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SUMMARY

This thesis outlines a method of output feedback adaptive control in the pres-

ence of matched unmodeled dynamics, uncertain control effectiveness and matched

parametric uncertainties. An adaptive feedback controller that augments an assumed

existing observer based linear controller is developed. The adaptive approach outlined

here assumes that the uncertainty within the system can be linearly parameterized

in terms of current and delayed values of inputs and measured outputs. New weight

update laws are developed to show that all the signals in the system are uniformly

ultimately bounded using a Lyapunov like analysis that depends on the existence of

a positive definite solution of a parameter dependent Riccati equation in the presence

of unmodeled dynamics, uncertain control effectiveness and parametric uncertainties.

The unique attributes of this approach are that it can be used to augment an exist-

ing linear controller without modifying the parameters of that controller, it does not

rely on the use of high gains in the adaptation law, and is adaptive to the presence

of matched parametric uncertainties and unmodeled dynamics. One key difference

between the proposed design and existing methods is that it does not rely on the

use of a high gain observer or high gain error observer in the weight update law.

The thesis also addresses the effect of noisy measurements on the performance of

adaptive controllers by filtering the error signal employed in the weight update laws.

Uniform ultimate boundedness of all signals is shown utilizing concepts of singular

perturbation theory by treating the filter as a fast subsystem and the system dy-

namics together with weight update law as a slow subsystem. The design procedure

is evaluated by augmenting an existing observer based controller with an adaptive

controller to compensate for unmodeled dynamics, unknown control effectiveness and

x



parametric uncertainties in the presence of noisy measurements for several aerospace

applications that include a flexible satellite example and a 44-state highly flexible

aircraft example.
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CHAPTER I

INTRODUCTION

Linear control theory provides a basis for designing controllers for systems to meet

performance and robustness specifications. One of the major disadvantages of linear

controllers is that the system to be controlled must be modeled by linear ordinary

differential equations. Most physical systems contain nonlinearities to some degree,

as well as unmodeled dynamics. In order to design linear controllers for practical

systems, systems are linearized about an operating point and a set of controllers

are designed at the operating points using linear control theory. Linear controllers

designed about a specified operating point provide adequate performance in a neigh-

borhood of the operating point which deteriorates as the system moves away from

the operating point due to the presence of nonlinearities and other forms of uncer-

tainty. Therefore for systems with a large operating envelope, such as flight control

systems, it is necessary to gain schedule a controller as the system moves from the

neighborhood of one operating point to another. If these transitions occur rapidly,

then the validity of such an approach becomes questionable.

Robust control theory provides theoretical methods to design linear controllers to

compensate for uncertainty between the mathematical model and the actual system.

Controllers designed using robust control theory result in linear controllers with fixed

parameters that can maintain performance specifications in the presence of a speci-

fied amount of uncertainty. However, such designs may be overly conservative when

applied to highly uncertain systems.

Adaptive control theory can be used to design nonlinear controllers whose pa-

rameters vary with time based on an adaptation law. An adaptive controller can

1



be expected to perform better in the presence of large uncertainty than a fixed gain

controller, or a controller whose gains are scheduled as a function of flight condition,

particularly if the uncertainty is matched. However this advantage comes at a price,

because adaptive controllers are inherently nonlinear and require concepts from non-

linear system theory to establish stability of systems controlled with such controllers.

One of the major challenges in adaptive controller design involves the design of a

learning algorithm to update the parameters of the adaptive controller such that all

the signals in the system are guaranteed to be bounded under a reasonable set of

assumptions.

1.1 Model Reference Adaptive Control

In Model Reference Adaptive Control (MRAC),[65, 64, 72, 5, 52], the objective is to

design an adaptive controller such that the system under control follows a reference

model. There are two different approaches to MRAC termed Direct [54, 65, 5] and

Indirect [64, 13, 9, 29] Adaptive Control. In Direct Adaptive control, the controller

parameters are updated online such that the output of the closed loop system follows

the reference model with bounded errors. In Indirect Adaptive control the parameters

of the system are estimated using a parameter estimation algorithm. The estimated

parameters are then used to design the controller such that the closed loop system

follows the reference model. In this thesis a Direct Adaptive output feedback control

in the presence of unmodeled dynamics is investigated.

MRAC in output feedback form is composed of three major subsystems as shown

in Figure 1. The first component is the reference model which specifies the desired

response of the system under control. For example, in an aircraft control problem the

reference model is constructed such that it satisfies the flying qualities specification

It may itself be a closed loop model of the dynamics of an aircraft obtained from a

gain scheduled linear control design performed at selected flight conditions. The most

2
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Figure 1: Model Reference Adaptive Control Architecture

important subsystem in MRAC architecture is the weight update law that specifies

how the controller parameters vary with time. The weight update law has to be cho-

sen such that the error between output of the actual system under consideration and

the reference model output, together with all internal signals, remain bounded. Since

adaptive control architectures result in closed loop systems that are nonlinear, the

weight update law is chosen such that the time derivative of a candidate Lyapunov

function is at least negative semi-definite. The third component of the MRAC scheme

is the controller structure. For example one could design the controller with a fixed

structure in which some or all of the parameters of the controller are updated online

[39]. In this setting the design of the controller may be considered as a part of the

overall MRAC design process. Another approach is to consider an existing controller

with fixed parameters which is augmented with an adaptive element whose parame-

ters are updated [83, 85, 40, 11, 10]. In this setting the controller is given, and not
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a variable in the overall MRAC design process. This approach has found more ac-

ceptance since it is possible to retrofit legacy controllers designed using linear control

theory with adaptive elements to improve robustness to parametric uncertainty.

The mathematical models of the system that need to be controlled are realized

using one of two methods, physics based modeling or data fitting using experimental

data. In physics based modeling, the mathematical model is obtained using Newton’s

laws of motion for mechanical systems and Kirchoff’s current and voltage laws for

systems involving electrical components. In either of these methods a number of

simplifying assumptions are utilized to obtain the mathematical model of the system

under consideration. Models obtained using this method produce models that are

accurate at low frequency but deviate significantly from the actual model at higher

frequencies. This is representative of models for systems modeled assuming rigid

body dynamics wherein the flexible modes of the system are ignored. When fitting

a model using experimental data, one looses the underlying physical insight of the

system under investigation. This approach often results in an input/output model in

which the states do not correspond to physical quantities. Therefore, systems that

are modeled using either of these methods produce models in which all the states are

not available for feedback. Thus one needs to design adaptive controllers for systems

in which only the output is available for feedback (see Section 1.3). Research in

adaptive output feedback control of uncertain nonlinear dynamic systems has seen

renewed interest due to emerging applications in the area of flight control of extremely

flexible aircraft and rotorcraft that cannot be modeled as a state feedback problem

[75, 79]. In the recent past, peizo electric films and synthetic jets have been used

for active control of flexible structures and fluid flows over airfoils [62, 37, 47, 61].

Synthetic jet actuators are highly nonlinear in nature and in addition they couple with

the system that they are used to control and give to rise to higher order dynamics

that have to be accounted for while designing the control system.
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The use of adaptive control to overcome parametric uncertainty has been stud-

ied extensively. Most of these studies fall within the scope of state feedback adaptive

control wherein the higher order dynamics have been ignored. Output feedback adap-

tive control to address both parametric and unmodeled dynamics is an area of active

research. Two different approaches have been studied extensively in the design of

output feedback adaptive control. One approach that has been proposed is the use

of a fixed observer to estimate the state of the system under control [51, 23]. This

requires that the dimension of the plant be known. This approach has also been

extended in which the linear observer is replaced by an adaptive observer [30]. In the

other approach the requirement that the dimension of the plant be known is relaxed

by using an error observer in place of the state observer [81, 4]. The major drawback

with this approach is the increased complexity associated with the design and imple-

mentation of the resulting adaptive controller. Recently Kostarigka et al [45] have

developed a switching type dynamic adaptive output feedback neural network for

uncertain systems with prescribed performance. The authors show that guaranteing

a boundedness property for the states of a specifically defined augmented closed loop

system is sufficient and necessary to solve the problem under consideration.

1.2 Function Approximators

Model Reference Adaptive Control schemes necessitate approximation of unknown

nonlinear uncertainty present in most physical system. This necessitates the use of

function approximators in the design of MRAC architectures. Several different para-

metric structures can be used to approximate this uncertainty. Splines [3], wavelets

[12], artificial neural networks [21] are some examples of parametric structures that

have been studied in the context of MRAC. Each of these have their advantages and
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disadvantages. Parametric structures of the form:

y = W Tσ(x̄) (1.1)

y = W Tσ(V T x̄), (1.2)

are used to approximate uncertainties, where x̄ ∈ Rn+1:

x̄ = [x1 x2 x3 ... xn 1]
T , (1.3)

W = [w1 w2 w3 ... wn wb]
T , (1.4)

V =



v11 v12 v13 ... v1n v1b

v21 v22 v23 ... v2n v2b

v31 v32 v33 ... v3n v3b

vb1 vb2 vb3 ... vbn vbb


, (1.5)

The important distinguishing feature of these structures is the nonlinear activation

function σ(.), in Equations (1.1) and (1.2), that act on the inputs and are usually

bounded in their output. Some of the commonly used activation functions are sigmoid,

tanh, radial basis functions etc. Example outputs of nonlinear activation functions

for sigmoid, tanh and radial basis functions are:

σ(z) =
1− e−z

1 + e−z
, (1.6)

tanh(z) =
e2z − 1

e2z + 1
, (1.7)

φ(z) = e|z−c|
2/µ (1.8)

Such parametric structures have been termed Neural Networks (NNs) [53, 6, 5, 60]

and have been used extensively in adaptive control [88, 6]. These structures are classi-

fied as linear in the parameter neural network or as nonlinear in the parameter neural

network structures based on wether the output y is a linear function of the weights,

as in Equation (1.1), or a nonlinear function of the weights, as in Equation (1.2).

These structures are diagramed in Figures 2 and 3. In general, parameterizations of

6



the uncertainty where the weights appear nonlinearly provide a better approximation

as opposed to that when the weights appear linearly. This thesis is limited to the use

of parametric structure of the form in Figure 2.
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Figure 2: Linear in the parameter neural network with 3 inputs and a bias
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1.3 Research in Output Feedback Adaptive Control

There are two major approaches to Output feedback adaptive control. One method

is based on state estimation whereas the other uses an error observer. Marino et

al.[56] and Kristic et al.[46] have presented output feedback adaptive control with

backstepping based architectures. One major drawback of such adaptive control

architectures is their dependence on time derivatives of the inputs and outputs of the

system making them unsuitable for designing controllers for noisy systems. Kim and

Lewis[44] have proposed using neural network based observers in the design of output

feedback adaptive designs.
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Seshagiri et al.[71] have proposed an adaptive output feedback control architecture

for output tracking for single input single output nonlinear systems that are input-

output linearizable with full state feedback. They use a Radial Basis Function (RBF)

to approximate the nonlinearities of the system under consideration. Their method

utilizes a high gain observer, parameter projection and control saturation to achieve

semi global uniform ultimate boundedness.

Calise et al[4] developed a direct adaptive output feedback control design proce-

dure for highly uncertain nonlinear systems, which does not rely on state estimation.

The authors considered single-input/single-output (SISO) nonlinear systems. The

method employs feedback linearization, coupled with a neural network to compen-

sate for modeling errors. A fixed dynamic compensator is used to stabilize the system.

The neural network is adapted online using a linear combination of the tracking error

signal and the compensator states. They further augment the controller with a low

pass filter designed to satisfy a strictly positive real condition. The proposed method

applies to systems with parametric uncertainties but does not address systems with

unmodeled dynamics.

Hovakimyan et al.[32] consider SISO non-affine in control uncertain systems with

the output having full relative degree. The authors use a linear error observer to

design an output feedback adaptive control architecture. Using approximate feedback

linearization the nonlinear dynamics are inverted and the authors then use an error

signal derived from a linear error observer as inputs to the neural network as well as

in the adaptation laws to account for modeling errors. The authors show ultimate

boundedness using Lyapunov’s direct method.

Lavretsky[49] has introduced an adaptive output feedback tracking controller for

dynamical systems with matched uncertainties. In this method it is shown that ap-

proximately achieving a Strictly Positive Real (SPR) property with a state observer

enables the design of a direct adaptive model reference output feedback controller in

9



the presence of matched uncertainties. The asymptotic properties of the Algebraic

Riccati Equation of a standard LQG/LTR [17] controller are used to prove bound-

edness of all the signals within the closed loop system. The adaptive controller is

implemented as an augmentation to a nominal controller that was designed using a

LQG/LTR method.

Kim et al. [?, 42] have proposed a novel scheme for output feedback adaptive

control. This approach is based on the use of a linear observer to estimate the states

of the system. The observer in this control architecture is designed such that it

replaces the reference model in standard MRAC architecture. The adaptive element

consists of a parametric structure of the the form in Equation (1.1) with a novel

weight update law. The new weight update law ensures that the estimated states

of the observer track the reference model states as well as the actual states of the

system with bounded errors. Though the formulation followed in this approach is in

the setting of MRAC, the realization does not need the reference model to generate the

error signal. This architecture is desirable since existing observer based controllers can

be augmented solely by addition of the adaptive element. The authors have evaluated

this architecture on a simple wing rock model and also on an aeroelastic aircraft

model which demonstrated the performance benefits associated with this method. A

similar approach based on a parameter dependent Riccatti equation in the context of

derivative free MRAC is presented in [86, 82, 87]. However, a major deficiency of this

method is that is not applicable to systems with unmodeled dynamics. In addition,

the method developed does not account for systems with input uncertainty. Further

they also do not address the effect of noisy sensor signals on adaptive control.

1.4 Research in Adaptive Control Of Systems with Unmod-
eled Dynamics

Rohrs et al.[70] were the first to study the effect of continuous time adaptive control

algorithms subjected to unmodeled plant dynamics. In their study it was determined

10



that standard adaptive control algorithms can excite the unmodeled high frequency

dynamics of the underlying nonlinear dynamics associated with the plant driving

the system unstable. This was especially true in the presence of sinusoidal reference

inputs and/or sinusoidal disturbances. As a result of this study they concluded that

existing adaptive control algorithms circa 1985 cannot be used in practical designs

where the plant contains unmodeled dynamics because the adaptive control may drive

the system unstable. It was their conclusion that further study was necessary to study

the effect of adaptive controllers for systems with unmodeled dynamics.

Taylor et al.[78] presented a feedback linearization based regulation control design

that accounted for both unknown parameters and unmodeled dynamics. In this pa-

per a new adaptive update law was developed to account for the effects of unknown

parameters while maintaining robustness to unmodeled dynamics present in the sys-

tem under control. Furthermore, they were able to provide conditions for the global

stability of the adaptive control law for the reduced order model for a class of nonlin-

ear systems. They were able to show that the proposed adaptive weight update law

preserved the regulation property in a stability region in the presence of unmodeled

dynamics. In addition an estimate of the size of the stability region was obtained.

Astrom,K.J,[2] evaluated the behavior of adaptive control systems in non ideal

situations. The effect of the interaction between disturbance acting on the system

and the presence of unmodeled dynamics and adaptive control is also explored. The

paper establishes the importance of the persistency of excitation in adaptive control.

Ways to ensure that difficulties do not occur in the presence of anomalies are also

presented.

Spall, J.C. et al.[76] consider the use of neural networks (NN’s) in controlling a

nonlinear, stochastic system with unknown process equations. Their approach based

on using the output error of the system to train the neural network controller without

the need to assume or construct a separate model for the unknown process dynamics.
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The paper uses a new stochastic approximation algorithm for the weight estimation,

which is based on a simultaneous perturbation gradient approximation. It has been

shown that this algorithm can greatly enhance the efficiency over more standard

stochastic approximation algorithms based on finite-difference gradient approxima-

tions. The approach is illustrated on a simulated waste water treatment system with

stochastic effects and non-stationary dynamics.

Jiang, J.P. et al[35] present a constructive robust adaptive nonlinear control

scheme that improves the robustness of an adaptive back stepping algorithm. The

method accounts for a class of uncertainties including nonlinearly appearing para-

metric uncertainty, uncertain nonlinearities, and unmeasured input-to-state stable

dynamics. One major advantage of the proposed adaptive control laws is that they

do not require a dynamic dominating signal to guarantee the robustness property of

Lagrange stability.

Yang et al[81] describe an adaptive output feedback-based disturbance compen-

sator design. Compared to the classical disturbance observer design, their approach

can be applied to a class of systems that can be nonlinear and/or unstable. Their main

assumptions are that the relative degree of the regulated output variable is known,

and that the system is minimum phase. The proposed method is evaluated on a

system with unstable, unmodeled dynamics, and with both matched and unmatched

external disturbances.

In another work Calise et al[7] propose an approach for augmenting a linear con-

troller design with a neural-network-based adaptive element. The basic approach

presented in the paper involves formulating an architecture for which the associated

error equations have a form suitable for applying existing results for adaptive output

feedback control of nonlinear systems. The proposed approach has been shown to

be particularly well suited for control of flexible systems subject to limits in control
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authority. The proposed methods effectiveness was tested on a laboratory experi-

ment consisting of a three-disk torsional pendulum system, including control voltage

saturation and stiction.

Hovakimyan et al[30] address the problem of augmenting a linear observer with

an adaptive element. The design of the adaptive element in the paper employs two

nonlinearly parameterized neural networks, the input and output layer weights of

both the networks are adapted on line. The goal was to improve the performance of

the linear observer when applied to a nonlinear system. In this method the learning

signal was generated using a second linear observer of the nominal system’s error

dynamics.

Kim et al.[43] consider adaptive output feedback control of uncertain nonlinear

systems and in particular to the design of high-bandwidth flight control of unmanned

rotorcraft. They extend the method developed in [32] to systems with unmodeled

dynamics. A linear error observer is used as inputs to the neural network as well as

in the weight update law. The authors show that under a set of mild restrictions

the method can be extended to plants of arbitrary but bounded dimension. The

proposed method is applied in the design of a high-bandwidth pitch attitude control

of an unmanned rotor craft. Due to the use of feedback linearization in the design

of the adaptive controller, this method cannot be used to augment an existing linear

controller.

In another work Hovakimyan et al [33] developed an output feedback control

for uncertain MIMO systems with unmodeled dynamics using linearly parameterized

neural networks which operates over a tapped delay line of memory units comprised

of the systems input/output signals. The proposed methodology is applicable to

non-minimum phase systems and for systems with both matched and unmatched

uncertainties. The architecture proposed by the authors can be used to augment an

existing linear controller and thus lends itself to augment existing controller designs.
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The proposed method does not estimate the states of the system, instead it uses an

error observer the outputs of which are used in the weight update laws. Ultimate

boundedness of all the signals in the system is shown through Lyapunov’s direct

method. Simulations of an inverted pendulum on a cart to illustrate the theoretical

results.

Yucelen et al. [84] consider robustness to unmodeled dynamics in a state feedback

setting. The authors examine the performance of a derivative free adaptive control

law [83] in the presence of matched unmodeled dynamics. In this work, the authors

show that robustness to unmodeled dynamics is improved by increased adaptation

gain which is accomplished by including a bias term in the set of basis functions. The

attitude control of a flexible spacecraft model are used to compare the sensitivity of

the derivative-based and derivative free adaptive control law to unmodeled dynamics.

In this thesis an output feedback adaptive control in the presence of higher order

unmodeled dynamics and to account for uncertain control effectiveness and actuator

failures. The method utilizes a neural network that operates on a tapped delay line

of inputs and outputs of the system to compensate for both structured parametric

uncertainties as well as for unmodeled dynamics acting on the system . A new weight

update law that is similar in to the one developed by Kim et al. [?] is obtained using

a parameter dependent Riccati equation. The unique attributes of the proposed

approach are that it can be used to augment an existing linear controller without

modifying the parameters of that controller, it does not rely on the use of high gains

either in the adaptation law or in the observer design, it also does not involve the

use of an error observer in the weight update law and is adaptive to the presence of

matched unmodeled dynamics acting on the system.
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1.5 Thesis Contributions and Overview

The main goal of the thesis is to develop an output feedback adaptive control method-

ology that is applicable to systems with unmodeled dynamics by augmenting an ex-

isting observer based nominal control. A simple but effective approach for reducing

the effect of noisy signals on the adaptive control law is developed. The method is

extended to systems with unmodeled dynamics with input uncertainty. The aim of

the thesis is to develop a weight update law that preserves the boundedness of all the

signals in the system.

In Chapter 2, adaptive feedback control for systems with matched uncertainties

and unmodeled dynamics is presented. The unique attributes of the method are that it

can be used to augment an existing linear controller without modifying the parameters

of that controller, it is applicable to systems with unmodeled dynamics, it does not

rely on the use of high gains neither in the adaptation law nor in the observer design,

it is applicable to non-minimum phase systems and it does not require realization of a

reference model. The stability properties of the adaptive system are established using

a Lyapunov like stability analysis that relies on the existence of a positive definite

solution of a parameter dependent Riccati equation. The effectiveness of the approach

is illustrated through simulations on a wing rock model appended with unmodeled

dynamics and on an attitude control of a flexible spacecraft with attitude feedback.

In Chapter 3 the effect of sensor noise in output feedback adaptive control is

considered. A simple but effective approach that filters the error signal used in the

weight update law is used to reduce the effect that sensor noise has on the adaptive

portion of the control. All the signals in the system are shown to be Uniformly

Ultimately Bounded (UUB) by applying singular perturbation theory by treating the

filter as a fast subsystem and the system dynamics together with weight update law

being treated as the slow subsystem. Simulations on the flexible spacecraft model

corrupted with sensor noise are used to demonstrate the effectiveness of the method.
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In Chapter 4, the adaptive controller developed in Chapter 2 is extended to sys-

tems with uncerain control effectiveness. As in the previous chapters, boundedness

of all the signals in the system is shown through a Lyapunov like stability analysis.

This extension retains the attributes of the adaptive control developed in Chapter

2. Next the approach developed in Chapter 3 is utilized to reduce the effect of noisy

sensor signals on adaptive control for systems with input uncertainty. Simulations on

the flexible spacecraft model with uncertain control effectiveness and output signals

corrupted with sensor noise are used to demonstrate the effectiveness of the method.

In Chapter 5, the theory developed in Chapters 2 to 4 is applied to the design of an

altitude control employing a 44 state model of a highly flexible aircraft. The output

feedback adaptive controller design that augments an observer based linear control

design is shown to be robust to uncertainties, unmodeled dynamics as well uncertain

control effectiveness. Effectiveness of adaptive control to suppress the presence of

noisy sensor signals is also considered by introducing noise on the measured outputs.
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CHAPTER II

ADAPTIVE OUTPUT FEEDBACK CONTROL FOR

MATCHED UNMODELED DYNAMICS

2.1 Introduction

In this chapter an adaptive control methodology for output feedback adaptive control

is formulated. The method is applicable for uncertain systems with matched para-

metric uncertainty and/or matched unmodeled dynamics. The method augments an

existing observer based nominal control with an adaptive element such that the out-

put tracks a smooth reference input with bounded error. The distinguishing feature

of the method is neither a high gain observer nor a linear error observer is employed

in its realization. Other attributes of the approach are that it can be used to augment

an existing linear controller without modifying the parameters of that controller, it

is applicable to systems with unmodeled dynamics, it is applicable to non-minimum

phase systems and it does not require realization of a reference model.

2.2 Problem Formulation

Consider the following minimal realization of an uncertain system coupled with a

nonlinear function of unmodeled states

ẋ(t) = Ax(t) +B[u(t) + g(x(t), xd(t))],

y(t) = Cx(t),

yr(t) = Crx(t), (2.1)

where x(t) ∈ Rnx , is the state vector, u(t) ∈ Rm, is the control input, y(t) ∈ Rp p ≥

m, is the output available for feedback and yr(t) ∈ Rm is the regulated output.
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A ∈ Rnx×nx , B ∈ Rnx×m, C ∈ Rp×nx and Cr ∈ Rm×nx are known matrices, and

g(x(t), xd(t)) : Rnx+nxd → Rm denotes the effect of matched modeling error that may

depend on both x(t) and unmodeled dynamics represented by the unmodeled states

in xd(t) ∈ Rnxd . The unmodeled states are assumed to evolve over time with the

following dynamics

ẋd(t) = fd(x(t), xd(t)), (2.2)

where both the function fd(x(t), xd(t)) : Rnx × Rnxd → Rnxd and nxd are unknown.

Further the following assumptions hold :

Assumption 2.1: The system given in Equation (2.1) and Equation (2.2) is observable

over the compact set D with y(t) regarded as the output.

Assumption 2.2: The function g(x(t), xd(t)) is n times continuously differentiable

over the compact set D.

Assumption 2.3: xd = 0 is a globally exponentially stable equilibrium point for the

nonlinear system

ẋd(t) = fd(0, xd(t)) (2.3)

and ‖f̃d‖ , ‖fd(x, xd)− fd(0, xd)‖ ≤ bd ∀(x, xd) ∈ D.

Remark 2.2.1. There is no loss of generality regarding the choice of the origin as

the equilibrium point, because any equilibrium point can be shifted to the origin by a

change of variables.

Remark 2.2.2. Assumption 2.3 implies that the system in (2.2) is input-to-state

stable with x(t) as its input. Then, from converse Lyapunov theory, there exists a

Lyapunov function Vxd(xd) for the system in (2.3) satisfying the following conditions
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[38]:

c1|xd|2 ≤ Vxd(xd) ≤ c2|xd|2 (2.4)

∂Vxd
∂xd

fd(0, xd) ≤ −c3|xd|2 (2.5)∣∣∣∣∂Vxd∂xd

∣∣∣∣ ≤ c4|xd| (2.6)

Using Equations (2.4-2.6), an upper bound for the time derivative of Vxd(xd) can be

derived as follows :

V̇xd(xd) =
∂Vxd
∂xd

fd(x, xd)

V̇xd(xd) =
∂Vxd
∂xd

fd(0, xd) +
∂Vxd
∂xd

fd(x, xd)−
∂Vxd
∂xd

fd(0, xd)

V̇xd(xd) ≤ −c3|xd|2 + c4bd|xd| (2.7)

Next we state a key assumption needed to parameterize the uncertainty acting on

the system.

Assumption 2.4: The function g(x, xd) acting on the system in (2.1) can be linearly

parameterized as

g(x, xd) = W T ζ(ξ) + ε(x, xd), ∀(x, xd) ∈ D (2.8)

where W ∈ Rs×m is an unknown ideal weight matrix satisfying ‖W‖ ≤ W̄ , ζ(ξ) ∈

Rs×1, is a known basis vector of the form ζ(ξ) = [ζ1(ξ1), ζ2(ξ2), ζ3(ξ3), ..., ζs(ξs)]
T

satisfying |ζi(ξi)| ≤ ζ̄, and ε(x, xd) is the residual error between the uncertainty and

the linear parametrization satisfying |ε(x, xd)| < ε̄ on D. The input vector ξ is a

vector composed of a sufficient number of delayed values of the output y and input u

and is defined by :

ξ(t) = [yT (t) yT (t− d) ... yT (t− (ny − 1)d)

uT (t) uT (t− d) ... uT (t− (nu − 1)d)]T (2.9)

where, d > 0 is a time delay.
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Remark 2.2.3. For the case where the unmodeled dynamics are of the form

ẋd = Fxd +Hx (2.10)

and the basis functions for the uncertainty are known, then the D = Rn.

Using the main results from [50] and [31], it can be shown that the residual error

ε(x, xd) in Equation (2.8) can be made arbitrarily small given a sufficient number of

basis functions.

Remark 2.2.4. For SISO systems, the minimum number of delayed values of the

output and input needed to approximate the uncertainty are ny = n− 1 and n− ρ− 1

respectively, where n = nx+nxd and ρ is the relative degree of the output. For MIMO

systems the number of input-output delays required to approximate the uncertainty

depends on the vector relative degree of the system and the observability indices of the

system as stated in [31].

For nonlinear systems, the matrices A, B, C and Cr in Equation (2.1) are usu-

ally obtained by linearizing the dynamics at selected equilibrium conditions, and the

resulting set of linear models are used to design a linear controller at each operating

point. It is assumed that such a nominal controller for the system in Equation (2.1)

exists for a neighborhood of each equilibrium point, and can be written in the form

un(t) = −Kxx̂(t) +Krr(t), (2.11)

where r(t) ∈ Rm, |r| ≤ r̄, is the bounded reference command, Kx ∈ Rm×nx is the

state gain, Kr ∈ Rm×m is the input gain and x̂(t) is an estimate of the state x(t)

which is obtained by the use of a state observer operating only on y(t) and un(t).

˙̂x(t) = Ax̂(t) +Bun(t) + L(y(t)− ŷ(t)),

ŷ(t) = Cx̂(t), (2.12)

where L is the observer gain designed such that A− LC is Hurwitz.
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Given A,B,Kx and Kr, define a reference model for the desired response of the

closed loop system

ẋm(t) = Amxm(t) +Bmr(t),

ym(t) = Crxm(t) (2.13)

where Am = A − BKx is Hurwitz by design and Bm = BKr. The gains Kx and Kr

are designed for the system given in Equation (2.1) assuming that x(t) is available

for feedback and that g(x(t), xd(t)) = 0 so that the regulated output yr(t) tracks the

reference input r(t) with acceptable transient error.

The aim of the adaptive control is to design a control law u(t) such that regulated

output yr(t) in Equation (2.1) tracks the output of the reference model ym(t) with

bounded error using only the output y(t) and u(t) and their delayed values for feed-

back. Towards this end the nominal control law given in Equation (2.11) is augmented

with an adaptive element uad(t)

u(t) = un(t)− uad(t) (2.14)

The adaptive element uad(t) is given by

uad(t) = Ŵ T (t)ζ(ξ(t)) (2.15)

where Ŵ (t) is regarded as an estimate of W defined in Equation (2.8).

Define the state estimation error, output tracking error and the weight estimation

errors as follows :

x̃(t) , x(t)− x̂(t) (2.16)

ỹ(t) , MCx̃(t) = Cex̃(t) (2.17)

W̃ (t) , W − Ŵ (t) (2.18)

where M ∈ Rm×p can be freely chosen. The manner in which M can be chosen is

addressed later in Remark 2.2.4. Also denote the state and estimated state tracking
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errors:

e(t) , x(t)− xm(t) (2.19)

ê(t) , x̂(t)− xm(t) (2.20)

The dynamics for the state estimation error x̃(t) and the estimated state tracking

error ê(t) are given by :

˙̃x(t) = Aex̃(t) +Bg̃(t), (2.21)

˙̂e(t) = Amê(t) + LCx̃(t), (2.22)

where Ae = A−LC and g̃(t) = g(x(t), xd(t))−uad(t). Note that since Am is Hurwitz

by design, ê is bounded provided x̃ is bounded. The estimate of the ideal weight,

Ŵ (t) in Equation (2.15), is updated based on the following weight update law

˙̂
W (t) = γw

[
ζ(ξ(t))ỹT (t)− σŴ (t)− ζ(ξ(t))ζT (ξ(t))

2µ
Ŵ (t)

]
(2.23)

where γw and σ are tunable positive adaptation gains. The weight update law given

in Equation (2.23) is the same as that developed in [?] with the exception that the

basis function inputs consist of the current and delayed values of outputs and control

inputs as previously defined in Equation (2.9), whereas in Kim [?] the basis function

inputs consist of the states of the observer. It will be demonstrated that this makes

the approach applicable to systems with unmodeled dynamics. The adaptive control

architecture is illustrated in Figure 4 wherein the blocks corresponding to the nominal

controller are shown in green, the plant in blue and the adaptive control blocks in

red. Note that because of the definition of ỹ in Equation (2.17), the observer serves

the role of a reference model, and the reference model dynamics in Equation (2.13)

are not a part of the adaptive control architecture.

Stability analysis of the weight update law in Equation (2.23) employs a candidate

Lyapunov function that is dependent on the solution of a parameter dependent Riccati
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Figure 4: Adaptive Control Architecture for Systems With Unmodeled Dynamics

equation [?] given by :

0 = ATe P + PAe +Q0 + µNNT (2.24)

N = CT
e − PB (2.25)

where Q0 > 0 for which there exists µ̄ > 0 such that (2.24) possesses a unique positive

define solution for all 0 < µ < µ̄.

Remark 2.2.5. If N = 0 in Equation (2.25), it follows that:

0 = ATe P + PAe +Q0 (2.26)

0 = CT
e − PB (2.27)
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which implies that the transfer function associated with the system G(s) = Ce(sI −

Ae)
−1B is strictly positive definite. In this case Equation (2.24) reduces to a Lyapunov

equation associated with the state estimation error dynamics in Equation (2.22), which

is usually employed in the stability analysis of adaptive systems, and µ̄ = ∞. This

suggests that for the purpose of adaptive control design, it is advantageous to choose

M = Mo, where Mo minimizes a norm measure of N0, where N0

N0 , (MC)T − P0B (2.28)

with P0 defined as the value of P that satisfies the Lyapunov equation in (2.26).

Taking the Frobenius norm as a measurement, it can be shown that

MT
0 = [CCT ]−1CP0B (2.29)

Remark 2.2.6. When [CCT ] is positive semidefinite, The pseudo inverse of [CCT ]

can be used in (2.29) instead of the inverse.

The following lemma shows that a positive definite solution exists for the algebraic

dependent Riccati equation (2.24) and can be obtained using Potter‘s method [68].

This also means that µ̄ can be determined by searching for the boundary values that

result in a failure of the algorithm to converge. We employ the notation Ric() and

dom(Ric) as defined in Ref [16].

Lemma 2.2.1. : Define the Hamiltonian matrix H,

H =

Ae − µBCe µBBT

−Q −(Ae − µBCe)T

 (2.30)

where Q = Q0 + µCeC
T
e and R = BBT . Then for all 0 < µ < µ̄, H ∈ dom(Ric) and

P = Ric(H)

Proof. The proof follows directly from Lemmas 3 and 4 in [16]
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2.3 Boundedness of Signals

In this section the boundedness of all signals in the system is shown via Lyapunov like

analysis using the parameter dependent Riccati equation introduced in the previous

section. The following theorem concerns the the state and weight estimation errors.

Theorem 2.3.1. Consider the system in Equation (2.1) and Equation (2.2), along

with the control law given in (2.14), composed of the nominal control in (2.11) and the

adaptive control in (2.15) together with the observer in (2.12) and the weight update

law in (2.23), where µ < µ̄ as defined by Lemma 2.2.1. Under Assumptions 2.1, 2.2,

2.3 and 2.4 and, for a sufficiently large D, x̃ and W̃ are UUB.

Proof. Consider the candidate Lyapunov function

V (x̃, W̃ , xd) = x̃TPx̃+
1

γw
tr[W̃ T W̃ ] + Vxd(xd) (2.31)

The time derivative of Equation (2.31) along the closed loop solutions of Equation

(2.1) is given by

V̇ (x̃, W̃ , xd, t) = 2x̃TP ˙̃x− 2

γw
tr[W̃ T ˙̂

W ] + V̇xd(xd) (2.32)

Substituting for ˙̃x from Equation (2.21) along with the definition of g̃, Assumption

2.2, Equation (2.15), the weight update law in Equation (2.23), and Equation (2.18),

Equation (2.32) can be written as

V̇ (x̃, W̃ , xd, t) = x̃T (ATe P + PAe)x̃+ 2x̃TPB
[
W̃ T ζ(ξ) + ε

]
− 2tr

[
W̃ T ζ(ξ)ỹT − σW̃ T Ŵ − W̃ T ζ(ξ)ζT (ξ)

2µ
Ŵ

]
+ V̇xd(xd) (2.33)
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Using Equation (2.17), Equation (2.18), Equation (2.24), Equation (2.25) and sim-

plifying, Equation (2.33) can be written as

V̇ (x̃, W̃ , xd, t) = −x̃TQx̃+ 2x̃TPBε− 2x̃TNW̃ T ζ(ξ)

+ 2σtr
[
W̃ TW

]
− 2σtr

[
W̃ T W̃

]
+
ζT (ξ)WW̃ T ζ(ξ)

µ

− ζT (ξ)W̃W̃ T ζ(ξ)

µ
+ V̇xd(xd) (2.34)

where Q , Q0 + µNNT .

Young’s inequality states that 2aT b ≤ vaTa+ bT b
v

, v > 0. This can be generalized

to compatible matrices as 2tr[ATB] ≤ vtr[ATA] + 1
v
tr[BTB]. Applying the vector

form to the third term in Equation (2.34) with a = −Nx̃, b = W̃ T ζ(ξ) and v = µ

produces

−2x̃TNW̃ T ζ (ξ) ≤ µx̃TNNT x̃+
1

µ
ζT (ξ)W̃W̃ T ζ(ξ) (2.35)

Likewise, applying the matrix form of Young’s inequality to the fourth term in Equa-

tion (2.34), with v = 1 produces

2σtr
[
W̃ TW

]
≤ σtr

[
W̃ T W̃

]
+ σtr

[
W TW

]
2σtr

[
W̃ TW

]
≤ σtr

[
W̃ T W̃

]
+ σW̄ 2 (2.36)

Using Assumption 2.2, the second term in Equation (2.34) is bounded as follows:

2x̃TPBε ≤ 2ε‖PB‖ |x̃| (2.37)

Substituting all the above inequalities and the upper bound for V̇xd from Equation

(2.7). Equation (2.34) can be written as

V̇ (x̃, W̃ , xd, t) ≤ −x̃TQ0x̃

+ 2ε‖PB‖ |x̃|

+
ζT (ξ)WW̃ T ζ(ξ)

µ
+ σW̄ 2 − σtr

[
W̃ T W̃

]
− c3|xd|2 + c4bd|xd| (2.38)
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where we have made use of the definition of Q below Equation (2.34). Applying

ζT (ξ)WW̃ T ζ(ξ) ≤ s2ζ
2
W̄‖W̃‖ (2.39)

and using the following definitions:

c , λmin(Q0) (2.40)

d1 , ε‖PB‖ (2.41)

d2 ,
1

µ
s2ζ

2
W̄ (2.42)

d3 , c4bd (2.43)

e2 , σW̄ 2 +
d2

1

c
+
d2

2

4σ
+
d2

3

c3

(2.44)

the inequality in Equation (2.38) becomes

V̇ (x̃, W̃ , xd, t) ≤ −c
[
|x̃| − d1

c

]2

− σ

[
|W̃ | − d2

2σ

]2

− c3

[
|xd| −

d3

c3

]2

+ e2 (2.45)

Consequently, we can conclude that either

|x̃| > Ψ1 or |W̃ | > Ψ2 or |xd| > Ψ3 (2.46)

renders V̇ (x̃, W̃ , t) < 0, where Ψ1,Ψ2 and Ψ3 are given by:

Ψ1 =
d1

c
+

e√
c

(2.47)

Ψ2 =
d2

2σ
+

e√
σ

(2.48)

Ψ3 =
d3

c3

+
e
√
c3

(2.49)

and therefore both x̃ and W̃ are UUB.

Corollary 2.3.1. Under the conditions stated in Theorem 2.3.1, An estimate for the

ultimate bound for η(t) , [x̃T W̃ T xTd ], is given by

rη =

√
λmax(P )Ψ2

1 + 1/γwΨ2
2 + c2Ψ2

3

ϑ
(2.50)
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where ϑ = min(λmin(P ), 1
γw
, c1) . Further, an estimate for the ultimate bound on x̃

is given by

r =

√
λmax(P )Ψ2

1 + 1/γwΨ2
2 + c2Ψ2

3

λmin(P )
(2.51)

Proof. Define the sets:

Brη , {η : |η| ≤ r} (2.52)

Ωα , {η ∈ Brη : V (x̃, W̃ , xd) ≤ α} (2.53)

such that Brη ⊂ Dη for a sufficiently large set Dη and α , min|η|=r(V (x̃, W̃ , xd)) =

r2ϑ. The geometric representation of the sets is given in Figure 5. From the definition

of V (x̃, W̃ , xd) in Equation (2.31) it follows that the set Ωα is an invariant set if

α ≥ λmax(P )Ψ2
1 +

1

γw
Ψ2

2 + c2Ψ2
3 (2.54)

Therefore the minimum size of Brη is given by Equation (2.50). Further, on the

boundary of set Ωα, the maximum value for |x̃| occurs when ‖W̃‖ and |xd| are zero,

therefore an estimate for the ultimate bound on x̃ is given by Equation (2.51)

Remark 2.3.1. The proofs of Theorem 2.3.1 and Corollary 2.3.1 assume the sets D

and Dη are sufficiently large. If we define BRη as the largest ball in Dη , and assume

the initial conditions are such that η(0) ∈ BRη , then from Figure 5 we have the added

condition that rη < Rη, which implies an upper bound on γw. It can be shown that

in this case the upperbound must be such that ϑ = γ−1
w . With rη defined by Equation

(2.50) and ϑ = γ−1
w , the condition rη < Rη implies

γw <
R2
η −Ψ2

2

λmax(P )Ψ2
1 + c2Ψ2

3

(2.55)

Therefore, it follows that the meaning of Dη sufficiently large implies

R >
√
γwλmax(P )Ψ2

1 + Ψ2
2 + γwc2Ψ2

3 (2.56)
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Figure 5: Geometric representation of sets

and η(0) ⊂ BRη . The meaning of D sufficiently large is difficult to characterize since

x(t) depends on the initial condition x(0). See also [?]

Corollary 2.3.2. If the state estimation error x̃ is bounded, then the state tracking

error e = x− xm is bounded.

Proof. see also [?]

|e| = |x− xm|

= |x− x̂− (xm − x̂)|

≤ |x− x̂|+ |xm − x̂|

≤ |x̃|+ |ê| (2.57)

From Theorem 2.3.1, x̃ is bounded. The estimated state tracking error, ê, is bounded

from Equation (2.22). Hence the state tracking error, e, is bounded.
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Since xm(t) is bounded, it follows from Corollary 2.3.2 that x(t) is bounded.

Further Assumption 2.1 ensures that xd is bounded since it is input-to-state stable

[38].

Corollary 2.3.3. If the state estimation error x̃ is UUB by r in Equation (2.51),

then the state tracking error e is UUB by r(1 + v). where

v ,
2‖PmLC‖
λmin(Qm)

(2.58)

Proof. Consider the following positive definite function

V (ê) = êTPmê (2.59)

where Pm satisfies

0 = ATmPm + PmAm +Qm, Qm > 0 (2.60)

The time derivative of Equation (2.59) along the closed loop solutions of Equation

(2.22) is given by

V̇ (ê, x̃) = −êTQmê+ 2êTPmLCx̃ (2.61)

V̇ (ê, x̃) ≤ −λmin(Qm)|ê|
[
|ê| − 2‖PmLC‖|x̃|

λmin(Qm)

]
(2.62)

From Equation (2.22) ê is bounded as long as x̃ is bounded. It therefore follows that

once x̃ reaches its ultimate bound, r, V̇ (ê, x̃) < 0 for all |ê| > rv, and from Equation

(2.57), |e| is UUB by r(1 + v).

Remark 2.3.2. The effect of actuator saturation and rate limits on the boundedness

of all the signals in the system has not been addressed as part of this thesis. In all

the examples that follow it has been assumed that the actuator rate limits and or

saturations are not active. It may be possible include actuator limits by extending the

method of ’hedging’ described in Ref [36] to the output feedback case.
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Remark 2.3.3. While the system considered in this thesis is of the form given in

Equation (2.1) there is no direct coupling of the control input to the measurements.

The method developed in this section can be easily extended for systems of the form :

ẋ(t) = Ax(t) +B[u(t) + g(x(t), xd(t))],

y(t) = Cx(t) +Du(t),

yr(t) = Crx(t), (2.63)

when there is no uncertainty associated with the D matrix with the following observer

˙̂x(t) = Ax̂(t) +Bun(t) + L(y(t)− ŷ(t)),

ŷ(t) = Cx̂(t) +Du(t), (2.64)

However the adaptive control cannot be easily extended for systems with uncertain D

matrix without the use of an adaptive observer.

Remark 2.3.4. By introducing the parameter µ < µ̄ the boundedness of all the signals

in the system under the adaptive control developed in this section is shown using the

parameter dependent Riccatti equation instead of a Lyapunov equation. The use of the

Riccatti equation instead of the Lyapunov equation obviates the need to use large gains

in the observer based nominal control design. Using the method developed in this thesis

the need to approximate the SPR condition on the system G(s) = Ce(sI − Ae)
−1B

through high gain design of the nominal controller is eliminated such as was done

in Ref’s. [49] and [51]. Furthermore the SPR condition is not applicable to non-

minimum phase systems. The last term in the weight adaptive also depends on the

parameter µ. The form of the last term is in the weight update law is similar to that

of the sigma modification term but with a varying gain due to the presence of the

matrix ζ(ξ(t))ζT (ξ(t)) which is dependent on the basis function.
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2.4 Wing Rock Dynamics

Modern fighter aircraft are designed to meet enhanced performance criteria for air

superiority missions. This may require that they operate in nonlinear regimes of

flight envelope associated with complex flight dynamics phenomenon. The nonlinear

regimes of the flight envelope that include flight at high angles of attack that induce

undesirable phenomena such as yaw departure, pitching oscillations and pitch roll

coupling. The phenomena of wing rock is associated with flight at moderate to large

angles of attack and involves sustained lateral oscillations dominated by a rolling

oscillation. The severity of the wing rock phenomena is determined mainly by the

amplitude of the oscillation and to a lesser extent by the frequency of the oscillation.

This oscillation in roll is a major concern for high performance aircraft as it restricts

their ability to perform enhanced agility maneuvers at high angle of attack tasks such

as maneuvering, and point and shoot aiming.

Ngyuen et al. [66] conducted both static and dynamic wind tunnel tests to study

the aerodynamic factors which caused the low speed wing rock of a free to roll flat

plate delta wing with 80 degrees of leading edge sweep. Their investigations indicate

that the wing rock phenomenon is caused by the dependence of aerodynamic damping

in the roll axis on the side slip angle such that unstable damping is obtained for small

side slip angles which becomes stable at increased angles of attack. The development

of a wing rock model and its control have been studied in Ref’s. [20, 34, 55, 19, 73, 77].

The differential equation describing the wing rock motion is given by [55, 19, 73]

φ̈ =
ρU2
∞Sb

2Ixx
Cl + d0u (2.65)

where φ is the roll angle, ρ is density of air, U∞ is free-stream velocity, b is wing span,

Ixx is the wing mass moment of inertia, the control input u is aileron deflection in

radians and d0 is the control effectiveness. The roll-moment coefficient is expressed
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as

Cl = a0 + a1φ+ a2φ̇+ a3|φ|φ̇+ a4|φ̇|φ̇+ a5φ
3 (2.66)

where the aerodynamic parameters ai are nonlinear functions of the angle of attack of

the aircraft. The above model can be represented by the following state space model

ẋ1 = x2

ẋ2 = ∆(x) + d0u (2.67)

where x = (x1, x2)T = (φ, φ̇)T and ∆(x) is given by

∆(x) = b0 + b1φ+ b2φ̇+ b3|φ|φ̇+ b4|φ̇|φ̇+ b5φ
3 (2.68)

where b0 = 0, b1 = −0.2789, b2 = 0.2274, b3 = −0.9368, b4 = 0.1432, and b5 = 0.3218

are aerodynamic coefficients. In order to evaluate the adaptive control methodol-

ogy developed in the previous section, the wing rock model is augmented with the

following matched unmodeled dynamics, given by

ẋd = Fxd +Gx (2.69)

where the matrices F,G are given by:

F =

 0 1

−0.0004 −0.0320

 , G =

0 0

0 1

 , (2.70)

With the addition of the above unmodeled dynamics, the state space model in Equa-

tion (2.67) changes to

ẋ1 = x2

ẋ2 = ∆(x) + d0u+

[
0 1

]
xd

y = x1 (2.71)

We now design a nominal controller for the system given in Equation (2.71) with

φ(t) as the output, assuming ∆(x) = 0 and xd = [0 0]T . The objective of the
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controller is to design the input u(t) such that φ(t) follows the reference input r(t).

The state feedback gain Kx is obtained assuming both the states are available using

Linear Quadratic Regulator theory with Q̄ = diag(20, 2) and R = 5, This results in a

feedback gain of Kx = [2.0000, 2.0976]T . Once the feedback gain has been calculated

the feed forward gain Kr = 2 is computed to obtain a zero steady state error for a

step reference input.

The next step is to design the linear observer to estimate both the states x1 and

x2. The estimates are then used instead of the actual states for feedback in the

nominal control design. We will assume that the nominal observer is designed such

that the poles of the observer are κ times faster than the closed loop model/reference

model. Note that Ae appears in Equation (2.21). Therefore, the choice of κ is an

important design parameter that influences the maximum allowable value for the

parameter µ such that the parameter dependent algebraic Riccati equation has a

positive definite solution. Figure 6 shows the µ̄ boundary versus κ for Q0 = I2. For

κ = 8, and using pole placement to assign the poles of Ae in Equation (2.21), an

observer gain L = [20.9762, 200.0000]T is obtained and the maximum allowable value

for µ is µ̄ = 87.59.

The reference model dynamics for adaptive control design are defined by setting

Am = A − BKx resulting in a second order model with a natural frequency of 1.41

rad/s and a damping ratio of 0.74. The reference model input matrix is then given

by Bm = BKr. In the adaptive design, a bias term and six sigmoidal basis functions

ζi(ξi) are used to form the basis vector, so ζ1 = 1 and

ζi(ξ) =
1− e−aiξi
1 + e−aiξi

, i = 2, 3, 4, 5, 6, 7 (2.72)

with a = [0.82 0.82 0.82 0.82 5 5], ξ = [φn(t) φn(t − d) φn(t − 2d) φn(t − 3d) u(t −

dt) u(t−d−dt)]T , where the normalized output is φn(t) = φ(t)/(π/2), and time delay,

d = 0.15 seconds. The activation potentials for the sigmoidal activation function are

chosen such that their outputs are linear when the signals are within their nominal
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range and are saturated beyond the nominal range. For this system n = nx+nxd = 4,

and the relative degree for this system is ρ = nx = 2. Therefore, the minimum

number of delayed values are employed in Equation (2.72). Further to avoid having

to implement a fixed point iteration, u(t− dt) and u(t− d− dt) are used as inputs to

the basis function instead of u(t) and u(t − d) respectively, where dt = 0.005 is the

sampling time of the controller implemented in the discrete domain. The remaining

choices for the parameters in the adaptive law are γ = 1000, this was chosen to

provide adequate tracking of commanded input, The sigma modification gain, σ was

set to be equal to 0.05/γ and µ was chosen to be 70 which is less than µ̄.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

κ

µ̄

Figure 6: Limit value of µ̄ for Q0 = I2

A simulation is first carried out without uncertainty (∆x = 0) and without un-

modeled dynamics (xd = [0 0]T ) to determine the performance of the nominal control

design. The results of the simulation for a step input of r0 = 60 degrees is given in

Figure 7 and the corresponding control input is shown in Figure 8

The same simulation is repeated with both the uncertainty and the effect of un-

modeled dynamics acting on the system. As observed from Figure 9, response with
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nominal control goes unstable. The simulation is then repeated with the adaptive

control enabled. As observed from Figure 9, the adaptive control stabilizes the closed

loop system in the presence of both the uncertainty and unmodeled dynamics. A

comparison of the corresponding control inputs for this case is given in Figure 10.

The next example compares the adaptive control law developed in [?] for the wing

rock model with both parametric uncertainties and unmodeled dynamics acting on

the system with the extension developed in this proposal. As mentioned previously,

Reference [?] uses the observer estimates of the modeled states to form the basis

vector. So for illustrative purposes the basis vector is made of a, bias term (ζ1 = 1)

and two sigmoidal basis functions of the form

ζi(ξ) =
1− e−aξi
1 + e−aξi

, i = 2, 3 (2.73)

with a=0.82 and ξ = [φ̂n
ˆ̇φn], where φ̂n = φ̂/(π/2) and ˆ̇φn = ˆ̇φ/(π/2). The remaining

choices for the parameters in the adaptive law are γ = 1000, σ = 0.005 and µ = 70,

the same values used in the previous example. The results of this comparison are

given in Figure 11. As observed from this figure, the Reference [?] based design goes

unstable while the design that employs a tapped delay line results in a stable response.

A comparison of the corresponding control inputs is shown in Figure 12
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Figure 7: Bank angle response of the nominal controller without uncertainty and

unmodeled dynamics.
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Figure 8: Nominal control input without uncertainty and unmodeled dynamics.
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Figure 9: Comparison of bank angle responses with uncertainty and unmodeled

dynamics.
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Figure 10: Comparison of control inputs with uncertainty and unmodeled dynamics.
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Figure 11: Comparison of bank angle responses for two different adaptive laws.
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Figure 12: Comparison of control inputs for two different adaptive laws.
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2.5 Control of Flexible Spacecraft

In this section, the attitude control of a flexible spacecraft with attitude feedback is

considered [80]. The attitude kinematics are given by:

q̇ =
1

2
(q × ω + q0ω) (2.74)

where q ∈ R3, [q0 q
T ]T ∈ R4 denotes the unit quaternion vector, therefore q2

0 +|q|2 = 1,

and ω ∈ R3 is the angular rate vector. The dynamic equations of a spacecraft with

flexible appendages can be expressed as:

Jω̇ + ω × (Jω + δη̇) + δT η̈ = u (2.75)

η̈ + Cη̇ +Kη + δω̇ = 0 (2.76)

where J ∈ R3×3 is the total moment of inertia of the spacecraft, u ∈ R3 is the

control torque vector, and η ∈ RN is the modal coordinate vector relative to the

main body. δ ∈ RN×3 is the coupling matrix between the rigid body and flexible

dynamics, K = diag[Λ2
1,Λ

2
2, ...,Λ

2
N ] and C = diag[2ζ1Λ1, 2ζ2Λ2, ..., 2ζNΛN ] are the

stiffness and damping matrices with N the number of elastic modes considered, ζi is

the associated damping and Λi the natural frequency of the flexible modes. In order

to test the effectiveness of the adaptive control, the following values for the flexible

spacecraft are used :

J =


350 3 4

3 270 10

4 10 190

Kgm2 (2.77)

δ =


6.46 1.28 2.16

−1.25 0.91 −1.67

1.11 2.48 −0.83

 (2.78)
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For N = 3, the natural frequencies and damping ratios of the decoupled flexible

modes, are Λ1 = 0.768, Λ2 = 1.104 and Λ3 = 1.873 rad/s and ζ1 = 0.0056,ζ2 = 0.0086

and ζ3 = 0.013 respectively.

By defining z1 , q and z2 , 2q̇, η1 , η and η2 , η̇ + δω, Equation (2.74) and

Equation (2.75) can be rewritten in the form Equation (2.1) as:

ż1 =
1

2
z2 (2.79)

ż2 = = QJ−1u+ g0 (q, ω, η1, η2, u) (2.80)

η̇1 = η2 (2.81)

η̇2 = η1 + δω (2.82)

Where

Q ,


q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 (2.83)

η1 and η2 are treated as the unmodeled dynamics acting on the system. The use

of η1 and η2 instead of ω and η as the unmodeled states allows the dynamics of the

unmodeled states to be of the form given in Equation (2.2). If the system is linearized

about the equilibrium attitude, q0 = 1 and q = [0 0 0]T , then in equilibrium Q̄e = I3,

and A,B,C in Equation (2.1) become:

A =



0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(2.84)

B =

 03

J−1

 (2.85)
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C = Cr =

[
I3 03

]
(2.86)

The state feedback gain Kx is obtained using LQR theory with Q = I6 and

R = 0.001I3. The nominal observer is a Kalman filter designed for the process:

ẋ = Ax+Bu+ Γw (2.87)

y = Cx+ v (2.88)

where Γ = [03; I3] and the process and measurement noise matrices are Qw = I6

and Rv = 0.001I3 respectively. The expression used for the feed forward gain is

Kr = −(CrAmB)−1. This provides zero steady state error for step changes in attitude

command. The reference model dynamics for adaptive control design are defined by

setting Am = A−BKx and Bm = BKr. For M = I3 in Equation (2.17), the resulting

maximum allowable value for the parameter µ from Lemma 2.1 is µ̄ = 14160. In this

case n = nx + nxd = 12. For this particular problem, 11 delayed values of y and

3 delayed value of u along with a bias term are used to form the basis vector with

sigmoidal activation function having activation potentials of 3 for y and its delayed

values and 0.2 for u and its delayed values such that the ouput is linear for the nominal

range and is saturated outside their nominal ranges respectively. Further, to avoid

implementing a fixed point iteration u(t−dt) is used in place of u(t), where dt = 0.005

is the controller update rate.

A simulation is first carried out with the nominal control acting on the nonlinear

spacecraft model without flexible modes (g(q, ω, η, η̇) = 0). As observed from the

Figure 13, it is seen that even without the effect of the flexible modes, the system goes

unstable for a command input r = [−0.5 − 0.2 0.8]T . The response of the reference

model (qr1, qr2, qr3) is also plotted in the Figure 13. The instability is primarily

due to the q × ω term in Equation (2.74). Note that the nominal controller was

designed by linearizing the spacecraft model about the equilibrium condition q0 = 1

and q = [0; 0; 0]T . The new equilibrium condition r = [−0.5 − 0.2 0.8]T is ”far”
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from the initial set point condition. This means that the nominal controller can be

considered a ”poor” design with respect to the commanded equilibrium point. Figure

14 shows that the system with adaptive augmentation using the weight update law

given in Equation (2.23), with the adaptive control designed using γ = 1000, µ = 2000,

σ = 0.0005 and a delay of 0.015 seconds, in the presence of nonlinearity provides

adequate tracking of the reference response. Next the simulation is repeated with the

effect of the flexible modes coupling with the rigid body dynamics. Figure 15 shows

that, the adaptive control developed developed in accordance with Ref [?], using the

same values of γ, µ and σ, is unable to track the reference input and ultimately goes

unstable in the presence of the flexible modes. Figure 16 shows that the adaptive

control designed using the delayed values of y and u as inputs to the basis functions

with the weight update law given in Equation (2.23) provides adequate tracking

performance with respect to the reference response, without destabilizing the flexible

modes.

0 20 40 60 80 100

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

q
 [

ra
d

]

 

 

qo
q1
qr1
q2
qr2
q3
qr3

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

Time [s]

η
[.
]

 

 

η
1

η
2

η
3

0 20 40 60 80 100

−200

−150

−100

−50

0

50

100

150

Time [s]

u
[N
.m

]

 

 

u
1

u
2

u
3

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

Time [s]

Ŵ
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Figure 13: Response of the rigid spacecraft model under nominal control.
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Figure 14: Response of the rigid spacecraft model under adaptive controller that

employs delayed inputs and outputs.
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Figure 15: Response of the flexible spacecraft model under Ref.[41] adaptive control.
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Ŵ
[.
]

Figure 16: Response of the flexible spacecraft model under adaptive controller that

employs delayed inputs and outputs.

2.6 Summary

This Chapter presents an output feedback adaptive controller design approach appli-

cable to systems with unmodeled dynamics. The unique attributes of the approach

are that it can be used to augment an existing linear controller without modifying the

parameters of that controller, it is applicable to systems with unmodeled dynamics,

it does not rely on the use of high gains neither in the adaptation law nor in the ob-

server design, it is applicable to non-minimum phase systems and it does not require

realization of a reference model. The stability properties of the adaptive system are

established using a Lyapunov like stability analysis that relies on the existence of a

positive definite solution of a parameter dependent Riccati equation.
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CHAPTER III

REDUCING THE EFFECT OF NOISE IN ADAPTIVE

CONTROL

3.1 Introduction

In this chapter the adaptive control methodology developed in Chapter 2 is extended

for systems with noisy measurements. While adaptive control theory provides a means

for reducing the effects of modeling error, this comes at the cost of introducing a new

pathway for sensor noise to enter the actuators, and therefore problems may arise with

regard to actuator rate limits, energy consumption, and ultimately actuator failure.

This is particularly an issue when attempting to improve transient performance of an

adaptive law through the use of high adaptation gain.

3.2 The effect of noise on adaptive control

Kutay [47], address the sensitivity of noise on the error observer based adaptive out-

put feedback control approach of [33]. For the adaptive laws developed using the error

observer method it was observed experimentally that the adaptive control architec-

ture is susceptible to sensor noise. In Kutay [47] a reduced order observer has been

proposed that eliminates the redundancy in estimating the available compensator

states. The author presents a Lyapunov-like stability analysis to show the ultimate

boundedness of all the signals in the system. Numerical and experimental results

are presented that shows the reduction in the effect of sensor noise on the adaptive

control process.

In Singla et al. [74], An output feedback structured model reference adaptive

control law has been developed for spacecraft rendezvous and docking problems. The
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authors study the effect of bounded output measurement errors on the performance

of an adaptive controller. Their method relies on estimating the relative velocities

between the spacecraft using a filter based on the passivity properties of the spacecraft

translational and attitude dynamics to generate the pseudo-velocity-like signals. A

Lyapunov like stability analysis is presented to show ultimate boundedness of all the

signals in the system in the presence of sensor noise and errors. Numerical simulations

of spacecraft rendezvous and docking show the efficacy of the proposed method in

the presence of noise.

Calise et al. [8] consider the effect of sensor noise on adaptive control laws. The

authors have developed a new modification term called adaptive loop recovery (ALR)

that tries to preserve the loop transfer properties of a reference model associated with

a non-adaptive control design. It has been shown that the ALR modification gain has

to be chosen sufficiently large to preserve the loop transfer properties. The authors

show that the use of a large gain for the ALR modification term does not make the

adaptive control law more susceptible to sensor noise compared to standard adaptive

control law. The authors do not explicitly consider the effect of sensor noise on the

adaptive control law without the ALR modification term.

In this Chapter we adopt a simple approach to address the effect of noise on

output feedback adaptive control, and provide a theoretical justification based on

singular perturbation theory [38]. The adaptive control is similar to that developed

in Chapter 2 except that it uses the filtered version of the output error in order to

reduce the effect of noise which could potentially drive the actuators to their rate

limits. An advantage to this approach is that it does not require modification of

the observer portion of the nominal control law, which is used in place of the usual

reference model to generate an error signal for the adaptive law. The benefits of this

approach are illustrated by numerical simulations of the flexible space craft example

used in Chapter 2 with the addition of sensor noise.
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3.3 Reducing the effect of sensor noise

In order to reduce the amount of sensor noise on the control signal due to the aug-

mentation of adaptive control, the weight update law developed in Equation (2.23) is

replaced with the following

˙̂
W (t) = γw

[
ζ(ξ(t))ỹTf (t)− σŴ (t)− ζ(ξ(t))ζT (ξ(t))

2µ
Ŵ (t)

]
, (3.1)

where the filtered version of ỹ(t), ỹf (t), is used to suppress the effect of noisy sensor

signals. For simplicity of presentation in this Chapter, the filtered error signal is

obtained using a first order filter which is given by:

τ ˙̃yf (t) = −ỹf (t) + ỹ(t), (3.2)

although a higher order filter could also be used. Also, we have assumed in Equation

(3.2) that the same first order filter is applied to each element of ỹ. The arguments

that follow apply equally well when the order and/or the bandwidths of the filters that

are applied to each element of are different. We are concerned here with the properties

of the adaptive controller for sufficiently large bandwidth (sufficiently small τ in the

case of a first order filter).

Remark 3.3.1. The addition of the filter introduces a delay that can affect the per-

formance of the adaptive control in the presence of noisy measurements. Therefore

the choice of the filter frequency has to be balanced between reducing the effect of noisy

measurements on the control input and the performance of the adaptive controller.

3.4 Boundedness Analysis

In this section arguments from singular perturbation theory [38, 63] are used to show

that boundedness of all error signals is preserved when the weight update law in

Equation (3.1) is employed with τ sufficiently small.
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Theorem 3.4.1. Consider the system in Equation (2.1) and Equation (2.2), along

with the control law given in Equation (2.14), composed of the nominal control in

Equation (2.11) and the adaptive control in Equation (2.15) together with the observer

in Equation (2.12) and the weight update law in Equation (3.1), where µ < µ̄ as

defined by Lemma 2.2.1. Under Assumptions 2.1, 2.2, 2.3 and 2.4 and for n ≥ nx+nxd

defined below (2.9), then ∃ τ ∗ > 0 : ∀ 0 < τ < τ ∗, x̃ and W̃ defined in Equation (2.16)

and (2.18) are UUB, for a sufficiently large D.

Proof. Equations (2.1), (2.2) along with Equations (3.1) and (3.2) above have the form

of a singularly perturbed system with τ viewed as a small parameter. According to

Tikhonovs theorem [38], an approximation for the solutions for x̃(t, τ) and
˜̂
W (t, τ)

can be constructed from the solution of the reduced system obtained by setting τ = 0

in Equation (3.2), in which case the filtered signal ỹf (t) is equal to ỹ(t) and Theorem

2.3.1 applies to the reduced system. A requirement for the application of Tikhonovs

theorem is that the equilibrium point of the boundary layer system is exponentially

stable uniformly in ỹ(t)∀ t ≥ 0. The boundary layer system is obtained by applying

the time transformation tbl = t/τ to Equation (3.2), which results in

dỹf (tbl)

dtbl
= −ỹf (tbl) + ỹ(t) (3.3)

From Equation (3.3) it is evident that the exponential stability requirement is satisfied

with ỹ(t) viewed as the equilibrium point ∀t ≥ 0. The main result of Tikhonovs

theorem is that ∃ τ ∀ 0 < τ < τ ∗

x̃(t, τ) = x̃r(t) +O(τ) (3.4)

˜̂
W (t, τ) =

˜̂
Wr(t) +O(τ) (3.5)

where O(τ) signifies a tern of the order of τ and subscript ’r’ denotes the reduced

solution. Therefore x̃(t, τ) and
˜̂
W (t, τ) are UUB.

Corollary 3.4.1. Under the conditions stated in Theorem 3.3.1, An estimate for the

49



ultimate bound for η(t) , [x̃T W̃ T xd], is given by

rη =

√√√√λmax(P )Ψ2
1 + 1/γwΨ2

2 + c2Ψ2
3

λ
¯

(3.6)

Further an estimate for the ultimate bound on x̃ is given by

r =

√
λmax(P )Ψ2

1 + 1/γwΨ2
2 + c2Ψ2

3

λmin(P )
(3.7)

Proof. Proof follows directly from Corollary 2.3.1

The following corollary shows that if x̃ is bounded then the state tracking error

e, is also bounded.

Corollary 3.4.2. If the state estimation error x̃ is bounded, then the state tracking

error e = x− xm is bounded.

Proof. Proof follows directly from Corollary 2.3.2

Since xm(t) is bounded, it follows from Corollary 2.3.2 that x(t) is bounded.

Further Assumption 2.1 ensures that xd is bounded since it is input-to-state stable

[38].

Corollary 3.4.3. If the state estimation error x̃ is UUB by r in Equation (3.7), then

the state tracking error e is UUB by r(1 + v). where

v ,
2‖PmLC‖
λmin(Qm)

(3.8)

Proof. Proof follows directly from Corollary 2.3.3

3.5 Control of Flexible Spacecraft

In this section, the attitude control of a flexible spacecraft preivously treated in Sec-

tion 2.5 in Chapter 2 is reexamined, but this time with additive sensor noise. The
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attitude measurements are corrupted with band limited white noise with a power

spectral density of spectral density of 2× 10−4. A simulation is first carried out with

the adaptive control law developed in Chapter 2 with the same gains Kx,Kr. In ad-

dition the parameters of the weight update law are kept the same as the example in

Chapter 2, i.e. γ = 1000, µ = 2000, σ = 0.0005. Figure 17 shows that the control

signal is extremely noisy. Also shown in Figure 17 are the adaptive weights which are

also extremely noisy and is the primary mechanism by which noise enters the control.
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Figure 17: Adaptive control response of the spacecraft model in the presence of noise
with the weight update developed in Chapter 2.

For the next simulation, a first order filter with a time constant of τ = 0.5 is

applied to each of the error signals between y and ŷ. The filtered output is used

in the weight update law given in Equation (3.1). The performance of the adaptive

control law is similar to that developed in Chapter 2, however the effect of sensor

noise in the control has been greatly reduced. This is particularly evident in the
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weights shown in Figure 18.
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Figure 18: Adaptive control response of the spacecraft model in the presence of noise

with filtered error signal.

3.6 Summary

This Chapter considers the effect of sensor noise in adaptive control, and presents

a simple but effective approach for reducing its effect in the adaptive control law.

The proposed approach filters the error signal used in the weight adaptation law.

All the signals in the system are shown to be UUB using arguments from singular

perturbation theory by treating the filter as a fast subsystem and the system dynamics

together with weight update as a slow subsystem.
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CHAPTER IV

ADAPTIVE OUTPUT FEEDBACK CONTROL FOR

SYSTEMS WITH INPUT UNCERTAINTY

4.1 Introduction

In this chapter the adaptive control methodology developed in Chapter 2 is extended

to systems with uncertainty in control effectiveness, which is referred to here as ’input

uncertainty’. Lavertsky has addressed the effect of input uncertainty on adaptive

control both in the context of both state feedback [48] and output feedback[49]. Tansel

et al. [84] account for input uncertainty within the setting adaptive control with state

feedback. In this Thesis, an approach similar to that of [84] is used to account for input

uncertainty. The Chapter is organized as follows, First the problem formulation that

defines the class of systems with input uncertainty and the form of the adaptation

law to be applied is presented. The next section uses a Lyapunov like analysis to

establish boundedness of all the signals in the closed loop system. This approach

is then applied to the attitude control of a flexible spacecraft model introduced in

Chapter 2. Section 4.3 extends the adaptive control methodology to systems with

input uncertainty in the presence of noisy measurements. The efficacy of the method

is presented through simulations on the attitude control of a flexible spacecraft with

noisy measurements.
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4.2 Problem Formulation

Consider the following minimal realization of a linear system coupled with a nonlinear

function of unmodeled states

ẋ(t) = Ax(t) +BΛ [u(t) + g (x(t), xd(t))] ,

y(t) = Cx(t),

yr(t) = Crx(t) (4.1)

Equation (4.1) has the same form as Equation (2.1) in Chapter 2 except for the

introduction of Λ ∈ Rm×m which is regarded as an unknown diagonal matrix with

diagonal elements, 0 < λ < λi < λ̄ that represent an uncertainty in gain associated

with the columns of input matrix B

The unmodeled states xd(t) satisfy Equation (2.2) and Assumptions 2.1, 2.2 and 2.3

hold. All the other definitions from Chapter 2 apply with regard to the other variables

that appear in Equation (4.1).

Similar to what was done in Chapter 2, define the state estimation error as

x̃(t) , x(t)− x̂(t) (4.2)

substituting for u(t) from Equation(2.11) in Equation (4.1) and employing the fol-

lowing definitions :

g1(x, xd, ux) , g(x, xd)−Dux (4.3)

D , I − Λ−1 = diag

(
λi − 1

λi

)
i = 1, 2..m (4.4)

ux , Kxx̂ (4.5)

ur , Krr, (4.6)

the state estimation error dynamics can be written as

˙̃x(t) = Aex̃(t) +BΛ [Dur(t)− uad(t) + g1(x, xd, ux)] , (4.7)
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where Ae , A−LC. Next we state a key assumption regarding the parameterizations

of the uncertainty g1(x, xd, ux)

Assumption 4.2: The function g1(x, xd, ux) can be linearly parameterized as

g1(x, xd, ux) =

W T
1 0

0 W T
2


 ζ(ξ)

ζ(ux)

+

ε1(x, xd)

ε2(ux)


g1(x, xd, ux) = W T ζ(δ) + ε(x, xd, ux), ∀δ ,

[
ξTuTx

]T ∈ D. (4.8)

where W , diag(W T
1 ,W

T
2 ) ∈ R(s+m)×m is an unknown ideal weight matrix satisfying

‖W‖ ≤ W̄ , ζ(δ(t)) ∈ R(s+m)×1, is a known basis vector of the form

ζ(δ(t)) = [ζ1(ξ1), ζ2(ξ2), ..., ζs(ξs), ζs+1(ux1), ...., ζs+m(uxm)]T (4.9)

satisfying |ζi(ξi/uxi)| ≤ ζ̄, and ε(x, xd, ux) is the residual error between the uncertainty

and the linear parametrization satisfying |ε(x, xd, ux)| < ε̄ on D̄, where D̄ is a subset

of D. The input vector ξ is a vector composed of tapped delays of the output y and

input u and is given by Equation (2.9).

The adaptive element,uad, is given by

uad(t) = Ŵ T (t)ζ(δ(t)) + D̂T (t)ur(t) (4.10)

where Ŵ , D̂ are the estimates of Z and D respectively. Define the output tracking

error and the weight estimation errors as follows :

ỹ(t) , MCx̃(t) = Cex̃(t) (4.11)

W̃ (t) , W − Ŵ (t) (4.12)

D̃(t) , D − D̂(t) (4.13)

where M ∈ Rm×p can be freely chosen. The manner in which M can be chosen has

previously been addressed in Remark 2.2.3. Also denote the state and estimated state

tracking errors:

e(t) , x(t)− xm(t) (4.14)

ê(t) , x̂(t)− xm(t) (4.15)
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Using Equation (4.10), Equation (4.12), Equation (4.13), and Assumption 4.2 the

state estimation error dynamics and the estimated state tracking error ê(t) can be

written as :

˙̃x(t) = Aex̃(t) +BΛ
[
D̃T (t)ur(t) + W̃ T (t)ζ(δ(t)) + ε

]
, (4.16)

˙̂e(t) = Amê(t) + LCx̃(t). (4.17)

Note that since Am is Hurwitz by design, ê is bounded provided x̃ is bounded. The

estimate of the ideal weights, Ŵ (t) and D̂(t) in Equation (4.10), are updated based

on the following update laws :

˙̂
W1(t) = γW1

[
ζ(ξ(t))ỹT (t)− σW1Ŵ1(t)− ζ(ξ(t))ζT (ξ(t))

µ
Ŵ1(t)

]
, (4.18)

˙̂
W2(t) = γW2

[
ζ(ux(t))ỹ

T (t)− σW2Ŵ2(t)− ζ(ux(t))ζ
T (ux(t))

µ
Ŵ2(t)

]
, (4.19)

˙̂
di(t) = γd

[
uri(t)ỹi(t)− σdi d̂i(t)−

u2
ri

(t)d̂i(t)

µ

]
(4.20)

where γW1 , γW2 , γd, σW1 , σW2 , σdi are tunable positive adaptation gains and di is

the ith diagonal element of D̂. The stability analysis of the weight update law in

Equations (4.18), (4.19) and (4.20) employs a Lyapunov candidate function that is

dependent on the solution of the parameter dependent Riccati equation introduced

in Chapter 2 which is given by :

0 = ATe P + PAe +Q0 + µNNT (4.21)

N = CT
e − PB (4.22)

4.3 Boundedness of signals

In this section the boundedness of all signals in the system is shown via Lyapunov

like analysis using the parameter dependent Riccati equation. The following theorem

concerns the state and weight estimation errors.

Theorem 4.3.1. Consider the system in Equation (4.1) and Equation (2.2), along

with the control law given in Equation (2.14), composed of the nominal control in
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Equation (2.11) and the adaptive control in Equation (4.10) together with the observer

in Equation (2.12) and the weight update laws in Equations (4.18), (4.19) and (4.20),

where µ < µ̄ as defined by Lemma 2.2.1. Under Assumptions 4.1 and 4.2, for a

sufficiently large D̄, x̃, W̃ and D̃ are UUB if λmin(Q0) > µ‖N(I − Λ)NT‖

Proof. Consider the following Lyapunov candidate function

V (x̃, W̃ , d̃i, xd, t) = x̃TPx̃+ tr
[
ΛW̃ TΓ−1

W W̃
]

+
m∑
i=1

λi
d̃2
i

γd
+ Vxd (4.23)

where Γ−1
W = diag(1/γW1 , 1/γW2) and ΣW = diag(σW1 , σW2). The time derivative of

(4.23) along the closed loop solutions of Equation (4.1) is given by

V̇ (x̃, W̃ , d̃i, xd, t) = 2x̃TP ˙̃x− 2tr
[
ΛW̃ TΓ−1

W
˙̂
W
]
− 2

m∑
i=1

λi
d̃i

˙̂
di
γd

+ V̇xd (4.24)

Substituting for ˙̃x from Equation (4.16) and the weight update laws from Equations

(4.18), (4.19) and (4.20), Equation (4.24) can be written as

V̇ (x̃, W̃ , d̃i, xd, t) = x̃T
(
ATe P + PAe

)
x̃+ 2x̃TPBΛε+ 2x̃TPBΛD̃Tur + 2x̃TPBΛW̃ T ζ(δ)

− 2tr

[
ΛW̃ T ζ(δ)ỹT − ΛW̃ TΣW Ŵ − ΛW̃ T ζ

T (δ)ζ(δ)

µ
Ŵ

]
− 2

(
m∑
i=1

λid̃i

(
uri ỹi + σdi d̂i +

u2
ri
d̂i

µ

))
+ V̇xd (4.25)

Using Equation (4.21), Equation (4.22), Equation (4.12) and Equation (4.13) and

simplifying, Equation (4.25) can be written as

V̇ (x̃, W̃ , d̃i, xd, t) = −x̃TQx̃+ 2x̃TPBΛε− 2x̃TNΛD̃Tur − 2x̃TNΛW̃ T ζ(δ)

+ 2tr
[
ΛW̃ TΣWW

]
− 2tr

[
ΛW̃ TΣW W̃

]
+ 2tr

[
ΛW̃ T ζ

T (δ)ζ(δ)

µ
W

]
− 2tr

[
ΛW̃ T ζ

T (δ)ζ(δ)

µ
W̃

]
+ 2

m∑
i=1

λid̃iσdidi − 2
m∑
i=1

λid̃iσdi d̃i

+
2

µ

m∑
i=1

λid̃iu
2
ri
di −

2

µ

m∑
i=1

λid̃iu
2
ri
d̃i

+ V̇xd (4.26)
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where Q = Q0 + µNNT .

Applying the vector form of Young’s Inequality the 3rd and 4th terms of Equation

(4.26) can be written as:

−2x̃TNΛW̃ T ζ(δ) ≤ µ

2
x̃TNΛNT x̃+

ζT (δ)W̃ΛW̃ T ζ(δ)

µ/2
(4.27)

−2x̃TNΛD̃Tur ≤
µ

2
x̃TNΛNT x̃+

(ur)
T D̃ΛD̃T (ur)

µ/2
(4.28)

Similarly, using the matrix form of young’s inequality

2tr
[
ΛW̃ TW

]
≤ tr[ΛW̃ TΣW W̃ ] + tr[ΛW TΣWW ] (4.29)

2
m∑
i=1

λid̃iσdidi ≤
m∑
i=1

λiσdi d̃
2
i +

m∑
i=1

λiσdi d̄
2
i (4.30)

Substituting the above inequalities and V̇xd from Equation (2.7), Equation (4.30) can

be written as

V̇ (x̃, W̃ , d̃i, xd, t) ≤ − (λmin(Q)− µ‖NΛN‖) |x̃|2 + 2ε̄mλ̄‖PB‖|x̃|

− ‖ΣW‖mλ̄‖W̃‖2 + ‖ΣW‖mλ̄W̄ 2 + 2
mλ̄ζ̄2W̄‖W̃‖

µ

−
m∑
i=1

σdiλ̄i|d̃i|2 +
m∑
i=1

σdiλ̄id̄
2
i +

2

µ

m∑
i=1

λ̄iu
2
ri
d̄i|d̃i|

− c3|xd|2 + c4bd|xd| (4.31)

Using the following definitions :

c = λmin(Q0) + µ‖N(I − Λ)NT‖ > 0 (4.32)

c5 = ε̄‖PB‖mλ̄ (4.33)

c6 = mλ̄W̄
(s+m)2ζ̄2

µ
(4.34)

c7 = ‖ΣW‖mλ̄ (4.35)

c8 = c4bd (4.36)

c9i = λ̄id̄i
u2
ri

µ
(4.37)

c10i = σdiλ̄i (4.38)

e2 = ‖ΣW‖mλ̄W̄ 2 +
c2

5

c
+
c2

6

c7

+
m∑
i=1

σdiλ̄id̄
2
i +

m∑
i=1

c2
9i

c10i

+
c2

8

c3

(4.39)
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the inequality in Equation (4.31) can be written as

V̇ (x̃, W̃ , d̃i, xd, t) ≤ −c
[
|x̃| − c5

c

]2

− c7

[
‖W̃‖ − c6

c7

]2

− c3

[
|xd| −

c8

c3

]2

−
m∑
i=1

c10i

(
|d̃i|2 −

c9i

c10i

)2

+ e2 (4.40)

Consequently we can conclude that either of the following conditions :

|x̃| > Ψ1 or‖W̃‖ > Ψ2 or|d̃i| > Ψ3i or|xd| > Ψ4 (4.41)

renders V̇ (x̃, W̃ , d̃i, xd, t) < 0, where Ψ1, Ψ2, Ψ3 and Ψ4 are given by :

Ψ1 ,
c5

c
+

e√
c

(4.42)

Ψ2 ,
c6

c7

+
e
√
c6

(4.43)

Ψ3i ,
c9i

c10i

+
e
√
c10i

(4.44)

Ψ4 ,
c8

c3

+
e
√
c3

(4.45)

and therefore x̃, W̃ , d̃i, xd are UUB.

Corollary 4.3.1. Under the conditions stated in Theorem 4.3.1, An estimate for the

ultimate bound for η(t) , [x̃T vec(W̃ T ) d̃1 ...d̃m xd]
T , is given by

rη =

√
λmax(P )Ψ2

1 + λmax(Γ
−1
W )λ̄Ψ2

2 + λ̄
γd

∑m
i=1 Ψ2

3i
+ c2Ψ2

4

ϑ
(4.46)

Further an estimate for x̃ is given by

r =

√
λmax(P )Ψ2

1 + λ̄
γw

Ψ2
2 + λ̄

γd

∑m
i=1 Ψ2

3i
+ c2Ψ2

4

λmin(P )
(4.47)

where ϑ = min(λmin(P ), λmin(Γ−1
W )λ, λ/γdI, c1)

Proof. The proof follows directly from 2.3.1, with the corresponding set Dη now

defined to include the elements of d̃i.
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The following corollary shows that if x̃ is bounded then the state tracking error

e, is also bounded.

Corollary 4.3.2. If the state estimation error x̃ is bounded, then the state tracking

error e = x− xm is bounded.

Proof. Proof follows from Corollary 2.3.2

Since xm(t) is bounded, it follows from Corollary 4.3.1 that x(t) is bounded.

Further Assumption 4.1 ensures that xd is bounded since it is input-to-state stable

[38]. Therefore all the signals in the system are UUB.

Remark 4.3.1. The proofs of Theorem 4.3.1 and Corollary 4.3.1 assume the sets

D and Dη are sufficiently large. If we define BR as the largest ball in Dη , and

assume the initial conditions are such that η(0) ∈ BR, then from Figure 5 in Chapter

2, we have the added condition that rη < Rη, which implies an upper bound on

γ , max(γW1 , γW2 , γd). It can be shown that in this case the upper bound must be

such that ϑ = λ/γ. With rη defined by Equation (4.46) and ϑ = λ/γ, the condition

rη < Rη implies

γ <

R2λ− λ̄(Ψ2
2 +

m∑
i=1

Ψ2
3i

)

λmax(P )Ψ2
1

(4.48)

Therefore, it follows that the meaning of Dη sufficiently large implies

Rη >

√√√√√γλmax(P )Ψ2
1 + λ̄(Ψ2

2 +
m∑
i=1

Ψ2
3i

)

λ
(4.49)

and η(0) ⊂ BR. The meaning of D sufficiently large is difficult to characterize since

x(t) depends on the initial condition x(0).

Remark 4.3.2. When Λ = Im, di = 0 and Equation (4.32) reduces to Equation

(2.40). Equation (4.33) is similar to Equation (2.41) except for the multiplication
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factor m. Equation (4.34) is similar to that of Equation (2.42) with s being replaced

by s + m and the presence of the same multiplication factor m in Equation (4.33).

Furthermore the first two terms of Equation (4.39) are similar to Equation (2.44)

4.4 Control of Flexible Spacecraft in the presence of Input
Uncertainties

In this section, the attitude control of the flexible aircraft introduced in Chapter

2 is considered in the presence of input uncertainties. The nominal controller in

this section differs from Chapter 2 in that it is redesigned by defining the following

pseudo control u1 , QJ−1u. Using model inversion Equations (2.79) and (2.80) can

be written as:

ż1 =
1

2
z2 (4.50)

ż2 = u1 + g0 (q, ω, η1, η2, u) (4.51)

At the equilibrium attitude, q0 = 1 and q = [0 0 0]T , therefore Q̄e = I3, and A,B,C

in (4.1) become:

A =



0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.52)

B =

 03

I3

 (4.53)

C =

[
I3 03

]
(4.54)
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Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 (4.55)

where we have introduced the effect of uncertain control effectiveness through the

matrix Λ. Further the uncertainty matrix δ is given by:

δ =


14.2040 2.8119 4.7438

−2.7680 2.0186 −3.6798

2.4571 5.4758 −1.8408

 (4.56)

The nominal controller gain Kx is obtained using LQR theory with Q = I6, Λ = I3

and R = 0.001I3. The nominal observer is a Kalman filter designed for the process:

ẋ = Ax+BΛu+ Γw (4.57)

y = Cx (4.58)

where Γ = [03; I3], Λ = I3 and the process and measurement noise matrices are

Qw = I6 and Rv = 0.001I3 respectively. The expression used for the feedforward gain

is Kr = −(CAmB)−1. This provides zero steady state error in the reference model

response for step changes in attitude command. The reference model dynamics for

adaptive control design are defined by setting Am = A−BKx and Bm = BKr.

A simulation is carried out with the nominal control acting on the rigid spacecraft

model to evaluate nominal performance without nonlinearities (g(q, ω, η, η̇, u) = 0)

and without input uncertainty (Λ = I3) in Equation (4.1). As observed from Figure

19, nominal control provides adequate tracking of the reference input in the absence of

uncertainty. The simulation is repeated with the nonlinear spacecraft model with the

flexible modes and without input uncertainty. Figure 20 shows that even without the

effect of the flexible modes and without input uncertainty, the system goes unstable

for a reference input r = [−0.5 − 0.2 0.8]T .
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Figure 19: Response of the rigid spacecraft model under nominal control.
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Ŵ
[.
]

Figure 20: Response of the flexible nonlinear spacecraft model under nominal control.

As in Chapter 2, the reference model dynamics for adaptive control design are

defined by setting Am = A − BKx and Bm = BKr. Using Equation (2.29), M is

obtained as −0.9659 ∗ I3 , the maximum allowable value for the parameter µ from

Lemma 2.1 is µ̄ = 5.42. Using µ = 3, with λ̄ = 1.5 the value of c in (4.32) is 0.6991

as required in Theorem 4.3.1. As before ny = 11 delayed values of y and nu = 5

delayed values of u and ūx = ux/150 together with a bias term are used to form

the basis vector in Equation (4.9) with sigmoidal basis function. The activation po-

tentials of the sigmoidal activation functions for y and u were chosen as in Chapter

2 while 25 is chosen for ūx. The result in Figures 21 and 22 were obtained with

γW1 = 10, µ = 3.2, σW1 = 0.005, γW2 = 0, σW2 = 0.005, γd = 0, σdi = 0.005, and
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d = 0.005 for the parameters in the weight adaptation laws defined by Equations

(4.18), (4.19) and (4.20). Figure 21 shows the performance that results with the

adaptive controller acting on the flexible nonlinear spacecraft model without input

uncertainty. Figure 22 shows the resulting performance with an input uncertainty

corresponding to Λ = diag(1.2, 0.6, 1.2). Comparing these figures with the nominal

tracking performance in Figure 19, it is evident that with γW2 = 0 and γd = 0 the

adaptive controller is adaptive to uncertainty due to nonlinearity and robust to un-

modeled flexible dynamics, but it is not robust to input uncertainty. Figure 23 shows

the adaptive control result obtained for the same parameter settings and uncertainty

set as in Figure 5, except that γd and γW2 are set to 10 and 5 respectively. The

response of q(t) is nearly the same as the ideal response of the nominal control design

in the absence of uncertainty in Figure 19. This shows that nominal performance is

preserved by this design for all 3 sources of uncertainty. Therefore we can state that

this design is adaptive to both nonlinearity and input uncertainty, and is robust to

unmodeled dynamics.
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Ŵ
[.
]

Figure 21: Response of the nonlinear flexible spacecraft model without input uncer-

tainty for the adaptive design with γd = 0, ΓW2 = 0
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Figure 22: Response of the nonlinear flexible spacecraft model with input uncertainty

for the adaptive design with γd = 0, ΓW2 = 0
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Figure 23: Response of the nonlinear flexible spacecraft model with input uncertainty

with input uncertainty for the adaptive design with γd = 10, ΓW2 = 5

4.5 Reducing the effect of sensor noise for systems with
input uncertainty

In this Section we adopt the approach in Chapter 3 to address the effect of sensor

noise. The adaptive control is similar to that developed in the previous section except
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that it uses filtered versions of the output error to reduce the effect of noise:

˙̂
W1(t) = γW1

[
ζ(ξ(t))ỹTf (t)− σW1Ŵ1(t)− ζ(ξ(t))ζT (ξ(t))

2µ
Ŵ1(t)

]
(4.59)

˙̂
W2(t) = γW2

[
ζ(ux(t))ỹ

T
f (t)− σW2Ŵ2(t)− ζ(ux(t))ζ

T (ux(t))

2µ
Ŵ2(t)

]
(4.60)

˙̂
di(t) = γd

[
uri(t)ỹfi(t)− σdi d̂i(t)−

u2
ri

(t)d̂i(t)

µ

]
(4.61)

where γW1 ,γW2 , γd, σdi , σW1and σW2 are tunable positive adaptation gains and ỹTf

satisfies

τ ˙̃yf (t) = −ỹf (t) + ỹ(t) (4.62)

As before, we have assumed in Equation (4.62) that the same first order filter is

applied to each element of ỹf , since we are concerned here with the properties of the

adaptive controller for sufficiently large bandwidth filter(sufficiently small τ in the

case of a first order filter).

Theorem 4.5.1. Consider the system in Equation (4.1) and Equation (4.2), along

with the control law given in Equation (2.14), composed of the nominal control in

Equation (2.11) and the adaptive control in Equation (4.10) together with the observer

in Equation (2.12) and the weight update laws in Equations (4.58), (4.59) and (4.60),

where µ < µ̄ as defined by Lemma 2.1. Under Assumptions 2.1, 2.2, 2.3 and 2.4 and

for n ≥ nx + nxd, ∃τ : ∀ 0 < τ < τ ∗, such that x̃ and W̃ are UUB, for a sufficiently

large D.

Proof. Proof follows directly from Theorem 3.4.1

4.6 Attitude control of flexible spacecraft with input uncer-
tainty in the presence of noise

Attitude control of the spacecraft is evaluated in the presence of noisy measurements.

A simulation is first carried out with the weight update law given in (4.18), (4.19) and
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(4.20) with the same values for the tuning parameters used in Figure 23 but with the

addition of band limited white sensor noise with power spectral density of 2× 10−4.

Figure 24 shows that the adaptive control developed using the weight update laws in

Equations (4.18), (4.19) and (4.20) provides adequate tracking performance, however

the control signal is extremely noisy. Also shown in Figure 24 are the adaptive weights

which are also extremely noisy. This once again illustrates the point that there is a

direct path for the sensor noise to influence the adaptive component of the control

signal. For the next simulation, a first order filter with a time constant of τ = 0.3 is

applied to each component of ỹ, using the weight update laws in Equations (4.59),

(4.60) and (4.61). Figure 25 shows that the effect of sensor noise on the control signal

is significantly reduced. Also note the the level of noise in the adaptive weights is

much smaller than the weights shown in Figure 24.
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Figure 24: Response of the flexible spacecraft model with sensor noise using the

weight update law in Equations (4.18), (4.19) and (4.20) and the same adaptation

parameter values as in Figure 23.

71



0 10 20 30 40 50 60 70 80 90 100

−0.5

0

0.5

1

t [s]

q
[r
a
d
]

 

 

qo
q1
qr1
q2
qr2
q3
qr3

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

t [s]

η
[.
]

 

 

η
1

η
2

η
3

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

t [s]

u
1
n
o
m
[r
a
d
/
s
2
]

 

 

u
1n

u
2n

u
3n

0 10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

t [s]

u
1
a
d
[r
a
d
/
s
2
]

 

 

u
1ad

u
2ad

u
3ad

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

t [s]

u
1
[r
a
d
/
s
2
]

 

 

u
11

u
12

u
13

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

t [s]
u
[N
m
]

 

 

u
1

u
2

u
3

0 10 20 30 40 50 60 70 80 90 100
−0.02

−0.01

0

0.01

0.02

Ŵ
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Figure 25: Response of the flexible spacecraft model with sensor noise using the

weight update law in Equations (4.59), (4.60) and (4.61) and the same adaptation

parameter values as in Figure 23.

4.7 Summary

In this Chapter, the adaptive controller developed in Chapter 2 is extended to sys-

tems with both input uncertainty and in the presence of noisy measurements. As in

the previous Chapter’s, boundedness of all the signals in the system is shown through

a Lyapunov like stability analysis. The effectiveness of the proposed adaptive con-

trol law is demonstrated through simulations on the attitude control of a flexible

spacecraft.
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CHAPTER V

ADAPTIVE CONTROL OF A FLEXIBLE UNMANNED

AERIAL VEHICLE

5.1 Introduction

The need for designing aircraft to meet stringent efficiency requirements are driving

the use of lighter materials in modern airframes. The use of lighter materials re-

sults in aircraft that are flexible thus reducing the frequency separation between the

rigid body and structural modes. In addition flexible aircraft are being evaluated for

numerous applications ranging from long term surveillance and loitering for use as

pseudo satellites. Classical flight control design relies on frequency separation between

rigid modes and structural modes which no longer hold for flexible aircraft. This has

driven extensive research in the use of adaptive control for designing control system

for such airframes [24, 69, 22, 67]. In this chapter the adaptive control methodology

developed in the previous chapters are used to augment an observer based altitude

controller for a flexible Unmanned Aerial Vehicle (UAV). First, an observer based

nominal controller is designed using a 4 state longitudinal model constructed using

stability derivative data obtained from the rigidized flexible model of the UAV (see

Appendix A.1). The performance of the nominal controller is evaluated on two differ-

ent models of the UAV, an eight state model that only includes the rigid body modes

(both longitudinal and lateral modes) and a forty four state model that includes aero

lag modes and several flexible modes (see Appendix A.2 and Appendix A.3). Both the

eight state and forty four state model were first obtained in modal form using ASWing

[18], and then converted to real Jordan form for design and simulation purposes. This

detail is further explained in Appendix B. An output feedback adaptive controller is
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first developed based on Chapter 2 and is shown to improve the performance of the

nomonal controller in the presence of flexible modes. Next it is shown that the effect

of uncertain control effectiveness on this design renders the system unstable, while

the method developed in Chapter 4 is shown to provide adequate tracking to a step

command input. Finally it is shown that filtering the error signal in the adaptive law

improves the control response to sensor noise.

5.2 Flexible UAV Model

A flexible UAV model is used to demonstrate the effectiveness of the adaptive control

theory developed in this thesis. Three different models of the UAV are available for

design and evaluation purposes. The first model is obtained using stability deriva-

tive data by considering only the rigid body modes of the UAV. Using the stability

derivatives and mass moments of inertia data from the UAV, a rigid body longitudinal

dynamic model of the UAV is obtained in the form (See Appendix A.1):

ẋ = Ax+Bu

y = Cx (5.1)

where the state vector x(t), control input u(t) are given by

x(t) = [ū(t) α(t) q(t) θ(t)]T (5.2)

u(t) = [δe(t) δT (t) δf (t)]
T (5.3)

y(t) = [ū(t) q(t)]T (5.4)

where ū(t) = u(t)/U0 is the normalized airspeed, α(t) is the angle of attack, q(t) the

pitch rate, and θ(t) the pitch attitude angle. δe(t) denotes the elevator deflection,

δT (t) denotes throttle and δf (t) the full span flaps. The Eigenvalues obtained using

the stability derivative model in Equation (5.1) are given in Table 1.
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Table 1: Eigenvalues derived from stability derivative model

Eigenvalue Damping Frequency(rad/s)

-2.8100+0.142i 0.99 2.810

-2.8100-0.142i 0.99 2.810

-0.0455+0.300i 0.15 0.303

-0.0455-0.300i 0.15 0.303

As seen from the modal analysis above, the rigid body longitudinal dynamic model

has a highly damped mode at 2.81 rad/s and a lightly damped mode at 0.303 rad/s.

These are representative of the short period and Phugoid modes of a conventional

fixed wing aircraft. The eight state model of the UAV contains both the longitudi-

nal and lateral-directional modes and also models the coupling between them. The

Eigenvalues of the eight state model of the UAV are given in Table 2.

Table 2: Eigenvalues derived from eight state model

Eigenvalue Damping Frequency(rad/s)

-0.1210+0.059i 0.90 0.135

-0.1210-0.059i 0.90 0.135

-0.0576+0.298i 0.19 0.304

-0.0576+0.298i 0.19 0.304

-1.1500 1.00 1.150

-2.7600+0.740i 0.97 2.850

-2.7600-0.740i 0.97 2.850

-9.6400 1.00 9.640

The eight state model has the short period mode at 2.85 rad/s with a damping
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of 0.97 and the Phugoid mode at 0.304 rad/s with a damping of 0.19. This compares

well with the longitudinal modes obtained from the four state model. In addition to

the longitudinal modes, the eight state model contains a Dutch roll mode at 0.135

rad/s with a damping of 0.9, a roll mode at 9.64 rad/s and a stable spiral mode at

1.15 rad/s. Finally the Eigenvalues of the forty four state model of the UAV are given

in Table 3.

The forty four state model has the short period mode at 2.59 rad/s with a damping

of 0.97 and the Phugoid mode at 0.297 rad/s with a damping of 0.20. In addition

to the longitudinal modes, the forty four state model contains a Dutch roll mode at

0.138 rad/s with a damping of 0.83, a roll mode at 9.41 rad/s and a stable spiral

mode at 1.30 rad/s as well as several aero lag and flexible modes. As observed

from the Eigenvalues of the rigid body model in Table 1 and Table 2, there is very

little separation between the rigid body modes and the flexible modes of the UAV.

Thus this model is ideal for evaluating the adaptive control designs developed in the

previous chapters of this thesis. In the next section an altitude hold controller will be

designed using the longitudinal stability derivative model given in Equation (5.1) and

the resulting controller evaluated on both the eight state model and the forty four

state model to determine the effect of unmodeled dynamics on the nominal controller.
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Table 3: Eigenvalues derived from forty four state model

Eigenvalue Damping Freq.(rad/s) Eigenvalue Damping Freq.(rad/s)

-0.115+0.0767i 0.832 0.138e-001 -8.1500 1.0000 8.1500

-0.115+0.0767i 0.832 0.138e-001 -0.7970-8.610i 0.0922 8.6400

-0.0617+0.291i 0.208 0.297 -0.7970+8.610i 0.0922 8.6400

-0.0617+0.291i 0.208 0.297 -8.7200 1.0000 8.7200

-1.30 1.000 1.300 -6.3300- 6.060i 0.7220 8.7600

-1.9400-1.690i 0.756 2.570 -6.3300+ 6.060i 0.7220 8.7600

-1.9400-1.690i 0.756 2.570 -7.2000- 5.500i 0.7940 9.0600

-2.5200-0.557i 0.977 2.590 -7.2000+ 5.500i 0.7940 9.0600

-2.5200-0.557i 0.977 2.590 -9.0600 1.0000 9.0600

-3.3400 1.000 3.340 -9.4100 1.0000 9.4100

-3.9900 1.0000 3.9900 -9.9000 1.0000 9.9000

-4.5200 1.0000 4.5200 -10.100 1.0000 10.100

-5.1900 1.0000 5.1900 -10.400 1.0000 10.400

-5.5600 1.0000 5.5600 -10.500 1.0000 10.500

-5.8900 1.0000 5.8900 -10.800 1.0000 10.800

-6.3700 1.0000 6.3700 -0.3340-10.90i 0.0308 10.900

-6.5300 1.0000 6.5300 -0.3340+10.90i 0.0308 10.900

-4.5900-4.720i 0.6970 6.5800 -11.100 1.0000 11.100

-4.5900+4.720i 0.6970 6.5800 -11.200 1.0000 11.200

-6.8800 1.0000 6.8800 -11.400 1.0000 11.400

-7.4600 1.0000 7.4600 -3.9900-10.80i 0.347 11.500

-7.8700 1.0000 7.8700 -3.9900+10.80i 0.347 11.500
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5.3 Nominal Control Design

The objective of the observer based nominal control design is to track commanded

altitude. Towards this end we augment the four state model in Equation (5.1) with

the altitude state given by:

ḣ = U0sin(γ)

ḣ ≈ U0θ − U0α (5.5)

Therefore Equation (5.1) becomes

ẋa = Ãxa + B̃u

ya = C̃xa

yr = Crxa (5.6)

where ya is the augmented output vector, yr is the reference command, and

Ã =

A 0

Ch 0


B̃ =

B
0


C̃ =

C 0

0 1


Cr =

[
0 0 0 0 1

]
(5.7)

with Ch = [0 − U0 0 U0] and the augmented state xa , [x h]T . The nominal

controller design includes integral action to provide zero steady state error for step

changes in altitude command. The integral state, xint, given by:

ẋint = hc(t)− h(t) (5.8)
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Where hc is the commanded altitude and h the altitude state. The resulting aug-

mented system matrix is formed by combining Equations (5.7) and (5.8) to obtain:

ẋ∗ =

 Ã 0

−C̃r 0


︸ ︷︷ ︸

A∗

 xa
xint


︸ ︷︷ ︸

x∗

+

B̃
0


︸ ︷︷ ︸
B∗

u(t) +

0

I


︸︷︷︸
B∗
r

hc(t)

ys =

C̃ 0

0 1


︸ ︷︷ ︸

C∗
s

 xa
xint



yr =

[
Cr 0

]
︸ ︷︷ ︸

C∗
r

 xa
xint

 (5.9)

where ys , [ū q h xint]
T is the sensed output available for feedback. Since only

ys(t) is available for feedback, first a state feedback controller is designed using LQR

theory. The state feedback gain Kx∗ is obtained with Q̄ = diag(0, 0, 0, 1, 1, 0.01) and

R = 1e02 ∗ diag([1/20, 1/100, 1/20]).

Kx∗ =


−32.08 12.14 −21.29 −57.79 −0.48 0.03

−53.72 2.70 −4.79 −5.98 −0.53 0.01

10.58 −7.51 9.27 28.32 0.32 −0.03

 (5.10)

.

The nominal control design does not include a feeedforward component, i.eKr = 0.

Therefore the nominal control input is given by:

un(t) = Kx∗x̂
∗(t) (5.11)

The next step is to design an observer to estimate the states that are not available for

feedback. The nominal observer is a Kalman filter designed using the loop transfer

recovery (LTR) method [17] for the process given by

ẋ∗ = A∗x∗ +B∗u+B∗rhc + Γw

ys = C∗sx
∗ + v (5.12)
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where Γw is given by

Γw = ρ2(B∗ +B∗T ) (5.13)

With the measurement noise matrix Rv = diag([1, 1, .1, 1]) ∗ 0.001 and for ρ = 0.01,

the resulting Kalman gain is:

L =



0.0131 0.0019 −0.0440 0.0008

0.0019 0.0601 −1.2634 −0.0001

0.0033 0.0111 0.1104 0.0000

0.0024 0.0226 0.4786 −0.0005

−0.0044 −0.1263 14.2060 −0.0996

0.0008 −0.0001 −0.9960 0.3162


(5.14)

The observer dynamics for the system given in Equation (5.12) with PI control is

given by

˙̂x∗(t) = A∗x̂∗(t) +B∗un(t) +B∗rr(t) + L(ys(t)− ŷs(t)) (5.15)

ŷs(t) = C∗s x̂
∗(t) (5.16)

A simulation is now carried out with the nominal controller using the stability

derivative longitudinal model of the UAV. As observed from the Figure 26, the nom-

inal controller provides adequate tracking with zero steady state error. Next the

nominal controller is evaluated on the eight state model of the UAV. As observed

from Figure 27, it is seen that the nominal control provides adequate tracking of

commanded altitude. The transfer function of the elevator to altitude from the eight

state model is given in Equations (5.17), (5.18) and (5.19) shows that the lateral

directional modes are nearly canceled by zeros, this implies that there is little to

no coupling between the longitudinal and lateral directional modes while tracking

altitude commands.

H(s)

δe(s)
=

Nlon(s)

Dlon(s)
× Nlat(s)

Dlat(s)
(5.17)
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where

Nlon(s)

Dlon(s)
=

−0.32(s+ 10.26)(s2 + 0.47s+ 0.08)

s(s2 + 0.11s+ 0.09)(s2 + 5.53s+ 8.14)
(5.18)

Nlat(s)

Dlat(s)
=

(s+ 9.64)(s+ 1.15)(s2 + 0.24s+ 0.02)

(s+ 9.64)(s+ 1.15)(s2 + 0.24s+ 0.02)
(5.19)

Finally, the performance of the nominal controller is evaluated on the forty four state

UAV model. As observed from Figure 28, the nominal controller is unable to track

the commanded altitude and actually goes unstable. This implies that the nominal

controller is not robust to the unmodeled dynamics, i.e. the aero lag modes and

flexible modes present in the forty four state model. The next step is to augment the

nominal controller with the adaptive controller developed in Chapter 2 to improve the

performance of the nominal controller in the presence of these unmodeled dynamics.
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Figure 26: Response of the rigid stability derivative UAV model under nominal

control.
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Figure 27: Response of the eight state UAV model under nominal control.
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Figure 28: Response of the forty four state UAV model under nominal control.

5.4 Adaptive Control Design

An adaptive controller is developed using the method developed in Chapter 2 to

augment the nominal control to improve robustness to the unmodeled flexible modes.

Since there are forty five states in UAV model (44 states from the model augmented

with the altitude state), n − 1 = 44 delayed values of the output, along with 41

delayed values of the inputs together with a bias are used with sigmoidal activation
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function to form the basis vector. An activation potential of 0.5 for y and its delayed

values and 2 for u and its delayed values are used. The activation potentials were

chosen as before to be linear when signals are within their nominal ranges. Using

Equation (2.29), the parameter M = M0 is obtained as

M =


0.2472 −0.0181 0.0190 0.0016

−0.5874 0.0014 −0.0053 0.0001

−0.0289 −0.7682 0.0347 0.0003

 (5.20)

Using Potter’s method, the resulting maximum allowable value for the parameter

µ from Lemma 2.1 is µ̄ = 98.3. Figure 29 shows that the system with adaptive

augmentation using the weight update law given in Equation (2.31), with the adaptive

control designed using γ = 1000, µ = 35, σ = 2.5× 10−5 and a delay of 0.004 seconds

provides adequate tracking of commanded altitude in the presence of both the aero

lag and flexible modes as opposed to the nominal control response seen in Figure 28

which goes unstable.
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Figure 29: Response of the forty four state UAV model under adaptive control.

Next we consider the effect of noisy sensor measurements on the adaptive control

designed above. Towards this end the measurements for u(t)/U0 and q(t) are cor-

rupted with band limited white noise with a power spectral density of 1 × 10−3. A

simulation is first carried out with the adaptive control law used to obtain the results

in Figure 29. Figure 30 shows that the weight histories and the adaptive portion of

the control signal is extremely noisy.
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Figure 30: Response of the forty four state UAV model under adaptive control with

noisy measurements.

Next we examine performance for the case where the weight update law given

in Equation (3.1) is used to reduce the effect of sensor noise on adaptive control.

The filtered error signal is obtained by passing the measured signals through a first

order filter with a time constant of 0.1. As observed from Figure 31, the adaptive

control using the filtered error signal in the weight update law provides tracking that

is essentially the same as that shown in Figure 29 and the corresponding time histories
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of the weights and the adaptive portion of the control are considerably less noisy.
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Ŵ
1

Time [s]
0 50 100 150 200 250 300

−1

−0.5

0

0.5

1

Ŵ
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Figure 31: Response of the forty four state UAV model under adaptive control using

filtered error signal in the adaptive law with noisy measurements.

5.5 Adaptive Control For Uncertain Control Effectiveness

In this section the performance of the adaptive control in the presence of uncertain

control effectiveness is evaluated. Since Kr = 0, ur is zero and hence the weight

update law in Equation (4.20) is not used as part of the adaptive control design
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process. Using the value of M in Equation (5.20) along with µ = 35 the value of c in

Equation (4.32) is 28.3 for Λ̄ = 1.5. This satisfies the condition that c > 0 as required

by 4.3.1. As before ny = 44 delayed values of y and nu = 43 delayed values of u

and x̂ together with a bias term are used to form the basis vector in Equation (4.19)

with sigmoidal basis function. The activation potentials of the sigmoidal activation

functions for y and u were chosen as in the previous section while the activation

potential for x̂ is chosen as 1/50. Figure 32 shows the resulting performance with

an input uncertainty corresponding to Λ = diag(1.5, 0.8, 1.3) using the weight update

laws given by Equations (4.18),(4.19) with with γW1 = 1000, µ = 35, σW1 = 2.5×10−5,

γW2 = 0, σW2 = 2.5 × 10−5, γd = 0, σdi = 0, and d = 0.004. Comparing this figure

with the tracking performance in Figure 29, it is evident that with γW2 = 0 and

γd = 0 the adaptive controller is robust to unmodeled flexible dynamics, but it is not

robust to input uncertainty. Figure 33 shows the adaptive control result obtained for

the same parameter settings and uncertainty set as in Figure 32, except that γd and

γW2 are set to 0 and 10 respectively. This shows that the adaptive control provides

adequate performance for both sources of uncertainty.
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Figure 32: Response of the forty four state UAV model under adaptive control

developed in Chapter 2 with input uncertainty.
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Figure 33: Response of the forty four state UAV model under adaptive control

developed in Chapter 4 with Input Uncertainty.

Finally, the effect of sensor noise on the adaptive control is evaluated by corrupting

the outputs with band limited white noise with spectral density of 1× 10−7. Figure

34 shows the effect of sensor noise in the presence of uncertain control effectiveness.

As seen in Figure 34, the adaptive control signal is extremely noisy in the presence

of sensor noise. Next the simulation is repeated with the filtered error signal being

used in the weight update laws of Equation (4.18) and (4.19). As seen in Figure 35
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the use of filtered error signal in the weigh update laws produces a response similar

to that obtained in Figure 34 but with significantly less noisy weight and adaptive

control time histories.
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Figure 34: Response of the forty four state UAV model under adaptive control

developed in Chapter 4 with noisy measurements.
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Figure 35: Response of the forty four state UAV model under adaptive control

developed in Chapter 4 using filtered error signal with noisy measurements.

5.6 Conclusion

In this Chapter altitude control of a 44 state flexible UAV model is used to demon-

strate the effectiveness of the methods for adaptive output feedback control design.

An adaptive controller design that augments an observer based nominal controller

with fixed gains is shown to be robust to unmodeled dynamics as well uncertain
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control effectiveness. Adaptive control in the presence of noisy sensor signals is also

considered by introducing noise on the measured outputs. The adaptive control ap-

proach uses the filtered error between the linear observer and the system output in

the weight update law to reduce the effect of sensor noise propagating through the

adaptive component of the control signal.
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CHAPTER VI

SUMMARY AND FUTURE RESEARCH

In this thesis an output feedback adaptive controller design approach applicable to

systems with matched uncertainty is presented. It is shown in Chapter 2 that the

unique attributes of the proposed method are that it can be used to augment an

existing linear controller without modifying the parameters of that controller, it is

applicable to systems with unmodeled dynamics, it does not rely on the use of high

gains neither in the adaptation law nor in the observer design, it is applicable to

non-minimum phase systems and it does not require realization of a reference model.

The stability properties of the adaptive system are established using a Lyapunov

like stability analysis that relies on the existence of a positive definite solution of a

parameter dependent Riccati equation. The effectiveness of the proposed approach

are presented through simulations on a wing rock model appended with unmodeled

dynamics, on attitude control of a flexible spacecraft with attitude feedback and

altitude control of a flexible UAV model.

In Chapter 3 the effect of sensor noise in output feedback adaptive control is

considered. Adaptive control theory provides a means for reducing the effects of

modeling error but this comes at the cost of introducing a new pathway for sensor noise

to enter the actuators, and therefore problems may arise with regard to actuator rate

limits, energy consumption, and ultimately actuator failure. A simple but effective

approach that filters the error signal in the weight update law of the adaptive control

is employed. All the signals in the system are shown to be UUB using arguments

from singular perturbation theory by treating the filter as a fast subsystem and the

system dynamics together with weight update law as the slow system. Simulations on
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the flexible spacecraft model corrupted with sensor noise are used to demonstrate the

effectiveness of the proposed method in reducing the effect of sensor noise on adaptive

control.

In Chapter 4, the approach is extended to systems with uncertainty in control

effectiveness. A linear parameterization of the nominal control input is used to model

uncertainty in control effectiveness. The adaptive control signal is composed of three

different components. The first component is identical to that developed in Chapter

2. The other two components are based on the nominal control input and is shown

to provide robustness to uncertain control effectiveness. Similar to what was done

in Chapter 2, use of a filtered error signal in the weight update laws is shown to

suppress the effect of sensor noise. Simulations on the flexible spacecraft model with

uncertainty in control effectiveness and sensor noise are used to demonstrate the

effectiveness of the method. As a variation on the nominal design employed in Chapter

2 for the example in this chapter, the underlying nominal control design is based on

feedback inversion.

In Chapter 5, the adaptive controller developed in Chapters 2 to 4 is applied

to the design of an altitude control of a forty four state flexible UAV model. The

output feedback adaptive controller design that augments an observer based linear

control design is shown to be robust to unmodeled dynamics as well uncertain control

effectiveness. Adaptive control in the presence of noisy sensor signals is also considered

by introducing noise on the measured outputs.

6.1 Future Research

Some of the areas that the adaptive control developed in this thesis can be extended

are:

1) In this thesis we have considered only matched uncertainties. It would be of

interest to extend the method to also account for unmatched uncertainties acting on
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the system of the form

ẋ(t) = Ax(t) +BΛ [u(t) +G (x(t), xd(t))] +Gu(x(t), xd(t)),

y(t) = Cx(t),

yr(t) = Crx(t),

ẋd = fd(x(t), xd(t)) (6.1)

2) In this thesis an output feedback adaptive control has been designed for systems

with unmodeled dynamics wherein the output available for feedback is not dependent

on the unmodeled dynamics. Another important area of extension would be to con-

sider systems in which the outputs are corrupted by the unmodeled dynamics, i.e.

ẋ(t) = Ax(t) +BΛ [u(t) +G (x(t), xd(t))] ,

y(t) = Cx(t) +H(x(t), xd(t)),

yr(t) = Crx(t),

ẋd = fd(x(t), xd(t)) (6.2)

3) In this thesis an output feedback adaptive controller is considered for systems

with unmodeled dynamics wherein the unmodeled dynamics do not explicitly depend

on the control input u. Extending the method to systems where the unmodeled

dynamics depends on the control input u as considered in Ref. [15] is an area of

worthy research.

4) Recent research has focused on improving transient response of systems under

adaptive control [24, 25, 26, 27, 28]. The use of closed loop reference model as opposed

to open loop response model has shown to provide stability and improved transient

response of systems under adaptive control. This thesis has focussed on proving UUB

of all the signals in the loop using a Lyapunov like stability analysis. It is of interest

to extend the method presented to improve transient response. This extension will be

based on the work done by Travis et al. [25] wherein the use of projection algorithm
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along with the closed loop reference model adaptive controllers can be designed to be

stable and have improved transient properties.

5) In this thesis output feedback adaptive control has been developed for systems

with unmodeled dynamics. An area of recent research has been on designing adaptive

controllers that have guaranteed performance in the presence of time delays which

is inherently present in closed loop control implementations. Recent advances in

adaptive control design have been shown to provide global boundedness of the overall

adaptive system for a range of delays [1, 57, 58, 59]. An extension of the method

presented in this thesis to account for time delays is an area of future research. This

extension will be based on the research by Annaswamy et al. [1] wherein the authors

develop three different approaches to improve robustness for the presence of time

delays. It is of interest to consider the use of direct adaptive posicast controller along

with the methodology developed in this thesis to deal with large system delays.

6) An alternative is to extend the approach in [8] where in a new modification

term was developed for adaptive control that preserves the loop transfer properties of

the reference model associated with the non-adaptive control for the case when only

a subset of the states are available for feedback and in the presence of unmodeled

dynamics. In this way the gain and phase margins (and time delay margin) of the

nominal control design are preserved when augmented with an adaptive element.

Flight test results can be found in Ref.[14].

7) In this thesis a linear parametrization was assumed to model the uncertainty

acting on the system. Extending the method developed in this thesis to employ a

nonlinear parameterizations to model the uncertainty, such as the form employed in

[5], is an area worthy of further research.
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8) Another area of research is to consider systems of the form

ẋ(t) = Ax(t) +BΛ [(1 + ∆(s))u(t)] ,

y(t) = Cx(t),

yr(t) = Crx(t) (6.3)

where ∆(s) represents the unmodeled dynamics such as actuators, filters acting on

the system.
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APPENDIX A

FLEXIBLE UAV MODEL

This appendix contains the different forms of the flexible UAV model used in the

thesis to design and evaluate the different adaptive control laws presented in the

thesis.

A.1 The Four State Longitudinal Model

The 4 state longitudinal model constructed using stability derivative data obtained

from the rigidized flexible model of the UAV are given below

A =



−0.0059 0.5280 0.1389 −0.5529

−0.9219 −2.9445 −0.0990 −0.0091

0.0668 −1.2083 −2.7510 0

0 0 1 0


(A.1)

B =



−0.0001 −0.0005 −0.0001

−0.0011 0 −0.0229

−0.0190 −0.0001 −0.0049

0 0 0


(A.2)

C =

1 0 0 0

0 0 1 0

 (A.3)

where the states are x = [u/u0 α q θ]T , control inputs are u = [δe δT δf ]
T and the

outputs are y = [u/u0 q]
T .
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A.2 The Eight State Model

The eight state model after transformation to real form and augmented with the

altitude state is given by:

A =


A1 0 0

0 A2 0

A31 A32 0



B =


B1

B2

B3

 (A.4)

C =

[
C1 C2 C3

]
(A.5)

D =


0 0 0

0 0 0

0 0 0

 (A.6)

where

A1 =



−1.21e− 01 5.87e− 02 0.00e+ 00 0.00e+ 00

−5.87e− 02 −1.21e− 01 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 −5.76e− 02 2.98e− 01

0.00e+ 00 0.00e+ 00 −2.98e− 01 −5.76e− 02


(A.7)

A2 =



−1.15e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 −2.76e+ 00 7.04e− 01 0.00e+ 00

0.00e+ 00 −7.04e− 01 −2.76e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 −9.64e+ 00


(A.8)

A31 =

[
9.54e− 07 −1.08e− 06 −4.16e− 04 −5.62e− 04

]
(A.9)

A32 =

[
−1.19e− 06 −4.39e− 05 −1.08e− 03 −1.56e− 06

]
(A.10)
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with

B1 =



−7.24e− 02 2.14e− 03 4.96e− 03

−1.11e− 02 −4.90e− 04 9.63e− 03

1.56e+ 02 −4.04e+ 00 1.06e+ 01

1.61e+ 02 7.58e+ 00 −9.48e+ 01


(A.11)

B2 =



−1.70e− 03 1.05e− 03 −1.37e− 02

−2.79e+ 03 −7.73e+ 01 −5.24e+ 02

2.70e+ 02 3.11e+ 01 −3.40e+ 03

−1.60e− 01 −2.17e− 03 1.19e− 01


(A.12)

B3 =

[
0.00e+ 00 0.00e+ 00 0.00e+ 00

]
(A.13)

and

C1 =


−1.88e− 07 −8.17e− 07 −5.08e− 05 −3.46e− 05

1.32e− 11 −2.90e− 10 −1.54e− 07 −7.44e− 08

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

 (A.14)

C2 =


8.99e− 09 7.69e− 07 1.33e− 06 2.27e− 09

−2.21e− 10 1.18e− 07 3.02e− 08 1.51e− 10

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

 (A.15)

C3 =


0.00e+ 00

0.00e+ 00

1.00e+ 00

 (A.16)
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A.3 The Forty Four State Model

The forty four state model after transformation to real form and augmented with the

altitude state is given by:

A =



A1 0 0 0 0 0 0 0 0

0 A2 0 0 0 0 0 0 0

0 0 A3 0 0 0 0 0 0

0 0 0 A4 0 0 0 0 0

0 0 0 0 A5 0 0 0 0

0 0 0 0 0 A6 0 0 0

0 0 0 0 0 0 A7 0 0

0 0 0 0 0 0 0 A8 0

A91 A92 A93 A94 A95 A96 A97 A98 0



(A.17)

B =



B1

B2

B3

B4

B5

B6

B7

B8

B9



(A.18)

C =

[
C1 C2 C3 C4 C5 C6 C7 C8 C9

]
(A.19)

D =


0 0 0

0 0 0

0 0 0

 (A.20)
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where

A1 =



−1.15e− 01 −7.67e− 02 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

7.67e− 02 −1.15e− 01 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 −6.17e− 02 −2.91e− 01 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 2.91e− 01 −6.17e− 02 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −1.30e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −1.94e+ 00



A2 =



−1.94e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 −2.52e+ 00 5.57e− 01 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 −5.57e− 01 −2.52e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 −3.34e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −3.99e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −4.52e+ 00



A3 =



−5.19e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 −5.56e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 −5.89e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 −6.37e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −6.53e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −4.59e+ 00



A5 =



−4.59e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 −6.88e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 −7.46e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 −7.87e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −8.15e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −7.97e− 01
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A6 =



−9.06e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 −9.41e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 −9.90e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 −1.01e+ 01 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −1.04e+ 01 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −1.05e+ 01



A7 =



−1.08e+ 01 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 −3.34e− 01 1.09e+ 01 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 −1.09e+ 01 −3.34e− 01 0.00e+ 00 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 −1.11e+ 01 0.00e+ 00 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −1.12e+ 01 0.00e+ 00

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 −1.14e+ 01


A8 =

−3.99e+ 00 1.08e+ 01

−1.08e+ 01 −3.99e+ 00


A91 =

[
−2.09e− 06 −5.69e− 07 −6.68e− 04 −4.08e− 06 −1.03e− 06 −7.91e− 04

]
A92 =

[
−9.59e− 04 4.47e− 04 −8.35e− 04 −4.02e− 05 −2.59e− 03 5.44e− 05

]
A93 =

[
6.36e− 03 5.33e− 04 6.86e− 03 5.89e− 03 3.22e− 03 −2.28e− 06

]
A94 =

[
−3.18e− 06 5.31e− 03 7.64e− 04 −4.55e− 03 −5.01e− 04 5.16e− 07

]
A95 =

[
−1.20e− 07 1.66e− 03 1.29e− 06 2.12e− 06 −3.87e− 04 −2.80e− 04

]
A96 =

[
2.80e− 04 −8.66e− 04 2.07e− 04 −3.40e− 04 4.15e− 05 −4.61e− 06

]
A97 =

[
−9.01e− 06 2.32e− 04 −2.55e− 04 −8.65e− 04 3.80e− 05 6.18e− 04

]
A98 =

[
−1.29e− 03 6.52e− 04

]
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B1 =



2.31e− 02 −1.34e− 03 −1.73e− 03

1.19e− 02 −1.41e− 03 7.48e− 03

−3.82e+ 01 −8.71e+ 00 6.49e+ 01

−2.25e+ 02 −9.43e− 01 2.04e+ 00

−2.04e− 02 1.73e− 05 −3.25e− 02

−1.59e+ 03 −2.64e+ 01 −3.18e+ 03



B2 =



−3.96e+ 02 8.77e+ 00 −1.40e+ 03

1.34e+ 03 2.60e+ 01 1.14e+ 03

−4.25e+ 02 −9.79e+ 00 5.56e+ 02

−3.71e− 02 −6.17e− 04 −4.18e− 02

2.55e+ 00 4.92e− 01 5.19e+ 01

−1.62e− 02 −1.21e− 04 −6.59e− 03



B3 =



2.31e+ 01 9.14e− 01 −2.09e+ 01

−4.01e− 02 −7.22e− 04 5.20e− 03

−5.42e+ 01 −1.54e+ 00 5.69e+ 01

−1.53e+ 02 2.52e− 01 −1.52e+ 02

1.53e− 01 −2.51e− 04 1.50e− 01

4.15e− 01 3.08e− 03 5.69e− 01



B4 =



−8.01e− 02 −5.87e− 04 2.36e− 01

7.67e+ 00 −4.64e− 01 5.35e+ 01

−4.92e− 03 −8.07e− 06 9.11e− 04

1.93e− 01 −1.12e− 01 1.52e+ 01

−1.07e− 02 3.46e− 05 −9.75e− 03

−1.16e+ 00 −3.06e− 03 −5.12e− 01
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B5 =



7.64e− 01 −4.64e− 02 −2.26e− 03

3.34e− 02 −1.04e− 01 1.66e+ 01

1.03e− 01 −1.35e− 03 5.83e− 01

−4.76e− 02 −2.36e− 03 −1.93e− 01

2.97e+ 01 6.38e+ 00 4.00e+ 02

1.37e+ 01 −1.22e+ 01 2.31e+ 03



B6 =



−1.10e− 03 6.05e− 06 2.25e− 03

−5.62e− 02 −8.50e− 02 1.52e+ 01

4.45e− 03 −5.72e− 06 −2.82e− 04

3.22e− 02 5.87e− 02 −1.18e+ 01

1.73e− 03 5.80e− 05 2.37e− 03

−8.68e− 02 3.25e− 03 −7.94e− 01



B7 =



−1.88e− 01 −1.18e− 02 2.57e+ 00

−1.06e+ 00 8.40e+ 00 1.34e+ 02

5.32e+ 02 −1.69e+ 02 1.13e+ 03

−4.33e− 02 −5.02e− 02 1.17e+ 01

1.63e− 03 −2.35e− 05 2.57e− 03

−3.25e− 02 −6.09e− 02 1.49e+ 01


B8 =

−9.07e+ 01 4.76e+ 00 −4.88e+ 02

−4.17e+ 01 −1.42e+ 01 2.44e+ 03


B9 =

[
0.00e+ 00 0.00e+ 00 0.00e+ 00

]
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C1 =


−4.08e− 07 −8.97e− 07 −5.73e− 05 −2.23e− 05 9.20e− 09 1.35e− 06

−2.48e− 10 −3.36e− 10 −1.41e− 07 −7.77e− 08 −3.32e− 10 3.09e− 09

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00



C2 =


3.30e− 06 −2.93e− 06 2.15e− 06 1.87e− 07 9.42e− 06 −1.74e− 07

1.17e− 07 −3.66e− 07 −6.74e− 08 2.16e− 08 8.91e− 07 −1.47e− 08

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00



C3 =


−1.78e− 05 −1.41e− 06 −1.73e− 05 −1.38e− 05 −7.35e− 06 −6.01e− 10

−1.42e− 06 −1.12e− 07 −1.37e− 06 −1.08e− 06 −5.73e− 07 −6.46e− 11

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00



C4 =


9.73e− 09 −1.16e− 05 −1.52e− 06 7.30e− 06 8.99e− 07 −2.31e− 10

6.62e− 10 −9.16e− 07 −1.20e− 07 6.00e− 07 7.21e− 08 −1.85e− 11

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00



C5 =


−1.40e− 09 −2.78e− 06 1.78e− 10 −3.54e− 09 2.48e− 07 −2.07e− 07

−7.42e− 11 −2.31e− 07 4.38e− 11 −2.58e− 10 4.28e− 09 1.75e− 08

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00



C6 =


−4.27e− 07 1.99e− 06 −2.40e− 07 1.25e− 06 −3.58e− 08 −1.53e− 08

−3.69e− 08 1.44e− 07 −2.63e− 08 9.50e− 08 −5.34e− 09 1.04e− 09

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00



C7 =


−1.04e− 07 −3.47e− 07 −9.29e− 07 1.97e− 06 −1.35e− 07 −1.67e− 06

4.04e− 09 −2.24e− 08 −2.23e− 08 1.31e− 07 −1.84e− 09 −1.13e− 07

0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00
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C8 =


1.64e− 07 2.74e− 07

2.28e− 08 4.35e− 08

0.00e+ 00 0.00e+ 00

 (A.21)

C9 =


0.00e+ 00

0.00e+ 00

1.00e+ 00


The flexible UAV model used in this thesis is available as a companion to the

thesis report on the Georgia Institute of Technology’s SMARTech repository.
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APPENDIX B

CONVERTING FROM MODAL FORM TO STATE SPACE

This appendix summarizes the steps followed in going from the modal form to state

space model for control system design and simulation of closed loop system perfor-

mance. The modal form of the model consists of a diagonal matrix made up of the

eigenvalues of the flexible UAV model Ā and the corresponding control input matrix

B̄. Also defined in the modal form are the matrices C̄ and D̄ that correspond to

the accelerations measured at 18 different locations on the wing. The available con-

trol inputs u are ailerons, elevator, rudder, flaps, right spoiler, flaperons, symmetric

throttle and anti-symmetric throttle. In this Thesis only altitude control of the flex-

ible UAV is considered and so only the elevator, throttle and flaperons are used in

the control design process. The ASWing model also provides the eigenvector matrix

associated with the eigenvalues in Ā. The rows of this matrix are used to construct

outputs taken from a list of state variable outputs, which are also available. The

eigenvector matrix is used to define outputs that are needed either for closing control

loops and for simulation purposes. The eigenvector matrix provides the connection

between the state variables of the reduced order model in modal form (which have

no physical meaning) and the vehicle states defined which also include the control

variables and the components of acceleration at the cg expressed in the body frame.

Since the modal form results in a diagonal matrix having complex entries, the corre-

sponding entries in B̄, and C̄ matrices are also complex. Therefore, for control design

purposes, it is necessary to transform the complex matrices obtained from ASWing

model into the corresponding real form. The matlab inbuilt command cdf2rdf can

be used to convert the complex matrices to real block Jordan form. The ASWing
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Ā and B̄ model data is converted to real form and used directly to define the plant

dynamics, to design the controller gain matrix Kx and in the design of the observer.

It is also necessary to transform the Eigenvector matrix to permit computation of the

rows of C̄ in real form corresponding to the state variables that are to be fed back to

the controller.
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