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ABSTRACT 

  Small populations are at increased risk of extinction due to their vulnerability to stochastic 
events. The population of fisher (Pekania pennanti, formerly Martes pennanti) in the southern 
Sierra Nevada Mountains of California is small and completely genetically isolated.  My 
dissertation research investigates the timing and cause of this population’s isolation, the degree 
of genetic subdivision within the population, the landscape features shaping gene flow, and the 
detection of population declines.   
 
  I detected a 90% decline in effective population size and dated the time of decline to over a 
thousand years ago.  Analyzing historical and contemporary genetic samples, I also found a 
recent bottleneck signal in the northern portion of the southern Sierra Nevada, indicating the 
southernmost tip of these mountains may have acted as a refugium for fisher in the late 19th 
century.  I conclude that this population became isolated pre-European settlement, and that 
portions of the southern Sierra Nevada subsequently experienced another more recent bottleneck 
post-European settlement. 
 
  I found that the southern Sierra Nevada fisher population is not highly genetically subdivided as 
previously thought.  This population follows a pattern of isolation by distance with additional 
structuring that corresponds to geographic features and management boundaries.  It can be 
characterized as having areas that are resistant to gene flow but without major barriers. I show 
that both sex-biased dispersal and spatial landscape heterogeneity can affect the determination of 
what landscape features structure gene flow, and that the landscape features influencing gene 
flow are different for each sex and within different geographic regions.   
 
  Using a spatially-based simulation approach, I investigated the power of the Sierra Nevada 
fisher monitoring program to detect population trend, and illustrate the relationship between 
occupancy and abundance in this population.  I show that a simulated 43% decline in abundance 
over an 8-year period only resulted in a 23% decline in occupancy.  I also found that increasing 
the effective sampling area, implementing biennial instead of annual sampling, and increasing 
the type I error rate all increase statistical power to detect trend.  Overall this research provides a 
better understanding of the historical and contemporary connectivity of this population and our 
ability to monitor population trends over time that will contribute to the conservation of fisher 
populations in the future. 
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Chapter 1:  Introduction and Overview 

Small populations are at increased risk of extinction due to their vulnerability to stochasticity in 
environmental factors, demographics, and genetics (Gilpin & Soule 1986).  Connectivity to other 
populations is one way in which small populations can increase their probability of long-term 
persistence through the influx of new individuals that increases both population size and genetic 
diversity (Hanski 1999).  Therefore, conservation concerns are particularly acute for populations 
that are isolated as well as small.  Effective conservation strategies for such populations require 
accurate information about the historical and current distribution, abundance, and demography of 
the population.  The extent to which these population characteristics have changed over time are 
important criteria in determining species’ or populations’ conservation status (ESA 1973, IUCN 
2001).  However, detailed studies of populations over time are often logistically difficult and 
costly.  This is especially true for rare species occurring across large geographic areas. 
 
 The population of fisher (Pekania pennanti [Kopefli et al. 2008, Sato et al. 2012], 
formerly Martes pennanti [Erxleben 1777]) in the southern Sierra Nevada mountains of 
California is small (<300 adults, Spencer et al. 2011), and completely geographically and 
genetically isolated (Wisely et al. 2004; Zielinski et al. 2005; Knaus et al. 2011).  It is currently a 
candidate for listing as part of the West Coast distinct population segment under the federal 
Endangered Species Act (U.S. Department of the Interior, Fish and Wildlife Service 2004).  
Previous research found extreme genetic subdivision within the population (Wisely et al. 2004).  
Detection of this strong subdivision raised conservation concerns that this small population was 
fragmented, furthering increasing extinction risk (Center for Biological Diversity 2008).   This 
finding sparked debate over how to manage this population to prevent further subdivision and 
increase population connectivity in the future.   
 

My dissertation research uses a combination of genetic and occupancy data collected 
through a long-term population monitoring program for fisher in the southern Sierra Nevada 
(Zielinski et al. 2013) to better understand how the connectivity and abundance of this 
population has changed through time.  The objectives of my research were to define the timing 
and cause of isolation of this population, determine the degree of genetic subdivision with the 
population, identify the landscape features that impede connectivity, and evaluate the ability of 
the fisher monitoring program to detect population declines.   
 

Research objectives and findings 

Historical decline and isolation of fisher in California 

In Chapter 2, I use both historical and contemporary genetic samples to determine the timing of 
the decline and isolation of fisher in the southern Sierra Nevada.  The two extant populations of 
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fisher in California are geographically isolated, separated by more than four times the maximum 
recorded dispersal distance for fisher (York 1996; Zielinski et al. 2005).  Their isolation is 
hypothesized to have resulted from a decline in abundance and distribution associated with 
European settlement in the 1800s (Zielinski et al. 2005).  However, there is little evidence to 
establish that fisher occupied the area between the two extant populations at that time.  
Determining whether this isolation occurred in recent history or if the population has been 
persisting in long-term isolation, is an important distinction needed to inform future conservation 
decisions.  I analyzed 275 contemporary and 21 historical fisher samples (1880–1920) at 10 
microsatellite loci to evaluate the demographic history of fisher in California.  I addressed the 
following research question:   
 Did the isolation of the two California fisher populations occur before or after the 

European settlement of California?   
 

I find that fisher populations in California experienced a 90% decline in effective population 
size over 1000 years ago, indicating that the southern Sierra Nevada fisher population became 
isolated pre-European settlement.  I also found a recent bottleneck signal in the northern half of 
the southern Sierra Nevada fisher population, indicating that a portions of this population 
experienced another more recent bottleneck post-European settlement, and that the southern tip 
of the Sierra Nevada may have acted as a refugium for fisher during the anthropogenic changes 
of the late 19th and early 20th centuries.  

 
 This Chapter has been published in PLOS One with the title “Historical and 
contemporary DNA indicate fisher decline and isolation occurred prior to the European 
settlement of California”, co-authored with Fred Allendorf, Mike Schwartz, Kristine Pilgrim, 
(who provided expertise in the laboratory analysis of historical DNA samples), and Richard 
Truex (who contributed field samples and expertise on fisher ecology in the southern Sierra 
Nevada). 
 

Genetic structure of fisher in the southern Sierra Nevada 

The objective of Chapter 3 was to determine the population genetic structure of fisher in the 
southern Sierra Nevada and investigate the influence that sampling can have on the detection of 
genetic subdivision.  A previous genetic analysis found high amounts of subdivision (FST = 0.51) 
between two sampling areas north and south of the Kings River Canyon (Wisely et al. 2004) and 
inferred that the Kings River could have been a barrier to gene flow between these two sampling 
areas.  However, this study was based on a small number of samples from two limited 
geographic areas within this population.  In this study, I obtained a larger and much more 
continuously distributed set of genetic samples from the southern Sierra Nevada fisher 
population.  Using 127 individuals genotyped at 10 microsatellite loci I addressed the following 
research questions: 
 What is the genetic structure of fisher in the southern Sierra Nevada fisher population? 
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 How does sampling scheme (clustered versus continuous) effect the detection of genetic 
subdivision? 

 Specifically, I show that population subdivision is much lower than previously thought 
and that this population is not fragmented into multiple isolated genetic subpopulations. I found 
three primary genetic subpopulations with moderate divergence between them (FST = 0.05 - 
0.13).  These clusters appear to be associated with areas around the Kings River and Mountain 
Home State Demonstration Forest.  I also detected additional fine scale subdivision north of the 
Kings River that may be evidence of founder effects from a recent population expansion.  I 
showed that the difference in results between this study and previous work are attributable 
primarily to a difference between clustered and continuous sampling.  I found that in a 
population characterized by isolation by distance clustered sampling can inflate estimates of 
population structure by oversampling related individuals.   
 
 This Chapter is currently submitted and in review with Conservation Genetics 
under the title “Sampling affects the detection of genetic subdivision and conservation 
implications for fisher in the Sierra Nevada” coauthored by Mike Schwartz, Fred 
Allendorf, Samantha Wisely, and Richard Truex. 
 

Determining landscape features influencing gene flow 

In Chapter 4, I determine what landscape features are creating the genetic subdivision I observed 
in Chapter 3 using a landscape resistance modeling approach. Genetic connectivity results from 
the successful dispersal and reproduction of individuals across a landscape.  Consequently, 
landscape features that influence dispersal will also influence gene flow.  Sex-biased dispersal, in 
which one sex is philopatric and the other is more likely to disperse, is a well-documented 
characteristic of many wildlife populations (Pusey 1987).  As male biased dispersal has been 
documented in other fisher populations (Kelly 1977; Powell 1993; Aubry et al. 2005), I 
hypothesized that the landscape may affect gene flow differently for males than females.  The 
influence of landscape features on dispersal can also vary spatially due to the differential 
availability of a feature on the landscape (Short Bull et al. 2011), or biotic factors such as 
variation in dispersal pressure (Matthysen 2005) or interspecific interactions (Rundle & Nosil 
2005).  Therefore, I also tested the hypothesis that the landscape features influencing fisher gene 
flow will vary by subpopulation.  I used genotypic data from 10 microsatellite loci for 72 males 
and 48 females to address the following research questions: 
 Is there genetic evidence of sex-biased dispersal in this fisher population? 
 What landscape features influence gene flow? 
 Do the landscape features influencing gene flow vary by sex? 
 Do the landscape features influencing gene flow vary spatially across the study area?   



 

4 
 

 I found genetic evidence of sex-biased dispersal, with males dispersing between 
populations in greater proportion than females, and that sex-biased dispersal effects the 
identification of landscape features influencing gene flow.  Specifically, I show that the 
landscape influences gene flow differently for males and females and that not accounting for this 
difference when conducting resistance modeling can produce misleading results.  I also found 
landscape features influencing gene flow vary by different geographic regions.  Moreover, the 
landscape variables detected as important when analyzing the entire study area differed from 
those detected when geographic regions are analyzed separately.  After accounting for sex-biased 
dispersal and landscape heterogeneity in I found much greater gene flow in males compared to 
females.  While female gene flow is impeded by large water bodies and major roads, male gene 
flow is not affected by these features.  Additionally I show that for females gene flow is 
characterized by dispersal among high quality habitat in the core elevation range for fisher 
habitat in the Sierra while males disperse more broadly and therefore, strongly associate with a 
more widespread landcover type.   
 

Factors affecting statistical power to detect trend in occupancy 

The objective of Chapter 5 was to investigate the power of long term population monitoring to 
determine population trend in occupancy.  Due to the difficulty of estimating trend using 
abundance, trend monitoring often relies on estimating trend using occupancy (the proportion of 
an area occupied by a species) as a surrogate for abundance.  The underlying assumption in 
occupancy monitoring is that a change in the occupancy is indicative of a change in population 
size but the nature of this relationship will vary depending on the specific characteristics of the 
species or population (MacKenzie & Nichols 2004).   A priori power analyses provide a way to 
assess the statistical power of different sampling strategies to detect population trend.  In such 
situations careful consideration of the factors influencing power is needed in order to best design 
a sampling strategy to maximize power while minimizing the chance of falsely identifying a 
trend.  Using spatially explicit power analyses I simulated a declining population of fishers in the 
Sierra Nevada and then recreated the sampling regime of the Sierra Nevada carnivore monitoring 
program to address the following specific research questions: 

 What is the relationship between abundance and occupancy for a declining population? 
 How does varying statistical certainty, effective sampling area, and non-continuous 

sampling effect the power to detect a population trend? 
 What is the statistical power to detect a trend in occupancy for the Sierra Nevada fisher 

carnivore monitoring program? 

 I found that large declines in abundance (43%) result in relatively small declines in 
occupancy (23%) but that the rate at which occupancy declined compared to abundance 
increased over time.  I also demonstrate how increasing the effective sampling area, 
implementing biennial instead of annual sampling, and increasing the type I error rate all 
increase statistical power to detect trend.  Using this simulation approach and mimicking the 
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sampling of the Sierra Nevada fisher monitoring program, as implemented from 2002-2009 with 
an average sample size of 140 units/year, I found a 64% power to detect a ~20% decline in 
occupancy with 20% type I error rate 
 

Synthesis and significance 

There is substantial concern that the southern Sierra Nevada fisher population is at risk of 
extinction stemming from its small population size, isolation, and low genetic diversity.  
Discussions of how to manage this population to support long-term persistence have included the 
potential need for translocations or reintroductions into unoccupied areas to expand population 
size and re-establish genetic and demographic connectivity with other fisher populations (Powell 
& Zielinski 2005; Sierra Pacific Industries & United States Fish and Wildlife Service 2007).  My 
research shows that this population has been persisting in long-term isolation indicating the 
potential for significant local adaptations.  Consequently, creating genetic connectivity with 
other fisher populations could actually trigger a reduction in fitness due to outbreeding 
depression (Edmands 2007; Frankham et al. 2011) and that this concern must be balanced along 
with the risks associated with low genetic diversity and inbreeding depression in management 
decisions for this population.    
 
 Despite the isolation and low genetic diversity of this population, within the southern 
Sierra Nevada fisher population my research finds that there is a moderate amount of gene flow 
and that landscape features are not acting as a barrier to genetic connectivity.  However, my 
results also suggest that this population exhibits sex-biased dispersal with males dispersing long 
distances and females remaining philopatric such that the observed genetic connectivity may 
largely be the result of male gene flow.  Both male and female gene flow is associated with 
forested habitat with high canopy cover, but female gene flow appears to be limited by major 
water bodies and roads.  This result has important management implications as it indicates that 
northward population expansion may be limited by the ability of females to disperse across the 
Merced River canyon and the heavily traveled road system of Yosemite National Park.  These 
results also have broad implications for the field of landscape genetics as I show that failure to 
account for the presence of sex-biased dispersal can confound the assessment of the landscape 
features that influence gene flow. 
 
 Determining the status and trend of a population is one of the most fundamental tasks in 
conservation and management and often one of the most difficult to accomplish.  For occupancy 
based population monitoring my research suggests because of the non-linear relationship 
between abundance and occupancy, this method may only have the power to detect trend for 
large magnitude declines.  This is especially applicable for species such as fisher that occur at 
low densities across large landscapes and are difficult to sample in large numbers.  However, 
because the rate at which occupancy declines increases over time, the longer a population is 
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monitored the greater the power it has to detect smaller declines.  This emphasizes the 
importance of long-term population monitoring for conservation and management.  Overall the 
research in my dissertation provides a better understanding of the historical and contemporary 
connectivity of this population and our ability to monitor population trends over time that will 
contribute to the conservation of fisher populations in the future. 
 

Dissertation Format 
The following chapters are formatted for publication in specific peer-reviewed scientific 
journals.  I use the collective “we” throughout the dissertation to reflect that each of these 
chapters includes important contributions from many collaborators. 
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CHAPTER 2: Historical and contemporary DNA indicate fisher decline and isolation 
occurred prior to the European settlement of California 

 
Abstract  
Establishing if species contractions were the result of natural phenomena or human induced 
landscape changes is essential for managing natural populations.  Fishers (Martes pennanti) in 
California occur in two geographically and genetically isolated populations in the northwestern 
mountains and southern Sierra Nevada.  Their isolation is hypothesized to have resulted from a 
decline in abundance and distribution associated with European settlement in the 1800s.  
However, there is little evidence to establish that fisher occupied the area between the two extant 
populations at that time.  We analyzed 10 microsatellite loci from 275 contemporary and 21 
historical fisher samples (1880-1920) to evaluate the demographic history of fisher in California.  
We did not find any evidence of a recent (post-European) bottleneck in the northwestern 
population.  In the southern Sierra Nevada, genetic subdivision within the population strongly 
influenced bottleneck tests.  After accounting for genetic subdivision, we found a bottleneck 
signal only in the northern and central portions of the southern Sierra Nevada, indicating that the 
southernmost tip of these mountains may have acted as a refugium for fisher during the 
anthropogenic changes of the late 19th and early 20th centuries.  Using a coalescent-based 
Bayesian analysis, we detected a 90% decline in effective population size and dated the time of 
decline to over a thousand years ago.  We hypothesize that fisher distribution in California 
contracted to the two current population areas pre-European settlement, and that portions of the 
southern Sierra Nevada subsequently experienced another more recent bottleneck post-European 
settlement.1 
 

Introduction  
Over the past 100 years there has been a marked reduction in many species geographic ranges.  
For rare or hard to observe species, it is often unclear if their absence is a response to a changing 
landscape, or if they have been absent from an area for an extended period of time.  If they were 
considered present early during the last epoch, but are now unable to be detected, this is seen as a 
natural range contraction (Lyons 2003).  On the other hand, if they were considered present until 
the last century, but are now unable to be detected, this is often viewed as caused by human 
induced disturbances.  Establishing if contractions of species were the result of natural causes or 
human-induced landscape changes is essential for managing natural populations.  Mistakes 
associated with misidentifying the geographic range of a species and misattributing declines in 
geographic range can have large effects on the allocation of scarce conservation resources. 

 

                                                 
1 A taxanomic name change for fisher from Martes pennanti to Pekania pennanti (Kopefli et al. 2008, Sato et al. 
2012) occurred after the publication of this manuscript in the journal PLoS One.  For this Chapter we have retained 
the original text as published including the use of Martes pennanti. 
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Traditionally, the historical distribution of a species has been based on accounts of 
explorers, naturalists, and indigenous peoples that are verified by specimens preserved in 
museum collections.  Recently, technological and laboratory advances in molecular genetics 
have created the ability to extract DNA from historical specimens and examine the population 
genetic signals obtained, providing a new tool by which we can test ideas proposed by these 
early naturalists (Schwartz 2007; Wandeler et al. 2007).  Historical and contemporary genetic 
information can provide insight into the nature of population expansions or declines (Goossens et 
al. 2006; Okello et al. 2008), the loss of genetic diversity (Smulders et al. 2003; Johnson et al. 
2009), temporal changes in population connectivity (Martinez-Cruz et al. 2007), or the historical 
range of a species (Ross et al. 2006; Schwartz et al. 2007).   

 
Prior to European settlement, fishers (Martes pennanti) were distributed widely in both 

Canada and the northern U.S. forests (Graham & Graham 1994).  In the late 1800’s and early 
1900’s, fisher populations dramatically declined due to a combination of fur trapping, logging, 
and predator control and by the early 1900’s were extirpated from large portions of their historic 
range (Powell 1993).  Reintroductions and expansions from refugia populations have been 
successful in reestablishing fisher populations in the eastern and Rocky Mountain states 
(Williams et al. 2000; Vinkey et al. 2006; Carr et al. 2007; Carr et al. 2007; Hapeman et al. 
2011).  However, West Coast populations have not experienced the same degree of recovery.  
There are 5 geographically disjunct fisher populations present on the West Coast: two native 
populations in California (Zielinski et al. 1995; Aubry & Lewis 2003), a reintroduced population 
established in the 1950’s in Oregon, and two recently reintroduced populations (one on the 
Olympic Peninsula in Washington State and one in California (Lewis & Hayes 2004; Callas & 
Figura 2008)). 
  

The two native fisher populations in California are geographically and genetically 
isolated (Zielinski et al. 1995; Wisely et al. 2004; Knauss et al. 2011).  Conservation concerns 
are particularly acute for fisher in the southern Sierra Nevada Mountains because its population 
size is estimated at less than 300 adults (Spencer et al. 2011).  The majority of information about 
the history of fisher in California comes from the work of the naturalist Joseph Grinnell.  
Grinnell et al. (Grinnell et al. 1937) used information from extensive surveys, collecting 
expeditions, trapping records, and local knowledge from approximately 1910-1930 to create 
distribution maps for 21 species of carnivores.  Grinnell’s range maps show the historical fisher 
range as continuous from the northwestern Klamath and Siskiyou Mountains to the southern tip 
of the Sierra Nevada (Fig. 2-1).   

 
Fisher populations in California are thought to have declined precipitously in both 

abundance and distribution over the last 150 years due to habitat alteration and fur trapping 
associated with the European settlement of California beginning with the gold rush in 1848 
(Zielinski et al. 2005).  Currently, the two areas that maintain native populations of fisher in 
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California are separated by a 420 km gap, which is more than four times the maximum dispersal 
distance of fisher (Zielinski et al. 1995; Zielinski et al. 2005).  The reason for this gap is not well 
understood.  The majority of habitat in this area is contiguously forested and appears, at least 
superficially, to be suitable for fisher occupancy.  Grinnell’s range map shows only a few records 
of fisher in the central Sierra Nevada and none in the northern Sierra Nevada (Fig. 1), but despite 
these facts this gap is considered part of the historical range of the species (Grinnell et al. 1937).   

 
The accepted hypothesis for the lack of records in the gap area is that the northern and 

central Sierra Nevada had experienced a greater degree of anthropogenic change at the time of 
the Grinnell surveys than the southern Sierra Nevada and that the species was already extirpated 
from the gap by the early 1900’s (Zielinski et al. 2005).  The central and northern Sierra was the 
main area of human development as a result of the gold rush.  Yet, in a study of the history of 
forest conditions in the Sierra Nevada, McKelvey and Johnston (McKelvey & Johnston 1992) 
found that due to transportation limitations, logging at the turn of the century was relatively 
limited in the central and northern Sierra.  At this time even the most heavily affected National 
Forest in this area still had 50% virgin forest and therefore, likely retained areas of large trees 
that are associated with fisher habitat in California (Zielinski et al. 2004; Zielinski et al. 2004; 
Purcell et al. 2009).  Based on such information, it is unclear why fisher would have been 
completely extirpated from the gap prior to Grinnell’s surveys.   

 
An alternative hypothesis is that this distributional gap may not be the result of recent 

human influences but rather is a historical discontinuity in fisher distribution that existed prior to 
the European settlement of California.  Fishers are thought to have colonized the West Coast of 
the United States in a relatively recent range expansion from British Columbia southward in a 
series of stepwise founder events during the mid to late Holocene (Graham & Graham 1994; 
Drew et al. 2003; Wisely et al. 2004).   Evidence of an early peninsular expansion is found in the 
gradient of genetic diversity decreasing from north to south down the West Coast (Wisely et al. 
2004), and the existence of a shared haplotype between British Columbia and a historical sample 
from northwestern California (Drew et al. 2003).  However, evidence indicates there has been 
little gene flow between the two regions in the time since colonization with high genetic 
divergence in nuclear DNA (FST = 0.48-0.60) and the absence of a shared mtDNA haplotype 
between northwestern California and the southern Sierra Nevada (Wisely et al. 2004; Knauss et 
al. 2011).   

 
There are important conservation concerns regarding the southern Sierra Nevada fisher 

population’s risk of extinction stemming from its small population size, isolation, and low 
genetic diversity.  Determining whether the isolation of fisher in the southern Sierra Nevada has 
occurred recently (within the last 150 years), or if the population has been persisting in long-term 
isolation, are important alternative hypotheses that need to be distinguished to inform future 
conservation decisions.  Discussions of how to manage this population to support long-term 
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persistence have included the potential need for translocations to augment populations or 
reintroductions into the current gap region to re-establish connectivity (Powell & Zielinski 2005; 
Sierra Pacific Industries & United States Fish and Wildlife Service 2007).  If population decline 
and isolation occurred recently then potential risk from inbreeding depression due to small 
population size may be an important consideration for the southern Sierra Nevada and aggressive 
measures to restore genetic connectivity may in fact be prudent.  Conversely, detection of a more 
ancient timeline for isolation would indicate the potential for significant local adaptations within 
the population and that creating genetic connectivity with northwestern California fishers could 
actually trigger a reduction in fitness due to outbreeding depression (Edmands 2007; Frankham 
et al. 2011).   

 
Recent research has attempted to address the historical continuity of fisher populations in 

California using mtDNA.  Knaus et al. (Knauss et al. 2011) sequenced the entire mtDNA 
genome for 40 fisher samples and found the southern Sierra Nevada to be fixed for a single 
haplotype that is different from the closest haplotype in northwestern California by 9 base-pair 
substitutions.  The absence of a shared mtDNA haplotype between northwestern California and 
the southern Sierra Nevada and the amount of genetic differentiation between haplotypes 
indicates long term isolation.  Using a molecular clock approach, they estimated the divergence 
between these two populations occurred thousands of years ago (Knauss et al. 2011).    

 
While the results of Knaus et al. (Knauss et al. 2011) are striking, mtDNA is maternally 

transmitted and consequently only provides insight into female mediated gene flow.  This may 
be especially problematic for species such as fisher that exhibit female philopatry where most of 
the large movements are made by males (Aubry et al. 2004).  This would result in primarily male 
mediated gene flow across long distances.  As nuclear DNA is bipaternally inherited, it may 
show different genetic signals from mtDNA that reflect the influence of males on connectivity.  
Numerous studies have shown discord between estimates of divergence from mtDNA versus 
nuclear DNA and emphasized the importance of analyzing both mtDNA and nuclear DNA prior 
to making conservation decisions (Waits et al. 2000; Pardini et al. 2001; Yang & Kenagy 2009). 

 
Our objective is to use nuclear DNA to distinguish between the alternate hypotheses that 

the geographic isolation of the two California fisher populations occurred before or after the 
European settlement of California.  We also wish to more precisely date this divergence.  The 
hypothesis that fisher decline and isolation in California occurred prior to 1850 would be 
supported by lack of evidence of a recent bottleneck and contraction in population size greater 
than 160 years ago.  Conversely, if the hypothesis that isolation occurred after 1850 is correct, 
we would expect to see evidence of a recent population bottleneck and a contraction in 
population size within the last ~160 years.  Evidence of post-European isolation would be at 
odds with mtDNA analyses (Knauss et al. 2011) and indicate male mediated gene flow between 
California fisher populations.  In a broader sense, this research is also aimed at showing the 
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importance of understanding historical biogeographic patterns to better understand and manage 
contemporary patterns of species on the landscape.    

 

Materials and Methods 

Ethics Statement 
All necessary permits were obtained for the described field studies.  These included a Scientific 
Research and Collecting Permit from the U.S. Department of the Interior, National Park Service 
(SEKI-2008-SCI-0014).  
 

Samples 
We obtained both historical (H) and contemporary (C) genetic samples from the extant range of 
fisher in California which includes one area in northwestern California (NW) and a second area 
in the southern Sierra Nevada (SSN) (Fig. 2-2).  The NW and SSN populations were defined a 
priori based on previous research that indicated that these populations are geographically 
isolated due to an unoccupied 420 km gap between them (Zielinski et al. 1995; Zielinski et al. 
2005), as well as genetically isolated (Wisely et al. 2004; Knauss et al. 2011).  We genotyped 
127 individuals from hair samples collected in the SSNC through the U.S. Forest Service Sierra 
Nevada Carnivore Monitoring Program (Zielinski et al. Accepted).  In the NWC we obtained 
genotypes from 148 individuals based on hair, scat, and tissue samples collected in collaboration 
with a number of existing research projects in the region.  Genetic samples from both regions 
were collected from 2006-2009.  Historical samples were located by searching databases of 
museum collections.  We found 41 fisher specimens from 1884-1920 in the collections of the 
Smithsonian National Museum of Natural History and the Museum of Vertebrate Zoology at the 
University of California, Berkeley.  We collected maxilloturbinal bones from inside the nasal 
cavity to maximize the probability of obtaining high quality DNA while minimizing damage to 
specimens (Fleischer et al. 2000; Wisely et al. 2004).  We also collected tissue from pelts, bone 
fragments, or muscle when available.  In total, 17 historical specimens were obtained from the 
NWH and 24 from the SSNH.  We did not find any historical fisher specimens from the current 
gap in fisher distribution. 
 

Laboratory Analysis 
We extracted DNA from museum specimens in a separate laboratory used exclusively for the 
extraction and processing of genetic material from museum specimens following recommended 
ancient DNA protocols (Fleischer et al. 2000; Gilbert et al. 2005).  We analyzed the samples at 
10 microsatellite loci. MP0059, MP0144, MP0175, MP0197, MP0200, and MP0247 were 
developed from tissue samples from the SSN (Jordan et al. 2007).  Loci MA1 (Davis & Strobeck 
1998), GGU101, GGU216 (Duffy et al. 1998), and LUT733 (Dallas & Piertney 1998), were 
developed in other mustelid species [marten (Martes americana), wolverine (Gulo gulo), and 
otter (Lutra lutra), respectively].    
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The quality and quantity of DNA obtained from historical and non-invasive samples can 
vary considerably because of age and different methods of preservation and storage. The 
potential for degraded or low quantity DNA increases the likelihood of genotyping errors such as 
allelic dropout or false alleles (Taberlet & Luikart 1999).  To address this potential for error, we 
ran samples a minimum of three times per locus and accepted genetic data only if the samples 
produced consistent genotype scores (Eggert et al. 2003; McKelvey & Schwartz 2004).  If the 
genotype differed in one or more of these amplifications, we conducted an additional round of 3 
amplifications.  If multiple inconsistencies were found in the genotype at a locus we removed 
that sample from the analysis.  We also checked for genotyping errors using the software 
DROPOUT (McKelvey & Schwartz 2005). 

 

Statistical analyses 
We tested microsatellite genotypes for departures from Hardy-Weinberg proportions at each 
locus and gametic disequilibrium for each pair of loci using Fisher’s exact test in Genepop 4.0 
(Raymond & Rousset 1995; Rousset 2008).  We also used Genepop 4.0 to calculate expected 
heterozygosity (HE), proportional excess of homozygotes (FIS), FST (Weir & Cockerham 1984), 
RST (Slatkin 1995), and conduct tests for genetic differentiation between sample groups.  The 
amount of genetic diversity present in the sample groups was compared using paired t-tests of 
arcsine-transformed HE, and AR (Archie 1985).  We used sequential Bonferroni corrections to 
correct for multiple comparisons when assessing statistical significance (Rice 1989).   
 

Detecting bottlenecks 
We used three methods to determine whether fisher in California had experienced a recent 
reduction in population size.  We first tested for heterozygosity excess which is characteristic of 
bottlenecked populations using BOTTLENECK 1.2.02 (Piry et al. 1999).  This heterozygosity 
excess exists because rare alleles are lost more rapidly during a bottleneck but have little impact 
on heterozygosity (Cornuet & Luikart 1996).  Heterozygosity excess is transient and will only 
persist for 0.2 – 4Ne generations after the bottleneck.  The average expected heterozygosity at 
mutation-drift equilibrium was calculated using 5000 replications assuming a two-phase 
mutational model.  We conducted analyses with both 5% and 20% of mutations set as multistep 
mutations in the two-phase model with a variance of 12 to encompass the range of multistep 
mutations observed in natural populations (Di Rienzo et al. 1994).   The observed heterozygosity 
was then tested against the equilibrium expected heterozygosity using the Wilcoxon signed-rank 
test.  We also conducted the test excluding all loci that were out of Hardy-Weinberg, as such loci 
can create bias, but doing so did not significantly change the results. 
 

Second, we also used BOTTLENECK to test for a shift in the mode of the distribution of 
allele frequencies.  This mode shift distortion is transient and can only be detected for a few 
dozen generations.  Luikart et al. (Luikart et al. 1998) found using simulations that the graphical 
mode shift method is likely (P > .80) to detect a bottleneck of up to 20 breeding individuals using 
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8-10 microsatellite loci.  The mode shift test could not be applied to the historical samples 
because at least 30 individuals are needed to avoid high type 1 error rates. 

 
The third method used detects reductions in effective population size (Ne) using the M-

Ratio which is defined as M = k/r where k is the total number of alleles and r is the range in allele 
size (Garza & Williamson 2001).  Because a bottleneck causes a greater reduction in the number 
of alleles than in the range of allele sizes, M is smaller in reduced populations.  Garza and 
Williamson (Garza & Williamson 2001) found that a reduction in population size can be detected 
using M for 125 generations if the population rebounded quickly in size or 500 generations if the 
population remained reduced.  We used the software M_P_Val to calculate M and the software 
M_Critical to determine the cutoff value for statistical significance (Garza & Williamson 2001).  
We set model parameters at 90% single-step mutations and 10% multi-step mutations (ps) and 
the average size of multistep mutation (Δg) of 3.5 with the mutation rate μ held constant at 5 x 

10-4.  In this model  = 4Ne so if μ is held constant different values of  are representative of 
different starting (pre-decline) Ne.  As the equilibrium Ne for fisher in California is not known, 

we calculated M and M-Critical values for four different values of  (1, 2, 5, and 10) which 
represent a wide range of pre-decline Ne (500, 1000, 2500, and 5000 respectively).  

 
 The presence of unaccounted for genetic subdivision has the potential to bias bottleneck 
tests (Broquet et al. 2010).  While genetic subdivision has not been previously detected in the 
NWC population, past research has shown significant subdivision in the SSNC (Wisely et al. 
2004).  To assess the influence of this subdivision, we divided the SSNC into three genetic 
groups and assessed the influence of this on the bottleneck tests.  The subdivisions between 
demes in the SSNC roughly correspond to the areas north of the Kings River (North), between 
the Kings River and Middle Fork of the North Fork of the Tule River (Central), south of the 
Middle Fork of the North Fork Tule River (South) (Fig. 2-3).  Previous research on fisher 
populations in southern Ontario has found rivers to be a major barrier to genetic connectivity 
(Garroway et al. 2011; Hapeman et al. 2011).  These subdivision boundaries are also supported 
by data from a recent population genetic analysis of the SSNC showing moderate subdivision 
(FST 0.05-0.13) between these areas (J.M. Tucker unpublished data).   

 

Demographic history models  
We employed a coalescent-based Bayesian analysis to assess the most recent major change in Ne 

and to estimate the date of the change.  This model assumes that an ancestral Ne (N1) changed to 
the current Ne (N0), at a time T generations ago (Beaumont 1999; Storz & Beaumont 2002).  This 
model uses a stepwise mutation model and assumes a mutation rate scaled in terms of the current 

populations size such that that =2N0μ, where μ is the per locus mutation rate.  While this 
method does employ a strict stepwise mutation model, it has been found to be robust to moderate 
departures created by the presence of multistep mutations (Girod et al. 2011).  The method then 

estimates the posterior distributions of N1, N0, T, and  that describe the genealogical and 
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demographic history of the sample, assuming either linear or exponential size change.  Prior 

distributions for N1, N0, T, and  are assumed to be log normal with their means and standard 
deviations drawn from hyperprior distributions truncated at zero.  We conducted the analysis 
using MSVAR 1.3 (Storz & Beaumont 2002) which uses Markov Chain Monte Carlo (MCMC) 
simulations to estimate the posterior distribution of each parameter. 

 
We conducted 6 independent simulations of the model varying the prior and hyperprior 

distributions with a range of biologically realistic distribution values to examine their effect on 
the posterior distributions.  These variations of the priors had little effect on the posterior 
distribution of the models so prior distributions for all other analyses were set to the parameters 
of simulation 1.  To check for the convergence of model we conducted five replications of the 
simulations for each data set.  Each simulation was performed for 2 x109 iterations with 
parameter values recorded every 1 x 105 iterations resulting in 20,000 records.    

 
We removed the first 10% of data from each chain as burn-in and assessed chain 

convergence using the Brooks, Gelman, and Rubin Convergence Diagnostic test (Gelman & 
Rubin 1992; Brooks & Gelman 1998).  We conducted convergence diagnostics in R version 
2.11.1 (R Development Core Team 2012) using the package BOA version 1.1.7 (Smith 2007).  
The test statistic is a multivariate potential scale reduction factor (MPSRF) that assesses the 
convergence of a set of parameters simultaneously.  The MPSRF value for all parameters was 
~1.0 indicating acceptable chain convergence.  We then combined the last 50% of the data from 
each chain (10,000 records/chain, 50,000 total records) and calculated the mode and 90% highest 
posterior densities (HPD) of the posterior distributions of each parameter using the R-package 
Locfit 1.5-6 (Loader 2007).  We evaluated the strength of evidence for population expansion 
versus decline by calculating the Bayes factor for each of the models (Jeffreys 1961; Kass & 
Raftery 1995) as described by Storz and Beaumont (Storz & Beaumont 2002).  The Bayes factor 
indicates the following levels of support for the model; BF<0.33= false detection of 
contraction/expansion, 0.33-3=no support, 3-10=substantial support, and ≥10=strong support 
(Jeffreys 1961). 

 
While the generation time (average age of reproduction) for fisher has not been well 

studied, the average age of first reproduction is estimated at 2-3 years, with high reproductive 
rates documented in 5-7 year old females [76], and successful reproduction found in females as 
old as 10 years (C. Thompson personal communication).  We used a generation interval of five 
years.  Parameter estimates of T can easily be adjusted for different generation times by 
multiplying accordingly.  We ran the simulations for all data sets using both the exponential and 
linear models. 
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Results 
We successfully obtained genotypes at a minimum of seven loci for 127 individuals in the SSNC, 
148 individuals in the NWC, 16 individuals from the SSNH, and five individuals from the NWH 
(Table 2-1).  The dates of the historical samples that successfully yielded microsatellite 
genotypes ranged from 1884-1920, which represents the overall timeframe of available historical 
samples (Table 2-S1). Nine of the 10 microsatellite loci were polymorphic in all samples.  The 
exception was the MA1 locus which was monomorphic in the NWC.  Tests for Hardy-Weinberg 
proportions showed deviation from expected values at MP200 and MP59 in the SSNC.  However, 
these deviations are non-significant after accounting for genetic population structure.  We also 
found MP200 deviated in the SSNH to have a homozygote excess compared to expected Hardy-
Weinberg proportions.  To assess the influence of this locus, we conducted SSNH analyses both 
with and without this locus but did not find any notable difference in results.   
 
 While we did not find any evidence for departure from Hardy-Weinberg proportions at 
individual loci, we did find some important patterns over all loci within each sample group.  FIS 

values were small and statistically insignificant in both the NWH and NWC samples, but had 
significant p-values in both the SSNH and SSNC.  Most notably, the SSNC showed a large deficit 
of heterozygotes (FIS = 0.101, p<0.001) (Table 2-1).  This is indicative of the potential presence 
of the Wahlund effect (Wahlund 1928) in the SSN, in which unaccounted for population 
subdivision in a sample generates a deficit of heterozygotes relative to expected Hardy-Weinberg 
proportions.   
 
 Tests for gametic disequilibrium did not find any strong associations between loci.    
After correcting for multiple comparisons statistically significant gametic disequilibrium was 
found between two pairs of loci in the SSNC (MP197/MP200, and MA1/MP144), one pair in the 
NWC (MP175/LUT733), and none in either historical sample group.  No pairs of loci were 
consistently significant across sample groups indicating that the loci used were assorting 
independently.   
 
 We did not find any difference in the amount of genetic diversity within sample groups 
with paired t-tests showing no significant differences in HE, or AR.  However, all metrics of 
genetic diversity were lowest in the NWC (Table 2-1).  HE was markedly lower in the NWC 
(0.431) compared to all other samples (0.57-0.64).  Allelic richness (AR) was higher in both 
historical samples (NWH =3.34, SSNH =2.81) than in either contemporary sample (NWC =2.17, 
SSNC =2.51).  Samples in the NWC were monomorphic at locus MA1, and have extremely low 
diversity at the MP200 locus (2 of 3 alleles at 1% frequency). When these two loci were removed 
from calculations the NWC HE increases to 0.54 which is similar to the value for the other sample 
groups at 8 loci (NWH = 0.55, SSNH = 0.60, SSNC = 0.55) and AR in the two contemporary 
populations becomes equal (SSNC(8loci) =  NWC(8loci) = 2.46).    
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We found each group to be significantly genetically different.  Tests for genic 
differentiation between sample groups were significant at P<0.001.  FST and RST values were 
moderate between historical sample groups (NWH/ SSNH: FST= 0.10, RST =0.20) but increased 
over time with contemporary samples showing increased divergence (SSNC/NWC: FST = 0.37, 
RST= 0.58).  We also found temporal divergence over time with moderate FST values between 
temporally spaced samples in the same geographic location (SSNH/SSNC = 0.17, NWH/NWC = 
0.20) (Table 2-2).  RST values were considerably higher than FST values indicating that when 
variation in allele length is accounted for genetic divergence between samples groups is even 
greater.  

 

Population bottlenecks 
We did not find any signal of a recent population bottleneck for either the historical or 
contemporary NW samples.  Both NW samples had non-significant results for the Wilcoxon 
heterozygosity excess test and the NWC was also negative for the shifted mode test.  Bottleneck 
tests for the SSN were mixed.  For the SSNC the heterozygosity excess test was statistically 
significant regardless of the proportion of multistep mutations in the two-phase model (5%: 
p=0.04, 20%: p<0.001), but showed no evidence of a shifted mode.  The SSNH was significant at 
α=0.05 for heterozygosity excess but only when using 20% multistep mutations (5%: p=0.10, 
20%: p=0.05).  We found no evidence of a population bottleneck for any sample group using the 
M-Ratio method (Table 2-3).    
   
 The mixed results in the SSNC were clarified after accounting for genetic population 
subdivision.  Both the North and Central SSNC samples showed strong evidence of a recent 
bottleneck with significant heterozygosity excess tests (p<0.001) and shifted modes. The South 
SSNC sample showed no evidence of a recent bottleneck in either the heterozygosity excess or 
shifted mode tests.  After accounting for populations subdivision there was still no evidence of a 
bottleneck in the SSNC using the M-Ratio method (Table 2-3).   
  

Demographic history 
We were unable to obtain consistent results for the demographic change analysis in the NWH due 
to small sample size (n=5) and therefore, did not include these results in our analyses.  However, 
results from the other three sample groups consistently indicate that there was a large population 
decline with current Ne estimates over 90% lower than the estimates of the ancestral Ne.  These 
results were consistent across a variety of prior distributions and both demographic models 
(exponential and linear).  Bayes factor values were >10 for all models indicating strong evidence 
for a population decline (Table 2-4). 
 

The ratio of the posterior distributions of current and ancestral population sizes (r=N0/N1) 
indicates the direction of demographic change where r=1 signifies population stability, r<1 
population decline, and r>1 population expansion.  Combining all simulations for all data sets for 
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the exponential model we found the 90% highest posterior density (HPD) of the ratio r to be 
0.011 – 0.095 with a mode of 0.081, and for the linear model an HPD of 0.010 – 0.066 with a 
mode of 0.062.  These r values indicate that the current Ne is estimated to be less than 10% of the 
ancestral Ne and show an unambiguous signal of population decline for fisher in California (Fig. 
2-4A).    
 
 The modes of the 90% HPD of the posterior distributions for ancestral effective 
population size (N1) for the exponential model were SSNH =1862, SSNC = 1613, and NWC 
=1698 compared to modal values for current effective population sizes (N0) of 154, 167, and 129 
respectively (Table 2-4, Fig. 2-4 B-D).  Estimates for N0 and N1 were similar but slightly lower 
for the linear model.  Estimates of the time of population contraction varied between populations, 
but all showed support for population decline occurring well prior to the European settlement of 
California (T- SSNC = 1693 years before present [YBP], T-NWC = 2884 YBP,  T-SSNH = 442 
YBP).  We adjusted the time estimates for the SSNH data to reflect the increased age of samples 
by adding the average age of the sample (95 years) to the estimate.  Estimates for the timing of 
the decline were longer for the linear model than for the exponential model for all sample groups 
(Table2-4, Fig. 2-5).  We put more emphasis on the results of the exponential model because it is 
likely more realistic when modeling population dynamics (Beaumont 1999).   
 
 Population subdivision can also bias demographic history models by creating a spurious 
signal of population decline.  The potential bias is greatest for highly subdivided populations 
(high FST), highly variable markers, and species with large Ne (Chikhi et al. 2010).  The 
recommended ad hoc method to counteract any potential bias created by population subdivision 
is to sample equally across demes (Chikhi et al. 2010).  We followed this ad hoc approach by 
conducting the MSVAR analysis in the SSNC with numerous samples from all three of the 
identified demes such that each of the North, Central, and South groups were well represented in 
our sample.  Considering the characteristics of the data used in this analysis (moderate FST 
values, low variability markers, and small population size) reduce the potential for biased results, 
combined with our use of the ad hoc method of sampling across demes, we feel our results are 
robust to the potential bias created by population subdivision. 
 

Discussion 

Population contraction and isolation 
Our analyses supports the hypothesis that the NW and SSN fisher populations became isolated 
far before the European settlement of California and that the absence of fisher in the northern 
Sierra Nevada is likely a long standing gap in this species’ historical range.  We found a genetic 
signal for a more than 90% reduction in Ne of fisher and estimated that this decline occurred over 
a thousand years ago.  A decline of this magnitude is consistent with a major range contraction.  
There is a positive correlation between changes in abundance and distribution, where species’ 
abundance decreases its range also decreases (Fuller et al. 1995; Gaston et al. 1997; Newton 
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1997; Rodríguez 2002); species with the strongest declines exhibit the largest range contractions 
(Fuller et al. 1995).  While the positive correlation between abundance and range size is not 
universal (Fuller et al. 1995; Gaston & Curnutt 1998), the extreme decline in Ne detected in our 
analyses makes the idea of concurrent stability in range size unlikely.  While the 90% highest 
posterior density of 3 of the 6 models did not definitively exclude a post-settlement decline 
(Table 2-4), the vast majority of the mass of the distribution of the time parameter (T) support 
pre-European settlement, with an average of 90% of the contemporary and 81% of historical 
MCMC chains indicating a time of contraction prior to 1850. 
 
 In addition to an ancient population contraction that isolated the SSN from the NW, our 
analyses indicate the SSN has also undergone a more recent population bottleneck likely 
associated with the impact of human development in the late 19th and early 20th century.  The 
presence of a bottleneck signal only in the north and central portions of the SSNC and not in the 
south reflects differences in the extent of anthropogenic influence across the Sierra Nevada.  The 
majority of human settlement, and its associated impacts, occurred in the central and northern 
Sierra Nevada.  Settlement in the southern Sierra was minimal in comparison due to the absence 
of gold deposits and steeper topography that restricted access to forest lands.  Our results indicate 
that the area at southern tip of the Sierra Nevada may have acted as a refuge for fisher during the 
era of extensive logging and development that began with the gold rush and continued into the 
first half of the twentieth century (Beesley 1996).  This area appears to have maintained a stable 
population size while fisher in the rest of SSN was in decline.  
  
 The window of time that the heterozygosity excess and shifted mode tests can detect a 
bottleneck is shorter than the timeframe for the M-Ratio test.  The magnitude of the reduction in 
the M-Ratio from equilibrium values is also highly dependent on the pre-bottleneck population 
size.  Accordingly, simulation studies have shown the M-Ratio test performs well if the pre-
bottleneck population size was large, the bottleneck was of long duration, or the population had 
time to recover (Williamson-Natesan 2005).  The length of time that the M-Ratio is informative 
can vary considerably (125-500 generations) depending on the bottleneck characteristics in terms 
of severity, duration, and post-bottleneck recovery.  Assuming a generation interval for fisher of 
5 years, significantly reduced M-Ratios would be indicative of decline that occurred anywhere 
from 625-2500 years ago.  However, in permanently reduced populations the M-Ratio will 
recover over time, whereas allelic diversity does not (Garza & Williamson 2001).  Consequently, 
a population with low allelic diversity but a high M-Ratio, such as was observed in this study, is 
indicative of a population that has been small for a very long time.  This conclusion is further 
supported by the fact that we found all sample groups to have low genetic diversity, and did not 
find any significant difference in diversity between contemporary and historical samples 
(collected between 1880 and 1920).  This suggests that a population reduction, and its concurrent 
reduction in genetic diversity, occurred prior to the dates of the historical samples.   
 



 

19 
 

 Our data suggests continual isolation of the NW and SSN populations during the last 
century.  The increase in FST from 0.10 in the early 1900s to 0.37 in 2006-2009 shows the 
genetic isolation of the populations during the intervening years.  However, the FST estimates 
between historical NW and SSN samples are likely biased considering the number of samples 
available from each population was small and from a relatively limited geographic subset of each 
area.  Genotypic differentiation was strong across all spatial and temporal samples, and the 
amount of within population genetic differentiation over time period was similar in both areas 
(FST:  SSNH-SSNC = 0.17, NWH-NWC = 0.20) which can be attributed to the effects of genetic 
drift in small populations over time.   
 

Considerations for bottleneck tests  
Recent studies have found that bottleneck detection methods sometimes perform poorly at 
detecting very recent or weak population declines (Mock et al. 2004; Busch et al. 2007; Girod et 
al. 2011).  This creates a concern that a post-settlement decline would not be detected even if it 
had occurred.  Girod et al. (Girod et al. 2011) used simulations to evaluate the ability of MSVAR 
to detect expansion/declines assessing performance using Bayes factors.  Their analyses of 
populations with recent and/or weak declines resulted in very low Bayes factors (≤3) indicating 
no support for the detection of a decline.  Accordingly, if the decline in the California fisher 
population was very recent we would expect MSVAR to produce a model with little support 
(low Bayes factors) reflecting the supposed poor ability of the method to detect recent declines.  
However, our MSVAR analyses produced high Bayes factors (≥10) for all models showing 
strongly supported signals of decline.  Such high Bayes factors are in agreement with the results 
of the Girod et al. (Girod et al. 2011) for more ancient times of contraction (≥50 generations).  
The poor performance of the heterozygosity excess and M-Ratio tests detected in the Girod et al. 
(Girod et al. 2011) study is likely due to their simulation being conducted under a strict stepwise 
mutational model which has been identified as an unrealistically conservative model for 
microsatellite loci that may not have much power to detect bottlenecks that have actually 
occurred (Luikart & Cornuet 1998).  Other studies have shown these two methods to have a 
much higher power to detect bottlenecks (Luikart & Cornuet 1998; Williamson-Natesan 2005).  
 
 An important consideration in the interpretation of bottleneck tests is the potential 
influence of isolation by distance (IBD) within populations.  While the SSNC has been found to 
exhibit a significant isolation by distance pattern across the entire population, tests for IBD were 
non-significant within each of the North, Central, and South subpopulations (J.M. Tucker 
unpublished data).  The clustered distribution of samples in the NWC and SSNH and the small 
sample size of the NWH prevented us from testing for IBD in these populations.  However, IBD 
has been found to have little effect on the heterozygosity excess method implemented in 
BOTTLENECK (Leblois et al. 2006).  IBD does influence the M-Ratio such that both 
equilibrium and post bottleneck values of M are depressed compared with a non-IBD population. 
Thus, IBD can result in M values in non-bottlenecked populations that are lower than the Garza 
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and Williamson’s (Garza & Williamson 2001) recommended M-Critical cutoff value of 0.68 
providing a false signal of a bottleneck.  However, given the consistently high M values detected 
in this study (M = 0.82-0.92, Table 3) we do not feel that IBD biased our M-Ratio analyses. 
  

Effective population size estimates 
The similarity between the estimates of Ne in the NWC and SSNC populations is surprising given 
that the NWC is thought to have a larger total population size (N) than the SSNC.  There are no 
published estimates of N in the NWC, but unofficial estimates place it at between 1000-2000 
individuals (C. Carroll personal communication cited in (Greenwald et al. 2000)) compared to 
estimates of 160-360 for the SSNC (Spencer et al. 2008).  The ratio of Ne/N is not well 
understood and can vary considerably between populations or species due to factors such as 
fluctuating population size, variance in reproductive success, unequal sex ratio, or population 
density (Frankham 1995; Wade 1980; Ardren & Kapuscinski 2003; Hare et al. 2011).  Predicted 
values of the Ne/N ratio in the literature vary widely; Nunney (Nunney 1993) estimated that 
theoretically the Ne/N ratio should be 0.5, Nunney and Elam (Nunney & Elam 1994) found the 
average ratio across empirical data from 13 species to be 0.73, and Frankham (Frankham 1995) 
found the mean ratio across 102 species to be 0.11.  Consequently, it is difficult to interpret what 
the estimated values of Ne mean in terms of N in relation to each population.  Extrapolating the 
modal values of the exponential model for N0 across a wide range of possible Ne/N ratio values 
of 0.05 – 0.5, the total population size for the NW could range from 258-2850 and SSN from 334 
– 3380.  Both of these population size ranges encompass the current possible estimates of N for 
both areas. 
  

Biogeographical influences 
The population contraction detected in this study and in the ancient mitochondrial divergence 
date reported by Knaus et al. (Knauss et al. 2011) may reflect a shift in habitat distribution or 
community composition associated with one of a number of potentially significant climate shifts 
during the end of the Pleistocene or Holocene epochs.  There are many well-known hypotheses 
about the cause of the mass extinctions and major shifts in species distribution that occurred at 
the end of the Pleistocene including temperature increases, changes in precipitation, or shifts in 
the ecological balance due to the arrival of human hunters in North America (Barnosky et al. 
2004).  In more recent climactic history there are two well documented “mega-droughts” that 
occurred in California that have not been matched in severity or duration since.  These droughts 
were first described by Stine (Stine 1994) and were estimated to have lasted over 200 and 140 
years each from 832-1074 and 1122-1299 AD respectively (Cook et al. 2010).  These droughts 
fall into a period of warmer temperatures referred to as the Medieval Warm Period (Lamb 1965) 
or Medieval Climate Anomaly (Stine 1994).  While the divergence dates reported by Knaus et al. 
(Knauss et al. 2011) would support a late Pleistocene climate shift as a possible cause of the 
divergence of California fisher populations, the results of this study found dates that support a 
more recent event, such as the aforementioned mega-droughts as a potential cause of the 
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population contraction.  Neither method allows for precise dating of the demographic shift.  
Nevertheless, both studies show that the contraction of the fisher populations in California pre-
dated the gold rush and was not a direct result of the European settlement of California.   
 
 The reason fisher would be absent from the central and northern Sierra is perplexing, 
considering that there is no obvious geographic feature that marks a significant break in the 
topography or vegetative composition of the Sierra Nevada.  However, a number of other species 
such as the great gray owl (Strix nebulosa), wolverine (Gulo gulo), and foxtail pine (Pinus 
balfouriana) have also been found to have long term genetic and geographic isolation in the 
southern Sierra Nevada (Hull et al. 2010; Schwartz et al. 2007; Eckert et al. 2008) indicating that 
there are perhaps unique vegetative, climactic, or topographic elements in this region that are 
absent from the northern Sierra Nevada.  A recent climate assessment has shown the southern 
Sierra Nevada to be somewhat resistant to climate changes observed elsewhere in California due 
to the extreme elevation of the mountains in this region (Moser et al. 2009). 

 
The Sierra Nevada is characterized by a gradual change in its maximum elevation and 

average slope, such that the elevation of the Sierran crest and average slope is highest in the 
south.  The area of the Sierra Nevada occupied by fisher is at the southernmost extent of its range 
where the weather is hotter and drier than in other areas.  To mitigate the effects of high heat and 
low humidity, fisher may use cool and damp microhabitats characterized by dense canopies, 
large diameter trees, steep slopes, and close proximity to water (Zielinski et al. 2004).  One 
possible explanation for fisher presence in the southern Sierra is that the steep topography in this 
portion of the mountain range facilitates the creation and persistence of these essential 
microhabitat areas.   

 
Relatively high amounts of subdivision have been reported in other parts of the fisher’s 

range.  Kyle et al. (Kyle et al. 2001) found the amount of genetic subdivision observed between 
fisher populations (global FST= 0.137) was much higher than for other closely related carnivore 
species of American marten (FST=0.0198) or wolverine (FST=0.0427) (Kyle et al. 2000; Kyle et 
al. 2002).  A linear regression of genetic versus geographic distance found that fisher have twice 
the subdivision per unit distance than martens and 5 times more per unit distance than wolverine 
(Kyle & Strobeck 2001).  The high amounts of subdivision observed in fisher may result from 
being habitat specialists which makes them especially vulnerable to habitat fragmentation 
(Buskirk & Powell 1994; Weir & Corbould 2010).  Strikingly, this study found the structure per 
unit distance between the SSNC and NWC to be to be ~10 times greater (0.961/1000 km) and 
between then SSNH and NWH to be ~4 times greater (0.348/1000 km) than Kyle et al. (Kyle et 
al. 2001) found for fisher populations across North America (0.092/1000 km).   However, high 
subdivision is not universal among fisher populations.  Populations in southern Ontario, Canada 
have been found to have weak subdivision and high genetic connectivity attributed to high 



 

22 
 

amounts of gene flow along expansion fronts in a growing population (Carr et al. 2007; 
Garroway et al. 2008). 
 

Conservation Implications 
Our results provide a historical perspective for contemporary conservation and management 
decisions for fisher in California.  There are ongoing debates as to whether efforts should be 
made to restore connectivity between the NW and SSN and thereby increase genetic diversity in 
the isolated SSN.  The results of this study show that both populations have persisted in isolation 
far prior to the European settlement of California.  Therefore, attempting to restore connectivity 
between them would be inconsistent with the historical record and run the risk of losing local 
adaptations that evolved in each population (Frankham et al. 2011).  Given their long term 
isolation, the NW and SSN fisher populations should be considered independently for 
management and conservation decisions.  

 
In 2004, the west coast population of fisher (southern Oregon, northwestern California, 

and southern Sierra Nevada of California) was found warranted but precluded for listing as a 
single distinct population segment (DPS) under the federal Endangered Species Act (U.S. 
Department of the Interior, Fish and Wildlife Service 2004).  Among the criteria for considering 
a population as a DPS it must be markedly separated from other populations of the same taxon 
(discrete) and differ from other populations in its ecological setting or genetic characteristics 
(significant) (United States Fish and Wildlife Service & National Marine Fisheries Service 
1996).  As both of these criteria can be met by quantitative measures of genetic discontinuity or 
genetic uniqueness (United States Fish and Wildlife Service & National Marine Fisheries Service 
1996), the detection of long term genetic isolation of the southern Sierra Nevada fisher 
population has important implications for its legal status.  The observed genetic differentiation 
coupled with observed differences in diet, home range size, and habitat associations between the 
SSN and NW (Zielinski et al. 1999; Zielinski et al. 2004; Davis et al. 2007) speaks to the 
potential of the SSN population itself as a DPS. 
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Table 2-1.  Estimates of genetic diversity for the northwest (NW) and southern Sierra Nevada 
(SSN) at 10 microsatellite loci: sample size (n), expected heterozygosity (HE), proportional 
excess of homozygotes (FIS), mean number of alleles (A), and allelic richness (AR).  Allelic 
richness is based on a minimum size of 4 individuals that represents the number of individuals 
with genotypes at all 10 loci in the historical NW sample. 
 

 

 

** P< 0.05; *** P < 0.001  

 n HE FIS A AR 

NW-Historical  5 0.635 0.028 3.60 3.34 

NW-Contemporary 148 0.431 0.028 3.75 2.17 

SSN-Historical 16 0.590    0.046** 3.60 2.81 

SSN-Contemporary 127 0.565    0.101*** 3.50 2.51 
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Table 2-2.  Pairwise comparisons of genetic differentiation between samples with RST above the 
diagonal and FST below the diagonal.  H denotes historical samples and C denotes contemporary 
samples.  All pairwise comparisons shown in the table are significant at P<0.01. 
 

 NWH NWC SSNH SSNC 

NWH -- 0.321 0.195 0.500 

NWC 0.198 -- 0.363 0.581 

SSNH 0.098 0.291 -- 0.265 

SSNC 0.208 0.374 0.170 -- 
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Table 2-3.   Results of BOTTLENECK tests including the p values for the Wilcoxon 
heterozygosity (HE) excess test with two different proportions of multistep mutations in the two 

phase model (TPM), shifted mode test, and M-Ratio value and M-Critical values.  =1 represents 

an initial (pre-decline) Ne of 500 and =10 an Ne of 5000.  M-Ratio values that fall below the M-
Critical value are considered statistically significant at α=0.05.  Results incorporating population 
structure in the SSNC are shown on the last 3 lines where H denotes historical samples and C 
denotes contemporary samples. 
 

 n HE Excess 
TPM 20% 

HE Excess 
TPM 5% 

Shifted 
Mode 

M-Ratio 
M-Critical 

=1 
M-Critical 
=10 

NWH 5 0.19 0.22 - 0.92 0.71 0.55 

NWC 148 0.08 0.22 No 0.91 0.77 0.71 

SSNH 16 0.05 0.10 - 0.87 0.78 0.64 

SSNC 127 0.00 0.04 No 0.89 0.78 0.72 

SSNC – North 44 <0.001 <0.001 Yes 0.83 0.78 0.69 

SSNC – Central 32 <0.001 <0.001 Yes 0.82 0.78 0.68 

SSNC – South 51 0.08 0.19 No 0.85 0.78 0.70 
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Table 2-4.  The mode and 90% highest posterior density (in parentheses) of the posterior 
distributions for the Storz and Beaumont [67] models.  The Bayes factor (BF) indicates the 
strength of evidence for a population decline with values greater than 10 representing very strong 
support. N0 and N1 are the current and ancestral Ne respectively.  Time (T) represents the date of 
the change in population size from N0 to N1.   

Sample BF Scale N0 N1 Time (T) 

Historical-SSN 10.9 Exp 154 (1-2160) 1862 (454-7952) 442 (96-25249) 

 13.5 Linear 102 (1-1993) 1922 (457-7838) 1054 (109-61941) 

Contemporary-SSN 36.1 Exp 167 (23-838) 1613 (383-7102) 1693 (60-23307) 

 65.2 Linear 139 (17-692) 1405 (358-8143) 3134 (160-73610) 

Contemporary-NW 41.1 Exp 129 (23-513) 1698 (288-12302) 2884 (162-37153) 

 45.5 Linear 128 (27-547) 1640 (246-19639) 8549 (373-353012) 
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Figure 2-1.  Fisher locations used by Grinnell et al. (1937) to document the distribution of fisher 
in California.  Locations are based primarily on reports of trappers and collecting expeditions 
from 1919-1924.  Grinnell wrote that “spots [black dots] indicate, almost all of them with 
certainty, the locality of capture; probably some indicate the residence of post office or trapper”. 
The outlined area is the Grinnell et al. (1937) assessment of the range of fisher in California from 
~1850-1925.      
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Figure 2-2.  Locations of the historical (H) and contemporary (C) genetic samples from the 
northwestern mountains (NW) and southern Sierra Nevada (SSN) of California.  Sample size is 
as follows:  NWH n=5, SSNH n=16, NWC n=148, SSNC n=127.  Grinnell’s assumed historical 
range as adapted by Davis et al. [115] is shown in gray. 
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Figure 2-3.  Approximate location of population subdivisions used in bottleneck analyses within 
the contemporary southern Sierra Nevada. 
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Figure 2-4.   A) ratio of current and ancestral population sizes (r=N0/N1) where r=1 signifies 
population stability, r<1 decline, and r>1 expansion.  4B-D) Posterior distributions of the current 
(N0) and ancestral (N1) effective population size using both the exponential (thick lines) and 
linear (thin lines) models:  B) northwestern-historical, C) southern Sierra Nevada-contemporary, 
and D) southern Sierra Nevada-historical.  The dotted line shows the prior distribution for N0 and 
N1. 
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Figure 2-5.  Posterior distribution of time of decline (T) for the linear (thin line) and exponential 
(thick line) models.  A) Time (in years before present) for the contemporary SSN (solid lines) 
and NW (dashed lines).  B) Time for the historical SSN.   The vertical dotted line shows the 
approximate time of the European settlement of California (~1850) relative to the age of each of 
the samples.   
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Supplemental Tables 
 
Table 2-S1.  Location and collection date of historical fisher genetic samples.  Samples were 
collected from the Smithsonian National Museum of Natural History (SNM) and the Museum of 
Vertebrate Zoology at the University of California, Berkeley (MVZ).  Samples that successfully 
genotyped at a minimum of 7 of 10 microsatellite loci are shown in bold.   

Population Collection Date 
Catalog 
Number Location 

Northwest  5-Feb-1884 SNM-14395 Shasta County 
 1-Feb-1897 SNM-87080 Cassel, Rock Creek Mountains 
 1-Feb 1897 SNM-87081 Cassel, Burney Mountain 
 11-May-1889 SNM-30624 Cahto California, 3 mi S of Laytonville 
 11-May-1889 SNM-24025 Cahto California, 3 mi S of Laytonville 
 28-Mar-1905 MVZ-20955 Eden Valley 
 1-Feb-1910 MVZ-12902 Helena 
 20-Feb-1911 MVZ-12901 Helena 
 13-Dec-1911 MVZ-16386 Head Ray's Gulch, 5 miles S of Cecilville 
 19-Feb-1912 MVZ-16531 Cecil Lake, 8 miles S of Cecilville 
 25-Mar-1912 MVZ-16596 head Black Gulch, 10 miles S of Cecilville 
 27-Jan-1913 MVZ-19095 8 mi SE of Cecilville 
 23-May-1917 SNM-227117 Covelo, California 
 16-Sep-1917 SNM-227118 E. Fork Wells Creek, 15 miles E of Hayfork 
 not recorded SNM-21233 Shasta County 
 not recorded SNM-3415A Fort Crooks , near Fall River Mills, California 
Southern 30-Jan- 1892 SNM-32315 Big Creek, Mariposa County 
Sierra 14-Jan-1893 SNM-51270 Big Creek, Mariposa County 
Nevada April-1893 SNM-52821 Wawona, Yosemite NP 
 23-Dec-1895 SNM-81094 Atwell's Mill, Sequoia NP 
 29-Mar-1905 MVZ-21396 Grouse Creek, Yosemite NP 
 26-Jan-1911 SNM-171002 Yosemite Valley 
 17-Dec-1915 MVZ-23668 Chinquapin, Yosemite NP 
 28-Dec-1915 MVZ-23883 6 miles S of Hetch Hetchy Valley 
 14-Jan-1915 MVZ-23884 6 miles S of Hetch Hetchy Valley 
 20-Jan-1916 MVZ-23885 6 miles S of Hetch Hetchy Valley 
 22-Feb-1916 MVZ-23686 Near Fort Monroe, Yosemite NP 
 3-Feb-1917 MVZ-24740 Fort Monroe, Yosemite NP 
 1-Dec-1918 MVZ-29809 Grouse Creek, near Wawona Road, Yosemite NP 
 27-Jan-1919 MVZ-29810 Yosemite Valley 
 28-Jan-1919 MVZ-29811 Grouse Creek, near Wawona Road, Yosemite NP 
 1-Feb-1919 MVZ-29812 Tuolumne Big Trees, Yosemite NP 
 1-Feb-1919 MVZ-29813 Tuolumne Big Trees, Yosemite NP 
 1-Jan-1920 MVZ-31132 Hog Ranch Ranger Station (Mather),  Yosemite NP 
 1-Feb-1920 MVZ-31133 Near Crane Flat, Yosemite NP 
 8-Feb-1920 MVZ-31129 Near Big Meadows, Coulterville Rd, Yosemite NP 
 14-Feb-1920 MVZ-31093 Yosemite Valley 
 14-Feb-1920 MVZ-31094 Yosemite Valley 
 1-Apr-1920 MVZ-31326 Yosemite NP 
 18-Jan-1919 MVZ-29791 Yosemite NP 
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Table 2-S2.  Prior and hyperprior parameters for runs of the Storz and Beaumont (2002) analysis 
implemented in MSVAR.  Columns 3-6 show the starting values for the mean and variance of 
the prior distributions.  Columns 7-10 show the means and variances (and their means and 
variances) of the hyperprior distributions.  Parameters listed are generation interval (g), current 
Ne (N0), ancestral Ne (N1), mutation rate (Ѳ), and time (T).  All values are in a log10 scale. 
 

Run# g log(N0) log(N1) log() log(T) log(N0) log(N1) log() log(T) 

01 5 4 1 4 1 -3.3 1 3 1 3 2 0 0.5 3 2 0 0.5 -3.3 0.25 0 0.5 3 2 0 0.5 

02 5 4 1 4 1 -3.3 1 4 1 3 2 0 0.5 3 2 0 0.5 -3.3 0.25 0 0.5  3 2 0 0.5 

03 4 4 1 3 1 -3.3 1 4 1 3 2 0 0.5 3 2 0 0.5 -3.3 0.25 0 0.5  3 2 0 0.5 

04 5 3 1 3 1 -3.3 1 4 1 2 2 0 0.5 2 2 0 0.5 -3.3 0.25 0 0.5  3 2 0 0.5 

05 5 4 1 4 1 -3.3 1 4 1 4 3 0 0.5 4 3 0 0.5 -3.3 0.25 0 0.5  3 2 0 0.5 

06 5 4 1 4 1 -3.3 1 2 1 3 2 0 0.5 3 2 0 0.5 -3.3 0.25 0 0.5  2 2 0 0.5 
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CHAPTER 3: Sampling affects the detection of genetic subdivision and conservation 
implications for fisher in the Sierra Nevada 

 

 

Abstract 

The small population of fisher (Pekania pennanti) in the southern Sierra Nevada is completely 
geographically and genetically isolated putting it at increased risk of extinction.  Previous 
research analyzing  clustered samples found a high amount of genetic subdivision within the 
southern Sierra Nevada population hypothesized to be caused by the Kings River Canyon.  In 
this study, we use a larger and more geographically continuous set of genetic samples (n=127) 
than was previously available to test this hypothesis of population subdivision by barrier and 
evaluate the genetic structure of this population. We found the population to be characterized by 
significant isolation by distance using 10 microsatellite loci.  Both spatial and non-spatial 
population assignment models found three primary genetic clusters with moderate divergence 
between the clusters (FST = 0.05-0.13).  These clusters appear to be associated with areas around 
the Kings River and Mountain Home State Demonstration Forest.  One model also detected 
additional fine-scale subdivision north of the Kings River that may be evidence of founder 
effects from a recent population expansion.  The amount of population subdivision detected in 
this study is lower than previously found and indicates that while certain landscape features may 
reduce gene flow, these landscape features may be less of a barrier than previously thought.  We 
attribute the difference in results between this study and previous work to a difference in 
sampling.  In the previous work, samples were collected in clusters that in populations exhibiting 
isolation by distance can inflate estimates of population structure by increasing the likelihood of 
oversampling related individuals.  This study provides an empirical example of how clustered 
sampling of a continuously distributed population can affect the assessment of population 
subdivision and influence conservation implications.   
 

Introduction 
Conserving population connectivity is a conservation priority for many organizations interested 
in long-term species persistence (Crooks & Sanjayan 2006).  Connectivity within and between 
populations is an important factor in many critical elements of population biology such as 
migration (Berger et al. 2008; Wilcove & Wikelski 2008), dispersal (Willson 2004; Kojola et al. 
2009), spread of disease (Greer & Collins 2008; Plowright et al. 2011), and maintenance of 
genetic diversity  (Epps et al. 2006; Dixo et al. 2009).  Connectivity is especially important for 
small populations that are already at elevated risk of extinction due to their susceptibility to 
stochastic demographic or genetic factors (Gilpin & Soule 1986).  Assessing the genetic structure 
of a population is a common method for evaluating connectivity by identifying boundaries of 
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genetic groups, quantifying the amount of gene flow between them, and distinguishing which 
landscape features might act to restrict gene flow (Perez-Espona et al. 2008).   
 

The fisher (Pekania pennanti [Kopefli et al. 2008, Sato et al. 2012], formerly Martes 
pennanti [Erxleben 1777]) population in the southern Sierra Nevada is an example of a 
population for which concerns about connectivity are acute.  The population is small, with an 
estimated size of less than 300 adults (Spencer et al. 2011), and isolated from the nearest native 
population by over 400 km (300 km to a recently reintroduced population).  Recent research has 
shown that the southern Sierra Nevada fisher population has been genetically isolated from other 
fisher populations for thousands of years (Knaus et al. 2011; Tucker et al. 2012).  Previous 
genetic analysis of this population found high amounts of subdivision (FST = 0.51) between two 
sampling areas north and south of the Kings River Canyon (Wisely et al. 2004).  The two 
sampling areas were separated by less than 100 km, which is within the known maximum 
dispersal distance of the species (York 1996), of fairly contiguous forested habitat transected by 
the Kings River.  The authors inferred that the Kings River could have been a barrier to gene 
flow between these two sampling areas.  Detection of this strong subdivision raised conservation 
concerns that this small population was fragmented, furthering increasing extinction risk(Center 
for Biological Diversity 2008). 

 
Recent research has found that estimates of structure and gene flow can be strongly 

influenced by sampling design depending on the genetic characteristics of the population 
(Novembre & Stephens 2008; Frantz et al. 2009; Schwartz & McKelvey 2009).  For example a 
population may be distributed continuously across a landscape without barriers to gene flow 
which would result in discrete subpopulations.  However, gene flow may be restricted to short 
distances, leading to increasing genetic differentiation as the geographical distance between 
individuals increases, termed isolation by distance (IBD,Wright 1943).  IBD results in a gradient 
of genetic differentiation across a landscape where groups of individuals are genetically 
different, even though there is continuous genetic connectivity between them (Gonzalez�Suarez 
et al. 2009; Norén et al. 2011).  In such populations, disentangling the effects of IBD from true 
ecological barriers is difficult and the impact of sampling design on results can be great.  In 
particular, discontinuous sampling of a continuously distributed population characterized by IBD 
can lead to biased results where it appears that there is a genetic barrier on the landscape that is 
not really present (Schwartz & McKelvey 2009).  For species of conservation concern 
understanding the effects of sample configuration on landscape genetic analyses and providing 
an accurate assessment of genetic structure is especially critical as this information can have a 
major impact in conservation decisions. 

 
 The Wisely et al. (2004) results are striking because of the high subdivision detected.  
However, this study was based on a small number of samples from two relatively limited 
geographic areas within the southern Sierra Nevada range (north Kings River n=14, south Kings 
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River n=19).  If this population is characterized by IBD, such clustered sampling may have 
inflated estimates of population structure and the interpretation of that structure on the landscape.  
In this study, we assess the genetic structure of the southern Sierra Nevada fisher population 
using continuously distributed samples from across the entire population (Figure 3-1).  We then 
test if sampling scheme (clustered versus continuous) strongly influenced the results.   
  

Methods 

Study Area 
The study area is defined as the west slope of the Sierra Nevada south of highway 120 in 
Yosemite National Park to the southern tip of Greenhorn Mountains near Lake Isabella (Zielinski 
et al. 1995; Zielinski & Mori 2001).  All sampling was conducted on federal lands and occurred 
within the known elevation range of fisher in this region (800- 3200 meters: Figure 3-1). 
 

Sample Collection 
Genetic samples were collected from 2006-2009.  All sampling was conducted in conjunction 
with the U.S. Forest Service Sierra Nevada Carnivore Monitoring Program (Zielinski et al. 
2012). 223 sample units were distributed across the study area and co-located with points from 
the Forest Inventory and Analysis (FIA) sampling grid.  The FIA program is a nationwide forest 
condition monitoring program that consists of a sampling points located within a hexagonal grid 
network that are on average 5.47 km apart (Bechtold & Patterson 2005).  
 

Each sample unit consisted of an array of 6 track-plate boxes with barbed wire hair snares 
that encompassed a 0.8 km2 area (Zielinski et al. 2006).  The use of bait (chicken) and a 
commercial trapping lure is thought to have extended the effective survey area of the sample unit 
to ~1.22 km2 (Zielinski & Mori 2001).  Positive identification of fisher from track data has been 
well established (Zielinski & Truex 1995) and only hair samples from stations that detected 
species within the genus Martes (fisher or marten) via tracks were genetically analyzed.  Hair 
samples were collected and stored in prescription vials with a silica gel desiccant at room 
temperature to minimize DNA degradation.   

 
Because we were concerned that gaps in sample distribution can bias analyses of 

population genetic structure, we also opportunistically deployed hair snares in Sequoia, Kings-
Canyon, and Yosemite National Parks, as these areas were not included in the aforementioned 
sampling network.  For this opportunistic sampling, track-plate boxes with hair snares were 
installed every 500-1000 meters along established roads or trails in areas.  Stations were placed 
at least 50 meters from the edge of the road or trail to reduce any potential disturbance effects 
from close proximity to these anthropogenic features. 
 

Laboratory Analysis 
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DNA was extracted from hair samples using the Dneasy Tissue Kit (Qiagen, Valencia, CA) with 
modifications for hair samples.  Up to 10 hairs were used in each DNA extraction to maximize 
the probability of obtaining a high quantity of DNA.  While the majority of genotypes (~70%) 
were obtained from field samples containing 5-10 hairs, a minority of genotypes were from 
samples consisting of 1-4 hairs.  Samples were analyzed at ten microsatellite loci.  MP059, 
MP144, MP175, MP197, MP200, and MP247 were developed from tissue samples from the 
southern Sierra fisher population(Jordan et al. 2007).  MA1, GGU101, GGU216, and LUT 733 
were developed in other mustelid species and have also been found to be variable in the Sierra 
fisher population (Davis & Strobeck 1998; Duffy et al. 1998; Dallas & Piertney 1998).  The 

reaction volume (10 l) contained 1.0L DNA, 1x reaction buffer (Applied Biosystems), 2.0 mM 

MgCl2, 200M of each dNTP, 1M reverse primer, 1M dye-labeled forward primer, 1.5 mg/ml 

BSA, and 1U Taq polymerase (Applied Biosystems).  The PCR profile was 94C/5 min, [94C/1 

min, 55C/1 min, 72C/30s] x 36 cycles).  The resultant products were visualized on a LI-COR 
DNA analyzer (LI-COR Biotechnology).  Hair samples that successfully genotyped were 
analyzed for sex using the Y-linked marker DBY-3 used successfully in wolverine (Hedmark et 
al. 2004).  We tested DBY3 in fisher using samples of known sex and found this locus to 
consistently identify the correct sex for this species.   
 

To address the potential for genotyping error from non-invasive samples, we used the 
multi-tubes approach in which each sample is analyzed a minimum of three times per locus with 
that locus accepted as accurate only if the samples produced consistent genotypes (Eggert et al. 
2003; McKelvey & Schwartz 2004).  If the genotype at a locus differed in one or more of these 
amplifications, we conducted an additional round of 3 amplifications. If a consistent genotype 
could not be determined after multiple amplifications then that locus was removed from the 
dataset.  Samples that amplified at fewer than 7 loci were removed from further analysis. 

 
We checked for genotyping errors using the examining bimodabilty (EB test) in the 

software DROPOUT (McKelvey & Schwartz 2005), which tests for bimodal peaks in the 
distribution of allele frequency differences among individuals that is indicative of genotyping 
error.  We also used the program Micro-checker to assess the potential for null alleles at each 
locus (van Oosterhout et al. 2004). 
 

Data Analysis 
We tested microsatellite genotypes for departures from Hardy-Weinberg proportions at each 
locus using Fisher’s exact test in Genepop 4.0 (Raymond & Rousset 1995; Rousset 2008).  Gene 
diversity (HE) (Nei 1973), FIS, number of alleles (A), allelic richness (AR) and gametic 
disequilibrium for each pair of loci were calculated using FSTAT 2.9.3 (Goudet 1995; Goudet 
2001).  The amount of genetic diversity present in the sample groups was compared using paired 
t-tests of arcsine-transformed HE, and AR (Archie 1985).  We used sequential Bonferroni 
corrections to correct for multiple comparisons when assessing statistical significance (Rice 
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1989).  We assessed the statistical power of the microsatellite panel to identify individuals by 
calculating the probability of identity (PID), the probability of two unrelated individuals 
randomly drawn from the population sharing the same multilocus genotype, using the method of 
Paetkau and Strobeck (1994).  As shared ancestry and population subdivision can bias PID low 
we also calculated PSIB which is the probability of two siblings sharing the same genotype.  PSIB 

defines the upper limit for the range of PID in a population when there is bias due to shared 
ancestry (Taberlet & Luikart 1999).  Both PID and PSIB were calculated in the software GenAlEx 
6.4 (Peakall & Smouse 2006). 
 

Spatial Autocorrelation  
We tested for the presence of IBD using both Mantel tests of geographic versus genetic distance 
and spatial autocorrelation analysis in GenAlEx 6.4 (Peakall & Smouse 2006).  We quantified 
spatial autocorrelation in the data by binning genetic distances between individuals into classes 
defined by geographic distance.  We then visualized the data graphically using correlograms that 
illustrate the behavior of the autocorrelation as a function of distance (Manel et al. 2003). 

 
To define statistical significance an autocorrelation coefficient representing no spatial 

structure was generated by randomly shuffling all individuals among geographic locations and 
calculating the autocorrelation coefficient over 1000 random permutations.  Spatial 
autocorrelation was analyzed using 3 different geographic bin sizes of 4, 6, and 10 km to assess 
the effect of bin size on the results.   

 

Population subdivision 
Population structure was assessed using two individual based approaches that allow for the 
evaluation of genetic structure without defining a priori populations.  Both methods used 
Bayesian analyses that generate genetic clusters by grouping individuals to minimize Hardy-
Weinberg and linkage disequilibrium within groups.  Individuals are then assigned 
probabilistically to the population from which its genotype most likely derived.  One approach, 
implemented in the program STRUCTURE 2.3.3 (Pritchard et al. 2000), does not include 
geographic coordinates in its analysis, whereas the second approach, implemented in 
GENELAND (Guillot et al. 2005), incorporates specific spatial information for individuals in 
population assignments.  We chose GENELAND as it has been shown to perform best for 
detecting boundaries, especially with semi-permeable edges (Safner et al. 2011). The spatial 
approach assumes that some degree of spatial dependence is present among individuals and that 
the probability of any two individuals belonging to the same population decreases with the 
geographical distance between them in accordance with Wright’s isolation by distance model 
(Guillot et al. 2005).   
 

In STRUCTURE we used a burn-in period of 100,000 iterations followed by a simulation 
length of 500,000 iterations, and allowed K to range from 1 through 10.  We repeated the 
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analysis 5 times and averaged the resulting parameter values.  We used an admixture model in 
which each individual has mixed ancestry and draws some fraction of its genome from each of 
the K populations, and ran both the independent and correlated allele frequency models 
(Pritchard et al. 2000; Falush et al. 2003).   We also used the LOCPRIOR model (Hubisz et al. 
2009) that incorporates location information by allowing for the a priori grouping samples based 
on sample location. The LOCPRIOR model has been found to improve inference for the true K 
when working with lower levels of divergence or less data compared to other STRUCTURE 
models.   

 
To investigate the effect of the number of groups on the results we conducted 2 different 

LOCPRIOR analyses in STRUCTURE partitioning our data into groups of the 12-13 or 6-7 
geographically closest individuals, and assigned each group an integer value resulting in 10 and 
21 groups respectively. We determined K using two different methods: the maximum likelihood 
value (ln[Pr(X|k)]), and the ΔK method which is based on the second order rate of change of 
ln[Pr(X|k)] between consecutive values of K (Evanno et al. 2005). 

 
 In GENELAND we conducted analyses using both the uncorrelated (similar to the 
independent model in STRUCTURE) and correlated allele frequency models.  We chose to 
compare the results of both models because while the correlated model has been found to be 
more powerful at detecting subtle structure, it is also more sensitive to model assumptions and 
can overestimate K (Guillot et al. 2005).  We used the spatial uncertainty option in GENELAND 
which allows for the locations of individuals to vary within a specified distance from the sample 
location and mimic the movement of an individual.  This added variation addresses the problem 
of assigning individual genotypes to stationary points for mobile animals and has been found to 
increase the precision in detection of true population boundaries (Guillot et al. 2005).  For 
individuals recaptured at more than one location we used the averaged UTM coordinates of all 
detections of that individual. 
 
 GENELAND simulations were conducted for 500,000 iterations with burn-in period of 
40,000, maximum rate of Poisson process was set to 127 (the number of individuals), and the 
maximum number of nuclei set to 381 (3 times the number of individuals) as recommended by 
Guillot et al. (2005).  Three different values of spatial uncertainty, 1000 m, 2000 m, and 5000 m 
were used to determine the influence of this parameter on the resulting population structure.  K 
was set from 1 to 10 and each model was replicated 20 times.  Models were ranked by the mean 
logarithm of posterior probability.  We conducted post-process analysis on the top 3 runs of each 
model to visually assess consistency.  The spatial domain was set to 100 and 200 pixels on the X 
and Y axes respectively.   
 

For both STRUCTURE and GENELAND we used a cutoff probability (q-value) of 0.60 
to infer population membership for each individual.  We verified the FST values between 
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identified genetic clusters that are generated by STRUCTURE and GENELAND using Genepop 
4.1 (Raymond & Rousset 1995; Rousset 2008) according to the method of Weir and Cockeram 
(1984).  We also calculated an FST value between samples north and south of the Kings River to 
assess the a priori hypothesis, based on the Wisely et al. (2004) results, that the Kings River may 
be a major barrier to gene flow in the southern Sierra Nevada.   
 

Results 

Sample Collection and Laboratory Analysis 
We successfully genotyped 247 hair samples from which we identified 127 unique genotypes 
representing different individuals.  85% of samples amplified at all 10 loci, 9% amplified at 9 
loci, 3% at 8 loci and 3% at 7 loci.  We detected more males (n=72) than females (n=48), and 
had 7 individuals for which we could not determine sex due to inconclusive results at the sexing 
locus. In the 42 individuals that were recaptured multiple times we detected fairly limited 
movements.  The majority of both within year and between year recaptures occurred within the 
same sample unit or at other units in close proximity.  We recaptured 12 individuals at more than 
one sample unit, with 11 of these 12 recaptures being male.  The largest movement we found 
was a male that we detected in sample units 20 km apart over a 3 month time period.   
 

Genetic Diversity  
The 10 microsatellite loci had an average of 3.5 alleles/locus with an observed heterozygosity 
(HO) of 0.51 and HE of 0.56.  The PID ranged from 0.00008 (7 loci) to 0.000002 (10 loci), and 
PSIB from 0.01 (7 loci) to 0.002 (10 loci) which are within the values of 0.01-0.001 recommended 
for reliable identification of individuals (Waits et al. 2001).  Two of the 10 loci were out of 
Hardy-Weinberg proportions, both of which had a significant deficit of heterozygotes (FIS MP59 
= 0.202, MP200 = 0.172), and were detected as potential null alleles by MICROCHECKER.  
Significant gametic disequilibrium was detected for 17 of the 45 loci pairs (P < 0.05), 15 more 
than the 2 that would be expected by chance alone.  After correcting for multiple comparisons 
using a sequential Bonferoni correction, 3 loci pairs remained significant.  However, all loci 
were in Hardy-Weinberg proportions and gametic disequilibrium after accounting for the 
population subdivision described in the following sections, indicating that the heterozygous 
deficit we detected was the result of underlying population subdivision (Wahlund 1928).    

 

Isolation by Distance 
The Mantel test of geographic versus genetic distance across all samples was highly statistically 
significant (p<0.001) indicating IBD, with a mantel correlation coefficient (r) of 0.25.  The 
magnitude of this correlation is similar to or less than has been reported in other fisher 
population genetic studies (Kyle et al. 2001 r=0.75; Carr et al. 2007 r=0.38; Garroway et al. 
2008 r=0.44; Hapeman et al. 20011 r=0.19).  In estimates of spatial autocorrelation, the 
correlation coefficient r generally decreased across geographic distance throughout the 
population also indicating IBD (Figure 3-2).   
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Population subdivision 
Bayesian clustering methods detected a moderate amount of subdivision within the southern 
Sierra Nevada fisher population.  Both the independent and correlated models in STRUCTURE, 
found K=3 using the maximum ln[Pr(X|k)] value, and K=2 using the ΔK method  (Figure 3-3).  
The correlated model showed greater mixing among populations than the independent model.   

 
Values of R, the parameter characterizing the amount of information in the a priori 

sample groups in the LOCPRIOR model, averaged 0.34 for the correlated model and 0.41 for the 
independent model.  Small R values (<1.0) signify that the location data is informative to the 
model (Hubisz et al. 2009). The correlated and independent models in STRUCTURE had an 
average admixture value (α) of 2.54 suggesting a high degree of admixture as large α values (>1) 
indicate most individuals in the population are admixed.  The mean α for K=3 (1.72) was much 
lower than for K=2 (3.35) indicating less admixture in individuals when the population was 
partitioned into 3 versus 2 populations.  The variance in α over multiple iterations was also much 
lower for K=3 than K=2.  Low variance in α has been found to be indicative of the true value of 
K (Prichard et al. 2000).    

 
The uncorrelated model in GENELAND also found K=3 and this value of K was 

consistent across all 20 runs and all three levels of spatial uncertainty (Figure 3-4A).  In both 
GENELAND and STRUCTURE for K=3 the identified genetic clusters roughly correspond to 
the area north of the Kings River (North), between the Kings River and the Mountain Home 
Demonstration State Forest (Central), and south of Mountain Home Demonstration State Forest 
(South) (Figure 3-5).  Pairwise FST values between the clusters estimated in GENELAND were 
North-Central= 0.083, Central-South=0.054, North-South=0.127.  Mantel tests for IBD within 
each of the North, Central, and South genetic groups were non-significant at α=0.05.  This 
indicates that within each of these groups the genetic distance between individuals is 
independent of geographic distance.  Testing the hypothesis of population division along the 
Kings River Canyon in Wisely et al. (2004), we found an FST value of 0.087 between samples 
groups north and south of the Kings River. 

 
The geographic delineation of the clusters identified by STRUCTURE for K=3 were the 

same as found for K=3 in GENELAND.  In STRUCTURE for K=2 the North and Central 
populations were combined into one larger population, separated from the South, with the 
boundary between populations nearly identical to K=3.  The proportion of individuals assigning 
poorly to any one population was much greater for the STRUCTURE models than for the 
GENELAND models.  In GENELAND 98.4% of individuals assigned with greater than a 0.60 
probability to a population for K=3, while in STRUCTURE only 84.3% of individuals assigned 
at this probability threshold.  Assignment rates remained high (90%) for GENELAND models 
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even when using at stricter 0.80 threshold for probability of population assignment, but dropped 
considerably (53.5%) for the STURCTURE models.   

 
The correlated model in GENELAND, which has been shown to detect finer scale spatial 

structure than the uncorrelated model, found K=6 in the majority of simulations, with a minority 
of simulations finding K=5 (Figure 3-4B).  The proportion of simulation showing K=5 decreased 
with increasing spatial uncertainty (1000 m = 20%, 2000 m = 10%, 5000 m = 5%).  The 
correlated model showed similar genetic clustering as the uncorrelated model in the South and 
Central areas, but subdivided the North group into 4 smaller clusters (Figure 3-6).  For the 
correlated model there were a greater number of individuals (n=6) that assigned poorly to one 
population, and all these individuals were within the North group.  Pairwise FST values between 
the Central and the South group remained the same, but values between the Central group and 
the four North subgroups varied considerably ranging from moderate (0.042) to very high 
(0.169) (Table 3-1).  The value of HE was significantly lower at a 0.1 significance level in the 
North group than the Central and South.  There was no significant difference between groups in 
AR. (Table 3-2).  

Discussion 

Population subdivision in the southern Sierra Nevada 
We found the southern Sierra Nevada population to have a moderate amount of genetic 

subdivision that appears to be associated with a number of geographic features or administrative 
areas including Little Shuteye Peak, the San Joaquin River, Kaiser Wilderness, Kings River 
Canyon and the Mountain Home Demonstration State Forest (Figure 3-6).  The most consistently 
detected genetic clusters, found in both the STRUCTURE and GENELAND models, were 3 
clusters with boundaries associated with the Kings River, and Mountain Home Demonstration 
State Forest.  Results of this study contrast with Wisely et al. (2004) in the amounts of genetic 
subdivision; our results indicate areas of resistance to gene flow rather than major barriers. 
During the 4 year study period we detected very limited movement among recaptured individuals 
with the majority of recaptures either at the same or adjacent sample units, possibly indicating 
that long distance movements are relatively rare and that effective dispersal distance is likely 
much less than maximum dispersal capability (Kyle et al. 2001).   

  
The highest levels of subdivision were found in a number of small genetic clusters north 

of the Kings River that were detected only by the correlated model in GENELAND.  The 
strongest genetic clustering was north of Little Shuteye Peak (North-1: Figure 3-6) with that 
group showing FST values ranging from 0.137 to 0.164 between the 3 other northern genetic 
groups which were within 30 km of each other.  It is possible that the additional genetic 
subdivision detected the North group is the result of multiple founder events within this area 
during a recent population expansion.  The reduction in HE in the North compared to the Central 
and South groups is consistent with the genetic signature expected to be generated by recent 
founder events (Nei et al. 1975, Hawley et al. 2006), but the lack of difference in allelic richness 
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between the groups is at odds with this hypothesis.  However, survey data supports the idea of a 
recent population expansion.  In the 1990’s surveys routinely detected fisher in the central and 
southern portion of the study area, but rarely in the northern portion (Zielinski et al. 1995, 2005).  
From 1991-1994 fishers were detected only once at track-plate surveys in the Sierra National 
Forest (which encompasses the entirety of the North genetic group) whereas this study detected 
44 individuals within this area.  From 1996-2002 only 2 fishers were detected in Mariposa and 
Madera counties within the North genetic group (Zielinski et al. 2005), while this study detected 
25 individuals from these same two counties.   
 

Factors contributing to the assessment of population subdivision 
We detected a much lower amount of population subdivision compared to Wisely et al. (2004), 
and did not find the Kings River Canyon to be a major barrier to gene flow.  The main difference 
between the studies which likely accounts for the quantitative difference in FST values is the 
sampling design (see below).  To a lesser degree, differences in markers likely played a role. We 
also consider other potential factors that could have contributed to the difference between these 
studies. 
 

Sampling design  
The difference in the results here and Wisely et al. (2004) is primarily attributable to 1) the 
geographic location of the samples available and 2) the possible sampling of close relatives.  The 
samples used for the Wisely et al. (2004) study were from two relatively small and 
geographically disparate areas within the southern Sierra Nevada range (~98 km apart).  While 
this distance is within the known maximum dispersal distance for fisher of 107 km (York 1996), 
it is much greater than the average dispersal distances recorded in other studies that ranged from 
11-33 km (Arthur et al. 1993, York 1996, Aubry and Raley 2002).  These two areas were on 
either side of the Kings River, which we found to be a possible source of genetic subdivision.  In 
a population such as this, with IBD, we would expect clustered sampling to result in higher 
estimates of subdivision than a continuously distributed sample.  
 

The majority of samples in Wisely et al. (2004) were from two very small areas: 12/14 
samples in the north and 17/19 of the samples in the south were collected from within 87.1 km2 
and 49.9 km2 areas respectively (minimum convex polygon area of sample locations).  
Considering home range sizes in the southern Sierra Nevada have been estimated at 5.3 km2 
(females) - 30.0 km2 (males) (Zielinski et al. 2004) and are estimated to be more than twice as 
large in the northern portion of the southern Sierra Nevada fisher range (R. Sweitzer unpublished 
data) the Wisely et al. (2004) samples are likely an almost complete census of individuals within 
each area.  Fishers have been shown to have male-biased dispersal and female philopatry with 
mean dispersal distances of males found to be 5 times greater than that of females (Aubry et al. 
2004, Aubry and Raley 2006).  Consequently, the dense sampling of individuals from these 
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small areas likely had a high degree of relatedness, especially among females, resulting in an 
inaccurate estimate of allele frequencies compared to the overall population.   

 
We attempted to recreate the sampling scheme of Wisely et al. 2004 by subsetting the 

2006-2009 samples to facilitate a direct comparison between the two studies.  We selected an 
equivalent number of samples from the 2006-2009 dataset in the closest geographic proximity 
possible to the Wisely et al. (2004) samples as described in the previous paragraph.  This 
resulted in much larger sampling areas of 223 km2 (north) and 252 km2 (south) and therefore, a 
much lower sampling density of individuals across both locations.  Consequently, the differences 
in the spatial extent of sampling were so great that we felt that we could not meaningfully 
compare the two studies directly in this manner. 

 
The influence of sampling design in the analysis of population structure has been 

addressed in a number of previous studies which have found that sampling can have a large 
impact on results (Rosenberg et al. 2005, Schwartz and McKelvey 2009, Frantz et al. 2009).  
When spatial autocorrelation exists in the population, sampling at a small scale will cause 
estimates of between group differentiations to be overestimated by minimizing within group 
variation and emphasizing between group variation (Schwartz & McKelvey 2009).  To minimize 
this error, genetic samples should be representative of the entire population by including samples 
across the geographical range (Storfer et al. 2006). 
 

Sample size 
The sample size required to precisely estimate FST has been found to be dependent on the amount 
of subdivision present (Kalinowski 2004; Yang et al. 2005).  The lower the amount of 
subdivision the greater the number of samples required, such that very large sample sizes are 
only required when the amount of subdivision between populations is very low (Kalinowski 
2004).  Using a simulated dataset with a suite of 16 loci, Kalinowski (2004) found that 100 
individuals per population would be needed for precise estimation if FST =0.01, but only 20 
individuals per population would be sufficient if FST =0.05.  Considering that the amount of 
subdivision detected between genetic groups in this study was moderate (0.054-0.127) and high 
(0.51) in Wisely et al. (2004), the smaller sample size used by Wisely et al. (2004) does not 
likely explain the difference in results.  Therefore, the discrepancy in sample sizes between this 
paper (n=127) and Wisely et al. (2004) (n=33) is not likely driving the difference in FST 
estimates. 
 

Genetic diversity of loci 
The amount of genetic variation within loci can influence estimates of subdivision.  The 
maximum FST value is directly related to the heterozygosity (HE) of markers such that the 
maximum FST = 1- HE.  Consequently, when using loci with higher heterozygosity the maximum 
possible FST value is lower.  The 8 loci examined by Wisely et al. (2004) had extremely low 
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variability in the southern Sierra Nevada fisher population, with HE values of 0.16 and 0.20 north 
and south of the Kings River respectively.  This low variation is likely the result of the loci being 
developed for use with stoats (Mustela ermina) and martens (Martes americana) because 
microsatellites specific for fisher were not yet available.  If loci are developed in other species 
then there is the potential for ascertainment bias such that loci that are highly polymorphic in one 
species tend to have less diversity in related species (Ellegren et al. 1995; Cooper et al. 1998).  
Additionally, because some of these 8 loci were fixed in the Sierra Nevada populations, the 
overall power to precisely describe genetic subdivision was further reduced.    
 

In 2007, a new set of microsatellite loci were developed using fisher tissue from the 
southern Sierra Nevada (Jordan et al. 2007); this resulted in 6 new polymorphic loci for the study 
population which have a much higher diversity than in the loci previously available.  The lower 
FST detected in this study could result from the increased heterozygosity of the markers (HE = 
0.56).  However, while the 10 loci used in this study showed higher heterozygosity and allelic 
richness than the Wisely et al. (2004) loci, overall genetic diversity was still low.  The low 
diversity may result from the small size of the population, its long term isolation (Knaus et al. 
2011; Tucker et al. 2012), and its biogeographic history (Wisely et al. 2004) all of which likely 
contributed to the loss of genetic diversity over time.  We calculated G’ST according to Hedrick 
(2005) which standardizes FST by sample heterozygosity.  The estimates of divergence were still 
very different (G’ST [Wisely et al. 2004] = 0.76, G’ST [this study] = 0.31) and thus differences in 
heterozygosity of the loci used do not wholly explain the difference in the results. 
 

Considerations for population subdivision analyses 
Our data showed a significant IBD pattern with genetic distance significantly correlated with 
geographic distance across the study area.  IBD has been found to have a confounding influence 
in landscape genetic analyses (Manel et al. 2003; Musiani et al. 2007).  Pritchard et al. (2000) 
acknowledged that STRUCTURE is not well suited to analysis in the presence of IBD.  The 
spatially based analysis in GENELAND has similar assumptions as the IBD model, that 
geographically close individuals are more likely to be related, and so may be better suited for this 
analysis.  This may explain why the STRUTURE models had a greater proportion of individuals 
that assigned poorly to a population compared to the GENELAND models. 
 
 While the ΔK and maximum likelihood methods in STRUCTURE yielded different 
values of K = 2 and K=3 a number of factors indicate that K=3 is more indicative of the true K.  
We found a lower mean α for K=3 indicating individuals assigned with more certainty to each 
population than when K=2.  The variance in α was much lower for K=3 than K=2 which, 
according to Pritchard et al. (2000), is indicative that K=3 better represents the true population 
structure.  Additionally, the STRUCTURE population assignments for K=3 agreed with those 
from the uncorrelated GENELAND model which also found K=3. 
 



 

47 
 

 An important consideration in attributing population subdivision to landscape features is 
consideration the temporal dynamics between the two factors.  Landguth et al. (2010) found 
there were lag times between either the establishment or removal of a genetic barrier and the 
detectability of the resulting genetic structure.  Depending on the dispersal and movement 
characteristics of a species it can take tens to hundreds of generations until the genetic data 
reflects either the appearance or loss of a barrier.  Consequently, it can be difficult to discern 
whether the observed subdivision is due to historical or contemporary landscape elements.  This 
problem is minimized for species with relatively long distance dispersal.  Landguth et al. 
(Landguth et al. 2010) found using simulations that it takes less than 10 generations to lose 50% 
of the barrier signal if maximum dispersal distance is >30 km.  Considering the maximum 
recorded dispersal distance for fisher is ~100 km (York 1996) the population subdivision 
observed in this study is likely attributable to relatively recent landscape conditions rather than 
historical conditions.  However, considering fisher’s generation interval is ~ 5 years, the 
observed structuring may be the result of landscape conditions over the last few decades rather 
than current conditions. 
 

Conclusions 
We found that the southern Sierra Nevada fisher population is not characterized by high 
subdivision as previously thought.  Overall, fisher subdivision in the southern Sierra Nevada 
follows a pattern of IBD with additional structuring that corresponds to geographic features and 
management boundaries.  This landscape can be characterized as having areas that are resistant 
to gene flow but without major barriers.  However, the limited movement distances we found 
among individuals recaptured across multiple years suggest that long distance movements may 
be uncommon in this population.  We found the genetic subpopulations to be connected by 
moderate amounts of gene flow that may actually help to counteract the effects of genetic drift 
due to small population size and help maintain genetic diversity with the southern Sierra Nevada 
population over time.  Perhaps most importantly, this study provides an empirical example of the 
influence that sampling can have on population genetic analyses.   
 

While the magnitude of subdivision we detected was different between studies, both 
studies found that gene flow in fishers is sensitive to landscape features.  Maintaining 
connectivity within this population will rely on determining what specific landscape elements are 
acting to restrict gene flow within the population.  Identifying these landscape features is critical 
to prevent creation or expansion of anthropogenically influenced landscape elements that may 
further restrict gene flow and to plan for shifts in connectivity due to predicted changes in the 
landscape from climate change.  Future planned research will use an individual based genetic 
approach in a resistance modeling framework (McRae et al. 2008; Garroway et al. 2011; Sawyer 
et al. 2011) to ascertain what specific landscape features may be creating the observed genetic 
subdivision by impeding or facilitating gene flow.   
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The comparison between these two studies, and the realized differences between their 
results and associated conservation implications, provides a clear example of the need to reassess 
other early genetic studies for species of conservation concern.  Technological advances in 
laboratory analysis make marker development less expensive and easier, and the advent of new 
analytical methods in the emerging field of landscape genetics (Manel et al. 2003) allow for 
more quantitative analyses of landscape features.  These advances, combined with the ability to 
noninvasively collect genetic samples of populations on a large scale, allow the next generation 
of conservation genetic work to obtain a clearer picture of the population structure of a species 
than was previously possible. As this comparative study shows, such a reexamination can have 
important implications in the management and conservation of a species. 
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Table 3-1.  FST values for the population assignments identified in the GENELAND correlated 
frequencies model.  

 
 

  
 North - 1 North - 2 North - 3 North - 4 Central  

North - 1 -      

North - 2 0.137 -     

North - 3 0.164 0.023 -    

North - 4  0.138 0.079 0.055 -   

Central  0.169 0.096 0.042 0.056 -  

South 0.198 0.104 0.074 0.137 0.054  
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Table 3-2.  Expected heterozygosity (HE), FIS, and allelic richness (AR), between the North, 
Central, and South genetic groups and the total population.  
 

Group n HE FIS AR 

North 44 0.474 0.043 2.78 

Central 32 0.552 0.061 2.80 

South 51 0.561 0.024 2.95 

Entire SSN 127 0.565 0.101 3.04 
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Figure 3-1.  Location of the southern Sierra Nevada fisher population and the distribution of 
samples from Wisely et al. (2004) (open circles) and samples from the 2006-2009 sampling for 
this study (black triangles)  
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Figure 3-2.  Correleogram showing the results of spatial autocorrelation analysis with the 
correlation coefficient r (solid line) as a function of distance (10 km bin size) with 95% 
confidence interval error bars and a 95% confidence interval (dotted line) around the null 
hypothesis of no spatial structure 
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Figure 3-3.  Results of the admixed, correlated model in STRUCTURE showing the modal value 
of K=3 for the maximum likelihood method and K=2 for the ΔK method.  Results were similar 
for the admixed independent and LOCPRIOR models. 
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Figure 3-4.  Histogram of the distribution of simulation results over 500,000 iterations for the 
number of populations (K) for the GENELAND A) uncorrelated and B) correlated models. 
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Figure 3-5.  a) Map showing the assignment of individuals to each of the identified genetic 
clusters using GENELAND for the uncorrelated model (K=3).  Individuals that assigned poorly 
to any one population are shown in black. b-d) Maps showing the posterior probabilities of 
cluster membership to b) North, c) Central, and d) South genetic groups.  Individuals in areas 
with white shading indicate fisher that had a high probability of assignment to that genetic group. 



 

56 
 

 

Figure 3-6.  Map showing the assignment of individuals to each of the identified genetic clusters 
(K=6) using the correlated model in GENELAND.  Individuals that assigned poorly to a 
population are shown in black. 
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CHAPTER 4: The effect of sex-biased dispersal and spatial heterogeneity on modeling 
landscape resistance to gene flow 

 

Abstract 

Genetic connectivity results from the dispersal and reproduction of individuals across a 
landscape.  Genetics analysis provides a method to assess dispersal indirectly as it is often 
difficult to directly estimate dispersal at large spatial scales.  Mammalian populations frequently 
exhibit sex-biased dispersal, with males dispersing longer distances than females, but this factor 
has rarely been addressed in landscape genetics research.  In this study, we model the effects of 
landscape features and sex-biased dispersal on gene flow for a small and isolated population of 
fisher (Pekania pennanti) in the southern Sierra Nevada Mountains of California.  We genotyped 
127 fishers at 10 microsatellite loci, and determined sex with a Y-linked marker.  We found that 
females have a significantly higher genetic divergence (FST) between subpopulations than males.  
We also found a tendency for an excess of homozygotes within subpopulations for males (FIS > 
0), but not for females.  Both of these differences between sexes are expected if males disperse 
more than females.  We developed resistance surfaces from 8 landscape features that we 
hypothesized to affect gene flow. We used multiple regression of distance matrices to fit models 
of genetic distances to resistance distances for both sexes and in multiple geographic areas.  
Using model selection, we show that sex-biased dispersal and landscape heterogeneity affected 
the determination of what landscape features structure gene flow.  We found that for females 
gene flow was impeded by major water bodies and roads and facilitated by mid-elevation dense 
forests, with water having the strongest effect in the North subpopulation and roads the strongest 
effect in the South subpopulation.  We found gene flow for males was impeded by steep slopes 
and facilitated by dense forest over a wide elevation range.  However, model fit for males was 
markedly lower than for females, indicating that landscape features have comparatively little 
influence on male gene flow.  Our results suggest that careful consideration of the potential for 
sex-biased dispersal, and landscape heterogeneity should be undertaken prior to conducting 
landscape genetic analyses because these factors can strongly influence results.   
 

Introduction 
Connectivity, defined as the ability of organisms to move within and among populations, is 
fundamental for long-term species persistence (Lowe & Allendorf 2010).  For small populations 
vulnerable to stochastic events, demographic and genetic connectivity is essential for 
maintaining population viability (Gilpin & Soule 1986).  Genetic connectivity results from the 
successful dispersal and reproduction of individuals across a landscape.  Therefore, 
understanding the dispersal characteristics of a species and gene flow are inherently intertwined.  
Estimating dispersal through direct methods (mark-recapture, telemetry) is difficult for many 
species as it can be cost prohibitive to capture and track many animals over large landscapes.  
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This is especially true for rare or difficult to detect species.  Direct methods also cannot easily 
distinguish between movement of an animal and gene flow, in which movement is followed by 
successful reproduction. Genetic methods provide an alternate suite of methods for assessing 
dispersal (Slatkin 1985).  These genetic methods, when coupled with the use of non-invasive 
genetic sampling that can cost-effectively sample individuals over large areas, provide a 
powerful tool by which we can improve our understanding of dispersal across landscapes.  
 
 The dispersal of an individual will be shaped by its ability to move through the landscape 
and consequently, landscape features that influence dispersal will also influence gene flow.  
Using genetic information to discern what landscape features facilitate or impede dispersal is 
field of research termed landscape genetics (Manel et al. 2003).  Gene flow can be influenced by 
a wide variety of factors including abiotic factors such as topography (Murphy et al. 2010), 
climate (Schwartz et al. 2009), or anthropogenic features (Blair et al. 2013; Epps et al. 2013) and 
biotic factors such landcover type (Cushman et al. 2006), predation (Murphy et al. 2010), or prey 
availability (Sonerud et al. 1988).   
 

Sex-biased dispersal is a well-documented characteristic of many wildlife populations 
(Pusey 1987).  In mammalian species dispersal is often male biased (Dobson 1982) whereas in 
birds dispersal is usually female biased (Clarke et al. 1997; but see Pierson et al. 2010).  There 
are many hypotheses as to why sex-biased dispersal occurs, including resource competition 
(Greenwood 1980), inbreeding avoidance (Pusey 1987), and local-mate competition (Dobson 
1982).  In polygynous mammals females usually have a larger parental investment (gestating, 
nursing, feeding) than males, and therefore mating competition is much stronger for males than 
females (Dobson 1982).  This results in males dispersing longer distances from their natal area 
than females to avoid competition and find unoccupied territories, whereas, females tend to 
establish home ranges close to their natal area (Greenwood 1980; Dobson 1982). However, while 
sex biased dispersal is a common characteristic or mammalian populations it is not universal 
(Favre et al. 1997, Boyd and Pletscher 1999).  Understanding sex-biased dispersal is an 
important factor in conserving population connectivity, as factors important to maintaining 
connectivity for the dispersing sex may differ from those important to the more philopatric sex. 
and effective conservation strategies must address these sex specific differences.  Assessing sex-
biased dispersal using genetic methods is well established (Goudet et al. 2002; Prugnolle & de 
Meeus 2002; Lawson Handley & Perrin 2007; Clutton-Brock & Lukas 2012).   

 
 The influence of landscape features on dispersal can also vary spatially.  This may be due 
to biological variation within a population, such as variable dispersal pressure due to 
heterogeneity in the density of individuals (Matthysen 2005), interspecific interactions (Rundle 
& Nosil 2005), or due to the differential availability of a feature on the landscape.  Short Bull et 
al. (2011) identified the importance of replicating study areas in landscape genetics, and found 
that the landscape features influencing gene flow in American black bears varied among study 
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areas due to the variability of the landscape feature in each area.  For example, in some of their 
populations elevation was constant and had no relationship with gene flow, while in other areas 
elevation varied substantially and was found important for explaining gene flow.  This 
conclusion has been found in a number of subsequent landscape genetic analyses (Moore et al. 
2011; Trumbo et al. 2013). 
  
 In this study, we examine how sex-biased dispersal and landscape heterogeneity affect 
gene flow in a small and isolated population of fisher (Pekania pennanti [Kopefli et al. 2008, 
Sato et al. 2012], formerly Martes pennanti [Erxleben 1777])  in the southern Sierra Nevada 
Mountains of California.  Identifying the landscape elements structuring genetic connectivity and 
dispersal for the southern Sierra Nevada population of fishers has important conservation 
implications.  Due to its small population size, estimated at <300 adults (Spencer et al. 2011), 
and long-term genetic isolation (Knaus et al. 2011; Tucker et al. 2012) there are acute 
conservation concerns regarding the long-term viability of this population which is currently a 
candidate for listing under the federal Endangered Species Act (U.S. Department of the Interior, 
Fish and Wildlife Service 2004). 
 

The southern Sierra Nevada population of fishers provides a useful study system to 
address questions of sex-biased dispersal and landscape heterogeneity for a number of reasons.  
Sex-biased dispersal has been documented in other fisher populations (Kelly 1977; Powell 1993; 
Aubry et al. 2005) and in related mustelid species (Zalewski et al. 2009; Vangen et al. 2001) and 
so we hypothesized that this is likely a feature of the Sierra Nevada fisher population as well.  
Secondly, the southern Sierra Nevada fisher population occupies a large and diverse landscape 
that has potential for spatial variation across the study area.  A previous study has identified three 
genetic subpopulations within the southern Sierra Nevada (Chapter 3, Tucker et al. In Review) 
that can be used to define groups for replication of landscape genetic analyses (Figure 4-1).  
Thirdly, fisher habitat selection has been well studied within California (Zielinski et al. 2004; 
Davis et al. 2007; Spencer et al. 2011) and there have been a number of other genetic studies 
identifying landscape features influential for gene flow in fishers in other locations throughout 
their range (Carr et al. 2007; Garroway et al. 2008; Garroway et al. 2011; Hapeman et al. 2011) 
providing a diverse suite of candidate variables from which to test hypotheses regarding 
landscape influence on gene flow.    

 
In this study, we used fisher genetic samples from across the southern Sierra Nevada to 

ask the following questions: 1) what landscape features influence genetic connectivity in this 
population, 2) do these landscape features vary by sex due to sex-biased dispersal, and 3) do 
these landscape features vary spatially across the study area?  We investigated these questions 
using a resistance modeling approach in which we selected landscape variables for which we had 
expectations of their relationship with gene flow.  We generated resistance surfaces 
representative of our hypothesized relationships.  For each resistance surface we used circuit 
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theory (McRae 2006) to estimate the resistance distance between individuals.  We then fit 
models of pairwise resistance distance between individuals to pairwise genetic distance using 
multiple regression on distance matrices (MRDM) (Legendre et al. 1994), and used a model 
selection approach to identify the best supported model (Burnham & Anderson 2002).  To test 
our hypotheses that sex-biased dispersal and landscape heterogeneity affect fisher gene flow we 
conducted resistance-modeling analyses separately for both sexes, and in multiple geographic 
areas.  We used the resulting model parameters to create multivariate resistance surfaces by sex 
for the overall study area and for each geographic subset. 
  

Methods 

Study area, sample collection, laboratory analysis, population genetic metrics 
Details regarding the study areas, sampling methods, laboratory analysis and calculation of basic 
population genetic statistics are detailed in Chapters 2 and 3 (Tucker et al. 2012, Tucker et al. In 
Review).  Genetic samples were collected from 2006-2009 in conjunction with the U.S. Forest 
Service Sierra Nevada Carnivore Monitoring Program (Zielinski et al. 2013).  Hair snares were 
deployed at 223 sample units distributed across the fisher range in the southern Sierra Nevada.  
Each sample unit consisted of an array of 6 track-plate boxes with barbed wire hair snares that 
encompassed a 0.8 km2 area.  We also opportunistically deployed hair snares in Sequoia, Kings-
Canyon, and Yosemite National Parks to fill in gaps in the sample distribution as these areas 
were not included in the aforementioned sampling network for the monitoring program.  We 
used 10 microsatellites (Dallas & Piertney 1998; Davis & Strobeck 1998; Duffy et al. 1998; 
Jordan et al. 2007) to genotype 247 spatially referenced fisher samples. The 10 microsatellite 
locus panel averaged of 3.5 alleles/locus with an HE of 0.56 and FIS of 0.10. 
 

Sex-biased dispersal  
We tested our hypothesis of sex-biased dispersal using a series of genetic analyses that test for 
differences between males and females in 2 different genetic metrics: FST and the assignment 
index (AI) (Goudet et al. 2002).  The AI estimates the probability of each individual’s genotype 
originating within its geographic population of capture such that negative values (<0) indicate 
potential dispersers and positive values (>0) indicate resident individuals.  With sex-biased 
dispersal we would expect the dispersing sex, in this case males, to have a lower mean AI and 
higher variance of AI compared to the philopatric sex (Goudet et al. 2002).  For the FST test we 
would expect the philopatric sex to have significantly higher FST values between subpopulations 
than the dispersing sex.  Sex-biased dispersal tests were conducted using Fstat 2.9.3 (Goudet 
2001).  We also estimated FIS by sex for each subpopulation using Genepop 4.2 (Raymond & 
Rousset 1995; Rousset 2008).  The dispersing sex should have a positive FIS caused by a 
Wahlund effect because the dispersers’ genotypes originated in a different subpopulation from 
where they were sampled (Wahlund 1928). 
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 We also further assessed the population structure identified by Tucker et al. (In Review) 
by conducting individual based population assignment analyses for males and females 
independently.  This sex-based population assignment analysis was conducted in R version 
2.15.2 (R Core Team 2012) using the package GENELAND version 4.0.3 (Guillot et al. 2005).   
In GENELAND we conducted analyses using the uncorrelated model implementing the spatial 
uncertainty option which allows for the locations of individuals to vary within a specified 
distance from the sample location and mimic the movement of an individual.  Analyses were 
conducted for 500,000 iterations with burn-in period of 40,000, maximum rate of Poisson 
process was set to 127 (the number of individuals), and the maximum number of nuclei set to 
381 (3 times the number of individuals) as recommended by Guillot et al. (2005).  Spatial 
uncertainty in coordinates was set to 2000 m and K was allowed to vary from 1 to 10.  Each 
model was then replicated 20 times.  Models were ranked by the mean logarithm of posterior 
probability.  We conducted post-process analysis on the top 3 runs of each model to visually 
assess consistency.  We also assessed sex-biased dispersal using a landscape resistance approach 
by analyzing resistance models for males and females separately (details below). 
 

Defining resistance landscapes 
We identified 8 landscape features for which we had a priori hypotheses regarding how they 
may affect gene flow based on a combination of variables found important in previous studies 
for fisher occupancy, home range composition, and gene flow (Table 4-1). There were 6 
landscape features that we hypothesized to be resistant to genetic connectivity including major 
water bodies (rivers and lakes) (Wisely et al. 2004; Garroway et al. 2011), roads (Garroway et 
al. 2011), steep slopes (Jordan 2007), open areas (Powell 1994), moderate or high severity fire 
areas (Scheller et al. 2011), and both very low (<915 m) and very high (> 2440 m) elevations 
(Davis et al. 2007; Spencer et al. 2011).   
  
 We also hypothesized that areas with large trees and high canopy cover would facilitate 
gene flow (Zielinski et al. 2004; Purcell et al. 2009) and included two related variables reflecting 
this hypothesis.  Both of these variables are based on habitat types, tree class sizes, and canopy 
density defined by the California Wildlife Habitat Relationship classification system (Salwasser 
et al. 1980) and included forest types with large trees (>28 cm) and dense canopy cover (>60%).  
The two variables differ in the presence of the Sierra Mixed Conifer habitat class.  The exclusion 
of this habitat class from one variable (dense forest) restricted the elevation range of the forested 
pixels to the core of the occupied fisher range in the Sierra Nevada (1400-2300m) (Spencer et al. 
2011), whereas its inclusion in the second variable (Sierra Mixed Conifer) expanded forested 
areas to margins of the fisher elevation range.  These higher elevations areas may not be optimal 
habitat for fisher occupancy, but we hypothesized that they may play an important role in fisher 
gene flow. 
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Resistance layers were generated using ArcGIS 10 (ESRI 2011) using a pixel size of 
100m.  All variables were coded as resistance surfaces with pixels hypothesized to facilitate gene 
flow assigned a value of 1 and pixels resistant to gene flow assigned a value greater than 1.  As 
map edges have been shown to bias resistance values (Koen et al. 2010) we buffered all fisher 
locations by a minimum of 12 km.  For individuals captured multiple times we assigned the 
individual the coordinates of its initial detection.  The calculation of resistance distances requires 
only one individual be located in pixel, if two individuals occupied the same pixel we moved one 
of them ~100 m in a random direction into a different pixel.  Because our sampling method 
involved baited stations and scent lure that potentially draw animals in from long distances we 
assume this random movement of individuals a short distance will have a negligible effect on our 
results.   

 
We used circuit theory to estimate pairwise resistance distances between all pairs of 

individuals using the software CIRCUITSCAPE (McRae 2006; McRae et al. 2008).  In circuit 
theory connectivity across the landscape is estimated using electrical theory where individuals 
act as nodes connected by resistors which conduct current.  In a landscape resistance model the 
resistor is defined as a habitat type that hypothetically impedes the movement of an organism 
(pixel values > 1).  Circuit theory is an appealing model for ecology as it considers all possible 
paths of connectivity across the landscape, accounts for effects of path size (wider paths will 
have greater conductance) and has a direct relationship with random walks (McRae et al. 2008).  
CIRCUITSCAPE analyses were conducted in a pairwise mode, with individual locations set as 
focal nodes, and each pixel connected to its 8 neighboring pixels.   

 
Because the relationship between a landscape feature and its corresponding resistance 

surface is unknown we tested landscape features as both continuous and categorical variables 
over a wide range of maximum resistance values ranging from 2 to 100 (Table 4-1).  We also 
established a null model representing Euclidean distance between individuals by running a 
CIRCUITSCAPE model with a homogeneous resistance surface, where all pixels were given a 
resistance value of 1.  This null model has been established as the appropriate surrogate for 
geographic distance between individuals for circuit theory analyses instead of pure Euclidean 
distance as it accounts for the edge effect, where pairwise resistance distance increases toward 
the edge of the grid (Koen et al. 2010, Amos et al. 2012).  All references to Euclidean distance in 
the remainder of this document refer to this null model. 

 

Optimizing resistance values 
We calculated genetic distance between each pair of individuals as the proportion of shared 
alleles (Bowcock et al. 1994) using the software package Microsatellite Analyzer (Dieringer & 
Schlotterer 2003).  We then assessed the optimal resistance value for each variable using partial 
mantel tests which measure the association between two dissimilarity matrices while controlling 
for the effect of third matrix (Mantel 1967; Smouse et al. 1986).  There has been criticism of the 
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use of partial mantel tests in landscape genetics (Legendre & Fortin 2010; Guillot & Rousset 
2013), but this criticism has primarily focused on bias in the statistical significance of the tests.  
We used these tests to evaluate relative strength of the relationship between each variable and 
genetic distance while controlling for Euclidean distance.  For each variable we tested a matrix 
of pairwise genetic distance against pairwise resistance distances, partialling out Euclidean 
distance, and repeated this test for the range of maximum resistance values (max resistance = 2 
to 100).  Mantel and partial mantel tests were conducted using the Ecodist package in R (Goslee 
& Urban 2007).  To investigate the potential differences in gene flow between males and females 
we conducted resistance value optimization for males and females both separately and combined.  
Optimum resistance was defined by the asymptote of the curve (rate of change <5%) of the 
partial mantel r against the maximum resistance value, and we visualized this relationship using 
the R package ggplot2 (Wickham 2009).  When the partial mantel values for males and females 
substantially differed we based the optimum resistance value on the sex that had the strongest 
relationship with genetic distance. 
 

Model selection and evaluation 
We used the optimized resistance values to fit linear models of landscape resistance to genetic 
distance, with statistical significance assessed using multiple regression of distance matrices 
(MRDM) (Manly 1986; Legendre et al. 1994).  MRDM is a multiple regression of a response 
distance matrix against two or more environmental variables in which significance testing is 
performed by random permutation of the response distance matrix (Lichstein 2006).  In 
landscape genetics MRDM models the response variable is the genetic distance between 
individuals and the environmental variables are the resistance distance between individuals for 
each landscape feature (i.e.  DISTGENETIC ~ DIST RESISTANCE1 + DISTRESISTANCE2 + … + 
DISTRESISTANCEn).  MRDM is a method that has been found to have high power and low type-1 
error for landscape genetic analyses (Balkenhol et al. 2009).   
 
 To test our hypothesis that landscape features may influence males and females 
separately we fit an identical suite of MRDM models to each of three groups: all individuals, 
males only, and females only.  To test our hypothesis that landscape features important to gene 
flow may vary in different portions of the study area we partitioned the study area based on the 
subpopulation structure identified in Tucker et al. (In Review) into two geographic regions 
consisting of each of the two adjacent subpopulation pairs (North-Central and Central-South) for 
comparison to an analysis using the entire study area (Figure 1).  We chose to subdivide in this 
manner because it excludes the largest pairwise distances from analyses (North-South) which 
were on average more than twice the maximum reported dispersal distance for fisher of ~ 107 
km (York 1996), making it unlikely that an individual directly disperses between the North and 
South groups.  Including these long distance pairs may overestimate the importance of long 
distance landscape connectivity over landscape connectivity within the actual dispersal range of 
the species (Parks et al. 2013).  The combination of partitioning both by sex and by region 
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resulted in 9 separate analyses (all individuals, males, females X all subpopulations, North-
Central region, Central-South region).  We then used a model selection approach to identify the 
landscape resistance model best supported by the genetic data for each of these 9 analyses.    

 
Prior to creating a candidate model set, we assessed variable multicollinearity by 

calculating Pearson’s correlation between all pairs of variables and variance inflation factors 
(VIF) for a global linear model containing all variables.  During this initial assessment we found 
evidence for very high collinearity between many of the landscape variables and between each 
landscape variable and Euclidean distance (Pearson’s correlations>0.95, VIFs>100).  We 
discerned that this collinearity was generated in part because each landscape resistance distance 
matrix from CIRCUITSCAPE includes Euclidean distance such that all variables will be 
collinear to some degree due solely to this repeated inclusion of Euclidean distance. To address 
this problem we subtracted Euclidean distance from the resistance distances for each variable 
prior to fitting MRDM models. After subtracting out Euclidean distance we again calculated 
Pearson’s correlations between all variable pairs.  Any pair of variables with a correlation>0.70 
were excluded from being in the same candidate model (Table 4-S1). 

 
 We created a set of 23 candidate models (4 univariate, 19 multivariate) from our 8 
landscape variables to test our hypotheses of landscape resistance and fisher gene flow shaped by 
3 overarching hypotheses: 1) fisher gene flow is facilitated by mid-elevation dense forest habitat 
strongly associated with fisher occupancy (Spencer et al. 2011), 2) fisher gene flow is facilitated 
by dense forest across a broad elevation range including high elevation dense forest, and 3) fisher 
gene flow is impeded by open areas such as large water bodies, roads, and burned areas (Table 2-
S2).  We also included the null model representing Euclidean distance for comparison to our 
resistance models.  Because the optimum resistance value for each variable differed from 2 to 
100, we standardized all variables using a z-transformation to facilitate comparison of model 
parameter estimates.  Subsequently, we fit MRDM models of pairwise genetic distance and 
candidate models using 10,000 permutations for significance tests.  Models were again assessed 
for multicollinearity and any model which had a variable with a VIF >5 was dropped from the 
candidate model set.   
 

Models were ranked using second order AICc values.  We then examined the top model 
set (∆AIC<7) for uninformative parameters which occur in models that differ from the top model 
by only one parameter but do not improve the maximized log-likelihood.  Given that AIC values 
are calculated as AIC=2k-2ln(L), where K is the number of parameters and L is the maximized 
value of the likelihood function, such models will only differ from the top model by 2 AIC units 
due to the addition a parameter even though they do not add any explanatory power.  Therefore, 
we excluded models from that were similar to the top model except for an additional 
uninformative parameter that did not improve the AIC score by at least 2 (Burnham & Anderson 
2002; Arnold 2010).  We also evaluated the variables within the top model using the 85% 



 

65 
 

confidence intervals (CI) of the parameters as CIs overlapping zero are indicative of a variable 
that is not ecologically important (Arnold 2010).  We reported 85% CIs as they have been shown 
to be more compatible with AIC model selection than the more traditional 90% or 95% CIs 
(Arnold 2010).  All steps of model fitting and model selection were conducted in R (Team 2012; 
R Development Core Team 2012) using the following packages: GenABEL for ztransformations 
(Aulchenko et al. 2007), car for VIF calculation (Fox & Weisberg 2011), ecodist for MRDM 
(Goslee & Urban 2007), and MuMIn for model selection and model averaging (Barton 2013). 
 
 Finally, we further evaluated the relationship for the top models by using the model 
equation derived from MRDM to create a single resistance surface from the component 
parameter estimates using the Spatial Analyst extension of ArcGIS 10 (ESRI 2011).  We used 
the resulting resistance surfaces as input in CIRCUITSCAPE to calculate landscape resistance 
distances between all pairs of individuals.  We used partial Mantel tests to assess the correlation 
between the resulting matrices of pairwise resistance distances and genetic distances. 
 

Results 
As detailed in Chapters 2 and 3 (Tucker et al. 2012; Tucker et al. In Review), we genotyped 127 
individuals at 10 microsatellite loci including 72 males, 48 females, and 7 individuals for which 
we were not able to conclusively assign sex. Sample sizes by subpopulations identified in 
Chapter 3 (Tucker et al. In Review) were as follows:  North n= 44 (16 females, 24 males, 4 
unknown sex), Central n=32 (12 females, 19 males, 1 unknown sex), and South n=51 (20 
females, 29 males, and 2 unknown sex). 
 

Sex-biased dispersal  
Tests for sex-biased dispersal yielded mixed results but suggested that males disperse more than 
females. We found FST among the three subpopulations for males to be significantly lower than 
the FST values for females (Table 4-2). Within subpopulations pairs (North/Central or 
Central/South), the FST test was highly significant in the North/Central pair (FST (fem) = 0.17: 
FST (male) = 0.06, p = 0.004) and non-significant in the Central/South pair (FST (fem) = 0.07: FST 

(male) = 0.05, p = 0.18).  We also found a tendency for an excess of homozygotes within 
subpopulations for males (FIS > 0), but not for females, as is expected if males disperse more 
than females (FIS North:  Male = 0.053, Female = 0.006; FIS Central:  Male = 0.043, Female = -
0.005; FIS South:  Male = 0.043, Female = 0.033).  However, none of the FIS values were 
statistically significant from zero with all p values > 0.05. 
 
 All assignment index tests for differences between the mean and variance AI for males 
versus females were non-significant (Table 4-2).  The values of the mean and variance in AI 
were consistent with male-biased dispersal when testing between just the North and Central 
subpopulations (mean AI > 0 and low variance = philopatric sex; mean AI<0, higher variance= 
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dispersing sex) but had had values in the opposite directions in the Central/South subpopulations 
and for all 3 subpopulations combined.   
  

Assignment in GENELAND found K=3 for both males and females with similar 
boundaries between each of the three subpopulations.  However, females assigned more strongly 
in these subpopulations than males (mean probability of assignment: female=0.98 (sd=0.04), 
male=0.87 (sd=0.09), with a higher FST value between subpopulations for females than for males 
(Table 4-3). 
 

Optimizing resistance surfaces 
We found that partial mantel correlations of genetic distance and resistance distance were 
considerably different for males and females for the majority of variables (Figure 4-2).  When 
analyzing the sexes together partial Mantel correlations generally were an intermediate value 
between the values for each sex, with the partial Myantel r associating more closely with the 
partial Mantel r for males that had the larger sample size of the two sexes.  Optimum resistance 
values varied considerably for different variables ranging from 2 (openings, fire) to 100 (dense 
forest) (Table1). 
 

Model selection and evaluation 
Model selection varied substantially between sexes and between geographic regions, in terms of 
the variables included in the top models, the magnitude and direction of parameter estimates, and 
model fit (Table 4-4).  Across all subpopulations, the top models for females showed positive 
relationships between genetic distance and resistance distances for water (βwater=0.21), roads 
(βroads=0.16), and dense forest (βdforest=0.13). Both water and roads were defined as features 
resistant to gene flow therefore, the positive relationship observed between genetic distance and 
these features indicates that for females both large water bodies and roads impede gene flow. 
Conversely, the landscape feature of dense forest was defined as conductive to gene flow and as 
such the positive association between dense forest and genetic distance indicates that dense 
forest facilitates gene flow.   
 
 The top model for males included positive relationships with Sierra Mixed Conifer 
(SMC) forest (βSMC=0.30), and slope (βslope = 0.08) and a negative relationship with water (βwater= 
-0.11).  Sierra Mixed Conifer forest was defined as conductive to gene flow, and slope as 
resistant to gene flow so the positive relationship with these variables indicated that for males 
Sierra Mixed Conifer forest facilitate gene flow while steep slopes impede it.  Water was the 
only variable in common in the top models for males and females, but the direction of the 
relationship with genetic distance was opposite in the two sexes such that for males water bodies 
do not impede gene flow. 
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When both sexes were combined the top model for all subpopulations was similar to the 
top model for males.  As previously noted this is likely due to the larger sample size for males in 
our dataset.  For individuals across all subpopulations a single top model was clearly selected 
(model weight=1.00) but this model had a poorer model fit and the resulting resistance surface 
had a much lower partial Mantel correlation with genetic distance than the resistance surfaces for 
either males or females. (rpm (all)=0.05, rpm (females)=0.24, rpm (males)=0.14 ). 

 
Partitioning individuals geographically revealed that not only did top models vary by sex, 

but also between regions (Table 4-4).  The top model for females in the North-Central 
subpopulations showed that gene flow in this region was most strongly influenced by water 
(βwater = 0.34) and the variable for roads was not included in the top model for this region.  The 
top model in the Central-South showed roads having a strong association with genetic distance 
(βroads=0.31) and water having a smaller effect than in the North-Central region (βwater=0.11).   
Additionally, the variables of slope (βslope=0.15), and fire (βfire=0.10) were found in the top 
model for males in the North-Central region but not in the Central-South. 

 
Females had better model fit than males alone or both sexes combined across all 

geographic groups, with females in the North-Central region having the best model fit and 
highest partial Mantel correlation with the resulting resistance surface of any sex or region (R2 = 
0.25, rpm = 0.33).  When sexes were combined the top models in both regions were a mix of 
variables from the male and female models and had relatively poor model fit compared to 
females alone.  Notably, the top model for all individuals in the North-Central region included a 
negative parameter estimate for water despite the strong positive association found for females in 
this region.  Top models for all sexes and regions were statistically significant at p < 0.01. 

 

Discussion 
Landscape genetics research has evaluated a variety of factors that can affect the identification of 
landscape features responsible for gene flow including evaluation of spatial scale and thematic 
resolution (Cushman & Landguth 2010), timescale (Landguth et al. 2010b), and migration rate 
(Landguth et al. 2010b).  While other genetic studies have examined at the strength of 
correlation with landscape features for males and females independently (Coulon et al. 2005), to 
our knowledge no study has explicitly considered in an individually based landscape genetics 
framework how landscape features that influence dispersal may differ by sex.  The study of sex-
biased dispersal is complex and draws inferences from many diverse fields including 
evolutionary theory, animal behavior, and demography (Lawson, Handley & Perrin 2007) and 
this study demonstrates that landscape genetics provides another avenue by which we can add to 
our understanding of this important aspect of a species life history.   

 
Our results show that both sex-biased dispersal and spatial landscape heterogeneity can 

considerably affect determination of the landscape features associated with gene flow.  By 



 

68 
 

conducting resistance modeling for each sex independently we found that different landscape 
features influence gene flow for each sex.  Our results also show that for a species characterized 
by sex-biased dispersal, conducting analyses with sexes combined can produce misleading 
results in which important landscape variables are either not detected or are detected as having 
the incorrect relationship with genetic distance resulting in a model that has poor fit with the 
genetic data.  This finding has considerable potential implications for research and conservation 
in that failing to account for sex-biased dispersal in landscape genetics analyses may result in 
omitting or mis-identifying the landscape features important for genetic connectivity. 

 
We also found that when our analysis was conducted with both sexes combined that 1) 

the sex with the larger representation in the sample dominated the results such that landscape 
features influential for the sex with a smaller sample size are not detected, and 2) if a landscape 
feature had an opposing relationship between the sexes (one sex has a positive relationship and 
the other a negative relationship) then the variable is either not included in the top model, or if it 
is included, then the parameter estimate is often an intermediate value between that of the two 
sexes weighted toward the sex with a larger sample size.  We acknowledge that the sample sizes 
used in this study are small, which has been show to decrease the power to correctly identify 
landscape relationships in some types of landscape genetics analyses (Landguth et al. 2012).  
However, this issue has never been directly addressed using a MRDM and model selection 
approach.  The sample sizes used in this study are similar to the within population sample sizes 
of other landscape genetic analyses using MRDM that detected strong relationships between 
genetic distance and landscape features (Garroway et al. 2011; Trumbo et al. 2013). 

 
 We also found that different landscape features in different geographic regions affect 
gene flow.  Similar to our results for sex-biased dispersal, landscape variables detected as 
important when analyzing the entire study area differed from those detected in each geographic 
region.  These differences were most pronounced when analyzing data with the sexes combined.  
When males and females were analyzed separately the top models for the entire study area 
compared with regional subsets were relatively congruous in terms of the variables included in 
the model.  However, parameter estimates varied considerably by region, and as a result the 
parameter estimates for the overall population tended to be an average of the two regional values.  
This resulted lower model fit for the overall population compared to the regional models.  Our 
results concur with other studies that have found spatial heterogeneity in landscape genetic 
relationships, and we echo the warning that it may not be appropriate to apply landscape genetic 
findings from a specific area to other populations within a species (Short Bull et al. 2011; 
Trumbo et al. 2013). 
 

Sex-biased dispersal 
There are some inherent difficulties in detecting sex-biased dispersal using bi-parentally 
inherited markers.  In a population with non-overlapping generations, these markers can detect 
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the signal of sex-biased dispersal only after dispersal but before production of a new generation 
of offspring.  This is because all offspring inherit half their genes each from their mother and 
father.  Consequently, if sex-bias dispersal ceases the genetic signal dissipates after one 
generation (Prugnolle & de Meeus 2002; Goudet et al. 2002).  The presence of overlapping 
generations, which is more realistic of wild populations, will extend the lifespan of the genetic 
signal of sex-biased dispersal to some extent as mothers and daughters cluster geographically 
while male offspring disperse farther from their natal area, but the sex-biased signal still 
dissipates over time.  The statistical power to detect a sex bias using nuclear DNA also depends 
on the rate of dispersal such that if there are many dispersers the genotypes of both sexes may 
become homogenous, while if dispersers are very rare than their genotypes may not have enough 
an effect on overall genetic variation to be detectable.  Thus, the power to detect sex-biased 
dispersal may be limited in certain populations (Goudet et al. 2002).  Comparisons between 
markers with different inheritance patterns (mtDNA and nuclear DNA) can provide valuable 
insight into sex-biased dispersal over longer time frames but these methods were not useful in 
our study as the southern Sierra Nevada fisher population is fixed for a single mtDNA haplotype, 
even based on analyses of the entire mitochondrial genome (Drew et al. 2003; Knaus et al. 
2011). 
 
 Our tests for sex-biased dispersal yielded mixed results, but suggest that males disperse 
more than females.  We found a significant difference in the FST between subpopulations for 
males and females, FIS > 0 for males but not for females, but no significant difference in the 
mean or variance of AI.  Such mixed results have been reported in other studies of species that 
otherwise have strong evidence for sex-biased dispersal (Helfer et al. 2012).  Simulation studies 
by Goudet et al. (2002) found for species with moderate to high dispersal rates (>10%) the FST 
test is the most powerful and least sensitive to changes in sampling scheme and magnitude of 
sex-bias.  Thus, our finding of a significant result only in the FST test is indicative of sex-biased 
dispersal with moderate to high dispersal rates for males.  Notably while the FST test was 
significant for the entire population, regionally it was only significant for the North-Central 
groups and not for the Central-South.  This is likely being driven by higher overall gene flow 
between the Central and South groups as evidenced by the much lower FST value for both males 
and females compared with the North–Central FST values.  When there are high rates of 
dispersal, populations are less differentiated and dispersers are more difficult to detect resulting 
in a reduction in statistical power of the tests (Goudet et al. 2002).  However, while the 
difference was not statistically significant the FST of females in the Central-South is higher than 
that of males, and is consistent with the expectation for FST and female philopatry.  The results of 
our population assignment analyses in GENELAND are also consistent with sex-biased 
dispersal, with females assigning more strongly than males to all three subpopulations. 
 

The tests for sex biased dispersal discussed above (Goudet et al. 2002) are population 
based and therefore, only reflect dispersal between subpopulations.  However, it is important to 
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note that the MRDM resistance modeling approach we employed is individually based.  
Therefore, the results of MRDM models fitting pairwise genetic distance to resistance distances 
between all individuals, reflects dispersal movements both within and between subpopulations.  
Using a population based approach one individual dispersing between subpopulations may only 
have a small effect on FST, but this one disperser will affect the pairwise values for genetic and 
resistance distances to all other individuals both within and between subpopulations.  For 
example if only 8 of 72 of male fisher in the southern Sierra Nevada disperse between 
subpopulations (~11% male dispersal), this will affect 284 pairwise distances between 
individuals.  This distinction has important implications in the determination of how landscape 
features influence gene flow.  Population based analyses will reflect the influence of landscape 
features between subpopulations, whereas individual based analyses reflect the influence of 
features across the entire landscape, both within and between subpopulations. 
 

Landscape features influencing gene flow 
Our results indicate that analyses conducted for males and females independently are more 
biologically relevant to a discussion of the landscape genetics of fisher in the southern Sierra 
Nevada.  We reached this conclusions based on: 1) the observed differences between sexes in the 
partial mantel correlations using individual variables during optimization of resistances surfaces, 
2) the considerable differences between sexes in the variables and parameters estimates of the 
top models, and 3) the large improvement in model fit when analyzing data by sex as compared 
to all individuals combined. 
  

For females the variables of water and dense forest were consistently detected in all three 
geographic groups, with roads present in the top model of two of the three geographic groups.  
The inclusion of dense forest (>60% canopy cover) in all top models is consistent with home 
range characteristics for fishers in the Sierra Nevada (Zielinski et al. 2004; Purcell et al. 2009) 
and throughout their range (Schwartz et al. Accepted; Aubry et al. In Review).  The strength of 
the relationship varied regionally with water showing the strongest fit to genetic data between 
individuals in the North-Central group.  This is likely attributable to the Kings River Canyon, 
which has long been hypothesized to limit fisher gene flow (Wisely et al. 2004; Jordan 2007).  
Within the study area the Kings River canyon reaches a maximum depth of 8,200 feet (2,500 
meters) from the Kings River to the summit of the adjacent mountains, so it is unsurprising that 
such a major landscape feature impedes gene flow.  The strong relationship with water and 
genetic distance in this region may also be attributable to the San Joaquin River which has been 
hydrologically altered by a series of dams, including the large Mammoth Pool Dam and reservoir 
which bisects the North subpopulation.   

 
In the Central-South region we found roads had the strongest relationship to genetic 

distance, with water still present in the top model but not statistically significant.  This strong 
relationship between genetic distance and roads in this region was unexpected as the density of 
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roads and intensity of road use seems comparable across regions.  The most heavily used roads 
within the Central-South road system are located within and adjacent to Sequoia and Kings 
Canyon National Parks in the Central group, while in the South group highway 190 bisects fisher 
habitat on the Sequoia National Forest.  However, all of these roads are primarily 2 lane 
mountain roads running through otherwise contiguous forested habitat, and we did not expect to 
find such a strong effect on gene flow. We are unable to discern from this analysis if all or just a 
portion of these roads is responsible for the observed relationship. 
 
 We found an entirely different suite of variables in the top models of males.  Water was 
detected in all three top models but had a consistently negative relationship with genetic distance 
indicating that water bodies do not act as a feature resistant to gene flow but rather facilitate gene 
flow for males.  Considering the aforementioned magnitude of the Kings River Canyon it is 
surprising that this feature does not appear to create any impediment to dispersal in males.  
However, resistance due to steep slopes and burned areas were included in the model for the 
North Central group.  In this region steep slopes and fire scars as are generally associated with 
river canyons and so may be an alternate reflection of the effect of these features on gene flow.   
 

The variable for Sierra Mixed Conifer forest was also present in all male top models 
instead of dense forest variable found important in females.  The difference between males and 
females for this single WHR class is a particularly intriguing difference between the sexes.  The 
Sierra Mixed Conifer variable encompasses a higher elevational range than the tree classes that 
comprise the dense forest variable (maximum elevation Sierra Mixed Confier = 2602m (8536 ft), 
maximum elevation dense forest = 2223 m (7293 ft).  The Sierra mixed conifer variable also 
covers a much larger geographic area covering an additional 171,849 pixels in the landscape 
over the dense forest layer.  We speculate that this indicates that females gene flow is 
characterized by dispersal among high quality habitat in the core elevation range for fisher 
occupancy in the Sierra (~1400 - 2300 m elevation) (Spencer et al. 2011), while males disperse 
more widely and therefore, strongly associate with a more widespread landcover type.  However, 
it is important to emphasize that model fit for males was markedly lower for all geographic 
groups than for females.  This indicates that landscape features overall have much less influence 
on gene flow for males compared to females.  The poor model fit and low partial mantel 
correlations of the final resistance surfaces implies that for males these landscape create only 
minor resistance to gene flow. 
 

Our results have important implications specifically for fisher conservation and 
management within the Sierra Nevada and broadly for landscape genetic analyses for any 
population characterized by sex-biased dispersal or spatial heterogeneity in landscape features.  
For the Sierra Nevada fisher population our results have repercussions for assessing the potential 
future expansion of fishers beyond the current geographic extent in the southern Sierra Nevada.  
This population is currently limited south of the Merced River in Yosemite National Park.  



 

72 
 

However, habitat models for this population have indicated that there is suitable but unoccupied 
habitat north of the Merced River (Davis et al. 2007; Spencer et al. 2011) and incidental 
sightings of fishers north of the Merced River indicate that this feature is not a complete barrier 
to movement (Chow 2009).  Our findings indicate that female dispersal may limit population 
expansion north of its current extent.  The northern boundary of the current population aligns 
with two features shown to strongly impede female fisher flow; the Merced River canyon and the 
heavily traveled roads associated with Yosemite National Park which averages 3.7 million 
visitors per year (National Park Service 2012).  If expanding the population north of the Merced 
River is deemed critical to maintain the long-term viability of this population, as is currently 
being discussed, then it may be necessary to facilitate this by translocating females across the 
Merced River to establish a population and maintain genetic connectivity with the rest of the 
fisher population or by mitigating the highway with crossing structures. 
 

Conclusions 
This study demonstrates that for species with sex-biased dispersal the influence of landscape 
features on gene flow may be very different for males and females.  Because of this difference 
conducting landscape genetic analysis separately for each sex allows for the identification of 
landscape genetics relationships not discernible when the sexes are analyzed together.  This 
result has potential implications for the conservation of genetic connectivity and long-term 
population persistence for any species that exhibits sex-biased dispersal.  Our results indicate that 
management actions with the goal of conserving or enhancing population connectivity need to 
consider that males and females may each have a different suite of habitat features important for 
connectivity.  For species with male-biased dispersal, population expansion is likely mediated by 
the female’s ability to disperse to new habitat areas.  Consequently, identifying and conserving 
landscape features important for female dispersal may be more important than conservation of 
landscapes for males that disperse more widely. 
 

Our results suggest that careful consideration of the potential for sex-biased dispersal as 
well as spatial heterogeneity in a landscape must be undertaken prior to conducting landscape 
genetic analyses as these factors can strongly influence results.  In fact failing to account for sex-
biased dispersal in landscape genetic analyses can confound results and obscure the relationship 
between landscape features and gene flow.  For populations in which such factors are either 
known or suspected we recommend conducting analyses separately for males and females and 
spatially replicating analyses over multiple geographic areas to assess how these factors affect 
results.  While this study has empirically demonstrated how sex-biased dispersal can affect  
landscape genetic results more work is needed to identify under what specific conditions sex-
biased dispersal will influences these type of analyses (i.e. dispersal rate, magnitude of sex-bias). 
Given the complexities of assessing dispersal with field data we feel that genetic simulations are 
likely the best tool to begin to better define this issue. 
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Table 4-1.  Description of landscape variables hypothesized to influence fisher gene flow. 
 
Feature Description Obtained at: Continuous Categorical Optimum resistance 
Water major lakes (>35 ha) and rivers (including 

all forks) are resistant to gene flow 
atlas.co.gov/downlo
ad.html#/casil/inla
ndWaters 

density (per 
1km moving 
window) 

water / non-water categorical 
resistance=25 

Roads primary and secondary roads are resistant 
to gene flow 

http://geo.data.gov
/geoportal/catalog/
main/home.page 

density (per 
1km moving 
window) 

road/non-road categorical 
resistance =5 

Slope steep slopes are resistant to gene flow calculated from 
elevation using 
ArcGIS 10, Spatial 
Analyst extension 

raw slope 
values (percent) 

slopes>threshold = 
resistance 
Test 4 thresholds: 
50, 60, 70, 80% slope 
 

categorical:  
70% slope 
resistance=25 

Elevation latitude adjusted elevation: mid elevations 
facilitate gene flow while low and high 
elevations are resistant to gene flow. 

Conservation 
Biology Institute 
http://consbio.org/ 

inverted 
Gaussian 
function of raw 
values (low 
resistance at 
mid elevations) 

4 categories: 
500-999 ft  = high 
1000-2000 ft =moderate 
2000-3000 ft =low 
>8000 ft =low 
3000-8000 ft= 1 

categorical 
500-999 ft  = 20 
1000-2000 ft =15 
2000-3000 ft =10 
>8000 ft =10 
3000-8000 ft= 1 

Dense 
forest 

dense forest facilitates gene flow and non-
forested areas are resistant to gene flow. 
CAWHR Density ‘D’=60% canopy cover; 
WHR Size=4&5, WHR Type=Doug Fir, 
White Fir, Ponderosa Pine, Jeffery Pine, 
Eastside Pine, Montane Hardwood Conifer 

selected from 
existing vegetation 
(eveg) layer 
(Conservation 
Biology Institute) 

percent of 
forest within a 
500 x 500m 
neighborhood 

dense forest/not dense 
forest 

categorical 
resistance=100 
 

Sierra 
Mixed 
Conifer 

same as for dense forest with the addition 
of the Sierra Mixed Conifer habitat type. 

Conservation 
Biology Institute 

% forest type 
within a 500 x 
500m 
neighborhood 

dense forest/not dense 
forest 

categorical 
resistance=10 
 

Fire areas recently burned in moderate to high 
severity fires (1984-2005) are resistant to 
gene flow 

U.S. Forest Service: 
www.fs.usda.gov/de
tail/r5/landmanage
ment/gis 

N/A burned/non-burned categorical 
resistance=2 

Openings proportion of 1km neighborhood consisting 
of non-forested cells (all WHR shrub 
classes, grassland classes, sagebrush, and 
barren) 

Conservation 
Biology Institute 
existing vegetation 
(eveg) layer  

percent of a 1 
km radius 
neighborhood 

>50% of neighborhood 
open= resistance  
<50% open= no 
resistance 

categorical 
resistance=2 
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Table 4-2.  Tests for sex-biased dispersal between males and females for FST and the mean and 
variance of the Assignment Index (AI) with individuals are assigned to one of three genetic 
subpopulations.   

 FST Mean AI Var AI 
North/Central/South    

Female 0.133 -0.036 5.881 
Male 0.083 0.023 4.925 
p value 0.032* 0.553 0.650 

North/Central    
Female 0.170 0.217 3.944 
Male 0.055 -0.136 4.856 
p value 0.004* 0.275 0.592 

Central/South    
Female 0.072 -0.181 6.838 
Male 0.048 0.117 4.104 
p value 0.175 0.689 0.866 

 
 
 
 

Table 4-3.  FST values calculated based on subpopulation assignment in GENELAND conducted 
separately for males and females.  FST values for females are above the diagonal and males 
below the diagonal.  All FST values in this table are significant at p<0.01. 

North Central South 
North 0 0.173 0.155 

Central 0.059 0 0.069 
South 0.132 0.051 0 
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Table 4-4.  Variables and parameter (β) estimates for the top model for each sex and geographic group.  wi = model weight, R2=fit of 
MRDM model, rpm=partial mantel of overall resistance surface. 

All Populations        
All (n=127)  Female (n=48)  Male (n=72) 

 β 85% CI p   β 85% CI p   β 85% CI p 
water -0.07 (-0.09, -0.06) 0.09  water 0.21 (0.15,0.28) 0.02  water -0.11 (-0.14, -0.08) 0.10 
SierraMC 0.27 (0.25, 0.28) <0.01  roads 0.16 (0.12, 0.20) 0.12  SierraMC 0.30 (0.27, 0.32) <0.01
slope 0.09 (0.07, 0.10) 0.07  dense forest 0.13 (0.07, 0.19) 0.16  slope 0.08 (0.05, 0.11) 0.22 

wi =1.00 R2=0.10 rpm=0.05   wi =0.97 R2=0.15 rpm=0.24   wi =1.00 R2=0.11 rpm=0.14  
 
North & Central Subpopulations        

All (n=76)  Female (n=28)  Male (n=43) 
 β 85% CI p   β 85% CI p   β 85% CI p 
water -0.09 (-0.12, -0.06) 0.19  water 0.34 (0.24, 0.43) <0.01  water -0.16 (-0.22, -0.10) 0.14
dense forest 0.21 (0.18, 0.24) 0.13  dense forest 0.20 (0.11, 0.29) 0.114  SierraMC 0.20 (0.14, 0.26) 0.05
slope 0.11 (0.08, 0.14) <0.01       slope 0.15 (0.10, 0.20) 0.07
fire 0.13 (0.11, 0.16) <0.01       fire 0.10 (0.05, 0.15) 0.07

wi =0.99 R2=0.10 rpm=0.11   wi =0.94 R2=0.25 rpm=0.33   wi =0.59 R2=0.06 rpm=0.16  
 
Central & South Subpopulations        

All (n=83)  Female (n=32)  Male (n=48) 
 β 85% CI p   β 85% CI p   β 85% CI p 
roads 0.19 (0.16, 0.21) <0.01  water 0.11 (0.03, 0.19) 0.31  water -0.10 (-0.14, -0.05) 0.271 
SierraMC 0.19 (0.17, 0.21) <0.01  roads 0.31 (0.24, 0.37) <0.01  SierraMC 0.22 (0.18, 0.27) <0.01
     dense forest 0.16 (0.09, 0.24) 0.131      

wi =0.92 R2=0.05 rpm=0.16   wi =0.68 R2=0.148 rpm=0.33   wi =0.92 R2=0.05 rpm=0.08  
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Figure 4-1.  Locations of individual fishers by sex (male=blue, female=white) and their 
assignment to three genetic subpopulations (North=triangle, Central=circle, South=square)
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Figure 4-2.  Plots of the partial Mantel correlation against a range of maximum resistance values 
(2-100) for all individuals and for each sex independently.    
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Supplemental Tables 
 
Table 4-S1:  Pearson’s correlations between resistance variables.  SMC = Sierra Mixed Conifer habitat type. 

 Water Roads Slope Elevation 
SMC 
Forest 

Dense 
Forest Fire Openings 

Water 1 
Roads -0.01 1 
Slope 0.15 -0.01 1 

Elevation 0.07 0.01 0.27 1 
SMC Forest 0.20 0.00 0.40 0.77 1 
Dense Forest 0.13 -0.01 0.47 0.65 0.90 1 

Fire -0.03 -0.03 0.01 0.37 0.37 0.27 1 
Openings 0.11 0.02 0.41 0.64 0.87 0.87 0.31 1 
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Table 4-S2.  Candidate model set representing hypotheses of the influence of landscape features 
on fisher gene flow. The dependent variable for all models is the genetic distance between 
individuals.  All models were fit using multiple regression of distance matrices (MRDM). 

Candidate Models 

Null 
GENETICDIST ~EUCLIDEAN DISTANCE 
 
Barrier 
GENETICDIST ~WATER 
GENETICDIST ~ROADS 
GENETICDIST ~WATER + ROADS 
GENETICDIST ~WATER + ROADS + SLOPE 
GENETICDIST ~OPENINGS + SLOPE 
GENETICDIST ~OPENINGS + FIRE 
GENETICDIST ~OPENINGS + FIRE + WATER 
 
Dense Forest (DFOR) 
GENETICDIST ~DFOR  
GENETICDIST ~DFOR + WATER 
GENETICDIST ~DFOR + ROADS 
GENETICDIST ~DFOR + SLOPE 
 
Sierra Mixed Conifer (SMC) 
GENETICDIST ~SMC 
GENETICDIST ~SMC + SLOPE 
GENETICDIST ~SMC + FIRE 
GENETICDIST ~SMC + WATER 
GENETICDIST ~SMC + ROADS 
 
Global   
GENETICDIST ~DFOR + WATER + ROADS 
GENETICDIST ~DFOR + WATER + ROADS + SLOPE  
GENETICDIST ~DFOR + WATER + SLOPE + 
ELEVATION 
GENETICDIST ~DFOR + WATER + SLOPE + FIRE 
GENETICDIST ~DFOR + ROADS + ELEVATION 
GENETICDIST ~SMC + WATER + SLOPE 
GENETICDIST ~SMC + WATER + SLOPE + FIRE 
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CHAPTER 5:  Using spatially explicit power analyses to determine factors influencing the 
power to detect trend for the southern Sierra Nevada fisher population 

 
Abstract 
 
Determining whether a population is increasing, decreasing, or stable over time (population 
trend) is a fundamental component of species listing decisions and recovery plans.  We used a 
spatially explicit simulation approach that accounts for natural history, habitat use, and sampling 
scheme to investigate the factors that influence statistical power to detect population trends in 
occupancy.  We simulated a declining population of fisher (Pekania pennanti) and recreated the 
sampling scheme of the Sierra Nevada Carnivore monitoring program varying the magnitude of 
the population decline (20% and 50%), starting population size (N=300, N=150), size of the 
effective sampling area (1, 5, 10, 25 km2), sampling frequency (annual vs biennial), and the type 
I error rate.  We illustrate the link between abundance and occupancy, showing that a 43% 
decline in abundance over an 8-year period only resulted in a 23% decline in occupancy, with a 
20% decline in abundance resulting in a 6% decline in occupancy. This indicates that most 
sampling schemes may only be able to detect large magnitude declines in abundance using 
occupancy modeling.  We found that given an average annual sample size of 140, over an 8 year 
sampling period this sample size had a 64% power to detect a 20% decline in occupancy with 
20% statistical certainty.  Concentrating resources and sampling a larger number of sites 
biennially instead of a smaller number annually decreases the standard error of the occupancy 
estimates and results in an increase in statistical power.  Our results show that increasing the 
effective sampling area, implementing biennial instead of annual sampling, and increasing the 
type I error rate all increase statistical power to detect trend.   
 

Introduction 
One of the most fundamental questions for the conservation of a species is “what is the status of 
the species”?  The answer to this question is a critical component of the listing and recovery of 
threatened and endangered species.  Yet, this seemingly basic question of whether a population is 
increasing, decreasing, or stable can be very difficult to answer.  Obtaining accurate estimates 
population abundance, especially for rare species distributed across large landscapes, is 
logistically difficult and expensive (Karanth & Nichols 1998; Kendall et al. 2008).  
Consequently, repeating such studies over long time periods (i.e. population monitoring) in order 
to estimate a trend in population abundance is often cost prohibitive.  Estimating trend using 

occupancy (), the proportion of an area occupied by a species, has emerged as a more cost 
effective alternative to estimating trends in abundance for many population monitoring programs 
(MacKenzie & Nichols 2004; MacKenzie et al. 2006).    
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The underlying assumption in monitoring for population trend using occupancy is there is 
a positive relationship between the two such that a change in occupancy is indicative of a change 
in population size (MacKenzie & Nichols 2004).  This positive relationship has been well 
documented, but the shape and strength of the relationship will vary depending on the specific 
characteristics of the species or population such as the density or spatial aggregation of 
individuals (Hartley 1998; Gaston et al. 2000).  Therefore, in some populations a large change in 
abundance may have a negligible impact on occupancy while in other populations a relatively 
small change in abundance may result in a substantial change in occupancy.  A difficulty in 
monitoring occupancy as a surrogate for abundance is that for most populations the nature of this 
relationship is unknown. 

 
Power analyses are an essential element of population monitoring programs.  The goal of 

a power analysis is to establish the ability of any given sampling strategy to detect a change in a 
population metric and help researchers determine the sample size needed to detect this trend with 
an acceptable level of statistical confidence.  While a number of site specific factors may affect 
power, it is well established that, in general, statistical power is dependent on: 1) effect size 
(magnitude of change in a population metric), 2) the variance in population metrics, and 3) 
sample size (Steidl et al. 1997).  Estimating these terms can be very difficult, especially when 
using a surrogate measure such as occupancy and may depend on many population specific 
variables, such as landscape characteristics, movement rates, and territoriality behavior.  
Furthermore, power analyses are complicated by the balance of type I versus type II error rates 
(Mapstone 1995).  Type I error rates determine the probability that a method identifies a trend 
where none really exists, which we refer to as statistical certainty or significance.  Type II error 
rates determine the statistical power of a method to identify a trend that does exist.  Thus, power 
represents the percent of times a method identifies a trend under a given significance threshold 
when a trend exists.  It is the job of the scientist or wildlife manager to weigh the importance of 
these interrelated components for their particular population in developing a monitoring strategy.   

 
In 2002 the U.S. Forest Service initiated a long-term monitoring program to determine 

the population status and trend of fisher fisher (Pekania pennanti [Kopefli et al. 2008, Sato et al. 
2012], formerly Martes pennanti [Erxleben 1777]) in the southern Sierra Nevada of California 
(Zielinski & Mori 2001; Zielinski et al. 2013).  There are acute conservation concerns for this 
population due to its small population size (Spencer et al. 2011) and complete geographic and 
genetic isolation (Knaus et al. 2011; Tucker et al. 2012) It is currently a candidate for listing as a 
distinct population segment under the Endangered Species Act (U.S. Department of the Interior, 
Fish and Wildlife Service 2004).  The need for a monitoring program was precipitated by a 
major amendment to the National Forest Plans in the Sierra Nevada in 2001 that included new 
prescriptions for forest management designed to address the risk of high severity fires and as 
well as mandates to monitor the impacts of these proposed treatments on wildlife populations 
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(U.S. Department of Agriculture 2001; U.S. Department of Agriculture 2004; Zielinski et al. 
2013).   

 
Prior to implementing this monitoring program a power analysis determined a sample 

size of 288 units/year, for 10 years, was needed to detect a 20% decline in occupancy (1-sided 
alternative hypothesis) with a type I error rate of 20% and 80% power (Zielinski & Mori 2001).  
However, implementation of the monitoring program revealed that this annual target sample size 
was unattainable given logistical and financial constraints.  After eliminating dangerous and 
extremely remote sites, the monitoring program was reduced to a core set of 223 sample units.  
An analysis of the first 8 years of data from this monitoring program (2002-2009), in which an 
average of 139.5 units were sampled per year, found no trend or statistically significant 
variations in occupancy and concluded that the southern Sierra fisher was not decreasing 
(Zielinski et al. 2013).  However, the power to determine trend in occupancy was not formally 
revisited despite the reduced sample size compared to the targeted sample size (~140/year vs. 
288/year). 

 
In this analysis we use a spatially based simulation approach that accounts for the specific 

natural history and habitat characteristics of the Sierra Nevada fisher population, to model a 
declining population (Ellis et al. In Review).  We then mimicked the sampling regime of the 
actual fisher monitoring program over 8 years to 1) investigate the relationship between 
occupancy and abundance and 2) reassess the power of the monitoring program to detect trend in 
occupancy, and 3) determine how power is affected by variations in sample design and statistical 
confidence. We chose to conduct our simulations over an 8 year period to facilitate comparison 
to the work of Zielinski et al. (2013). 
 

Methods 

Fisher monitoring program: study area and methods 
The study area is defined as the west slope of the Sierra Nevada from Yosemite National Park 
south to the end of the Sierra Nevada at Lake Isabella. The majority of sampling (92%) occurred 
on National Forest lands.  Sampling units for the fisher monitoring program are collocated with 
the Forest Inventory and Analysis (FIA) sampling grid (Bechtold & Patterson 2005).  The FIA 
grid is composed of hexagonal grid cells 24.28 km2 in size, with the centers of each grid cell 5.3 
km apart.  FIA vegetation sampling points are randomly located within each of these grid cells, 
and the center point of each fisher sampling unit is off-set 100 m from a FIA point. To establish 
potential sample units for the fisher monitoring program, FIA points in habitats known to be 
unsuitable or outside the possible elevation range (below 800m, above 3200m) of fisher were 
eliminated, resulting in 388 potential sampling units.  

 
Sample units consisted of an array of six track-plate stations deployed in a pentagonal 

arrangement (one center station surrounded by five perimeter stations) that encompasses a 0.8 
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km2 area (Figure 5-1).  The use of bait (chicken) and a commercial trapping lure increases the 
effective survey area by an unknown distance (Schlexer 2008).  Positive identification of fisher 
from track data has been well established (Zielinski & Truex 1995).  Each PSU is deployed for 
10 days and checked every 2 days during this period.  When stations are checked all tracks and 
hair samples are collected and track plates, hair snares, and bait are replaced so that each check 
acts as discrete capture session.   

 
The original sampling plan was to sample half of these units each year such that 388 units 

would be completed in a two-year period.  However, this goal turned out to be logistically 
unfeasible.  Instead an average of 139.5 units were completed each year although sample size per 
year varied widely (range 90-189) over the first 8-years.  As described above a large number of 
units were eliminated due to safety concerns because they were extremely remote and difficult to 
access (>14km from a road) resulting in a core set of 223 units.  Further details regarding the 
sampling methods of the fisher monitoring program are described in the Sierra Nevada Forest 
Plan Amendment Carnivore Monitoring Protocol (Truex & Tucker 2006) and Zieinski et al. 
(2013). 

 

Spatially explicit power analysis 
Details of the spatially explicit simulation approach we used are described in full in Ellis et al. 
(In Review).  In summary, this approach involves three parts.  First we simulated a declining 
population of fisher in the Sierra Nevada by defining a landscape representing fisher habitat and 
then distributing individuals spatially across this habitat.  We then simulated population declines 
by removing individuals each year over a 10 year period.  Second, we defined a sampling grid 
and used this grid to sample our simulated landscape and create presence-absence encounter 
histories (Figure 5-2).  We then used these encounter histories to obtain estimates of detection 
probability and annual occupancy.  In the third step we fitted a trend model to these annual 
occupancy estimates and estimated statistical power as the percentage of simulations in which 
the declining trend was detected.   All spatial simulations were conducted using program SPACE 
(Spatially-based Power Analyses for Conservation and Ecology) (Ellis et al. In Review).  
 

Defining the landscape 
We used existing probability of use models for fisher in the southern Sierra Nevada to define 
where fishers occurred in this landscape.  The simulated landscape for fisher was defined 
primarily by the probability of occurrence model described in Spencer et al. (2011) which was 
based on a generalized additive model of environmental variables correlated with the detection-
non-detection data from the Sierra Nevada fisher monitoring program from 2002-2006.  As the 
spatial extent of this model did not completely encompass the area we were interested in 
simulating, we used the probability of use models described in Davis et al. (2007) to complete 
our simulated landscape in areas not covered by the Spencer et al. (2011) model.    
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Distributing individuals on the landscape 
We distributed individuals across the landscape relative to the probability of use with a cutoff of 
>0.30.   We chose to use a cutoff of 0.30 because values less than this seemed to overestimate 
fisher occupancy, placing individuals in areas where fishers have not been detected in recent 
history.  To distribute individuals across the simulated landscape we randomly selected points 
within the landscape and weighted these points by probability of use to define home range 
centers.  Home range sizes for fisher in the Sierra Nevada have been shown to differ by sex 
(Mazzoni 2002; Zielinski et al. 2004) and so we defined separate home range sizes for males 
(42.6 km2) and females (10.4 km2).  These home range sizes were estimated as an average of 
home ranges sizes reported for two different study areas within the study area (Zielinski et al. 
2004; Sweitzer Unpublished Data).  Because the Sierra Nevada fisher population has been shown 
to be female biased (Jordan 2007) we placed female home ranges on the landscape in greater 
proportion than males (60% females: 40% males).  Fishers are intrasexually territorial, but home 
ranges may overlap between the sexes (Powell 1993) so we established the buffer distance 
between home range centers equal to 1.5 the radius of the home range to allow partial overlap of 
home ranges of both males and females.  Locations of male and female home range centers were 
added iteratively until the target population size was reached.  We simulated two different 
starting population sizes, N=300, which has been estimated to be the maximum adult population 
size for the Sierra Nevada population (Spencer et al. 2011), and N=150 to investigate how 
population size and density affect the abundance/occupancy relationship and statistical power 
(Figure 5-2). 
 

Individual utilization distributions and population declines 
After establishing home range centers, each individual was assigned a bivariate normal 
utilization distribution based on estimated parameters defining spatial use within a home range.  
Because each fisher monitoring sample unit is completed within a 12-day period, we felt the 
potential for long distance movements during such a short time period was low. Therefore, we 
assumed that individuals spend 90% of their time within their home range radius, and truncated 
their movement to within 1 SD of their home range center.  We used these parameters as the 
basis for a bivariate normal utilization distribution and also weighted movements by the 
probability on use on the landscape.  We standardized each of the distributions into a probability 
surface in which individuals have a decreasing probability of use as the distance from the home 
range center increases, conditioned on probability of use of the landscape.  Finally, we combined 
the individual utilization distributions across N=300 or N=150 individuals in the population to 
produce a probability surface describing the probability of at least one fisher being present at any 
point on the landscape.  We used these methods to create 250 surfaces each for populations of 
N=300 and N=150 individuals.  We then simulated a 20% or 50% decline in population size in 

an exponential fashion over a 10-year period ( = 0.977,  = 0.933) by randomly removing a 
fixed number of individuals successively over each time step from each of these 250 landscapes. 
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Sampling 
We created a 25km2 sampling grid, excluding cells that did not overlap our probability of use 
surface by at least 50%.  This resulted in a grid with 358 cells available for sampling.  We 
created encounter histories (estimated presence or absence within a sampling area for each visits) 
for each simulated landscape in order to estimate occupancy across a gridded landscape.  Our 
simulation was designed to closely match the sampling methods implemented from 2002-2009 
by the Sierra Nevada fisher monitoring program (Truex & Tucker 2006; Zielinski et al. 2013).   
 
Because the distance from which the lure and bait attract fisher to the sampling devices is 
unknown we tested a range of effective sampling areas (the area within each 25km2 that is 
actually sampled).  We distributed random sampling points within each cell to define the center 
of the effective survey area within each cell.  We then started by setting the effective sampling 
area to 1km2, which is representative of the area encompassed by the sampling devices plus an 
additional 150 m buffer beyond the detection device to account for the effect of the bait and lure.  
We then tested 3 successively larger effective sampling areas of 5km2 (~950 m lure distance), 
10km2 (~1500m lure distance), and 25km2 (entire grid cell, ~2750m lure distance).  We then used 
SPACE to calculate the probability of at least one fisher being present in each sampling area 
(probability of presence) and created 10-year encounter histories for each landscape from which 
we estimated occupancy.  Specifically, we calculated the probability of at least one fisher in each 
cell on the landscape by overlaying the individual utilization distributions and assigning a 1 
(present) or 0 (absent) for each visit by comparing a random draw from Uniform (0,1) with the 
probability of presence for that cell.  Draws less than the probability of presence resulted in a 
"presence", and a 1 in the encounter history for that visit.  Thus, a cell with simulated encounter 
history "010" indicates that 3 visits were made to the cell in a given year, and fisher were present 
in the cell only during the second visit. 

 

Detection probability  
The simulation is designed such that an individual’s home range can span multiple cells.  
Therefore, a single individual can result in a ‘presence’ being detected in two or more adjacent 
cells during the sampling period.  This violates an important assumption of occupancy estimation 
that the system remain closed during sampling (i.e., the occupancy status of a cell cannot change 
during the sampling period). Because of this viotation of assumptions, the interpretation of 
estimated occupancy parameters is different than the more standard interpretation of these 
parameters when the status of a given cell (occupied or not) is fixed during sampling.  
 
 The estimate of occupancy under this assumption is the probability that any given cell is 
used rather than occupied.  Consequently, for our simulation, occupancy actually refers to the 
probability of use.  Detection probability is therefore a product of the true detection probability 
(probability of detecting an individual if they are there) and the probability of presence 
(probability an individual is present and available for detection).  For this study the actual 
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detection probability specified by the simulations is referred to as psim.  We refer to the per visit 
detection probability estimated by the model as pest with pest= psim x probability of presence.  
Across multiple visits, we can calculate a cumulative detection probability (ptotal) as  
ptotal=1-(1-pest)

n_visits.  A long history of fisher research in California using track plates has 
demonstrated that fishers are fairly easily detected using these devices and estimated detection 
probabilities across multiple visits are generally high (ptotal =0.71 Zielinksi et al. 2013) and 
therefore we fixed psim for all simulations at psim = 0.8. 
 

Encounter histories 
To create encounter histories with imperfect detection we modified the original encounter 
histories for availability, in which 1 indicates presence and 0 indicates absence, with the actual 
detection probability specified in the simulations, psim.  For each 1 (presence) in the availability 
encounter histories, we conducted a second random draw from a Uniform (0,1) and compared it 
to psim. The 1 (presence) in the availability encounter history would be retained as 1 (detected) in 
the updated encounter history if the random draw was > psim.  Values that were either 0 (absent) 
in the availability encounter history or with random draw < psim were recorded as 0 (non-
detected).  We subsampled from these encounter histories to explore how variation in number of 
visits, and sample size influenced power.  Lastly, we examined the effect of biennial versus 
annual sampling by omitting encounter history data from even numbered years. 
 
 
Estimating occupancy and trend 
Encounter histories for each simulated landscape and parameter set were used as input to 
program MARK (White & Burnham 1999) using the R package RMark (R Development Core 
Team 2012; Laake & J.L. 2013).  Occupancy estimates were obtained by fitting ‘Robust Design 
Occupancy’ models in MARK.  We then used the variance components procedure to fit a linear 
random effects trend model to the occupancy estimates.  We defined a trend to be detected if 1) 
the trend was in the correct direction and 2) the confidence interval of the trend parameter 
excluded zero.  Given that there is a known trend in the data, we estimated statistical power as 
the percentage of simulations in which a trend was detected.  We varied the type I error rate to 
quantify how the choice of statistical confidence level affects power for this study design. 

 

Results 
 
Estimated occupancy and detection probabilities 
Estimated occupancy decreased slightly with increasing effective sampling area for the 1km2, 

5km2, and 10km2 sizes, (1km= 0.375, 5km=0.35, 10km=0.32) but was considerably higher 

when the effective sampling area was equivalent to the entire grid cell size (25km=0.64).  
Cumulative detection probability increased dramatically with increasing effective sampling area 
for all sizes (ptotal_1km=0.45,  ptotal_5km =0.70 ,  ptotal_10km =0.80 ,  ptotal_25km = 0.98) (Figure 5-3).  
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For all effective sampling areas, a smaller initial population size of N = 150, resulted in both 
lower estimated occupancy and lower cumulative detection probability (for example at 5km2 

effective sampling area, 150=0.26 (0.07 SD), and ptotal =0.60).    
 

One of the goals of our simulations was to replicate as closely as possible the occupancy 
and detection probability rates estimated for the fisher monitoring program (Zielinski et al. 
2013).  Both the 5km2 and 10km2 simulations resulted in estimates comparable to Zielinski et al. 
(2013) but we felt that the 5km2 size was a more plausible effective sample area size as it is 
closer to previous estimates of effective sampling area of 1.2 km2 (Zielinski & Mori 2001).  We 
dismissed the 1 km2 effective sampling area due to its very low estimated detection probability, 
and the 25km2 effective sampling area due to its very high estimates for detection probability and 
occupancy.  Based on these results we concluded that an effective sampling area size of 5km2 

and initial population size of N = 300 most closely matched the occupancy rate (=0.367) and 
detection probability (ptotal = 0.71) found by Zielinski et al. (2013) and we used these value as 
our baseline for subsequent analyses.  
 

Comparison of occupancy and abundance 
We were interested in the ability to detect a 50% (λ = 0.933) or 20% (λ = 0.977) decline in 
abundance over a 10-year period through occupancy modeling.  Over the 8-year sampling 
period, λ = 0.933 lead to a decline in abundance from N=300 to 172 individuals (43% decline) 
and λ = 0.977 corresponds to a decline from N=300 to 249 (17% decline).  These trends did not 
directly translate to equivalent declines in occupancy.  When assuming a 5km2 effective 

sampling area, a decline from N = 300 to N = 172 over an 8-year period (=0.933) translated to a 
decline in occupancy from 0.35 +/- 0.05 (SD) to 0.27 +/- 0.07 (e.g. a 23% decline in occupancy), 
while a 20% decline in abundance from N = 300 to N = 249 resulted in a decline in occupancy 
from 0.34 +/- 0.06 to 0.32 +/- 0.06 (e.g. a 6% decline) (Figure 5-4A).  Therefore, with a starting 
population size of 300, a 20% decline in occupancy is most comparable in our simulations to a 
50% decline in abundance. When simulations were conducted using a smaller initial population 
size of N = 150, a 50% decline in abundance resulted in a 27% decline in occupancy from 0.26 
(+/- 0.07) to 0.19 (+/- 0.07) while a 20% decline in abundance resulted in an 11% decline in 
occupancy to 0.23 (+/- 0.07) (Figure 5-4B). 

 

Statistical confidence 
Power to detect trend was strongly influenced by the choice of the statistical confidence (type I 
error rate) used for occupancy estimates (Figure 5-5).  Decreasing the statistical confidence level 
caused a considerable increase in power, and this increase in power was most profound at small 
sample sizes.  Our simulation that was most comparable to the Zielinski and Mori (2001) power 
analysis (80% one tailed CI) found very similar results, with an annual sample of 288 cells 
yielding 85% power to detect a 50% decline in abundance (~ equivalent to a 23% decline in 
occupancy) (Figure 5-6).  However, if a more conservative two-tailed 95% confidence interval is 
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used as a significance criteria then the power for a sample of 288 cells decreases to 71%.  While 
the target sample size established in the power analysis was 288, due to logistical difficulties the 
average annual sample actually completed by the monitoring program from 2002-2009 was 
~140, less half the initial target.  In our simulations a sample size of 140 cells resulted in a power 
of 64% using a one tailed 80% CI, and 28% using a two tailed 95% CIs, a much larger loss of 
power between the two confidence levels than was observed for the larger sample size.  Even 
using the larger sample size of 288, power to detect a 20% decline in abundance (6% decline in 
occupancy) was poor for both confidence levels (power at 80% CI = 58%, power at 95%CI = 
39%).   
 

Non-continuous sampling 
We investigated the impact of biennial sampling on power (i.e. completing a sample of 280 
every other year) instead of 140 per year in each of two years.  We found a biennial sample of 
280 yields 71% power using a one tailed 80% CI, and 51% using  2 two tailed 95% CI, an 
increase in power over an annual sample of 140 of 7% (80% CI) or 23% (95% CI) (Figure 5-6).   

 

Effective Sampling Area 
The size of the effective sampling area within the 25km2 cells, determined by the attractiveness 
of the lure, had consequences for the power to detect a declining trend.  Increasing the effective 
sampling area from 5 km2 to 10km2 increased the power by 10% for an annual sampling regime 
of 140 cells.  For a biennial sample of 280 the power at 10km2 increases to 76%.  For simulations 
in which the effective survey area equaled the size of the survey gird (25km2), and estimated 
detection probabilities approached 1.0, the power for either an annual sample of 140 or a biennial 
sample of 280 approached 100%.   
 

Discussion 
Determining the status and trend of a population is a fundamental component of population 
management, and the answer to this question is a key factor in the listing and recovery of 
endangered species.  The goal of population monitoring programs is to answer this question, and 
a priori power analyses provide a way to assess the statistical power of different sampling 
strategies to detect population trends.  However, for populations spread across large landscapes, 
or for species that are rare or difficult to sample, it is often challenging or to achieve the sample 
sizes identified by these power analyses.  In such situations careful consideration of the factors 
influencing power is needed in order to best design sampling strategies find a balance between 
maximizing power and minimizing the chance of falsely identifying a trend.  Using a spatially 
explicit simulation for we were able to test the ability of an existing population monitoring 
program for fisher in the Sierra Nevada to detect a population decline using an occupancy 
modeling approach. 
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Occupancy vs abundance 
Our simulations found that the target effect size of the Sierra Nevada fisher monitoring program, 
to detect a 20% decline in occupancy, translates to a population experiencing a ~50% decline in 
abundance over a 10 year period.  Simulations of a more moderate population decline (20% 
decline in abundance) resulted in a change in occupancy of only 6%-11% (N=300 or N=150), an 
effect size that would be unlikely to be detected by the sample size achieved by the monitoring 
program.  These results indicate that over an 8 year monitoring period the fisher monitoring 
program as designed will likely be able to detect a population experiencing a severe decline in 
abundance, but it would not likely be able detect a population experiencing a slower reduction in 
size.  However, our results also show that the relationship between abundance and occupancy is 
not linear.  For a fixed rate of decline in abundance the rate of decline in occupancy increases 
over time.  This non-linear relationship occurs because at high densities more than one individual 
may occupy sampling area, such that if one animal is lost the sampling area remains occupied.  
However, as the density of animals on the landscape decreases an increasing proportion of 
sampling cells are occupied by only one individual such that it becomes increasingly likely that a 
loss of individuals will result in a reduction in occupancy.  This has important implications for 
long term population monitoring as it illustrates that when estimating trends in occupancy the 
longer the timespan a monitoring program samples a population, the more power it will have to 
detect slow population declines.   
 

Factors affecting statistical power 
Our results show that the annual sample size achieved by the fisher monitoring program (~140 
units) resulted in a 64% power to detect to a 20% decline in occupancy with 80% power, and a 
20% type 1 error rate, a reduction in power of 21% compared to the target sample size of 288 
identified in the 2001 a priori power analysis (Zielinski & Mori 2001).  If the sampling of the 
fisher monitoring program is analyzed as a biennial sample of 280 units, then the power 
increases to 71% for an equivalent power and type 1 error rate.  This is because concentrating 
resources and sampling a larger number of sites biennially instead of a smaller number annually 
decreases the standard error of the occupancy estimates and results in an increase in statistical 
power.  Assuming a fixed cost per sample unit this indicates that a monitoring program can 
potentially increase its power to detect trend by concentrating it resources to conduct a large 
biennial sample instead of more frequent but smaller annual samples.  However this strategy may 
prove logistically unfeasible for many monitoring programs, especially those sampling large and 
remote landscapes.  For example, completing 280 samples in a single year for the fisher 
monitoring program would require approximately 50 field technicians sampling continuously for 
4-5 months to complete.  It is important to note that the fisher monitoring program did not 
execute a strict biennial sample as simulated, but rather attempted to sample the entire grid 
within a 2 year period, so the results of the biennial power analysis are only an approximation of 
this sampling strategy. 
 



 

90 
 

It has been shown that the probability of occupancy depends not only on home range size 
and population density, but also the effective sampling area (Efford & Dawson 2012).  The issue 
how the effective sampling area impacts both occupancy and power to detect trend has rarely 
been addressed in the literature and has been flagged as a critical issue in study design (Efford & 
Dawson 2012).  Field studies often define their sample unit in terms of grid cell size without 
addressing how much of that grid cell their chosen method actually samples.  It is erroneous to 
assume that surveying a single point within a large grid cell is representative of the entire cell, 
and yet it is common for researchers to use the concepts of grid size and effective sampling area 
interchangeably.  In many cases, the effective sampling area is either unknown or variable, i.e., 
the distance from which lure draws in individuals is unknown and also likely variable due to 
environmental conditions such as wind, humidity or topography (Schlexer 2008).  Our results 
show that the size of the effective sampling area has a considerable impact on estimates of 
occupancy, detection probability, and power to detect trend.  For example if in our simulations 
we had not specifically defined the effective sampling area and assumed that it was equal to our 
chosen grid cell size (25 km2) we would have estimated that we had near perfect detection 
probability and our power to detect a decline with 80% statistical certainty (sample size =140) to 
be almost 100%, much higher than the estimate of 64% we obtained by defining a more realistic 
effective sampling area.  This example illustrates how failing to accurately define the effective 
sampling area could lead to misleading estimates of power and underestimation of the sample 
size truly needed to detect a trend. 

 
Our simulations also illustrate the tradeoff between power and statistical certainty (alpha, 

type 1 error).  This relationship exists because increasing the statistical certainty (lowering type 1 
error rate), shrinks the confidence intervals for occupancy estimates.  As detection of a trend is 
defined in part by these confidence intervals, the smaller the confidence interval, the less likely it 
is that these intervals will overlap zero, increasing the likelihood that a trend will be detected.  
Increasing the sample size similarly decreases the confidence interval and increases ability to 
detect trends.  Consequently, to achieve a desired power you can either increase sample size or 
increase the type I error rate.  For a fixed cost (e.g. a fixed sample size) the researcher must 
assess the risk associated between type I error (misidentifying trends that do not exist) and type 
II error (failing to detect a trend when one is occurring) for their species or population (Mapstone 
1995; Field et al. 2005; MacKenzie & Royle 2005). 

 
This decision is often difficult as in many conservation scenarios the risks associated with 

committing either type of error are considerable.  For example, falsely detecting a trend (type I 
error) may result in erroneously listing a species and creating unnecessary environmental 
restrictions that curtail development causing the loss of jobs and economic hardship.  Whereas, 
failing to detect a trend that is occurring (type II error) might lead to the collapse of a species or 
population (Mapstone 1995).  This raises the question of how conservative or liberal to be when 
planning to monitor a population?  For species such as fisher, which exist at relatively low 
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densities across large landscapes, taking a conservative approach and targeting low type 1 error 
will result in either 1) very low power to detect trend, 2) a very expensive monitoring program 
(as a result of the need for large sample sizes), or 3) deeming a monitoring program unfeasible 
due to this high cost and low power.  Our simulation has shown that for fisher, over a 10 year 
period, large declines in abundance may result in relatively small changes in occupancy.  
Therefore, if we want to be as certain as possible that we can detect a decline that is in fact 
occurring, then given the difficulties of sampling such a population, realistically we must accept 
a higher risk of type 1 error. 

 

Conclusions 

Our results illustrate how spatially based power analyses can inform population monitoring.  
This approach can be used to investigate the relationships between occupancy and abundance by 
incorporating life history and home range characteristics particular to a species or population, 
and can help identify the factors driving statistical power for particular study areas and sampling 
methods.  The results of this study demonstrate the complexities involved in determining 
population trend.  In particular, we emphasize the importance of assessing the effective sampling 
area within the larger sampling grid, as we found that this often-undefined factor can have a 
large impact on statistical power.  Overall, this study illustrates the importance of careful study 
design and a priori power analyses prior to embarking on a long term monitoring program. 
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Figure 5-1.  Layout of a sample unit for the fisher monitoring program (Zielinski et al. 2013).  
Circles represent 6 track plate stations, each 500 m from the center station.  
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Figure 5-2.  Flow chart detailing the spatially-explicit simulation to model fisher occupancy and 
sampling in the southern Sierra Nevada.   
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Figure 5-3.  Graph showing the relationship between effective sampling area (x-axis) and 
estimated occupancy (mean PSI) and detection probability (cumulative pest).  
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N=300 

N=150 

 

Figure 5-4.  Boxplots illustrating the relationship between estimated occupancy 
and abundance for 250 simulated populations of size A) N=300, B) N=150.  

A 
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Figure 5-5.  Relationship between type I error and power to detect trend for one sided and two 
sided tests for a sample size of 150.  Arrows indicate the power for the two levels of statistical 
confidence investigated in this analysis.  
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Figure 5-6. Results of spatially explicit power analyses for 250 simulated landscapes with an 
effective sampling area = 5km2 and a starting population size of N=300. 
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