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ABSTRACT 
 
Skewed sex ratios can have negative implications for population growth or persistence if not 

congruous for a species system.  A skewed tertiary sex ratio (2.3 males per female) has been 

detected in the breeding population of a grassland shorebird experiencing population 

declines, the mountain plover (Charadrius montanus).  To evaluate the ontogeny of the 

observed male skew this study examined the early life stages, from laying to fledging, of 

mountain plover young during their breeding season from 2010 – 2012 in eastern Colorado.  

The life stages between laying and fledging that allows for differentiation between 

production and survival of males and females.  Early stages encompass the primary (eggs 

produced) ratio which allows for evaluation of applied sex allocation theory, the secondary 

sex ratio (successfully hatched chicks) which determines if a sex specific mortality is 

occurring pre-hatching, and the chick stage which determines if a sex specific mortality is 

occurring post-hatching.  Mountain plovers are a sexually monomorphic species at all stages 

therefore DNA samples were used to determine the sex of individuals.  The primary sex 

ratio was 1.01 (± 0.01) males per females.  The secondary sex ratio consisted of 1.1 (± 0.02) 

males per female.  Neither the primary nor secondary sex ratio was able to account for the 

magnitude of the skew observed later in this species adult population.   Radio telemetry was 

used to evaluate the next stage of life, survival of male and female chicks from hatching until 

fledging. Using a multi-state mark recapture analysis, the top model for predicting chick 

survival rates estimates differed between males (0.55 ± 0.13) and females (0.47 ± 0.15).  The 

estimated survival difference between the sexes during the chick stage can drive a population 

with equal survival rates at all other life stages to a ~2.1 :1 adult sex ratio.  Results from this 

study suggest survival difference between males and females at the chick stage is possibly 

contributing to a male skewed population.   

  



  iii 
 

Table of Contents 
Abstract .................................................................................................................................................. ii 

Acknowledgements ............................................................................................................................. iv 

List of Figures ...................................................................................................................................... iv 

List of Tables ....................................................................................................................................... xi 

Chapter 1: Primary and secondary sex ratios in mountain plovers (Charadrius montanus) .......... 1 

Introduction ...................................................................................................................................... 1 

Methods ............................................................................................................................................ 5 

Data Collection ............................................................................................................................ 5 

Statistical Analysis ....................................................................................................................... 6 

Results ............................................................................................................................................... 7 

Discussion ......................................................................................................................................... 9 

Literature Cited .............................................................................................................................. 11 

Chapter 2: Factors influencing male and female mountain plover (Charadrius montanus) chick 
survival ................................................................................................................................................. 20 

Introduction .................................................................................................................................... 20 

Methods .......................................................................................................................................... 23 

Study Area .................................................................................................................................. 23 

Survival of male and female chicks ......................................................................................... 24 

Factors that influence male and female chick survival ........................................................ 25 

Statistical Analysis ..................................................................................................................... 26 

Results ............................................................................................................................................. 27 

Discussion ....................................................................................................................................... 28 

Literature Cited .............................................................................................................................. 31 

Chapter 3: Implications of a male skewed sex ratio on the mountain plover (Charadrius 
montanus) population .......................................................................................................................... 44 

Introduction .................................................................................................................................... 44 

Methods .......................................................................................................................................... 45 

Results ............................................................................................................................................. 46 

Discussion ....................................................................................................................................... 46 

Management Implications ............................................................................................................ 47 

Literature Cited .............................................................................................................................. 48 

 
  



  iv 
 

ACKNOWLEDGEMENTS   

I would like thank all the people, agencies, and organizations that assisted in making my 

graduate work possible.  This journey would not have been the same without the efforts, 

input, and support of many people.     

 I need to start off by thanking Vicky Dreitz, to whom I will forever be indebted.  I 

cannot thank you enough for taking a chance on me.  I appreciate the unbelievable support, 

trust, confidence, and responsibility you placed in me over the years.  You opened my eyes 

to a world I did not know existed and instilled in me a love and passion for this field.  You 

started out as a boss, became my advisor and someone I look up to and truly admire. You 

became not only my mentor, but a friend.  I will forever be grateful for all you have done for 

me.   

 Next I would like to extend my deepest gratitude to Paul Lukacs for being so willing 

to accept me as his first graduate student in the Wildlife Biology Program at the University 

of Montana.  Paul, I cannot thank you enough for your constant open door, patience, and 

guidance that you gave me all throughout my graduate career.  Your insight and ability to 

attack any problem from what seems like unlimited angles is remarkable.  I hope you know 

how much I appreciate you making my graduate degree possible.   

 I am sincerely grateful to Tom Martin, my committee member, who became a valued 

mentor and helped guide me through this process.  Tom’s in-depth knowledge on so many 

things is unmatched and I am so grateful to have benefited from his input.  Tom always 

maintained an open door and offered constructive suggestions and helpful advice.  I feel so 

fortunate to have had Tom on my graduate committee.   

 I had the great pleasure of being a part of not one, but two amazing lab groups.  

Starting off as a sole lab member was a rewarding experience, but did not compare to what I 



  v 
 

received as both the Dreitz and Lukacs labs grew.  Anne Schaefer, Sara Williams, Jessie 

Golding, and Josh Nowak, I am not sure what I would have done without each one of you.  

I am sincerely grateful for the academic insight, feedback, and constructive criticism that 

each one of you provided for me.  Aside from just the academic setting, we have developed 

friendships that I have no doubt will continue.  I also want to thank an honorary Dreitz Lab 

member, Jennifer Hernandez, for the time you dedicated to watching practice presentations, 

reading drafts, and discussing my research.   

 Transferring graduate schools with my advisors mid-program was not something I 

planned when first beginning my graduate journey; however, I could not be happier with 

where it brought me.  I feel so fortunate to have become a part of the incredible Wildlife 

Biology Program at the University of Montana that is filled with so many amazing people.  I 

am so glad that I was able to be a student before our program director, Dan Pletscher, 

retired.  Dan you have done such a phenomenal job of building this program and fostering 

such an encouraging, productive, fun, and supportive environment.  I am also especially 

grateful for Jeanne Franz and Vanetta Burton.  I cannot thank either of you enough for the 

numerous times you helped me by answering a ridiculous number of questions, filling out 

paperwork, working out travel plans, along with a long list of other things.  The friendships 

developed with fellow graduate students in the Wildlife Biology Program have turned this 

challenging experience into a great one.  I have never experienced such a close, welcoming, 

and tightknit student community.  I am truly honored to be surrounded by so many great 

people that made time both in and out of class a pleasure.   

 Prior to transferring to the University of Montana, I spent one semester at Colorado 

State University under Dr. Kate Huyvaert’s guidance.  I am very grateful for the insights that 

Kate provided in the early stages of my graduate career.  Kate’s advice for a young 



  vi 
 

developing scientist was incredibly helpful.  I know the time I was your student was short, 

but I am grateful for the time, energy, and help you dedicated to me.    

 I feel very lucky to have worked on a species that so many people are passionate 

about. I want to thank fellow mountain plover researchers Fritz Knopf, Walt Graul, and 

Paul Skrade.  Fritz’s love for mountain plovers was contagious and spread to me even before 

I started my graduate project.  Fritz, Walt, and Paul all shared their insight, answered 

questions, and took time to discuss my research.  Thank you all for sharing your in-depth 

knowledge and love for this species.    

  My heartfelt gratitude goes to the entire town of Karval, Colorado.  This research 

would not have been possible without the support of the landowners of this community, 

who welcomed our research team with open arms and provided a second home for me over 

the past three years.  Talking and interacting with the great people in Karval reinforced my 

faith in the future of conservation, and continued to increase my love for what I do.   I have 

learned so much from this town and am so appreciative for everything they have done for 

me over the years.    

 I would like to thank all of the technicians that helped collect these data: Cody 

Archuleta, Andy Bankert, Erin Birtwistle, Tyson Dallas, Zoe Glas, Jared Green, Alan 

Harrington, Kristen Hosek, Laura Jenkins, Patrick Kelly, Kristen Kovach, Bill Lutz, Lindsey 

Messinger, Cory Sample, Nick Schwertner, and Lani Stinson.  The field work for this project 

was intensive and I am grateful for the time and effort each of you dedicated.  I have to 

single out Lindsey Messinger who was my right hand for two years; I am not quite sure what 

I would have done without you.  

 I would like to thank Colorado Parks and Wildlife and all of the personnel within the 

agency who made this project possible and helped me out along the way.  Jim Gammonly 



  vii 
 

provided valuable feedback on drafts.  I am thankful to have been a part of your avian 

research program and am grateful to you for supporting my graduate research.  I am so 

fortunate to have had Lee Olton’s help, especially in the final year of the project.  Lee 

assisted with all the paperwork and behind-the- scenes logistics that allow such a large 

project to run.  Margie Michaels always had an open door and was there to help me find an 

answer to numerous questions.  Chris Woodward spent many hours helping me 

troubleshoot endless technological problems.  Dennis Neuburger assisted with equipment, 

vehicles, and many other odds and ends.  Brian Smith and Al Keith spent many hours on 

long plane rides and provided entertainment while trying to find sometimes hopeless cases 

of lost transmittered birds.  They were always able to get me up in the air despite their very 

busy schedules.  Finally, I am grateful for everyone at CPW that supported me, took time to 

discuss my research, or just provided an open door to talk throughout my time working in 

Fort Collins.   

 In addition, I would like to acknowledge the various foundations, organizations, and 

agencies that have supported this work.  Colorado Parks and Wildlife, The University of 

Montana, Colorado State University, the US Fish and Wildlife, The Colorado Chapter of the 

Wildlife Society, and The Lois Webster Fund for the Greater Denver Area were all integral 

in allowing my research to happen.  I feel so fortunate to have had support from so many 

great organizations.    

 Finally, this research would not have been completed without the support of my 

family.  All my life my parents have fostered an encouraging environment to pursue a career 

that I was passionate about.  My ability to make it to where I am reflects the strength of 

character and work ethic you both have instilled in me from a very young age.  I want to 



  viii 
 

thank my parents and siblings for supporting me unconditionally in whatever I’ve decided to 

do throughout my life.   

  



  ix 
 

LIST OF FIGURES 

Chapter 1. 

Figure 1-1. Estimates of the primary (ratio of all fertile eggs produced) and secondary (ratio 

of all successfully hatched chicks) sex ratio of mountain plover (Charadrius montanus) 

based on data collected from 2010-2012 breeding seasons in eastern Colorado.….15    

Figure 1-2. Proportion of males within a nest and their corresponding day of hatch (day 1 = 

May 9).  Successfully hatched (≥ 1 egg hatched) mountain plover (Charadrius 

montanus) nests (n = 44) where sexes of all eggs within a clutch was known from 

DNA samples collected during the 2010-2012 field seasons in eastern Colorado.  

The number of eggs within a clutch is illustrated by relative size of symbols (small = 

2, medium = 3, large = 4).  Sex of the tending adult is illustrated by the color of the 

shape (black = male tended nests, white = female tended nests, and gray = unknown 

sex of tending adult)………………………………………………………………16      

 

Chapter 2. 

Figure 2-1. Diagram illustrating the multi-state mark-recapture model used to analyze 

mountain plover (Charadrius montanus) chick survival between males and females.  

Data were collected in eastern Colorado from 2010-2012.  Multi-state parameters 

include: transition (ψij; i=state at time t, j=state at time t+1) probabilities between 

states and detection probabilities (p) while in states. Transition probabilities are based 

on the probability of a chick moving or remaining in a state on a daily basis.  Three 

states are defined as alive (A), dead (D), and unobserved (U)……………………37   

 



  x 
 

Figure 2-2. Male and female mountain plover (Charadrius montanus) chick survival estimates 

over a 30 day fledging period using data collected from 2010-2012 breeding season in 

eastern Colorado…………………………………………………………………38   

Figure 2-3. Survival probabilities of male and female mountain plover chicks based on data 

collected from 2010-2012 in eastern Colorado.  Graph illustrates the relationship of 

survival probabilities between male and female chicks and day of hatching within the 

breeding season starting at day 1 (May 9) and continuing through day 68 (July 

15)…..…………………………………………………………………………….39 

 
Chapter 3. 

 
Figure 3-1.  Estimated male to female ratio in the mountain plover (Charadrius montanus) 

population after running 50,000 simulated iterations based on a 1:1 sex ratio in the 

population at t=1.  Estimated sex ratio is based on survival rates at different life 

stages (nest, chick, juvenile, adult) with equal survival for males and females except 

during the chick stage (male chick survival = 0.55, female chick survival = 0.47).  

Chick survival rates were estimated from data collected in eastern Colorado during 

the 2010-2012 breeding seasons…………………………………………………49 

  



  xi 
 

 
LIST OF TABLES 

 
Chapter 1. 

Table 1-1.  Data collected on eggs produced by mountain plovers (Charadrius montanus) in the 

2010-2012 breeding seasons in eastern Colorado.  Unknown are eggs produced that 

were fertile but sex was unable to be determined…………………………….……17 

Table 1-2. Logistic regression models for predicting sex of mountain plovers (Charadrius 

montanus) during the egg stage in eastern Colorado from 2010-2012. Covariates used 

to analyze sex of eggs include hatch day (1 through 68; day 1= May 9), adult sex (sex 

of tending adult), year, and clutch size (2-4 eggs).…………………………………18 

Table 1-3. Logistic regression models for predicting sex of mountain plovers (Charadrius 

montanus) chicks at hatching in eastern Colorado from 2010-2012. Covariates used to 

analyze sex of chicks include hatch day (1 through 68; day 1= May 9), adult sex (sex 

of tending adult), year, and clutch size (2- 4 eggs)…………………………………19 

 

Chapter 2. 

Table 2-1. Summary of models constructed for mountain plover (Charadrius montanus) sex 

specific chick survival in eastern Colorado from the 2010-2012 breeding season.  All 

models compare male and female survival probabilities.  Covariates used to analyze 

survival of chicks include hatch day (1 through 68; day 1= May 9), adult sex (sex of 

tending adult), temperature (average daily temperature during incubation), egg 

volume, tarsus (length of tarsal bone), mass (chick mass at hatching), year, and 

habitat type (grassland, grassland with prairie dogs, and agricultural fields)………40 



  xii 
 

Table 2-2. Summary of samples collected for mountain plover (Charadrius montanus) sex-

specific chick survival during the breeding seasons from 2010 to 2012 in eastern 

Colorado……….…………………………………………………………………41 

Table 2-3. Models from sex-specific chick survival analysis of mountain plovers (Charadrius 

montanus) from data collected in 2010-2012 breeding seasons in eastern Colorado.  

Models presented are the top ranked models from a multi-state survival analysis that 

are within 2 AICc units.  Models are listed in descending order of AICc ranking with 

their parameter estimate (β), standard error (SE) and confidence interval…………42 

Table 2-4. Covariates used to evaluate survival differnces between male and female mountain 

plover (Charadrius montanus) chicks from the 2010-2012 breeding seasons in eastern 

Colorado.  Survival analysis used the mean value listed below for quantifyable values 

with their mean and range. Categorical values are denoted below with the proportion 

of individuals in that specific category and their standard error……………………43   

 
Chapter 3. 

Table 3-1. Male and female mountain plover (Charadrius montanus) survival estimates used in 

a population model.  Estimates used from this study were based on data collected 

from the 2010-2012 breeding seasons in eastern Colorado….……………………..50



  1 
 

CHAPTER 1: PRIMARY AND SECONDARY SEX RATIOS IN MOUNTAIN PLOVERS 

(CHARADRIUS MONTANUS)  

INTRODUCTION 

Sex ratios are a key aspect of a population’s natural history and are important in 

understanding behavior, social structure, and breeding system dynamics (Szekely et al. 2006, 

Kosztolanyi et al. 2011).  As a result, understanding what drives skewed sex ratios can be a 

significant component in predicting a species future population growth, viability and 

vulnerability to extinction (Hardy 2002, Donald 2007).  Although Fisher’s (1930) equal 

investment principle predicts that a population converges to a 1:1 equilibrium, many skewed 

sex ratios have been well documented across different taxa.  In many of these cases, Fisher’s 

assumption that the population is equally investing into the two sexes is not met (Hamilton 

1967).  Explanations for skewed sex ratios are numerous and typically are species-specific.  

Skewed sex ratios can arise as an adaptive trait of a species; however, skewed populations 

can be a result of stochastic or deterministic events that may result in demographic changes 

(Hamilton 1967, Clutton-Brock 1986, Hardy 2002, Donald 2007).  Knowledge of the 

mechanism(s) that cause a population to exhibit a skewed sex ratio is necessary in 

determining if a skew has non-adverse effects or  a conservation concern because of possible 

future inhibition of population persistence.   

One explanation for a skewed sex ratio is a species’ breeding system which includes 

aspects of a species’ social mating (degree of pair-bond) and parental care (degree of care by 

each sex; Reynolds and Szekely 1997, Thomas et al. 2007).  A species breeding system may 

reflect an adaptive skewed sex ratio or may be an associated response of a skewed sex ratio 

to natural selection.  Mating systems such as polyandry, polygyny, and monogamy often 

correspond to associated parental care systems such as male-only, female-only, and 
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biparental care, respectively (Szekely et al. 2006).  A higher proportion of males or females 

may be necessary for maximum reproductive output for the population depending on the 

species’ breeding system.  For example, in a polyandrous system where males are the care 

provider, male parental care may be the limiting factor in successful recruitment of offspring.  

In this case, a higher proportion of males would be advantageous, representing an adaptive 

aspect of this species’ breeding system and would be predicted to produce a higher number 

of males.   However, a skewed sex ratio may not be adaptive and a species may adjust their 

breeding strategy as a response to the proportions of males to females contibuting to 

reproductive effort of the population (McNamara et al. 2000, Kokko and Jennions 2008, 

Kosztolanyi et al. 2011).   

A skewed sex ratio can arise as a result of environmental factors that lead to 

demographic change, possibly having negative consequences on population viability.  Sex 

ratio is an important component when estimating extinction risk (Brook et al. 2000) and 

extinction risk is suggested to be higher for populations with a male skewed sex ratio than 

with a female skewed sex ratio (Donald 2007).  A male dominated population can have 

adverse implications for several reasons.  First, a skewed ratio may have arisen from a higher 

mortality rate among females and increased mortality in itself can lead to a population 

decline.  Secondly, density-dependent mechanisms can have negative effects with heavily 

skewed sex ratios.  For example, in low density populations the probability of encountering 

an individual of the opposite sex can be greatly reduced.  This could subsequently increase 

both the time and energy expended searching for a mate, potentially affecting the fitness of 

both parents and their young.  Populations near carrying capacity with more males that are 

not contributing to reproductive output can lead to increased resource competition.  

Additionally, if males are not the limiting sex in production of offspring, male skewed ratios 



  3 
 

have important implications for growth rates of populations through influence on 

reproductive potential.  Cumulatively, having more males can affect population dynamics, 

potentially leading to population decline.  

The stage within a species’ life cycle at which a skewed sex ratio arises may explain its 

role in the population and assist in understanding whether the population is producing more 

of one sex, or if sex-specific mortality is occurring.  Sex ratio can be defined at three main 

stages within a species life cycle: primary, secondary, and tertiary sex ratios.  Mayr (1939) 

defined the primary sex ratio as the number of male to female eggs produced and the 

secondary sex ratio as the male: female ratio of successfully hatched chicks for the avian taxa.  

Tertiary sex ratio is the ratio of sexually reproductive individuals and referred to as the adult 

sex ratio (Mayr 1939).  Evaluation of each of these stages is necessary to understand if one 

sex is produced at a proportionately higher rate, suggesting an adaptive trait, or if there is a 

sex-specific mortality occurring.  Such an understanding is important in species that are 

facing population declines.   

Mountain plover (Charadrius montanus) is an upland shorebird that is experiencing 

population declines and exhibits a male skewed tertiary sex ratio on their breeding 

(Dinsmore et al. 2002, Dinsmore and Knopf 2005, Dreitz 2009) and wintering grounds 

(Knopf and Wunder 2006).  A tertiary skew ranging from 1.6 (Dreitz 2009) to 2.3 (Dreitz 

unpublished data; 107 males, 47 females in eastern Colorado) males per female has been 

observed in nesting birds from one study area within their breeding range.  A sex bias in this 

population may have adverse effects and is contributing to the population decline.  

Conversely, mountain plovers may be adaptively responding to the skew or the skew may be 

adaptive for this species breeding system.  
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 Shorebirds as a group have been noted for their extreme diversity in breeding 

strategy (Szekely et al. 2006, Thomas et al. 2007, Garcia-Pena et al. 2009).  Mountain plovers 

exhibit a rapid multi-clutch breeding system where at least two nests are laid: one for the 

male and one for the female to attend (Knopf and Wunder 2006).  Uniparental care begins 

with incubation and continues through the chick rearing period (Graul 1975).  Little is 

known about this unique uniparental care by both sexes.  Female mountain plovers may lay 

more than two nests, in which case more males would be congruous with this breeding 

strategy.  The life stage that the skew in mountain plover arises is unexplored and can assist 

in understanding the mechanism(s) of why a population exhibits a male skew. 

Exploring the primary and secondary sex ratios will offer insight for the observed 

skewed sex ratio in mountain plovers and provide explanations whether there is a higher 

production of males or if a female biased mortality is occurring.  A skewed primary sex ratio 

will be evident in the combination of hatched and unhatched eggs. The number of male and 

female eggs produced lays the foundation for comparison with the secondary ratio.  

Embryos experience selective pressures, like any other life stage, and the sexes may differ in 

requirements and sensitivity during development (Krackow 2002, Cichón et al. 2005). 

Comparing the primary to the secondary sex ratio will explain if there is a sex-specific 

mortality occurring during embryonic development (i.e., pre-hatching). The two sex ratios 

will remain identical if death rates of males and females are equivalent pre- and post-

hatching (Mayr 1939). Here, I evaluate the primary and secondary sex ratio of mountain 

plovers and potential factors influencing them.         
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METHODS 

Data Collection 

Data on mountain plovers were collected in 2010, 2011, and 2012 during the breeding 

season months April through August on the eastern plains of Colorado near the town of 

Karval (38°44′ N 103°32′ W) in Lincoln County.  Data collection took place on > 3,000 km2 

of private land with suitable mountain plover breeding habitat. The region is xeric with a 

relatively flat prairie landscape that is primarily composed of a matrix of shortgrass pastures 

and dryland agricultural fields.    

The primary sex ratio was evaluated using DNA samples from unhatched and 

hatched eggs.  Nests were located using transect surveys on visually determined suitable 

breeding habitat where access by landowners was granted.  Nest location effort was 

concentrated highest April through the end of May, but continued through early July every 

year.  Areas with observed courting adults from initial surveys were resurveyed at a later date.  

Once a nest was located it was monitored until fate was known.  Unhatched eggs were 

collected after a nest failed to hatch (e.g., abandonment, tillage of nest by agricultural 

practices, flooding) or individual egg failure (e.g., siblings hatch and leave the nesting area 

with the adult).  Individual eggs were placed in small plastic vials padded with cotton balls.  

In 2010 and 2011, eggs were frozen then dissected.  In 2012, eggs were immediately 

dissected, not frozen.  The first procedure in the dissection was to determine egg fertility by 

cutting open the egg and visually determining if there was any sign of embryonic 

development.  If the egg was fertile, tissue was extracted and placed in a small vial of 70% 

ethanol.  The stage of development dictated the type of tissue collected.  Brain tissue was 

extracted in mid- (embryo half way to full development, yolk sac decreased to approximately 

half original size) to late- (embryo very close to full development, small yolk sac remains) 
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embryonic development.  The entire embryo was the sample for eggs showing early 

development (n = 6; embryo very small, yolk sac majority of egg contents) because brain 

tissue could not be extracted.   

DNA samples from chicks of hatched eggs were obtained immediately following 

emergence of chicks from eggs.   Mountain plover chicks are monomorphic, thus, 

necessitating a DNA sample for molecular sexing analysis.  Eggs were aged using a floatation 

method (Westerskov 1950) to facilitate observer presence near hatching dated.  Once a chick 

hatched, a small blood sample (<30 µL) was collected by jugular venipuncture.  Blood was 

collected in a micro-hematocrit capillary tube and transferred to filter paper used to submit 

samples to the laboratory.  These same samples were used to evaluate the secondary sex 

ratio.   

Adult mountain plovers are also sexually monomorphic; therefore feathers were 

collected from nesting adults using a walk-in trap placed over their nest when initially found.  

All DNA samples (tissue from eggs, blood from chicks, and feathers from adults) were sent 

to Avian Biotech (Tallahassee, FL) for molecular sexing analyses. 

 

Statistical Analysis  

 
Primary and secondary ratios were calculated using binary response data collected over the 

three breeding seasons.  Probabilities of hatching were estimated for all eggs produced as 

well as for the separate sexes (Table 1-1).  Individuals of both unknown and known sex 

contributed to estimates of the probability of hatching and not hatching.  Sex specific 

probabilities of hatching and not hatching were estimated on only individuals with known 

sex.  Overall probabilities of being male (M) or female (F) were calculated using the 

equation: 
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Pr M	or	F 	 	Pr Hatch 	*	Pr M	or	F	Hatched	 	 	Pr Did	not	hatch 	*	Pr M	or	F	did	not	hatch  

Logistic regression was used to analyze the relationship of sex and independent 

variables for both the primary and secondary sex ratios separately.  Data used in the logistic 

regression analysis were restricted to nests where the sexes of all the eggs within a nest 

produced were known.  Nests that were either depredated (partially or fully), or had 

unknown sex for ≥1 individual (a DNA sample was not able to be collected in the field, or 

yielded no result from the lab) were not included in this analysis.  Generalized linear mixed 

models (GLMMs; Hosmer and Lemeshow 2000, Krackow and Tkadlec 2001, Szekely et al. 

2004) were fitted with the logit link function and a binomial distribution implemented in 

program R (version 2.15.2; R Core Team 2013).  The sex of the individual was the response 

variable and the individual’s nest was a random effect.  Explanatory variables that were used 

included year, sex of tending adult, clutch size, and hatch day (Tables 1-2, 1-3).  All models 

yielded little within-clutch variation and had little explanatory power on sex of individuals.  

Therefore, all models were refit using generalized linear models with the logit function and a 

binomial distribution.  Generalized linear models produced (Tables 1-2, 1-3) were used for 

final interpretation of results.  Models were ranked using model selection based on Akaike’s 

Information Criterion adjusted for small sample size (AICc, Burnham and Anderson 2002).     

 

RESULTS 

The primary sex ratio observed in this study was 1.01 (± 0.01) males per female (Fig.1-1).  

The overall probability of being a male (0.54 ± 0.03) in a viable egg was higher than female 

(0.46 ± 0.03; Table 1-1).   The primary sex ratio was determined from 241 fertile eggs 

produced (Table 1-1); both that did and did not successfully hatch.  Sex was known in 241 

eggs (males = 121, females = 120).   
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Males and females had a 0.81 (± 0.02) probability of hatching.  When eggs did not 

hatch (0.19 ± 0.02; n = 123) they were collected after known abandonment or egg failure in 

2010 (n = 44), 2011 (n = 47), and 2012 (n = 32).  A total of 31 full clutches of unhatched 

eggs were collected; 14 clutches showed no sign of development, and 17 had varying stages 

of embryonic death.  Nine of the 17 full clutches had failure at earlier stages in development.  

Almost half (45.5%, n = 56) of all unhatched eggs collected were determined to be infertile.  

The remaining collected fertile eggs (n = 67) had a relatively even distribution between the 

early (n = 22), mid (n = 22), and late (n = 23) developmental stages of the embryo.  Eggs that 

were collected and fertile (n = 346) had a 38.8% rate in successful sex identification.  Female 

sex was determined for 17 eggs, whereas 9 were male.   The laboratory was unable to 

determine the sex of the remaining eggs (n = 41) and were therefore categorized as 

“unknown”.    

The secondary sex ratio was 1.10 (± 0.02) males per female based on 215 

successfully hatched eggs (females = 103, males = 112; Fig. 1-1).  Males had a higher 

probability of hatching (0.46 ± 0.03) than females (0.43 ± 0.03), which lead to a slightly 

higher proportion of males at hatching (0.54 ± 0.03). 

A total of 325 nests were located and monitored, and 46 (14.2%) nests had known 

sexes for all fertile eggs produced.  The mean proportion of males in complete broods was 

0.47 ± 0.04 (out of 127 chicks in 46 broods; Fig. 1-2).  The primary ratio (1.05 ± 0.02; 65 

females, 62 males) was equal to the secondary ratio (1.05 ± 0.02; 60 females, 57 males) in 

nests where all eggs had known sexes.   Model selection criteria (AICc) results yielded three 

top models within 2.0 AICc (Table 1-2) for the primary sex ratio and seven top models for 

the secondary sex ratio (Table1-3).  However, no coefficient in any model for neither the 

primary nor the secondary sex ratio analysis was estimated to be significant.  Therefore, the 
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calculated sex ratios were not likely to be confounded with any of the covariates (year, sex of 

tending adult, clutch size, and hatch day) evaluated in this study.   

DISCUSSION 

Male and female mountain plover eggs were produced in relatively equal proportions over 

the course of the three breeding seasons, evident by the primary sex ratio.  A small male 

skew became evident in the secondary sex ratio.  Covariates evaluated were not statistically 

significantly associated with sex.  Seasonal trends are commonly observed in other shorebird 

species to explain skewed sex ratios (Anderson et al. 2003, Szekely et al. 2004), however, no 

trend was evident in this study based on hatch day.  Results also suggest year, sex of tending 

adult, and clutch size were not confounding factors on the observed sex ratio in this study.  

Equal production of the sexes suggests there is a possible female bias mortality occurring at 

one or more life stages post-hatching to cause the biased tertiary ratio.   

If a female specific mortality exists it is likely occurring from hatching until fledging, 

migration (to or from wintering grounds), on their wintering grounds, or on their breeding 

grounds as adults.  Hatching to fledging is a critical stage where selective pressures act 

strongly on defenseless young.  Males and females can deal with these pressures differently 

which may lead to a decreased survival of the more vulnerable sex (see chapter 2).  Little is 

known about mountain plover migratory patterns.  Stop-over locations, timing of migration, 

and migratory destinations can be different between males and females (Nebel et al. 2000, 

Bishop et al. 2004); possibly leading to mortality differences.  Breeding is energetically 

demanding.  Production of young, incubation, and post-hatch parental care all have 

associated costs.  Due to the increased cost of producing eggs, females higher energetic 

investment in reproduction could cause breeding females to have increased mortality rates.    
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Conversely, an increased mortality of females may not be occurring and the male 

skew observed in adult populations could be a result of detection differences.  The tertiary 

sex ratio is especially difficult to estimate, except in small isolated populations (Kosztolanyi 

et al. 2011).  Sampling bias may occur because adult plovers in this study are only caught if 

their nest is located and due to their monomorphic nature sex cannot be visually determined.  

Behavior, trap response, and habitat preference can all lead to different detectability of the 

sexes.   Behavior can differ between males and females, ranging anywhere from 

conspicuousness to daily activities, influencing human detection ability.  Males have been 

documented to have more intense distraction behavior (Brunton 1990, Szekely 1996, 

Paredes and Insley 2010), possibly contributing to increased exposure.  While trapping 

success in this study is rather high, there could be a different trap response from males and 

females (Domenech and Senar 1998).  Lastly, habitat structure may allow detection to vary, 

and one sex could select habitat with increased difficulty in detection ability. 

While the role a skewed sex ratio plays in the mountain plover population is not fully 

understood, this study was the first step in analyzing the ontogeny of the male skewed sex 

ratio. Production of males and females in equal proportions suggests that resources are not 

being favorably allocated to males.  Further, this suggests that the observed skew in the 

population is not likely an evolutionarily adaptive trait for this species unique breeding 

system.   The breeding system, however, could potentially be an adaptation to the skewed 

sex ratio.  Mountain plovers may be capitalizing on the surplus of males by adapting their 

response to a polyandrous breeding strategy.  Equal production of males and females 

suggests a female biased mortality at later life stages, necessitating further study at later 

stages.     
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Figure 1-1. Estimates of the primary (ratio of all fertile eggs produced) and secondary (ratio 

of all successfully hatched chicks) sex ratio of mountain plover (Charadrius montanus) based 

on data collected from 2010-2012 breeding seasons in eastern Colorado.  
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Figure 1-2. Proportion of males within a nest and their corresponding day of hatch (day 1 = 

May 9).  Successfully hatched (≥ 1 egg hatched) mountain plover (Charadrius montanus) nests 

(n = 44) where sexes of all eggs within a clutch was known from DNA samples collected 

during the 2010-2012 field seasons in eastern Colorado.  The number of eggs within a clutch 

is illustrated by relative size of symbols (small = 2, medium = 3, large = 4).  Sex of the 

tending adult is illustrated by the color of the shape (black = male tended nests, white = 

female tended nests, and gray = unknown sex of tending adult). 
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Table 1-1.  Data collected on eggs produced by mountain plovers (Charadrius montanus) in 

the 2010-2012 breeding seasons in eastern Colorado.  Unknown are eggs produced that 

were fertile but sex was unable to be determined. 

Total Eggs  n Primary1  Secondary1 

   Fertile 346 127 117 

      Total Males  121 65 60 

      Total Females 120 62 57 

      Total Unknown 105 NA NA 

   Infertile 56   

All Eggs Probability (SE) 

     Hatched 0.81 (0.02) 

     Did not hatch  0.19 (0.02) 

Female Eggs  

     Hatched  0.43 (0.03)  

     Did not hatch 0.57 (0.03) 

Male Eggs   

     Hatched  0.46 (0.03) 

     Did not Hatch 0.54 (0.03) 

Probability of being female   0.46 (0.03) 

Probability of being male 0.54 (0.03) 
  
1Number of samples of each sex where all individuals within a nest were known 

  



  18 
 

Table 1-2. Logistic regression models for predicting sex of mountain plovers (Charadrius montanus) 

during the egg stage in eastern Colorado from 2010-2012. Covariates used to analyze sex of eggs 

include hatch day (1 through 68; day 1= May 9), adult sex (sex of tending adult), year, and clutch 

size (2-4 eggs). 

Covariates  AICc ΔAICc Weight 
 

Parameters 

Hatch Day 174.04 0.00 0.37 
 
2 

Hatch Day + Clutch Size 174.26 0.22 0.33 
 
3 

Hatch Day + Adult Sex 176.13 2.09 0.13 
 
3 

Hatch Day + Year 177.15 3.11 0.08 
 
3 

Clutch Size 179.32 5.28 0.02 
 
2 

Adult Sex 180.09 6.05 0.02 
 
2 

Year 180.49 6.45 0.01 
 
2 

Adult Sex + Clutch Size 181.29 7.25 0.01 
 
3 

Clutch Size + Year 181.41 7.37 0.01 
 
3 

Adult Sex + Year 182.55 8.51 0.00 
 
3 
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Table 1-3. Logistic regression models for predicting sex of mountain plovers (Charadrius montanus) 

chicks at hatching in eastern Colorado from 2010-2012. Covariates used to analyze sex of chicks 

include hatch day (1 through 68; day 1= May 9), adult sex (sex of tending adult), year, and clutch 

size (2- 4 eggs). 

Covariates  AICc ΔAICc Weight 
 

Parameters 

Hatch Day 165.74 0.00 0.20 
 
2 

Clutch Size 166.03 0.29 0.17 
 
2 

Adult Sex 166.07 0.33 0.17 
 
2 

Year 167.14 1.40 0.10 
 
2 

Hatch Day + Clutch Size 167.61 1.87 0.08 
 
3 

Hatch Day + Adult Sex 167.65 1.91 0.08 
 
3 

Hatch Day + Year  167.71 1.97 0.07 
 
3 

Adult Sex + Clutch Size 168.01 2.27 0.06 
 
3 

Clutch Size + Year 168.92 3.18 0.04 
 
3 

Adult Sex + Year 168.98 3.24 0.04 
 
3 
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CHAPTER 2: FACTORS INFLUENCING MALE AND FEMALE MOUNTAIN 

PLOVER (CHARADRIUS MONTANUS) CHICK SURVIVAL 

INTRODUCTION 

Survival until reproduction is an important demographic component to consider when 

examining population growth and life history characteristics (Stearns 1992).  Time until first 

reproduction varies greatly across species and encompasses several life stages.  This 

demographic trait in precocial birds includes the egg (laying to hatching), chick (hatching to 

fledging), and juvenile (fledging until first reproduction) stages; all facing different selective 

pressure that can influence survival.  Studies often focus on the nest stage due to the 

immobile nature and ease of location and monitoring (Dinsmore et al. 2002, Barber et al. 

2010, Dinsmore et al. 2010, Hartway and Mills 2012).  In contrast, chick survival is less 

frequently studied, but an equally important component of pre-reproductive survival 

(Schekkerman et al. 2009, Rickenbach et al. 2011).  Furthermore, differences in traits 

affecting survival of chicks are potentially important and can differ between males and 

females.      

Sex-specific survival probabilities of chicks can influence a population’s sex ratio, 

biasing toward the sex with higher survival.  Male and female chicks may have different 

abilities to deal with selective pressures and one sex can have lower tolerance to 

environmental stresses because of variation in their physiological or behavioral traits 

(Clutton-Brock 1986, Cichón et al. 2005).  The reduced ability of one sex to handle these 

pressures during the early stage of life could render one more susceptible to a higher rate of 

mortality.  

 Skewed sex ratios are common in wild populations and may be evolutionarily 

adaptive for a species or may result in a conservation concern (Donald 2007).  For example, 
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a deficiency of females caused by lower production, higher mortality, or a combination can 

contribute to a decrease in reproductive potential because females are the limiting sex in 

production of offspring.  This concern is augmented in species whose populations are facing 

serious threats or exhibit a downward population trend.   

Shorebirds have experienced steep declines in their populations (Thomas et al. 2006).  

Recent studies on shorebirds have shown that chick survival appears to be more important 

in population dynamics than nest success (Lengyel 2006, Colwell et al. 2007, Dinsmore et al. 

2010).  Chick survival in shorebirds is important because they commonly re-nest after nest 

failure, but not after losing chicks (Cramp 1983); therefore chick survival is suggested to be a 

key component regarding actual reproductive output in shorebirds (Lengyel 2006, Colwell et 

al. 2007, Schekkerman et al. 2009).  Difference in survival of young males and females has 

been observed in shorebirds (Warriner et al. 1986, Szekely et al. 1999, Emlen and Wrege 

2004), and may contribute to declines in species abundance.  In the Kentish plover 

(Charadrius alexandrines) the sex ratio shifts towards males as chicks increase in age (Szekely et 

al. 2006), suggesting a female-biased mortality of young.  Similarly, in the snowy plover 

(Charadrius nivosus), males have higher rates of survival than females (Szekely et al. 2006, 

Stenzel et al. 2011).     

The importance of chick survival has been observed in mountain plovers (Charadrius 

montanus; Dreitz 2009, Dinsmore et al. 2010), an upland shorebird experiencing population 

declines (Sauer et al. 2011, USFWS 2011).  Dinsmore et al. (2010) suggested survival from 

hatching to ~35 days may limit mountain plover population growth.  Survival of mountain 

plover chicks is lowest immediately after hatching and subsequently increases within 4 d 

post-hatch (Lukacs et al. 2004).  Daily survival rates of mountain plover chicks continue to 
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increase with age (Knopf and Rupert 1996, Lukacs et al. 2004, Dinsmore and Knopf 2005), 

but may differ between males and females.   

A male-biased tertiary (i.e., sexually reproductive individuals) sex ratio has been 

observed in adult nesting mountain plovers (Dinsmore et al. 2002, Dinsmore and Knopf 

2005, Dreitz 2009). A skew ranging from 1.6 (Dreitz 2009) to 2.3 (Dreitz unpublished data; 

107 males, 46 females) males per female has been reported in a breeding population in the 

southern end of the species range.  When this skewed sex ratio arises in this species is 

unknown.    The primary ratio (i.e., ratio of eggs produced) is observed to be equal, and the 

secondary sex ratio (i.e., ratio at hatching) was 1.1 males per females (Chapter 1).  Chicks 

that survive and recruit into the adult population contribute to the tertiary sex ratio.  A 

survival difference between males and females during the chick stage is important in 

understanding whether the skew in this species is adaptive or a conservation concern.   

In most animals males and females are typically produced in close to equal numbers 

at fertilization (Clutton-Brock 1986, Seger and Stubblefield 2002), and this is true of 

mountain plovers (Chapter 1).  Therefore, a higher survival rate for male mountain plover 

chicks is expected due to the observed adult skewed sex ratio.  Factors that may influence 

survival probabilities for males and female chicks are unexplored in this species, and their 

relative importance has not been studied.   

Covariates included in this study have been shown to effect survival of chicks and 

were grouped into individual, brood, and environmental levels.  Individual covariates 

quantified were chick size, egg volume, and hatching order.  Size at hatching has been 

observed to influence survival rates (Bolton 1991, Grant 1991, Oddie 2000, Amat et al. 2001, 

Ruthrauff and McCaffery 2005, Cleasby et al. 2010).  Chicks from larger eggs have also 

shown higher rates of survival compared to those from smaller eggs (Parsons 1970, Nisbet 
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1978, Bolton 1991, Grant 1991, Blomqvist et al. 1997, Silva et al. 2007).  Additionally, 

Parson (1970) showed the importance of hatching sequence on survival.  Brood-level 

covariates included the sex of the tending adult and temperature eggs were exposed to 

during development.  Mountain plovers exhibit a rapid multi-clutch breeding system where 

uniparental care is provided by both sexes on separate nests (Knopf and Wunder 2006).  The 

male and female tending adults have different success rates with chick rearing (Dinsmore 

and Knopf 2005).  Temperature during avian embryonic development is important for yolk 

reserves and efficiency of development; the effects of thermal conditions during incubation 

may have strong implications for survival of chicks (Booth 1987, Brua 2002, Reid et al. 2002, 

Martin and Schwabl 2008).  Environmental covariates evaluated were breeding season hatch 

day and habitat type.  Time of hatching within the breeding season has been observed to 

impact chick survival (Szekely et al. 1999).  Lastly, it is well know that habitats effect survival 

of individuals.  Dreitz (2009) found that habitat type has an effect on mountain plover chick 

survival.  Most studies have looked at survival of offspring as a whole and sex-specific 

effects of these factors are relatively unexplored.   

Survival difference between males and females commonly arise due to an unequal 

ability to deal with these extrinsic factors.  Here, I assess the survival difference between 

male and female mountain plover chicks.  Further, I examine the association of individual, 

brood-level, and environmental factors that could influence sex-specific chick survival.    

METHODS 

Study Area 

Data on sex-specific survival of mountain plover chicks were collected from April to August 

2010-2012.  The study took place in eastern Colorado near the town of Karval (38°44′ N 
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103°32′ W) in Lincoln County on private lands.  The region is arid with low amounts of 

annual precipitation, low relative humidity, and a large daily temperature range.  The area is 

primarily flat and composed of a matrix of native shortgrass prairie and dryland agricultural 

fields.   Shortgrass prairie is predominantly buffalo grass (Bouteloua dactyloides) and blue grama 

(B. gracilis).  Shortgrass prairie can be grazed by black- tailed prairie dogs (Cynomys ludovicianus) 

or domestic livestock.  Agricultural fields are mostly dryland wheat (Tricum aestivum) crops 

accompanied with fallow strips with variable amounts of crop stubble. 

Survival of male and female chicks  

Nests were located and aged using an egg flotation method (Westerskov 1950) to allow 

tracking to begin at day 1 of hatching.  Transmitters (Pip; Lotek Wirelss Inc., Canada and 

Biotrack Ltd., UK; private vendor)  weighing 0.35 g were placed on ~10g chicks at hatching 

as soon as their plumage was fully dried.  The mass of the transmitter is within the 

established guidelines of transmitters not exceeding 5% of body mass for small (<50 g) birds 

(Caccamise and Hedin 1985).  Additionally, transmitter attachment method was not found to 

impact survival of chicks in a captive study (Dreitz et al. 2011).  Transmitters were attached 

using a modified design of Rappole and Tipton’s (1991) leg harness attachment method 

(Dreitz et al. 2011) using a 40mm leg loop harness.  The battery life of the transmitters was 

~ 18 days.  To observe chicks until they have fledged (≥ 30 days of age) we replaced 

transmitters (Pip; Lotek Wirelss Inc., Canada and Biotrack Ltd., UK; private vendor) at ~16 

days of age to ensure recapture prior to battery expiration.   

After deployment of the transmitters, chicks were monitored daily.  Observations to 

determine chick status were done from a distance (> 250 m) to limit disturbance of chicks.  

Radio telemetry was typically performed by foot or all-terrain vehicles.  If we were unable to 
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locate a chick through ground-based methods, aerial surveys were done using a fixed-wing 

aircraft. 

Mountain plover chicks are precocial and leave the nest shortly after hatching (Graul 

1975).  If hatching is missed, relocation of the adult and its brood may be impossible due to 

potential movement distance (Knopf and Rupert 1996).  In efforts to avoid losses of entire 

broods a 1.8g radio transmitter (BD-2; Holohil Systems, Ltd, Carp, ON, Canada; private 

vendor) was attached to the nesting adult when a nest was ≤5 days from hatching.  The 

transmitter was attached to the adult using epoxy glue, placed in between mantle feathers (no 

exposure of glue onto the skin) (Dinsmore and Knopf 2005, Dreitz et al. 2005, Dreitz 2009, 

2010). 

Factors that influence male and female chick survival  

 
Each egg within a nest was uniquely marked with nontoxic marker to identify 

hatching order.  Egg volume was determined by measuring the length and breadth of the egg 

using an equation (Eq.1) that has been used on mountain plovers (Skrade personal comm.) 

and other related shorebird species (Vaisanen 1977, Nol et al. 1997).  Three length and 

breadth measurements were taken on each egg to estimate a more accurate egg size, and the 

mean was used for final analysis.   

. 	 	 	 	 .
  (Equation 1) 

We placed ibutton data loggers (Embedded Data Systems, Thermocron ibuttons 

DS1923) under the eggs in individual nests to remotely monitor nest temperature.  Ibuttons 

were anchored to the ground as suggested by previous studies that found nest tending adults 

and nest predators remove ibuttons from nests (Hartman and Oring 2006, Schneider and 

McWilllams 2007).   Nest temperatures were recorded every 5 min.  At ~ 14 d after 
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placement for active nests, ibuttons were replaced allowing for continuous nest temperature 

data for the duration of the incubation period.  This length of time was chosen to minimize 

disturbance to the nest, where the ibutton only needed to be replaced once.  Temperature 

readings were recorded every five minutes and average daily temperature for each nest was 

the measurement used in final analysis.   

Incubating adults were caught using a walk-in trap on initial nest location and banded 

with a United States Geological Survey (USGS) aluminum leg band as well as cohort 

combination of colored plastic bands.  Feathers from the tending adult were collected and 

used for molecular sex determination. 

Once an egg hatched in the nest, order of hatching, as well as the egg identification 

number was noted.  Measurements including mass and tarsus length were collected at 

hatching. Additionally, chicks were banded with a USGS band and blood samples (<50 µL) 

were collected by jugular venipuncture.  Blood samples were sent to AvianBiotech 

(Tallahassee, FL) for molecular sexing analysis. 

Statistical Analysis 

A multi-state mark-recapture modeling approach (Nichols et al. 1992, Rickenbach et al. 

2011) was used to evaluate sex-specific apparent chick survival comprising of three states 

(Fig.2-1).   Two of the states used were defined as ‘alive’ and ‘dead’.  The third state of 

‘unobserved’ was included to account for differences in detectability and represented both 

undetected (i.e., present and not detected) and unobservable (i.e., moved off the study area, 

transmitter malfunction, etc.) individuals.  Detection (p) was < 1.00 mainly due to transmitter 

malfunction, movement of broods out of detection range, and predation (i.e., breaking 

transmitter, or carrying outside study area).  Encounter histories included unobserved as well 
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as missing data.  Implementation of this multi-state model was conducted in Program 

MARK (White and Burnham 1999, White et al. 2006).  Covariates used to evaluate 

difference in sex-specific survival were chick mass, tarsus length, egg volume, sex of tending 

adult, year, average daily temperature during incubation, hatching order, hatch day, and 

habitat type (Table 2-4).  Covariates were modeled independently as well as with additive 

effects.  A set of candidate models were developed to evaluate male and female chick 

survival (Table 2-1).  Constraints were placed on parameters that were only one directional 

(e.g., no transitions from dead state) by fixing the parameter to zero.  Model selection criteria 

were used to rank models based on Akaike’s Information Criteria for a small sample size 

(AICc; Burnham and Anderson 2002).     

RESULTS  

A total of 234 individual chicks from 160 nests were monitored over the three breeding 

seasons. Most individuals were successfully sexed (n = 190), but field constraints precluded 

collection of field samples for molecular sexing of 19% of the chicks (n = 44).  A large 

percentage (75%, n = 33) of chicks with unknown sex were from 2010, the first year of the 

study.  Males and females were produced in close to equal proportions over the course of 

the three years (Table 2-2).  A total of 31 chicks (13%) were confirmed to survive ≥ 30 days 

post-hatch.   

Daily survival of female chicks (0.975 ± 0.004) was estimated to be similar to males 

(0.980 ± 0.004).  Projecting daily survival estimates (Fig. 2-2) over a course of 30 days 

yielded higher survival probability in males (0.548 ± 0.13) than females (0.472 ± 0.15).  

Model selection criteria suggest that daily survival of males and female chicks was influenced 

most by the hatch day and sex of the adult (Table 2-1).  Hatch day was in all top models that 

were within approximately two AICc units.  These results indicate that individuals that 
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hatched later in the breeding season had lower survival rates (Fig 2-3).  However, parameter 

estimates for covariates other than hatch day were not significant for any of the top ranked 

models (Table 2-3).  The top model showed hatch day did have an effect (β = -0.03, ± 0.01), 

but that adult sex was not significant (β= 0.19, ± 0.12).  All other effects that were modeled 

were ranked lower (Table 2-1) suggesting no effect on survival.  

DISCUSSION  

Mountain plover chicks demonstrated a trend towards higher survival probabilities of male 

than female offspring during the 30 day fledging period.  Chick survival favoring males can 

begin to explain the male biased ratio observed in the adult breeding population.   

Results from this study suggest that the time of hatching during the breeding season 

did influence chick survival.  Both male and female chicks had a greater tendency for higher 

survival earlier in the breeding season and decreased as the breeding season progressed.  

Males and females exhibited the same pattern, although survival was higher in males.  

However, confidence intervals for 30d survival estimates were overlapping between males 

and females (Fig. 2-3).   A similar pattern with chick survival has been observed in Kentish 

plovers as the breeding season progresses (Szekely et al. 1999).  Many factors can play into 

variability in environmental surroundings that can contribute to a seasonal decline in 

survival.   

Prey resources (Smith and Rotenberry 1990, Lengyel 2006, Schekkerman and 

Beintema 2007), predator communities (Schekkerman et al. 2009), and weather vary spatially 

and temporally and have been suggested to influence chick survival in shorebirds.  Prey in a 

previous study was not suggested to influence mountain plover chick survival (Dreitz 2009).  

However, prey biomass can shift during the breeding season as resources change (Smith and 
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Rotenberry 1990, Schekkerman and Beintema 2007).  A possible decrease in prey availability 

or biomass could explain lower survival rates later in the season.   

Predator communities change throughout the breeding season.  Predation is another 

main driver of upland shorebird chick mortality (Schekkerman et al. 2009).  Mountain plover 

chicks in this study were observed to be depredated by several species across taxa including: 

red-tail hawk (Buteo jamaicensis), swainsons hawk (Buteo swainsoni), burrowing owl (Athene 

cunicularia), swift fox (Vulpes velox), American badger (Taxidea taxus), and prairie rattlesnake 

(Crotalus viridis).  Observed predations for mountain plover chicks was highest from 

burrowing owls over the course of this study.  Burrowing owl young hatch and emerge from 

burrows in the later part of the mountain plover breeding season (Poulin et al. 2011), 

possibly contributing to higher overall chick predation rates during this time.  Female chicks 

may have higher susceptibility to predation than males.  Differences in predation rates 

between male and female chicks could possibly be due to differences in speed, obedience to 

adults, or cryptic down feathers.    

Finally, environmental conditions are continually changing throughout the breeding 

season.  Both 2011 and 2012 were very dry in the study area and experienced very little 

precipitation.  Since the breeding season spans from April through August, both extreme 

high (>37°C) and low (<0°C) temperatures are experienced.  Ambient temperatures can rise 

drastically later in the season and heat stress can lead to lower chick survival rates.  

Environmental resources (predator, prey, and weather; as discussed above) can all varying 

among different habitat types.  Previous work observed chick survival differences among 

these habitat types (Dreitz 2009).  However, results from this study indicate that habitat did 

not have an effect on chick survival probabilities.    
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This study focused on evaluating survival differences between male and female 

mountain plover chicks and factors that may explain them.  While difference in survival 

probabilities between sexes is not as significant as expected, sex specific survival occurs in 

the predicted male direction.  If projected out over a longer time frame, including 

subsequent life stages, this small survival difference between males and females could 

increase to be significant for individuals recruiting into the population.  The subsequent life 

stage an individual progress to is the juvenile stage which encompasses migration.  Migratory 

pressures could influence survival and differ between males and females (Yang 2012), further 

contributing to the rate at which males and females are recruited into the population and 

thus the male skew in the adult population.    
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Figure 2-2. Male and female mountain plover (Charadrius montanus) chick survival estimates 

over a 30 day fledging period using data collected from 2010-2012 breeding season in eastern 

Colorado.  
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Table 2-1. Summary of models constructed for mountain plover (Charadrius montanus) sex 

specific chick survival in eastern Colorado from the 2010-2012 breeding season.  All 

models compare male and female survival probabilities.  Covariates used to analyze 

survival of chicks include hatch day (1 through 68; day 1= May 9), adult sex (sex of 

tending adult), temperature (average daily temperature during incubation), egg volume, 

tarsus (length of tarsal bone), mass (chick mass at hatching), year, and habitat type 

(grassland, grassland with prairie dogs, and agricultural fields) 

Model AICc ∆AICc Weight Parameters

Hatch Day + Adult Sex 3933.36 0.00 0.28 11 

Hatch Day + Temperature 3933.37 0.01 0.28 11 

Hatch Day  3933.75 0.39 0.23 10 

Hatch Day + Egg Volume 3935.32 1.96 0.11 11 

Hatch Day + Habitat Type 3935.38 2.02 0.10 13 

Temperature + Tarsus  3943.63 10.27 0.00 11 

Tarsus + Mass 3943.84 10.48 0.00 11 

Tarsus 3943.87 10.51 0.00 10 

Tarsus + Egg Volume 3945.63 12.27 0.00 11 

Male = Female 3946.94 13.58 0.00 8 

Mass 3946.49 13.13 0.00 10 

Temperature + Mass 3947.05 13.69 0.00 11 

Mass + Egg Volume 3947.66 14.30 0.00 11 

Adult Sex + Temperature 3948.20 14.84 0.00 11 

Year + Temperature 3948.26 14.90 0.00 12 

Constant  3948.46 15.10 0.00 9 

Temperature 3948.51 15.14 0.00 10 

Adult Sex 3948.94 15.58 0.00 10 

Egg Volume 3949.91 16.545 0.00 10 

Hatching Order 3950.19 16.83 0.00 10 

Year 3950.61 17.25 0.00 11 

Egg Volume + Hatching Order 3951.73 18.37 0.00 11 

Habitat Type 3952.34 18.98 0.00 12 

Habitat Type + Adult Sex 3953.12 19.76 0.00 13 

Year + Habitat Type 3954.32 20.96 0.00 14 
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Table 2-2. Summary of samples collected for mountain plover (Charadrius montanus) sex-

specific chick survival during the breeding seasons from 2010 to 2012 in eastern Colorado. 

 Females Males Unknown Total 
2010 25 25 33 83 
2011 42 42 7 91 
2012 24 32 4 60 
Total 91 99 44 234 
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Table 2-3. Models from sex-specific chick survival analysis of mountain plovers (Charadrius 

montanus) from data collected in 2010-2012 breeding seasons in eastern Colorado.  Models 

presented are the top ranked models from a multi-state survival analysis that are within 2 AICc units.  

Models are listed in descending order of AICc ranking with their parameter estimate (β), standard 

error (SE) and confidence interval. 

    Confidence Intervals 

Model Covariate β SE Lower Upper 

Hatch Day + Adult  

 Hatch Day -0.03 0.01 -0.04 -0.02 

 Adult Sex -0.19    0.12     -0.42    0.05       

Hatch Day + Temp  

 Hatch Day -0.03 0.01        -0.04  -0.02        

 Temp 0.02    0.01       -0.01 0.04       

Hatch Day  

 Hatch Day -0.03    0.01        -0.04 -0.02       

Hatch Day + Volume  

 Hatch Day -0.03 0.01        -0.04      -0.02        

 Volume 0.21    0.31        -0.40    0.83       

Hatch Day + Habitat  

 Hatch Day -0.03    0.01     -0.04      -0.02        

 GR 0.28    0.59        -0.86      1.43       

 PD 0.17    0.60        -1.01      1.34       

 CR 0.76 0.61        -0.44      1.95       
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Table 2-4. Covariates used to evaluate survival differnces between male and female mountain 

plover (Charadrius montanus) chicks from the 2010-2012 breeding seasons in eastern Colorado.  

Survival analysis used the mean value listed below for quantifyable values with their mean and 

range. Categorical values are denoted below with the proportion of individuals in that specific 

category and their standard error. 

Covariates Females Males 

Individual 

Mass (g) 10.7 (8.6-13.3) 10.5 (8.0-13.1) 
   
Tarsus (mm) 23.14 (20.82-26.54) 23.14 (20.59-26.26) 
   
Egg Volume (mm3) 14.57 (13.02-15.63) 14.59 (13.05-15.82) 
   
Hatch Order1 

0.33 (0.19) 0.67 (0.14) 
Brood   

Adult Sex2 

0.45 (0.10) 0.54 (0.08) 
Average Nest Temperature (°C) 5.9 (-4.96- 20.10) 4.34 (-5.52- 24.74) 

   
Environmental   

Habitat   
Grassland 0.45 (0.08) 0.34 (0.08) 
Prairie Dog 0.39 (0.08) 0.44 (0.08) 
Crop 0.16 (0.10) 0.22 (0.09) 

Hatch Day3  23 (1-68) 25 (1-68) 
1Proportion of each sex with known hatch order
2Proportion of each sex tended by an adult with the same sex 
3 Day 1 (May 9; 1st nest to hatch) through day 68 (July 15; last nest to hatch) of breeding season  
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CHAPTER 3: IMPLICATIONS OF A MALE SKEWED SEX RATIO ON THE 

MOUNTAIN PLOVER (CHARADRIUS MONTANUS) POPULATION  

INTRODUCTION  

Understanding the consequences a skewed sex ratio may have on a population is important 

to predict a population’s future.  If a population requires equal males and females to 

maintain a viable population, a skew may lead to a decrease in abundance.  Reproductive 

output potential may be inhibited if a population is male dominated.  In some populations a 

skew may be contributing to population declines.     

In the mountain plover (Charadrius montanus) sex ratio of adults (tertiary sex ratio) 

have been observed to be skewed towards a higher proportion of males (Dinsmore et al. 

2002, Knopf and Wunder 2006, Dreitz 2009).  My thesis examined the early stages to 

determine if there was a skew arising in either the primary or secondary sex ratios.  The 

primary sex ratio in the mountain plover population was 1:1 ratio (Chapter 1).  A slight 1.1 

males per female skew began to appear in the secondary sex ratio (Chapter 1), however, this 

does not account for the magnitude of the skew that has been observed in an adult breeding 

population in eastern Colorado (~2.3 males per female).   

Equal production of males and females and a skewed tertiary sex ratio suggests there 

is possibly a female-biased mortality occurring at one or more stages within this species life 

cycle.  The small skew observed in the secondary sex ratio (Chapter 1) coupled with a slight 

survival difference between males and females from the time of hatching until fledging 

(~30d; Chapter 2) could be contributing to the larger skew observed later in an adult 

breeding population.  Although small, the difference in survival over a 30 d period between 

males (0.548 ± 0.13) and females (0.472 ± 0.15) could have larger scale population impacts 
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over a bigger time scale.  To assess the impacts this survival difference has on population 

dynamics, a population model was implemented as outlined below. 

METHODS 

A two-stage population model was used to evaluate the impact of male (M) and 

female (F) survival differences observed at the chick stage (Chapter 2).  A simulated 

population model was built using vital rates (i.e., survival estimates (φ) at different life stages) 

obtained both from this study and the literature (Table 4-1).  The model contained separate 

annual abundance (N) estimates for males and females.  Yearly estimates for population size 

were based on within year survival of males and female young (Y; Eq. 1 and 2) feeding into 

the adult population (A; Eq. 3 and 4) that yielded overall estimates for both males and 

females.   

F	 	 F, ∗ ∗ 	 ∗ 	 F ∗   (Equation 1) 

M	 	 F, ∗ ∗ 	 ∗ 	 M ∗           (Equation 2)	

F		 	 F, F, ∗ F         (Equation 3) 

M		 	 M, M, ∗ M       (Equation 4)  

Yearly population sex ratio was calculated from projected male and female abundance 

estimates.  Simulations with equal number of males and females at t =1 modeled the effect 

of the observed survival difference of the sexes during the chick stage.  Additionally, the 

population’s sex ratio at t=1 was adjusted to reflect the future population size on the effects 

of varying magnitudes of a skewed sex ratio. All models were iterated with 10,000 

simulations using R software (R version 2.15.2; R Core Team 2013).  



  46 
 

RESULTS 

Sex ratio results from 50,000 (10,000 a year for 50 years) estimates for the population that 

started at a 1:1 ratio and only varied in survival rates during the chick stage (males = 0.55, 

females= 0.47) yielded an average of ~2.15 males per female (range 1.8 to 2.2; Fig. 3-1).   

DISCUSSION 

Estimates of equal vital rates of males and females nest, juvenile, and adult survival coupled 

with unequal chick survival rates estimated in this study (Chapter 2) yielded a population that 

would exhibit a strong male biased sex ratio.  The small survival difference between males 

and females did not appear to be statistically significant over a three year study (Chapter 2), 

however, over a longer time frame this survival difference in the chick stage alone can drive 

a population starting with equal number of males and females to a 2:1 male skewed ratio.    

An alternative explanation as to why a skewed sex ratio is observed in the adult 

breeding population may be due to a sampling bias.  Male biased estimates came only from 

breeding adults whose nests were located.  Not sampling all adult mountain plovers may lead 

to biased results.  The Kentish plover (Charadrius alexandrines) has varying patterns of 

parental care and brood desertion is seen in both sexes (Szekely et al. 1999).  A different 

degree of brood desertion may be occurring in mountain plovers.  In poor quality years, 

female mountain plovers may only create one nest and the majority of the time may choose 

to have the male tend the nest.  In opposition, females may always be laying more than just 

two nests within a breeding season which is observed in a closely related species, killdeer 

(Charadrius vociferous; Jackson and Jackson 2000).  Data on the paternity of the nests could 

assist in understand the mechanisms of this unusual breeding system.  Maternity would 

clarify how many nests are being produced by a given female allowing a more complete 

understanding of this populations breeding system.  Such an understanding would assist in 
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clarifying if more males are just being observed due to data collection methods in the 

breeding population and if a skew is compatible with the mountain plovers breeding 

strategy.  

MANAGEMENT IMPLICATIONS  

The mountain plover is a declining endemic bird of North American and is dependent on 

the Great Plains region for annual breeding.  Most often declines in grassland species have 

been attributed to habitat use, degradation, or loss.  Habitats used by breeding mountain 

plovers have been observed to vary in rates of chick survival (Dreitz 2009).  Since chick 

survival has been identified in mountain plovers as an important component that can greatly 

influences population dynamics (Dinsmore et al. 2010), survival variation in different 

habitats is important for conservation.  However, this study found that male and female 

chick survival was not influenced by the three suitable breeding habitats evaluated.  The 

conservation of mountain plovers should focus on factors that influence chick survival.   

This research suggests chick survival is correlated with time of breeding season.  Abiotic and 

biotic factors that change with the breeding season should be the focus for conservation 

efforts of mountain plovers.   

 Additionally, methods need to be developed to accurately measure the ratio of males 

and female adults in the population.  Sex ratio estimates for breeding adult mountain plovers 

has strictly been from nesting adults.  Individuals that may not have initiated nests, had nests 

fail, are still courting, and never successfully mate when surveys are conducted are not being 

included in the estimated tertiary sex ratio.  These individuals that are never counted may be 

influencing the currently observed male biased ratio.  Collecting data on all adults, whether 

nesting or not, in a range wide study would allow for a more accurate representation of the 

adult population’s sex ratio.        
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Figure 3-1.  Estimated male to female ratio in the mountain plover (Charadrius montanus) 

population after running 50,000 simulated iterations based on a 1:1 sex ratio in the 

population at t=1.  Estimated sex ratio is based on survival rates at different life stages (nest, 

chick, juvenile, adult) with equal survival for males and females except during the chick stage 

(male chick survival = 0.55, female chick survival = 0.47).  Chick survival rates were 

estimated from data collected in eastern Colorado during the 2010-2012 breeding seasons.
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Table 3-1. Male and female mountain plover (Charadrius montanus) survival estimates used in a 

population model.  Estimates used from this study were based on data collected from the 2010-

2012 breeding seasons in eastern Colorado. 

Survival Estimate  Females Males Source 
Nest 0.33 0.33 Dinsmore et al. 2002 
Chick 0.48 0.55 This study  
Juvenile 0.62 0.62 Dinsmore et al. 2010 
Adult 0.87 0.87 Dinsmore et al. 2010 
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