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ABSTRACT
Akeyproblem inprocess control is to decidewhich inputs should controlwhich outputs. There aremultiple
ways to solve this problem, among them using gramian-based measures, which include the Hankel inter-
action index array, the participation matrix and the �2 method. The gramian-based measures, however,
have issues with input and output scaling. Generally, this is resolved by scaling all inputs and outputs to
have equal range. However, we demonstrate how this can result in an incorrect pairing and examine alter-
nativemethods of scaling the gramian-basedmeasures, using either rowor column sums or by utilising the
Sinkhorn-Knopp algorithm. To systematically analyse the benefits of the scaling schemes, a multiple-input
multiple-output model generator is used to test the different schemes on a large number of systems. This
assessment shows considerable benefits to be gained from the alternative scaling of the gramian-based
measures, especially when using the Sinkhorn-Knopp algorithm.
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1. Introduction

A common issue in many industrial process control systems is
that interaction between different parts of the plant gives rise
to a multiple-input multiple-output (MIMO) system, where the
same input may affect multiple outputs, or conversely, the same
output is affected by multiple inputs. This is the core of the
input-output pairing problem; which control variables should
be used to control which process parameters. While one often
solves this by matching one input to one output by a decen-
tralised configuration, at times it can be necessary to add addi-
tional feed-forward between the inputs or even implementing
MIMO controllers for parts of the system.

There are numerous proposed input-output pairing meth-
ods, many of which are discussed by, for example, van de Wal
and de Jager (2001). The most widely used is probably still the
Relative Gain Array (RGA) (Bristol, 1966) and modifications of
it, such as the dynamic RGA and the Relative Interaction Array
(RIA) (Zhu, 1996). Relatively recently a new group of input-
output pairing methods have been introduced, namely, the
gramian-based methods. This group includes the �2 method
(Birk & Medvedev, 2003), the participation matrix (PM) (Con-
ley & Salgado, 2000) and the Hankel interaction index array
(HIIA) (Wittenmark & Salgado, 2002). These methods use the
controllability and observability gramians to create an inter-
action matrix which gives a gauge of how much each input
affects each output. An attractive property of these interaction
matrices is that they can be used to determine both a decen-
tralised controller structure and a sparse structure (a structure
which includes feed-forward or MIMO blocks). Moreover, the
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gramian-based measures take into account system dynamics
and not only the steady-state properties.

The gramian-based methods, however, differ from the RGA
and its variants in that they suffer from issues of scaling,
in the sense that the results of the methods vary depend-
ing on input and output scaling. There is a commonly sug-
gested method to solve this problem, presented by, for example,
Salgado and Conley (2004). We will, however, demonstrate on
a heat exchanger network how this method can be insufficient.
Arranz and Birk (2009) have presented a different method to
scale the �2 interaction matrix and here we will examine this
method inmore detail and also apply it to the PM and the HIIA.
Furthermore, we will introduce and examine a new method
of scaling, based on the Sinkhorn-Knopp algorithm (Sinkhorn
& Knopp, 1967).

To demonstrate the benefit of the new scaling schemes, an
MIMOmodel generator will be used. This allows us to generate
a large number of systems with predefined statistical properties,
which we use for a more general comparison of the differ-
ent scaling methods. We show that considerable improvements
are made with the different scaling schemes, especially when
scaling using the method of scaling based on Sinkhorn-Knopp
algorithm.

The article is structured as follows: in Section 2, the different
scaling methods that will be used are explained. In Section 3,
the controller design strategies that will be used are presented,
while in Section 4, a example system is used to demonstrate the
need for new scaling methods for the gramian-based measures.
In Section 5, we present an evaluation of the scaling methods.
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Finally, in Section 6, the result is summarised and possible
expansions are discussed.

2. Gramian-based interactionmeasures,
modifications and implementation

The gramian-based measures are designed to propose solutions
to the control configuration selection problem for square linear
MIMO systems. These systems can be defined as⎡

⎢⎢⎢⎣
y1
y2
...
yN

⎤
⎥⎥⎥⎦ = G(s)

⎡
⎢⎢⎢⎣
u1
u2
...
uN

⎤
⎥⎥⎥⎦ , (1)

where y1, . . . , yN are the outputs of the system, u1, . . . , uN are
the systems inputs and

G(s) =

⎡
⎢⎢⎢⎣
g11(s) g12(s) · · · g1N(s)
g21(s) g22(s)

...
. . .

gN1(s) gNN(s)

⎤
⎥⎥⎥⎦

is the transfer function matrix.

2.1 Gramian-basedmeasures

The gramian-based measures (PM, HIIA and �2) can be cal-
culated from a system’s transfer function matrix (TFM) (Birk
&Medvedev, 2003; Conley & Salgado, 2000; Wittenmark & Sal-
gado, 2002). Given a TFM each measure generates an inter-
action matrix (IM) �. For the HIIA and �2, it is generated
by

[�]ij = ‖gij(s)‖∑
kl ‖gkl(s)‖

, i, j = 1, 2, . . . ,N,

using the Hankel norm and 2-norm for the HIIA and �2,
respectively. The PM is derived in a similar fashion, but it uses
the squared Hilbert-Schmidt norm, i.e.

[�]ij = ‖gij(s)‖2HS∑
kl ‖gkl(s)‖2HS

.

Once an IM is generated, a decentralised pairing is generated by
choosing the pairing that yields the largest sumof elements from
the IM. For efficient implementation in finding which pairing
yields the largest sum of elements, one can, for example, use the
Hungarian algorithm (Fatehi, 2011).

2.2 The Hankel, Hilbert-Schmidt and 2-norm

All norms used for calculating the gramian-basedmeasures can
be derived from the controllability and observability gramians.
The Hilbert-Schmidt norm and Hankel norm both utilise the
Hankel singular values (HSVs) of the system. These are defined
as:

σ
(i)
H =

√
λi,

where λ1, . . . , λN are the eigenvalues of PQ, with P being the
controllability gramian and Q being the observability gramian.

Thus, the HSVs are a gauge of the joint controllability and
observability of the system. The Hilbert-Schmidt norm is the
square root of the sum of the squared HSVs of the system, while
the Hankel norm is the maximum HSV.

The H2 norm, which is used for the �2 method can be
written as

‖gij(s)‖2 =
√

1
2π

∫ ∞

−∞
|gij(jω)|2 dω

It is proportional to the integral of the squared magnitude of
the bode plot and can be seen as a measure of the energy in the
impulse response. However, it can also be expressed in terms of
controllability and observability gramians (Halvarsson, 2010):

‖G‖2 =
√
tr(BTQB) =

√
tr(CTPC),

where B and C are matrices from a linear state space represen-
tation of the transfer function.

2.3 Scaling of the IMs

An issue with these three methods is that the interaction matrix
will be effected by the scaling of the inputs and outputs such
that different scalings may yield different results. Generally, this
is handled by scaling the input and outputs to range 0–1, set-
ting zero to the lowest value they are likely to reach and 1 to the
highest value (Salgado & Conley, 2004). However, this scaling is
at times insufficient, and we will present a few ways in which the
IMs could be rescaled for improved results.

2.3.1 Row or column scaling
Each column in the IMcorresponds to the interactions fromone
input, while each row corresponds to the interactions affecting
one output. If one column contains significantly smaller values
than the other columns (as may be the case if one input is rela-
tively poorly suited for control), little importancewill be given to
the decision of which output should be controlled by this input.
This may lead to a poor input–output pairing as will be demon-
strated with an example in Section 4. One way to resolve this is
to use a modification for the �2 method proposed in Arranz
and Birk (2009), which suggests normalising either the rows
or columns. This seems an attractive proposition as it ensures
that when conducting the pairing algorithm, equal importance
is given to either each input or output, depending on whether
rows or columns were normalised. For column scaling, in the
new IM (�c) the scaled elements would become

[�c]ij = [�]ij∑N
k=1[�]kj

,

where �c is an interaction matrix with normalised columns.
If we instead wish to ensure that equal importance is given to
each output, we can instead normalise the rows, which gives a
interaction measure defined by

[�r]ij = [�]ij∑N
k=1[�]ik

.
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2.3.2 Choosing between row and column scaling
It may be difficult to determine if it is preferable to scale by rows
or columns. We propose an approach to scaling that tries to
determine which is the most appropriate for a given IM. In this
approach, the column sums and row sums were first calculated.
If the smallest sum is a row sum, then the rows are scaled, and
otherwise the columns are scaled.

2.3.3 Sinkhorn-Knopp algorithm
By scaling the columns or rows, we can guarantee that equal
importance is given to either each input or each output when
determining pairing. If we, however, wish to have both the
columns and rows scaled, we can use the Sinkhorn-Knopp
algorithm. This algorithm combines row and column scaling
by alternating between normalising the rows and normalis-
ing the columns. In cases where the matrix can be made to
have positive elements on the diagonal (as is always the case
with gramian-based measures), this algorithm is guaranteed to
converge to a matrix that will have both rows and columns nor-
malised (Sinkhorn&Knopp, 1967).While the Sinkhorn-Knopp
algorithm can be implemented by simply alternating between
dividing the elements in each column of the IM by the corre-
sponding column sum and dividing the elements in each row
by the corresponding row sum, it can also be implemented as
described by Knight (2008), i.e.

r0 = e

ck+1 = D(�Trk)−1e

rk+1 = D(�ck+1)
−1e,

�SK = D(r)�D(c).

εk = ‖ck ◦ D(ck+1)
−1 − e‖1,

where ° denotes element-wise multiplication, e is a vector of
ones, and D(x) turns a vector into a diagonal matrix by creat-
ing a matrix with the elements of the vector on its diagonal. εk
is how far the IM (�SK) is from being perfectly scaled (that is
having both column and row sums of one), which can be used
as a stopping criterion.

Scaling the IMs with the Sinkhorn-Knopp algorithm has the
additional benefit of removing the impact of input and output
scaling on the IMs. Using the Sinkhorn-Knopp algorithm to
scale, the system will yield the same IM, regardless of what the
original scaling of the system was.

While the Sinkhorn-Knopp algorithm ensures that all inputs
and outputs are given equal importance, this is not necessarily
what is desired. Some outputs may be particularly important to
control well. However, as the Sinkhorn-Knopp algorithm nor-
malises the entire IM, it can be used to establish a baseline
to which further scaling can be done. After scaling using the
Sinkhorn-Knopp algorithm, the user can increase the emphasis
on finding a good match for a specific output or input, by mul-
tiplying their respective column or row by a factor larger than
one.

2.4 Niederlinski Index

The Niederlinski Index (NI) can be used to determine a neces-
sary condition for a decentralised closed loop system to be stable

(Grosdidier et al., 1985). Consider a system described by a TFM
G(s) controlled by a decentralised and diagonal controller C(s)
with integral action. If G(s) is stable, G(s)C(s) is proper, and all
SISO control loops (created by opening the other loops) are sta-
ble, a necessary condition for the existence of a stable control
scheme with integral action is

NI = det[G(0)]∏N
i=1 gii(0)

≥ 0,

where gii(0) refers to the diagonal elements of G(0). Here, we
will use the NI in combination with the gramian-basedmethod.
That is to say that we will discard solutions which have a nega-
tive NI, even if they correspond to the largest sum of elements
from the IM, and instead choose the solution with the largest
sum among those that have a positive NI. Note that the NI is a
necessary but not sufficient condition for closed loop stability,
so there is still a risk of unstable pairings even when using the
NI.

2.5 Sparse controller

The gramian-based IMs can also be used to generate a sparse
controller. To do this, we first start by deriving the pairing for
the decentralised controller, as described previously. Then the
system is examined for the possibility to use decoupling feed-
forward. To understand how this works, we begin by examining
a 3 by 3 system, i.e.⎡

⎣y1
y2
y3

⎤
⎦ =

⎡
⎣G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)
G31(s) G32(s) G33(s)

⎤
⎦

⎡
⎣u1
u2
u3

⎤
⎦ .

Let us assume that the inputs and outputs have been ordered
such that our decentralised controller design decided on a diag-
onal pairing where yi is controlled by ui for ∀ i. Now, u1 will also
affect y2 and y3 by G21(s) and G31(s), respectively. If u1 affects
y3 to such an extent that it poses a problem, this can ideally be
resolved by using the feed-forward

u3 = u∗
3 − G31(s)

G33(s)
u1, (2)

where u∗
3 is the control signal from the decentralised controller

and we assume G31(s)
G33(s) is stable and proper. If we implement this

feed-forward loop, we will have removed the direct effect of u1
on y3. However, there are other consequences of this implemen-
tation since the change of u3 will also affect y1 and y2. If this
effect is significant, the feed-forward loop might do more harm
than good. Having this in mind, we examine how the IM can
be used to determine when feed-forward might be appropriate.
Consider an interaction matrix

� =

⎡
⎢⎣

�11 · · · �1N
...

. . .
...

�N1 · · · �NN

⎤
⎥⎦ .

First we choose the elements for the decentralised pairing as
described previously and assume, without loss of generality, that
the pairing elements are on the diagonal. After this, we look
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in the interaction matrix for large elements not yet selected
for pairing. However, implementing feed-forward on the cor-
responding inputs needs to be weighed against other potential
effects that may be introduced by it. For example, assume that
�N1 is a large value and thus u1 is a potential candidate for feed-
forward. However, as described in the example, this will impact
uN , which will not only impact yN , but also the other outputs.
A gauge of the size of this impact is

∑N−1
i=1 �iN . If these values

are very large then the IM indicates that adding the described
feed-forward on u1 is unwise. To determine the use of feed-
forward in the general case, we therefore create a new IM �∗,
whose elements are defined by

�∗
ij = �ij − ρ

N∑
k=1
k�=i

�ki,

where ρ is a tuning parameter. With this new IM, the largest
elements where i �= j are chosen for feed-forward until the sum
of elements chosen (both for control and feedforward) is larger
than 0.7, a rule of thumb for gramian based measures (Salgado
& Conley, 2004). However, as feed-forward increases controller
complexity it is only implemented if it seems likely that it will
have a positive impact. This is determined by checking if�∗

ij > 0
in which case feed-forward is considered appropriate, and oth-
erwise it is not implemented. Further precautions also have
to be taken to avoid implementing an unstable or non-proper
feed-forward block.

3. Other pairingmethods

Two non-grammian-based methods will be used for the pur-
pose of comparison namely, the RGA (Bristol, 1966) and the
ILQIA (Halvarsson, 2010), which are presented in the following
section.

3.1 RGA

In the simplest form, the RGA matrix is calculated using the
static gain of the TFM:


 = G(0) ◦ G(0)−T

with −T being the inverse transpose of the matrix. To find
a pairing from the RGA matrix one selects the pairing with
elements closest to 1, while avoiding negative elements.

3.2 ILQIA

The integrating linear quadratic index array (ILQIA) is based on
LQG control with integral action (Halvarsson, 2010). The idea
behind this method is that for a completely decoupled system
the optimal load disturbance rejection, in terms of the inte-
grated error, is normally achieved with a maximised integral
gain. First one expands the system on state-based form to con-
tain one integral state for each output. Then one calculates an
unconstrained infinite horizon LQ controller for the expanded
system, with no cost on the states, a marginal cost on the con-
trol signals and a large cost on the new integral states. The part

of the feedback gain matrix that relates the integral states to the
control signals is then extracted as the ILQIAmatrix. The ILQIA
matrix is then used in the same way as the gramian-based mea-
sures, i.e. choose the decentralised pairing that gives the largest
sum of elements from the ILQIA matrix.

4. Control schemes

For the investigations presented here, lambda and IMC tuned PI
controllers will be used since they are well established for pro-
cess control and have been found to be commonly usedmethods
in industrial auto-tuners (Ang et al., 2005).

4.1 Lambda controller tuning

The lambda method (Panagopoulos et al., 1997) is a two-step
procedure where the first step is to approximate the transfer
function by a first order system with dead time, i.e.

G∗(s) = K
1 + Ts

e−Ls.

Using the PI controller structure

C(s) = Kp

(
1 + 1

Tis

)

the controller parameters are derived from G∗(s) according to

Kp = 1
K

T
L + λ

Ti = T

λ = ηT,

where λ is the target time constant of the closed loop system,
and η is a tuning parameter that will later be used to tune λ.

4.2 IMC controller

An alternative to lambda tuned controllers, is to use IMC tun-
ing, which uses a model of the system to cancel out as much
of the system dynamics as possible. An IMC controller can be
implemented in the following way (Rivera et al., 1986). Given
a stable transfer function model g̃ of the system, one starts by
factorising the model into two parts:

g̃ = g̃+g̃−

such that g̃+ contains the delays and the non minimum phase
zeros of g̃, while g̃− contains the remaining dynamics. This
ensures that g̃−1

− is stable. A controller can then be implemented
as

C = f g̃−1
−

1 − f g̃+
where,

f = 1
(1 + εs)q

is a user designed filter, ε is a tuning parameter and q is chosen
such that the controller is proper. When implementing IMC we
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will chose

ε = ηZ

where Z is the largest time constants of the model’s non-
minimum phase zeros and η is a tuning parameter. For mini-
mumphase systemswewill instead chose ε as in lambda tuning,
i.e.

ε = ηT,

where T is the time constant of the system when approximated
by a first-order system in the same way as in lambda tuning.

5. An illustrative example

To demonstrate some of the issues that can arise with the
gramian-based measures, we examine a heat exchanger net-
work (HEN), which is a modified version of the configuration
designed using pinch technology in Case study 1 by Escobar
and Trierweiler (2013), illustrated in Figure 1. The modifica-
tions, implemented to make the HEN interesting from a con-
trol configuration selection perspective, amount to removing
heaters and coolers and instead adding onemore heat exchanger
(HE) connected to a new stream (C3). The specifications for
streams H1–H2 and C1–C2 are the same as in Escobar and Tri-
erweiler (2013), and the new streamC3 has a flow capacity of 11
kW/K. The goal is to control the output temperatures T1 to T4
using bypasses over the heat exchangers U1–U4 to increase or
decrease the energy transferred between the streams by the heat
exchangers. T5 is assumed to be controlled further downstream
and is thus not necessary to control here.

5.1 Heat exchangermodels

The heat exchangers are modelled as a series of mixing tanks
(15 mixing tanks were used to model U4, while 10 were found
to be sufficient for the other HEs), as described by the multi-
cell model byMathisen et al. (1991). Moreover, the heat transfer
coefficients have been modified from those in Escobar and Tri-
erweiler (2013) to compensate for not using the logarithmic
temperature differences, as discussed by Mathisen et al. (1994).
All heat exchangers are modelled to have a residence time of
10 s. Pipe residence time and heat losses are not included in the
model.

The actuators are controlled bypasses on the hot side of heat
exchangers U1–U4. The HEs areas were therefore increased
to retain the same steady-state temperatures when they bypass

Figure 1. The studied heat exchanger network, where 5 heat exchangers transfer
energy from the hot streams H1 and H2 to the cold streams T1, T2 and T3.

Table 1. The results for the pairing suggestions for the HEN

RGA PM HIIA �2 ILQIA

T1 U3 U1 U1 U1 U1
T2 U4 U4 U4 U4 U4
T3 U1 U2 U2 U2 U3
T4 U2 U3 U3 U3 U2

10 of the stream, which consequently defines their station-
ary operating points. The complete system model was imple-
mented in Matlab/Simulink and linearised with the bypass
flow ratio on U1–U4 as inputs and the temperatures T1 to T4
as outputs. The Simulink model of the system is available at
(https://github.com/fredbenchalmers/HEN–IO-pairing.).

5.2 The pairing problem

On the linearised model, different input output pairing algo-
rithms were applied. The three previously mentioned gramian-
based methods were used to derive decentralised control
schemes. For comparison purposes, we used the classical RGA
(Bristol, 1966) and the more recent ILQIA (Halvarsson, 2010)
to derive non-gramian IM-based control schemes. The recom-
mended pairing for each method is shown in Table 1, where
we note that all the gramian based methods suggest the same
pairing, different from the ILQIA and the RGA. To compare
the suggested pairings decentralised PI control schemes were
implemented and tuned using the lambda method applied on
the open loop subsystems. Each of the control configurations
was simulated on the nonlinear systembothwith reference steps
on the output temperature of streams H1, H2, C1 and C2 and
with disturbances on the input temperature and flow rate of
streams H1, H2, C1 and C2. The size of the reference steps were
two degrees and the size of the disturbances on the influent tem-
peratures were negative two degrees. For flow rate, the system
was tested with a decrease of 5% on the flow rate of H1 and H2,
and with an increase of the flow rate of 5% on C1 and C2. These
disturbances were chosen to be of a magnitude and direction
that is possible for the system to completely compensate for. The
simulations ran for 1000 s after the reference or disturbance step
to fully observe its impact. For assessment, the mean quadratic
deviation from the reference was devised as a cost, i.e.

c =
∫ S

0
(R(t) − Y(t))T(R(t) − Y(t)) dt (3)

with R(t) and Y(t) being vectors containing the references and
outputs, respectively, and S being the simulation time (in this
case 1000 s). This was repeated for controllers designed with
different values of η, and the result of those simulations are
presented in Table 2.

A few conclusions can be drawn from these results. We can
see that for aggressive control schemes, all controller schemes
fail, resulting in an undamped oscillatory system. This is not
unexpected as there are obvious limits on the actuators (they
cannot bypass more than 100% of the stream or less than 0%),
and therefore the controllers need to be somewhat cautious. If a
reasonably tuned full multivariable MPC controller is used, the
cost is approximatly 400. While this is considerably better then

https://github.com/fredbenchalmers/HEN--IO-pairing
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Table 2. Costs as defined by (3) for different controller tuning η.

η RGA Gramian-based methods ILQIA

1 235,065 342,149 263,431
2 136,606 210,002 204,696
3 95,950 126,502 156,832
3, 5 61,002 83,096 120,940
4 28,570 63,220 101,968
4, 5 16,528 41,376 85,213
5 7595 16,443 69,522
5, 5 1788 4771 53,765
6 1966 3533 35,830
6, 5 2154 3282 21,232
7 2344 3235 9054
7, 5 2537 3274 1570
8 2732 3358 990
10 3526 3897 1064
15 5568 5706 1687

the lowest cost of 990, it is not sufficiently far away to indicate
that a decentralised control is unreasonable for this system.

The control configuration suggested by the gramian based
methods yields a considerably worse control for the best tuning
than the ones recommended by the RGA or ILQIA, with a min-
imum cost of 3235 as opposed to 1788 or 990 (table entries in
bold and blue). To examine why, we need to examine the IMs
from the gramian-based methods:

PM =

⎡
⎢⎢⎣
0.15 0.00046 0.056 0.13
0 0.000014 0.0023 0.55

0.058 0.00084 0.00052 0.017
0 0.0091 0.026 0

⎤
⎥⎥⎦

HIIA =

⎡
⎢⎢⎣
0.16 0.0084 0.097 0.15
0 0.0015 0.018 0.29
0.1 0.011 0.009 0.054
0 0.032 0.063 0

⎤
⎥⎥⎦

�2 =

⎡
⎢⎢⎣

0.17 0.000035 0.0054 0.0038
0 0.0000039 0.00081 0.81

0.0051 0.00003 0.0000072 0.00022
0 0.00036 0.00086 0

⎤
⎥⎥⎦ .

As can be seen, all the values in the second columns are small
compared to the largest values in the other columns. Thismeans
that when choosing elements from the matrix little importance
is given to the second column. In other words, little importance
is given to which element should be controlled by U2. The rea-
son for this is that U2 is not particularly well suited for control
compared to the other inputs, and therefore the values in its
column are lower. However, one can still clearly see that the
IMs suggest that U2 is much better suited for controlling T4
than controlling T3 but as can be seen in Table 1, none of the
gramian-based measures recommend this pairing, while both
non-gramian-basedmethods do. Similarly, we see that the third
and fourth rows contain considerably less interaction than the

other rows. Hence, less emphasis is placed on selecting a good
actuator for T3 and T4 compared to T1 and T2.

It can be argued that this is a matter of scaling. However,
all the inputs, being bypass percentages, are scaled from 0 to 1
as is the general convention to resolve the issue of input scal-
ing for the gramian-based methods (Salgado & Conley, 2004).
Moreover, all the outputs are tested with identically sized ref-
erence steps and can thus be said to be properly scaled as well.
However, in this case, this scaling scheme appears to be insuffi-
cient. A method to alleviate this is to use the method presented
in 2.3.1, that is to divide each element in the IM by the sum of all
the elements in either its column or row. This ensures that either
each input or each output is given equal weight. If we scale the
PM, �2 and HIIA interaction measures with this method, we
get the configurations shown in Table 3.

As can be seen in Table 3, with column scaling, we get the
same control configurations as recommended by either theRGA
or the ILQIA and consequently a lowered cost according to the
assessment.With row scaling, we get a new configuration for the
HIIA and PM. Testing with this configuration, however, yields a
minimum cost of 3227, so this configuration is not significantly
better than the unscaled gramian-based configuration.

To conclude, in this case, row scaling yields no noteworthy
improvement, while column scaling yields a better configura-
tion for all the tested gramian-based methods. Note that the
method discussed in Section 2.3.2 would suggest that column
scaling is preferable over row scaling for all the IMs.

5.3 Scaling using the Sinkhorn-Knopp algorithm

While we could observe here that in this case, normalising
the IMs columns such that each input was given equal weight
worked well, while normalising the rows such that each output
was given equal weight yielded poorer results. There is another
option to ensure that the IMs rows and columns all sum up to
the same value, and hence all inputs and outputs are given equal
weight. This can be achieved by iteratively alternating between
scaling the elements by row sum and by column sum, which
is the Sinkhorn-Knopp algorithm described in Section 2.3.3.
Implementing the Sinkhorn-Knopp algorithm and stopping the
algorithm when the error is less than 10−3 yields the control
configurations presented in Table 4.

As can be seen, this resulted in the same configuration as
the RGA, which while not being the configuration with the
lowest cost, still yielded a considerably better result than the
configuration recommended by the unscaled gramian-based
measures. This is also the same configuration obtained with the
PM and HIIA when applying column scaling. However, for the
�2 method column scaling yielded a configuration with a lower
cost.

Table 3. The results for the optimal pairing of HEN using the new scaling.

RGA
PM column
scaling

HIIA column
scaling

�2 column
scaling

PM row
scaling

HIIA row
scaling

�2 row
scaling ILQIA

T1 U3 U3 U3 U1 U2 U2 U1 U1
T2 U4 U4 U4 U4 U4 U4 U4 U4
T3 U1 U1 U1 U3 U1 U1 U2 U3
T4 U2 U2 U2 U2 U3 U3 U3 U2
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Table 4. Optimal pairing of the HEN using the Sinkhorn-Knopp algorithm.

PM HIIA �2

T1 U3 U3 U3
T2 U4 U4 U4
T3 U1 U1 U1
T4 U2 U2 U2

6. Large-scale assessment of themethods

While the HEN example may have demonstrated potential ben-
efits from rescaling the IMs, a single case study is insufficient to
draw general conclusions. To quantitatively assess the methods,
we have therefore used the MIMO model generator described
by Bengtsson andWik (2017) to generate a large number of lin-
ear MIMO-systems, with specifications shown in Table 5. The
different scaling methods, i.e. by row sum, column sum, or both
using the SK algorithm,were then applied to the generatedmod-
els and the results were compared to using only the standard
scaling. In addition, yet another approach was implemented. In
this approach, one would either scale the rows or the columns,
according to the reasoning in Section 2.3.2.

For each control configuration, a decentralised control
scheme was designed using both internal model control and the

Table 5. Table showing the MIMO model generator (Bengtsson & Wik, 2017) set-
tings.

Parameter Value

Size
Number of inputs 5
Number of outputs 5
Minimum number of inputs affecting each output 4
Maximum number of inputs affecting each output 5
Minimum transfer function order 1
Maximum transfer function order 3
Minimum relative degree 1
Maximum relative degree 3

Dynamics
Maximum static gain 10–1000
Minimum pole time constant 1
Maximum pole time constant 10
Minimum damping for complex poles 0.1
Distinct time constants false
Basing zeros time constants on poles when possible true
Maximum overshoot percentage 10
Maximum undershoot percentage 25
Tolerance when determining overshoot/undershoot 0.01
Factor used to determine minimum time constant 100

Poles and Zeros
Maximum number of unstable poles 0
Minimum number of unstable poles 0
Maximum number of purely imaginary pole pairs 0
Minimum number of purely imaginary pole pairs 0
Percentage of unstable poles which are complex 0
Percentage of stable poles which are complex 20
Percentage of transfer functions with single integrators 0
Percentage of transfer functions with double integrators 0
Percentage of transfer functions with derivatives 0
Maximum number of non-minimum phase zeros 4
Minimum number of non-minimum phase zeros 0

Delay
Percentage of transfer functions with delay 10
Minimum delay 0
Maximum delay 0.5
Padé approximation order 2

lambda method for varying values of η (the Matlab function
tfest was used to approximate the transfer functions as the
first-order systems which were then used for the lambda con-
troller design). The entire feedback system was then tested both
by reference step and by load disturbance. For the comparison,
we define a cost using (3) with a simulation time of 2000 time
units after the reference step or the load disturbance. For each
configuration, the cost was calculated for values of η ranging
from 0.1 to 10 and the lowest cost was then saved. Having cal-
culated this cost for each IM, each IM is given a score defined
as

S = cmin

c

where S is the score of the IM, c is the IMs cost, and cmin is the
lowest cost of all IMs for the system. The score was set to zero if
the control scheme yielded unstable results. This measure was
chosen to normalise the score of each iteration between 0 and 1
to ensure that the results on different systems are comparable.

Three sets of 150 randomly generated systems were assessed
having maximum static gains of 10, 100 and 1000 (minimum
static gain was always 1). Both decentralised and sparse con-
trol schemes (for ρ = 3) were implemented. For reference steps
using λ-tuned controllers, the mean scores are presented in
Figure 2. As taking the average scores may not always be the
best metric, we also show how often the different methods
yielded unstable results as a way to gauge how often the differ-
ent methods failed completely. Further results for both λ-tuned
controllers and IMC controllers, covering both reference steps
and load disturbances, are presented in Tables A1 and A2 in
Appendix.

The systems generated by the MIMO generator generally
contained non-minimum phase transmission zeros. To evalu-
ate how the presence of non-minimum phase dynamics affected
the scaling methods, we also tested sets of systems without non-
minimum phase transmission zeros (still with specifications
according to Table 5). The result of this is included in Tables A3
and A4 in Appendix.

The large number of systems investigated allows a statistical
evaluation whether the new scalings yield statistically signifi-
cant improvements or not. Therefore, a t-test for paired samples
was performed on the hypothesis that the scaled systems had a
higher score than the unscaled system with a 95% confidence
interval. This evaluation was carried out on both the systems
with feed-forward andwithout. Similarly, statistical significance
for number of unstable outcomes was determined by using a
binomial sign test as described in Abdi (2007) evaluating if the
scaling methods with a 0.95 probability reduced the number of
unstable systems. The statistically significant improvements are
highlighted in bold numbers in Tables A1–A4.

As can be seen from the tables and Figure 2, the scaled IMs
fare considerably better than the unscaled IMs. This improve-
ment may be somewhat less pronounced when the gain varia-
tion in the TFM is small, which is in agreement with what was
observed in theHE example, as high gain variation increases the
likelihood that a row or column in the IMwill have considerably
less interaction than the other rows or columns. However, even
in the case of low gain variation, there are statistically significant
improvements for many of the scaling schemes.
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Figure 2. Score and number of unstable results for reference steps using λ-tuning without feedforward on non-minimum phase systems.

One can also clearly see that the scaling method which
yielded the best results was the one based on the Sinkhorn-
Knopp algorithm, as it yielded the highest score and least num-
ber of unstable systems for most of the tested cases. The benefits
of using the Sinkhorn-Knopp algorithmwere themost apparent
for high gain variation. With a high gain variation, one can see
a very pronounced improvement for the PM and �2 method
when using the Sinkhorn-Knopp algorithm compared to the
other scaling methods. When using the HIIA, the improvement
was somewhat smaller but still considerable.

The scaled systems also fared better both for decentralised
and sparse control configurations. This indicates that the scal-
ing methods can be used for both. However, the algorithm for
implementing feedforward was somewhat cautious with ρ =
3. Especially so for Sinkhorn-Knopp scaling, where there was
often only a small difference between the cost for the sparse and
the decentralised controllers. This also led to Sinkhorn-Knopp
algorithm yielding comparably poor results in the cases where
implementing feedforward had a very positive effect, namely,
reference following for minimum phase systems. A more thor-
ough feedforward implementation, tweaking ρ individually for
the different scaling methods might have alleviated this issue.

It can also be noted that for all cases with high gain variation,
SK scaling resulted in very few unstable outcomes, indicating
that it is quite reliable for these types of systems. This clearly
demonstrates the importance of rescaling the IMs in these cases,
as with no additional scaling as many as one third or even one
half of the closed loop systems were unstable.

Generally the results are similar regardless whether the con-
trollers are tuned using IMC or the lambda method; in both
cases, the Sinkhorn-Knopp algorithm generally outperformed
the other scaling methods. We also experimented with using

optimisation algorithms to findparameters for the PI controllers
whichminimised the cost and found that for the cases tested, the
results were the same to those using IMC and λ-tuning.

As is shown in Figure 2, the results are similar regardless
of whether one looks at mean cost or number of unstable
outcomes.

Another observation is that without scaling it appears as if
HIIA, on average, gave better results than PM and �2 for non-
minimum phase systems, while the �2 method was superior
for minimuim phase systems. However, SK-scaling has an effect
on the performance in many cases exceeding the difference
between the different methods.

Some caveats are however necessary. Only a few methods
for automatic controller design was tested; it is possible that
other control schemes might yield different results. Further-
more, other than changing the gain and the properties of the
transmission zeros, only one set of model generator settings was
used,modifications to other systempropertiesmay possibly also
yield different results.

7. Conclusions and further work

The gramian-based interaction measures (IMs) are well known
to be affected by scaling and the standard is therefore to scale
all inputs and outputs to an equal range. A heat exchanger net-
work control problem illustrated a case where the conventional
scaling scheme failed. It was shown that by adapting the scaling
of the IMs, this issue could be resolved. A few possible scal-
ing methods were tested on a large number of systems using an
MIMO model generator. It was found that all the tested scaling
methods statistically improved the performance of the pairing
methods consistently when designing a decentralised, as well
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as a sparse controller. The scaling method that yielded the best
results was the one based on the Sinkhorn-Knopp algorithm, in
particular, so when there are large variations in the static gains.
In addition, this scaling method has the advantage of yielding
results that are identical no matter what the original scaling of
the inputs and outputs is.

There is, however, some room for further research in this
field. The automatic implementation of sparse controllers is
something that can be explored further, especially when using
Sinkhorn-Knopp scaling.

Moreover, there are other possible control strategies and con-
troller tuning on which the scaling methods can be explored.
When testing the scaling methods here we specifically exam-
ined the impact of non-minimum phase transmission zeros
and differences in static gain. There are of course other sys-
tem properties which can be evaluated as well using the same
techniques.
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Appendix. Tables with results

Table A1. Average score (S) and number of unstable outcomes (U) for the different methods with different gain variation for a reference step for non-minimum phase
systems.

Maximum gain 10 100 1000 10 100 1000

Controller design method Lambda IMC

PM
Decentralised Control S U S U S U S U S U S U
No scaling 0.45 39 0.38 49 0.30 60 0.38 57 0.45 53 0.35 59
Column scaling 0.57 22 0.54 18 0.45 35 0.48 42 0.58 22 0.51 31
Row scaling 0.55 27 0.54 24 0.50 27 0.51 41 0.58 28 0.50 32
Row/column scaling 0.60 20 0.59 15 0.52 22 0.51 42 0.64 19 0.51 31
Sinkhorn-Knopp scaling 0.61 17 0.64 9 0.67 5 0.58 31 0.71 4 0.67 1

Sparse Control
No scaling. 0.46 36 0.39 52 0.31 60 0.38 59 0.43 57 0.40 63
Column scaling 0.59 23 0.61 26 0.58 39 0.46 48 0.57 34 0.58 39
Row scaling 0.56 28 0.52 32 0.47 35 0.47 48 0.50 39 0.48 38
Row/column scaling 0.62 20 0.62 21 0.60 27 0.50 44 0.63 27 0.58 34
Sinkhorn-Knopp scaling 0.61 17 0.64 9 0.67 5 0.58 31 0.71 4 0.67 1

�2
Decentralised Control
No scaling. 0.42 52 0.37 64 0.24 78 0.41 63 0.40 61 0.33 65
Column scaling 0.51 41 0.54 26 0.45 41 0.52 43 0.55 35 0.46 39
Row scaling 0.52 38 0.53 33 0.46 39 0.53 42 0.59 32 0.47 35
Row/column scaling 0.53 38 0.57 23 0.49 31 0.55 38 0.61 29 0.49 34
Sinkhorn-Knopp scaling 0.53 39 0.64 16 0.63 12 0.54 40 0.67 16 0.64 8

Sparse Control
No scaling. 0.44 52 0.37 66 0.25 76 0.40 64 0.40 64 0.33 63
Column scaling 0.53 40 0.61 28 0.52 46 0.51 46 0.57 43 0.51 44
Row scaling 0.50 42 0.51 38 0.47 40 0.52 46 0.53 44 0.41 46
Row/column scaling 0.54 39 0.61 26 0.52 36 0.56 40 0.60 35 0.49 43
Sinkhorn-Knopp scaling 0.53 39 0.64 16 0.63 12 0.54 40 0.67 16 0.65 8

HIIA
Decentralised Control
No scaling. 0.54 25 0.52 26 0.35 52 0.54 35 0.57 33 0.45 38
Column scaling 0.60 19 0.61 10 0.55 22 0.58 29 0.66 10 0.58 14
Row scaling 0.62 17 0.60 13 0.58 15 0.59 28 0.67 13 0.56 18
Row/column scaling 0.65 14 0.63 8 0.60 12 0.59 28 0.69 7 0.59 11
Sinkhorn-Knopp scaling 0.64 12 0.66 4 0.67 3 0.62 25 0.72 4 0.67 0

Sparse Control
No scaling. 0.53 25 0.54 29 0.37 56 0.54 36 0.56 36 0.45 50
Column scaling 0.60 19 0.61 14 0.64 26 0.58 29 0.67 14 0.67 23
Row scaling 0.62 17 0.59 16 0.56 26 0.59 29 0.62 21 0.54 30
Row/column scaling 0.65 14 0.63 11 0.65 17 0.59 28 0.70 10 0.67 17
Sinkhorn-Knopp scaling 0.64 12 0.66 4 0.67 3 0.62 25 0.72 4 0.68 0

Note: Bold values indicate statistically significant improvements compared to the system with no scaling.
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Table A2. Average score (S) and number of unstable outcomes (U) for the different methods with different gain variation for a load disturbance for non-minimum phase
systems.

Maximum gain 10 100 1000 10 100 1000

Controller design method Lambda IMC

PM
Decentralised Control S U S U S U S U S U S U
No scaling 0.46 39 0.42 50 0.36 61 0.35 61 0.51 52 0.46 59
Column scaling 0.58 23 0.61 18 0.56 36 0.45 45 0.65 21 0.64 30
Row scaling 0.56 29 0.62 24 0.57 28 0.49 42 0.64 26 0.65 32
Row/column scaling 0.61 21 0.66 15 0.61 23 0.49 43 0.70 18 0.65 30
Sinkhorn-Knopp scaling 0.61 19 0.71 10 0.78 6 0.56 32 0.80 3 0.82 1

Sparse Control
No scaling. 0.45 37 0.39 52 0.36 61 0.35 60 0.44 53 0.42 61
Column scaling 0.56 25 0.59 25 0.57 40 0.43 47 0.57 26 0.57 34
Row scaling 0.54 30 0.53 31 0.53 34 0.45 49 0.51 31 0.51 32
Row/column scaling 0.60 22 0.63 21 0.62 28 0.47 45 0.61 23 0.56 31
Sinkhorn-Knopp scaling 0.61 19 0.71 10 0.78 6 0.56 32 0.80 3 0.82 1

�2
Decentralised Control
No scaling. 0.45 52 0.42 66 0.29 79 0.44 58 0.48 61 0.45 65
Column scaling 0.54 41 0.64 28 0.53 43 0.52 43 0.64 34 0.64 38
Row scaling 0.56 39 0.61 34 0.55 40 0.56 41 0.68 32 0.62 35
Row/column scaling 0.56 39 0.67 25 0.57 33 0.57 38 0.70 28 0.67 33
Sinkhorn-Knopp scaling 0.57 40 0.75 17 0.75 13 0.57 39 0.78 15 0.85 7

Sparse Control
No scaling. 0.43 53 0.38 67 0.29 77 0.43 58 0.42 62 0.44 62
Column scaling 0.55 41 0.63 28 0.54 48 0.50 44 0.57 38 0.56 38
Row scaling 0.51 43 0.52 37 0.51 41 0.54 43 0.52 36 0.48 40
Row/column scaling 0.56 40 0.64 27 0.55 38 0.56 40 0.60 30 0.58 39
Sinkhorn-Knopp scaling 0.57 40 0.75 17 0.75 13 0.57 39 0.78 15 0.84 7

HIIA
Decentralised Control
No scaling. 0.55 25 0.57 27 0.43 53 0.52 37 0.62 33 0.58 38
Column scaling 0.61 20 0.67 11 0.65 23 0.56 31 0.74 10 0.74 14
Row scaling 0.63 18 0.67 13 0.67 16 0.58 29 0.75 13 0.72 18
Row/column scaling 0.65 15 0.70 9 0.71 13 0.57 30 0.78 7 0.76 11
Sinkhorn-Knopp scaling 0.65 13 0.74 5 0.79 4 0.60 26 0.81 3 0.81 0

Sparse Control
No scaling. 0.55 25 0.55 29 0.41 57 0.52 38 0.56 33 0.46 42
Column scaling 0.61 20 0.66 14 0.66 27 0.56 31 0.69 12 0.64 18
Row scaling 0.63 18 0.64 16 0.60 26 0.58 30 0.66 14 0.60 20
Row/column scaling 0.65 15 0.70 11 0.70 18 0.57 30 0.75 8 0.68 14
Sinkhorn-Knopp scaling 0.65 13 0.74 5 0.79 4 0.60 26 0.81 3 0.81 0

Note: Bold values indicate statistically significant improvements compared to the system with no scaling.
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Table A3. Average score (S) and number of unstable outcomes (U) for the differentmethodswith different gain variation for a reference step forminimumphase systems.

Maximum gain 10 100 1000 10 100 1000

Controller design method Lambda IMC

PM
Decentralised Control S U S U S U S U S U S U
No scaling 0.24 53 0.27 57 0.25 66 0.26 42 0.28 45 0.26 52
Column scaling 0.35 34 0.44 24 0.40 36 0.31 31 0.39 22 0.38 37
Row scaling 0.36 35 0.41 36 0.44 32 0.35 34 0.41 28 0.39 23
Row/column scaling 0.35 30 0.47 22 0.44 29 0.33 31 0.45 22 0.40 23
Sinkhorn-Knopp scaling 0.39 22 0.52 17 0.54 5 0.37 27 0.48 6 0.50 2

Sparse Control
No scaling. 0.26 54 0.27 58 0.27 57 0.27 50 0.34 43 0.27 55
Column scaling 0.35 36 0.51 29 0.56 29 0.31 36 0.50 28 0.47 41
Row scaling 0.36 37 0.44 36 0.50 31 0.35 38 0.44 34 0.41 30
Row/column scaling 0.34 33 0.52 26 0.54 26 0.34 32 0.54 24 0.46 27
Sinkhorn-Knopp scaling 0.39 22 0.52 17 0.54 5 0.37 27 0.48 6 0.50 2

�2
Decentralised Control
No scaling. 0.66 19 0.46 33 0.39 41 0.64 9 0.50 23 0.40 36
Column scaling 0.69 12 0.60 7 0.53 18 0.70 6 0.59 8 0.50 16
Row scaling 0.71 9 0.58 17 0.51 22 0.71 5 0.60 9 0.52 19
Row/column scaling 0.71 9 0.61 10 0.55 15 0.72 5 0.62 4 0.55 10
Sinkhorn-Knopp scaling 0.71 9 0.69 3 0.61 0 0.75 3 0.66 2 0.66 3

Sparse Control
No scaling. 0.70 16 0.50 33 0.43 39 0.70 11 0.55 22 0.43 34
Column scaling 0.74 9 0.73 8 0.69 16 0.73 13 0.76 10 0.69 19
Row scaling 0.77 9 0.66 17 0.59 18 0.77 5 0.66 15 0.54 22
Row/column scaling 0.74 8 0.73 7 0.69 12 0.76 8 0.76 7 0.63 14
Sinkhorn-Knopp scaling 0.71 9 0.69 3 0.61 0 0.75 3 0.66 2 0.66 3

HIIA
Decentralised Control
No scaling. 0.36 30 0.41 31 0.33 44 0.34 30 0.38 25 0.30 37
Column scaling 0.41 22 0.51 14 0.48 13 0.36 26 0.46 11 0.44 18
Row scaling 0.46 18 0.47 19 0.50 16 0.39 23 0.44 12 0.40 13
Row/column scaling 0.42 18 0.51 15 0.50 13 0.37 24 0.47 10 0.47 6
Sinkhorn-Knopp scaling 0.45 18 0.55 12 0.53 6 0.38 25 0.50 4 0.51 2

Sparse Control
No scaling. 0.36 30 0.43 33 0.39 46 0.34 30 0.41 28 0.35 45
Column scaling 0.41 22 0.54 15 0.65 15 0.36 26 0.51 11 0.55 22
Row scaling 0.46 18 0.48 20 0.57 15 0.39 23 0.45 12 0.44 27
Row/column scaling 0.42 18 0.52 17 0.62 14 0.37 24 0.49 10 0.55 11
Sinkhorn-Knopp scaling 0.45 18 0.55 12 0.53 6 0.38 25 0.50 4 0.51 2

Note: Bold values indicate statistically significant improvements compared to the system with no scaling.
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Table A4. Average score (S) and number of unstable outcomes (U) for the different methods with different gain variation for a load disturbance for minimum phase
systems.

Maximum gain 10 100 1000 10 100 1000

Controller design method Lambda IMC

PM
Decentralised Control S U S U S U S U S U S U
No scaling 0.22 53 0.32 57 0.36 66 0.29 43 0.39 44 0.35 53
Column scaling 0.35 34 0.52 24 0.62 36 0.32 32 0.53 24 0.53 36
Row scaling 0.34 35 0.47 36 0.61 32 0.37 34 0.55 26 0.54 24
Row/column scaling 0.35 30 0.55 22 0.63 29 0.34 31 0.60 23 0.57 24
Sinkhorn-Knopp scaling 0.38 22 0.58 17 0.77 5 0.38 27 0.63 8 0.73 3

Sparse Control
No scaling. 0.23 54 0.30 57 0.33 57 0.29 45 0.37 40 0.34 55
Column scaling 0.33 36 0.49 26 0.54 29 0.31 32 0.49 27 0.49 36
Row scaling 0.32 37 0.44 36 0.53 29 0.36 34 0.49 23 0.51 25
Row/column scaling 0.33 33 0.50 24 0.56 24 0.33 30 0.54 24 0.54 23
Sinkhorn-Knopp scaling 0.38 22 0.58 17 0.77 5 0.38 27 0.63 8 0.73 3

�2
Decentralised Control
No scaling. 0.72 19 0.56 33 0.55 41 0.79 7 0.69 24 0.58 35
Column scaling 0.77 12 0.76 7 0.78 18 0.82 6 0.82 9 0.75 15
Row scaling 0.77 9 0.72 17 0.72 22 0.83 5 0.78 10 0.75 19
Row/column scaling 0.78 9 0.76 10 0.79 15 0.84 5 0.82 5 0.81 10
Sinkhorn-Knopp scaling 0.78 9 0.86 3 0.89 0 0.83 3 0.86 2 0.92 2

Sparse Control
No scaling. 0.69 16 0.55 33 0.53 39 0.65 7 0.63 22 0.56 31
Column scaling 0.78 9 0.73 6 0.75 16 0.76 5 0.76 8 0.66 16
Row scaling 0.72 8 0.67 16 0.63 18 0.70 4 0.68 8 0.66 14
Row/column scaling 0.78 8 0.72 6 0.75 12 0.75 4 0.74 5 0.71 10
Sinkhorn-Knopp scaling 0.78 9 0.86 3 0.89 0 0.83 3 0.86 2 0.92 2

HIIA
Decentralised Control
No scaling. 0.34 30 0.48 31 0.48 44 0.35 31 0.49 26 0.42 38
Column scaling 0.40 22 0.60 14 0.73 13 0.38 25 0.60 12 0.63 17
Row scaling 0.44 18 0.56 19 0.70 16 0.41 23 0.61 12 0.58 14
Row/column scaling 0.41 18 0.59 15 0.72 13 0.38 23 0.62 10 0.68 7
Sinkhorn-Knopp scaling 0.45 18 0.62 12 0.77 6 0.40 24 0.65 6 0.75 3

Sparse Control
No scaling. 0.34 30 0.46 32 0.44 43 0.35 31 0.45 27 0.37 39
Column scaling 0.40 22 0.59 14 0.67 13 0.38 25 0.58 12 0.60 19
Row scaling 0.44 18 0.55 20 0.60 13 0.41 23 0.56 11 0.52 17
Row/column scaling 0.41 18 0.59 16 0.68 13 0.38 23 0.60 10 0.64 7
Sinkhorn-Knopp scaling 0.45 18 0.62 12 0.77 6 0.40 24 0.65 6 0.75 3

Note: Bold values indicate statistically significant improvements compared to the system with no scaling.
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