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 Preface

This thesis is largely based on a manuscript entitled "Spatial regression methods 

capture prediction uncertainty in species distribution model projections through time", 

which was accepted for publication in April of 2012 in the journal Global Ecology and 

Biogeography  with  coauthors  Solomon  Z.  Dobrowski,  Andrew  O.  Finley,  James  H. 

Thorne, Michael K. Schwartz.  With the exception of several paragraphs in the methods 

section written by A.O. Finley, the writing is mine.  The main section of my thesis is  

based on this manuscript but with an expanded introduction and discussion, along with 

some reorganization.   An appendix has been included which gives detailed information 

about  modeling results for individual species.
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Spatial regresssion methods capture prediction uncertainty in species distribution model 
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Abstract
Species distribution models (SDMs) relate observed locations of a species to climate, 
and are used for projecting the fate of a species under climate change scenarios.  To be 
useful in a decision-making context, the uncertainty associated with these projections 
must be known.  However, the uncertainty associated with SDM projections is largely 
ignored, perhaps because many current methods have been shown to produce biased 
estimates.    

Failure to account for spatial autocorrelation (SAC) of residual error explains much of 
this bias.  Generalized linear mixed models (GLMM) have the ability to account for SAC 
through the inclusion of a spatially structured random intercept, interpreted to account 
for the effect of missing predictors.  This framework promises a more realistic 
representation of parameter and prediction uncertainty.  

My work assesses the ability of GLMMs and a conventional SDM approach, based on 
generalized linear models (GLM), to produce accurate projections and estimates of 
prediction uncertainty.  Bayesian methods were used to fit models to historical (1928-
1940) observations for 99 woody plant species in California, USA, and assessed using 
modern "temporally independent" validation data (2000-2005).  A set of climatic water 
balance metrics were calculated to inform the models.  GLMMs provided a closer fit to 
historic data, had fewer significant covariates, were better able to nearly eliminate 
spatial autocorrelation of residual error, and had larger credible intervals for projections 
than GLMs.  The accuracy of projections was similar between methods but the GLMMs 
better quantified projection uncertainty.  Additionally, the GLMMs produced more 
conservative estimates of species range size and range size change than the GLMs. I 
conclude that the GLMM error structure allows for a more realistic characterization of 
SDM uncertainty.  This is critical for conservation applications that rely on robust 
assessments of projection uncertainty.
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Chapter 1:  Introduction

Ecological forecasting has emerged as a research priority as scientists and policy-

makers seek to anticipate the response of biota to rapid changes induced by changing 

climate  and  chemical  cycles,  exotic  species,  and  resource  depletion  .   Species 

distribution models (SDMs) are numerical models which relate observed locations of a 

species  to  spatially  explicit  climate  and  other  environmental  data,  allowing  the 

distribution of suitable habitat to be projected over time and space .  SDM projections 

are  increasingly  used  for  conservation  planning  and  climate  adaptation  applications 

such as assisted migration and identifying locations suitable for reserves .   Informed 

decisions require knowledge of the uncertainties inherent in these projections , yet the 

uncertainty  of  SDM  projections,  although  acknowledged  to  be  large,  is  poorly 

understood and rarely considered in applications .   Repeated calls have been made for  

estimates of uncertainty to be presented with results , and their absence has led some 

to question the utility of SDM projections for conservation planning .  In this study I  

assess the ability of a spatial regression SDM method to provide useful estimates of 

projection uncertainty.

NICHE CONCEPT

The concept of a species'  niche was introduced by Grinnell   as  the subset of 

habitat with environmental conditions which allow a species to survive and reproduce. 

Hutchinson  cast the niche in environmental rather than geographic space, and made 

the distinction between the realized and fundamental niche.  The fundamental niche of 
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Hutchinson is the set of resources required for a species to persist, while the realized 

niche is the portion of the fundamental niche the species is constrained to by biotic 

interactions  such  as  mutualism or  competitive  exclusion.   Further,  observed species 

distributions are shaped by many other factors including dispersal  limitations,  legacy 

effects and metapopulation dynamics, and may contain non-viable "sink" populations 

falling outside of their fundamental niche .  Figure 1 illustrates these concepts.  

 In predicting the response of plant species to climate change, we are primarily 

concerned with identifying areas in which abiotic conditions will become unsuitable (or 

new areas which become suitable) for a species, so it is arguably the fundamental niche 

we  wish  to  characterize  .   Absent  experimentation,  the  fundamental  niche  is 

unobservable ,  so our ability to characterize it depends on how well its captured by 

species observations, a topic which has been debated .  The fidelity of the observed 

distribution will depend on the evolving interplay of biotic interactions, dispersal, and 

stochastic processes over the geographic domain of the fundamental niche .  
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Figure 1: Illustration of the niche concept.  The blue circle represents the set of abiotic 
conditions necessary for a hypothetical species to survive and reproduce, 
e.g. the fundamental niche.  The area of overlap between the green and 
blue circles (A+B) is the subset of the fundamental niche to which the 
species is limited by biotic interactions, e.g. the realized niche.  The black 
circle shows how the realized niche is further limited by accessibility, 
yielding the observed distribution of the species (A).  Note that sink 
populations may be observed outside of area A.  Adapted from Soberon 
and Nakamura (2009).

SPECIES DISTRIBUTION MODELS

As previously stated, a species distribution model is a numerical model relating 

environmental  data  to  species  distributions.   Such  models  are  also  referred  to  as 

bioclimatic envelope models, ecological niche models, or resource selection functions, 

and can be used to model animal or plant distributions.  SDMs can be divided into two  

major categories.  Mechanistic SDMs are based on physiology of the species and are 

typically fit using detailed study of the organism in question, while correlative SDMs are 
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purely  empirical  and  seek  to  identify  the  statistical  relationship  between  observed 

species locations and environmental data.  My work is concerned with the latter. 

SDMs were first developed in the mid-1970's.  Kessell  used GIS technology to 

link abstract n-dimensional “artificial resource models” to geographic space.  His early  

work was in Glacier National  Park with a primary goal  of providing decision support 

tools  for  fire  ecologists  and  land  managers.   Hoffer  and  Strahler,   working 

independently, developed similar techniques around the same time.   SDM techniques 

and applications grew slowly through the 1980’s, but their use expanded in the 1990's  

and has grown exponentially  in the 2000's.   Over 850  SDM papers  were published 

between 2005 and 2010, compared to only 79 between 1999 and 2004 .  The range of  

available SDM methodology has expanded coincident with their rise in popularity.  Early 

methods  were  relatively  simple,  such  as  generalized  linear  models  (GLMs)  and 

bounding-box  type  methods.   At  the  other  extreme  are  more  recently  developed 

machine learning  methods which use sophisticated  algorithms to automatically  fit  a 

flexible response functions to a set of covariates.  

In  addition  to  their  use  in  conservation  planning,  SDM  applications  include 

estimating individual species’ ranges , predicting range expansion of invasive species , 

providing insight into the ecology and biology of organisms , and predicting changes in 

the  size  and  spatial  arrangement  of  species’  available  habitat  under  scenarios  of 

environmental change .  
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SDM ASSUMPTIONS

Several  important  assumptions  must  be  made  in  the  application  of  SDMs. 

Statistically, most methods assume independent errors and that all relevant predictors 

are  included  in  their  correct  functional  form  .   These  assumptions  can  be  relaxed 

somewhat with methods which allow for spatial autocorrelation of errors .  

Biologically,  species are assumed to be at equilibrium with their environment 

and occurring throughout the environmental space defined by their fundamental niche .  

As previously noted, the latter assumption is questionable because of the complicated 

interplay between space and environment .  When SDMs are used for extrapolation into 

new spatiotemporal domains, further assumptions apply.  Essentially, one must assume 

that  all  limiting factors  (biotic  and abiotic)  will  be the same under the extrapolated 

conditions, and that phenotypic and evolutionary changes are negligible .  

The degree to which limiting factors remain constant under changing conditions 

is  subject  to debate  .    Controlled experiments  have shown strong shifts  in  species 

interactions under manipulated conditions for insects  and grassland species , and have 

provided evidence that escape from natural enemies may be important in exotic species 

invasions .  Natural  experiments involving invasive species have provided evidence of 

rapid  evolution  within  their  invaded  range  ,  and  have  documented invasive  species 

establishing populations in biomes not represented in their native range .  

SDM PREDICTORS

Choice  of  predictors  is  critical  given  that  SDM  methods  typically  assume  all 

relevant predictors to be included.  Ideally, an understanding of a species' physiology 
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and ecology will suggest a concise set of predictors known to limit its distribution, but in 

most  SDM  applications  this  is  not  the  case.   Rather,  an  assortment  of  available 

predictors are tested and a model is built interactively or using an automated model 

selection procedure.  This can result in a set of predictors which may precisely describe 

the observed distribution, but lack predictive power in new spatiotemporal domains .  

For  this  reason,  it  has  been  recommended  to  use  a  reduced  set  of  biologically 

meaningful  predictors .  Climatic water balance metrics  are attractive in this regard 

because  they  provide  a  summary  of  concurrent  energy  and  moisture  availability  

(illustrated  in  Figure  2),  reducing  a  large  number  of  daily  or  monthly  climate 

observations to a handful of annual summaries with a clear biological interpretation.
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Figure 2:  Illustration of climatic water balance metrics.  Reference evapotranspiration 
(ET0), show as a red line, is a measure of the energy available at a site and 
is calculated using temperature, net solar radiation, humidity and wind. 
This is interpreted as how much evapotranspiration (e.g. growth) a 
reference crop (2" grass) would be capable of given unlimited moisture. 
The blue line shows available moisture, which integrates precipitation, 
soil moisture and snowmelt.  Moisture availability constrains ET0 to give 
actual evapotranspiration (AET; green).  When moisture availability 
exceeds ET0 it is considered surplus (S; blue), and when ET0 exceeds 
moisture availability it is considered climatic water deficit (DEF; red).

UNCERTAINTY

Sources  of  uncertainty  in  SDM  projections  include  species  observations  and 

covariates used to fit  the SDM, choice of SDM method, specification of SDM model,  

parameter estimation within the chosen SDM, and covariates used in the projection of  

the SDM .   Buisson et al.  assessed the relative contribution of these sources and found 

that choice of SDM method introduced the greatest amount of uncertainty in range 

change projections of fish species.  Other authors have noted similarly large variability 
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between methods in SDM projections .  This has led to the use of “ensemble” methods, 

in which numerous models are fit using a range of methods and input data .  Outcomes 

are averaged and those consistent between fitted models are deemed more reliable 

than those for which the models do not agree.   A lack of consensus within an ensemble 

qualitatively suggests uncertainty,  but the reasons that methods disagree are poorly 

understood .   

Existing work

Several  notable  attempts  have  been  made  to  quantify  SDM  prediction 

uncertainty.    Buckland  and  Elston   demonstrate  a  non-parametric  bootstrapping 

approach  in  which  numerous  models  are  fit  to  permutations  of  the  original  data, 

resulting in maps indicating the proportion of iterations the species was predicted to be 

present.   Hartley et al.   present a Bayesian model averaging approach to estimating  

uncertainty.   They  fit  a  set  of  plausible  models  containing  different  covariates  and 

calculate uncertainty by combining between-model and within-model variability.  While 

these  approaches  provide  a  quantitative  representation  of  uncertainty,  they  don’t 

consider the bias induced by spatial autocorrelation of residual error (SAC) on model 

selection  (e.g.  Lennon,  2000)  and  are  unable  to  account  for  uncertainty  due  to 

important  covariates  not  considered.    Other  authors  have  presented  maps  of 

uncertainty using Bayesian spatial regression approaches , but I am unaware of previous 

attempts to validate estimates of projection uncertainty.   
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SPATIAL AUTOCORRELATION 

Issues related to spatial autocorrelation (SAC) may partially explain inconsistency 

between methods in SDM projections.  Positive SAC arises because observations close in 

geographic space are generally more similar than those further apart.  When a model is 

unable to fully explain the spatial pattern of a species’ distribution, residual errors will 

exhibit this property, violating a key assumption of the statistical methods underlying 

most SDM approaches.  SAC of residual error has been shown to be very common in 

SDM applications  and can easily be introduced if important covariates are missing or if a 

species  exhibits  spatial  aggregation  due  to  biotic  factors.   Most  SDM  methods  are 

incapable  of  accounting  for  this  type  of  error,  since  they  consider  only  sampling 

variability  (as  in  a  coin  toss)  and its  resultant  effect  on  the precision of  parameter  

estimates.  Although SAC has been shown not to bias parameter estimates (at least for 

linear  models  e.g.  ,  it  has  been  shown  to  decrease  their  precision  and  lead  to 

downwardly biased variance estimates and inflating tests  of  significance.   The latter 

issue  is  especially  problematic  when  such  tests  are  used  within  automated  model 

selection procedures, since this can lead to the inclusion of spurious covariates and a fit  

tailored to the training data  .   Nonparametric  methods such as generalized additive 

models, maximum entropy or regression trees are not immume to this issue and may in 

fact be more vulnerable due to their ability to fit complex response functions.  This over-

fitting of  models  may help explain  the large degree of  disagreement between SDM 

methods  and has been hypothesized to reduce their transferability through space and 

time .  Numerous methods have been proposed to correct for the adverse effects of  

spatial autocorrelation on SDMs .  Generally,  the focus of this research has been on 

methods  to  improve  parameter  estimates  and  tests  of  significance  ,  and  less  on 
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assessing  the  transferability  of  these  models  and  accurately  estimating  projection 

uncertainty.  

METHODS TO ACCOUNT FOR SAC

Numerous methods have been developed to account for SAC when modeling 

binary response data.   Autologistic methods include a weighted average of  adjacent 

observations, referred to as an autocovariate, as an additional predictor.  The weighing 

scheme is  typically  chosen  arbitrarily  .  Spatial  eigenvector  mapping  (SVM)  methods 

construct a set of orthogonal "predictors" describing spatial patterns in the data, which 

are then selectively included as additional predictors.  Generalized estimating equations 

(GEE)  split the data into spatial clusters and model correlation within these clusters, 

which  are  considered  spatially  independent  of  each  other.   With  the  exception  of  

autologistic regression, these methods have been shown to provide better controlled 

tests of parameter significance, but are poorly suited to prediction and fail to provide  

reasonable estimates of prediction uncertainty (Dormann et al. 2007).

GENERALIZED LINEAR MIXED MODELS

Generalized linear models (GLM) adapt linear regression methods to allow for 

different types of response data, such as the presence/absence data typically used in 

SDM applications.   Generalized linear mixed models (GLMMs) extend GLMs to include 

random effects capable of accounting for additional sources of uncertainty.  To account 

for SAC, this random effect can be specified as a spatially structured random intercept, 
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or spatial process term, interpreted as the effects of unobserved processes with spatial 

structure . The spatially-structured random intercept has intuitive appeal in that it is 

able to represent the greater confidence we feel in finding a species when closer to a  

known presence location.  The variance-covariance parameters of the random intercept 

control  the magnitude,  range,  and smoothness  of  its  dependence in space,  and are 

estimated during the model-fitting process.   This avoids subjective modeling choices 

regarding the zone of spatial influence and allows its effect to be integrated into both 

parameter estimates and predictions.   Spatial process GLMMs can be fit through the 

use  of  Bayesian  hierarchical  methods  and  Markov  chain  Monte  Carlo  (MCMC) 

techniques .  Although computationally intensive, this methodology provides full access 

to  the  distributions  of  the  model’s  parameters  given  the  data,  i.e.,  posterior 

distributions,  and  the  posterior  predictive  distributions  of  the  response  variable  at 

unobserved locations and/or times.  Latimer et al.  and Finley et al.  have explored some 

of  the utility  of  spatial  process  GLMMs (hereafter  referred to  as  GLMMs) to  model  

species distributions, but their projections have yet to be validated against independent 

data.   If  validation  shows that  GLMMs are  able  to  account  for  the uncertainties  in  

modeling  species  distributions  through  time,  realistic  mapping  of  uncertainty  and 

statistical inference on predicted range changes should be possible.  

OBJECTIVES

Estimates of projection uncertainty are essential  if  SDMs are to be useful  for  

conservation  planning,  and  GLMMs  have  the  potential  to  accurately  provide  this 

information.  My primary objective is to assess the ability of GLM and GLMM models to 
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characterize SDM projection uncertainty through time.  To this goal I fit a both models 

to  historical  observations  of  99  woody  plant  species  from  California,  USA,  and  use 

contemporary data to assess the accuracy of projections and uncertainty estimates of 

these models.  
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Chapter 2:  Case Study

METHODS

Vegetation data

To train the models, I used presence and absence data for 99 species (table 1) 

from 13,746 vegetation plots collected as part of the USDA Forest Service’s Vegetation 

Type Map Project (VTM) between 1928 and 1940  within the state of California, USA. 

Plot size was 800 m2 in forests and 400 m2 in other vegetation types.  VTM plots were 

sampled in the mountainous regions of California (Fig. 3).  For model validation data, I  

compiled  a  collection  of  33,596  contemporary  (2000-2005)  vegetation  plots  with 

presence  and  absence  data  from  a  variety  of  sources  (further  detail  provided  in 

Dobrowski et al. ).  Plot size in the contemporary validation data ranged from 400m2 to 

800m2 in size.  Vegetation plots were aggregated to 10km by 10km grid cells and the 

count  of  presence  observations  within  each  cell,  relative  to  the  total  number  of 

observations in that cell,  was considered the response.   The spatial  aggregation was 

performed to ease computational demands.  Because not all species were sampled (e.g.  

looked for) at each vegetation plot,  the total number of grid cells sampled varied by  

species. This yielded grid cell counts for species that ranged from 825 to 1302 for the  

historic data and 1334 to 1929 for the modern data.  Historical prevalence values ranged 

from 2.4% to 39.6% at the grid cell level, while modern prevalence values ranged from 

0.45% to 43.7%.   The historic and modern samples overlapped in 320-715 grid cells 

depending on species. 
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Table 1:  Plant species modeled

Species Common name
Life-
form Endemicity Physiognomy

Abies concolor white fir Tree not endemic evergreen
Abies magnifica California red fir Tree not endemic evergreen
Acer macrophyllum bigleaf maple Tree not endemic deciduous
Adenostoma fasciculatum chamise Shrub not endemic evergreen
Aesculus californica California buckeye Tree endemic deciduous
Amelanchier alnifolia Saskatoon serviceberry Shrub not endemic deciduous
Artemisia californica coastal sagebrush Shrub not endemic deciduous
Arctostaphylos canescens hoary manzanita Shrub not endemic evergreen
Arctostaphylos glandulosa Eastwood's manzanita Shrub endemic evergreen
Arctostaphylos glauca bigberry manzanita Shrub not endemic evergreen
Arctostaphylos manzanita whiteleaf manzanita Shrub endemic evergreen
Arbutus menziesii Pacific madrone Tree not endemic evergreen
Arctostaphylos mewukka Indian manzanita Shrub endemic evergreen
Arctostaphylos nevadensis pinemat manzanita Shrub not endemic evergreen
Artemisia tridentata big sagebrush Shrub not endemic evergreen
Arctostaphylos viscida sticky whiteleaf manzanita Shrub not endemic evergreen
Baccharis pilularis coyotebrush Shrub not endemic evergreen
Calocedrus decurrens incense cedar Tree not endemic evergreen
Ceanothus cordulatus whitethorn ceanothus Shrub not endemic evergreen
Ceanothus crassifolius hoaryleaf ceanothus Shrub not endemic evergreen
Ceanothus cuneatus buckbrush Shrub not endemic evergreen
Ceanothus greggii desert ceanothus Shrub not endemic evergreen
Ceanothus integerrimus deerbrush Shrub not endemic evergreen
Ceanothus leucodermis chaparral whitethorn Shrub endemic evergreen

Cercocarpus ledifolius
curl-leaf mountain 
mahogany Shrub not endemic deciduous

Ceanothus oliganthus hairy ceanothus Shrub endemic evergreen
Ceanothus prostratus squawcarpet Shrub not endemic evergreen
Ceanothus tomentosus woolyleaf ceanothus Shrub not endemic evergreen
Ceanothus velutinus snowbrush ceanothus Shrub not endemic evergreen
Chamaebatia foliolosa mountain misery Shrub endemic evergreen
Chrysolepis sempervirens bush chinquapin Shrub not endemic evergreen
Chrysothamnus viscidiflorus yellow rabbitbrush Shrub not endemic evergreen
Corylus cornuta beaked hazelnut Shrub not endemic deciduous
Cornus nuttallii Pacific dogwood Shrub not endemic deciduous
Dendromecon rigida tree poppy Shrub not endemic evergreen
Ephedra californica California jointfir Shrub not endemic evergreen
Ericameria arborescens goldenfleece Shrub endemic unknown
Eriodictyon californicum California yerba santa Shrub not endemic evergreen
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Eriophyllum confertiflorum golden-yarrow Shrub not endemic evergreen
Eriodictyon crassifolium thickleaf yerba santa Shrub endemic evergreen
Eriogonum fasciculatum Eastern Mojave buckwheat Shrub not endemic evergreen
Ericameria linearifolia narrowleaf goldenbush Shrub not endemic deciduous
Eriogonum umbellatum sulphur-flower buckwheat Shrub not endemic evergreen
Fremontodendron 
californicum California flannelbush Shrub not endemic evergreen
Fraxinus dipetala California ash Tree endemic deciduous
Garrya fremontii bearbrush Shrub not endemic evergreen
Hazardia squarrosa sawtooth goldenbush Shrub not endemic evergreen
Heteromeles arbutifolia toyon Shrub endemic evergreen
Hesperoyucca whipplei chaparral yucca Shrub not endemic evergreen
Holodiscus discolor oceanspray Shrub not endemic deciduous
Juniperus californica California juniper Tree endemic evergreen
Juniperus occidentalis western juniper Tree not endemic evergreen
Lepechinia calycina woodbalm Shrub endemic deciduous
Lithocarpus densiflorus tanoak Shrub not endemic evergreen
Lotus scoparius common deerweed Shrub not endemic deciduous
Lonicera subspicata southern honeysuckle Shrub endemic deciduous
Malosma laurina laurel sumac Shrub endemic evergreen
Pinus albicaulis whitebark pine Tree not endemic evergreen
Pinus attenuata knobcone pine Tree not endemic evergreen
Pinus contorta lodgepole pine Tree not endemic evergreen
Pinus coulteri Coulter pine Tree not endemic evergreen
Pinus jeffreyi Jeffrey pine Tree not endemic evergreen
Pinus lambertiana sugar pine Tree not endemic evergreen
Pinus monticola western white pine Tree not endemic evergreen
Pickeringia montana Montana chaparral pea Shrub endemic evergreen
Pinus ponderosa ponderosa pine Tree not endemic evergreen
Pinus sabiniana California foothill pine Tree endemic evergreen
Prunus emarginata bitter cherry Shrub not endemic deciduous
Prunus ilicifolia hollyleaf cherry Shrub not endemic deciduous
Pseudotsuga menziesii Douglas-fir Tree not endemic evergreen
Purshia tridentata antelope bitterbrush Shrub not endemic deciduous
Quercus agrifolia California live oak Tree not endemic evergreen
Quercus berberidifolia scrub oak Shrub endemic evergreen
Quercus chrysolepis canyon live oak Tree not endemic evergreen
Quercus douglasii blue oak Tree endemic deciduous
Quercus durata leather oak Shrub endemic evergreen
Quercus garryana Oregon white oak Tree not endemic deciduous
Quercus kelloggii California black oak Tree not endemic deciduous
Quercus lobata California white oak Tree endemic deciduous
Quercus vacciniifolia huckleberry oak Shrub endemic evergreen
Quercus wislizeni interior live oak Shrub endemic evergreen
Rhamnus crocea redberry buckthorn Shrub not endemic evergreen
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Rhamnus ilicifolia hollyleaf redberry Shrub not endemic evergreen
Rhus integrifolia lemonade sumac Shrub not endemic evergreen
Rhus ovata sugar sumac Shrub not endemic evergreen
Rhus trilobata skunkbush sumac Shrub not endemic deciduous
Ribes californicum hillside gooseberry Shrub endemic deciduous
Ribes cereum wax currant Shrub not endemic deciduous
Ribes malvaceum chaparral currant Shrub endemic deciduous
Ribes roezlii Sierra gooseberry Shrub endemic deciduous
Rubus ursinus California blackberry Shrub not endemic evergreen
Salvia apiana white sage Shrub not endemic evergreen
Salvia leucophylla San Luis purple sage Shrub endemic evergreen
Salvia mellifera black sage Shrub not endemic evergreen
Symphoricarpos albus common snowberry Shrub not endemic deciduous
Symphoricarpos mollis creeping snowberry Shrub not endemic deciduous
Toxicodendron diversilobum Pacific poison oak Shrub not endemic deciduous
Tsuga mertensiana mountain hemlock Tree not endemic evergreen
Umbellularia californica California laurel Tree not endemic evergreen

Because  microclimate  can  vary  greatly  within  a  10km  grid  cell,  the  course 

resolution of the climate data could affect results.  To test the effect of grid cell size, I fit  

a series of models to data at finer resolutions (4km, 1km, 270m).  Due to computational  

constraints  I  simulated  GLMM  fits  using  GLMs  which  included  the  spatial  random 

intercept of the initial 10km GLMM fit as an offset. Since the effective range of this term  

was constrained to be greater than 20km, its spatial pattern should not change at finer 

resolutions, although its magnitude could vary if the relative importance of covariates 

changes.  
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Figure 3:  Distribution of vegetation sampling plot density (# plots per 100km2) for 
historic (left) and modern (right) periods.  Text codes in the left panel are 
abbreviations for the ecoregions of California as defined by Hickman 
(1993);  CR = Cascade Ranges, CV= Central Valley, CW= Central Western, 
ES = East of Sierras,  MD = Mojave Desert, MP = Modoc Plateau, NW = 
Northwestern, SD = Sonora Desert,  SN = Sierra Nevada, SW = 
Southwestern.

Climate data

A set of climate data and water balance metrics were obtained for the study area 

.   These  were  based  on  climate  data  from  Parameter-elevation  Regression  on 

Independent Slopes Model (PRISM)  at 4km resolution, downscaled to 270m using a 

statistical downscaling method.  The PRISM dataset interpolates meteorological station 

data using a model which incorporates expert knowledge of climatic factors such as rain 
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shadows,  coastal  effects,  temperature  inversions  and  elevation  (Daly  et  al.,  2008). 

Hydrologic processes were accounted for using the Basin Characteristic Model .   

All  metrics  were  averaged  over  30-year  periods;  1911-1940  for  the  historic 

period  and  1971-2000  for  the  modern  period.   For  modeling  purposes  I  selected  a 

subset of commonly used and biologically relevant climate metrics including AET, CWD, 

mean temperature of coldest month, mean temperature of warmest month, and annual 

snowfall  (table  2).   I  removed  predictors  in  the  historic  training  data  with  linear 

correlation coefficients greater 0.85.  I chose this threshold because the primary impact 

of  collinearity  is  to  increase variance of  coefficient estimates  an effect that  should 

affect both candidate models equally.  The data were aggregated to courser resolutions 

using a simple average. 

Over the study period, mean temperatures increased by approximately 1.0o C 

across the state while precipitation increased by 20-80mm in the northern mountains 

resulting in spatially variable trends in climatic water balance .

Table 2:  climate covariates used for modeling

Covariate Units
Actual Evapotranspiration (AET) mm/yr
Climatic Water Deficit (CWD) mm/yr
Mean temperature of coldest month C
Mean temperature of hottest month C
Annual snowfall mm/yr
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Modeling techniques

For each species I fit GLMs and GLMMs to the full historic dataset assuming a 

binomial  distribution for  the response variable  and a logistic  link function.   I  follow 

Latimer et al.  in using the count of presence observations per grid cell as my response,  

weighted  by  the  number  of  vegetation  plots  per  grid  cell.   Predictions  from  these 

models  reflect  estimated  probability  of  occurrence  for  a  species  within  each  cell, 

equivalent to predicted prevalence.  I  used quadratic functions of all  5 covariates to 

allow  for  non-linear  relationships  between  the  covariates  and  response  variables. 

Interactions were not included.  

For the spatial models, an exponential spatial correlation function was assumed. 

I used a spatial predictive process model to reduce the costly computations involved in 

estimating the spatial process .   Models were fit within a Bayesian framework using 

MCMC techniques.  Computations were performed in R (2.10.1; R Development Core 

Team, 2011) using the spGLM routine in the spBayes package .   Each model required  

several days to complete the MCMC sampling on a quad-core server (Intel Xeon E5440 

2.83Ghz).  

Spatial Process GLMM Specification and Priors

The response variable y(si) was the number of vegetation plots that contain the 

species of interest within the ith 10km grid cell at location si.  Given the total number of 

vegetation  plots  within  the  grid  cell,  N(si),  I  assumed  y(si) followed  a  binomial 

distribution.   For  the  ith  location, the distribution of y(si) was taken to be:

π(y(si ) | η(si )) ~ Binomial(N(si), p(η(si))), 
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where p(η(si)) = exp(η(si))/(1 + exp(η(si))) is the probability of species presence, 

and η(si)  =  x(si)’β + w(si), 

where x(si) is a vector comprising an intercept and location-specific climate 

covariates, β is a vector of regression coefficients, and w(si) is the spatial random effect.

The output of the models is an estimate of the probability of occurrence, p(η(si)), 

for individual samples within a grid cell, which is equivalent to predicted prevalence; I  

will  use  these two terms interchangeably  throughout  this  manuscript.   The random 

effect, w(s), was specified as a Gaussian process with a mean of zero with a covariance  

function between locations si and sj defined as:

( ) ( )jiji ssssC −⋅−⋅= ϕσ exp, 2

where σ2 defines the variance, and

φ is the spatial decay parameter.  

Prior  distributions  on  the  remaining  parameters  complete  the  hierarchical 

model.  The vector of regression effects  β was assigned an uninformative multivariate 

Gaussian prior, while the latent variance component σ2 was assigned an uninformative 

inverse gamma prior with shape and scale parameters of 2 and 1 respectively.   The 

spatial  decay  parameter,  φ,  was  assigned  a  uniform  prior  with  support  between 

effective ranges (the range at which the magnitude of correlation decays to 5% of its  

maximum  value,  calculated  approximately  as  3/φ)  of  20  and  600km,  based  on  the 

average nearest neighbor distance between knots and half the span of the study area 
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respectively.  Point locations for the spatial process were defined as the centroid of the 

plot locations within a given grid cell. I also fit the corresponding GLMs with  η(si)  =  

x(si)’β.

Fitting of Models

Models  were  fit  within  a  Bayesian  framework  using  an  adaptive  Metropolis 

within  Gibbs  sampler  .  All  covariates  were  standardized  prior  to  modeling  to  avoid 

collinearity with the intercept and thus speed model convergence.  Quadratic functions 

of each covariate were included to allow for non-linear responses.   GLM models were 

also fit within the Bayesian framework to facilitate comparison between methods.

In the fitting of GLMMs, I ran 3 independent chains in parallel to convergence 

using an iterative approach.   Individual chains were initiated using randomized starting 

values.  An initial set of 25000 iterations was assessed for convergence over the last 50% 

of iterations using two criteria.  First, I used the Multivariate Potential Scale Reduction 

Factor (MPSRF) diagnostic of Brooks and Gelman  to assess mixing of the three chains. 

MPSRF values close to one indicate good mixing of the chains.  I used a upper threshold 

of 1.3 to determine convergence.  Trace plots indicated that in some cases, the spatial 

process parameters followed a trend despite good mixing of the chains as indicated by 

the MSPRF statistic.  To check for such trends, I fit linear mixed effects models to each of  

the spatial process parameters, with slope and intercept as fixed effects and slope by 

chain as a random effect.  The chains were thinned to every 50th observation to reduce 

autocorrelation.  If MSPRF or either trend test (α=0.05) indicated a lack of convergence, 

I  resumed the  chains  for  an  additional  10000  iterations  and  repeated the  tests  for 
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convergence using the last 50% of amended chains.  This process was repeated until  

convergence  was  achieved,  requiring  a  total  of  35000  to  75000  iterations.    Upon 

convergence,  samples  were  extracted  from  the  last  50%  of  each  chain  and  were 

systematically thinned to a total of 3000 samples for further analysis.

Spatial Predictive Process GLMs

The space varying intercept term, i.e.,  a spatial  random effect,  in the GLMM 

captures  residual  spatial  dependence  and  is  modeled  using  a  zero  centered  spatial 

Gaussian  process,  see,  e.g.,  Diggle  and  Ribeiro  .   This  random  effect  follows  a 

multivariate  normal  distribution,  with  a  n-by-n  variance-covariance  matrix  that 

represents the spatial covariance among the n locations where species occurrence was 

recorded.   Estimation  of  the  model’s  parameters  requires  that  the  inverse  and 

determinant  of  this  n-by-n  be  evaluated  within  each  MCMC  iteration.   The 

computational expense of these inversions is proportional to n3, making it difficult to fit 

such  models  to  large  datasets  (>  1000  observations)  using  current  computational 

technology.   The  spatial  predictive  process  model  introduced  by  Banerjee  et  al. 

( provides an approximation to the “parent process” or the process estimated over the n 

observed locations.  Following the notation in Banerjee et al. (2008), the spatial random 

effect, w(s), where s is the geographic coordinates of an observation, is modeled over a 

reduced set of locations, referred to as knots.  Instead of inverting the n-by-n spatial 

variance-covariance matrix, the inversion is performed on a smaller matrix representing 

the spatial  association among the knots,  saving computationally expense.   Then the 

value of w(s) at the n observed locations is predicted using an optimal estimator.  The 
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original predictive process specified in Banerjee et al.  induces a bias in the variance 

parameter  estimates.  A  modified  predictive  process  which  adjusts  for  this  bias  was 

specified by Finley et al.  and used in the current analysis.  

For the current analysis, the predictive process was based on 300 knot locations, 

selected using k-means clustering on the historic data locations. Such knot designs have 

been shown to produce results comparable to other, more sophisticated, designs, see, 

e.g., Guhaniyogi et al. . Here, the most critical element of the knot design is that the  

domain is adequately covered and the distance between knots is sufficiently short to 

allow the spatial random effects decay parameter to be estimated. For my knot design, 

the median distance from each historic data point to the nearest knot location was 7.5 

km  and  the  median  nearest-neighbor  distance  between  knots  was  17.0  km.  The 

estimated spatial  decay  parameter  had a  median  effective  range  of  160  km,  which 

suggests the chosen knot intensity was sufficient. 

GLMM Predictions

Predictions over the entire study area were made using the spPredict function in 

the spBayes library, which combines posterior fixed effects and kriging interpolations of  

the random intercept.  I used historic climate data to make predictions in the historic 

period, and modern climate data to make projections to the modern period.  Modern 

projections were made using models fit  to the historic data,  and the spatial random 

intercept from this fit  was included in these projections.   Projections were made by 

pooling  1000  posterior  observations  from  each  chain.   Median  values  from  pooled 
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projections were used for accuracy assessment, and quantiles were used to construct 

credible intervals for assessment of prediction variability.

Model assessment

Candidate  models,  i.e.,  GLM  and  GLMM,  were  assessed  using  resubstituted 

historic training data (the same data used to train the model; internal validation) and 

"temporally independent" data from the contemporary period (independent validation). 

For independent validation, parameter estimates from models fit to the historic data 

were used to make projections with the spPredict function in the spBayes library and 

modern climate data.  The spatially-varying random intercept was included in GLMM 

projections.   For internal  validation,  comparisons of model fit  were made using the 

Deviance Information Criterion (DIC; ), which is a measure of prediction accuracy with a 

penalty, pD, for model complexity interpreted as the effective number of parameters.  

Although DIC has been criticized for a variety of theoretical and applied shortcomings  

(see, e.g., the discussion supplement for ), there are few alternative fit criteria suitable 

for hierarchical models and  its use for broad comparisons is reasonable.  As a measure 

of predictive accuracy for both internal and independent validation, I used AUC (area 

under the receiver operating curve; Fielding & Bell, 1997), an index ranging from 0.5 to 

1.0,  which  measures  the  ability  of  a  model  to  discriminate  between  presence  and 

absence observations.  A ROC plot is constructed by plotting sensitivity values (correctly 

predicted presences) against 1-specificity (absent when predicted present) over a full 

range of threshold values, and AUC is calculated as the area under this curve.  A larger  

AUC  values  indicates  better  ability  to  separate  observed  presences  from  observed 
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absences.   AUC  is  considered  advantageous  because  it  gives  a  single  measure  of 

accuracy  not  dependent  on a  single  threshold .   Although AUC has  been criticized 

because it doesn't consider the goodness of fit of predictions (only their ranking) and 

required reducing the data  to presence or  absence within  each grid cell,  it  remains 

useful for comparisons between candidate models for the same species.

To  directly  assess  prediction  uncertainty  I  estimated  coverage  rates  of  90% 

credible  intervals  for  probability  of  occurrence,  derived  from  posterior  predictive 

distributions for sampled grid cells.  Coverage rates were calculated as the proportion of 

observed prevalence values fell within their respective 90% credible intervals.   Because 

a logistic link function can never return a value of zero or one, I considered intervals 

including 0.001 to include zero, and intervals including .999 to include one.  

Testing the effect of grain size

To  test  the  effect  of  grid  cell  size,  I  fit  a  series  of  models  to  data  at  finer  

resolutions (4km, 1km, 270m).  The GLM models were fit using the standard iterative  

optimization  routine  rather  than  Bayesian.   Due  to  computational  constraints  I 

simulated GLMM fits using GLMs which included the spatial random intercept of the 

initial 10km GLMM fit as an offset, which is identical to including it as a predictor with a 

coefficient  fixed  at  1.  Since  the  effective  range  of  this  term was  constrained to  be 

greater than 20km, its spatial pattern should not change at finer resolutions, although 

its  magnitude  could  vary  if  it's  importance  relative  to  the  covariates  changes.    I 

calculated  GLMM  prediction  variance  as  the  linear  combination  of  variance  of  the 

random intercept and variance of it's GLM fit, ignoring potential covariance between 
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these terms.   Prediction intervals were calculated using Gaussian quantiles of prediction 

standard  error  transformed  by  the  logit  link  function.   Accuracy  for  internal  and 

independent  validation  was  assessed using  methods  identical  to  the  10km analysis,  

which required reducing multiple observations within a grid cell to single presence and  

absence.   Coverage rates were calculated as described in the previous section. 

Assessment of Residual Autocorrelation

To assess spatial dependency I used Moran’s I  test on deviance residuals  in 12 

discrete distance classes.  The classes used, in km, were:  0-15; 15-30; 30-45; 45-60; 60-

75;  75-90;  90-120;  120-150;  150-200;  200-250;  250-300;  and  300-600.   Deviance 

residuals were calculated as:

( ) ( ) ( ) ( )( )( )( )iiiiiiiiiii pnynynpnyyz ˆ1lnˆln2sgn −⋅−⋅−+⋅−⋅⋅⋅=     0<yi<ni

     ( )ii pn ˆ1ln21 −⋅⋅⋅−=                                                                                   yi=0

     ( )ii pn ˆ1ln2 −⋅⋅=                                                                                          yi=ni

where yi is the observed number of presences in grid cell i, n i is the number of 

observations, ip̂  is the estimated probability of occurrence, and sgn is 1 if  iii pny ˆ. ⋅≥  

and -1 otherwise.   

 The formula for Moran's I is:
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where  n  is  the  sample  size,  yi and  yj are  the  ith and  jth deviance  residuals 

respectively, S is the number of observations within a distance class, and w ij is a weight 

which is assigned 1 for observations within a distance class and 0 otherwise.     Global 

significance was assessed using the minimum p-value of these tests after adjustment for 

multiple comparisons using the method of Holm .  Range of significant autocorrelation 

was estimated as the upper limit of the furthest significant bin for which all lesser bins 

were also significant.  Magnitude of autocorrelation was measured using the value of  

the Moran’s I statistic in the first distance class, which included only adjacent grid cells.  

Range size estimates

I  estimated range size as the cumulative area of cells for which the posterior 

predicted probability of occurrence was above a threshold value.  The threshold value 

was  chosen to  minimize  the  difference  between sensitivity  (proportion  of  presence 

observations correctly predicted)  and specificity  (proportion of  absence observations 

correctly predicted) for the historic data used to fit the models.  This threshold was 

calculated individually for each model and species.  I tested the statistical significance of  

range size change by subtracting the posterior distributions of range size estimates for 

the two time periods to generate a posterior for range size change; if the 90% credible 

interval for this distribution excluded 0, the change was deemed significant.

In  addition  to  estimating  overall  changes  in  range  size,  I  identified  where 

significant changes to the species ranges were predicted to occur.  For each grid cell I  

compared the posterior predictive distributions in the historic period to those for the 

modern period (see figure 9).  From the historic posterior I calculated the probability of 
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observing a value as extreme or more extreme than the median projected value for the 

modern period.

Displaying uncertainty

In  order  to  graphically  depict  uncertainty  in  the  predictions,  I  adapted  the 

methods of Hengl et al. .  Median predictions for each grid cell were displayed using a 

color ramp and degree of uncertainty (width of a 90% credible interval) was shown by 

increasing the whiteness of these colors.

RESULTS

Internal Validation

Internal validation showed significant differences between model fits (Table 3 

and Fig.  4).   Median  DIC  scores  dropped by  454.6  for  GLMMs compared to  GLMs,  

despite a median increase in model complexity of  pD =87.5, suggesting a considerable 

improvement in fit for GLMMs over GLMs.  AUC scores for GLMs had a median value of 

0.88, indicating good discrimination between presence and absence observations (Swets 

1988).   GLMMs  yielded  a  median  AUC  score  of  0.98,  indicating  near-perfect 

discrimination between presence and absence observations.  Coverage rates for GLMMs 

had a median value of 0.91, very close to their nominal value of 0.90, while those for  

GLMs had a median value of 0.46, implying overconfident predictions from the latter.

The posterior  distributions of  regression coefficients differed greatly between 

GLMMs and GLMs.  Standard errors of GLMM coefficients were, on average, 2.17 times 
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greater than that of GLM coefficients.  GLMMs had fewer significant coefficients; of the  

5 covariates examined,  the mean number that  were significant  as  either 1st  or  2nd 

order (90% credible interval  not including 0) was 4.5 for GLMs, and 3.0 for GLMMs. 

There  were  no  strong  patterns  with  regard  to  which  covariates  were  found  to  be 

significant.  GLM estimates generally fell within the 90% GLMM credible interval (70.4% 

of all parameter estimates).  

The Moran statistics and range of autocorrelation given in Table 3 show that  

GLMMs nearly eliminated spatial autocorrelation of residual error (although 3 of the 99 

species  still  showed significant  dependence with adjacent  grid cells),  while  all  GLMs 

exhibited significant autocorrelation of residual error with a median range of 45km.  

Table 3:  Summary of median fit statistics on historic data (internal validation) for 
models fit for 99 plant species.  Coverage is proportion of times a 90% 
credible interval for probability of occurrence contained the observed 
prevalence value.  Range refers to the range of significant spatial 
autocorrelation found in binned Morans I tests.  pD is a measure of model 
complexity, interpreted as the effective number of parameters in each 
model.  DIC is the Deviance Information Criterion, lower values indicate 
better fit.  Different letters indicate significant difference based on a 
matched-pairs t-test between models, adjusted for multiple comparisons 
following the method of Holm (1979).

AUC coverage range (km) Morans I pD DIC

GLM 0.88a 0.46a 45a 0.28a 10.7 2012

GLMM 0.98B 0.91b 0b -0.02b 98.2 1557
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Figure 4:  Fit statistics under internal (historic data) and independent (modern data) 
validation.  Coverage rates, shown in the right column, are the proportion 
of times a 90% prediction interval captured observed prevalence.
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Figure 5:  :  (a) Median fitted value of the GLMM spatial random intercept for Salvia  
melliferra (Black Sage).  This can be interpreted as a latent covariate 
representing unobserved processes with spatial structure.  Higher values 
indicate greater suitability than predicted by the climatic covariates 
included in the model.  Note that the random intercept is not logit-
transformed, so its values are not restricted to 0-1.  (b) Standard 
deviation of spatial term.  This is the amount of variability added to 
predictions by the spatial process term.  
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Figure 6:  :  Example of fitted models for black sage (Salvia melliferra).  The left panel 
shows predicted probability of occurrence from the spatial GLMM model. 
Color indicates the prediction while the degree of whiteness indicates 
width of a 90% credible interval.  The right panel shows the same for the 
non-spatial GLM model.

Independent validation

Validation with modern data yielded lower mean accuracy statistics than internal 

validation for both GLM and GLMMs  (Table 2 and Fig. 4).   AUC values were slightly 

higher for GLMMs compared to GLMs.  Coverage rates for GLMMs showed only a slight 

drop (compared to internal validation), remaining very close to their nominal value of  

0.90 (Table  4),  while  those for  GLMs improved but  remained poor.   Restricting the 

independent validation to those grid cells that had been sampled historically (roughly 

50% of historic grid cells were resampled) had little effect on accuracy statistics but  

caused a  slight  drop  in  coverage  rates  for  both  candidate  models,  while  restricting 

validation to cells not sampled historically had also little effect on AUC but caused a 

slight increase in coverage rates for both candidate models (results not shown) as was 

previously demonstrated in 
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Table 4:  Summary of median fit statistics on the modern data (independent validation) 
for models fit for 99 plant species.  Coverage is proportion of times a 90% 
credible interval for p(occurrence) contained the observed prevalence 
value.  Letters indicate significant differences in matched-pairs t-tests, 
adjusted for multiple comparisons following the method of Holm (1979).

AUC coverage
GLM 0.88a 0.61a
GLMM 0.89b 0.87b

Effect of scale

Reducing the grain size of the analysis from 10km to 4km, 1km and 270m had 

little effect on GLM results, but GLMMs showed a drop in both accuracy and coverage 

rates when going to smaller grain size (figures 7 and 8).      

Figure 7:  Effect of grain size on accuracy statistics.  
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Figure 8:  Effect of grain size on coverage rates

Figure 9:  Range size estimates in square kilometers for the modern period by method. 
Red dashed line is 1:1.
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Range size estimates and predicted changes

Mean  range  size  estimates  were  correlated  between  time  periods  (Pearson 

correlation  coefficient  r  =0.94  GLM,  r=0.99  GLMM)  and  candidate  models  (r=0.65 

historic,  r=0.68 modern).  Range  size estimates  varied by model  with GLM estimates 

averaging ~70% larger than GLMM estimates for both time periods (Fig. 7).   Interval  

widths for estimated range size averaged 48.4% of range size for GLMMs vs. 25.0% for 

GLMs.  Estimated changes in range size were also highly correlated between candidate 

models (r=0.77), but GLMM estimates predicted, on average, 50% smaller changes in 

range  size.   Figure  8  shows  estimates  of  percent  range  size  change  by  model, 

highlighting estimated changes that were significant (α=0.10).  It is notable that the two 

models predicted similar numbers of significant changes, but in many cases failed to 

agree on which species were facing these changes.  Figure 9 shows an example of the 

spatial distribution of predicted changes in probability of occurrence for Salvia mellifera.

DISCUSSION

Performance under internal vs. independent validation

GLMMs  consistently  outperformed  GLMs  under  internal  evaluation,  but 

performed similarly when confronted with independent data.  Under internal validation, 

the flexibility of the spatially structured random intercept allowed it to capture spatial  

patterns not accounted for by the climate covariates.  These patterns were smooth in 

space,  as  evidenced by  the spatial  autocorrelation  of  GLM errors  and the ability  of 

GLMMs to account for these errors.   The similar performance of the candidate models 

under  independent  validation  was  surprising.   This  is  apparently  due  to  a  lack  of 
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temporal  persistence,  for most species,  of  the latent effects captured by the spatial  

random intercept.  In effect, many of the species' observed distributions shifted in ways 

which could not be explained by the climate covariates.  There are several ways in which 

this result can be interpreted.  It could be attributable to a climate effect not captured 

by the covariates, or it could be the result of biotic interactions, population dynamics,  

disturbance, or land use change occurring within a broader envelope of environmental 

tolerance than is estimated by the GLM models.  Spatial mis-match of the samples from 

each time period can be ruled out since the result holds when the validation data is 

subset to previously sample grid cells.  

From a Bayesian perspective, the spatial random intercept can be viewed as an 

informative prior for projections into new temporal domains – drawing the projections 

back toward the historic ranges when information in the covariates is lacking.  If the  

latent effects represented by the spatial random intercept are expected to change over 

time,  it  may  be  desirable  to  specify  a  temporally  dynamic  residual  spatial  process, 

allowing the influence of the spatial random intercept to evolve over space and time, 

see, e.g., Finley et al. .  To my knowledge, this methodology has not been applied to 

SDM projections.

  

Projection Uncertainty

Although the spatial random intercept did not markedly improve the projection 

accuracy of  GLMMs, its  ability  to account  for  variability  not  explained by covariates 

yielded improved estimates of uncertainty.  Including such estimates alongside mean 
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projections gives a ‘map of ignorance’ as called for by Rocchini et al. (2011), highlighting 

areas where knowledge is lacking and could be improved with additional sampling effort  

or the inclusion of additional covariates.  For instance, for Salvia mellifera, a historically 

calibrated GLM projection showed high probability of occurrence in the coastal regions 

of Southern California, the southern reaches of the Central Valley, and eastern portion 

of  the Mojave desert  (Fig.  6).  These projections are flawed as  the species does not 

currently occur in the latter two regions of the state. In contrast, the influence of the  

spatial random intercept term in the GLMM projection (Fig. 5) is readily apparent as the 

latter  two  regions  of  the  state  show  lower  probability  of  occurrence  and  more 

importantly,  higher  levels  of  uncertainty  in  projections  to these regions  (Fig.  5).   In  

addition to improving the projections, the spatial random intercept term can provide 

biogeographical  insights  into  latent  covariates  that  can  better  explain  the  species 

distribution.  In this case, the unobserved spatial process may be frequent disturbance 

from fire in the coastal sage and chaparral communities in which this species is found. 

Salvia mellifera has facultative fire adapted reproductive traits  and although I cannot 

definitively prove that the spatial intercept is actually characterizing this latent process, 

this  interpretation  is  consistent  with  the  disturbance  regime of  the  region  and  the 

autecology of the species.   
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Figure 10:  :  Estimates of percent change in range size over the 75-year study period for 
all species.  Percent change is relative to mean estimated range size for 
the historic period.  Estimated change for GLM models is shown along the 
x-axis, while change for spatial GLMM models is shown on the y-axis.  The 
thick dashed line is 1:1.  Spatial GLMMs generally predict smaller changes 
in range size, and the significance of changes varies between methods.  

Conservation applications

Conservation  applications  of  SDMs  such  as  reserve  design   and  assisted 

migration of species  represent costly management actions involving complex decisions 

for  which the consequences of  mistakes are high.    An entire science was long ago 

developed  around  decision  making  in  the  face  of  uncertainty  ,  yet  standard  SDM 

methods  are  ill  equipped  to  provide  the  needed  information.   The  independently 

validated estimates of uncertainty I have presented have utility in this context, allowing 

alternatives to be assessed with regard to the confidence of projections.  The results I 

present for  Salvia mellifera provide a relevant hypothetical example (Fig. 6).  If there 

were concerns over habitat loss for this species, circa 1935, then GLM results suggest 

the southern Central Valley and Sierra Nevada ecoregion as plausible translocation sites 
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for  assisted  migration  planning.   However,  the  GLMM  projection  suggests  that  the 

suitability  of  these  regions  is  far  from  certain,  providing  useful  information  to  a 

hypothetical conservation planner.  

SDMs are also used to project loss of habitat and subsequent extinction risk . 

Estimates  of  habitat  loss  (or  gain)  are  driven  by  the  shape  of  response  curves  for 

individual  covariates,  making them sensitive to model  specification.   In this  context,  

spatial regression methods such as GLMMs offer a distinct advantage in that they have 

been shown to give more precise parameter estimates and are less likely to identify 

spurious covariates as significant in the presence of spatial autocorrelation .  The latter 

issue can be especially problematic when automated model selection techniques are 

used  in  conjunction  with  non-spatial  SDM  methods,  a  situation  common  in  SDM 

applications.  In my analysis, GLMMs yielded more conservative estimates than GLMs of 

range size and range size change through time.  This was likely due to the ability of the  

spatial random intercept to correctly identify areas of known absence not predicted by 

climate alone.  Additionally, predicting a contraction or expansion of suitable habitat 

may be of  limited use for  conservation planning without regard to spatial  context.  I 

demonstrate  that  the  posterior  distributions  of  model  projections  can  be  used  to 

distinguish between areas where habitat  loss (or  gain)  is  more certain compared to 

areas where change is less certain (Fig. 9).   This type of analysis is valuable because 

changes  occurring  in  areas  where  we  have  very  little  confidence  in  our  original  

estimates should be of less concern than changes occurring in areas known to contain 

the focal species.   
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Caveats

Numerous criticisms could be made of my methods.   Weaknesses include the 

coarse resolution of the study, missing predictors, and misspecification of models.   I  

used GLMs for comparison, yet studies have shown more sophisticated methods such as 

generalized additive models, Random Forest, and  Boosted Regression Trees to produce 

better fitted models (e.g..  Although such methods offer many advantages, little focus 

has been given to their estimates of projection uncertainty, and their accuracy under 

spatially  (Randin  et  al.  2006)  and  temporally  (Dobrowski  et  al.  2011)  independent 

validation has been questioned.  The other weaknesses noted above should affect both 

candidate models equally, although the advantage of GLMMs would disappear under 

conditions in which a model is correctly specified and all relevant predictors included, 

conditions rarely encountered in practice .  Finally, one might look to other approaches 

to  assess  candidate  models’  predictive  ability,  see  e.g.,  Gneiting  and  Raftery   for  a 

discussion of proper scoring rules. 
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Figure 11:  :  Estimated change in probability of occurrence over 75 years for Salvia  
melliferra.  The left panel shows the spatial GLMM estimates while the 
right panel shows non-spatial GLM estimates.  Color ramp indicates 
magnitude of predicted change while degree of saturation conveys the 
result of a statistical test for per-pixel change in suitability over time, with 
darker colors indicating areas where significant change in habitat 
suitability.   Inset plots show, for a single grid cell extracted from the 
central valley region, posterior distributions of predicted probability of 
occurrence for the two time periods and both methods. The black lines 
show the posterior distribution for the historic period while the red lines 
show the posterior for the forecast of the historic model to the modern 
period.  Vertical black lines show the 90% prediction intervals for the 
historic period, while the vertical red lines show the median value for the 
modern period.  The width of the 90% prediction interval is analogous to 
that used to convey uncertainty in figure 6.  Cases in which the modern 
median fell outside the 90% prediction interval for the historic period are 
considered significant at the 10% level.  For the highlighted grid cell, the 
spatial GLMM did not predict a significant change while the non-spatial 
GLM did.  

Chapter 3:  Conclusions and future research

I found that spatial regression models, although they produced similar levels of 

projection  accuracy  under  independent  validation,  gave  improved  estimates  of 

uncertainty over non-spatial methods fit to the same data.  The ability of GLMMs to 

account for residual SAC and hence provide valid estimates of uncertainty suggests they 

are  more  suitable  for  drawing  inference  about  SDM  parameters  and  subsequent 

predictions.  The degree of uncertainty was high in the fitted models, but their output 

provides valuable insight into the nature of this uncertainty and suggests ways it might  

be reduced.  GLMM methods produced more conservative estimates of range size and 

range size change, and although we cannot definitely say these are more accurate than 

those derived from conventional methods, the statistical validity of GLMMs favors their 
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estimates.  Useful projections of species’ distributions into the future require an honest 

assessment  of  projection  uncertainty.   GLMMs  with  a  spatially  structured  random 

intercept offer a clear improvement over commonly used methods.

Future work should focus on several issues.  I have shown that GLMMs offer a 

accurate  and  useful  estimates  of  projection  uncertainty,  but  each  model  required 

several days to fit.  Improvements to their computational efficiency would increase their  

practicality.  In the SDM literature projection uncertainty has been frequently discussed, 

but little thought has been given to how these estimates should be presented and used 

in conservation planning applications.  I have provided some ideas on these topics, but 

others could certainly provide additional useful insight.   Finally, my analysis revealed 

strong spatial patterning in species distributions which could not be explained by the 

climate covariates considered.  It  would be very interesting to investigate additional  

factors which may be able to explain these patterns, and factors such as land use change 

which may explain the shifts these distributions showed over time.  
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