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ABSTRACT
We study a containment control problem (CCP) and a shape control problem (SCP) for systemswhose initial
condition is a randomvariablewith knowndistribution. The twocontrol problemsboth require exponential
convergence to a desired trajectory, which is complemented by either; (i) a required cumulative distribu-
tion over a prescribed containment set at a specific transient time for the CCP, or; (ii) a maximum distance
between an attained and a desired probability density function of the state for the SCP. For the CCP, we
obtain solutions for both linear and nonlinear systems by designing the closed-loop such that the initial
pdf shrinks or contracts to a desired trajectory. For the SCP, we obtain solutions for linear systems and an
admissible desired pdf, by designing the closed-loop such that the evolution of the pdf at the transient
time is similar to the target pdf.
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1. Introduction

One of the major focuses for many control engineering appli-
cations is the control of variations in the states of a process.
Such variations are present in all aspects of all processes, but the
magnitude of these variations either forces us to consider them
explicitly, or allows us to ignore their effect. A stochastic noise, if
present, can be a particular difficult type of perturbation to deal
with. In this case, we generally consider a control system to be
‘good’ if the effect of this perturbation remains within accept-
able bounds, which can be determined based on the system
characteristics. A general underlying assumption is that the per-
turbation influences the vector field of the systems’ dynamics.
Such problems are considered in the field of stochastic control
(Aström, 1970; Bertsekas, 1976) and one of the ways to express
knowledge on the state is through a probability density func-
tion (pdf) that changes over time (Kárný, 1996; Sun, 2006).
This function then maps values of the state space to proba-
bilities of occurrence. The Fokker–Planck equation or forward
Kolmogorov equation (Gardiner, 1985; Risken, 1989) is a well-
known result related to this approach, commonly specified for
an Itô process (driven by a Wiener process), such as Brownian
motion (Itô, 2004).

Efforts to improve control system design, combined with
ongoing advances in sensor and actuator technologies, are
increasingly successful in minimising the perturbation effects
on the vector field. We can hence turn our attention to other
sources of variation. A subject that has received little atten-
tion in the literature, is the variations in the initial conditions.
This will be the focus of this paper. An example of an appli-
cation where such variations are relevant is a high-precision
andhigh-frequencymanufacturing processeswhere natural and
uncontrollable variation is present in the input materials. The
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presence of such undesirable ab initio conditions can decrease
the end-products quality when it is not taken into account
explicitly in the control design. In other words, although the
use of high-precision systems can minimise product variations
due to measurement noises and lack of accuracy in the actuator
systems, it cannot pre-empt variability in the initial conditions.

In this paper, one of the main assumptions of the systems is
that the initial conditions are random variables and that where
we have apriori knowledge of the associated pdf. This accord-
ingly assumes more information on the initial conditions than
traditional approaches and allows for other analysis. Such for-
malism encompasses also the standard deterministic setting
(with known initial condition) by taking aDirac pdf.When both
the initial time and initial state are random variables (which can
represent time-varying initial conditions), our results are still
applicable by considering the marginal distribution of the joint
distribution on the initial state random variable, which leads
to conservative results. For such systems with stochastic initial
conditions, designing a control law with a particular asymptotic
behaviour as the main criterion does not reveal extra infor-
mation since all possible trajectories converge to the desired
operating point or trajectory, independent of the initial state
pdf. On the other hand, since the closed-loop systems’ transient
behaviour is highly dependent on the initial state, we investigate
in this paper control designmethodswherewe take into account
the evolution of the state pdf in the control design problems.

In our first main result, we consider a containment con-
trol problem (CCP) in Sections 3 and 4 where, in addition to
achieving desired asymptotic behaviour, the controller needs
to guarantee that the cumulative distribution of the trajecto-
ries over a prescribed set at a given transient time reaches a
prescribed value.
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Such a problem formulation can be related to the fun-
nel control problem for deterministic systems (Ilchmann
et al., 2002, 2007). In these papers, the control problem is to
design control laws that guarantee the state trajectories from
all initial conditions remain in a desired funnel, which con-
tracts to the desired state. As the funnel must contain all initial
conditions at the initial time, the results are conservative and
applicable for linear systems with known relative degree, min-
imum phase with positive definite high-frequency gain matrix.
In this case, our CCP case can be interpreted as a modification
to the funnel control whose initial funnel need to cover only a
set of initial state with the desired cumulative distribution at the
initial time. As will be shown later in Sections 3 and 4, our set-
ting is more general than the funnel one and it admits a general
class of linear systems, namely all controllable linear systems.

In our second main result as presented in Section 5, we
consider a different transient performance criterion where, in
addition to the asymptotic behaviour requirement, the con-
troller must ensure that the evolution of state pdf at a given
transient time is close to a desired pdf. In particular, it must
guarantee that the Hellinger distance between the two pdfs is
less than a given prescribed level. A recent work related to the
shaping control of pdf has also appeared in Buehler et al. (2016).
In Buehler et al. (2016), a generic control framework using
stochastic MPC is proposed for stochastic nonlinear systems,
where the initial condition is a random variable and the distur-
bance is a stochastic process. In this work, a stochastic MPC
problem is proposed where the distance of evolving pdf to a
desired one must be minimised. In contrast to the result pre-
sented in Buehler et al. (2016) which does not yield an analytical
solution, we restrict our problem only to the random initial con-
dition case that has allowed us to construct simple control laws
with a guaranteed level of performance and to provide rigorous
analysis of the method. A practical implication of this limita-
tion is that the obtained results are only valid for systems that
allow for sufficiently accurate dynamical description through
deterministic equations.

The preliminary works of our results have been pre-
sented in Dresscher and Jayawardhana (2017a, 2017b). In the
present paper, we extend the preliminary results in Dresscher
and Jayawardhana (2017a, 2017b) in several directions. Firstly,
our Theorem 3.1 in Section 3 encompasses general pdf of initial
state and we allow now for any well-posed reference trajectories
instead of only equilibriumpoints as inDresscher and Jayaward-
hana (2017a). Secondly, the results in Theorem 4.1 in Section 4
are extended to general nonlinear systems, instead of affine
nonlinear systems as considered in Dresscher and Jayaward-
hana (2017b). Thirdly, the pdf matching approach as presented
in Theorems 5.2 and 5.5 is novel when compared to Dresscher
and Jayawardhana (2017a).Wenote that the results inDresscher
and Jayawardhana (2017a) rely on a coordinate transformation
of the original system to another one such that the state pdf evo-
lution and the target pdf belongs to the same class of pdf, which
is not trivial to obtain.

The remainder of the paper is structured as follows. In
Section 2 we will introduce the system dynamics, transient
specifications to evaluate the performance of our controller,
the two control problems that we consider and we will use a
short example to show the non-triviality of our control problem.

Sections 3–5 will present solutions to our control problems,
where one control problem is solved for both the linear and non-
linear case, while the other is solved only for the linear case and
under specific conditions. Sections 6 and 7 are used to present
two non-trivial simulation results, where both control prob-
lems are considered. Lastly, we round up with the conclusions
in Section 8.

2. Problem definition

We will use this section to formally present our control prob-
lems. For this purpose, we start by introducing our choice of
dynamical system equations and transient specifications. After
the problems have been introduced, we provide a simple exam-
ple to show the non-triviality of the problems and some con-
troller design considerations.

2.1 Dynamical system equations

Consider the general dynamical system given by

ẋ = f (x, u, t), x(0) = x0, (1)

where x ∈ X ⊆ R
n, u ∈ U ⊆ Rm and f : X × U × R≥0 → R

n

is a continuously differentiable vector field. Let us assume that
x0 is a known random variable defined on X0 ⊂ X, satisfying a
probability density function (pdf) φx0 : X0 → R≥0. In this case,
its forward solution x(t) is random variable for all t> 0 and we
denote the propagation of φx0 along (1) by φx0,t . Note that the
usual setting where x0 is deterministic is a particular class of
this class of system where φx0 is simply given by a Dirac delta
function.

2.2 Transient specifications

For defining transient behaviour specification corresponding
to the evolution of φx0,t , there are two possibilities in defining
the measure. For the first one, we can relate φx0,t at a termi-
nal time T or in an interval [0,T] to a desired point (or desired
set) or to a desired trajectory xd(t) defined on the time interval
[0,T], respectively. For the second one, we can relate φx0,t to a
(dynamic or stationary) target distribution.

With regards to the first possibility, we will discuss two mea-
sures that can be used to define transient specification based on
φx0,t and a given desired point or set. The first measure is given
by the cumulative density of φx0,T at the terminal time T over
a prescribed set �. More precisely, we can define the following
measure

��,T :=
∫

�

φx0,T(ξ) dξ , (2)

where� ⊂ X and T is the relevant terminal transient time. This
transient specification is straightforward and it yields a scalar
value. The second candidate measure is the second moment
with respect to a point, which (for a single dimension) can be
expressed as

σ(φx0,T ,μ) :=
∫
X
(ξ − μ)2φx0,T(ξ)dξ , (3)
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where μ is a desired point corresponding to the transient time
of interest T. Notice that this expression is equal to the compu-
tation of the variance if φx0,T is normally distributed with μ be
the mean value. Both of the specifications above can be inter-
preted in a similar manner as the classical specifications of rise
time or settling time and are thus highly relevant for any control
problem. When comparing the two specifications, it is further-
more easy to see that the computation of the cumulative density
is relatively simple. This transient specification has the advan-
tage that we obtain a scalar-valued output which again simplifies
interpretation and implementation in the control design.

For the second possibility, when considering (dis)similarity
between two density functions, we can consider measures that
are given by distances or divergences such as the Hellinger
distance, Bhattacharyya distance, Kullback–Leibler divergence
and Jeffrey’s divergence (Ali & Silvey, 1966; Kailath, 1967; Kull-
back, 1997). A distance deserves preference over a divergence,
since it produces the desired scalar-valued output. Note that the
Bhattacharyya distance and the Hellinger distance are related
to each other through the Bhattacharyya coefficient (Abou-
Moustafa & Ferrie, 2012; Buehler et al., 2016). If φd denotes
the target distribution at terminal time T, the Bhattacharyya
coefficient is given by

BC(φd,φx0,T) =
∫
X

√
φd(ξ)φx0,T(ξ)dξ . (4)

If both distributions are equal then it will give Bhattacharyya
coefficient of 1 and if they are dissimilar then the Bhattacharyya
coefficient will be close to 0. Using this coefficient, the Hellinger
distance is defined by

dh(φd,φx0,T) = √
1 − BC(φd,φx0,T), (5)

and, correspondingly, the Bhattacharyya distance is given by

db(φd,φx0,T) = − ln(BC(φd,φx0,T)). (6)

The two measures are relatively similar. However, the Hellinger
distance is a proper metric, as discussed in Abou-Moustafa
and Ferrie (2012), while the Bhattacharyya distance is only a
semi-metric because it does not satisfy the triangle inequality.
Our distance of choice is therefore the Hellinger distance.

When we compare these two possibilities of defining mea-
sure, there is a significant difference between transient speci-
fication (2) and (5). The former does not impose a shape on
the pdf of the states. The latter, on the other hand, does impose
this shape and therefore places different (more strict) require-
ments on the controller design aswewill show later in this paper.
We will consider both the Hellinger distance (as in (5)) and the
cumulative density (as in (2)) in the sequel.

Before we proceed with the control problem formulations,
we would like to clarify some notation that we use for the defin-
ing distances in this paper. In order to maintain a clear distinc-
tion, we will always denote the Hellinger distance by dh(φ1,φ2),
the Euclidean distance by dE(x1, x2) and the Finsler distance by
dF(x1, x2). Here, φ1 and φ2 are two pdfs, while x1 and x2 are
points in state space.

2.3 Control problems formulation

We are now ready to define our two control problems, based on
two different transient specifications as given before.

Containment Control Problem (CCP): For a system as
in (1), given a desired containment set�, a desired containment
level p∗ ∈ (0, 1), a transient time T> 0, a distance d(·, ·) and
a target trajectory xd(t), design a control law u(t) = k(x(t), t)
such that

CCPa: ��,T ≥ p∗
CCPb: limt→∞ d(x(t), xd(t)) = 0.

In the formulation as above,CCPa is the realisation of amin-
imum containment criterion during the transient. The control
problem hence incorporates the cumulative density transient
specification (as in (2)). This condition is complemented by
CCPb, which requires convergence to a desired trajectory in the
asymptote. The control objective for the CCP is illustrated in
Figure 1.

Shape Control Problem (SCP): For the system in (1), given
a desired pdf φd, a transient time T, a distance d(·, ·), a desired
Hellinger distance � ∈ [0,∞) and a target trajectory xd, design
a control law u(t) = k(x(t), t) such that

SCPa: dh(φx0,T ,φd) ≤ �

SCPb: limt→∞ d(x(t), xd(t)) = 0.

Similar to the structure of the CCP, SCPa is the realisation
of the transient performance criteria related to the Hellinger
distance by requiring it to be smaller than �. This condition
is again complemented by the asymptotic convergence crite-
rion as expressed in SCPb. The control objective for the SCP
is illustrated in Figure 2.

2.4 Control problem example

Before moving on to our contributions, we will show the non-
triviality of our control problem by considering the following
simple example for the CCP with n = 1. The example further-
more highlights come of the considerations relevant for solving
the CCP and SCP. We try to solve the CCP with a standard
control law, namely a state feedback law, for a first-order lin-
ear system. For this first-order LTI system, we have f (x, u) =
ax + bu, with a ∈ R and b ∈ R. Furthermore, let xd(t) = x∗.
Applying the linear feedback

u = k(x − x∗) − a
b
x∗, (7)

with k ∈ R, to (1) will lead us to the following simple expression
of the closed-loop system

˙̃x = (a + bk)x̃, x̃(0) = x0 − x∗, (8)

where x̃ = x − x∗ is the error state and the gain k can be chosen
arbitrarily to ensure that (a + bk) < 0. To simplify things fur-
ther, we will assume a normal distribution for the initial state,
e.g.φx̃0 = N (μ − x∗, σ). Sincewe are interested in a non-trivial
solution of control problem 1, we assume thatμ 
= 0. For defin-
ing the first transient behaviour specification of the closed-loop
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Figure 1. This figure illustrates the control objective of the CCP. The initial distribution φx0 changes with time such that it has a cumulative density over the set� at time
T, denoted as��,T . Furthermore, all possible initial values should converge to xd(t), which could result in the indicated trajectory for a specific initial state of φx0 .

Figure 2. This figure illustrates the control objective of the SCP. The initial distribution φx0 changes with time, such that the distribution at time T, denoted as φx0,T , has a
Hellinger distance dh(φx0,T ,φd)w.r.t. a desired distributionφd . Furthermore, all possible initial values should converge to xd(t), which can result in the indicated trajectory
for a specific initial state of φx0 .

system (8), we take �̃ = [xT,low, xT,up] − x∗ where xT,low and
xT,up are the lower and upper bound of the containment interval
�.

As we are dealing with a simple first-order linear system,
we can use the bounds of �̃ and the explicit solution of (8) to
construct the image of this containment interval at time t = 0,
which we denote as �̃0. In this way, the value ��̃,T will be
equivalent to cumulative distribution of x̃0 on �̃0.

Based on the solution of (8), we have

x̃0,low = e−(a+bk)Tx̃T,low (9)

and

x̃0,up = e−(a+bk)Tx̃T,up, (10)

where, understandably, x̃0,low and x̃0,up are the lower and upper
bound of �̃0.

Since φx̃0 = N (μ − x∗, σ), we can determine the maximum
containment level pmax by solving

pmax = max
k

1
2

[
erf

(
e−(a+bk)Tx̃T,up − μ + x∗

σ
√
2

)

−erf

(
e−(a+bk)Tx̃T,low − μ + x∗

σ
√
2

)]
, (11)

where erf is the error function. This quantity tells us that we
will always have ��̃,T ≤ pmax. This implies that if pmax < 1, we
cannot solve CCP for arbitrary containment level p∗ ∈ (0, 1).

In the following numerical example, we will demonstrate
a case where a simple linear state-feedback control law with-
out feedforward control cannot solve the CCP for an arbitrary
containment level.

Example 2.1: Consider a system that satisfies

ẋ = u, x(0) = x0, (12)

where we assume that φx0 = N (10, 1). Furthermore, consider
the desired containment set� = [4, 5] with a relevant transient
time T = 5.

If we consider a non-zero desired equilibrium point of x∗ =
4. Using the linear feedback controller as given before, we can
obtain the gain k< 0 for any desired containment level p∗ ∈
(0, 1). For instance, by taking k = −3.6776, we get p∗ very close
to 1. Since k< 0, the closed-loop system is stable which implies
that x(t) converges to x∗ as t → ∞. Hence we achieve both
CCPa and CCPb.

On the other hand, if we change the desired steady-state to
x∗ = 0 then the aforementioned feedback control will no longer
solve CP1 for arbitrary p∗. The main reason for this is that
we can no longer design k such that CCPa is met for some
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desired containment level p∗. Indeed, solving (11) results in
pmax = 0.7359 < 1 which occurs for k = −0.1617. Hence, we
can no longer find a feasible solution that satisfies both CCPa
and CCPb for any p∗ > pmax.

In Example 2.1, we have shown that the previous simple
linear feedback control law only allows us to solve the CCP
for specific cases. Particularly, achieving a desired containment
level p∗ close to 1 may not be possible at all, even for the case
of a simple integrator. This problem is exacerbated when we are
interested in solving SCP.

3. Containment Control Problem for linear systems

We will start our exposition by considering the CCP in a linear
time-invariant setting. The system (1) becomes

ẋ = Ax + Bu, x(0) = x0, (13)

where A ∈ R
n×n and B ∈ R

n×m are the system matrices and
x0 is a random variable defined on R

n. We are now ready to
present our first result, which is an extension of Proposition 1
in Dresscher and Jayawardhana (2017a). The result below con-
siders general distributions for the initial condition and state
convergence to a desired state trajectory, while the previous
result only considered normal distributions and convergence to
a point. We remark that controllability in this context refers to
the standard controllability property for LTI systems.

Theorem 3.1: Consider the system as in (13). Let T> 0 be the
given transient terminal time and xd be the desired trajectory.
Assume that the pair (A,B) is controllable and there exists a
finite τ > T such that xd is a solution to (13) (with an admis-
sible input signal ud(t)) for all t ≥ τ . Then the CCP is solvable
for any p∗ where d(·, ·) = dE(·, ·) is the Euclidean distance and
the set � ⊂ R

n is compact, connected and non-empty.

Proof: The proof of the theorem follows a similar line as the
proof of Proposition 1 in Dresscher and Jayawardhana (2017a).
Consider the control law

u(t) = K(x(t) − xr(t)) + u∗(t), (14)

where xr and u∗ are the tracking reference signal and additional
feedforward input signal to be designed.

Let us first define two closed balls. The first one is centred in
ε1 and has a radius κ1 (which we will denote by Bκ1(ε1)). For
this ball, ε1 and κ1 are such that∫

Bκ1 (ε1)
φx0(ξ)dξ ≥ p∗. (15)

We will denote the second ball by Bκ2(ε2). Since � is compact,
connected and non-empty, we can choose ε2 and κ2 such that
Bκ2(ε2) ⊆ �. Furthermore, we require κ1 > κ2. Define xr(t)
and u∗(t) with the following properties: (i) xr(t) = xd(t), for all
t ≥ τ ; (ii) xr(0) = ε1; (iii) xr(T) = ε2; and (iv) ẋr(t) = Axr(t) +
Bu∗(t). Note that since the pair (A,B) is controllable, we can
always find a control signal u∗ that can bring the state from ε1
at time 0 to ε2 at time T, and subsequently, to xd(τ ) at τ . Fur-
thermore, since xd(t) is a solution to (13) for ud(t) and t ≥ τ ,

we can let u∗(t) = ud(t) for t ≥ τ . Using such u∗, the tracking
reference signal xr is then given by the solution z of

ż = Az + Bu∗, z(0) = ε1. (16)

Define now ζ = x − xr as the error signal between the state
and the tracking reference signal. Note that with such coordi-
nate transformation, if ζ(T) ∈ Bκ2(0) then, since xr(T) = ε2,
it implies that x(T) ∈ Bκ2(ε2), which is a subset of �. Also,
it follows that ζ0 ∈ Bκ1(0) implies that x0 ∈ Bκ1(ε1). Accord-
ingly, the dynamics of the error signal where we have applied
the control law (14) are given by

ζ̇ = (A + BK)ζ , ζ(0) = ζ0. (17)

Let us now define a contraction exponential rate constant λ =
− 1

T ln(κ2/κ1). In the following, we will design K so that Bκ1(0)
under the closed-loop dynamics (17) will be contracted with an
exponential rate of λ, to Bκ2(0) at time T.

From the pair (A,B) being controllable, it follows that we can
design K such that A+BK has eigenvalues whose real part is
less than −λ (for example, by the well-known pole-placement
method). This implies that

‖ζ(t)‖ ≤ e−λt‖ζ(0)‖
holds for all initial condition ζ(0). By our choice of λ as given
before and by considering initial conditions along the boundary
of Bκ1(0) (having a Euclidean norm of κ1),

‖ζ(T)‖ ≤ κ2

κ1
‖ζ(0)‖ = κ2.

Hence,

ζ(0) ∈ Bκ1(0) ⇒ ζ(T) ∈ Bκ2(0) ⇒ x(T) ∈ Bκ2(ε2) ⊆ �.

And, since (15) holds, we obtain

��,T ≥
∫

Bκ1 (0)
φζ0(ξ) dξ ≥ p∗.

In other words, CCPa is satisfied. Additionally, since we have
xr(t) = xd(t) for t ≥ τ , the following asymptotic property
holds:

lim
t→∞ ζ(t) = 0 ⇒ lim

t→∞ dE(x(t), xd(t)) = 0.

In other words, CCPb holds. This concludes the proof. �

In the special case where xd(t) is a constant point, the result
above becomes more simple. This is presented in the following
corollary.

Corollary 3.2: Consider the system as in (13). Assume that the
pair (A,B) is controllable and that xd(t) = x∗. Then, the CCP is
solvable for any T and p∗, where d(·, ·) = dE(·, ·), the Euclidean
distance, and � is compact, connected and non-empty.

Proof: Theproof is almost identical to the proof of Theorem3.1.
Here, we let the reference signal satisfy the following: (i)
limt→∞ xr(t) = x∗; (ii) xr(0) = ε1; (iii) xr(T) = ε2; and (iv)
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ẋr(t) = Axr(t) + Bu∗(t). Notice that the new characteristic (i) is
always achievable for a controllable system. The proof of CCPa
remains unchanged. For CCPb we now obtain

lim
t→∞ ζ(t) = 0 ⇒ lim

t→∞ dE(x(t), x∗) = 0.

Hence, CCPb is satisfied. This concludes the proof. �

4. Containment Control Problem for nonlinear
systems

In this section, we will extend the result of Section 4 to the
nonlinear case using recent results in contraction theory. For
interested readers, we present relevant contraction results in
Appendix. The overall main idea is that we use contraction
results for quantifying the rate of decay among all trajec-
tories which include the target trajectory. For further back-
ground reading on this subject, we refer the interested reader
to Lohmiller and Slotine (1998), Jouffroy and Fossen (2010),
Andrieu et al. (2016) andAndrieu et al. (2015).

Let us now proceed by presenting our solution to CCP
for the nonlinear systems case. We can apply the contraction-
based control design by implementing a control law for the
system (1), such that a partial contraction with a desired
contraction rate w.r.t. a desired reference trajectory xr(t) is
achieved. The design procedure is accordingly an iterative pro-
cess which should yield three components: (i) a reference tra-
jectory xr that starts close to the initial conditions and satisfies
xr(T) ∈ � and limt→∞ dF(xr(t), xd(t)) = 0, with dF a Finsler
distance as in Definition A.2 in Appendix; (ii) a control law that
yields a closed-loop system having xr as a solution, and; (iii) a
Finsler–Lyapunov function that yields a desired contraction rate
λ for the closed-loop system.

We apply an adaptation of Lemma A.4 in Appendix as
presented in Jouffroy and Fossen (2010) and Wang and Slo-
tine (2005) to facilitate the control law design. Accordingly, for
a given system (1), we assume the existence of a control law
u(t) = k(x, xr , t) that causes the closed-loop system, given by

ẋ = fc(x, xr , t), (18)

to be partially contracting with contraction region C ⊆ X. We
require C to be such that X0 ⊂ C. Furthermore, we require a
minimum rate λ for all initial conditions belonging to a specific
set that satisfies a condition similar to (15). For such a con-
trol law, we obtain λ, the choice of a set of initial conditions
and the reference trajectory xr as control design parameters for
achieving the two control objectives in CCP.

Before presenting a particular design for λ and xr in the fol-
lowing theorem, we will define an open ball induced by the
Finsler distance dF . For a given κ > 0 and a Finsler structure
F satisfying (1) to (4) of Definition A.1 in Appendix, we define
the ball with radius κ centred at x1 by

Dκ(x1) = {x2 ∈ X | dF(x1, x2) < κ}. (19)

The following theorem is an extension to the proposition in
Dresscher and Jayawardhana (2017b) (where we consider non-
linear systems that are affine w.r.t. the input) to general nonlin-
ear systems.

Theorem 4.1: Consider the system (1) with the control law
u(t) = k(x, xr , t). Suppose that the closed-loop system defined by
(18) is contracting w.r.t. x and a contraction region C ⊇ X0, and
that there exist points ε1 ∈ C, ε2 ∈ �, a reference trajectory xr
and constants κ1, κ2 > 0 such that the following conditions hold.

(1) The reference signal xr satisfies

ẋr = fc(xr , xr , t) (20)

for all t ≥ 0, xr(0) = ε1, xr(T) = ε2 and limt→∞ dF(xr(t),
xd(t)) = 0.

(2) There are two sets Dκ1(ε1) and Dκ2(ε2) satisfying∫
Dκ1 (ε1)

φx0(ξ) dξ ≥ p∗ (21)

and Dκ2(ε2) ⊆ �.
(3) The contraction rate λ satisfies

λ ≥ −
ln
(

κ2
κ1

)
T

, (22)

for all x0 ∈ Dκ1(ε1).

Then, the control law u(t) = k(x, xr , t) solves the CCP.

Proof: The proof of this theorem is similar to the proof in
Dresscher and Jayawardhana (2017b).Wewill show that the ini-
tial ballDκ1(xr(0)), which has the desiredminimum cumulative
distribution, will contract to Dκ2(xr(T)), which is contained in
the desired containment set �, at the transient time T.

By the hypothesis of the proposition, the closed-loop sys-
tem is contracting w.r.t x. Furthermore, since xr is an admissible
solution to the system, by Lemma A.4, this implies that all tra-
jectories starting in C converge to xr . Notice that xr is reachable
since it is a solution to the closed-loop system which has a
contraction property. We accordingly have that all trajectories
starting in Dκ1(ε1) ⊂ C converge with an exponential rate λ.
Hence,

dF(xr(t), x(t)) ≤ dF(xr(0), x0)e−λt , (23)

for all x0 ∈ Dκ1(ε1). For all initial conditions x0 ∈ Dκ1(ε1), as
xr(0) = ε1, we obtain that dF(xr(0), x0) ≤ κ1. Hence

dF(xr(t), x(t)) ≤ κ1e−λt . (24)

Thus at time T, by the hypothesis on λ as in (22),

dF(xr(T), x(T)) ≤ κ2

κ1
κ1 ⇒ dF(xr(T), x(T)) ≤ κ2. (25)

Hence, for this λ we have

x0 ∈ Dκ1(xr(0)) ⇒ x(T) ∈ Dκ2(xr(T)) ⊆ �. (26)

It follows that∫
�

φx0,T(ξ) dξ ≥
∫

Dκ2 (xr(T))

φx0,T(ξ) dξ ≥ p∗, (27)

which implies that the first control objective CCPa is satisfied.
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It remains to show that all trajectories converge to xd as
t → ∞. Firstly, since C is such that it contains X0, we have the
contraction property for all initial conditions. Secondly, since
the reference signal xr is such that limt→∞ dF(xr(t), xd(t)) = 0,
it is sufficient to show that all contracting trajectories converge
to xr . From the partial contraction property, we have

lim
t→∞ dF(x(t), xr(t)) = 0 ⇒ lim

t→∞ dF(x(t), xd(t)) = 0, (28)

for all x0 ∈ C. Hence, CCPb is satisfied. This concludes the
proof. �

5. Shape Control Problem for linear systems

We will now consider control design suitable for solving the
SCP, where we want to obtain a desired closeness (which is
defined using the Hellinger distance) to a prescribed distribu-
tion shape during the transient time. The problem is signifi-
cantly more complicated than the CCP considered in previous
sections, due to the well specified requirements on the shape of
the pdf of the state during the transient. We will first consider
the case when the initial pdf φx0 and the desired pdf φd are lin-
earlymatching, followed by an approach suitable for nonlinearly
matching pdfs.

5.1 Linearlymatching initial and desired pdfs

Before we continue, let us formally define our notion of (lin-
early) matching pdfs. This definition is based on matching pro-
cedures that are used in image processing applications (Inamdar
et al., 2008; Shapiro & Stockman, 2001), which are typically per-
formed through well-known operations of rotations, scaling,
translation, shearing and/or reflections (Shapiro & Stockman,
2001).

Definition 5.1 (Matching probability density functions): For
a given Y ⊂ R

n, we call two pdfs φ : Y → R≥0 and ϕ : R
n →

R≥0 (linearly) matching with respect to Y if there exist η ∈
R
n×1, β ∈ R

n×n and λ ∈ R such that

φ(x) = λϕ(βx + η) (29)

holds for all x ∈ Y .

We note that the linearity refers to the application of a linear
affine state transformation for matching both nonlinear maps
φ and ϕ. For such linearly matching pdfs, we are now ready
to present our controller design that can solve the SCP, with
a bounded �. This bound is then dependent on the matching
of the pdfs (expressed through λ, β and η) and the system
equations.

Theorem 5.2: Assume that the hypothesis of Theorem 3.1 holds.
Suppose that: (i) the target distribution at time T> 0 is given by
φd and that φx0 and φd are matching with respect to X0 for some
η ∈ R

n×1, invertible β ∈ R
n×n and λ ∈ R; and (ii) there exists a

finite τ > T, such that xd(t) is a solution to the system (13), with
an admissible input signal ud(t), for all t ≥ τ . Then, the SCP is

solvable for � and K ∈ R
n×m satisfying

� ≥ min
{K|spec(A+BK)∈C−}

×

√√√√1 −
∫
X

√
φx0(β̃

−1(ξ − η̃))φx0(β
−1(ξ − η))

λ̃λ
dξ , (30)

where

λ̃ =
∫
X

φx0(β̃
−1(ξ − η̃)) dξ , (31)

β̃ = e(A+BK)T , (32)

η̃ = μd − e(A+BK)Tμ, (33)

with μ the mean value of φx0 and μd the mean value of φd.

Proof: We will first prove the fulfilment of SCPa. We again
consider the control law u(t) = K(x(t) − xr(t)) + u∗. Similar
to Theorem 3.1, we define xr(t) and u∗(t) with the following
properties: (i) xr(t) = xd(t), for all t ≥ τ ; (ii) xr(0) = μ; (iii)
xr(T) = μd; and (iv) ẋr(t) = Axr(t) + Bu∗(t). As before, since
the pair (A,B) is controllable, we can always find a control sig-
nal u∗ that can bring the state from μ at time 0 to μd at time
T, and subsequently, to xd(τ ) at τ . Additionally, since xd(t) is a
solution to (13) for ud(t) and t ≥ τ , we can let u∗(t) = ud(t) for
t ≥ τ . For this control system, we define an error like signal as
ζ(t) = x(t) − xr(t). Also, due to φx0 and φd being matching, we
have that λ−1φx0(x) = φd(βx + η), for all x ∈ X0. Let us then
write a similar identity for φx0,T as

λ̃−1φx0(x(0)) = φx0,T(β̃x(0) + η̃).

Substituting our choices of β̃ and η̃ as given by (32) and (33)
yields

λ̃−1φx0(x(0)) = φx0,T

(
e(A+BK)Tζ(0) + μd

)
.

Notice that we furthermore have x(T) = xr(T) + ζ(T) which
by design satisfies the solution

x(T) = e(A+BK)Tζ(0) + μd,

and hence we have

λ̃−1φx0(x(0)) = φx0,T(x(T)) = φx0,T(β̃x(0) + η̃),

for all x(0) ∈ X0. Notice that φx0,T is accordingly the pdf of
the state at time T for the closed-loop system. We have thus
obtained that for all x ∈ X0: (i). λ̃−1φx0(x) = φx0,T(β̃x + η̃);
and (ii). λ−1φx0(x) = φd(βx + η) hold. Subsequently, we can
define two coordinate transformations y = β̃x + η̃ and z =
βx + η whose inverses are given by x = β̃−1(y − η̃) and x =
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β−1(z − η), respectively. Accordingly, we obtain

λ̃−1φx0(β̃
−1(y − η̃)) = φx0,T(y), (34)

λ−1φx0(β
−1(z − η)) = φd(z). (35)

The inverse of β̃ always exists and we assume z, y ∈ X for all
x ∈ X0. It then follows directly from (31) that φx0,T satisfies

∫
X

φx0,T(ξ) dξ = 1
λ̃

∫
X

φx0(β̃
−1(ξ − η̃)) dξ = 1. (36)

Plugging (34) and (35) in (5) yields

dh(φx0,T ,φd)

=

√√√√1 −
∫
X

√
φx0(β̃

−1(ξ − η̃))φx0(β
−1(ξ − η))

λ̃λ
dξ .

Accordingly, for our simple choices of the control law, ref-
erence signal xr and control signal u∗, we can always find a
matrix K such that we satisfy SCPa for a maximum distance �

satisfying (30).
We are now left to prove SCPb. The proof for the asymp-

totic convergence to the reference signal follows directly from
the design restriction on K that requires (A + BK) to be Hur-
witz. Additionally, since we have that xr(t) = xd(t) for t ≥ τ ,
the asymptotic property holds:

lim
t→∞ ζ(t) = 0 ⇒ lim

t→∞ dE(x(t), xd(t)) = 0.

In other words, SCPb holds. This concludes the proof. �

As shown in Theorem 5.2, for given initial and target distri-
butions φx0 and φd that are matching, there is a lower bound on
achievable �. However, there are cases when the lower bound
is equal to zero for some specific combinations of A, B, φx0 , φd
and T. In the following corollary, we show a particular example
of such case.

Corollary 5.3: Assume that the hypotheses in Theorem 5.2 holds.
Suppose that there exists a K ∈ R

n×m such that (32)and (33)
satisfy β̃ = β and η̃ = η. Then, the SCP is solvable for any � ≥ 0.

Proof: The result follows directly from (30) and (36), when λ̃ =
λ. Rewriting (36) for φd yields∫

X
φd(ξ) dξ = 1

λ

∫
X

φx0(β
−1(ξ − η)) dξ = 1, (37)

where β = β̃ and η = η̃ which also implies that λ = λ̃.
Hence, (30) reduces to

� ≥
√
1 − 1

λ

∫
X

φx0(β
−1(ξ − η)) dξ = 0.

Accordingly, SCPa holds for � ≥ 0. The property SCPb follows
from Theorem 5.2. �

5.2 Nonlinearlymatching initial and desired pdfs

In this section, we will propose a solution to the SCP for cases
when the initial and the desired pdfs are nonlinearly match-
ing. In this case, the results from the previous subsection can be
extended to the situation when there exists nonlinear mappings
that gives the relation between both pdfs.

Definition 5.4 (Nonlinearly matching probability density
functions): For a given Y ,Z ⊂ R

n, we call two pdfs φ : Y →
R≥0 and ϕ : Z → R≥0 nonlinearlymatching with respect to the
tuple (Y ,Z) if there exist a diffeomorphic mapping � : Y → Z,
a function δ : Z → R>0 such that

φ(x) = δ
(
�(x)

)
ϕ
(
�(x)

)
(38)

holds for all x ∈ Y .

Since we will later use � in the coordinate transformation,
the function δ becomes a normalising function that corrects for
the elongation of the pdf in the transformed state space via the
mapping� . In this case, whenwe considerY = X (withX being
the original state space domain) in the above definition, we have

∫
W

φ(ξ) dξ =
∫
W

δ(�(ξ))ϕ(�(ξ)) dξ , (39)

holds for allW ⊆ X.

Theorem 5.5: Assume the hypothesis of Theorem 5.2 holds. Sup-
pose that; (i) the pdfs φx0 and φd are nonlinearly matching for
a diffeomorphic map � : X → X, δ : X → R≥0; and (ii) there
exists a finite τ > T, such that xd(t) is a solution to the system
(13) for all t ≥ τ and for a corresponding admissible input signal
ud(t). Then, the SCP is solvable for � and K ∈ R

n×m satisfying

� ≥ min
{K|spec(A+BK)∈C−}

×

√√√√1 −
∫
X

√
φx0(β̃

−1(ξ − η̃))φx0(�
−1(ξ))

λ̃δ(ξ)
dξ , (40)

where

λ̃ =
∫
X

φx0(β̃
−1(ξ − η̃)) dξ , (41)

β̃ = e(A+BK)T, η̃ = μd − e(A+BK)Tμ with μ the mean value of
φx0 and μd the mean value of φd.

Proof: The proof follows the same lines as the proof for
Theorem 5.2. We have a controllable linear system with two
nonlinearly matching pdfs φx0 and φd. Subsequently, we again
consider u(t) = K(x(t) − xr(t)) + u∗ and design xr(t) and u∗
as in Theorem 5.2. Accordingly, (34) and (35) become

λ̃−1φx0(β̃
−1(y − η̃)) = φx0,T(y),
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δ(z)−1φx0(�
−1(z)) = φd(z).

Using these substitutions, we obtain

dh(φx0,T ,φd) =

√√√√1 −
∫
X

√
φx0(β̃

−1(ξ − η̃))φx0(�
−1(ξ))

λ̃δ(ξ)
dξ .

(42)
And hence, we can always find a K to achieve a maximum dis-
tance � as in (40), and thus satisfying SCPa. Furthermore, since
K is such that (A + BK) is Hurwitz, we obtain

lim
t→∞ ζ(t) = 0 ⇒ lim

t→∞ dE(x(t), xr(t)) = 0.

Furthermore, since xd(t) is a solution to (13) for input ud(t),
we can let xr(t) = xd(t) for all t ≥ τ and we hence also have
limt→∞ dE(x(t), xd(t)) = 0. SCPb thus holds. This concludes
the proof. �

6. CCP controller simulation for a nonlinear robotic
manipulator

In this section, we will evaluate a nonlinear contraction-based
controller design for the CCP, applied a standard second-order
mechanical system operating with 3-DOF, which is a SCARA
robot as presented in Dresscher and Jayawardhana (2017b) and
Reyes-Báez et al. (2017). The results are a short display of the
results of our simulation, we refer the interested reader toDress-
cher and Jayawardhana (2017b) for the full result. The controller
design that we implement for this simulation is in accordance
with Theorem 4.1.

6.1 Dynamics and controller design

The robot operates on the manifold X = Q × R
3, with states

q ∈ Q = S1 × S1 × R, where S1 the unitary circumference,
and p ∈ R

3. Here, q� = [θ1, θ2, z] is the generalised position,
and p� = [pθ1 , pθ2 , pz] = M(q)q̇ is the generalised momentum,
withM(q) = M�(q) the inertia matrix, and u� = [τ1, τ2, f ] the
generalised force. The system satisfies the port-Hamiltonian
form

[
q̇
ṗ

]
=
[
03 I3
−I3 −D(q)

]⎡⎢⎢⎣
∂H
∂q

(q, p)

∂H
∂p

(q, p)

⎤
⎥⎥⎦+

[
03

G(q)

]
u, (43)

where H(q, p) is the Hamiltonian function, D(q) = D�(q) :
Q → R

3×3
≥0 is the damping matrix and G(q) : Q → R

3×3 is the
input matrix. For the Hamiltonian function we have the total
energy as

H(q, p) = 1
2
p�M−1(q)p + V(q) (44)

with V(q) = (m1 + m2 + m3)gz the potential energy, where
m1, m2 and m3 are the masses of the robot manipulator links.

For the mass matrix we have

M(q) =
⎡
⎣ M11 M12 0

M12 m3l22 0
0 0 (m1 + m2 + m3)g

⎤
⎦ , (45)

where

M11 = (m2 + m3)l21 + m3l22 + 2m3l1l2 cos θ2,

M12 = m3l22 + m3l1l2 cos θ2.

We assume stochastic initial conditions for the two rotational
joints, satisfying a normal distribution. Hence, we have q0 ∼
N (μq,�q), where

μq =
⎡
⎣ μq,1

μq,2
μq,3

⎤
⎦ , �q =

⎡
⎣ σ 2

q,1 0 0
0 σ 2

q,2 0
0 0 0

⎤
⎦ . (46)

We take the system to be idle upon initialisation, e.g. p�
0 =

[0, 0, 0]. The initial conditions x�
0 = [q0, p0]� ∼ N (μ,�) then

satisfy

μ =
[

μq
03×1

]
, � =

[
�q 03
03 03

]
. (47)

In this example, we will use D = diag([0.2, 0.2, 0.2]), G =
I3, [m2,m2,m3] = [1.5, 1, 0.5], [l1, l2] = [2, 1], g = 9.81, μ =
[1, 0, 0]� and [σq,1, σq,2] = [1, 1]. We consider for the desired
trajectory qd = [sin(t) + 1, sin(t), sin(t)]� and pd(t) = M(qd
(t))q̇d(t). For the reference signal, we design qr s.t. qr(0) =
μq, qr(T) = εq ∈ � and limt→∞ qr(t) = qd(t). We will discuss
characteristics of � shortly. Assume � is such that we can take
εq = [sin(T) + 1, sin(T), sin(T)]� and since we also have that
qd(0) = μ, we can conveniently let qr(t) = qd(t).

Subsequently, the error system is given by

ζ :=
[

q̃
ω

]
=
[

q − qd
p − pr

]
, (48)

where pr is a momentum reference signal, to be defined. The
dynamics of q̃ are given by

˙̃q = M−1(ω + qd)p − M−1(qd)pd. (49)

We define pr = pdω − �q̃, with pdω = M(q̃ + qd)q̇d and−� =
� Hurwitz. Hence, we obtain the properties limt→∞ q(t) =
qd(t) and limt→∞ pr(t) = pd(t). We then take εp = pr(T) and
accordingly obtain, in reference to condition 1) in Theorem 4.1,
that the reference signal satisfies xr(0) = (qr(0)�, pr(0)�)� =
μ, xr(T) = (ε�

q , ε�
p )� and limt→∞ dF(xr(t), xd(t)) = 0. The

full error dynamics are given by

˙̃q = M−1(q̃ + qd)(ω − �q̃)

ω̇ = −
[
∂H
∂q

(q, p) + D
∂H
∂p

(q, p) − u + ṗr
]
.

(50)
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Accordingly, we obtain the closed-loop error systemby applying
the control law

u = ueq + uat ,

ueq = ṗr + ∂H
∂q

(q, pr) + D
∂H
∂p

(q, pr),

uat = −Kd
∂H
∂p

(q,ω) − M−1(q)�q̃ + ∂

∂q
(p�

r M
−1(q)ω),

(51)
where Kd is such that

D + Kd + 1
2
I3 − 1

4
(M−1 + M) > 0. (52)

Our system then specifies the contraction properties proven in,
and for a virtual system as provided in Reyes-Báez et al. (2017).
This virtual system admits x and xr = (q�

d , p
�
r )� as solutions

and we have therefore satisfied condition (1) in Theorem 4.1.
The candidate Finsler–Lyapunov function for this virtual system,
as in Definition A.1 in Appendix, is given by

VF(xv, δxv) = 1
2
δx�

v ��P(ζ )�δxv, (53)

with δxv = [δqv, δpv]� as in (A2),

� =
[

I3 03
� I3

]
, (54)

P(ζ ) =
[

� 03
03 M−1(q̃ + qd)

]
. (55)

It follows that the distance as in Definition A.2 in Appendix
satisfies

dF(x, xr) = inf
�(x,xr)

∫
I

√(
VF(γ (s))

∂γ (s)
∂s

)
ds. (56)

Lastly, we obtain the property

dF(x(t), xr(t)) < dF(x(0), xr(0))e−λt , (57)

related to a rate λ as

λ(ζ ) = mineig(P1/2(ζ )ϒ(ζ )P1/2(ζ )), (58)

with

ϒ(ζ) =
[

2M−1(q̃ + qd) (M−1(q̃ + qd) − I3)
(M−1(q̃ + qd) − I3) 2(D + Kd)

]
.

(59)
Notice that the infimum of (A4) for dF(x, xr) is given by γ (s) =
[q�

d , p
�
r ]� + ζ s, hence ∂γ (s)

∂s = ζ . Subsequently, we consider
� = diag{2, 2, 2}, T = 10, p∗ = 0.7 and � such that

� = {x | dF(x, xr(T)) ≤ κ2} = Dκ2(xr(T)), (60)

for κ2 = 6. The first part of condition 2 of Theorem 4.1 is
accordingly satisfied. We obtain the distance set for our initial

Figure 3. In this figure, we show the circumference of the two distance sets that
are relevant for our simulation in Section 7; Dκ1 (xr(0)) and Dκ2 (xr(T)), and the
contour of a set of initial conditions whose cumulative density is p∗ . The angle (ρ)
of this polar plot is interpretablewith respect to θ1 and θ2, whereρ = −π1(−θ1 +
μ1) + tan−1(

θ1−μ1
θ2−μ2

), 1(·) being the step function.

conditions by taking the bivariate standard normal pdf around
μ for θ1 and θ2, given by

φx0(r, θ) = r
2π

e−0.5r2 . (61)

Accordingly, ∫ 1.5517

0

r
2π

e−0.5r2dr = 0.7. (62)

Subsequently, we map the contour of this radius through dF to
obtain the shape in Figure 3. These points can hence be cap-
tured by a distance set as in (19), Dκ1(μ), with κ1 = 15.73.
Accordingly, we have∫

Dκ1 (μ)

φx0(ξ) dξ ≥ p∗. (63)

We have accordingly satisfied condition (2) in Theorem 4.1
completely.

Let us now determine theminimal contraction rate λ and the
corresponding Kd such that we achieve this rate. We find λ as

λ ≥ −
ln
(

κ2
κ1

)
T

= 0.0964. (64)

Accordingly, we can choose Kd = diag{3, 1, 25} which is such
that thisminimal rate is always satisfied in accordancewith (58),
therefore satisfying condition (3) in Theorem 4.1. We are now
ready to move on to the simulation results, as we have satisfied
all criteria of Theorem 4.1.

6.2 Simulation results

The simulation results are shown in Figure 4, and 5. From
Figure 4, it is easy to see that we have achieved

��,T = 1 ≥ p∗ (65)

and thus satisfyCCPa. The performance of our system is strong,
due to the following:
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Figure 4. In this figure, we show the distances dF(x(t), xr(t)) of both the initial distribution at time t = 0 (left) and the distribution at time t = T (right) for the simulation
in Section 7. At time T, all trajectories are in the set� = Dκ2 (xr(T)), hence we have achieved our desired performance��,T ≥ p∗ . The interpretation of the plot angle ρ

is as in Figure 3.

Figure 5. This figure depicts, for the simulation in Section 7, from top to bottom; (i) the time evolution of q̃(t) = q(t) − qd(t), (ii) p̃(t) = p(t) − pd(t) and (iii) the time
evolution of the distance, for a trajectory satisfying dF(x(0), xr(0)) = κ1. Furthermore, in the bottom plot we show the difference with the nominal decay, which is an
effective upper bound. Lastly, the bottom plot shows convergence to a distance dF = 0.

(1) The distance set Dκ1(μ) is greater than a marginal set
covering p∗ fraction of initial conditions.

(2) The rate λ is a minimal rate, but the other eigenvalues
from (58) generally cause the convergence to be faster than
this minimum.

In Figure 5, we show the convergence of an initial condition
that satisfies dF(x0, xr) = κ1. The asymptotic convergence, sat-
isfyingCCPb, to the reference signal can clearly be seen, as well
as the fast decay of the initial distance dF(x0, xr).

7. Numerical evaluation of SCP for matching pdfs

In this section we will numerically evaluate the result of
Theorem 5.2. The example will show that we can only solve the
SCP for � ≥ 0 when the initial pdf φx0 and the desired pdf φd
have very specific (linear) matching properties.

Let us consider the classical second ordermass-spring system
with unitary parameters given by

[
ẋ1
ẋ2

]
=
[

0 1
−1 −1

] [
x1
x2

]
+
[

0
1

]
u, x(0) = x0

where x0 satisfies the pdf φx0 = N (μx,�x), a normal distribu-
tion, with

μx =
[

1
2

]
, �x =

[
0.7 −0.4

−0.4 0.3

]

andX = R
2. Let us furthermore define a relevant transient time

T = 5 and a desired pdf φd = N (μd,�d), with

μd =
[

0.97
3.16

]
, �d =

[
0.0004 0.0012
0.0012 0.0049

]
.

Then, φx0 and φd satisfy the linear matching property φx0(x) =
λφd(βx + η), with

η =
[

1
3

]
, β =

[
0.01 −0.02
0.1 0.03

]
, λ =

√
|�d|
|�x| .

Indeed, let us consider the desired pdf as

φd(z) = 1
2π

√|�d|
exp

(
−1
2
(z − μd)

��−1
d (z − μd)

)
,
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Figure 6. This figure shows level sets of the realised pdfφx0,T and the desired pdfφd , for the simulation in Section 8. The pdfφx0,T has a Hellinger distance dh(φx0,T ,φd) =
0.1799 with φd .

Figure 7. This figure shows the difference betweenφx0,T andφd for the simulation in Section 8. This differences corresponds to Hellinger distance dh(φx0,T ,φd) = 0.1799.
The difference is computed by taking φx0,T (x) − φd(x).

with z = η + βx. Substituting z for x and lettingμd = η + βμx
yields

φd(βx + η)

= 1
2π

√|�d|
exp

(
−1
2
(x − μx)

�β��−1
d β(x − μx)

)

and we thus have the relations μd = η + βμx and �d =
β�xβ

�. Substituting�d and multiplying with λ then yields the
matching property.

Let us furthermore assume that we have a reference signal
xr(t) and a feedforward input u∗, satisfying (i). xr(t) = xd(t) for
all t ≥ τ , with τ > T, (ii). xr(0) = μ, (iii). xr(T) = μd and (iv).
ẋr = Axr(t) + Bu∗. For this system, we then satisfy the condi-
tions of Theorem 5.2 and we can therefore numerically evaluate
the presented insights. Accordingly, we can express theminimal
attainable distance � through (30). As in Theorem 5.2, we take
β̃ = e(A+BK)T and η̃ = μd − e(A+BK)Tμ. Subsequently, we can
retrace the steps above to find a realisation φx0,T = N (μT ,�T),
where μT = η̃ + β̃μx, �T = β̃�xβ̃

� and λ̃ =
√

|�T |
|�x| .

We are now ready to find a K that minimises dh(φx0 ,φx0,T)

through (30). For this realisation, this is K = [−2.075 −0.21 ] and
we find a corresponding minimum Hellinger distance between
pdfs � = 0.1799. The obtained pdf is shown in Figure 6, the dif-
ference between the obtained and the desired pdf is shown in

Figure 7. We remark that, in accordance with the above, the
shown pdfs are not obtained through a time simulation. The
pdfsφd andφx0,T are instead generated directly, with analytically
obtained mean and covariance values.

Let us now consider the interesting case where

μd =
[

2
2.5

]
, �d = 10−3

[
0.6546 0.3921
0.3921 0.7042

]
,

corresponding to

η =
[

2.0691
2.3396

]
, β =

[
0.0065 −0.0378
0.0567 0.0518

]
.

We selected this example because, by choosingK = [−0.5 −0.2 ],
we obtain the equalities β̃ = β and η̃ = η and a minimum
Hellinger distance of � = 0, in accordance with Corollary 5.3.

8. Conclusions

In this paper, we propose control design methods for solving
a containment control problem and a shape control problem,
applied to systems that have stochastic initial conditions. Both
control problems prescribe a required performance during the
transient, as well as the standard asymptotic convergence cri-
terion. The containment control problem requires a minimum
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probability of the state belonging to a set during a specific
transient time. We have provided solutions for both linear and
nonlinear systems, where the latter relies on recent results in
contraction-based control design. The shape control problem
requires the attained probability density function at a specific
transient time to have a maximum Hellinger distance with
respect to a desired probability density function. We have pro-
vided solutions that are applicable for linear systems having
initial and desired probability density functions that are either
linearly or nonlinearly matching.

While our main results in Theorems 3.1–5.5 only provide
sufficient conditions for the solvability of both control problems,
they provide insightful knowledge on the structure and proper-
ties of the control laws. For example, the results related to the
CCP show that recent results in contraction theory, differen-
tial passivity and incremental stability can be useful for future
generalisation of these results. The results related to the SCP
show that we can solve the problem without the need to solve
Fokker–Planck equation that is in general not trivial.

An interesting direction for future research is to perform
similar analysis when both the initial conditions and the vec-
tor field of the system are stochastic. It is expected that results
presented here can be extended to such a situation.
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Definition A.1 (Finsler–Lyapunov function): A C1 function VF : TX →
R≥0, that maps every (x, δx) ∈ TX to VF(x, δx) ∈ R≥0, is a candi-
date Finsler–Lyapunov function for (A2), if there exist c1, c2 ∈ R≥0,
p ∈ R≥1, and a Finsler structure F : TX → R≥0 such that,
∀(x, δx) ∈ TX,

c1F(x, δx)p ≤ VF(x, δx, t) ≤ c2F(x, δx)p, (A3)

where the Finsler structure F satisfies the following conditions:

(1) F is a C1 function for each (x, δx) ∈ TX such that δx 
= 0;
(2) F(x, δx) > 0 for each (x, δx) ∈ TX such that δx 
= 0;
(3) F(x, λδx) = λF(x, δx) for each λ ≥ 0 and each (x, δx) ∈ TX;
(4) F(x, δx1 + δx2) < F(x, δx1) + F(x, δx2) for each (x, δx1), (x, δx2) ∈

TX such that δx1 
= λδx2 for any given λ ∈ R.

It follows that the Finsler–Lyapunov function is a measure of length
of the tangent vector, the corresponding Finsler distance is then obtained
through integration.

Definition A.2 (Finsler distance): Consider a candidate Finsler–
Lyapunov function VF on X and the associated Finsler structure F as in
Definition A.1. For any two points (x1, x2) ∈ X × X, let �(x1, x2) be the
collection of piecewise C1 curves γ : I → X, I := {s ∈ R | 0 ≤ s ≤ 1},
γ (0) = x1 and γ (1) = x2. The distance dF : X × X → R≥0 induced by F
satisfies

dF(x1, x2) := inf
�(x1,x2)

∫
I
F(γ (s), γ̇ (s))ds. (A4)

We are now ready to present the existing results on contraction for
nonlinear systems.

Lemma A.3 (Contraction): Consider the system (A2) on the smooth man-
ifold X with F a C2 function, a connected and forward invariant set C ⊆ X
and a function α : R≥0 → R≥0. Let VF be a candidate Finsler–Lyapunov

function such that,

∂VF(x, δx)
∂x

f (x, x̄, t) + ∂VF(x, δx)
∂δx

∂f (x, x̄, t)
∂x

δx

≤ α(VF(x, δx)) (A5)

for each t ∈ R≥0, x ∈ C ⊆ X, and δx ∈ TxX. Then, (A2) is

• incrementally stable (IS) on C if α(s) = 0, for each s ≥ 0;
• incrementally asymptotically stable (IAS) on C if α is a classK function;
• incrementally exponentially stable (IES) on C if α(s) = λs.

We refer to Forni and Sepulchre (2014) for the proof of this lemma.
The above can then be interpreted as follows. A system (A2) is contract-

ing if for a Finsler distance dF , there exists a Finsler–Lyapunov functionVF
as in Lemma A.3 and α ∈ K such that (A5) holds. The system is said to be
exponentially contracting in the case α(s) = λs. Here, C is the contraction
region and VF the contraction measure.

For a system that is contracting, all trajectory starting in the contrac-
tion region will converge to a single trajectory. However, which trajectory
is not specified by the contraction property. In order to specify this, we can
use the result on partial contraction as in Reyes-Báez et al. (2017); Slotine
and Wang (2005).

Lemma A.4 (Partial contraction): Consider the nonlinear system as in
(A1) with an admissible target trajectory xr(t), i.e. xr satisfies ẋr(t) =
f (xr(t), xr(t), t) for all t ≥ 0. Consider a virtual system

ẋ = f (x, xr , t). (A6)

If the virtual system (A6) is contracting w.r.t. x, then x converges to xr(t).

The proof of the lemma follows the result from Slotine andWang (2005)
and Forni and Sepulchre (2014).

The system (A1) is then called partially contracting if it satisfies the
hypothesis in Lemma 8.4 for a given admissible target trajectory xr .
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