 - 0.67×DBH - 0.93×DBH2 - 0.18CR + 1.70×DBLC 
11.13 - 0.76×DBH + 0.003×DBH2 - 0.89×HT - 0.17×CR + 
1.64×DBLC 
7.43 - 1.10×DBH - 0.11×CR + 1.01×DBLC 
 
-3.95 
-4.02 - 0.004×DBH 
1.64 - 0.64×DBH + 0.02×DBH2 
10.32 - 2.09×DBH + 0.09×DBH2 - 0.001×DBH3 

 
1312 

 
1314 
1315 

 
1327 
1332 
1339 
1352 

Jenkins et al. (2003)  
ECM 
 
 
 
BCM 

 
6.59 + 0.18×DBH - 0.05×DBH2  - 0.87×HT + 2.29×DBLC - 
0.18×CR 
-0.14 + 0.14×DBH - 0.03×DBH2 + 0.42×DBLC - 0.37×HT 
0.45 - 0.45×DBH - 0.03×DBH2 + 0.55×DBLC 
 
-15.73 
9.98 - 1.16×DBH 
-3.81 + 0.41×DBH - 0.04×DBH2 
7.64 - 1.50×DBH + 0.05×DBH2 - 0.001×DBH3 

 
1315 

 
1322 
1323 

 
1388 
1342 
1340 
1352 

To describe differences between RBS field estimates and Jenkins et al. (2003) equation 

predictions, the best ECM contained DBH, DBH2, HT, CR, and DBLC.  The best DBH-based model 

contained linear and quadratic DBH terms.  This model is represented visually in Fig. 4.19, and 

shows negative bias increasing with DBH, indicating a tendency for the equation to overpredict 
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crown mass.  The model immediately departs from zero, and a 95% confidence interval does 

not contain zero throughout the range of DBHs.  The residual plot (Fig. 4.19) shows no trend, 

and indicates no local lack of fit.  

  
Figure 4.19.  Differences between field estimates and equation-based predictions of crown 
biomass from Brown (1978; left) and Jenkins et al. (2003; right) for western larch.  The fitted 
bias correction model (solid line) and 95% point-wise confidence envelope (grey) are also 
shown. 

 
Figure 4.20.  Pearson residual plots for the western larch bias correction models created for 
the crown biomass equations of Brown (1978; at left) and Jenkins et al. (2003; at right). 
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Some of the errors associated with predicting tree crown mass in western larch may be 

attributed to differences in crown ratio (Fig. 4.21). Large DBH trees with small crown ratios 

appear to be overestimated by both equation predictions, especially with the Jenkins et al. 

(2003) equation.  For large DBH trees with long crowns, Brown’s (1978) equation seems to 

underestimate crown mass, while the equation of Jenkins et al. (2003) is still overestimating 

these trees, though to a lesser extent than for trees with shorter crowns.    

 
Figure 4.21.  DBH conditioning plots of crown ratio against difference between 
field estimates and equation-based predictions of crown biomass from Brown 
(1978; top) and Jenkins et al. (2003; bottom) for western larch.    Right panels 
show data from trees with DBH > 23.9 cm. 
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4.6 Across-Species Trends  

 

4.6.1 Bias 

 

 For Douglas-fir and lodgepole pine, Brown’s (1978) equation has an increasing bias in 

response to DBH.  It was found that for these two species, the Brown (1978) equations under-

estimate crown mass to a larger and larger degree with increases in DBH.  For ponderosa pine, 

Brown’s (1978) equation has an increasing bias with DBH which is associated with over-

estimation of crown mass.  With western larch the over-estimation of crown mass was found to 

be the same at all DBHs.  The Jenkins et al. (2003) equations were found to increasingly 

overestimate crown mass for Douglas-fir and western larch, while no bias was found to be 

present for their lodgepole pine or ponderosa pine equation.  

As mentioned in Chapter 2, Gray and Reinhardt (2003) graphically evaluated the 

accuracy of Brown’s (1978) equations for Douglas-fir, lodgepole pine, and ponderosa pine.  In 

the case of Douglas-fir, Grey and Reinhardt (2003) found that Brown’s (1978) equation under-

predicted the majority of their sample trees, especially the larger DBH trees, which is consistent 

with the results of this study.  In lodgepole pine Gray and Reinhardt (2003) found that Brown’s 

(1978) equation predicted quite well, whereas the results of this study show the 95% 

confidence envelope does not include zero beyond 30 cm DBH.  For ponderosa pine, Gray and 

Reinhardt found the Brown (1978) equation to over-predict crown mass for most of their 

sample trees, which is also consistent with the results of this study.   

Another study which evaluated the accuracy of Brown’s (1978) crown biomass equation 

for ponderosa pine was produced by Keyser and Smith (2010).  Because the purpose of that 
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study was to evaluate the effectiveness of biomass predictions for the use of fire modeling in 

the FVS-FFE simulator, they limited their analysis to an evaluation of only foliage and 1 hour 

fuels.  While their study used sample trees collected from the Black Hills of South Dakota, east 

of the continental divide, they found that Brown’s (1978) equations consistently under-

predicted these crown mass components.  Though the present research aims at evaluating the 

accuracy of Brown’s (1978) prediction equation for total crown mass, the similar conclusions 

reached by Keyser and Smith for different crown mass components is notable.   

       

4.6.2 Variability 

 

 As mentioned throughout the results and discussion of each species, there was 

substantial variability among individual branch-based estimates of total crown mass for a given 

tree, as well as among all estimates for trees of a given species.  One important thing to note is 

that there are two kinds of variability associated with the RBS estimates reported.  Natural 

variability between trees is expected, even with all other factors (such as DBH, HT, crown 

length, and site) being equal.  There is also within-tree sampling error in crown estimates 

created by the RBS sampling scheme used.  Individual branch-based estimates from any given 

tree can vary considerably, with differences caused by any number of factors including, but not 

limited to, the diameters, heights, weights, and form of the selected branches.  Though it is 

impossible to determine where all of the between-tree variability comes from, the major 

sources of this variability can be credited to a couple of tree attributes, as discussed below. 

For all species, it appears that differences in DBH account for a substantial portion of the 

variability in crown mass.  Also evident are trends associated with crown ratio, or crown length, 
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in large diameter trees (for Douglas-fir, ponderosa pine, and western larch).  These trends are 

not recognized by purely DBH-based models. Aggregated to the stand or landscape level, the 

overestimations and underestimations of individual crown biomass due to differing crown 

ratios would conceivably average out for small and moderate DBH trees.  But, overall it seems 

the inclusion of crown ratio, or some interaction between crown ratio and DBH, in crown 

biomass prediction equations is required to account for more of the variability that occurs 

among tree crowns for large DBH trees.   

The importance of including a measure of crown length for the possible estimation of 

tree-level crown mass may carry more weight in stands with less acreage.  Crown length, or 

crown ratio, is an indirect measure of local stand density.  Stands that are more dense, or those 

having a higher number of trees per acre relative to the size of trees in the stand, would be 

expected to have trees with lower crown ratios due to shading and self-pruning of lower 

branches on the trees.  Inversely, in more open-grown stands, it would be expected that trees 

would have a longer crown length as they have more growing space, and lower branches would 

not be as often shaded (Bickford, 1957).  This idea becomes important in respect to smaller 

stand scales.  If a unit is targeted for fuels reduction, and there is some purpose to knowing the 

amount of biomass being removed, it can be important to have a more accurate measure of 

this.  This small stand may be dense, and considering the potential for trees with low crown 

ratios to be overestimated by existing DBH-based biomass equations, there is a possibility of 

expecting much more biomass to be removed than actual.  Management implications of this 

oversight may be slight, but if there is a targeted amount of removal, and after the project is 
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completed an inventory finds that less was removed than required, a second (costly) stand 

entry may be necessary. 

 

4.6.3 Differences in Crown Definitions 

 

In the forest industry, a defined merchantable top is used to describe a suitable 

minimum upper-stem diameter for saw log products.  This merchantable top diameter is often 

anywhere between 5 and 15 cm (2 and 6 inches).  Beyond this upper-stem diameter, the wood 

is usually considered worthless for solid wood products.  That being said, the question of how 

Brown (1978) and Jenkins et al. (2003) defined the boundary between stem and crown may be 

important, and could account for some of the apparent bias.  Brown’s sampling protocol 

appears to include all primary branches to the tree tip but no portion of the main stem, though 

it is a bit unclear.  Jenkins et al.  set a clearer boundary, and defined the crown mass for the 

entire tree to include all branches plus the tree top above a 10 cm (4 inch) diameter.  Both 

these protocols differ from the definition used as part of the RBS sampling scheme applied in 

this study, where (only) the tree top above a 5 cm (or 2 inch top) diameter was considered as 

part of the crown (along with all primary branches connected to that top; see Fig. 4.22).  This 

difference in the treatment of tree tops is measureable, and would result in the Jenkins et al. 

(2003) equations yielding inherently higher estimates than those collected through RBS, due to 

the addition of some stem material.  Conversely, Brown’s (1978) equations would yield 

inherently lower estimates than those collected by RBS due to his exclusion of any stemwood.  

Calculating tree top weights using volume equations for cones and wood density 

measurements published by Hoadley (1990), some approximate weights can be obtained.  For a 
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30 cm DBH Douglas-fir, the weight of the stem from the 10 cm to the 5 cm top is expected to be 

approximately 5.5 kg (or 5% of the predicted crown mass of 102 kg).  That is, it would be 

expected that the Jenkins et al. (2003) equation for Douglas-fir would exceed the RBS estimate 

of a 30 cm DBH tree by 5.5 kg.  For the same tree, the weight of the stem above the 5 cm top is 

about 1 kg (or 1.5% of the predicted crown mass of 78 kg), so it would be expected that the 

Brown (1978) equation for Douglas-fir would fall short of the RBS estimate by 1 kg.  In fact, both 

prediction equations for Douglas-fir over-predicted the crown mass of a 30 cm tree to a large 

degree (the 30 cm tree sampled in this study had an estimated crown mass of only 65 kg).         

 

Figure 4.22.  Diagram illustrating the different portions of the 
upper main stem classified as crown material by Brown (1978; no 
stemwood), the sampling protocol used for this study (RBS; 
stemwood above a 5 cm diameter), and Jenkins et al. (2003; 
stemwood above a 10 cm diameter). 
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 Another potential cause of bias associated with Brown’s (1978) equations may be due to 

discrepancies in crown definition.  Recalling from Chapter 2, much of Brown’s data came from 

studies by Storey et al. (1955) and Fahnestock (1960).  Data collected for the purposes of these 

studies utilized a trimmed crown.  Dividing the stem of the tree into five equal parts, the crown 

was trimmed to the nearest 20% mark on the tree (Fig. 4.23).  The explanation for this 

procedure is not evident in the research paper.  Further, Brown (1978) makes no note of this 

discrepancy in his work.  The result of this difference in crown definition would be an 

expectation for Brown’s equations to consistently underestimate crown mass by a degree 

which is impossible to estimate. 

 

Figure 4.23.  Illustration of trimmed crown as presented by Storey et al. 
(1955, pg. 9). 
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4.6.4 Differences in Sample Data 

 

An interesting consideration of the crown biomass prediction equations evaluated 

above is how they were calibrated, and what could be the cause of the bias identified in the 

present study.  The Jenkins et al. (2003) equations were built from pseudo-data generated from 

a nearly exhaustive list of biomass prediction equations from all over the continent.  Jenkins et 

al. (2003) simply used several equations to predict the crown mass for a tree species over a 

range of DBH, and then fit a regression through the scatter of points.  Brown’s (1978) 

equations, however, were built from actual trees sampled from a number of locations in the 

Rocky Mountains, most notably the Priest River Experimental Forest (ID).     

 Brown (1978) presented tree data he collected.  Some of the data, and for some species 

most of the sample trees, came from Storey et al. (1955) and Fahnestock (1960) which is not 

presented (see Chapter 2, pp. 8-10).  Without those data, it is difficult to have a full 

understanding of the trees used to fit his equations, and whether those trees are much 

different from the trees sampled as part of this study.  This is especially true in the case of 

lodgepole pine, where only 3 trees were sampled by Brown, with the remaining data coming 

from the other two studies.  Although the data generated by the Storey et al. (1955) and 

Fahnestock (1960) studies were not published, it is possible to compare some of the trees used 

in Brown’s study against the tree data collected in the field in this project.   

Figure 4.24 superimposes the Douglas-fir sample trees selected by Brown (1978) over 

those selected in this study.  While Brown sampled some trees that were much larger in DBH 

than the biggest tree selected for this study, the trees he sampled follow the same general 

trends associated with DBH, HT, crown length, and crown mass as those used in this study.  



 

 

  
70 

 
  

There is quite a bit of variability between trees for all attributes, which is expected.  For 

lodgepole pine (Fig. 4.25), there were only three trees selected and sampled by Brown.  Since 

these three trees are small in size, it is difficult to say much more about the trees used to build 

that prediction equation.  However it does call into question the methods used to collect the 

sample trees used, and whether it is appropriate to utilize tree data collected by other studies 

that may not have used the same sampling strategy (or the same definitions of crown 

materials).  Figures 4.26 and 4.27 show the ponderosa pine and western larch data collected by 

Brown, respectively.  These plots again show that trees sampled by Brown are very similar to 

those selected by this study, follow the same general allometric trends in tree measurements, 

and exhibit similar levels of variability. 

 
Figure 4.24.  Sizes and allometric relationships among Douglas-fir 
sample trees collected for this study (black) and by Brown (1978; 
red). 
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Figure 4.25. Sizes and allometric relationships among lodgepole 
pine sample trees collected for this study (black) and by Brown 
(1978; red). 

 

 
Figure 4.26. Sizes and allometric relationships among ponderosa 
pine sample trees collected for this study (black) and by Brown 
(1978; red). 
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Figure 4.27. Sizes and allometric relationships among western 
larch sample trees collected for this study (black) and by Brown 
(1978; red). 
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Chapter 5 
 

Conclusions 

 

 While many equations have been developed to predict crown mass, crown mass 

components, or total aboveground tree mass, the majority of these tend to be local in scope.  

For more wide scale use, it seems reasonable to develop and apply regional or national 

estimators.  However, considering the results of this research project, regional equations may 

not necessarily be appropriate for use in any specific stand, or at all.  For the species examined, 

all the DBH-based crown biomass prediction equations developed by Brown (1978) and Jenkins 

et al. (2003) exhibit some bias.  In some cases the bias is worse than others.  Brown’s (1978) 

equations tend to under-estimate crown mass for Douglas-fir and lodgepole pine, while they 

tend to over-estimate crown mass for ponderosa pine and western larch.  The equations of 

Jenkins et al. (2003) tend to over-estimate Douglas-fir and western larch crown mass, but show 

no significant bias in the prediction of lodgepole pine and ponderosa pine crown mass.  While it 

is possible to use these equations to predict forest biomass across the inland northwest, it may 

be better to use them in conjunction with one of the BCMs published in this paper. 

It is important to know if crown or overall biomass prediction equations are applicable 

to trees growing on land a manager is responsible for.  Further, for regional equations to be 

unbiased, they should be produced from a large dataset, with many sample trees covering the 

range of all possible site types, elevations, slopes, etc.  This is an expensive endeavor. The use 

of RBS for tree sampling can certainly reduce much of the cost associated with a more 
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traditional approach to crown biomass sampling.  Yet there can be large inherent variability 

among trees, and as seen above, there can be considerable sampling error incurred by an RBS 

(or other) sampling scheme.  However, a crown sampling strategy will rarely include a sample of 

only one branch for a given tree, just as a stand sampling strategy should never be structured to 

comprise a sample of only one tree.  To deal with the exceptional amount of variability 

associated with crown biomass sampling, increasing the number of branches sampled per tree, 

using a sampling design that defines branch selection probabilities directly in proportion to 

branch weight, or using a ratio estimator to more accurately estimate crown mass may be 

useful.   

 Modeling anything in the field of natural resources can be a difficult task.  Bias 

associated with the prediction equations presented in this work (or any prediction equation) 

can be caused by many sources.  The inclusion of crown ratio or crown length in addition to 

tree DBH may increase the precision and accuracy of crown mass predictions, and may be 

useful in future crown mass equation development.  For some species, such as lodgepole pine, 

the inclusion of DBLC might be a better variable to improve the quality of predictions, but it is a 

difficult variable to measure precisely on a standing tree.  It is important to look at these things 

on a species by species basis.  It could be that isolating important tree measures to predict 

crown mass will allow for a better understanding of the species of interest.  Knowing which 

factors contribute the most information for crown mass is especially important for large trees.  

For the majority of bias correction models produced, bias was found to increase with DBH.  

Though these bias corrections cannot be extrapolated beyond the range of DBHs observed, it 

seems probable that prediction bias continues to grow as tree DBH gets larger.  Further 
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research needs to be done for large diameter trees.  For trees less than 60 cm DBH, the bias 

correction models presented in this work may be useful for obtaining more accurate 

predictions of crown mass for Douglas-fir, ponderosa pine, lodgepole pine, and western larch in 

the inland northwest.     
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