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Chapter 1: Introduction

1.1 Introduction

Tracing the movement of celestial bodies into the past provides information

on where the bodies came from and their dynamical evolution. The simplest for-

mulation for modeling the dynamic evolution of solar system bodies is to treat

gravitational objects as point masses of infinite density. The point mass approxima-

tion is suitable for modeling planets and moons orbiting the sun at relatively large

distances because these celestial bodies will never come into contact. For our study,

we wanted to predict the transient and long-scale evolution of a ternary asteroid

system that has experienced angular acceleration due to the YORP effect. Scheeres

has shown that a ternary system will exist in one of several equilibrium depending

on its angular momentum [1]. These equilibrium involve surface contacts and rely

on the finite size of the bodies.

1.1.1 Motivation

There are two main problems with predicting the evolution of a ternary aster-

oid systems that must be resolved to obtain accurate, long-term results. In order to
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properly model asteroids in close proximity, especially those that come into contact

along their surfaces, the asteroids must be treated as finite volumes. A point-mass

assumption alone would allow for asteroids to come arbitrarily close to each other

and does not allow for surfaces to maintain persistent contacts.

With the finite volume model, asteroids may collide and form persistent con-

tacts, as well as orbit one another from a distance. The rigidity of two asteroids

prevent their surfaces from penetrating, thus limiting the minimum distance and

gravitational potential between the asteroids. A system of two or more asteroids

will contain at least one equilibrium configuration for which the bodies will retain

their relative positions and velocities until perturbed by an outside force. For the

case of three perfectly spherical bodies, Scheeres has identified a total of seven unique

equilibrium configurations [1]. These configurations are solely dependent on the an-

gular momentum of the ternary system, and as such, any change to their angular

momentum can cause the bodies to transition to another equilibrium configuration.

Additionally, finite volume bodies are subject to a variety of forces that af-

fect their motion and rotation. Celestial bodies orbiting the sun will experience

a change in spin rate due to non-radial thermal re-radiation of the sun’s energy.

This is known as the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, and

it will gradually increase or decrease the angular momentum of orbiting bodies [2].

Over long enough timescales (105 years), the YORP effect can alter the angular mo-

mentum of orbiting bodies to the point that their relative equilibrium configuration

becomes unstable [3]. For the three-body system, the bodies will transition away

from one of the seven equilibrium configurations. The motion of the bodies during

2



this transition are governed by N-body gravitational dynamics for which there is

no analytic solution. The motion of the bodies are also affected by tidal forces,

which cause energy dissipation in the system and prevent any analytical study of

the bodies during the transition.

Tidal forces cause the dissipation of mechanical energy in the three-body sys-

tem, resulting in the transition of the system between equilibria configurations.

Tidal forces naturally arise from gravity gradients across the surface of the bod-

ies, a result of the bodies having a distributed, non-point-like mass. Due to the

time dependent nature of tidal forces, their specific application and effect can not

be analytically determined beforehand; rather, the dynamics of the bodies must be

numerically simulated.

Thus to accurately predict the evolution of a ternary asteroid system, each

body must be regarded with a physical spatial dimension and allowed to interact

with each other at their surface boundaries. Furthermore, each body must be sub-

jected to a time-varying tidal force to slowly dissipate excess mechanical energy.

1.1.2 Previous Work

The dynamical evolution of the full three-body problem has been detailed by

Scheeres [1]. The Sundman inequality for a point-mass system provides an upper-

bound for the angular momentum H of an N-body system based on the total kinetic

energy T and polar moment of inertia Ip [4].
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H2 ≤ 2IpT (1.1)

By considering the moments of inertia matrix I for finite-volume bodies,

Scheeres defines an alternate moment of inertia for the system IH = Ĥ · I · Ĥ,

where Ĥ is the direction of the total angular momentum in inertial space. By using

IH , the upper limit to the Sundman inequality can be refined such that: H2 ≤ 2IHT .

We state without proof (which can found in the paper by Scheeres [1]) that using

this new inequality definition allows for the total energy of the finite-volume system

E to be bounded below by a minimum energy function E which depends only on

H, IH and the total potential energy U . By considering all generalized spatial ar-

rangements of the three bodies, the possible equilibrium configurations are obtained

from solutions to the minimum energy function. Scheeres derived the corresponding

energy and angular momentum of each equilibrium configuration, and has specu-

lated on the likely transition pathways between equilibria. To verify his model and

predictions requires numerical simulation of the full three-body system at varying

initial configurations and angular momenta.

In a paper by Jacobson and Scheeres [3], it was shown that “rubble pile”

asteroids could repeatedly undergo rotational fission and either form a stable binary

or ternary system, or re-accrete into a single asteroid. Over a large timespan of

106 years, the YORP effect could cause an asteroid to shed or fission mass to form

a binary or ternary system. Their simulation showed that with the right mass

distribution, one of the asteroids of the binary system would split into a third body,

4



forming a chaotic ternary system. They estimated that within 107 years, tidal

forces would synchronize the rotation and orbital rates of the bodies so that the

system as a whole would be indefinitely stable. However, their study did not test

for the transitions between equilibrium configurations of the stable ternary system

after subjected again to the YORP effect. Thus, it is still inconclusive how these

transitions occur and whether the final configuration agrees with the analytical

predictions made by Scheeres [1].

1.1.3 Thesis Contributions

This thesis presents an algorithm written in MATLAB that simulates the full

three-body problem. The algorithm simulates a ternary system that has undergone

YORP angular acceleration to the point of inducing a transition to a lower energy

configuration. It incorporates collision and contact physics between bodies, allowing

simulated bodies to come together and form persistent contacts. The trajectory of

the bodies are affected by ellipsoidal gravitational potentials as well as time-varying

tidal forces. The bodies are propagated until the system begins to converge to a

stable equilibrium and shows signs of transitioning to a tidally locked, minimum

energy configuration.

The efficacy of different numerical propagators are tested and compared. The

performance of each algorithm is judged primarily by its ability to conserve en-

ergy and angular momentum, and conform to the underlying physical constraints

preventing bodies from penetrating. Explicit integrators, like Runge-Kutta and Ve-
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locity Verlet, are simple to implement and are computational cheap but struggle to

resolve numerically stiff contact interactions, often resulting in long-term energy in-

stability. Implicit integrators, such as the SHAKE algorithm [5], are able to resolve

physical constraints and system-wide energy invariants down to a pre-specified tol-

erance, but suffer from increased complexity and computation time. Additionally,

two methods to compute contact forces are tested and compared; the first being

a geometric contact force algorithm [6] [7], the second being a soft-sphere discrete

element method [8].

Using simulation results, we confirm the pathway transitions between mini-

mum energy configurations of the full three-body problem as predicted by Scheeres.

The three bodies often form pseudo-equilibrium states during the transition, during

which time the bodies are suspended in an unstable orbit resembling an equilibrium

state until enough energy is decayed for the system to collapse to a ground state.

Our results show that the bodies do not get stuck in any local energy minima dur-

ing their transitions between minimum energy configurations, which is a conclusion

that could not be tested with the analytical theory. For each possible transition, the

bodies converge to the minimum energy configuration predicted by Scheeres based

on the angular momentum of the system.

1.1.4 Thesis Overview

In Chapter 2, we present an in-depth description of the problem along with

the mathematical representation of the three-body system. Chapter 3 provides the
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dynamics used to model the motion of the bodies. Chapter 4 discusses the simulation

hierarchy and integrator schemes used to numerically propagate the system. In

Chapter 5, we present the results of the simulation. Chapter 6 explains the sources

of error in the simulation and how they affected the simulation results. Suggested

improvements and conclusion are provided in Chapter 7.
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Chapter 2: Problem Background

2.1 The Full Three-Body Environment

We will begin by formalizing the equilibrium configurations of the full three-

body problem. Assume the three bodies are identical spheres with diameter d and

mass m. The bodies are considered rigid, preventing their surfaces from interpen-

etrating, such that the minimum distance between any two bodies is given by d.

We now restrict the motion of the bodies to a single plane, say the XY plane in

Cartesian space, for simplicity. Likewise, the bodies are restricted to rotate about

the axis perpendicular to their plane of motion (Z direction). The spin rate of a

body i about its center of mass is given by ψ̇i and the rotation of a body i about the

barycenter is given by θ̇i. The origin of the inertial frame is placed at the barycenter

of the three body system at the initial state. The position of each body i is given

by ~ri and the relative position between two bodies i and j is given by ~rij = ~ri − ~rj.

Given the diameter of the bodies, the relative positions are bounded by ‖~rij‖ ≥ d.

These variables are expressed in Figure 2.1.

The energies and momentum of the system can be specified in terms of the

relative position and velocities between two bodies:
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Figure 2.1: Body frame showing the relative positions between bodies and their
rotation rates. Z is perpendicular to the XY plane and by the right-hand rule,
points out of the page.

T = m

3

2∑
i=1

3∑
j=i+1

(~̇rij · ~̇rij)
2 + 1

2

3∑
i=1

md2

10 ψ̇i (2.1)

U = −G
2∑
i=1

3∑
j=i+1

m2

‖~rij‖
(2.2)

H = m

3

2∑
i=1

3∑
j=i+1

(~̇rij × ~̇rij) + 1
2

3∑
i=1

md2

10 ψ̇i (2.3)

IH = m

3

2∑
i=1

3∑
j=i+1

(~rij · ~rij) + 1
10

3∑
i=1

md2 (2.4)

E = T + U (2.5)
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where T = total system kinetic energy, U = total system potential energy,

H = total system angular momentum, IH = system polar moment of inertia, and

E = total energy of system. The goal is to determine the relative positions of the

bodies that minimize the total system energy. These minimum energy states are

the equilibrium configurations of the system. To find them, a refined version of the

Sundman inequality is applied to the system which provides a lower bound on the

total energy of the bodies [1]:

E = H2

2IH
+ U ≤ E (2.6)

where E = minimum energy function and IH = Ĥ · I · Ĥ is the moment of

inertia along the axis aligned with the total angular momentum unit vector Ĥ. Here,

I is the moment of inertia matrix of a spherical body.

When written in this form, the minimum energy function E is dependent only

on the angular momentum of the system, the relative position of the three bodies,

and the physical properties of the bodies, thereby removing any dependence on

kinetic energy. We can simplify the expressions for U and IH by eliminating the

summation terms of Equation 2.4 to simplify:

U = −Gm
[ 1
r12

+ 1
r23

+ 1
r31

]
(2.7)

IH = m

3 (r2
12 + r2

23 + r2
31) + 3

10md
2 (2.8)

where rij = ‖~rij‖, the 2-norm of the relative position vector.
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Before these expressions are substituted into E , the diameter d is nondimen-

sionalized to 1 such that rij ≥ 1, the polar moment of inertia along the Ĥ direction

IP is scaled by md2, and the potential energy U is scaled by Gm2/d. This gives the

following expression for the minimum energy function:

Ē = H̄2

2[(r̄2
12 + r̄2

23 + r̄2
31)/3 + 0.3] −

 1
r̄2

12
+ 1
r̄2

23
+ 1
r̄2

31

 (2.9)

IH = 1
3d2 (r2

12 + r2
23 + r2

31) + 3
10 (2.10)

Ē = Ed
Gm2 (2.11)

H̄2 = H2

Gm3d
(2.12)

where the ¯bar notation represents normalized quantities. As can be seen, the

minimum energy function is only a function of the angular momentum of the system

and the relative distance between the three bodies. The equilibrium configurations

are found by examining the critical points of the minimum energy function. Figure

2.2 shows the two generic contact arrangements of the three bodies, where θ is the

constraint angle and R is the distance from the center of the resting pair to the

center of the third body.

The critical points of the minimum energy function occur at the values of θ and

R such that the derivatives of E with respect to θ and R are 0. Similarly, the stability
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Figure 2.2: Generic arrangement for resting contact between three bodies (left) and
two bodies (right). Reproduced from Scheeres. [1]

of each equilibrium point is found by looking at the sign of the second derivative

of E . Scheeres has showed that there are seven unique equilibrium configurations

(discounting those under symmetry transformations), as seen in Figure 2.3.

Figure 2.3: Reproduced from Scheeres. [1] Relative equilibrium configurations for
the Full Three-Body Problem. Those boxed in red are the only stable configurations,
all other are energetically unstable.

The three Resting Configurations (see Figure 2.3) have the three bodies in

persistent (static) contact with zero relative motion at the point of contact. Each

of the resting configurations are simply a permutation of two bodies in contact

with the third body at an angle bounded between 60◦ ≤ θ ≤ 300◦. As such, the

resting configurations are defined by the angle the third body makes with the axis

12



connecting the center of masses of the other two bodies. The Mixed Configurations

are distinguished by two bodies in static contact with a third body offset along the

axis that is either parallel or perpendicular to the axis connecting the two bodies in

contact. The Orbiting Configurations have all three bodies physically separated.

The relative distances rij between bodies in contact for each configuration are

constant, so by referring back to Equation 2.6, we have that angular momentum is

the only variable that affects the minimum energy of the system (assuming physical

properties of the bodies are constant). The bodies in each equilibria are tidally

locked - the rotation rate of each body about its center ψ̇i is equal to the rotation

rate of each body about the system barycenter θ̇i. As will be discussed in Chapter

3, this is an important distinction because bodies not tidally locked will dissipate

energy as a result of tidal forces. Any arbitrary system and arrangement of three

bodies will dissipate energy until one of the seven equilibrium configurations is

reached and the bodies are tidally locked.

The energy, stability, and existence of each equilibrium configuration depends

on the value of angular momentum for the system. Figure 2.4 shows the range of

angular momenta (given in terms of H̄2) for which certain configurations are possi-

ble. The colors are used to indicate if a configuration is energetically stable in each

interval. As H̄2 is increased/decreased through different intervals, the stability of

a configuration can change. For example, consider the Euler Resting configuration

at H̄2 = 0, which is energetically unstable. When H̄2 for this system is increased

past a threshold of 1.98375, the configuration becomes stable and the system will

tend back towards this nominal configuration under small perturbations. Similarly,
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Figure 2.4: Reproduced from Scheeres. [1] The diagram shows the possible equilib-
rium configurations within different ranges of normalized angular momentum values
H̄2 along the horizontal axis. Configurations marked in red are unstable and those
marked in green are stable. A configuration boxed in green indicates the minimum
energy configuration for the specified interval of normalized angular momentum.
Arrows between configurations show how the transition between states might occur.

new configurations may bifurcate into existence while others cease to exist as H̄2

increases. For example, when H̄2 for a stable Resting Euler configuration is in-

creased through H̄2 = 6.6125, the Resting Euler configuration ceases to exist and

will transition to either the Aligned Mixed configuration. Given an initially unstable

configuration for a given value of angular momentum, we wish to understand the

evolution of the system to the stable equilibrium. As we will show, the trajectory

of the bodies and whether the system can become stuck in local energy minima can

not be analytically determined, even though the final equilibrium configuration can

be determined [1].

When a system transitions between equilibrium states, it will always transition

from a higher energy configuration to a lower energy configuration. Unstable equi-

libria transition to a stable lower energy state, notionally the minimum energy state.
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Figure 2.5: Reproduced from Scheeres. [1] The plot shows how excess mechanical
energy emerges from a transitioning system. Going from left to right, the dotted
black line shows how the energy of the Lagrange Resting configuration changes as
H̄2 is increased. At a value of H̄2 = 2.99, LR and ER configurations are equal in
energy, but LR is still stable here so the system will remain in the LR configuration.
At a value of 5.07, the LR configuration ceases to exists and the system will begin to
transition to the Euler Resting configuration, which is lower in energy at this value
of angular momentum.

Configurations that are no longer physically viable will transition to a new minimum

energy configuration, as can be seen in Figure 2.5. Starting from a minimum energy

configuration, there are four possible transition:

1. Lagrange Resting (LR) to Euler Resting (ER)

• As H̄2 is increased through 5.07, the bodies roll along each other and

straighten out. Often one body separates from the bunch and rejoins

following a collision. This transition accounts for the largest excess me-

chanical energy to be dissipated.

2. Euler Resting (ER) to Aligned Mixed (AM)
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• As H̄2 is increased through 6.6125, one of the outer bodies breaks away

from the remaining two and orbits the barycenter at a fixed distance to

form an Aligned Mixed configuration. The Aligned Mixed configuration

is the only stable equilibria for all higher values of H̄2.

3. Aligned Mixed (AM) to Euler Resting (ER)

• As H̄2 is decreased through 5.32417, the singular orbiting body reaccretes

with the two contacting bodies to form an Euler Resting configuration.

While excess energy is decaying, the central body in the configuration

may change 1 or more time(s).

4. Euler Resting (ER) to Lagrange Resting (LR)

• As H̄2 is decreased through 1.98375, the central body is squeezed to

one side and forms a temporary V-Rest configuration before the bodies

collapse into a Lagrange Resting configuration.

These are the four cases that are tested in this thesis. In all instances, the

change in angular momentum instantaneously affects the equilibria configurations

without altering the energy of the system. The energy of the system then exceeds

the energy associated with the new minimum energy configuration based on the

value of H̄2. Before the system can reach the new minimum energy configuration,

it must dissipate its excess energy. While dissipating the excess energy, the bodies

will follow a non-trivial trajectory and may collide with each other many times. The

only way to analyze this transition is to numerically simulate the bodies and track
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their resulting, highly nonlinear motion until they reach the new stable equilibrium

configuration.

In order to accurately simulate the behavior of the bodies during a transition,

we model the three most important forces that govern the behavior of the bodies.

The first force is the mutual gravitation between bodies that has already been ex-

pressed in the derivation of the equilibrium configurations. The second necessary

force is the contact force between bodies whose surfaces are in contact, that is, when

rij = d. The contact force ensures that bodies do not interpenetrate. Collisions be-

tween bodies are modeled as perfectly inelastic, which is the first mode of energy

decay in the system. The final modeled force is a tidal force that serves as the second

mode for excess energy decay. The tidal force is a result of gravity gradients be-

tween bodies that is able to decay excess energy in the system and synchronize body

rotation rates at any distance of separation. The formulation of body dynamics and

these three forces are discussed in greater detail in the next chapter.
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Chapter 3: System Dynamics

3.1 Equations of Motion

We begin the derivation of the body dynamics by first describing the coordi-

nates of a body in the inertial frame. The bodies are assumed to be, in general,

ellipsoids with dimensions given by a, b, c. We consider only the planar motion of

the bodies and are interested in tracking the translation and rotation of the bodies

in the XY plane. The position of Body N is specified by the location of the body’s

center of mass, given by the cartesian coordinates (xn, yn), with the origin of the

system located at the system barycenter. Next, we specify the semi-major axis ân

of Body n for a general ellipsoid. If the geometric projection onto the XY plane

is circular, then the semi-major axis is initially taken as an arbitrary radial vector.

For this project, we only consider and simulate spherical bodies with a circular pro-

jection on the XY plane, although we present generalized equations for ellipsoidal

bodies. Finally, we define three angles, ψn, θnm, φnm, that track the rotation of the

each body relative to the other bodies and the inertial frame. Here, ψn is the angle

measured from the inertial X axis to ân, θnm is the angle between r̂nm and the iner-

tial X axis, and φnm = ψn − θnm is the angle between ân and r̂nm. Once again, the

barycenter between the three bodies is taken as the origin of the system.
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Figure 3.1: Relative Body Angles

Of these three angles, it is only necessary to numerically integrate ψn for each

body because the other two angles can be calculated from basic geometry. The angle

θnm is calculated as: θnm = atan2(rnm,y, rnm,x), that is, the two argument arctan

function with the y and x components of ~rnm as inputs. The state vector for the

system is:

q =
[
x1 y1 ψ1 · · · x3 y3 ψ3

]T
(3.1)

With this coordinate system, we can now find the equations of motion that

govern the bodies considering generalized ellipsoidal gravity potentials and tidal

forces. The tidal force, as will be explained in the subsequent section, has the net

effect of exerting a torque about the center of mass of each body while applying a

commensurate change to in the orbital energy of the bodies. The easiest way to

model the effect of ellipsoidal shapes and tidal torques on the motion of the bodies

is to use a modification of the Euler-Lagrange equation. We begin by writing the
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general form of the equation with an augmented term to include the effect from the

tidal torque:

d

dt

(
∂L

∂q̇

)
= ∂L

∂q
− Γq (3.2)

where L = T − U , Γq is the sum of tidal torque terms, T is the total kinetic

energy, and U is the total potential energy. The kinetic energy (T) of the three-body

system can be calculated by adding the translational and rotational energy of each

body.

T = 1
2

3∑
n=1

Mn(ẋ2
n + ẏ2

n + Īn,zψ̇
2
n) (3.3)

where Mn is the mass of Body n, Īn,z is the mass normalized moment of inertia

of Body n along the Z axis, and:

Īn = 1
Mn



1
5Mn(b2 + c2) 0 0

0 1
5Mn(a2 + c2) 0

0 0 1
5Mn(a2 + b2)


ˆ̄In = trace(Īn)

The total potential energy (U) of the three-body system is slightly more com-

plex due to the ellipsoid-ellipsoid interaction between the bodies. The potential is a

second-order expansion in the moments of inertia between two ellipsoidal bodies: [9]
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Un,m = −GMnMm

rnm

{
1 + 1

2r2
nm

[ ˆ̄In + ˆ̄Im −
3
2(Īnx + Īny + Īmx + Īmy−

cos (2φnm)(Īny − Īnx)− cos (2φmn)(Īmy − Īmx)
]} (3.4)

For spherical bodies, Īny = Īnx and the potential energy between two bodies

reduces to:

Un,m = −GMnMm

rnm
(3.5)

Finally, the total potential energy of the system is the sum of the mutual

potential energies between body pairs:

U = U1,2 + U1,3 + U2,3 (3.6)

The standard gravitational potential between two point masses appears at the

beginning of this equation. The secondary terms account for the unsymmetrical

distribution of mass along an ellipsoid. The potential is dependent on the angles

φnm, φmn, which in general will not be equal. When the moment of inertia along

each body axis is equal, as is for the case of a sphere, the secondary terms cancel

out.

Now that the general framework of the problem has been setup, we will take

the partial derivatives with respect to the state variables (xn, yn, ψn) to obtain the

equations of motion for each body. The tidal torque term only appears in the
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expression for the partial derivative with respect to ψn.

xn :

d

dt

(
∂L

∂ẋn

)
= ∂L

∂xn

1
2Mn(2ẍn) = − ∂U

∂xn

ẍn = − 1
Mn

∂U

∂xn

yn :

d

dt

(
∂L

∂ẏn

)
= ∂L

∂yn

1
2Mn(2ÿn) = − ∂U

∂yn

ÿn = − 1
Mn

∂U

∂yn

Finally, we wish to track the evolution of the semi-major body axis (ψn). Here,

the tidal torque terms are nonzero. There will be one tidal torque term for each of

the two bodies exerting a tidal force on Body N.

ψn :

d

dt

(
∂L

∂ψ̇n

)
= ∂L

∂ψn
− Γφnm − Γφnk

MnĪnψ̈n = −
[

3GMn

2 (Īny − Īnx)
(
Mm sin 2φnm

r3
nm

+ Mk sin 2φnk
r3
nk

)]
− Γφnm − Γφnk

ψ̈n = 1
MnĪn

(− ∂U

∂ψn
− Γφnm − Γφnk

)
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These equations of motion are integrated in order to propagate the motion of

the bodies. There are two additional forces that factor into these body dynamics:

tidal torques and contact forces. Each will be discussed in detail below.

3.2 Tidal Forces

Tidal torques arise between two bodies when there is a gravity gradient on the

body. A gravity gradient arises for finite sized bodies because each infinitesimal mass

unit throughout the body will feel a varying magnitude of gravitational acceleration

inversely proportional to the distance squared from the mass unit to the center of

mass of an attracting body. The gravity gradient serves to place mechanical stress

on the interior structure of the body. Figure 3.2 demonstrates the accelerations a

spherical ‘Parent’ asteroid would feel due to the gravity of a nearby spherical ‘Child’

asteroid.

To see how the body bulge forms, consider the forces acting on the Parent

body in Figure 3.2. The tidal force ~Ftidal is the force that each infinitesimal mass

element of the Parent body feels relative to the Parent body’s center of mass:

~Ftidal = ~Fg− < ~Fg > (3.7)

where < ~Fg > is the gravitational acceleration of the body’s center of mass

and ~Fg is the force felt by a single mass element of the body. Because the sides of the

Parent body facing towards and away from the Child asteroid are respectively closer

and further away from the Child, the particles along the closer and further surfaces
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will experience respectively a greater and smaller gravitational attraction, compared

to the center of mass of the Parent body. Similarly, the poles of the Parent body

will experience a net acceleration relative to the acceleration of the Parent body

center of mass directed radially inwards. The net affect of these gravity gradients

is a stretching of the Parent body along the axis connecting the centers of the

Parent and the Child [10]. Similarly, the Parent body experiences a compressive

deformation along its poles directed radially inwards. The elongated body axis is

known as the body bulge. The amplitude of the body bulge depends on the mean

rigidity of the asteroid µ̄ and is independent of the actual shape of the asteroid [3].

Thus both spherical and ellipsoidal bodies will develop a body bulge that will tend

to undulate across the surface. To make this concept clear, consider the diurnal

tides raised on Earth by the Moon. High tide is the observed body bulge of Earth,

and this body bulge undulates across the oceans of Earth because of the dissimilar

rotation rates of Earth and the Moon’s orbit.

The Child asteroid will exert a force on the body bulge, which causes a torque

about the Parent body center of mass, as depicted in Figure 3.3. This torque serves

three main purposes: to dissipate excess energy in the system, to transfer angular

momentum between asteroids, and to synchronize rotation rates of asteroids from a

distance. [9]

In general, solving for an explicit net torque caused by these tidal forces is

non-trivial. To explicitly solve for the tidal torque involves integrating the torque

generated by the gravitational force of the Child body acting on each mass element

of the Parent body, with a lever arm of d~r extending from the center of mass of the
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Figure 3.2: Gravity gradients cause stretching along a center of mass axis and
compression along a perpendicular axis [9]. Relative to the center of mass of the
Parent body, the side facing the Child body will experience a greater gravitational
force towards the Child. The side facing away from the Child will experience a
greater gravitational force away from the Child.

Parent body to the mass element.

~Γ =
∫
V ol

d~r × ~Fg (3.8)

The magnitude of the gravitational force at each mass element also depends

on the distance that the mass element is located away from the Parent body center

Figure 3.3: Gravitational forces will act on the body bulge and cause a net torque
about a body.
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of mass, thus ~Fg also depends on d~r. At present, we know of no explicit solution

to this integral. The integral could be solved numerically at the cost of increased

computation time. For the sake of simplicity, we employ an approximation com-

monly made by similar works to calculate the tidal torque a body would feel from

a Child body [3]. The tidal torque used in this model is approximated to a first

order from the classic tidal torque between two spherical bodies derived by Murray

and Dermott [9]. Implicit in this approximation is the assumption that the distance

between the two bodies is much greater than the diameter of the Parent body, which

is certainly violated in the context of this paper, and is meant to be taken as a first

order approximation for the true tidal torque. Γij is the magnitude of the torque a

spherical body j exerts on the tidal bulge of a spherical body i.

Γij = sign(φ̇ij)
3
2k2

( 3
4πρi

)2Gm2
im

2
j

r6
ij

sin 2εi (3.9)

where φ̇ij = ψ̇i − θ̇ij, εi is the tidal lag angle of Body i, k2 is the tidal Love

number, and ρi is the density of Body i.

To find the total torque on a body due to tidal forces, we sum the individual

torques exerted by the two orbiting bodies. The tidal lag angle ε physically repre-

sents the angle of the body bulge relative to ~rij. The body bulge is independent of

the body spin rate ψ̇i, and will undulate around the surface of the body. Tracking

the body bulge angle necessitates modeling the time dependent deformation of the

body due to tidal forces. We make the assumption that the shape of the body

remains constant over the course of the simulation and furthermore, that the body
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bulge angle remains constant. The first assumption is justified because the aster-

oids we simulate are small and rigid enough that any physical body bulge would be

negligible relative to the diameter of the body. The latter assumption is supported

by considering the body bulge angle as a measure of the effectiveness for two bodies

to tidally dissipate energy [9]. The body bulge angle ε is related to the specific tidal

dissipation function Q by:

Q = 1
tan 2ε (3.10)

For comparison, QEarth = 12 and QMoon = 27 [11]. In general, Q must be

estimated for each solar system body, although a typical value of 100 is used for

small rocky bodies, which is used in this investigation. [12] The tidal Love number

k2 depends on the mean rigidity µ̄ of the body and has been estimated for a number

of larger planetary bodies.

k2 = 3/2
1 + µ̄

(3.11)

Our current investigation uses an estimate for k2 = 10−5 taken from a paper

by Jacobson that simulated asteroids of similar size and densities [3].

Finally, we finish our discussion of tidal torques by considering the resulting

tidal force on the Child asteroid and the time rate of change of energy in the system.

As was previously established, the Child asteroid will exert a torque about the spin

axis of the Parent asteroid, causing the angular velocity of the Parent asteroid to

increase or decrease. Equivalently, there is an equal and opposite torque exerted by
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the Parent asteroid onto the Child asteroid that changes its orbital speed. If the

rotation rate of the Parent asteroid ψ̇ is greater than the instantaneous orbital rate

of the Child asteroid θ̇, the body bulge will be carried ahead of the Child. In this

instance, the tidal torque Γ serves to decrease the rotational kinetic energy of the

Parent asteroid at a rate Γψ̇ while increasing the orbital energy of the Child asteroid

at a rate Γθ̇. Because ψ̇ 6= θ̇, the rates of work done by the tidal torque Γ are not

equal and the total mechanical energy of the system, E will decrease at a rate [9]:

Ė = −Γ(ψ̇ − θ̇), for ψ̇ > θ̇ (3.12)

Conversely, if the rotation rate of the Parent asteroid is less than the instan-

taneous orbital rate of the Child asteroid, ψ̇ < θ̇, the tidal bulge will lag behind the

orbit of the Child asteroid. In this case, the tidal torque Γ increases the rotational

kinetic energy of the Parent asteroid at a rate Γψ̇ while decreasing the orbital en-

ergy of the Child asteroid at a rate Γθ̇. However, the total mechanical energy of the

system will still decrease at a rate:

Ė = Γ(ψ̇ − θ̇), for ψ̇ < θ̇ (3.13)

The physical manifestation of this energy decay is escaping heat that is gener-

ated by material deformations within the body of the Parent asteroid. Modeling the

internal structure of the asteroids and the friction generated by mechanical stress is

complicated and beyond the scope of this study. For the sake of simplicity, we model

this heat loss by applying a tidal torque to the Parent Asteroid and an equivalent
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tidal force to the Child asteroid. We already know that an external torque Γ will

be applied to the rotational dynamics of the Parent asteroid so as to equalize its

spin rate with the orbit of the Child asteroid. But the dynamical representation of

the orbit raising/lowering tidal torque acting on the Child asteroid has yet to be

determined.

We derive the dynamics of the orbiting raising/lowering tidal torque by equat-

ing the torque to a force acting about a lever arm. In this case, the lever arm is

given by the vector ~r connecting the center of the Parent to that of the Child aster-

oid. The torquing force ~FΓ is applied at the center of the Child asteroid and points

in-plane, perpendicular to ~r. From this relationship, we have a scaler equation that

can be solved for the magnitude of ~FΓ:

Γ = ‖~FΓ‖‖~r‖ (3.14)

Or

‖~FΓ‖ = Γ
‖~r‖

(3.15)

This tidal force ~FΓ is then incorporated into the linear dynamics of the Child

asteroid:

~a =
∑ ~Fgravity + ~FΓ

m
(3.16)

The sign of Γ indicates whether the orbital energy, and thus orbitals speed of

the Child asteroid, should increase (Γ > 0) or decrease (Γ < 0). As a matter of
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convention, we take the initial direction of the applied force so as to complete the

right-hand set of ~r and the positive out-of-plane spin axis:

F̂⊥ = +Ẑ × r̂ (3.17)

Where Z = [0, 0, 1]T . The applied tidal force vector is:

~FΓ = Γ
‖~r‖

F̂⊥ (3.18)

For a system of 3 bodies, we assume that the effects of the tidal torque between

body pairs can be added linearly. Thus the total dynamics for a body takes the form:

~an = 1
m

(
∑

~Fgravity +
∑

~Fcontact +
∑

~FΓ) (3.19)

ψ̈n = 1
In

(
∑

τext +
∑

Γ) (3.20)

Where ~an is the cartesian acceleration of Body n, ψ̈n is the angular acceleration

of the Body n, ~Fgravity is the mutual gravitational force acting on Body n, ~Fcontact is

the sum of the soon to be discussed contact forces acting on Body n, and τext is the

gravitational torque exerted on Body n due to the gravitational acceleration from

an ellipsoidal body. In our study, we consider only spherical bodies so τext = 0 for

each body pair.

We conclude the section on tidal torques by proving that applying a torque Γ

to the Parent asteroid and a tidal force ~FΓ to the Child asteroid will always result
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in a net energy decrease. An applied torque Γ over some infinitesimal time dt will

do some work δWψ to change the rotational energy of the system.

δWψ = −Γψ̇dt (3.21)

A positive Γ will slow the rotational energy of the Parent and conversely a

negative Γ will increase the rotational energy. Now we shall compare this small

work to the work done by applying the tidal force to the Child asteroid for the

same infinitesimal time dt. A tidal force ~FΓ acting on the Child asteroid for an

infinitesimal time dt will do some work δWs to change the orbital energy of the

system.

δWs = (~FΓ · ~v)dt (3.22)

Where ~v is the velocity of the Child asteroid. Since ~FΓ is perpendicular to ~r,

we are only concerned with the component of ~v that is along ~FΓ - call this component

~v⊥. The instantaneous orbital rate of the Child asteroid θ̇ is related to ~v⊥ by:

‖~v⊥‖ = θ̇‖~r‖ (3.23)

Plugging this and the expression for ~FΓ into the equation for δWs and simpli-

fying yields:

δWs = Γθ̇dt (3.24)
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Now we have simple expressions for the work done by the tidal torque Γ

over some small time dt. By summing both works, we can see the net change in

mechanical energy Ė of the system:

Ė = dE

dt
= δWs + δWψ

dt
= −Γ(ψ̇ − θ̇) (3.25)

Thus Ė will always be negative because Γ and ψ̇ − θ̇ always carry the same

sign. The net result is always a decrease in mechanical energy of the system. This

notion of energy decay is very important because it drives the system towards a

rotationally synchronized state. Given enough time, the system will eventually

reach an equilibrium where ψ̇ = θ̇ for each pair of bodies, at which point the system

is tidally locked.

3.3 Impulsive Collision Handling

When the surfaces of two bodies meet with some relative velocity, a collision

is triggered and both bodies receive an impulsive change in their linear momentum

before separating or forming a persistent contact. The goal is to calculate an impulse

~J such that the bodies move in a physically consistent manner and their surfaces

do not penetrate. The change in linear velocity δ~v experienced by a colliding body

is given by:

δ~v =
~J

m
(3.26)
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~J = jn̂(t0) (3.27)

where m is the mass of the body, j is the scalar impulse, and n̂(t0) is the unit

normal to the contact surface. If bodies A and B are colliding, then we define n̂(t0)

to point from the contact surface of Body B to Body A. For circular bodies, n̂(t0)

is simply:

n̂(t0) = ~rA − ~rB
‖~rA − ~rB‖

(3.28)

With this notation, Body A will receive an impulse of +jn̂(t0) while Body B

receives an impulse of −jn̂(t0). By looking at the symmetry of the applied impulse,

it’s easy to see that linear & angular momentum are conserved. To actually solve

for the impulse term j, we first define the relative velocity between the two bodies

at the contact point p before and after the collision. If pA = −Rn̂(t0) is the vector

from the center of Body A to the point of contact, then the velocity at contact point

on A is

ṗ−A = ~v −A (t0) + ω −A × pA (3.29)

Where the superscripts (-) and (+) indicate quantities evaluated before and

after the collision impulse is applied. The above equation is the same for the contact

point on Body B, with pB = +Rn̂(t0).

Now we can write the post collision velocity ~v +
A in terms of the pre-collision
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velocity ~v −A :

~v +
A = ~v −A + jn̂(t0)

m
(3.30)

Then the relative velocity before the collision v −rel and after the collision v +
rel

at the contact point can be calculated by:

v −rel = n̂(t0) · (ṗ −A − ṗ −B ) (3.31)

v +
rel = n̂(t0) · (ṗ +

A − ṗ +
B ) (3.32)

Finally, we invoke the empirical law for frictionless collisions that allows for j

to be explicitly solved for

v+
rel = −εv−rel (3.33)

Where ε is the coefficient of restitution of the collision. A factor of ε = 1 implies

the bodies will bounce apart in a perfectly elastic collision and kinetic energy will

be conserved. Any factor of ε < 1 implies an inelastic collision between the bodies,

resulting in a net loss of kinetic energy due to a supposed material deformation of

the body. For our simulation, we take ε = 0, which implies a perfectly inelastic

collision between the bodies. This results in the bodies moving in tandem after the

collision and a maximum loss of kinetic energy. Through this interaction, bodies

can dissipate large amounts of excess mechanical energy in the system, shortening

the time span for tidal torques to decay any remaining excess energy.
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By combining the above equations (see paper for Baraff for reference [6]), we

can arrive at an expression for j

j = −(1 + ε)~v−rel
1/mA + 1/mB + n̂(t0) · (I−1

A (pA × n̂(t0)))× pA + n̂(t0) · (I−1
B (pB × n̂(t0)))× pB

(3.34)

where Ii is the moment of inertia matrices for Body i, where i = A or i = B.

This is the general formula presented for any two rigid bodies in a collision. However,

we are dealing with a much simpler case because the bodies in this simulation are

considered spherical without Coulomb surface friction. Due to spherical symmetry,

we note that for any collision pA × n̂(t0) = 0 and pB × n̂(t0) = 0 because the two

vectors will always be parallel. Similarly, the angular component of the contact

point velocity of Body i, ω−i × pi (for i = A or i = B), will always be parallel with

n̂(t0) and will not appear in the v−rel and j equations. With these simplifications

and the treatment of both bodies having identical mass and moment of inertia, the

equation for the impulse scaler j reduces to

j = −m2 (n̂(t0) · (~v −A − ~v −B )) (3.35)

This is a fairly simple result because of the underlying geometric symmetry

of the collision. With the impulse scalar determined, the velocities of each body

post-collision are calculated
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~v +
A = ~v −A + jn̂(t0)

m

~v +
B = ~v −B −

jn̂(t0)
m

Applying this impulse allows the bodies to continue moving in a physically

sensible manner and prevents their surfaces from immediately interpenetrating. In

the general case for colliding rigid bodies, there will also be an impulsive change

to the spin rate of each body that scales with j. Due to the symmetry of the

bodies studied here, the angular momentum impulse evaluates to 0. This is the

algorithm for handling collisions in the simulation. In the next section, we discuss

the algorithm for handling bodies that form persistent contacts.

3.4 Persistent Contacts

In this simulation, the bodies are assumed to be rigid such that their surfaces

do not deform. However, numerical interpenetration of bodies may occur for two

reasons. The first is if two or more bodies form a persistent contact; that is, their

physical surfaces are in contact, but they have zero or nearly zero relative velocity.

Without the application of any contact force, the mutual gravitational force will

pull the bodies closer causing a physical overlap of their surfaces. The second cause

of a penetration arises from the the size of the time steps taken by the numerical

integrator. Given a large enough time step, the physical surfaces of the bodies may

overlap at the end of a timestep.
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In practice, we will see that some small penetration is nearly impossible to

avoid but the effects of violating this physical condition can be limited to within an

acceptable tolerance. We explore two methods, the Fast Contact Force and Soft-

Sphere Discrete Element Method (SSDEM), to calculate the persistent contact and

interpenetration forces.

3.4.1 Fast Contact Forces

The first contact force model is a geometric approach that uses a rigorous

physical formulation of the body geometry surrounding each contact point. The

algorithm was formulated by Barraff and was originally developed for fast contact

force computations in real-time physics engines like video games [7]. The method

operates by examining the forces acting on each contact point and calculating a

reaction force such that the gap di does not decrease.

When two or more bodies are in resting contact (zero relative velocity between

their surfaces), gravity will pull the bodies closer and cause interpenetration. The

rigid body assumption prevents interpenetration, which is accomplished by a reac-

tionary normal force at the point of contact. In general, the distance between the

surfaces of two bodies near a contact point is given by di(t), shown in Figure 3.4.

For di(t) = 0 the two bodies are in contact, di(t) > 0 the bodies have separated and

di(t) < 0 the bodies have interpenetrated.

There is a simple relation between the contact points (pA(t) and pB(t)) and

contact distance (di(t)):
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Figure 3.4: An infinitesimal gap di separates two bodies in contact, which must be
guaranteed to increase or stay constant.

di(t) = n̂i · (pA(t)− pB(t)) (3.36)

Where n̂i is the unit vector normal to surface of body B at the ith contact

point. At the current time t0, di(t0) = 0, ḋi(t0) = 0, saying that the bodies are in

direct contact initially with 0 relative velocity. The goal is to keep di(t) ≥ 0 for all

t > t0.

This condition is ensured by maintaining that d̈i(t) ≥ 0, that is, the relative

acceleration of the gap distance is either 0 (gap is held constant) or positive (gap

increases and the bodies separate). The case of d̈i(t) < 0 must be avoided, as this

would cause the gap di to decrease and physical penetration would occur between

the bodies. A further discussion of the Fast Contact Force model and derivations

are listed in Appendix A.

We found through testing that the Fast Contact Force model tended to add en-

ergy to the system that would accumulate to a significant amount over long enough

simulation durations. Coupled with an explicit integrator, the contact forces dis-
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cussed in this section did a net positive work on the system. To understand why,

we must first present the integration schemes used in the simulation and how this

contact force model interacted with the integrator.

3.4.2 Soft-Sphere DEM Model

The second contact force model explored in this thesis is a soft-sphere dis-

tinct element method (SSDEM) model. The method was originally formulated for

simulating granular mechanics problems, but has also been used to simulate small

planetary bodies and rubble-pile asteroids [8]. A SSDEM model is useful for dense

systems with persistent static contacts because it applies a restoring force that scales

with the penetration distance of bodies. Physically, the SSDEM model treats inter-

penetration as a deformation of the body surfaces, but in our case of rigid bodies,

we are using the restoring force as a correction term for bodies forming a persistent

contact. Unlike with the Fast Contact Force method, the SSDEM model maintains

an equilibrium point between bodies in persistent contact and stabilizes their energy

and angular momentum over long durations. The latter point is essential for per-

forming long duration simulations because all equilibrium configuration transitions

include at least one persistent contact. Without the stabilizing restoring force of

the SSDEM model, the energy and angular momentum of the numerical simulation

can grow without bound until an artificial separation of bodies occurs. For these

reasons, this thesis presents simulations results obtained using only the Soft-Sphere

DEM model.
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We will begin by describing the normal force between bodies in contact. The

normal force is modeled as a linear, damped spring connected to the bodies along

their contact normal.

The elastic force is given by:

~fe = keξn̂ (3.37)

and the damping force is simply:

~fd = kdξ̇n̂ (3.38)

The total contact force is the sum of the elastic and damping force, ~fn = ~fe+ ~fd.

In the above equations, ke is the elastic spring constant, ξ is the displacement from

equilibrium (penetration distance), n̂ is the unit normal direction joining the centers

of the bodies in contact, kd is the damping constant and is related to kn, and ξ̇ is

the rate of penetration. For two bodies in contact, Body A and Body B of radius R

with their locations specified at ~rA and ~rB respectively, we derive the variables used

in equations 3.37 and 3.38:

n̂ = ~rA − ~rB
‖~rA − ~rB‖

(3.39)

It can be shown that the relative velocity of the surfaces is as follows:

~vAB = (~vA + ψ̇A × (−Rn̂))− (~vB + ψ̇B × (Rn̂)) (3.40)
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The penetration distance and penetration speed can be defined as:

ξ = 2R− ‖~rA − ~rB‖

ξ̇ = ~vAB · n̂

The final step is to determine the values of ke and kd. The parameter of ke

is strongly dependent on the material properties of the bodies and their ability to

deform. A good approximation for rigid bodies is to use their material strength as

the elastic coefficient [8]. This assumption makes sense because a penetration would

physically result in a deformation of the body and the tendency for the body to

push against the deforming force. The mean rigidity is taken as µ̄ = 1013 kN/km2

assuming a carbonaceous asteroid [13] and so we take ke = 1013 kN/km2.

Calculating the damping coefficient kd requires a deeper analysis of the har-

monic motion of the spring-damper. The analytic solution for two spherical bodies

A and B connected by a spring damper leads to expression for the restitution coef-

ficient r:

r = e−πη/ω (3.41)
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Where,

η = kd/mAB

mAB = mAmB/(mA +mB) = m/2

ω =
√
ω2

0 − η2

ω2
0 = ke/mAB

For an undamped oscillator, kd = 0 and r = 1, the bodies will oscillate about

their surfaces with constant magnitude. In our simulation, we want the oscillations

to dampen quickly and for the bodies in persistent contact to remain as close as

possible to each others surfaces while obeying the underlying physical constraint.

For this reason, we ideally wanted a restitution coefficient of r = 0, implying the

spring oscillator is critically damped and will not oscillate. To meet this condition

requires that ω = 0, and ultimately that kd = ke. For all of the simulations results

presented, we take kd = ke = 1013 kN/km2.

In practice, the bodies in contact will oscillate about some non-zero equilibrium

point with some small oscillation frequency and magnitude. The reason is that the

gravitational forces offset the equilibrium point of the damped spring oscillator to

slightly below the surfaces of the bodies. When the bodies are perfectly in contact

at each others surfaces (ξ = 0) with no relative movement (ξ̇ = 0), both the elastic

force ~fe and damper force ~fd evaluate to 0. With no restoring normal force, the

gravitational force will cause the bodies to interpenetrate after the next timestep.

On the next step, there will be some penetration and a nonzero force ~fn will pull the
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bodies apart. The result of this cyclical process is some small oscillation about the

mean penetration distance. For stable contacts, the magnitude of these oscillations

will eventually dampen to a negligible value and do not present any problems to

stability of the energy and angular momentum for the system.

Finally, the total dynamics for a spherical body n is given by:

~an = 1
m

(
∑

~Fgravity +
∑

~Fcontact +
∑

~FΓ) (3.42)

where ∑ ~Fgravity is the sum of the gravitational forces acting on body n,
∑ ~Fcontact is the sum of the contact forces ~fe and ~fd acting on body n, and ∑ ~FΓ is

the sum of the tidal forces acting on body n.
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Chapter 4: Methodology

In this chapter, we discuss how the simulation operates and applies the dy-

namics formulated in the previous sections. The simulation consists of: a dynamics

function to calculate the gravitational, tidal, and contact forces acting on the bodies;

a numerical integrator to propagate the dynamics of the system forwards in time;

and an adaptive ordinary differential equation (ODE) solver to condition the accu-

racy of the propagation. The code is written in MATLAB. The position, velocity,

and bulk properties of each body are stored in a structure variable type, which gets

passed between various functions. We tested and compared the efficacy of two inte-

grator schemes: an explicit Runge-Kutta 4(5) integrator and a symplectic Velocity

Verlet integrator.

The simulation consists of three overarching functions that handle the bulk of

calculations.

• mainPropagator: The outer-most and first called function which contains

the governing logic for how the simulation proceeds. This function takes in

a structure containing the initial state variables of the three bodies and sim-

ulation parameters like initial step size, error tolerance, and simulation end

time. The function will advance the state of the bodies until the specified end
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time is reached. The output is an array of state variables at each timestep

that can be later processed for data visualization. Collision and contact events

are handled here. The function determines if the attempted propagation was

successful and selects a new timestep to try for the next iteration.

• mainIntegrate: This function is called inside of ‘mainPropagtor’ and applies

the chosen integration scheme to advance the state of the system. The func-

tion takes as input the state variables of the system at the current simulation

time and outputs the state of the system advanced by the timestep h. Con-

tact conditions are assumed to be constant over an integration step so that

consistent dynamics are applied throughout.

• calcForces: This function calculates the linear and angular accelerations for

each body based on the model dynamics described in Chapter 3. The function

is called from within ‘mainIntegrate’, often more than once, to return the

instantaneous accelerations and velocities of the bodies used to advance the

state of the system. It takes as inputs a set of state variables and a contact

condition matrix. The function outputs the linear and angular accelerations,

which get converted to velocities, and the velocities of each body, which get

converted to linear and angular positions.

4.1 Simulation Logic

In this section, we detail the order of events for each timestep of the simulation

which occur in the function ‘mainPropagator’. The overall logic of the simulation
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is largely independent of the specific numerical integrator and contact force model

used. As such, different integration schemes can be easily tested with little or no

modification to the core code of the simulation.

Figure 4.1: Logic tree algorithm 1 used with the Runge-Kutta adaptive step method.

The initial positions, velocities, and bulk properties of the bodies, as well as

simulation parameters like the initial timestep h0, simulation end-time, and con-

vergence tolerance ε are set by the user. The simulation will attempt to propagate

the dynamics of the bodies by the initial timestep. If the simulation is set to run

as fixed timestep, then the initial timestep will be used for all subsequent propaga-

tions of the system. If the simulation is set to run with a variable timestep, then

the specified error tolerance ε will be compared against the estimated state error ∆
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produced by integration scheme. If the estimated state error ∆ is greater than the

maximum allowed error ε, the propagator will choose a smaller time step and retry.

If ∆ < ε, then the propagator will continue with the next step and calculate a larger

timestep such that ∆ ≈ ε on the next timestep.

There are two different strategies employed to propagate the dynamics of the

bodies that stem from how the estimated state error ∆ is calculated. The first

algorithm, labeled here as the “Adaptive Step Method”, uses the known order of

the integrator to estimate the state error and requires only a single propagation for

each successful timestep. For the Adaptive Step Method, we consider a Runge-Kutta

integration scheme.

The second algorithm, labeled here as the “Half-Step Method,” computes two

propagated states to estimate the state error and requires three separate propaga-

tions in order to advance by one step. The idea behind the Half-step method is

to propagate the system twice using timesteps of h/2, then repropagate the system

using a timestep of h, and then compare the two final states. If the difference be-

tween the final states are within the specified error tolerance ε, then we can increase

the next step size since propagating by h yields about the same result as propa-

gating twice by h/2. In both cases, the propagator function takes in the structure

variable of the current system state (called ‘CurrState’), advances the system by a

timestep h, and outputs a structure containing an estimate of the new state of the

system (called ‘nextState’). The operational differences between the two methods

are visually captured in the following logic tree diagrams.

The important distinction between the two methods is how the state error is
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Figure 4.2: Logic tree algorithm 2 used with the Half-step method.

estimated. Other than that quality, the methods use the same logic and routines

for handling contacts, collisions, and separation events.
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4.2 Numerical Integrator

All numerical integrators have a set of assumptions used to approximate the

true solutions of the underlying system dynamics. While all numerical propagators

provide us with approximate knowledge of the solution, some are better suited for

certain types of dynamical systems. A system is said to be numerically stiff if

the dynamics are prone to sudden changes within a small interval of convergence

[14]. Even though a stiff system may be sufficiently smooth and stable around its

equilibrium points, the dynamics change so rapidly that numerical integrators must

use increasingly smaller step sizes to correctly converge to the true solution. If

too large a step size is taken, the approximate solution may become numerically

unstable and grow towards infinity.

Take the basic stiff equation, y′(t) = −λy(t), y(0) = 1, λ > 0, for which the

analytic solution is y(t) = e−λt. For t > 0, the solution y(t) quickly converges to

0. However, let’s see what happens when a simple first-order Euler’s method is

implemented to approximate the first two seconds of the solution to y′(t) using a
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step of h = 1 and λ = 10.

y′(0) = −10y(0) = −10

y(1) = y(0) + hy′(0)

y(1) = 1 + 1(−10) = −9

y′(1) = −10y(1) = −10(−9) = 90

y(2) = y(1) + hy′(1)

y(2) = −9 + 1(90) = 81

Comparing the results to the true values, ytrue(1) = e−10·1 ≈ 4.54(10−5) &

ytrue(2) = e−10·2 ≈ 2.06(10−9), we see that the numerical results produced by Euler’s

Method are wildly inaccurate. And if we let this numerical propagator continue,

instead of the solution stabilizing and converging to 0 as it should, it will oscillate

between increasingly larger values as it diverges to ±∞. So in addition to not

approximating the solution to the stiff differential equation, our choice of Euler’s

Method integrator led to numerical instability of the solution. However, if the step

size was reduced to say h = 0.1, then the first-order Euler’s Method integrator

would produce a stable solution to the differential equation that oscillates around

the equilibrium point of y = 0 (although the numerical solution will never converge

to 0). Depending on the system that we are simulating, an oscillating numerical

solution, even if stable, may not be desirable.

Contact forces, which are an integral part of the simulation for keeping bodies

from physically penetrating, are an example of stiff model dynamics. Contact forces
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are especially difficult to simulate because in addition to being dynamically rigid,

they are also non-smooth. Two bodies separated by an infinitesimal gap are only

subject to gravitational and tidal forces, but the moment their surfaces touch, there

is a discontinuous change to their governing dynamics. In this scenario, collision

physics would dictate the energy lost in this encounter and bring the relative velocity

of the bodies to 0. Now consider the dynamics of two bodies in a stable persistent

contact. As the body dynamics are propagated forward in time, the applied contact

forces will attempt to maintain a fixed relative distance between the centers of the

bodies. In practice, maintaining this fixed distance with any numerical integration

scheme is nearly impossible and every state is prone to some numerical inaccuracies.

After every time step, the bodies will either penetrate by some small amount or

separate by some other small amount. As will be empirically shown, both cases

can lead to numerical instability of the system even though the bodies are at an

equilibrium. We tested two contact force models and three numerical propagators

with the simulation. We found that an explicit velocity verlet integration scheme

and a soft-sphere DEM contact force model worked the best and produced long-term

stable results with small errors in conserved quantities.

4.2.1 Runge-Kutta 4(5) Method

We have implemented and tested two different integrators, an explicit Runge-

Kutta integrator and a symplectic integrator. The explicit Runge-Kutta integrator

is the based on the Dormand-Prince (RKDP) method, the same explicit integrator
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used by the MATLAB function ode45. This method produces fourth-order and fifth-

order accurate solutions in order to generate a state estimate with error O(h5). The

state estimates are based on the following formulation and Butcher Tableau [15],

where yn is the state vector of the system at time tn and f() is the function that

computes the forces on each body.

yn+1 = yn + h
7∑
i=1

biki = fifth-order accurate solution at time tn+1

ŷn+1 = yn + h
7∑
i=1

b̂iki = fourth-order accurate solution at time tn+1

k1 = f(tn, yn)

ki = f(tn + cih, yn + h
6∑
j=1

aijkj)

en+1 = yn+1 − ŷn+1 = h
7∑
i=1

(bi − b̂i)ki = state error estimate of order O(h5)

The next state estimate yn+1 gets output to the propagator in order to update the

state of the system and check for collision/separation events. If the Runge-Kutta

adaptive step method is used, then the ki terms are used to calculate the estimated

state error. If the Half-step method is used, the error estimate comes from comparing

yn+1 for two separate propagations using a timestep of h and h/2.

yn+ 1
2
(tn + h

2 ) = yn + h

2

7∑
i=1

biki

yn+1(tn + h) = yn+ 1
2

+ h

2

7∑
i=1

biki

ȳn+1(tn + h) = yn + h
7∑
i=1

biki

en+1 = yn+1 − ȳn+1
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The largest error amongst the different state variables of en+1, that ismax(en+1) =

∆, is used to determine the subsequent timestep and whether the propagation is

considered successful. The max error ∆ is compared to the convergence tolerance

ε at the beginning of the simulation. If the error is less than the acceptable error

tolerance, the propagation is considered successful and the timestep is increased.

Similarly, if the error is greater than the tolerance, the propagation must be redone

with a smaller timestep. In either case, the timestep is changed predicatively so

that the error of the next propagation is very close to the acceptable tolerance.

This approach reduces computation time by jumping to the largest such timestep

that will produce a successful propagation [15]. Based on the maximum state error

∆, the next timestep to try hn+1 is given by:

hn+1 = 0.9hn
[
ε

∆

] 1
p+1

(4.1)

Where p = 5 is the order of the numerical integrator.

4.2.1.1 Choice of Contact Force Model and Integration Scheme

The simulation was originally tested using the Fast Contact Force model and

the Runge-Kutta 4(5) integration scheme. Both methods were eventually discarded

after it was experimentally found to add unbounded energy and angular momentum

to the system for bodies in persistent contact. The reason for the unbounded errors

has to do the way the contact forces interacted with the integrator.

The calculated contact force ~Fcontact is only valid for the current state of the
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Figure 4.3: Energy and angular momentum for the transition from LR to ER using
Fast Contact Force model and a Runge-Kutta 4(5) integrator over 2 million seconds.

system at the current time. During the course of the RK integration, several inter-

mediate states are obtained and then averaged together, each with their own specific

contact force based on the position and velocity of the bodies at that intermediate

time. The contact forces, when averaged together, are not exactly perpendicular to

the movement of the bodies. Work done by a force is given by δW = ~F · d~r, and

because ~Fcontact and the displacement d~r of the bodies are not perpendicular, the

contact forces inevitably did work on the system.

Without any stabilizing forces, like the spring-damper force of the SSDEM

contact force model, the contact forces would continue to add energy to the system

as long as bodies were in a persistent contact. Figure 4.3 show the significant effect

of the contact forces on the total energy and angular momentum for the Lagrange

Resting to Euler Resting transition.
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After 2,000,000 seconds, the contact forces have produced a total error in the

system energy O(107) which is the same order of magnitude as the total energy of

the system. Similarly, the error in angular momentum is on the same order as the

total angular momentum for the system. Clearly, using these methods for handling

persistent contacts and propagating motion of the bodies will not suffice. Instead,

we use the soft-sphere DEM contact force model along with the Velocity Verlet

integration scheme to obtain the final results presented at the end of this paper.

4.2.2 Velocity Verlet Method

The second integrator tested is a mid-step Velocity Verlet method, which is a

second-order symplectic integrator. The integration scheme is split into two steps

which propagate the position and velocity of each body in separate steps. Propa-

gating the bodies in this manner preserves the phase space area of the system. For

a Hamiltonian system, preserving phase space area is equivalent to conserving the

wedge product of the change in position and change in momentum of the system,

dp ∧ dq. Intuitively, the phase space is visually represented by a 2D graph with

the position and momentum on the X and Y axis, respectively. If the position and

momentum of each body were plotted in this phase space graph, one could connect

the points to define a shape. The area of that shape is the phase space area, and a

symplectic integrator preserves the total area of the shape as the system is advanced

forward (or backwards) in time. Propagating the system by a single time-step will

distort the shape of the area but the total area will remain the same. The change
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in shape is equivalent to some small change in the total energy of the system, so

on an individual timestep basis, energy is not conserved. But for any Hamiltonian

system exhibiting harmonic oscillations, a symplectic integrator ensures that the

shape of the deformed phase space area will eventually return to its original config-

uration [16]. Stated differently, a symplectic integrator will not conserve energy at

each propagation step but the total energy will oscillate about its original value over

large durations. In this way, the total change in energy of the system is bounded.

Non-symplectic integrators, like Runge-Kutta 4(5), do not conserve the phase space

area and cause energy errors to diverge exponentially [15]. For these long-term en-

ergy bounding properties, symplectic integrators are widely used in simulations of

astrodynamical and molecular systems [8] [17] [18].

The steps of the mid-step velocity verlet integrator are relatively simple. We

begin by calculating the half-step velocity ~v 1
2

after a timestep h/2 using the current

position ~r(t) and velocity ~v(t):

~v 1
2
(t+ h/2) = ~v(t) + h

2~a(~r(t)) (4.2)

The acceleration ~a is assumed to be a function of only the positions of the

bodies. The half-step velocity ~v 1
2

can be thought of as the average velocity the body

after a full time step h. The next position is calculated using the half-step velocity.

This physically makes sense because as position crosses the interval from ~r(t) to

~r(t + h), the velocity in the middle of the interval best represents the approximate

speed during this time.
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~r(t+ h) = ~r(t) + h~v 1
2

(4.3)

From these equations, we have that the next position is only dependent on the

current state variables of the body. The next step of the propagation is to calculate

the next velocity of the body ~v(t+h) using the updated position of the body ~r(t+h):

~v(t+ h) = ~v 1
2

+ h

2~a(~r(t+ h)) (4.4)

Again if we look at what is physically happening with these equations, we see

that the average acceleration is used to calculate the next velocity. The velocity

crosses the interval from ~v(t) to ~v(t + h) using half of the initial acceleration plus

half of the final acceleration.

The magnitude of the errors of this integrator is of order O(h2). Note that the

formulation of this integrator assumed that the acceleration ~a was only a function

of position ~r. For our simulation, this assumption is satisfied when all three bodies

are separated from each other. However, when two or more bodies are in contact,

a velocity-dependent spring-damper force is introduced into the system. The accel-

eration would thus depend on both the position and velocity of the bodies. Similar

simulations in granular mechanics have used spring-damper contact forces in tan-

gent with a velocity verlet integration scheme [8]. We will eventually show that this

condition violation does not significantly affect the energy and angular momentum

conserving properties of the Velocity Verlet integration scheme.

When the system is in a state of equilibrium, the damper-force will evaluate to
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0. When the system is still dynamically evolving, the damper will dissipate energy

that is introduced by the propagator in the short-term that would otherwise cause

the bodies to cyclically penetrate and separate. We can assert this because after a

collision, the relative velocity between bodies is zeroed out and their surfaces will be

pulled in by gravity. Once the bodies remain in long-duration, persistent contacts,

an equilibrium of penetration distance is reached and the damper force quickly con-

verges to 0. We will also show this reasoning to be experimentally true from the

results of the simulation. Although a tenant of the velocity verlet integrator is vio-

lated, we have found that this integration scheme was the best at conserving energy

on transient and long-duration scales compared to the other integrators tested.

Unlike the Runge-Kutta 4(5) method, the velocity verlet integrator is nomi-

nally configured to operate using fixed step sizes. To overcome this limitation, we

use the Half-Step method in conjunction with the velocity verlet integrator to allow

for variable step sizes. We compute an appropriate step size after each iteration by

performing two separate propagations using different step sizes and comparing their

differences.

1. Propagate CurrState by h/2: nextState1 = mainIntegrate(CurrState, h/2 )

2. Propagate nextState1 by h/2: nextState2 = mainIntegrate(nextState1, h/2)

• nextState2 should represent the state of the system at time t+ h

3. Propagate CurrState by h: nextState = mainIntegrate(CurrState, h)

• nextState should represent the state of the system at time t+ h
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4. Compute the maximum magnitude of the errors between the two final states

• ∆ = |nextState2− nextState|max

If the maximum difference between the two states is greater than the user

defined error tolerance (∆ > ε), then the step size h was too large and must be

decreased because propagating by h/2 must not be equivalent (to within a tolerance)

to propagating by a full h. The latest propagated state is discarded and the last

state is propagated again using a small step size. Conversely, if ∆ < ε, then the

propagation is valid and we can advance the state of the system; however the step

size used is too small and can be made larger to make the simulation run faster. In

either case, the new step size h1 will be scaled by the old step size h0 as follows [19]:

h1 = h0(ε/∆)1/p (4.5)

Where p = 2 is the order of the error for the integrator. However, we are

cautious about the event of a small error term ∆ producing a large increase in the

next step size, which can lead to missed collisions and may cause the bodies to

behave inaccurately. This can also lead to simulation constantly oscillating between

small and large time steps which ultimately increases computation time. So instead

we choose a more conservative method for calculating the next step size. that is

slower to grow but allows for the simulation to smoothly converge upon the most

efficient timestep:

59



hn+1 = 0.9hn

 ε

∆

0.1

(4.6)

4.3 Test Configuration Initialization

For each of the seven possible initial equilibria configurations, the initial posi-

tions and velocities between bodies are determined by a normalized value of angular

momentum H̄2. First, the positions of the bodies are adjusted so that the barycenter

is at the origin of the coordinate system. Then the initial translational and angular

velocities are calculated such that all the bodies are tidally locked, meaning that the

bodies orbit about the barycenter and spin about their body axis at the same rate

(θ̇ = ψ̇ = ω). This common rate ω can be calculated for any H (provided some H̄2)

by considering the moment of inertia of the system rotating around the barycenter

and the body axis spin.

ω = H

3I +M(|~r1|2 + |~r2|2 + |~r3|2) (4.7)

where I = 2
5M(d/2)2.

For rotations about an axis perpendicular to the plane of motion, which is the

case we have examined, the initial spin rate of Body i is simply:

~ωi = [0, 0, ω]T (4.8)

Each of the three bodies will be initialized with this same rotation vector ~ωi.
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We calculate the initial velocity of Body i such that Body i will rotate about the

barycenter at a rate equal to ω. The required tangential velocity of Body i is thus:

vi = ω|~ri| (4.9)

The direction of vi is tangent to the position vector of Body i and the body

spin axis ~ωi. Thus initial velocity vector of Body i such that the bodies are tidally

locked is given by:

~vi = vi

 ~ωi × ~ri
|~ωi × ~ri|

 (4.10)

4.3.1 Canonical Units

The introduction of canonical units into the system offers a number of at-

tractive computational advantages. Using SI units or another base for modeling

celestial systems can lead to greater numerical inaccuracies due to the finite preci-

sion of a computer. The mass of solar system bodies are typically on the order of

> 1013 kg. Compare this magnitude to that of the gravitational constant G (10−20)

km3/(kg · s2) and the orbital velocity of bodies 101 km/s. Unless special caution

is paid to preserving the trailing digits when multiplying these numbers together,

the large difference in their magnitudes will result in a loss of numerical accuracy.

Switching the base units of the simulation to canonical units reduces the affect of

finite numerical precision and inaccuracies by rescaling the commonly used variables

to be on or close to the same order of magnitude.
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We define the canonical distance unit DU to be equal to the radius of the

bodies, where r is the radius of the body in SI units.

DU = r (4.11)

The canonical mass unit MU is taken to be the mass of each body.

MU = m (4.12)

Finally, we wish to rescale the canonical time unit TU such that the gravi-

tational constant G = 1. In SI units, we have the gravitational constant is G0 =

6.67× 10−20 km3

kg·s2 . Thru basic unit conversion, we arrive at the equation for TU:

G = 1 = G0
km3

kg · s2 ·
(
MU [kg]
1[MU ]

)( 1[DU ]
DU [km]

)3(TU [s]
1[TU ]

)2
(4.13)

Solving for the time unit TU yields:

TU =
√

DU3

G0MU
(4.14)

Expressing the physical properties in these canonical units reduces their overall

magnitude and makes many of the computations trivial (like multiplying by G or

squaring the radius R). The time unit TU will essentially “absorb” the differences

in scale of the other parameters, which might initially seem problematic because

in general, TU will be 3-4 orders of magnitudes larger than the other canonical

units. However, TU is only used in a scalar multiplication of the velocity and
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acceleration terms a few times per propagation. This limits the total amount of

calculations performed per timestep that involve very large and very small numbers,

thereby reducing the total numerical rounding error by the machine. In experimental

test case, we found that while the difference in accuracy was marginal, the overall

computation time using canonical units compared to SI units was anywhere from

15-35% faster. The results presented all use canonical units during the simulation

and were later reconverted back to SI units for post processing.
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Chapter 5: Simulation Results

The simulation results we obtained support and validate the hypothesized

transitions between the three minimum energy configurations. The scenarios we

chose to test are those that begin in a configuration that was stable prior to an

angular momentum increase or decrease (see Figure 2.3). Each case presented here

was simulated using the Velocity Verlet integrator, the Soft Sphere DEM contact

force model, and the Half-Step variable timestep propagation method.

Overall, we found that systems transitioned to the analytically predicted mini-

mum energy configuration within a short amount of time relative to overall duration

of the simulation. The majority of collisions subsided after 100,000 seconds. The

largest deviation in total energy and angular momentum, ignoring collision and dis-

sipative effects, did not exceed 1 part in 108. Furthermore, total energy and angular

momentum, again ignoring any modeled energy losses, reached a steady state over

long enough durations, suggesting that total energy and angular momentum errors

are bounded.

We will discuss the results of the simulation broken down into three sections:

• Validation of the simulation code through comparison with well known solar

system bodies. We must first prove that the simulation is capable of producing
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results that are in agreement with the orbits of well documented celestial

objects, like the Sun-Earth-Moon system.

• Capability of the simulation to handle stable, persistent contact cases. We will

prove the fidelity of the code to handle static contacts and maintain a minimum

equilibrium configuration before attempting a more complicated case.

• Simulation results for the transitions between minimum energy configurations.

We will discuss and apply several metrics to justify that the hypothesized min-

imum energy configuration transitions are validated by these results. Finally,

the limitations and known errors of the simulation results will be discussed,

with a greater detail being given in the Error Analysis section.

5.1 Validation of Simulation

Before a discussion of the primary thesis results, we begin by establishing the

accuracy of the simulation in modeling the physical behavior of gravitationally at-

tracting bodies. For this test, we only model the gravitational forces acting between

bodies and do not consider the effects of tidal torques or contact forces. The easiest

and certainly most well known physical system to compare to our simulation results

in this limited scenario is the Sun-Earth-Moon system. None of these bodies are in

direct contact and tidal torques do not significantly affect the orbits of the bodies

over the simulation duration. We will show that our simulation accurately calcu-

lates the orbital trajectory of the Sun-Earth-Moon system to within an allowable

tolerance.
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The three bodies of the simulation, representing the Sun, Earth, and Moon,

were initialized using position and velocity data from the JPL HORIZONS system

at an arbitrary start date [20]. Similarly, the mass of each body was obtained

through the HORIZONS system. The system was propagated for four complete

orbits (4× 365 days) using a fixed timestep of h = 80 seconds.

In this idealized system, energy and angular momentum are notionally con-

served. We can see in Figure 5.1 that the total energy and angular momentum are

conserved to within 1 part in 1013. Additionally, the acceleration of each body is

solely dependent on the positions of the bodies, so the Velocity Verlet integrator

should cause these quantities to oscillate about the original energy of the system.

Indeed, we see a somewhat cyclic fluctuation in energy and angular momentum that

is bounded because of the nature of the symplectic integrators.

Figure 5.1: Energy and angular momentum for the Sun-Earth-Moon system. Rela-
tive energy and angular momentum on the right are with respect to the initial values
of the system.
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We conclude that the simulation accurately simulates the motion of the Sun-

Earth-Moon and conserves the total energy and angular momentum of the system

to within an acceptable tolerance. This result supports the validity of the simulation

and implemented gravitational dynamics to be used for future test cases.

5.2 Fidelity of Stable Configurations

The next cases to test are the three minimum energy configurations while in

a stable, non-transitioning (static) configuration. This allows us to validate the fi-

delity of the contact force and tidal force dynamics. We now shift our attention

to the equilibrium configurations of the full three-body problem. There are seven

unique equilibrium configurations - of these, 4 are always unstable. These unsta-

ble equilibria are the: V-Rest configuration, Transverse Mixed configuration, Euler

Orbiting configuration, and Lagrange Resting configuration (see Figure 2.3). We

focus on the stable equilibria: the Lagrange Resting configuration, Euler Resting

Configuration, and Aligned Mixed configuration. We wish to show that the simu-

lation is capable of reproducing the stable and periodic orbit of these three stable

configurations in the presence gravitational forces, contact forces, and tidal torques.

For each test case, we treated the bodies as spheres with equal diameters. The

bulk body constants used for each simulation are listed in Table 5.1. The initial

conditions specified are consistent with a tidally locked system for the given level of

angular momentum of the system. The initial angular momentum for the system

was chosen such that the test configuration was the only possible minimum energy

67



configuration at that level of H̄2.

Table 5.1: Bulk Body Properties
d 4 [km]

ρ 2 [g/cm3]

k2 10−5

5.2.1 Lagrange Resting Configuration

The system was initialized with a normalized value of angular momentum

H̄2 = 1. The initial positions for each body of the Lagrange Resting configuration

are calculated to form an equilateral triangle by connecting their centers. Their

rotation axes are initially angled towards the system barycenter. Figure 5.2 shows

the initial layout of the Lagrange Resting configuration.

Figure 5.2: Lagrange Resting configuration.

The initial positions ~ri and initial body rotation angles ψi for each body are

specified as:
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~r1 = d



−1/2

−
√

3/6

0


~r2 = d



0
√

3/3

0


~r3 = d



1/2

−
√

3/6

0


ψ1 = π/6 ψ2 = −π/2 ψ3 = 5π/6

Figure 5.3: Energy and angular momentum for the static Lagrange Resting configu-
ration. Plots on the right are the respective values of energy and angular momentum
compared to the initial values of the system.

As we can see in figure 5.3, the total energy of the system under the presence

of contact forces and tidal torques is well behaved. There is a transient damped

oscillation at the beginning of the simulation because the bodies are allowed to pen-

etrate before the contact forces bring the dynamic state to a stable equilibrium.
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Within the first 100 seconds, the energy oscillation damps to effectively 0 and re-

mains bounded for the simulation duration. The error in energy is contained to

within 1 part in 106. The angular momentum of the system experiences a net neg-

ative trend. However, the total error in angular momentum is within 1 part in 1012

and thus has a negligible effect on the behavior of the system.

Figure 5.4: Left: Energy and angular momentum change incurred between timesteps
over simulation duration. Right: Energy and angular momentum change incurred
between timesteps over simulation iteration.

Figure 5.4 shows the magnitude change of energy and angular momentum

between every timestep of the simulation. This allows us to gauge the accuracy of

a single propagation step. As can be seen, the change in total energy over a single

step ranges from 10−6 to 10−8, ignoring the initial energy change as the contact

forces reach equilibrium. We want to make sure that the energy changes are not

accumulating (however small they may be). By examining the final quarter of the

simulation, we can confirm that the accumulated energy changes are bounded and

oscillate about some mean value as seen in Figure 5.5. The accuracy of the total
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angular momentum ranges from 10−4 to 10−5 over each timestep. Unlike with the

energy deviations, the errors in angular momentum at each timestep accumulate.

Figure 5.5: Changes in total energy and angular momentum compared to the state
at 75,000 seconds during the final 1/4 of the static Lagrange Resting simulation.

Next we examine the agreement of the body relative positions as compared

to the analytic configuration. For the Lagrange Resting configuration, all bodies

start out exactly d from their mutual centers, each separated by 120◦. By looking

at Figure 5.6, we can track the displacement from the initial relative positions of

each body. We see that there is a slight penetration between body pairs of about 1.5

mm. This is a negligible amount of penetration; note that some small penetration

is necessary for the bodies to reach a steady state and remain in persistent contact.
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Figure 5.6: Displacement of relative positions between bodies for the static Lagrange
Resting simulation. All three bodies remain in contact at a fixed distance from their
centers.

Furthermore, we can quantify the degree to which the relative positions of the

bodies align with the ideal configuration by calculating a metric we defined called

the form factor. The form factor Fθ is simply the angle between two bodies and

the barycenter:

Fθk,m = cos−1
(
~rk · ~rm
|~rk| |~rm|

)
(5.1)

By comparing the form factor of each pair of bodies to the form factor of the

ideal configuration, we can get a sense for how aligned the numerical system is to

the ideal system (see Figure 5.7). For the Lagrange Resting configuration, the ideal

form factor between each pair of bodies is precisely 120◦.
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Figure 5.7: Form factor of each body compared to the ideal form factor of 120
degrees for the static Lagrange Resting simulation.

Although there is a growing trend of all the relative form factors, the negligible

magnitude of 10−11 degrees suggests that the bodies are well aligned with the ideal

configuration.

Finally, we wish to compare the orbital rate of the bodies about the barycenter

to the analytical rate n. Using a a value of H̄2 = 1, we can calculate the ideal orbital

rate to be n = 2.03357 · 10−4 [rad/s]. Figure 5.8 shows the instantaneous orbital

rate of the bodies about the barycenter.

As seen from the plot, the bodies are rotating about the barycenter at same

rate as the analytical rate we calculated. Thus we are able to say that the behavior

of the simulated static Lagrange Resting configuration agrees with the expected

behavior of the analytical case. With this configuration fully functional, we move
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Figure 5.8: Instantaneous mean motion of each body about barycenter for static
Lagrange Resting simulation. The value is equivalent to the analytical orbital rate.

on to testing the static Euler Resting configuration.

5.2.2 Euler Resting Configuration

The system was initialized with a normalized value of angular momentum

H̄2 = 3.5. The initial positions for each body of the Euler Resting configuration are

calculated such that their centers are all collinear. Their rotation axes are initially

angled towards the system barycenter. Figure 5.9 shows the initial layout of the

Euler Resting configuration.

Figure 5.9: Euler Resting configuration.

The initial positions ~ri and initial body rotation angles ψi for each body are

specified as:
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~r1 =



0

0

0


~r2 =



d

0

0


~r3 =



−d

0

0


ψ1 = 0 ψ2 = 0 ψ3 = 0

Figure 5.10: Energy and angular momentum for the static Euler Resting configura-
tion. Plots on the right are the respective values of energy and angular momentum
compared to the initial values of the system.

Immediately we see a transient damped oscillation in the total energy of the

system. This is the same phenomenon observed in the static Lagrange Resting

case: the interaction of the gravitational and spring forces shift the equilibrium
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penetration slightly, leading to an overall increase in energy. However the spring

damper quickly brings the total energy gain to a near constant value that it will

continue to oscillate about. The global error in energy is less than 1 part in 107.

The angular momentum behaves similarly; the system undergoes a transient gain

in total angular momentum until a force balance is reached. The global error in

angular momentum is less than 1 part in 109.

Figure 5.11: Left: Energy and angular momentum change incurred between
timesteps over simulation duration. Right: Energy and angular momentum change
incurred between timesteps over simulation iteration. Both plots are for the static
Euler Resting simulation.

Figure 5.4 shows the magnitude change of energy and angular momentum

between every timestep of the simulation. As can be seen, the accuracy in total

energy over a single step ranges from 10−5 to 10−8, ignoring the initial energy change

as the contact forces reach equilibrium. We can again show that the small energy

errors are not accumulating by examining the final quarter of the simulation. From
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Figure 5.12 we can confirm that the accumulated energy changes are bounded and

oscillate about some mean value. The accuracy of the total angular momentum

ranges from 10−4 to 10−5 over each timestep. Unlike with the energy deviations,

the errors in angular momentum at each timestep accumulate and show a negative

trend. The cause is most likely numerical inaccuracies of the integrator as error is

within 1 order of magnitude of the allowed error tolerance. For the timescales we are

simulating, this small error has no physical impact on the stability and configuration

of the system.

Figure 5.12: Energy and angular momentum accumulated error per timestep during
the final 1/4 of the static Euler Resting simulation.

Next we examine the uniformity of the body positions relative to the analytic

configuration. For the Euler Resting configuration, the two outer bodies start out
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exactly d from the center body. By looking at Figure 5.6, we can track the displace-

ment from the initial relative positions of each body. We see that there is a slight

penetration between body pairs of about 1.5 mm. This is a negligible amount of

penetration; note that some small penetration is necessary for the bodies to reach

a steady state and remain in persistent contact.

Figure 5.13: Displacement of relative positions between bodies. The two outer
bodies (2 and 3) remain at a fixed distance from the center body (1).

For the Euler Resting configuration, the ideal form factor between each pair

of bodies is 0 degrees. The center body (1) is at or very close to the origin of the

system, so we take form factor between the center body and outer two bodies to
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always be 0. In this case, we are only interested in the form factor between the

outer two bodies Fθ2,3.

Figure 5.14: Form factor angle between the outer bodies 2 and 3 of the static Euler
Resting simulation.

The form factor between body 2 and 3 fluctuates wildly, but remains bounded

between ±2 · 10−6 degrees. Thus we can conclude that the relative positions of the

bodies remain close enough to the ideal equilibrium configuration.

Finally, we wish to compare the orbital rate of the bodies about the barycenter

to the analytical rate n. Using a a value of H̄2 = 3.5, we calculate the ideal orbital

rate to be n = 2.15035 · 10−4 [rad/s]. In Figure 5.15, we show the instantaneous

orbital rate of each body about the barycenter:

As seen from Figure 5.15, the bodies are rotating about the barycenter at same

rate as the analytical rate we calculated. The center body (1) was not included
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Figure 5.15: Instantaneous mean motion of each body about barycenter for the
static Euler Resting simulation. The value is equivalent to the analytical orbital
rate.

because it orbits at or very close to the origin. Thus we are able to say that the

behavior of the simulated static Lagrange Resting configuration agrees with the

expected behavior of the analytical case. With this configuration fully working, we

move on to testing the static Aligned Mixed configuration.

5.2.3 Aligned Mixed Configuration

The system was initialized with a normalized value of separation R = 3.6. The

initial positions for each body of the Aligned Mixed configuration are calculated such

that their centers are all collinear. Their rotation axes are initially angled towards

the system barycenter. Figure 5.16 shows the initial layout of the Euler Resting

configuration.

The initial positions ~ri and initial body rotation angles ψi for each body are

specified as:
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Figure 5.16: Aligned Mixed configuration.

~r1 =
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ψ1 = 0 ψ2 = 0 ψ3 = 0

The total energy of the system in Figure 5.17 is well conserved. There is

a transient damped oscillation at the beginning of the simulation like all of the

previous test cases. The error in energy is contained to within 1 part in 106. The

angular momentum of the system oscillates with larger peaks than the previous

stable test configurations. However, the global error in angular momentum is still

within 1 part in 108 and will have a negligible effect on the behavior of the system.

The errors in angular momentum are larger in this scenario because the relative

rotation rate φ̇ between bodies takes a greater time to reach equilibrium.

If we look at the figure of relative rotation rates 5.18, we see that bodies are

oscillating about the 0 line as they slowly converge.

We see the results of this effect in the orbital and body-centered rotational
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Figure 5.17: Energy and angular momentum for the static Aligned Mixed configura-
tion. Plots on the right are the respective values of energy and angular momentum
compared to the initial values of the system.

Figure 5.18: Relative angle rotation rate between body pairs for the static Aligned
Mixed configuration.
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Figure 5.19: Left: Components of kinetic energy T relative to initial state. Right:
Components of angular momentum relative to initial state. Plots are for the static
Aligned Mixed simulation

components of the total angular momentum over time in Figure 5.19. As expected,

the orbital component of angular momentum ~r × ~v changes with the reciprocal of

the body-center rotational angular momentum ωI. Both components of angular

momentum change to match the sign and magnitude of φ̇, and are likewise slowly

converging to a steady state value.

Figure 5.20 shows the magnitude change of energy and angular momentum

between every timestep of the simulation. The accuracy in total energy over a single

step ranges from 10−5 to 10−7, ignoring the initial energy change as the contact forces
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Figure 5.20: Left Energy and angular momentum change incurred between timesteps
over simulation duration. Right: Energy and angular momentum change incurred
between timesteps over simulation iteration.

reach equilibrium. The accuracy of the total angular momentum ranges from 10−4

to 10−5 over each timestep. This test case has greater errors in conserved quantities

because of the inherent asymmetry in the initial configuration of the bodies. In the

previous Euler and Lagrange Resting configurations, accumulated errors affected all

bodies equally and this typically resulted in a smaller global error. We still want

to make sure that the energy changes are not accumulating in one direction. By

examining the final quarter of the simulation, we continue to see relatively small

changes in the system energy and angular momentum, although the system has yet

to converge to a steady state value 5.21. Based on the continuing trend of φ̇, we

can expect the energy and angular momentum errors to converge if the simulation
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were run for a longer duration. While undesirable, the larger errors in conserved

quantities have a negligible affect on the stability of the system and can be ignored.

Figure 5.21: Energy and angular momentum during the final 120,000 seconds of the
static Aligned Mixed simulation.

Next we examine the uniformity of the body positions relative to the analytic

configuration. For the Aligned Mixed configuration, all bodies start out exactly d

from their mutual centers. By looking at Figure 5.22, we can track the displacement

from the initial relative positions of each body. We see that there is a slight pen-

etration between the two bodies in contact (1 and 2) of about 1.8 mm. The other

two body pairs oscillate by a few millimeters but are slowly converging to a steady

state value.
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Figure 5.22: Displacement of relative positions between bodies for the static Aligned
Mixed configuration. Bodies 1 and 2 are the contact pair.

By comparing the form factor of each pair of bodies to the form factor of the

ideal configuration, we can get a sense for how aligned the numerical system is to

the ideal system 5.23. For the Aligned Mixed configuration, the ideal form factor

between each pair of bodies is 0 degrees.

There are slight deviations in the form factors but they are all bounded by frac-

tions of a degree, and so we can say that the bodies maintain the ideal configuration

of the analytic solution.

Finally, we wish to compare the orbital rate of the bodies about the barycenter

to the analytical rate n. Using a a value of H̄2 = 1, we can calculate the ideal orbital

rate to be n = 6.0911 · 10−4 [rad/s]. The instantaneous orbital rates of the bodies
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Figure 5.23: Form factor of bodies in static Aligned Mixed configuration. Ideal form
factor is 0 degrees.

are plotted in Figure 5.24:

Figure 5.24: Instantaneous mean motion of each body about barycenter for the
static Aligned Mixed simulation. The value is equivalent to the analytical orbital
rate.

As seen from the plot, the bodies are rotating about the barycenter at same

rate as the analytical rate we calculated. Thus we are able to say that the behavior of

87



the simulated static Aligned Mixed configuration agrees with the expected behavior

of the analytical case.

We see that all three simulated minimum energy configurations behave in a

physically accurate way. These tests cases support the robustness simulation to

produce accurate and useable results. We are aware of small errors produced by the

soft-sphere DEM contact force model and tidal torques and how they may influence

the results of the transitional test cases. The nature of the errors in this model and

simulation will be addressed further in the Error Analysis chapter. We will now

investigate the pathways of transitioning minimum energy configurations and the

timescales to reach a terminal, tidally locked configuration.

5.3 Transitions Between Minimum Energy Configurations

There are three minimum energy configurations for the full three-body problem

over the entire range of possible angular momenta, allowing for a total of four

possible transitions. Each minimum energy configuration exists on a definite interval

of angular momentum. Once H̄2 exceeds the defined interval of a minimum energy

configuration, the arrangement becomes unstable and the bodies will escape into

a chaotic trajectory. Eventually, the bodies will reform into a different minimum

energy configuration defined by the new angular momentum H̄2 of the system. There

is no analytical method to determine the trajectories of the bodies as they transition

between minimum energy configurations. We intend to elucidate the behavior of the

bodies during this transition period and provide a more graphical, and thus intuitive,
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understanding of the entire process. During the transition, bodies may collide with

each other multiple times before settling into a persistent contact. In addition,

collisions dissipate huge amounts of excess mechanical energy and accelerate the

time needed for all excess mechanic energy to decay. Any excess mechanical energy

remaining after collisions will be slowly dissipated thru the interaction of tidal forces.

We intend to demonstrate the mechanism by which tidal forces synchronize the

rotation and orbital rates of the gravitating bodies. In addition, we estimate the

timescales necessary for tidal locking to occur based on the rate of energy decay

observed in the final quasi-steady state of the system.

The state variables of the bodies are initialized with a value of angular mo-

mentum H̄2 that is slightly outside of the range of valid H̄2 for which the minimum

energy configuration exists. This initial state can be thought of as the moment

after which the YORP affect has imparted enough change in angular momentum to

invoke a transition.

Additionally, we applied a relatively small perturbation to the initial state

variables compared to an idealized system. The perturbation was almost always a

displacement in initial position of one the bodies that did not significantly affect the

initial angular momentum of the system. This perturbation serves two purposes:

first, it creates an asymmetry in the system that will cause the bodies to begin their

transition faster. In a symmetric system, like the Euler Resting configuration, the

forces on each body are equal and opposite. However for the bodies to transition,

in this case say to an Aligned Mixed configuration, one outer body must remain

in contact while the other separates - a physically impossible scenario if both outer
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bodies are behaving in an identically symmetric manner. Eventually, numerical er-

rors will force an asymmetry in the system before the bodies begin their transition.

Perturbing the system at the start of the simulation accelerates the simulation with-

out disturbing the integrity of the results. Specifying an initial perturbation of the

system also reduces the potential for additional state variable errors to enter the

system during the aforementioned pre-transitional period of symmetry.

5.3.1 Lagrange Resting to Euler Resting

We begin our investigation with the transition from the Lagrange Resting

configuration to the Euler Resting configuration. The Lagrange Resting configura-

tion is the minimum energy configuration for values of angular momentum between

0 < H̄2 < 2.99. Above this value, the Euler Resting configuration is the lowest

energy state. The Lagrange Resting configuration continues to be energetically sta-

ble up until H̄2 < 5.07 at which point the centrifugal forces overcome gravitational

forces and the bodies will initially transition to an unstable Lagrange Orbiting con-

figuration and then a Euler Resting configuration. The only stable configuration

immediately available above this threshold is the Euler Resting configuration.

The system is initialized with an angular momentum of H̄2 = 5.2. The position

of body 3 is perturbed by a displacement δx = d(10−3) in the positive X direction,

where d is the diameter of the bodies. We use canonical units, such that d = 2.

Given this displacement, the updated system angular momentum is displaced to

H̄2 = 5.204.
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The initial positions ~ri and initial body rotation angles ψi for each body are

specified as:

~r1 = d



−1/2

−
√

3/6

0


~r2 = d



0
√

3/3

0


~r3 = d



1/2 + 10−3

−
√

3/6

0


ψ1 = π/6 ψ2 = −π/2 ψ3 = 5π/6

The simulation parameters are shown in Table 5.2.

Table 5.2: LR to ER Simulation Parameters
Error Tolerance ε 10−6

Initial Step Size h0 10−2 [TU ]

Simulation Duration tend 500, 000[s]

All bodies immediately separate from one another, forming a quasi-Lagrange

Orbiting configuration as expected. The bodies continue to orbit until the initial

asymmetry results in a soft collision at approximately t = 12, 300 seconds between

bodies 2 and 3. The two bodies immediately separate, after which another soft

collision occurs between bodies 1 and 2. Then at t = 19, 880 seconds a harder

collision occurs betweens bodies 1 and 3, and they form a brief persistent contact

the lasts for about 4,000 seconds before separating. These events are obvious by

looking at the inelastic collision energy losses for the first 30,000 seconds in Figure
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Figure 5.25: Lagrange Resting Configuration transitioning to Euler Resting Con-
figuration. Each frame shows the orientation of the bodies and their body rotation
angle at a specific time.

5.26.

Figure 5.26: Collisions apparent through large system energy losses for the first
30,000 seconds for the simulated transition from LR to ER.

Next, bodies 2 and 3 experience the hardest collision yet (greatest energy loss)

and form a long lasting persistent contact. During the next 200,000 seconds, the
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bodies appear to tumble chaotically and form a quasi-Aligned Mixed configuration.

The orbiting body (1) nearly collides with the two in-contact bodies on multiple

occasions, but ultimately avoids a collision. Finally at t = 222, 600 seconds, body 1

collides hard with body 3, and for the first time, a quasi-Euler Resting configuration

is formed with body 3 as the center body. The impact of the collision temporarily

launches body 2 out of contact and into a brief orbit. About 34,000 seconds later,

at t = 244, 200 seconds, body 2 collides back with body 3 and forms a persistent

contact. These collision events are apparent in the Figure 5.27 by the large energy

drops of the elastic collisions. After this point, the outer bodies (1 and 2) remain in

persistent contact with the center body (3) for the remainder of the simulation.

Figure 5.27: Collisions apparent through large system energy losses over full simu-
lation duration for simulated transition from LR to ER.

All collisions cease beyond 244,200 seconds. To understand the behavior of

system for the remaining 250,000 seconds of the simulation we turn out attention

first to the relative positions of the bodies. Figure 5.28 shows that from about

250,000 seconds and onwards, the outer bodies 1 and 2 remain in contact with the
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center body 3. However, the distance between the two outer bodies oscillates as

they roll across the surface of body 3, forming a quasi-V-Resting configuration.

Figure 5.28: Relative body positions showing mutual body distances over the sim-
ulation. Note that the radius of each body is 2 km.

This oscillation of the outer bodies is further apparent by the form factor for

the Euler Resting configuration, which we take to be the angle made between the

center body and the two outer bodies. In this case, this equates to:

Fθ = cos−1

 ~r13 · ~r23

|~r13| |~r23|

 (5.2)

From these two plots, we can infer that the two outer bodies are indeed rolling

along the surface of the center body at regular intervals. The maximum deviance

from the ideal form factor angle (Fθ = 180◦) is bounded at about 40 degrees. How-

ever, we would like to be able to say whether these oscillation peaks are decreasing,

suggesting that the bodies are approaching the analytical Euler Resting configu-
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Figure 5.29: Form factor over the course of the simulation of the LR to ER transition.
After collisions subside, the outer bodies oscillate between 140 and 180 degrees. Ideal
form factor is 180 degrees.

ration. The brute force approach would be to simulate the system for a longer

duration until we directly observe this event. However, in the second half of the

simulation, all collisions have subsided and the bodies appear to have entered a

stable, oscillatory state. At this point in the simulation, the only mode to decay the

excess mechanical energy stored in the oscillations is thru tidal forces. To continue

our investigation, we look at the weakly and slowly acting tidal forces present in the

system.

Recall that the tidal torque and subsequent tidal force are essentially a con-

stant for bodies in persistent contact but vary with their mutual body spin rate φ̇.

If the ‘Parent’ body has a greater spin rate than the orbital rate of the ‘Child’ body

(ψ̇ > θ̇), then a tidal torque Γ acts to slow the rotation rate ψ̇ of the Parent body

while an equivalent tidal force acts to increase the orbital rate θ̇ of the Child body.

Indeed this is the case for the bodies in the last half of the simulation, as we can
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see from Figure 5.30.

Figure 5.30: Relative body spin rate during the simulation of the LR to ER transi-
tion.

We see that after 250,000 seconds, all three bodies have a positive relative

body spin rate that oscillates about φ̇ = 2.3145 · 10−4 [rad/s]. A positive φ̇ for all

body pairs implies that all bodies should be experiencing a decrease in their rotation

rates ψ̇ while experiencing an increase in their orbital velocity at a relatively constant

rate. This is exactly the trend that is observed in Figure 5.31.

The top plot of Figure 5.31 represents the net change in orbital angular mo-

mentum starting at t = 250, 000 seconds. Since the relative positions of the bodies

remain fairly fixed (d~r/dt ≈ 0), this plot implies that the orbital velocity (and or-

bital rate θ̇) of each body must be increasing. Similarly, the middle plot of the figure

represents the change in angular momentum about each body’s spin axis starting at

t = 250, 000 seconds. A net decrease here indicates that the rotation rate ψ̇ of each

body is also decreasing. Furthermore, the bottom plot of total angular momentum,

which is the sum of the middle and top plots, indicates that the effects of these tidal
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Figure 5.31: Changes in angular momentum relative to the system starting at
250,000 seconds for the simulation of the LR to ER transition. Top: Orbital an-
gular momentum. Middle: Body-Centered rotational angular momentum. Bottom:
Combined system angular momentum (Top + Middle).

forces are not significantly affecting the overall angular momentum of the system.

This is expected as tidal torques conserve the angular momentum of the system and

only dissipate energy.

Even though all collisions have subsided, tidal forces should be decaying the

excess mechanical energy until the system reaches a tidally locked Euler Resting con-

figuration. When the simulation ends, the system possesses an energy of −9.2608 ·

1013 [J ] compared to the analytical ground state energy of −4.10298 · 1014 [J ] for

an Euler Resting configuration (taking H̄2 = 5.204, the angular momentum of the

system when the simulation terminates). This excess energy is stored in the rota-

tional kinetic energy of the system. Although the tidal torque will be decreasing
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the rotational energy of the system, the equivalent tidal force will be increasing the

kinetic energy of the system. In order for the bodies to reach a tidally locked state,

the total energy of the system must be decreasing. By looking at the change of

energy for the system over the remaining 250,000 seconds in Figure 5.32, we see

that the system is indeed experiencing a net loss in energy.

Figure 5.32: Net change in energy and angular momentum of the system starting
at 250,000 seconds for the simulation of the LR to ER transition. “Error” in total
system energy is actually the expected deviation in energy here.

The energy of the system is decaying at a near constant linear rate. From the

graph, we can approximate the rate of energy decay as Ė = −0.31428 · 10−4 [kg ·

km2/s3] or Ė = −314.28 [W ]. Compare this to the approximate analytical rate of

energy decay:
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Ėpred. = −Γ(ψ̇ − θ̇) (5.3)

Where Γ = is the tidal torque, ψ̇ is the rotation rate of the Parent body, and θ̇

is the orbital rate of the Child body. Note that Γ remains fairly constant as it varies

only with the sign of φ̇ (always positive here) and the relative displacement between

bodies (constant other than a roughly 6% periodic change in r12). Because there

are a total of 6 tidal torques/forces present in the system (2 between each pair of

bodies), we must calculate Ė for each applied tidal torque and sum them together.

Figure 5.33: Rate of Energy decay due to Tidal Torques.

According to Figure 5.33, the rate of energy decay for the last 250,000 sec-

onds oscillates around a mean value of Ė = −314.2 W . Comparing this with the

analytical rate of energy decay of −314.28 [W ], we see this the two results agree

very well, with an error of 0.025%. This result is not surprising as we’ve previously

showed that applying the calculated tidal torque and equivalent tidal force will cause
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a decrease in energy at the same rate as the analytical prediction.

However, we cannot directly use our calculated value of Ė to find the time

τtidal required for the bodies to become tidally locked. To see why, we must look at

the equation for Ė:

Ė = −Γ(φ̇) (5.4)

Although Γ will remain fairly constant over the entire evolution, φ̇ is gradually

becoming smaller as the tidal torque acts to synchronize the rotation rates. Thus,

φ̇ is a function of time. To solve this problem, we would need to solve the integral:

∆E = −Γ
∫ τtidal

t0
φ̇(t) dt (5.5)

It would be possible to derive an expression for φ̇(t) given that we know how

the tidal torque Γ will affect the orbital rate θ̇ and rotation rate ψ̇ of the bodies.

However there is a much simpler way: the angular acceleration of the bodies ψ̈ will

be roughly a constant since ψ̈k = −Γk/I, where I is the moment of inertia of the

body and Γk is the sum of the tidal toques acting a body k. Assuming a constant

deceleration ψ̈k, we can easily calculate the tidal locking time τtidal for each body as

follows:

τtidal,k = ∆ψ̇k
ψ̈

(5.6)

Where ∆ψ̇k = ψ̇req − ψ̇k(t) is the difference in rotation rate of body k relative
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to the required spin rate of the tidally locked Euler Resting configuration. For a

Euler Resting configuration with H̄2 = 5.204, the required rotation rate for a tidally

locked system is ψ̇req = 2.62206(10−4) [rad/s]. Based on these equations, the tidal

lock time for each body is given below in Table 5.3:

Table 5.3: Time for Tidal Locking: LR to ER
Body 1 Body 2 Body 3

∆ψ̇ [rad/s] −2.01285(10−4) −2.01163(10−4) −2.00971(10−4)

ψ̈ [rad/s2] −3.32766(10−15) −3.32767(10−15) −6.55193(10−15)

τtidal [yrs] 1918.1 1916.9 972.7

The timescale of this process is slightly below the expected range for tidal

forces to synchronize rotational and orbital rates of bodies. Typical tidal locking

timescales for a heterogenous ternary system range from 106 to 107 years [3]. To

account for the differences in timescales, we can reason factors that would shorten

the calculated time: most importantly, the initial rotation rate of the bodies ψ̇ was

fairly close to the required spin rate φ̇req of the tidally locked state and didn’t need

to undergo drastic changes. Second, the multiple inelastic collisions dissipated about

5.3% of the initial excess energy. The energy dissipated thru these collisions sped the

process up by 5 - 6 years. Finally, the symmetry of bodies and their rotation rates

means that they all experience near-identical tidal torque effects. The combined

tidal torques were acting synchronously to slow the rotation rates of all bodies while

increasing their orbital rates, so there were no competing tidal effects to delay this

process.

Overall, the simulation clearly shows the bodies transition from a Lagrange
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Resting configuration to an Euler Resting configuration. The trajectory of the bodies

involved six collisions before coming to steady-state persistent contact. During the

transition, two bodies remained in contact while orbiting a third body to form a

quasi-Aligned Mixed configuration. Once all bodies were in persistent contact, the

two outer bodies rolled along the center body at slowly dampening oscillations. Tidal

torques were shown to decay excess mechanical energy in the system and began to

synchronize the orbital rates of the bodies with their rotational rates. Finally, we

were able to estimate the total time required for the bodies to reach a tidally locked

Euler Resting configuration.

5.3.2 Euler Resting to Lagrange Resting

The next tested transition is the reverse scenario: the transit of the bodies from

the Euler Resting configuration to the Lagrange Resting configuration. The Euler

Resting configuration is the minimum energy configuration for values of angular

momentum between 2.99 < H̄2 < 5.65907. The energetic stability of the Euler

Resting configuration extends from the range 1.98375 < H̄2 < 6.6125; for any

lower value of H̄2, the centrifugal forces acting on the bodies will not be enough to

overcome gravity. In this scenario, the two outer bodies will roll along the center

body and form variable angle V-Resting configurations until finally collapsing into

a Lagrange Resting configuration.

The system is initialized with an angular momentum of H̄2 = 1.8. The position

of body 2 is perturbed by a displacement δx = d(10−3) in the positive X direction.
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We use canonical units, such that d = 2. Given this displacement, the updated

system angular momentum is displaced to H̄2 = 1.8015.

The initial positions ~ri and initial body rotation angles ψi for each body are

specified as:

~r1 =



0

0

0


~r2 =



d+ δx

0

0


~r3 =



−d

0

0


ψ1 = 0 ψ2 = 0 ψ3 = 0

The simulation parameters are shown below in Table 5.4:

Table 5.4: ER to LR Simulation Parameters
Error Tolerance ε 10−6

Initial Step Size h0 10−2 [TU ]

Simulation Duration tend 500, 000[s]

Almost immediately, the displaced body 2 makes contact with the center body

1. All three bodies rotate in the unstable Euler Resting configuration for the next

80,000 seconds. Around t = 81, 000 seconds, the two outer bodies 2 and 3 begin

to roll towards each other to form varying angle V-Resting configurations. Then

at t = 109, 100 seconds, bodies 2 and 3 collide hard to form for the first time a

Lagrange Resting configuration. The impact of the initial collision, causes body 1
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Figure 5.34: Euler Resting Configuration transitioning to Lagrange Resting Con-
figuration. Each frame shows the orientation of the bodies and their body rotation
angle at a specific time.

to temporarily break contact with the other two bodies but quickly comes back into

a persistent contact. These events are obvious by looking at the inelastic collision

energy losses for the first 120,000 seconds in Figure 5.36.

Figure 5.35: Left: Total energy of system for first 120,000 seconds of the simula-
tion for the ER to LR transition. Right: Relative change in energy since start of
simulation.

From the time t = 110, 800 seconds to the end of the simulation, all three

bodies remain in a persistent contact with each other. We can visualize these events

by looking the the plot of relative positions between body pairs.

All collisions cease beyond 110,800 seconds. The nominal form factor angle
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Figure 5.36: Relative body positions showing mutual body distances over the sim-
ulation for the transit of the bodies from ER to LR configuration. Notice the
subsequent separation events after the impact of bodies 2 and 3. Note that the
radius of each body is 2 km.

Fθ for the Lagrange Resting configuration is 60 degrees which is the angle between

the unit vector connecting the center of any one body to the centers of the other

two. Although we can show numerically that the bodies achieve this exact form

factor angle after 110,800 seconds, it serves as an example that the bodies must

take on this angle in order for all three bodies to be in mutual contact. Indeed, all

three bodies are in contact after 110,800 seconds so they are in the correct relative

positions to form the Lagrange Resting configuration. All that remains is to show

that the tidal forces are working to synchronize the orbital and rotation rates of the

bodies.

We can see in Figure 5.37 that once the bodies reach the nominal Lagrange

Resting orientation at t = 110, 800 seconds, the relative body spin rate φ̇ between

bodies pairs is approximately −1.539 · 10−4 [rad/s]. A negative φ̇ indicates that
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the orbital rate θ̇ of the bodies about the barycenter is greater than the rotation

rate ψ̇ of the bodies. As such, a tidal torque Γ will be applied to the bodies to

increase their rotation rate while an equivalent tidal force FΓ will work to decrease

the orbital velocity of the bodies. Indeed, this is the trend observed by looking the

two components of angular momentum for the second half of the simulation 5.38.

The component of angular momentum derived from the orbital velocity about the

barycenter (top plot of Figure 5.38) is decreasing while the component of angular

momentum derived from the rotation of each body about its spin axis (middle

plot of Figure 5.38) is increasing. Furthermore, the bottom plot of total angular

momentum, which is the sum of the middle and top plots, indicates that the effects

of these tidal forces are not significantly affecting the overall angular momentum of

the system.

Figure 5.37: Relative body spin rate during the simulation of the Euler Resting to
Lagrange Resting transition.

Finally, we can show that the tidal forces are decaying excess energy in the

system and estimate the time for the system to reach a tidally locked Lagrange Rest-

ing state. When the simulation ends, the system possesses an energy of −1.69979 ·
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Figure 5.38: Changes in angular momentum relative to the system starting at
250,000 seconds for the simulation of the Euler Resting to Lagrange Resting con-
figuration. Top: Orbital angular momentum. Middle: Body-Centered rotational
angular momentum. Bottom: Combined system angular momentum (Top + Bot-
tom).

1014 [J ] compared to the analytical ground state energy of −6.91603 · 1014 [J ] for

an Euler Resting configuration (taking H̄2 = 1.80157, the angular momentum of

the system when the simulation terminates). This excess energy is stored in the or-

bital energy of the system. The tidal torque will be increasing the rotational energy

of the system while the equivalent tidal force will be decreasing the translational

kinetic energy of the system. By looking at the change of energy for the system

over the remaining 250,000 seconds in Figure 5.39, we see that the system is indeed

experiencing a net loss in energy.

The energy of the system is decaying at a near constant linear rate. From
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Figure 5.39: Net change in energy and angular momentum relative to the system at
250,000 seconds for the simulation of the ER to LR transition.

Figure 5.39, we can approximate the rate of energy decay as Ė = −.32432 ·10−4 [kg ·

km2/s3] or Ė = −324.32 [W ]. Compare this to the approximate analytical rate of

energy decay Ėpred. = −323.9 [W ] in Figure 5.40, we see that the two quantities are

in good agreement.

To calculate the time required for tidal locking to occur for each body, we look

at the angular acceleration of each body and change in spin rate necessary to match

the required spin rate. For a Lagrange Resting configuration with H̄2 = 1.80157, the

required rotation rate for a tidally locked system is ψ̇req = 2.72923(10−4) [rad/s].

Based on these equations, the tidal lock time for each body is given below in Table

5.5:

The timescale for tidal locking to occur for the reverse transition (compared to
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Figure 5.40: Rate of Energy decay due to Tidal Torques.

Table 5.5: Time for Tidal Locking: ER to LR
Body 1 Body 2 Body 3

∆ψ̇ [rad/s] 1.18165(10−4) 1.18099(10−4) 1.18237(10−4)

ψ̈ [rad/s2] 6.552(10−15) 6.552(10−15) 6.552(10−15)

τtidal [yrs] 571.89 571.57 572.24

the LR to ER case) is about an order of magnitude smaller. Again, this is because

the bodies were initially rotating at rate similar to the required rotation rate of the

tidally locked system. It seems that the tidal locking time for the transition between

minimum energy configurations is orders of magnitude less than that for arbitrary

systems. As a minimum energy configuration crosses the stability threshold in terms

of H̄2, its previous synchronous rotation rate is very close to the synchronous rota-

tion rate of the new minimum energy configuration.

Overall, the simulation provided a clear pathway for which the bodies transi-

tion from a Euler Resting configuration to an Lagrange Resting configuration. The

trajectory of the bodies was fairly intuitive and involved one major collision event
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followed by a few small reactionary collisions. During the transition, the two outer

bodies rolled along the surface of the center body to form quasi-V-Resting configu-

rations before slamming into each other. Once all bodies were in persistent contact,

all bodies rotated at nearly the same rate. Tidal torques were shown to decay excess

mechanical energy in the system and began to synchronize the orbital rates of the

bodies with their rotational rates. Finally, we were able to estimate the total time

required for the bodies to reach a tidally locked Euler Resting configuration.

5.3.3 Euler Resting Transition to Aligned Mixed

For the next test, we will examine the transition from a Euler Resting Con-

figuration to an Aligned Mixed configuration. The Euler Resting configuration

is the minimum energy configuration for values of angular momentum between

2.99 < H̄2 < 5.65907. The energetic stability of the Euler Resting configuration

extends from the range 1.98375 < H̄2 < 6.6125; for any higher value of H̄2, the cen-

trifugal forces acting on the bodies will overcome gravity. The bodies will initially

separate and transition into an unstable Euler Orbiting configuration. Eventually,

the center body and one of the outer bodies in the Euler Orbiting configuration

will come in contact while the remaining outer body orbits the contact pair at a

distance.

The system is initialized with an angular momentum of H̄2 = 6.7. The position

of body 2 is perturbed by a displacement δx = d(10−3) in the positive X direction.

We use canonical units, such that d = 2. Given this displacement, the updated
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system angular momentum is displaced to H̄2 = 6.7058.

The initial positions ~ri and initial body rotation angles ψi for each body are

specified as:

~r1 =



0

0

0


~r2 =



d+ δd

0

0


~r3 =



−d

0

0


ψ1 = 0 ψ2 = 0 ψ3 = 0

The simulation parameters are shown below in Table 5.6:

Table 5.6: ER to AM Simulation Parameters
Error Tolerance ε 10−6

Initial Step Size h0 10−2 [TU ]

Simulation Duration tend 2, 000, 000[s]

The outer bodies 2 and 3 immediately separate from the center body 1 and

the bodies remain in an unstable Euler Orbiting configuration for 8,898 seconds.

After this purely orbital period, bodies 1 and 3 rejoin to form a persistent contact

while body 2 is now isolated and orbiting the contact body pair at a distance. This

is the one and only collision event for the entire duration of the simulation. For the

remaining 1.991 million seconds, all three bodies continue to tumble freely in space

with seemingly chaotic behavior. Comparatively, this transitioning configuration
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Figure 5.41: Euler Resting Configuration transitioning to Aligned Mixed Configura-
tion. Each frame shows the orientation of the bodies and their body rotation angle
at a specific time.

has fewer physical constraints than the other transitional cases and as such, does

not readily conform to any identifiable equilibrium configuration. For instance, we

would like to know which of the two in-contact bodies (1 and 3) will ultimately

reside closer to the barycenter and which will face away from the barycenter. But

the bodies have not settled enough to make a clear conclusion. For instance, looking

at Figure 5.42, we see that the respective relative distances between the contact

pair bodies (1 and 3) and the isolated body 2 jump around wildly; there is no clear

evidence which body of the contact pair will ultimately lie closer to body 2 and

which will lie further away. In order to discern this information, we would need to

run the simulation longer to allow energy in the system to further dissipate and stop

the contact pair from tumbling over each other.

Despite the tumbling of the contact pair, we would still like to assess the

likeness of the configuration to the intended Aligned Mixed configuration. We can
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Figure 5.42: Relative distance between bodies over the simulation for the ER to AM
transition. Note that the radius of each body is 2 km.

define the form factor angle Fθ to be the angle between vectors connecting the

center of the isolated body 2 to the centers of the two in-contact bodies 1 and 3.

Here, we calculate this angle as:

Fθ = cos−1

 ~r21 · ~r23

|~r21| |~r23|

 (5.7)

The notional form factor angle for a tidally locked Aligned Mixed configuration

is Fθ = 0◦. From Figure 5.43, we see that the measured form factor angle bounces

around between 0◦ and 23◦. Again, there is no clear indication that the bodies are

becoming aligned to form an Aligned Mixed configuration.

However, we do not need to show a visual alignment of the bodies to know

whether the system will reach an Aligned Mixed configuration. As long as the

system is dissipating energy through tidal forces, then the system will be eventually
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Figure 5.43: Relative body positions showing mutual body distances over the sim-
ulation of the ER to AM transition. Note that the radius of each body is 2 km.

forced into the only energetically stable configuration available, which is the Aligned

Mixed configuration. From inspection of the positive relative body spin rates in

Figure 5.44, we know that the tidal torques will decrease the rotation rate of the

bodies while increasing their orbital rate about the barycenter. Indeed, this is the

trend observed by looking the two components of angular momentum for the second

half of the simulation in Figure 5.45. The component of angular momentum derived

from the orbital velocity about the barycenter (top plot of Figure 5.45) is increasing

while the component of angular momentum derived from the rotation of each body

about its spin axis (middle plot of Figure 5.45) is decreasing. Furthermore, the

bottom plot of total angular momentum, which is the sum of the middle and top

plots, indicates that the effects of these tidal forces are not significantly affecting

the overall angular momentum of the system.

Unlike the previously tested cases, one of the bodies (body 2) is in a physically

unconstrained orbit about the other bodies. This condition allows the equivalent
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Figure 5.44: Relative body spin rate for the simulation of the Euler Resting to
Aligned Mixed transition.

Figure 5.45: Changes in angular momentum relative to the system starting at
1,000,000 seconds for the simulation of the Euler Resting to Aligned Mixed transi-
tion. Top: Orbital angular momentum. Middle: Body-Centered rotational angular
momentum. Bottom: Combined system angular momentum (Top + Bottom).
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tidal force FΓ acting on the unconstrained body to raise or lower the semi-major

axis of the orbiting body.

Finally, we can show that the tidal forces are decaying excess energy in the

system and estimate the time for the system to reach a tidally locked Aligned Mixed

state. When the simulation ends, the system possesses an energy of −7.82051 ·

1013 [J ] compared to the analytical ground state energy of −3.645536 · 1014 [J ] for

an Aligned Mixed configuration (taking H̄2 = 6.7058, the angular momentum of

the system when the simulation terminates). This excess energy is stored in the

rotational kinetic energy of the bodies. The tidal torque will be decreasing the

rotational energy of the system while the equivalent tidal force will be increasing

the translational kinetic energy of the system. By looking at the change of energy

for the system over the last 1,000,000 seconds in Figure 5.46, we see that the system

is indeed experiencing a net loss in energy.

Figure 5.46: Net change in energy and angular momentum of the system starting
at 1,000,000 seconds for the simulation from ER to AM transition.

Even though the contact pair is tumbling and the system hasn’t reached stable
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configuration, the energy of the system is decaying at a near constant linear rate.

From the graph, we can approximate the rate of energy decay as Ė = −1.624 ·

10−4 [kg·km2/s3] or Ė = −162.4 [W ]. Comparing this to the approximate analytical

rate of energy decay Ėpred. = −323.9 [W ] in Figure 5.47 is not as straight forward

because it is highly volatile due to the doubly changing relative distances between

bodies and their mutual body spin rates φ̇. However, for sake of approximation, we

can average the analytical Ėpred. over the last 1,000,000 second interval. Doing so

yields an average of Ėpred. = −148.62 [W ]. Even with this loose approximation, we

see that the two quantities are in good agreement.

Figure 5.47: Rate of Energy decay due to Tidal Torques for the simulation of the
ER to AM transition.

To calculate the time required for tidal locking to occur for each body, we

look at the angular acceleration of each body and change in spin rate necessary

to match the required spin rate. However, the angular acceleration for each body

continues to fluctuate throughout the simulation, so we use the average angular
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acceleration over the last 1,000,000 seconds of the simulation. For an Aligned Mixed

configuration with H̄2 = 6.7058, the required rotation rate for a tidally locked system

is ψ̇req = 4.07799(10−5) [rad/s]. Based on these equations, the tidal lock time for

each body is given below in Table 5.7:

Table 5.7: Time for Tidal Locking: ER to AM
Body 1 Body 2 Body 3

∆ψ̇ [rad/s] −2.5535(10−4) −2.5672(10−4) −2.55357(10−4)

ψ̈ [rad/s2] −3.5538(10−15) −2.1024(10−15) −3.5675(10−15)

τtidal [yrs] 2471.4 1.7474(107) 2471.6

As expected, the two contact pair bodies become tidally locked to each other in

a significantly shorter amount of time. Bodies 2 and 3 remain significantly closer to

one another and the resulting tidal torque, which varies by the relative displacement

between bodies raised to the 6th power, is nearly 2 orders of magnitude stronger.

As a result, their mutual tidal torques synchronize the rotation of the bodies much

faster than can done with the isolated orbiting body 2. In order for the entire

system to reach a tidally locked state, all bodies need to be synchronized to the

same rotation and orbital rates, so τtidal,2 is the dominating factor. There are two

main reasons for the large tidal locking time. First is that body 2 is further away

from the other bodies - the resulting tidal torque is orders of magnitude smaller

and unable to affect the rotation rates of bodies as effectively. Second, body 2 is

physically unconstrained and the tumbling of the contact pair causes the affecting

tidal torque to fluctuate around near 0 values.

Overall, the simulation provided a clear pathway for which the bodies tran-
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sition from a Euler Resting configuration to an Aligned Mixed configuration. The

initial transition between a Euler Resting configuration and quasi-Aligned Mixed

was intuitive, but the resulting trajectory was seemingly chaotic in behavior. The

bodies separated to form an unstable Euler Orbiting configuration before the center

body and a outer body came together to form a persistent contact. During the

transition, the contact pair tumbled freely and did not yet show signs of aligning to

an Aligned Mixed configuration. The simulation would need to be run for longer

durations to better determine which body of the contact pair would face inwards and

which would face outwards. Tidal torques were shown to decay excess mechanical

energy in the system and began to synchronize the orbital rates of the bodies with

their rotational rates. Finally, we were able to estimate the total time required for

the bodies to reach a tidally locked Aligned Mixed configuration.

5.3.4 Aligned Mixed to Euler Resting

The final case we test is the reverse transition from Aligned Mixed configura-

tion to a Euler Resting configuration. The Aligned Mixed configuration continues

its energetic stability down until H̄2 = 5.32417 at which point the bodies orbit too

slow to maintain the configuration. Immediately below this point, the Euler Rest-

ing configuration is the only stable and thus the only minimum energy configuration

available to the bodies. In this scenario, the isolated orbiting body will enter a tra-

jectory that gradually spirals inwards until finally making a persistent contact with

the innermost body of the body pair.
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The Aligned Mixed configuration is initialized with normalized distance value

of R = 2.33696, which equates to an angular momentum of H̄2 = 5.32416. The

initial velocities of the bodies are adjusted to be consistent with a system of reduced

H̄2 = (1 − 10−3)H̄2
0 , where H̄2

0 = 5.32416 is the angular momentum of the initial

configuration. We use canonical units, such that d = 2. Given this perturbation,

the updated system angular momentum is displaced to H̄2 = 5.3182.

The initial positions ~ri and initial body rotation angles ψi for each body are

specified as:

~r1 =



−d/2

0

0


~r2 =



d/2

0

0


~r3 =



dR

0

0


ψ1 = 0 ψ2 = 0 ψ3 = 0

The simulation parameters are shown in Table 5.8.

Table 5.8: AM to ER Simulation Parameters
Error Tolerance ε 10−6

Initial Step Size h0 10−2 [TU ]

Simulation Duration tend 2, 000, 000[s]

The isolated body 3 begins an inwards spiral trajectory towards the barycenter

while keeping its body axis aligned with the centers of the body pair (bodies 1 and 2).
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Figure 5.48: Aligned Mixed Configuration transitioning to Euler Resting Configura-
tion. Each frame shows the orientation of the bodies and their body rotation angle
at a specific time.

Equivalently, the body pair spirals inwards towards the barycenter while maintaining

the initial relative alignment of body 2 facing inwards and body 1 facing outwards.

At t = 64, 363 seconds, the isolated body 3 collides with the inwards facing body

2 to form a quasi-Euler Resting configuration with body 2 as the center body. As

expected for bodies of equal mass, the isolated body 3 translated radially twice the

distance as body 1 and 2 before coming in contact. This collision event is easily

captured by the drop in energy of the system as seen in Figure 5.49.

Figure 5.49: Energy of Aligned Mixed configuration as it transitions to a Euler
Resting configuration.

After this time, all collisions cease and the two outer bodies 1 and 3 begin
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orbiting the center body 2 in a quasi-Euler Resting configuration. The two outer

bodies roll along the surface of the center body 2 at a relatively high frequency and

small oscillation peaks. If we examine the form factor angle for the Euler Resting

configuration (ideal form factor angle Fθ = 180◦), we see in Figure 5.50 that the

bodies are nearly aligned with that of the ideal collinear Euler Resting configuration.

Figure 5.50: Form factor angle of the system for a Euler Resting configuration. Ideal
FF angle is 180 degrees.

The oscillations of the outer bodies about the center body is representative of

the excess mechanical energy that is in the system. Tidal forces will eventually decay

this excess energy and synchronize the rotation rates of the bodies. Once the bodies

reach the quasi-Euler Resting orientation at t = 64, 363 seconds, the relative body

spin rate φ̇ between bodies pairs is approximately−1.463·10−4 [rad/s] as can be seen

in Figure 5.51. A negative φ̇ indicates that the orbital rate θ̇ of the bodies about the

barycenter is greater than the rotation rate ψ̇ of the bodies. As such, a tidal torque Γ

will be applied to the bodies to increase their rotation rate while an equivalent tidal

force FΓ will work to decrease the orbital velocity of the bodies. From the figure, we

can already see φ̇ begin to approach 0. Indeed, this is the trend is further confirmed
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by looking at Figure 5.52 which shows the two components of angular momentum

for the remainder of the simulation. The component of angular momentum derived

from the orbital velocity about the barycenter (top plot of Figure 5.52) is decreasing

while the component of angular momentum derived from the rotation of each body

about its spin axis (middle plot of Figure 5.52) is increasing. The bottom plot of

total angular momentum, which is the sum of the middle and top plots, indicates

that the effects of these tidal forces are not significantly affecting the overall angular

momentum of the system.

Figure 5.51: Relative body spin rate during the simulation of the AM to ER tran-
sition.

Finally, we can show that the tidal forces are decaying excess energy in the

system and estimate the time for the system to reach a tidally locked Euler Resting

state. When the simulation ends, the system possesses an energy of −9.8989·1013 [J ]

compared to the analytical ground state energy of −4.0937 · 1014 [J ] for a Euler

Resting configuration (taking H̄2 = 5.3182, the angular momentum of the system

when the simulation terminates). This excess energy is stored in the orbital energy
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Figure 5.52: Changes in angular momentum relative to the system starting at 65,000
seconds for the simulation of the AM to ER transition. Top: Orbital angular momen-
tum. Middle: Body-Centered rotational angular momentum. Bottom: Combined
system angular momentum (Top + Bottom).

of the system. The tidal torque will be increasing the rotational energy of the system

while the equivalent tidal force will be decreasing the translational kinetic energy of

the system. By looking at the change of energy for the system over the remaining

1,935,000 seconds in Figure 5.53, we see that the system experiences a net loss in

energy.

The energy of the system is decaying at a near constant linear rate over these

timescales. From the graph, we can approximate the rate of energy decay as Ė =

−2.0615 · 10−4 [kg · km2/s3] or Ė = −206.15 [W ]. Compare this to the approximate

analytical rate of energy decay Ėpred. = −204.6 [W ], we see that the two quantities

are in good agreement with an error of 0.76%.
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Figure 5.53: Net change in energy and angular momentum relative to the system at
65,000 seconds for the simulation of the AM to ER transition.

To calculate the time required for tidal locking to occur for each body, we look

at the angular acceleration of each body and change in spin rate necessary to match

the required spin rate. For an Euler Resting configuration with H̄2 = 5.3182, the

required rotation rate for a tidally locked system is ψ̇req = 2.62564(10−4) [rad/s].

Based on these equations, the tidal lock time for each body is given below in Table

5.9:

Table 5.9: Time for Tidal Locking: AM to ER
Body 1 Body 2 Body 3

∆ψ̇ [rad/s] 1.2518(10−4) 1.2387(10−4) 1.2522(10−4)

ψ̈ [rad/s2] 3.328(10−15) 6.552(10−15) 3.328(10−15)

τtidal [yrs] 1192.86 599.49 1193.21

The timescale for tidal locking to occur for the reverse transition (compared

to the ER to AM case) is 4 orders of magnitude smaller based on the longest time of
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each body to become tidally locked. Even though the two outer bodies have slight

rolling oscillations along the center body surface, their relative distance is fairly

constant, resulting in a near constant tidal torque term. All bodies are significantly

closer to each other in the quasi-Euler Resting configuration compared to the quasi-

Aligned Mixed configuration of the previous test, resulting in a significantly larger

magnitude of the applied tidal torques on each body. These two effects result in a

significantly shorter tidal locking time for all of the bodies. Once again, the tidal

locking times are much shorter compared to an arbitrary ternary system due to the

initial rotation rate of the bodies in the Aligned Mixed configuration being close to

the required rotation rate of the tidally locked Euler Resting configuration.

Overall, the simulation provided a clear pathway for which the bodies tran-

sition from an Aligned Mixed configuration to a Euler Resting configuration. The

trajectories of the bodies were fairly predictable as the isolate body and body pair

spiraled inwards towards the barycenter until making contact. During the transi-

tion, the body pair maintained its initial alignment relative to the isolated body,

such that we could predict that the initially inwards facing body of the body pair

(body 2) would end as the center body of the Euler Resting configuration. Once

all bodies were in persistent contact, the two outer bodies rolled along the surface

of the center body with decaying oscillations. Tidal torques were shown to decay

the excess mechanical energy in the rolling oscillations and began to synchronize

the orbital rates of the bodies with their rotational rates. Finally, we were able

to estimate the total time required for the bodies to reach a tidally locked Euler

Resting configuration.
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Chapter 6: Error Analysis

The accuracy of the presented results ultimately depend on the errors produced

by the simulation, dynamic models, and propagator scheme. Each source of error

has the potential to alter to the true state of the system, including errors in the

position and velocity of the bodies, or changes to conserved quantities like energy

and angular momentum. We wish to show that the errors identified in the simulation

do not significantly alter the behavior or results of the system for the timescales we

tested. The true state of the system is often ill-defined when the bodies undergo

a transition because the dynamics describing the motion of the three bodies have

no analytic solution. For these cases, we can only estimate the error in conserved

quantities (energy and angular momentum) and the known error of the propagator.

For static equilibrium configurations, we know that there should be no change to

any of the body relative positions and velocities; thus we can take the initial state

of the system to be the true state for comparison purposes.

There are three primary sources of errors that arise in the simulation that alter

the bodies from their true states:

• Propagation tolerance & propagator accuracy

• Penetration of bodies in persistent contacts
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• Repositioning of bodies during a collision event

6.1 Propagation Tolerance and Propagator Accuracy

Each error source affects the system in a measurable and predictable way. We

will first examine the error caused by the propagator. A Velocity Verlet scheme

is a second-order symplectic integrator. The local error of velocity per timestep is

O(∆t2) and the local error of position is O(∆t4) [18]. The global error in position

and velocity per timestep is O(∆t2). The timestep ∆t is indirectly controlled by the

propagation convergence tolerance ε that is set before running the simulation. ε is

the maximum allowed difference between states using the Half-Step method. For all

of the presented simulation results, a convergence tolerance of ε = 10−6 was used.

This value of ε was the smallest value achievable that produced accurate results and

reasonable computation times. For instance, reducing the tolerance to ε = 10−7

reduced the error in energy and angular momentum by an order of magnitude while

increasing the simulation runtime from from 1 day to 10 days. With a convergence

tolerance of ε = 10−6, the average timestep taken in all simulations was ∆t = 0.1

seconds. Thus we should expect a local error in velocity of O(10−2) and a local error

in position of O(10−4). We must look at the error in energy and angular momentum

between timesteps to infer the error induced by the propagator. Energy depends

inversely on the relative position of the bodies and on the velocity of the bodies to

the second power. Based on the errors in position and velocity, we can expect a

change in the total mechanical energy per timestep of about O(10−2) without the
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effects of tidal torques and the contact spring damper. Similarly, we expect errors

in angular momentum of O(10−2). If we look at the change in energy and angular

momentum for the static Lagrange Resting case in Figure 6.1, we see that local

errors are much smaller and more in line with the propagator convergence tolerance

ε; errors in energy are O(10−6) and errors in angular momentum are O(10−4).

Figure 6.1: Change in energy and angular momentum between timesteps (left) and
between iteration steps (right) for the static Lagrange Resting configuration simu-
lation.

The discrepancy in error can be attributed to the spring forces used to the keep

the bodies in contact that causes the bodies to oscillate about a fixed equilibrium.

Indeed, we see that the errors in energy and angular momentum do not accumulate

and seem to oscillate about a fixed value in Figure 6.2. This is the case for the static

Aligned Mixed and Euler Resting cases as well.

Similarly, the errors in angular momentum for the transitioning case under the

effects of tidal torques are small and bounded. If we look at error per timestep in

angular momentum for the transition case going from a Euler Resting to Lagrange

Resting configuration in Figure 6.3, we see that the local errors are O(10−4). The

local error in energy cannot be inferred from the figure because tidal torques are
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Figure 6.2: Energy and angular momentum over the last 25,000 seconds for the
static Lagrange Resting configuration. Quantities are relative to the energy and
angular momentum of the system at 75,000 seconds.

decaying energy from the system. However, we compared the analytic rate of tidal

energy decay to the measured rate of energy decay in the system in the Results

chapter and found that differences in rates were O(10−3), which can be taken as a

first-order approximation of the local error in energy.

Again, we can see in Figure 6.4 that these local errors in angular momentum

do not accumulate in one direction and produce a global error of about O(10−2).

This global error is approximately equal to the expected global error in angular

momentum based on the timestep used for the velocity verlet integrator.

The total energy of simulated systems is typically O(107) and the total angular

momentum is O(1011). A global error in energy and angular momentum of O−2) is

insignificant and has a negligible affect on the macro behavior of the bodies. Thus

the propagator and integrator errors are too small to have an impact on the results
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Figure 6.3: Change in energy and angular momentum between timesteps (left) and
between iteration steps (right) for the Euler Resting to Lagrange Resting transition.

Figure 6.4: Energy and angular momentum over the last 250,000 seconds for the
Euler Resting to Lagrange Resting transition. Quantities are relative to the energy
and angular momentum of the system at 250,000 seconds.

of the simulation and we can disregard any result biases these errors introduced. If

higher simulation accuracy was needed, then a higher order symplectic integrator
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or smaller convergence tolerance ε could be used at the cost of greatly increased

computation time.

6.2 Penetration Error

The spring contact force model allows for a small penetration of the bodies

surfaces which will change the resting energy point of the system. The equilibrium

point for the contact springs is when the displacement between body surfaces is

exactly 0. However, if the bodies are in perfect contact at their surfaces, then

the contact force will evaluate to 0 but a gravitational force will pull the body

centers together. At the next timestep, the bodies will have penetrated slightly

and the contact forces will evaluate to a nonzero value and attempt to restore the

displacement between the body surfaces to 0. This is a cyclic process that will

continue for any persistent contact configuration.

The mean penetration distance is a function of the spring constants and mean

timestep taken. For the static Lagrange Resting simulation, the mean penetration

distance between bodies is approximately 1.5 mm. The incurred potential energy

from this penetration decreases the energy of the system by 67 [kg · km2/s2], which

accounts for less than 10−4% of the total energy of the system. Additionally, the

oscillation of energy caused by the penetration is bounded by looking at the top

plot of Figure 6.2. Similarly for the transition results, such as between a Euler

Resting and Lagrange Resting configuration, we measure a similar mean penetration

distance.
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Overall, the energy of the system is not significantly affected by the small pene-

tration distance in a way that alters the results of the simulations or the macroscopic

behavior of the bodies. Using a smaller timestep would decrease the mean penetra-

tion distance and magnitude of the energy oscillations, but a 0 energy error cannot

be realistically obtained with this propagator. Instead, an implicit integrator such

as the SHAKE algorithm used for constrained dynamics could be used to guarantee

that each propagation step obeys the physical constraint on the system to within a

specified tolerance [5].

6.3 Body Displacement Following a Collision

The manner in which collision events are handled can lead to a instantaneous

spike in the angular momentum of the system. When a collision is detected after

a propagation step, the simulation rewinds to the previous state and calculates the

time tc to the collision assuming a constant acceleration. The system is then propa-

gated by tc after which point the bodies are assumed to be in contact. Realistically,

there will be some remaining gap between the surfaces of the colliding bodies, so

the simulation manually moves the two colliding bodies to be in perfect contact.

This displacement is typically on the order of 10−3 mm; however, even a small non-

physical displacement of the bodies can significantly affect the angular momentum

of the system because the velocity of the bodies are not correspondingly adjusted to

account for the displacement. For instance, displacing the bodies by 10−3 mm will

change the angular momentum of the system by 104 [kg · km2/s] due to the large
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mass of the bodies.

The jump in angular momentum scales with the required manual displacement

of the bodies during a collision. Figure 6.5 shows the spikes in angular momentum

following each collision event. The scale of the spikes is roughly correlated with the

energy loss following each collisions because larger energetic collisions are associ-

ated with faster relatively moving bodies. The slower the bodies are moving, the

better approximation the time to collision tc is which correlates to a small manual

displacement needed to place the bodies in contact at their surfaces.

Figure 6.5: Energy and angular momentum for the Lagrange Resting to Euler Rest-
ing transition.

The angular momentum errors because of the way collisions range from O(103)

to O(104). These are by far the largest errors that occur in the simulation. The total

change to the angular momentum of the system because of these errors still amount

to less than 1 part in 107. Such a small error does not significantly affect he behav-

ior of the bodies nor the long-term conditions of the minimum energy configuration.

Furthermore, the errors cause by this source are bounded because there are finite
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number of collisions during any given transition. The greatest amount of collisions

occurred for the simulation of the Lagrange Resting configuration to the Euler Rest-

ing configuration, and yet the total change in system angular momentum was about

6 parts in 108. Clearly, even the worse-case offenders do not alter the final results of

the simulation. These errors could be reduced by using a Newton-Raphson method

to iteratively solve for when the bodies are in direct contact to within some desirable

tolerance. This would allow control over the maximum manual displacement of the

bodies and thereby bound the largest spike in angular momentum caused by this

error.

6.4 Physical vs. Non-Physical Results

The behavior of the system and conclusions about the transitions are evaluated

based on the macro-scale results of the simulation. However, the results constitute

a mixture of physically observable behaviors and simulation artifacts. We want to

separate the two different phenomena and discern which results can be expected in

a physically observable system based on the governing physics. The non-physical

results of the simulation are attributed to the imperfect dynamic model and prop-

agator methodology used by the simulation; thus these non-physical effects would

not be observable in a real system. Below are simulations results that represent the

physical and non-physical results of the simulation:

• Physical Simulation Results

1. Collisions Between Bodies - The collisions occur in a consistent manner
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using impulsive momenta transfer in the absence of friction.

2. Transient Body Trajectories - The bodies evolved according to the phys-

ical effects of gravitational potentials and tidal forces that would be felt

by asteroids in the absence of friction.

3. Tidal Energy Decay - The energy decayed through tidal forces repre-

sented the physical dissipation of energy caused by an undulating wave

of mechanical stress propagating throughout the bodies due to asymmet-

ric gravity gradients.

4. Tidal Rotation Synchronization - The tidal forces caused the relative

orbital and rotational rates of the bodies to approach the same value,

representative of a ternary asteroid system in its lowest energy state.

5. Tidal Locking Times - In a frictionless system, the time required for the

bodies to reach a tidally locked state is completely dominated by the tidal

torques modeled in the simulation.

• Non-physical Simulation Results

1. Surface Penetration Between Bodies - The 2mm penetrations between

body surfaces is non-physical and is a result of using a soft-sphere contact

force model to keep contact pairs in close proximity. In a physical system,

the asteroids will not penetrate and any collisional energy will go into

fragmenting the contacting surfaces and generating frictional heat.

2. Steady State Contact Surface Oscillations - The tendency for persistent
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contact bodies to oscillate normal to their surfaces is a non-physical result

caused by the spring force model used to keep bodies in close proximity.

In a physical system, asteroids in persistent contact will not penetrate and

will approach a fixed distance from their centers. Any relative velocity

along the contact normal will be dissipated through frictional heat and

fragmentation.

We are only concerned with keeping contact pairs in close proximity and under-

standing how bodies transition between relative equilibria. Overall, the non-physical

results did not affect the overall behavior or evolution of the system that we were in-

terested in studying. All of the non-physical results of the simulation were centered

around small interpenetrations of contact pairs, which had negligible effects on the

transition between relative equilibria and the timescales required for tidal locking.

The physically consistent results are representative of the true dynamics governing

the evolution of the bodies and are adequately captured by the simulation.
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Chapter 7: Conclusion

7.1 Future Work

Although the simulation was capable of demonstrating physically realistic be-

havior of the bodies as they transitioned between minimum energy configurations,

there are a few improvements that can be made to increase the accuracy of the

results. Currently, the only modeled mode of energy decay is through tidal force

interactions which can happen at a distance. Bodies in contact with a nonzero rel-

ative velocity will lose rotational energy through coulomb friction. This effect will

increase the rate at which bodies become tidally locked because coulomb friction

would act proportional to the relative body spin rate φ̇. The coulomb friction force

model would be integrated into the contact force model to be applied only for per-

sistent contacts that is talked more about in a paper by Sanchez [8]. There is also a

contact friction impulse that would be applied during a collision event [6]. Modeling

both of these effects ultimately allows the timescales for tidal locking to be more

accurately predicted.

The velocity verlet integrator introduces errors to the energy and angular mo-

mentum of the system at each time step. Because the system dynamics depend

on velocity, the energy and angular momentum conserving advantages of using a

138



symplectic integrator are not fully achieved. Furthermore, the underlying physical

constraints of the system are not intrinsically known by the integrator, allowing for

small penetrations to occur and altering the conserved quantities of the system. A

more accurate approach would be to use a discretization of the underlying physical

constraints to formulate an integrator. There are large numbers of discretized inte-

grators used commonly for applications in simulating molecular dynamics or robotic

manipulators. One attractive discretized integrator is the SHAKE algorithm, which

is typically paired with a velocity verlet integration scheme [5]. At each timestep, a

force derived from the physical constraint of the system is applied to the bodies so

as to satisfy the physical constraints at the next state. Additionally at each step,

a set of Lagrange multipliers are iteratively solved for that conserve the underlying

energy and angular momentum of the system. Implementing SHAKE with a ve-

locity verlet integrator would potentially increase the accuracy of the results while

allowing larger timesteps to be taken at the cost of increased computation time per

step.

Finally, the current paper assumes the bodies are perfect spheres, although

the simulation is performed in the larger context of how ternary solar system bodies

evolve. We would want to extend the simulation to be compatible with ellipsoidal

body shapes so that physical asteroid systems could be better modeled. Much of

the contact force code and collision detection works on the assumption of spherical

bodies of equal diameter. Adding in a code that is generic for any set of ellipsoidal

bodies would be the next step to modeling real systems. Once this change is made,

one would be able to simulate observed ternary asteroid systems and predict their
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transition times to a tidally locked state.

7.2 Conclusion

The evolution of three finite density, self-gravitating asteroids is highly varied

as the system transitions between relative equilibria configurations. The energy gap

created after stable ternary asteroid systems are spun-up by the YORP effect al-

low the bodies to take on a variety of orbits before settling on stable configuration.

The trajectory of the transitioning bodies were impossible to predict like for the

case of Euler Resting configuration transitioning to the Aligned Mixed configura-

tion. Others like the Euler Resting to Lagrange Resting transition were predictable

through a V-Resting configuration that gradually declined. In all cases, the sim-

ulation provided a clear pathway for the bodies to transition into their terminal

minimum energy configuration. The terminal configuration reached by each initial

system confirm the expected results postulated by a purely analytic approach to the

problem.

For each simulated transition, we showed that the bodies do not become stuck

in a local minima. All other available equilibria other than the minimum energy

configuration for each transition were energetically unstable, so we would not reason-

ably expect the system to become stuck in one of these other equilibria. However,

this result could not be determined analytically because of the complex interac-

tions of the dynamics. With these simulation results, we can provide evidence that

the transition between minimum energy configurations is a direct process with no
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unusual behavior that may go against our intuition.

Furthermore, tidal forces were shown to transfer angular momentum and ro-

tational energy between bodies from a distance. In this way, tidal torques would

synchronize the relative spin rates between the bodies and decay stored excess me-

chanical energy. The measured rate of energy decay was shown to be consistent with

the analytic model used to generate the tidal torques and tidal forces. From the

steady state tidal torque, we were able to estimate the time required for the bodies

to reach a tidally locked state, and thus when the system will perfectly conform to

the predicted minimum energy configuration. The transient and long term behavior

of these bodies is exciting and complex, motivating a more comprehensive analysis

of the transitions between equilibrium configurations.
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Appendix A: Fast Contact Force Model

A.1 Further Discussion of Algorithm

By differentiating equation 3.36 twice with respect to time, the following ex-

pression is obtained:

d̈i(t) = ¨̂ni(t) · (pA(t)− pB(t)) + 2 ˙̂ni(t) · (ṗA(t)− ṗB(t)) + n̂i(t) · (p̈A(t)− p̈B(t)) (A.1)

Assuming the surfaces of Body A and B are just touching at time t0, that is,

pA(t0) = pB(t0), the final expression is simply:

d̈i(t0) = 2 ˙̂ni(t0) · (ṗA(t0)− ṗB(t0)) + n̂i(t0) · (p̈A(t0)− p̈B(t0)) (A.2)

The first normal force condition for the fast contact force model is thus:

d̈i(t0) ≥ 0 (A.3)

As a matter of convention, say a contact force fin̂i acts on Body A at the ith

contact point. Physically, we know that contact forces must be either 0 or repulsive,
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and since n̂i points from Body B to Body A by convention, we arrive at the second

normal force condition:

fi ≥ 0 (A.4)

These two contact force conditions are actually coupled, as there is an under-

lying symmetry between their articulations. If d̈i is greater than 0, the bodies will

separate so there will be no contact forces, fi = 0, between Bodies A & B at the ith

contact point. Similarly, if d̈i = 0, there must be a nonzero contact force to prevent

Bodies A & B from interpenetrating. These ideas and the previous conditions come

together to form the final normal force condition:

fid̈i(t0) = 0 (A.5)

Finally, we must consider the external and internal forces acting on each con-

tact point and how they interact with the calculated contact forces. The external

forces, like gravity, linearly affect the contact point acceleration. For a multi body

system, the sum of all gravitational forces at the ith contact point, bi is applied to

d̈i. Simply put:

d̈i ∝ bi (A.6)

The internal forces are the contact forces present at each contact point. For

a simple two-body system with a single contact point, the interaction between the
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contact force and the contact point acceleration d̈i is trivial. For a multi body

system with n contact points, the applied contact force at a contact point will affect

the acceleration of the other contact points. Because of this interdependent nature,

the contact forces must be solved for simultaneously. In general, we can derive a

matrix An,n that quantitatively relates how the gap acceleration of contact point i

is affected by the contact forces f1, f2, ...fn.

d̈i ∝ Ai[f1, f2, ...fn]T (A.7)

The effects of the external and internal forces acting on each contact point can

be compactly expressed in matrix form: [6]



d̈1(t0)
...

d̈n(t0)


= A



f1(t0)
...

fn(t0)


+



b1(t0)
...

bn(t0)


(A.8)

Or more simply:

a = Af + b (A.9)

Where

a = (n x 1) column vector of d̈i(t0)

A = (n x n) matrix governing how contact force fj affects the acceleration of contact point i

b = (n x 1) column vector of how external forces affect the acceleration of contact point i

f = (n x 1) column vector of contact forces to be solved for
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This system of equations and the underlying contact force conditions represent

a Quadratic Programming (QP) problem. Solving the problem and satisfying the

constraints is a matter of optimization, given by the refined problem statement

below:

min
f

fT (Af + b) Subject to:


Af + b ≥ 0

f ≥ 0

(A.10)

There are a number general QP solvers available that can solve this NP-

hard problem, including two built-in MATLAB optimization routines, quadprog

and fmincon. The result from solving this QP problem is a vector of contact forces

fi that, when applied to each body at the ith contact, prevents any interpenetration

while allowing the bodies to behave in a physically accurate way. The remaining

problem is solving for the elements aij of A and bi of b. The expressions for calcu-

lating A and b are listed further on in this appendix.

However in practice, solving this QP is computationally expensive and the

solvers would routinely fail to find a valid solution. Ideally we would like a solution

to always be found, even if numerical inaccuracies produce some small surface pen-

etration between the bodies. Furthermore, solving the system as a QP undermines

the simpler condition of each contact force fiai = 0. By attempting to solve the

more general problem of fTa, we are solving a much harder problem than necessary.

Barraff solves this issue by applying a more specific solver algorithm known as the

Pivot Step method.
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The Pivot Step method has been specially adapted by David Barraff for the

efficient computation of contact forces in modeling real-time systems. [7] The goal

of the algorithm is to increase the contact force at each sequential contact point so

that the normal force conditions hold at this and all previously inspected contact

points. Contact points are split between two sets: Clamped {C} and Not Clamped

{NC}. The Clamped contact points are those with ai = 0 such that the bodies are

effectively locked to one another. The Not Clamped contact points are those with

fi = 0 such that the bodies are free to separate. The general procedure for the

algorithm is outlined as follows:

1. Set all contact forces f to 0 and let the acceleration of the contact points ai

be equal to the external forces b. Thus all contact points are currently in the

{NC} set.

2. Find the first contact point with a negative gap acceleration, call it contact

point d.

3. Increase the contact force at point d by a unit step and compute how this

changes the other contact forces in the Clamped set {C}, collectively labeled

as ∆f .

4. Compute the largest scalar factor s that multiplies ∆f and is added to f such

that clamped points retain ai = 0 and unclamped points retain fi = 0.

5. During this cycle, if any clamped point has fi = 0, then the ith contact point

is considered unclamped and moved to the {NC} set. The same is true if an
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unclamped point has ai = 0, except now it’s considered clamped and moved

to the {C} set. This switching of points between sets is known as pivoting.

6. The algorithm terminates when there are no longer any negative accelerations

ai for i = 1 : n.

The Pivot Step method is advantageous over traditional QP solvers for a few

reasons. Most importantly, a solution is always guaranteed to exist [citation] even in

the event that matrix A is singular. Empirically, the Pivot Step algorithm produces

more accurate results and has a shorter computation time compared to the QP solver

quadprog & fmincon. Although this method produces very accurate, instantaneous

results and maintains the physical constraint of the rigid bodies well, its interaction

with the numerical propagator of choice lead to unstable energy increases.

A more detailed pseudo-code arrangement of the algorithm can be found in [7].

A.2 Solving for A

Start with the expression for the contact gap acceleration at the ith contact

point:

d̈i(t0) = 2 ˙̂ni(t0) · (ṗA(t0)− ṗB(t0)) + n̂i(t0) · (p̈A(t0)− p̈B(t0)) (A.11)

When calculating the elements of A, aij, the only concern are terms that

depend on contact force at the jth contact point, fj. The term n̂i(t)·(p̈A(t0)−p̈B(t0))
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is only dependent on already known velocities of the contact point, so this term will

be lumped into the b matrix.

Next consider the contact force fj at the jth contact point. If neither Body A

nor Body B is involved at the jth contact point, then fj has no direct effect on d̈i

and thus aij = 0.

Suppose Body A is involved at the jth contact such that a force +fjn̂j acts on

Body A. We are interested in calculating how p̈A(t0) is affected by this force. Let’s

start by defining some preliminary variables:

xA = center of mass of body A in inertial frame

rA = vector from center of mass of Body A to the i-th contact point

rj,A = vector from center of mass of Body A to the j-th contact point

ωA = angular velocity of Body A

vA = ẋA = velocity vector of center of mass of Body A

mA = mass of Body A

Then pA = xA + rA and by differentiating twice with respect to time, the

following expression is obtained:

p̈A(t) = v̇A(t) + ω̇A(t)× rA(t) + ωA(t)× (ωA(t)× rA(t)) (A.12)

The last term ωA(t) × (ωA(t) × rA(t)) only depends on velocity and so will

contribute to the b vector. The term v̇A(t) is the linear acceleration of Body A

and is given by Newton’s law: v̇A(t) =
∑

forces acting on A
mA

. The fj dependent part of

v̇A = fjn̂j/mA.
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Similarly, we need an expression for ω̇A. One starts with LA(t) = IA(t)ωA(t),

where LA(t) is the angular momentum of Body A and IA(t) is the moment of in-

ertia matrix representing Body A (which for a spherical body is just a constant).

Differentiating both sides with respect to time and solving for ω̇A(t) yields:

ω̇A(t) = İ−1
A (t)LA(t) + I−1

A (t)L̇A(t) (A.13)

David Baraff derives another workable form of the equation:

ω̇A(t) = I−1
A (t)(LA(t)× ωA(t) + L̇A(t)) (A.14)

Note that L̇A(t) = τA(t), the total torque acting on Body A. Any external

torques will fit into this equation but those terms will be later grouped into the

b vector. There will be a torque exerted on Body A due to the jth contact force

located at pj. This is expressed as:

τA,int = (pj − xA(t0))× fjn̂j (A.15)

However, in the case of perfectly spherical bodies, this extra torque term will

always be 0 because the jth contact force vector and the line joining the center of

Body A and the jth will always be parallel. Nevertheless, the angular contribution

to p̈A will be:

fj(I−1
A (t0)((pj − xA(t0))× n̂j(t0)))× rA (A.16)

And finally, the total dependence of p̈A on fj is given by:
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fj(n̂j/mA + I−1
A (t0)((pj − xA(t0))× n̂j(t0)))× rA (A.17)

Similarly, p̈B depends on fj in the same way, except a force of −fjn̂j would

affect Body B, thus a minus sign would appear in front of the equation. These two

results are combined and dotted with n̂j as it appears in equation A.11 to obtain

ai,j.

A.3 Solving for b

The b vector is calculated using all the remaining terms that do no depend

on any contact forces fi. From equation A.11, we can pull out the term: 2 ˙̂ni(t0) ·

(ṗA(t0)− ṗB(t0)), which depends only on the velocity of each point on the body in

contact. The velocity of each point in contact, ṗA/B can be calculated by:

ṗA = vA + ωA × rA (A.18)

The remaining contact force independent terms comes from the calculation of

p̈A/B. These terms are a result of external gravity forces and external torques, in

addition to force-independent terms.

• External Force on Body A: FA/mA

• External Torque on Body A: (I−1
A (t0)τA,ext(t0))× rA

• ωA(t0)× (ωA(t0)× rA(t0))
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• (I−1
A (t0)(LA(t0)× ωA(t0)))× rA

Thus, the final expression for p̈A independent of fj is:

FA/mA + ((I−1
A (t0)τA,ext(t0)) + ωA(t0)× (ωA(t0)) + (I−1

A (t0)(LA(t0)× ωA(t0))))× rA

(A.19)

The same calculation is performed for p̈B and the two results are combined

and dotted with n̂j following equation A.11. This term is then added to the term

2 ˙̂ni(t0) · (ṗA(t0) − ṗB(t0)) to obtain bi. Once the A and b matrices are calculated,

the next step is to find an appropriate solution of contact forces that satisfy the

normal force conditions.
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Appendix B: Derivation of Reduced System

The state variables used in the dynamics and for calculations are based on an

inertial reference frame I where the position and angle of each body is specified in

terms of cartesian coordinate system with an origin defined at the system barycenter.

Using this coordinate system, there are nine state variables and nine degrees of

freedom (DOF) - two position coordinates and one angle for each of the three bodies.

The system has three notionally conserved quantities assuming no energy dissipation

modes: the conserved quantities are the linear momenta along the X and Y axes

and the angular momentum of the system. Using these conserved quantities, it is

possible to reduce the system from nine DOF to six DOF, thereby reducing the

number of state variables from nine to six.

The body coordinates can be redefined in terms relative to the other two

bodies. The origin of the reduced coordinate system B1 is placed at the center of

body 1 and rotates with body 1. Then the reduced positions of the three bodies are

defined as:

B1~r1 =I ~r1 −I ~r1 = ~0 (B.1)
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B1~r2 =I ~r2 −I ~r1 (B.2)

B1~r3 =I ~r3 −I ~r1 (B.3)

where B1~ri is the position of body i (i = 1, 2, 3) with respect to the center of

body 1, and I~ri is the position of body i with respect to an inertial reference frame

I. Similarly, the rotation angle of each body is specified relative to the rotation of

body 1:

B1θ1 =I θ1 −I θ1 = 0 (B.4)

B1θ2 =I θ2 −I θ1 (B.5)

B1θ3 =I θ3 −I θ1 (B.6)

where B1θi is the position of body i with respect to the rotation of body 1,

and Iθi is the rotation of body i with respect to the +X direction of the inertial

reference frame I.
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