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ABSTRACT
Detection and attribution of climate change plays a central role in establishing the causal relationship
between the observed changes in the climate and their possible causes. Optimal fingerprinting has been
widely used as a standard method for detection and attribution analysis for mean climate conditions, but
there has been no satisfactory analog for climate extremes. Here, we turn an intuitive concept, which
incorporates the expected climate responses to external forcings into the location parameters of the
marginal generalized extreme value (GEV) distributions of the observed extremes, to a practical and better-
understood method. Marginal approaches based on a weighted sum of marginal GEV score equations
are promising for no need to specify the dependence structure. The computational efficiency makes
them feasible in handling multiple forcings simultaneously. The method under working independence is
recommended because it produces robust results where there are errors-in-variables. Our analyses show
human influences on temperature extremes at the subcontinental scale. Compared with previous studies,
we detected human influences in a slightly smaller number of regions. This is possibly due to the under-
coverage of the confidence intervals in existing works, suggesting the need for careful examinations of
the properties of the statistical methods in practice. Supplementary materials for this article, including a
standardized description of the materials available for reproducing the work, are available as an online
supplement.
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1. Introduction

The United Nations Framework Convention on Climate Change
reached the landmark Paris Agreement in December 2015 that,
for the first time, commits nearly every country to lowering the
emission of greenhouse gases to reduce the impact of human-
induced climate change. Of fundamental importance to support
such a global policy is the scientific underpinning of a causal
relationship between the human emission of greenhouse gas and
the warming of planet Earth, in which detection and attribution
of climate changes has played a central role. In climate science,
detection refers to the process of determining whether there is
a discernible change in some aspect of the climate over time;
attribution refers to the process of attributing causes of the
detected change (e.g., Hegerl et al. 2010). The classical problem
is to determine whether some combination of external forc-
ings to the climate system have caused a detected change in
climate and, subsequently, quantify the size of the influence.
Examples of external forcings are increase in greenhouse gas
concentrations caused by the use of fossil fuels and eruption
of volcanoes, which affect atmospheric optical properties and
thereby the amount of solar radiation entering the atmosphere.
Typically, physical arguments are made to identify the most
important external forcings that could plausibly be responsible
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for the observed change. Then, physics-based numerical climate
models are used to estimate the expected climate responses
to the forcings, termed signals, or fingerprints; and statistical
inference is used to determine whether those fingerprints are
present in observations and if so, whether they have the expected
amplitude.

For mean climate conditions, optimal fingerprinting (e.g.,
Hasselmann 1997; Allen and Stott 2003) has been used as a
standard method to quantify influences from external forcings.
This method regresses observed measures onto the expected
responses to, or signals of, specific forcings of interest to deter-
mine whether the signals are present in the observations and, if
so, with what amplitude. The regression errors contain infor-
mation about the natural internal (chaotic) variability of the
climate system. Decisions about the presence or absence of the
signals in the observations, termed fingerprinting, are based on
the statistical inferences about their coefficients, termed scaling
factors, which adjust the amplitudes of the signals to best match
the observations. Estimation of the scaling factors faces two
complications: both the optimal weight matrix and the signals
are not observed but estimated. The optimal weight matrix is
the inverse of the covariance matrix of the regression errors,
which optimizes the efficiency of the inferences; that is, it min-
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imizes the uncertainty of the estimator of the scaling factors as
measured in mean squared error. Estimation of the covariance
matrix is challenging because the number of climate model
simulations is often too small relative to the matrix dimension
to produce consistent estimators. This has traditionally been
addressed by restricting the number of orthogonal components
used in the analysis but recent works have also emphasized alter-
native regularization approaches (e.g., Ribes, Planton, and Ter-
ray 2013). Estimation of the signals brings an errors-in-variables
(EIV) issue, which is addressed by total least squares (Allen and
Stott 2003) and likelihood-based EIV regression (e.g., Hunting-
ford et al. 2006; Hannart, Ribes, and Naveau 2014). Optimal
fingerprinting has been used in many studies that have detected
human influence on different aspects of the climate system. The
resulting literature has been assessed in successive reports of
the Intergovernmental Panel on Climate Change (IPCC) (e.g.,
Mitchell and Karoly 2001; Hegerl et al. 2007; Bindoff et al.
2013). Those assessments have led to the IPCC statement: “It
is extremely likely [probability greater than 0.95] that human
influence has been the dominant cause of the observed warming
since the mid-20th century” (IPCC 2013b, p. 17).

Much of the impact of climate is caused by extremes. For
example, extremely hot weather can cause devastating impacts
on human health even in the United States and Europe (Karl
and Knight 1997; Schär and Jendritzky 2004). Understanding
the causes of observed changes is important for confidently pro-
jecting future changes in climate extremes and thereby for devel-
oping sound adaptation strategies. An analog of the optimal
fingerprinting method has, however, not been well established
for extremes. Several approaches have been proposed, most of
which avoid directly addressing the probabilistic properties of
extremes by applying the standard fingerprinting method to, for
example, transformed extreme values (Min et al. 2011), fitted
parameters of extreme value distributions (Christidis, Stott, and
Brown 2011), or averages of extremes over large regions (Wen
et al. 2013; Zhang et al. 2013). These studies did not exploit the
unique properties of extremes and cannot assess changes in rare,
high impact events.

Zwiers, Zhang, and Feng (2011) conducted the first detection
and attribution analysis of changes in climate extremes based
on extreme value analysis. Annual temperature extremes at each
grid box in a study region are assumed to follow a generalized
extreme value (GEV) distribution. Over the study period, the
scale and shape parameters of the GEV distribution at each
grid box are assumed to remain unchanged, while the loca-
tion parameters incorporate the signals of external forcings as
covariates. These signals are assumed to be in the form of time-
evolving location parameters and are estimated based on climate
model simulations. Similarly to standard fingerprinting, the
coefficients of the signals or the scaling factors are shared by all
grid boxes, see Equation (1), which adjusts the amplitude of the
expected time-evolution to best fit the observed extremes. This
framework points to an exciting possibility for an analog of the
standard optimal fingerprinting for extreme values. The method
of Zwiers, Zhang, and Feng (2011) has limitations. The use of a
profile independence likelihood (IL) method is computationally
too expensive to be feasible when multiple signals are involved,
which are often required in detection and attribution analyses.
More importantly, there is little understanding on the statistical

properties of the framework, making it difficult to interpret the
results based on the method. In particular, the two challenges
shared with the standard fingerprinting, the efficiency issue and
the EIV issue, and their implications in practical applications are
not addressed or discussed.

It is tempting to model the spatial dependence under
the framework of Zwiers, Zhang, and Feng (2011). Spatial
dependence can be introduced to extremes by a latent Gaussian
process, conditional on which the observed data follow inde-
pendent GEV distributions (Casson and Coles 1999; Cooley,
Nychka, and Naveau 2007; Sang and Gelfand 2009; Fuentes,
Henry, and Reich 2013). The resulting marginal distributions
are, however, no longer GEV distributions. Alternatively,
spatial extremes can be directly modeled through max-stable
processes; see Davison, Padoan, and Ribatet (2012) and Ribatet,
Dombry, and Oesting (2016) for recent reviews. Max-stable
processes are typically used when the aim is the prediction
of joint/conditional events or realistic simulations. Since the
joint density is intractable for dimension greater than two or
three, inferences are mostly based on pairwise likelihood (PL)
(Smith and Stephenson 2009; Padoan, Ribatet, and Sisson 2010;
Davison and Gholamrezaee 2012). Such a fully parametric
model for spatial dependence, when correctly specified, may
lead to fairly efficient estimation of the regression coefficients
in marginal GEV models, but misspecification of bivariate
distributions may lead to inconsistent estimators for the
marginal parameters of primary interest. In reality, it is likely
that a max-stable process will fail goodness-of-fit tests when the
study region is of practical size (Kojadinovic, Shang, and Yan
2015). Additionally, the computational cost of the PL method
increases drastically as the number of sites increases.

The goal of this article is to advance toward an optimal
fingerprinting in the extreme value modeling framework. As in
standard fingerprinting, efficiency and EIV are two major
methodological concerns. We propose three methods to
approach these issues. The first is a combined score equation
(CSE) method based on weighted sum of marginal GEV scores
where, for improved efficiency, the weights are estimated to
account for spatial dependence. The idea is similar to the
generalized estimating equations (GEE) approach for clustered
data (Liang and Zeger 1986). The second method is a variant
of the CSE method with an identity weight matrix, that we call
CSE-I. It does not use spatial dependence in point estimation
but, like the CSE method, uses bootstrap to adjust for spatial
dependence in constructing confidence intervals. CSE-I is
conceptually equivalent to the profile IL method of Zwiers,
Zhang, and Feng (2011) but computationally much faster.
The third method is to fully specify the joint distribution of
spatial extremes with a max-stable process and estimate the
parameters by maximizing the PL. This method may lead
to bias in estimation if the PL is misspecified; further, it is
computationally much more expensive than the marginal
methods. Numerical studies where the signals are observed
suggest that the CSE estimator is the most preferred in terms of
mean squared error. When the signals are estimated, however,
the CSE estimator is more sensitive to the EIV issue resulting
from the signal estimation than the CSE-I estimator due to the
spatial dependence in EIV. The bias of the CSE estimator makes
the coverage rate of the confidence intervals unreliable.
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The methods were applied to regional detection and attri-
bution analyses of four temperature extremes including annual
maximum of the daily maxima (TXx), annual maximum of
the daily minima (TNx), annual minimum of the daily max-
ima (TXn), and annual minimum of the daily minima (TNn).
Important practical issues were investigated in numerical stud-
ies mimicking real detection and attribution analyses as well as
in perfect model detection using simulated extremes from the
second-generation Canadian Earth System Model (CanESM2)
(Fyfe et al. 2017). The bootstrap confidence intervals were found
to have coverage rates lower than the nominal levels even for
the less biased CSE-I estimator, which has important impli-
cations on the conclusions based on confidence intervals in
existing studies. The two-signal perfect model detection study
over 13 subcontinental regions showed no evidence against the
additivity between the anthropogenic (ANT) and natural (NAT)
signals in GEV location parameter, at least for the CanESM2
model, which is reassuring for existing studies relying on the
assumption (e.g., Wang et al. 2017). Analyses with the CSE-I
method reported human influences on temperature extremes
in a slightly smaller number of regions than previous studies,
which may indicate under-coverage of the confidence intervals
in earlier works.

2. Fingerprinting With Climate Extremes

Following Zwiers, Zhang, and Feng (2011), we need to specify
GEV distributions for both the observed extremes and the cli-
mate model extremes under external forcings.

2.1. Observation Extremes

Suppose that observed extremes are available at m grid boxes
over n years. Let F(· | μ, σ , ξ) be a GEV distribution function
with location μ, scale σ , and shape ξ . The observed annual
extreme Yts at grid box s in year t, s = 1, . . . , m, t = 1, . . . , n, is
characterized by

Yts ∼ F(· | μts, σs, ξs), μts = αs + X�
ts β , (1)

where Xts = (Xts1, . . . , Xtsp)� is a p × 1 vector of the sig-
nals (fingerprints) of certain external forcings at grid box s
in year t obtained from climate model simulations under the
forcings (see details below), β is the vector of scaling factors
that adjusts the amplitude of the signals to best match the
observed data, and αs, σs, and ξs are grid-box-specific location,
scale, and shape parameters, respectively. Although covariates
could be incorporated into the scale and shape parameters
(e.g., Risser and Wehner 2017), we do not pursue this direction
here. Equation (1) only specifies marginal GEV distributions;
no spatial/temporal dependence specification is needed for this
application. The GEV distribution for modeling annual climate
extremes has been widely accepted in climate research (e.g.,
Kharin, Zwiers, and Zhang 2005).

The constant scaling factor β in (1) across all grid boxes
is an important assumption in the standard fingerprinting
framework (Allen and Stott 2003; Zwiers, Zhang, and Feng
2011; Zwiers et al. 2014). This is based on the assumption that
climate models properly reproduced the patterns of climate
responses to external forcing even though the magnitude of the
responses may differ because of differences in climate sensitivity.

This assumption is reasonable in that while the magnitude
of response is uncertain, the spatial-temporal pattern of the
response is constrained by physical understanding. For example,
the increase in the greenhouse gases must result in an increase
in temperature, but northern high-latitude should warm more
than lower latitude because of the reduction of snow and ice as a
result of warming. The land should warm more than water body
because of difference in heat capacity. Of course, this assumption
would fail where physical processes are not properly represented
in a region, such as snow albedo feedback or soil moisture
feedback. Projections of future change mostly bear this out.
Projected temperature change patterns under different transient
forcing scenarios are remarkably similar, in both means and
“extremes” (IPCC 2013a) to the extent that most differences
can be accounted for by simple pattern scaling. The task of
detection and attribution analysis is to examine whether the
modeled patterns (fingerprints) are present in the observed data
and whether their amplitudes are consistent with the observed
data, through inferences about the constant scaling factors
that produce the best match between the fingerprints and the
observations.

Among the 3m+p parameters in Equation (1), detection and
attribution analyses focus on inference about the scaling factors
β shared by all grid boxes, which is to be distinguished from the
scale parameters σs’s in terminology. Based on physical judge-
ment in detection and attribution analyses, it is assumed that no
important external forcing factors are left out. If the coefficient
in β corresponding to an external forcing is significantly greater
than zero, then that forcing’s fingerprint is said to be “detected”
in the observed data. If, in addition, the hypothesis that this
coefficient equals one is not rejected, then this is statistical
evidence supporting that the changes in the observed data can
be “attributed” to the corresponding external forcing; the actual
attribution requires, in addition, careful physical reasoning to
ensure that the responsible physical processes are understood
and elimination of the possibility that forcing agents not consid-
ered could have been responsible (Mitchell and Karoly 2001). If
the scaling factor has a confidence interval in between zero and
one, this may be an indication of over estimation in the climate
model response. If the scaling factor’s confidence interval is
above one, this may be an indication of under estimation in the
climate model response.

Although not specified in Equation (1), spatial and temporal
dependence affects the efficiency in inferences about β . Annual
extreme temperatures at one year have some degree of depen-
dency over the space, while at any single location, the temporal
dependency is relatively small. A working assumption is that,
conditional on the signals, the annual extremes are spatially
dependent in one year and temporally independent at one loca-
tion (e.g., Padoan, Ribatet, and Sisson 2010; Blanchet and Davi-
son 2011; Davison and Gholamrezaee 2012; Davison, Padoan,
and Ribatet 2012). The justification of temporal independence
is that daily measures only exhibit short-range dependence and
that the conditions for independence among well-separated
extremes in time are likely to be satisfied (Leadbetter, Lindgren,
and Rootzén 1983, sec. 3.2). Empirically, known low-frequency
phenomena such as the El Niño/Southern Oscillation (ENSO)
may affect the distribution of climate extremes and introduce
some temporal and spatial dependence (Zhang et al. 2010).
Such dependence at multi-year scale, usually not too strong, is
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not an issue for the CSE and CSE-I methods proposed in the
next section because the block bootstrap approach of Zwiers,
Zhang, and Feng (2011) have taken both spatial and temporal
dependence into consideration.

2.2. Climate Model Extremes

In detection and attribution analyses, each component of the
signal vector Xts in Equation (1) is unknown and needs to
be estimated. The signals at each s are the fingerprints of the
external forcings of interest, which are assumed to be in the form
of a time-evolving GEV location parameter as in Zwiers, Zhang,
and Feng (2011). We assume that the runs in the ensemble under
each external forcing come from a single climate model or multi-
models that are interchangeable. Accounting for uncertainty
from heterogeneity climate models (Huntingford et al. 2006) is
an interest of future work.

Consider estimating Xtsi, i = 1, . . . , p, the signal of the ith
external forcing. Suppose that an ensemble of size li is available
from a climate model under the ith forcing. The ensemble mem-
bers were obtained under the same forcing scenario but from
different initial conditions, essentially forming a random sample
of size li of the same stochastic process of climate dynamics.
Therefore, at grid box s, this leads to li independent time series
of annual extremes, that is, one time series for each ensemble
member.

Let Z(r)
tsi be the annual extreme in ensemble member r of the

climate model simulations under the ith external forcing at grid
box s in year t, s = 1, . . . , m, t = 1, . . . , n, and r = 1, . . . , li.
A GEV distribution F(· | Xtsi, σ ′

si, ξ
′
si) is assumed for Z(r)

tsi , with
scale σ ′

si, shape ξ ′
si, and location parameter Xts varying smoothly

over time:

Z(r)
tsi ∼ F(· | Xtsi, σ ′

si, ξ
′
si), Xtsi = μ(t; γsi), r = 1, . . . , li,

(2)

where μ(t; γsi) is a function of t with parameters γsi. Note that
Xtsi is the fingerprint of forcing i in Equation (1). A simple yet
flexible characterization for μ is

μ(t; γsi) =
K∑

k=1
γsi,kBk(t),

where Bk(t)’s, k = 1, . . . , K, are a set of B-splines basis with
K degrees of freedom, and γsi = (γsi,1, . . . , γsi,K) is the coef-
ficient vector of the basis. Higher degrees of freedom allows
more flexibility. The parameters (σ ′

si, ξ
′
si, γsi) can be estimated

separately with ease at each grid box s under working temporal
independence, with the li series of simulated annual extremes
treated as independent replicates. Let γ̂si be an estimate of γsi,
s = 1, . . . , m. The signal Xtsi under forcing i is then estimated
by X̂tsi = μ(t; γ̂si). Using X̂tsi in place of Xtsi in Equation (1) is
the source of the EIV issue.

3. Estimating the Scaling Factor

We present the estimation methods for the case where Xts’s are
observed and then discuss practical issues including EIV. In
addition to scaling factor β , there are grid-box-specific param-
eters ζs = (αs, σs, ξs)�, s = 1, . . . , m.

3.1. CSE Method

The CSE method combines marginal GEV score equations over
all s with certain weight matrix. Let f (·; μts, σs, ξs) be the density
function of the GEV distribution with location μts, scale σs,
and shape ξs. For each t ∈ {1, . . . , n}, s ∈ {1, . . . , m}, let
Sts = d log f (Yts; μts, σs, ξs)/dμts. Correct marginal specifica-
tion implies E(Sts) = 0. Under working temporal independence,
the score equation for β with data at site s is

n∑

t=1
X�

ts Sts = 0, s = 1, . . . , m. (3)

In a slightly more general setting, a known link function could
be used to connect μts to the linear predictor; we use the identity
link here. The CSE is

n∑

t=1
XtW−1

t St = 0, (4)

where X�
t = (Xt1, . . . , Xtm), W−1

t is a m×m weight matrix, and
St = (St1, . . . , Stm)�. When Wt is the identity matrix, the CSE
is score equation of the independence likelihood under working
independence. A more efficient estimator is possible with an
appropriate choice of Wt that accounts for spatial dependence
to some extent.

The optimal Wt has the form Wt = �t	
−1
t (Nikoloulo-

poulos, Joe, and Chaganty 2011) where �t = cov(St) and
	t = −diag(	t1, . . . , 	tm), with 	ts = E{d2 log f (Yts; μts, σs,
ξs)/dμ2

ts}, s = 1, . . . , m. Under spatial independence, Wt
reduces to the identity matrix as � = 	, and the estimating
equation (4) reduces to the score equations of the IL method.
Since 	t is known for the marginal GEV distributions (Prescott
and Walden 1980), we just need to approximate the covariance
matrix �t of the score functions St .

With years treated as clusters, we propose to use a simple
working spatial correlation structure for St . Since the univariate
marginal GEV distributions are assumed to be correctly spec-
ified, we have var(Sts) = 	ts as long as ξs > −0.5 (Smith
1985; Bücher and Segers 2017). As in a GEE setting, suppose
all clusters share the same correlation matrix, R, of the score
functions. Then �t can be written as �t = 	

1/2
t R	

1/2
t . We need

to find a reasonably flexible correlation structure to approximate
the spatial dependence among the location-wise scores within
a year. As the spatial dependence between the observations
from two sites decays as their distance increases in general, we
suggest using simple one-parameter working spatial correlation
functions such as exponential or spherical. In four scenarios
reported in the supplementary materials, Section 1, the expo-
nential working correlation fits well the true correlation func-
tions of the scores, which were approximated by Monte Carlo.
In practice, the score functions can be evaluated at a parameter
estimate under working independence and their empirical cor-
relation coefficients can be used to fit the working correlation
structure through, for instance, nonlinear least squares.

An estimate of the parameters in Equation (1), 
 =
(β�, ζ�

1 , . . . , ζ�
m ), can be obtained with a block coordinate

descent algorithm cycling through all its components (e.g.,
Tseng 2001; Tseng and Yun 2009). The CSE (4) is viewed as
the gradient of some objective function with respect to β that
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does not have a closed-form. We solve for the root of the CSE
by alternating between two steps until convergence:

1. Given an estimate β̂n of β , obtain likelihood estimates ζ̂s,n of
ζs separately at each grid box s ∈ {1, . . . , m}.

2. Given estimates ζ̂s,n of ζs, s ∈ {1, . . . , m}, obtain the CSE
estimate β̂n of β by solving Equation (4) with an appropriately
chosen working correlation structure.

The initial value of β̂n can be obtained by estimating a β at each s
separately and taking the average of the estimated β ’s. The work-
ing correlation parameters do not need to be updated if they
are estimated based on a good initial value β̂n of βn. To ensure
ξs > −0.5 so that the marginal Fisher information is finite at
each s, we impose a penalty that restricts the range of each ξs to
be within (−0.5, 0.5) using a Beta(9, 6) prior distribution. The
idea, suggested by Martins and Stedinger (2000), has been used
in many applications with GEV modeling (e.g., Cooley and Sain
2010). The estimating equations in each step can be solved with
the R package nleqslv (Hasselman 2018).

Inference about β can be based on a block bootstrap that
preserves spatial and temporal dependence (Zwiers, Zhang, and
Feng 2011). Let 
̂ be the CSE estimate of 
. Define the residual
series ε̂ts = Yts − α̂s − β̂Xts at each grid box s ∈ {1, . . . , m}
for t ∈ {1, . . . , n}. Divide the residual series into 5-year non-
overlapping blocks and randomly reorder the sequence of 5-year
blocks over time. The choice of 5-year blocks is such that the
temporal dependence introduced by low frequency phenomena
such as ENSO is retained approximately. Let ε̃ts be the reordered
residual series. A bootstrap sample of the data is obtained by
α̂s + β̂Xts + ε̃ts at each s. The CSE method is then applied to
this sample to estimate β . Confidence intervals for β can be
constructed using a bootstrap sample of β̂ .

As a general method, CSE can be applied for potential effi-
ciency gains in settings where the marginal parameters are
of primary interest, with no distributional assumption beyond
univariate marginal distributions. Another example in spatial
extremes modeling is regional frequency analysis. Covariates
can also be incorporated into the GEV scale and shape param-
eters (e.g., Wang, Yan, and Zhang 2014), in which case, the CSE
method can be applied to one set of parameters at a time given
others in an iterative estimation procedure.

3.2. CSE-I Method

When Wt is the identity matrix (i.e., under working indepen-
dence), the CSE method reduces to the CSE-I method. It is
equivalent to the IL method of Zwiers, Zhang, and Feng (2011),
but has a clear advantage in computational efficiency and accu-
racy in inferences about β . The profile method used in Zwiers,
Zhang, and Feng (2011) requires that a predetermined search
grid covers the solution; the finer the grid, the closer approxima-
tion to the solution. In our single-signal analyses of East Asia in
Section 6, the profile method on a grid of 301 points took about
35–39 sec for each of the four temperature extremes, while the
CSE-I method took only 1–3 sec. When multiple signals are of
interest, which is often the case in practice, the CSE-I method
is even more advantageous combined with bootstrapping. In
our two-signal analyses, the CSE-I method only took 1–4 sec

for parameter estimation, which makes the bootstrap much
more manageable. The computing time of the profile method
is expected to increase about 300 times if a grid of 301 points
is selected for the scaling factor of the second signal. Another
advantage of the CSE-I method, as will be seen later, is its
robustness to EIV, in which case, the lower variance of the CSE
estimator is completely offset by its more severe bias than the
CSE-I estimator

3.3. PL Method

The fingerprinting formulation (1) does not specify any multi-
dimensional distribution beyond the marginal GEV specifica-
tions. One may assume a max-stable process model for spa-
tial dependence (e.g., Davison, Padoan, and Ribatet 2012) and
estimate 
 along with additional dependence parameters using
the PL method. Nonetheless, using a max-stable process for the
dependence structure needs much stronger justification as the
convergence of the dependence structure of annual extremes to
that of a limiting multivariate extreme value distribution may
occur at a very different rate than that of the marginal distri-
butions (Ledford and Tawn 1996, 1997; Resnick 2002). Further,
high-order dependence structures are difficult to diagnose and
test for goodness of fit (Kojadinovic, Shang, and Yan 2015). Our
numerical studies (not reported) revealed that the PL estimator
of β is not necessarily more efficient than the CSE estimator even
when the dependence structure of the PL method is correctly
specified. This may seem surprising at first, but the PL estimator
is not, after all, the true maximum likelihood estimator. Its
advantage in estimation under correct specification occurs for
the shape parameter, not for location parameters such as β .

3.4. Practical Issues

We focus on the CSE method and the CSE-I method in the
sequel because, compared to the PL method, they spare speci-
fication of spatial dependence in the extremes which is difficult
to test. In addition, the computation of the PL method is much
more intensive than the two marginal methods.

3.4.1. EIV From Estimated Signals
When Xts is replaced with X̂ts in Equation (1), the uncertainty
in X̂ts has an effect of EIV. When Xts’s are known, both CSE
and CSE-I estimators are unbiased, and the CSE estimator gives
a notable reduction in the variance compared to the CSE-I
estimator, as reported in the supplementary materials, Section 3.
In presence of EIV, however, both estimators are biased but of
different extent, which complicates the comparison. The EIV
issue in this setting has not been studied in the literature. There
are several unique challenges. The EIV are spatially and tem-
porally dependent. The EIV affect the estimating equations for
both β and ζs’s. Sometimes, the errors in one signal might be
correlated with the errors in another signal. Specifically, in order
to maximize the effectiveness of computing power in climate
model simulation, it is desirable to design simulation exper-
iments focusing on the ALL (combination of anthropogenic
and natural) forcing and some individual forcings with weaker
signals. For example, Ribes, Gillett, and Zwiers (2015) recom-
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mended to simulate responses to the ALL and NAT forcings, and
derive the ANT influence from these two sets of simulations. If
the ANT signal is inferred as the difference between the ALL
and NAT responses, the errors in ANT could be correlated with
errors in NAT, which is the case in Section 6.

The bias of the CSE and CSE-I estimators in presence of
EIV comes from the fact that the marginal GEV score equations
based on X̂ts’s in place of Xts are no longer unbiased. For the CSE,
an additional layer of bias comes from the spatial dependence
of the EIV, which contaminates the Type I condition (Lai and
Small 2007) of the marginal GEV score functions. The Type I
condition requires the expectation of the marginal estimating
function at each s conditional on X̂ts to be the same as that
conditional on (X̂t1, . . . , X̂tm). When it does not hold, CSE
which uses a nonidentity weight matrix is more biased than
CSE-I which uses the identity weight matrix. The larger bias
of the CSE method in comparison to the CSE-I method, as
shown in Section 4, could lead to unacceptable coverage rates
of confidence intervals.

Correcting the bias caused by the EIV issue is challenging
and merits an independent study. Functional modeling tech-
niques are preferred to structural modeling techniques in this
application because of no requirement on the distribution of the
true signals (e.g., Huang 2014). None of the existing correction
approaches, however, can be applied to amend the estimating
Equation (4) due to its special structure. Expanding the esti-
mating function with a second-order Taylor approximation did
not give satisfactory results in our investigation. For lack of a
satisfying correction, we may still estimate the scaling factors
discarding the EIV issue, but then natural questions arise such
as: whether the 50-run ensembles used in the data analyses in
Section 6 are sufficiently large to give ignorable bias; whether
one method is more robust than the other in response to the
EIV issue. These issues are investigated in a numerical study in
Section 4.

3.4.2. Bootstrap Confidence Interval
Confidence intervals for the scaling factors need to be con-
structed carefully to account for the spatial dependence and the
EIV issue. We propose to use the two-level bootstrap procedure
of Zwiers, Zhang, and Feng (2011) to construct confidence
intervals. The first level accounts for the uncertainty in signal
estimation. A block bootstrap procedure with non-overlapping
5-year blocks is applied to the runs in the ensemble under each
forcing to form a bootstrap sample of the signal estimates. At the
second level, for each set of the bootstrapped signal estimates,
a block bootstrap procedure is applied to the observed data to
form a bootstrap sample of scaling factor estimates. For instance,
if we get 32 bootstrap replicates of signal estimates and then
for each of them get 32 bootstrap replicates of scaling factor
estimates, then we will obtain a bootstrap sample of size 1024
for the scaling factors, which can then be used to construct
confidence intervals.

Little attention has been paid to the coverage property of the
confidence intervals. For the standard optimal fingerprinting
with linear regression that has been used for over 20 years, it
is only recently reported that the confidence intervals widely
used in practice have smaller coverage rate than their nominal

intervals (DelSole et al. 2019). Neither Wang et al. (2017) nor
Zwiers, Zhang, and Feng (2011) studied the coverage rate of the
two-level bootstrap confidence intervals in the extreme value
setting. If the bias resulting from EIV is severe, the intervals may
have lower coverage rate, leading to over statement of detection
and incorrect statement of attribution. This issue is investigated
in our numerical study in Section 4.

3.4.3. Additive ANT and NAT Signals
Similar to standard fingerprinting, Equation (1) depends on the
assumption that signals are additive. That is, climate response to
the combined effect of different forcings is statistically indistin-
guishable from the sum of the responses to individual forcings.
This seems to be the case at least for mean temperature at large
scale (Marvel et al. 2015). With 50-run ensembles under the ALL
and NAT forcing from the CanESM2 model, it is possible to
study whether the additivity holds in the GEV location param-
eters of extreme temperatures in a two-signal perfect model
detection study, which has not been done before. Specifically,
one run under the ALL forcing is used as the observed data; the
remaining runs under the ALL forcing and all the runs under
the NAT forcing are used as climate model simulations. If the
additivity of signals holds, the coefficients of the ANT signal
and NAT signals will both be surrounding one, which can be
used as a diagnosis for the additivity assumption. This issue is
investigated in Section 5.

Since the scaling factor of the ANT signal is of primary
interest, one may include directly the ALL and NAT signals as
covariates, and then appeal to the additivity of the two signals
to make inferences about the scaling factors of the ANT and
NAT signals. Alternatively, one may estimate the ANT signal as
the difference between the estimated ALL and NAT signals, and
then use the estimated ANT and NAT signals in fingerprinting.
Both approaches have advantages. For the latter, the two signals
are much closer to being orthogonal, and thus the design matrix
would be better conditioned. On the other hand, the ANT signal
estimate that is obtained by subtracting the NAT signal from
the ALL signal has contributions to uncertainty from both the
ALL and NAT signal estimates. Moreover, this also produces
dependence between the EIV in the ANT signal estimate and
that in the NAT signal estimate. We used the latter approach in
the numerical studies and regional analyses in the next sections.

4. Numerical Study

A numerical study was designed to further investigate the per-
formance of the CSE and CSE-I methods in terms of their point
estimates and confidence intervals. The PL method was not
included because of its need to specify the dependence structure
without obvious gain and its high computational cost. The study
mimics a real detection and attribution analysis in East Asia
(EAS) over the period of 1951–2010. The EAS region is bounded
by latitude 20N–50N and longitude 100E–145E as defined in
Giorgi and Francisco (2000). We chose to mimic the analyses of
TXx and TNn as TNn is known to have heavier tails than TXx.
The grid boxes are of resolution 5◦ × 5◦ (latitude × longitude).
To match the analyses in Section 6, the TXx data had 44 grid
boxes and the TNn data had 48 grid boxes. The difference in the
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Table 1. Summaries of the estimated scaling factors of ANT and NAT signals from 400 replicates in the numerical study.

CSE-I CSE

Type Ensemble size Dependence External forcing Mean SD RMSE CP Mean SD RMSE CP

TNn 25 Moderate ANT 0.88 0.20 0.24 85 0.65 0.14 0.38 27
NAT 0.88 0.35 0.37 90 0.65 0.23 0.42 65

Strong ANT 0.89 0.25 0.28 86 0.66 0.14 0.36 32
NAT 0.87 0.51 0.52 89 0.66 0.21 0.40 62

50 Moderate ANT 0.96 0.21 0.21 89 0.78 0.16 0.27 67
NAT 0.96 0.43 0.43 90 0.81 0.28 0.33 84

Strong ANT 0.91 0.27 0.29 86 0.79 0.15 0.26 69
NAT 0.94 0.54 0.54 90 0.79 0.26 0.33 84

TXx 25 Moderate ANT 0.95 0.16 0.17 86 0.78 0.12 0.25 50
NAT 0.95 0.36 0.36 89 0.80 0.22 0.30 83

Strong ANT 0.94 0.20 0.21 89 0.76 0.12 0.27 46
NAT 0.94 0.47 0.47 90 0.78 0.23 0.32 80

50 Moderate ANT 0.97 0.16 0.16 88 0.88 0.12 0.17 80
NAT 0.99 0.37 0.37 92 0.90 0.23 0.26 92

Strong ANT 0.96 0.19 0.19 90 0.87 0.12 0.18 81
NAT 0.93 0.52 0.52 90 0.89 0.24 0.26 92

NOTE: CP is the coverage percentage of 95% confidence intervals.

number of grid boxes was due to different missing patterns in
the observed data. In each replicate for each outcome (TXx or
TNn), we generated 50-run ensembles under the ALL and NAT
forcings, respectively, from Equation (2); we then generated
one additional run under the ALL forcing and used it as the
observed data. This setup assumes that the ALL signal is the
sum of the ANT and NAT signals. When performing finger-
printing analysis, we include two signals, ANT and NAT, where
the ANT signal was the difference between the ALL and NAT
signals. Our setting ensures that the true scaling factors are both
one.

Specifically, each run under each forcing was generated
under temporal independence. For a given forcing ALL or NAT,
annual extremes were generated from a spatial model whose
marginal GEV distributions were specified in Equation (2). At
each site s, the marginal GEV distribution was set to be the
fitted distributions based on the 50-run ensembles under the
corresponding forcing from CanESM2. The location parameters
were characterized by a quadratic spline with knots at every
5 years. The spatial dependence was set to be a mixture
of a geometric Gaussian max-stable (GGMS) process and a
Gaussian copula (GC) model with mixing rate of half-half,
with the region treated as a planar surface for simulating
GGMS processes; see the supplementary materials for some
background on the GGMS process. Two dependence levels were
considered, strong and moderate. For each dependence level,
the parameters of the GGMS model were determined first and
then the parameter of the GC model was tuned such that the
empirical correlation of the scores from a large sample matches
that from the GGMS model closely. Following the rationale of
Shang, Yan, and Zhang (2015), we fixed one parameter of the
GGMS model such that a close-to-full range of dependence
for pairwise extremal coefficients (Schlather and Tawn 2003)
is offered with upper bound 1.96. The correlation function
of the underlying Gaussian process of the GGMS model was
exponential ρ(h) = exp(−h/φ), where h is the distance
between two locations and the range parameter φ controls the
dependence. The strong and moderate dependence setting had
φ = 4200 and 2100 miles, respectively; the estimated φ by
fitting the extremal coefficient function of GGMS model to the

observed TXx in EAS through nonlinear least squares was 3150
miles, which is midway between the two settings for φ. The
matching GC model had an exponential correlation function
with range τ = 1120 and 630 miles corresponding to the strong
and moderate dependence level, respectively.

Table 1 summarizes the mean, standard deviation (SD), and
root mean squared error (RMSE) of the point estimates of the
two scaling factors, as well as the coverage percentage (CP)
of the 95% confidence intervals based on 400 replicates. Both
estimators show downward bias due to the EIV issue from the
signal estimation. The bias is larger in the analyses of TNn than
in the analyses of TXx, as TNn has heavier tails and larger
variability than TXx. More runs in the ensembles used in signal
estimation helps to reduce the bias. Stronger dependence led to
higher variation in the point estimation of both scaling factors
due to less information from the data. As expected, the estimated
scaling factor of the ANT signal has much smaller variation than
that of the NAT signal possibility due to weaker signal to noise
ratio for NAT.

In all cases the CSE estimates appear to be more severely
biased than the CSE-I estimates, although they have notably
reduced standard deviations, especially for NAT. In contrast to
the scenarios where there are no EIV (see the supplementary
materials), CSE is no longer a clear winner in terms of RMSE.
The CSE estimates still have smaller RMSE than the CSE-I
estimates for the NAT coefficient, but the CSE-I estimates have
an edge over or are comparable with the CSE estimates for
the ANT coefficient. The empirical coverage percentage of the
95% confidence intervals from the CSE method are far off from
the nominal level due to the severe bias; even with 50-run
ensembles, it is only 67% for ANT in the analyses of TNn under
moderate dependence. The CSE-I method, on the other hand,
yielded much more reliable coverage percentages of 86% or
higher when the ensemble size is 50. Given that the scaling factor
of the ANT signal is of major concern in fingerprinting, and
that the decisions are based on confidence intervals, the CSE-I
method is preferred. The results of the coverage percentage also
suggest that, in an “ad hoc” way, the 95% confidence interval may
be viewed as calibrated 90% confidence intervals by increasing
the critical values in construction (Loh 1987).
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5. Perfect Model Detection

5.1. Single-Signal Perfect Model Detection

Perfect model detection refers to the setting where each run
of an ensemble of climate model simulations is used as the
observed data, while the remaining runs are used to estimate
the fingerprints. This detection setting has a flavor of leave-one-
out cross-validation. It is “perfect” in the sense that the observed
data and the climate model simulations carry the same finger-
prints and natural variability. Such studies serve to establish
the detectability of the signals under a perfect situation, where
detection is not hampered by possible mismatch in natural
variability or forcing response between observations and climate
model simulations, and to understand the power of detection
of different methods. Perfect model detection has been done for
extreme temperature and precipitation by adapting the standard
fingerprinting framework (Hegerl et al. 2004; Min et al. 2009),
but no works exist within the extreme value analysis setting.

From the 50-run ensembles of the CanESM2 model under
the ALL forcing, we extracted the four annual temperature
extremes over the period of 1951–2010 over 5◦ × 5◦ (lati-
tude × longitude) grid boxes. For a given region, a perfect
model detection for each of the four temperature extremes

led to a set of 50 analyses. If the GEV distributions fit well
and the estimation is unbiased, the estimated scaling factors
will be clustered around 1. The perfect model detection was
performed on all four temperature extremes for the 13 subcon-
tinental regions analyzed in Section 6. Known as Giorgi regions
(Giorgi and Francisco 2000), these regions are widely used in
regional climate analyses. The grid boxes for each temperature
extreme were selected to match those determined by the avail-
able observed data analyzed in Section 6 in order shed light on
the real data analyses. The 13 regions all had 20 or more grid
boxes for all four temperature extremes. Table 2 summarizes the
boundaries and number of grid boxes for the 13 regions.

Figure 1 shows the boxplots of the 50 estimated scaling
factors of the ALL signal using the CSE and the CSE-I method.
The centers of the estimates from both methods appear to be
lower than one, which is expected since the EIV issue was not
accounted for. The downward patterns are much more severe in
the CSE estimates than in the CSE-I estimates, especially for the
two minima temperatures which have higher variation than the
two maxima. On the other hand, the CSE estimates have clearly a
smaller variation than the CSE-I estimates in most of the results.
For both estimates, the variations are higher in the analyses of
the two minima than in the analyses of the two maxima, which is

Table 2. Summaries of ranges and numbers of grid boxes of the 13 regions analyzed in the study.

Number of grid boxes

Acronym Region name Latitude (◦N) Longitude (◦E) TNn TXn TNx TXx

ALA Alaska 60/70 −165/−105 37 37 37 37
CGL Canada and Greenland 50/80 −100/−10 87 87 60 68

WNA Western North America 30/60 −130/−105 34 34 34 34
CNA Central North America 30/50 −100/−85 20 20 20 20
ENA Eastern North America 25/50 −85/−55 23 23 22 23
NEU Northern Europe 50/70 −10/40 40 40 40 40
SEU Southern Europe 30/45 −10/40 37 37 29 33
NAS North Asia 50/70 40/175 123 123 121 112
CAS Central Asia 30/50 40/75 40 40 36 37
TIB Tibet 30/50 75/ 100 30 30 30 30
EAS East Asia 20/50 100/145 48 48 44 44
SAS South Asia 5/30 65/100 29 29 20 27
AUS Australia −45/−15 115/150 38 38 21 26

NOTE: The Greenland (GRL) in Giorgi and Francisco (2000) is renamed as CGL to be consistent with that in Zwiers, Zhang, and Feng (2011).

Figure 1. Boxplots of estimated scaling factors from perfect model detection with the 50-run ensembles under the ALL forcing from climate model CanESM2.
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Figure 2. Boxplots of estimated scaling factors from perfect model detection with two signals, ANT and NAT.

expected as the minima have heavier tails and larger variability
than the maxima such that the uncertainty in signal estimation
is higher for the minima than for the maxima. These results echo
those in Section 4.

5.2. Two-Signal Perfect Model Detection

Perfect model detection can be extended to have multiple sig-
nals where one run from the combined forcings is used as the
observed data while the ensembles of individual forcings are
used to estimate the signals. The CanESM2 model provides a
50-run ensemble under the NAT forcing in addition to the 50-
run ensemble under the ALL forcing. Each run under the ALL
forcing was used as the observed data; the other 49-runs under
the ALL forcing and the 50-runs under the NAT forcing were
used to estimate the signals under the corresponding forcing.
If the ANT and NAT signals are additive, and if the ANT
signal estimate is taken as the difference between the ALL signal
estimate and the NAT signal estimate, then we expect that the
estimated scaling factors of both the ANT and NAT forcings
from a reasonably good method will be surrounding 1.

The boxplots of the 50 estimates of the scaling factors of the
ANT and the NAT signals, respectively, from the two-signal per-
fect model detection using CSE-I method and the CSE method
are presented in Figure 2. Similar observations to those from
Figure 1 can be made on the estimated scaling factors for both
signals. The downward pattern toward zero and the reduction in
variation of the CSE estimates are most obvious in the estimates
of the scaling factor for the NAT signal in the analyses of the
two minima. When conclusions are drawn based on confidence
intervals, the coverage of confidence intervals from the CSE
methods may be far off, as seen in Section 4, which may lead
to over statement of the detection results. Focusing on the CSE-I
estimates, all the coefficients appear to be centered at 1, although
with some noticeable deviation for the two minima in some
regions (e.g., EAS). The results suggest no obvious evidence
against the additive assumption of the two signals with the 50-
run ensembles from CanESM2.

6. Regional Detection and Attribution

Detection and attribution analyses were performed on four tem-
perature extremes of 13 Giorge regions summarized in Table 2.
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Figure 3. Summaries of estimated scaling factors of the ANT and NAT signals with 90% and 95% confidence intervals for four temperature extremes in 13 regional analyses
using the CSE-I method.

The observed annual temperature extremes over the 60-year
period of 1951–2010 were obtained from the HadEX2 data
(Donat et al. 2013) for grid boxes of resolution 5◦ × 5◦. In each
region, grid boxes with more than 10 years of missing data in
the 60-year period were discarded, resulting in 13 regions which
had 20 or more grid boxes for all four temperature extremes.
To avoid accounting for the differences among multiple cli-
mate models in signal estimation, we used a single climate
model, the CanESM2 model, with 50-run ensembles under the
ALL and NAT forcings; most other climate models have much
smaller ensemble sizes. Annual extremes were extracted from
the CanESM2 outputs on grid boxes matching the availability
of the observed data. The signals of primary interest, ANT,
were estimated as the difference between the ALL signal and
the NAT signal, assuming that the ANT and NAT fingerprints
are additive when forming the ALL signal in the GEV location
parameter. The signals under the ALL or the NAT forcing at
each grid box were estimated by fitting (2) to the 50 runs with
quadratic splines for μ, where the knots were placed evenly
every 5 years. Knot selection through certain information cri-
terion, although intriguing, is beyond the scope of this article.

Figure 3 presents the estimated scaling factors of the ANT
signal and the NAT signal for each of the four extremes in each
of the 13 regions, using the CSE-I method. The choice of the
CSE-I method is based on its robustness in presence of the EIV
issue and its reliability in confidence intervals, as suggested from
the numerical study and the perfect model detection study. Both
95% and 90% confidence intervals are plotted. The confidence
intervals are much wider in the analyses of TXn and TNn than
in the analyses of TXx and TNx. The differences in the lengths
of the 95% and 90% confidence intervals are more obvious in
the analyses of TXn and TNn than in the analyses of TXx and
TNx. Since the 95% confidence intervals in the numerical study
with ensemble size 50 only have 86–92% coverage empirically
(Table 1), we recommend using the 95% confidence intervals to
meet the need of 90% confidence intervals, which are frequently
used in detection and attribution studies. This enlargement of
the confidence intervals may change the qualitative conclusions
in certain analyses. For example, for the scaling factor of the

ANT signal, the enlarged confidence intervals now cover zero
in the analyses of TNn in Central Asia (CAS) and TXn in Tibet
(TIB), which reverts the “detection” statements in these cases.

The detection results of the ANT signal are interpreted after
accounting for the NAT forcing. The ANT signal is detected
(with a confidence interval above zero), in TNn in most of the
13 regions except NEU and CAS; it is detected in TXn in a
majority of the regions with the exception of CNA, ENA, NEU,
CAS, and TIB. The confidence intervals in cases where the ANT
signals is detected in TNn or TNx generally include one as a
plausible scaling factor, with the exception of CGL, suggesting
that the magnitudes of CanESM2-simulated changes in TNn
and TXn are comparable to those observed. The influence of
the ANT forcing is detected in TNx in all 13 regions; it is
detected in TXx in almost all 13 regions except CNA, ENA,
and SAS. The confidence intervals for scaling factors in regions
where the ANT signal is detected in TNx or TXx are tighter
than those in TNn and TXn, and below one, which suggests
that the CanESM2 model responses to ANT in TNn and TXn
are larger than observed in these regions. For the NAT signal,
with a few exceptions, it is in general not detected due to the
wide confidence intervals. Overall, the results are similar to but
with fewer detected cases than those reported in the two-signal
analyses of Wang et al. (2017). In addition to different climate
models and grid box resolutions, their narrower than desired
confidence intervals are an explanation too.

7. Discussion

Our main contribution is to advance the intuitive concept of
fingerprinting in the framework of extreme value analyses as
described in Zwiers, Zhang, and Feng (2011) to a more prac-
tical and better-understood method. The proposed marginal
approaches bypass the specification of full dependence struc-
ture of the extremes, which, although affecting the estimation
efficiency, is a nuisance in fingerprinting analyses relative to
the primary goal of estimating the scaling factors. The com-
putational efficiency of our method makes it feasible in more
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general detection and attribution settings with multiple signals.
The statistical properties of the method are examined including
the efficiency of the scaling factor estimators with and without
presence of the EIV issue, and the coverage rate of the bootstrap
confidence intervals. The CSE method performs well when
there is no EIV, that is, when the signals are known. When there
are EIV, however, the advantage of CSE is compromised by its
more severe bias relative to CSE-I, which in turn undermines the
coverage of the confidence intervals. As a result, we recommend
the use of CSE-I method in practical applications, especially
when the climate model simulations are limited for the estima-
tion of signal.

Our investigation on practical issues such as the coverage
property of bootstrap confidence intervals and additivity
between the ANT and NAT signals are of important practical
value to the detection and attribution community. It is not until
recently that the under-coverage of the confidence intervals
in standard optimal fingerprinting was brought to attention
(DelSole et al. 2019). In extremes modeling, similar under-
coverage for the two-level bootstrap confidence intervals is
observed even when there is no EIV (see the supplementary
materials). Calibration of the confidence coefficient (e.g., Loh
1987) or more accurate procedures are needed. In presence of
EIV, the under-coverage of the CSE estimator is worsened by
its bias. The much less biased CSE-I method still needs some
calibration since its 95% confidence intervals appear to provide
about 90% coverage. This implies that the confidence intervals
reported in existing works are narrower than necessary and,
consequently, the detection conclusions might be over-stated.
The additivity of the ANT and NAT signals in GEV location
parameters assumed in earlier works (e.g., Wang et al. 2017)
has not been checked against climate model simulations. Using
the large ensembles under the ALL and NAT forcings from
the CanESM2 model, our two-signal perfect model detection
analyses over 13 subcontinental regions fill the gap. In spite of
the slight downward bias of the CSE-I estimator due to EIV, no
evidence was found against this assumption.

Several directions merit further investigation. Handling the
EIV issue is of great practical interest in order to not only cor-
rect the bias but also improve the coverage rates of confidence
intervals. Due to the special form of the GEV score equations,
the bias cannot be handled by any existing parametric correction
approaches (e.g., Huang and Wang 2001). The CSE method has
great potential toward optimal fingerprinting for extremes if
its bias due to EIV can be corrected. Incorporating multiple
climate models in signal estimation is an important extension.
We only used ensembles from one climate model, which makes
the results dependent on this single model. Accounting the cli-
mate model uncertainty would lead to better usage of available
model outputs and more reliable analyses. In the fingerprinting
formulation, the GEV scale and shape parameters are different at
each grid box but without any smoothness requirement. Impos-
ing physically realistic levels of smoothness on the parameter
surface might reduce the variation in signal estimation and bias
in estimating the scaling factor. Finally, Bayesian hierarchical
model provides an alternative paradigm (Berliner, Levine, and
Shea 2000; Lee et al. 2005), which may address open method-
ological issues such as EIV (Katzfuss, Hammerling, and Smith
2017). Adaptation to the extreme value setting in combination

with the widely used Bayesian approaches in assessing the out-
puts from multiple climate models (Schliep et al. 2010; Fix et al.
2018) would be of great value.

Supplementary Materials

Additional background materials and simulation studies: Working
correlation function approximation; background of max-stable
processes; numerical study when signals are observed in detection and
attribution setting. (pdf file)

Computer code and data: R code for the proposed methods and the
numerical study; observed data and climate model simulations of four
temperature extremes used in the detection and attribution analysis of
East Asia. (GNU zipped tar file)
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