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ABSTRACT
Let H be a transfer Krull monoid over a subset G0 of an abelian group G
with finite exponent. Then every non-unit a 2 H can be written as a finite
product of atoms, say a ¼ u1 � ::: � uk: The set LðaÞ of all possible factoriza-
tion lengths k is called the set of lengths of a, and H is said to be half-fac-
torial if jLðaÞj ¼ 1 for all a 2 H: We show that, if a 2 H is a non-unit and
jLðabð3 exp ðGÞ�3Þ=2cÞj ¼ 1, then the smallest divisor-closed submonoid of H
containing a is half-factorial. In addition, we prove that, if G0 is finite and
jLðQg2G0

g2ordðgÞÞj ¼ 1, then H is half-factorial.
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1. Introduction

Let H be a monoid. If an element a 2 H has a factorization a ¼ u1 � ::: � uk, where k 2 N and
u1, :::, uk are atoms of H, then k is called a factorization length of a, and the set LðaÞ of all pos-
sible k is referred to as the set of lengths of a. The monoid H is said to be half-factorial if
jLðaÞj ¼ 1 for every a 2 H:

The study of half-factoriality was pioneered by Leonard Carlitz in the setting of algebraic number
theory: he proved in [4] that the ring of integers OK of a number field K is half-factorial if and only
if the cardinality of its class group is either 1 or 2. After this, the concept of half-factoriality seemed
to remain dormant for more than a decade until papers by Abraham Zaks [32], Ladislav Skula [28],

and Jan �Sliwa [29] simultaneously appeared in 1976. In such papers, half-factoriality was studied in
the context of Krull domains and c-monoids. Since then half-factoriality has been investigated in dif-
ferent classes of monoids (see [3, 6, 17, 18]) and integral domains (see [5, 7, 13, 19, 20, 23, 33]).

Given a 2 H, let vab ¼ fb 2 H j b divides some power of ag be the smallest divisor-closed
submonoid of H containing a. Then vab is half-factorial if and only if jLðanÞj ¼ 1 for all n 2 N,
and H is half-factorial if and only if vcb is half-factorial for every c 2 H: It is thus natural to ask:

Does there exist an integer N 2 N such that, if a 2 H and jLðaNÞj ¼ 1, then vab is half-factorial? (Note that, if
vab is half-factorial for some a 2 H, then of course jLðakÞj ¼ 1 for every k 2 N:)

We answer this question affirmatively for transfer Krull monoids over finite abelian groups, and
we study the smallest N having the above property (Theorems 1.1 and 1.2).
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Transfer Krull monoids and transfer Krull domains are a recently introduced class of monoids
and domains including, among others, all commutative Krull domains and wide classes of non-
commutative Dedekind domains (see Section 2 and, for a survey, see [10]).

Let H be a transfer Krull monoid over a subset G0 of an abelian group G. Then H is half-fac-
torial if and only if the monoid BðG0Þ of zero-sum sequences over G0 is half-factorial (in this
case, we also say that the set G0 is half-factorial). It is a standing conjecture that every abelian
group has a half-factorial generating set, which implies that every abelian group can be realized
as the class group of a half-factorial Dedekind domain [11].

Suppose now that H is a commutative Krull monoid with class group G and that every class
contains a prime divisor. It is a classic result that H is half-factorial if and only if jGj � 2, and it
turns out that, also for jGj � 3, half-factorial subsets (and minimal non-half-factorial subsets) of
the class group G play a crucial role in a variety of arithmetical questions (see [12, Chapter 6.7],
[15]). However, we are far away from a good understanding of half-factorial sets in finite abelian
groups (see [25] for a survey, and [21, 22, 26]). To mention one open question, the maximal size
of half-factorial subsets is unknown even for finite cyclic groups [22]. Our results open the door
to a computational approach to the study of half-factorial sets.

More in detail, denote by hfðHÞ the infimum of all N 2 N with the following property:

If a 2 H and jLðaNÞj ¼ 1, then vab is half-factorial.

(Here, as usual, we assume inf; ¼ 1:) We call hfðHÞ the half-factoriality index of H. If H is not
half-factorial, then hfðHÞ is the infimum of all N 2 N with the property that jLðaNÞj � 2 for every
a 2 H such that vab is not half-factorial. In particular, if G is an abelian group with jGj � 3, then
hfðBðGÞÞ is the infimum of all N 2 N with the property that

For every sequence S over G, if jLðSNÞj ¼ 1, then jLðSkÞj ¼ 1 for every k � N:

Theorem 1.1. Let H be a transfer Krull monoid over a finite subset G0 of an abelian group G with
finite exponent. The following are equivalent.

(a) H is half-factorial.
(b) hfðHÞ ¼ 1:
(c) G0 is half-factorial.
(d) jLðQg2G0

g2ordðgÞÞj ¼ 1:
We observe that in general if H is half-factorial, then hfðHÞ ¼ 1: But if H is a transfer Krull

monoid over a subset of a torsion free group, then hfðHÞ ¼ 1 does not imply that H is half-fac-
torial (see Example 2.4.1). Furthermore, for every n 2 N, there exists a Krull monoid H with
finite class group such that hfðHÞ ¼ n (see Example 2.4.2).

Theorem 1.2. Let H be a transfer Krull monoid over an abelian group G.

1. hfðHÞ < 1 if and only if exp ðGÞ < 1:
2. If exp ðGÞ < 1 and jGj � 3, then exp ðGÞ � hfðHÞ � 3

2 ð exp ðGÞ � 1Þ:
3. If G is cyclic or exp ðGÞ � 6, then hfðHÞ ¼ exp ðGÞ:
We postpone the proofs of Theorems 1.1 and 1.2 to Section 3.

2. Preliminaries

Our notation and terminology are consistent with [12]. Let N be the set of positive integers, let
N0 ¼ N [ f0g, and let Q be the set of rational numbers. For integers a, b 2 Z, we denote by
½a, b� ¼ fx 2 Zja � x � bg the discrete, finite interval between a and b.
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Atomic monoids. By a monoid, we mean a semigroup with identity, and if not stated otherwise
we use multiplicative notation. Let H be a monoid with identity 1 ¼ 1H 2 H: The set of invertible
elements of H will be denoted by H�, and we say that H is reduced if H� ¼ f1g: The monoid H
is said to be unit-cancellative if for any two elements a, u 2 H, each of the equations au ¼ a or
ua ¼ a implies that u 2 H�: Clearly, every cancellative monoid is unit-cancellative.

Suppose that H is unit-cancellative. An element u 2 H is said to be irreducible (or an atom) if u 62
H� and for any two elements a, b 2 H, u ¼ ab implies that a 2 H� or b 2 H�: Let AðHÞ denote
the set of atoms of H. We say that H is atomic if every non-unit is a finite product of atoms. If H satis-
fies the ascending chain condition on principal left ideals and on principal right ideals, then H is atomic
[9, Theorem 2.6]. If a 2 H nH� and a ¼ u1:::uk, where k 2 N and u1, :::, uk 2 AðHÞ, then k is a
factorization length of a, and

LHðaÞ ¼ LðaÞ ¼ fk 2 N j k is a factorization length of ag
denotes the set of lengths of a. It is convenient to set LðaÞ ¼ f0g for all a 2 H�:

Let H and B be atomic monoids. The homomorphism h : H ! B is called a weak transfer
homomorphism if it satisfies the following two properties.

(T1) B ¼ B�hðHÞB� and h�1ðB�Þ ¼ H�:
(WT2) If a 2 H, n 2 N, v1, :::, vn 2 AðBÞ and hðaÞ ¼ v1 � ::: � vn, then there exist u1, :::, un 2 AðHÞ

and a permutation s 2 Sn such that a ¼ u1 � ::: � un and hðuiÞ 2 B�vsðiÞB� for each i 2 ½1, n�:
A transfer Krull monoid is a monoid H having a weak transfer homomorphism h : H ! BðG0Þ, where
BðG0Þ is the monoid of zero-sum sequences over a subset G0 of an abelian group G. If H is a commu-
tative Krull monoid with class group G and G0 � G is the set of classes containing prime divisors, then
there is a weak transfer homomorphism h : H ! BðG0Þ: Beyond that, there are wide classes of non-
commutative Dedekind domains having a weak transfer homomorphism to a monoid of zero-sum
sequences ([31, Theorem 1.1], [30, Theorem 4.4]). We refer to [10, 16] for surveys on transfer Krull
monoids. If h : H ! BðG0Þ is a weak transfer homomorphism, then sets of lengths in H and in BðG0Þ
coincide [2, Lemma 2.7] and thus the statements of Theorems 1.1 and 1.2 can be proved in the setting
of monoids of zero-sum sequences.

Monoids of zero-sum sequences. Let G be an abelian group and let G0 � G be a non-empty sub-
set. Then hG0i denotes the subgroup generated by G0. In additive combinatorics, a sequence
(over G0) means a finite unordered sequence of terms from G0 where repetition is allowed, and
(as usual) we consider sequences as elements of the free abelian monoid with basis G0. Let

S ¼ g1 � ::: � g‘ ¼
Y
g2G0

gvgðSÞ 2 FðG0Þ

be a sequence over G0. We call

suppðSÞ ¼ fg 2 G j vgðSÞ > 0g � G the support of S,

jSj ¼ ‘ ¼
X
g2G

vgðSÞ 2 N0 the length of S,

rðSÞ ¼
X‘

i¼1

gi the sum of S,

and RðSÞ ¼
X
i2I

gij; 6¼ I � 1, ‘½ �
� �

the set of subsequence sums of S:

The sequence S is said to be

	 zero-sum free if 0 62 RðSÞ,
	 a zero-sum sequence if rðSÞ ¼ 0,
	 a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and every proper subse-

quence is zero-sum free.
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The set of zero-sum sequences BðG0Þ ¼ fS 2 FðG0ÞjrðSÞ ¼ 0g � FðG0Þ is a submonoid, and the
set of minimal zero-sum sequences is the set of atoms of BðG0Þ: For any arithmetical invariant

ðHÞ defined for a monoid H, we write 
ðG0Þ instead of 
ðBðG0ÞÞ: In particular, AðG0Þ ¼
AðBðG0ÞÞ is the set of atoms of BðG0Þ and hfðG0Þ ¼ hfðBðG0ÞÞ:

Let G be an abelian group. We denote by exp ðGÞ the exponent of G which is the least com-
mon multiple of the orders of all elements of G. If there is no least common multiple, the expo-
nent is taken to be infinity. Let r 2 N and let ðe1, :::, erÞ be an r-tuple of elements of G. Then
ðe1, :::, erÞ is said to be independent if ei 6¼ 0 for all i 2 ½1, r� and if for all ðm1, :::,mrÞ 2 Zr an
equation m1e1 þ :::þmrer ¼ 0 implies that miei ¼ 0 for all i 2 ½1, r�: Suppose G is finite. The
r-tuple ðe1, :::, erÞ is said to be a basis of G if it is independent and G ¼ he1i�:::�heri: For every
n 2 N, we denote by Cn an additive cyclic group of order n. Since G ffi Cn1�:::�Cnr , r ¼ rðGÞ is
the rank of G and nr ¼ exp ðGÞ is the exponent of G.

Let G0 � G be a non-empty subset. For a sequence S ¼ g1 � ::: � g‘ 2 FðG0Þ, we call

kðSÞ ¼
Xl

i¼1

1
ordðgiÞ 2 Q�0 the cross number of S, and

KðG0Þ ¼ maxfkðSÞjS 2 AðG0Þg the cross number of G0:

For the relevance of cross numbers in the theory of non-unique factorizations, see [22, 24, 27]
and [12, Chapter 6].

The set G0 is called

	 half-factorial if the monoid BðG0Þ is half-factorial;
	 non-half-factorial if the monoid BðG0Þ is not half-factorial;
	 minimal non-half-factorial if G0 is not half-factorial but all its proper subsets are;
	 an LCN-set if kðAÞ � 1 for all atoms A 2 AðG0Þ:

The following simple result [12, Proposition 6.7.3] will be used throughout the article without
further mention.

Lemma 2.1. Let G be a finite abelian group and G0 � G a subset. Then the following statements
are equivalent.

(a) G0 is half-factorial.
(b) kðUÞ ¼ 1 for every U 2 AðG0Þ:
(c) LðBÞ ¼ fkðBÞg for every B 2 BðG0Þ:
Lemma 2.2. Let G be a finite group, let G0 � G be a subset, let S be a zero-sum sequence over G0,
and let A be a minimal zero-sum sequence over G0.

(1) If kðAÞ 6¼ 1, then jLðA exp ðGÞÞj � 2:
(2) If there exists a zero-sum subsequence T of S such that jLðTÞj � 2, then jLðSÞj � 2:
(3) If kðAÞ < 1 and kðAÞ is minimal over all minimal zero-sum sequences over G0, then

L A
�
ordðgÞ
vg ðAÞ

�� �����
���� � 2, for all g 2 suppðAÞ:

Proof. 1. Suppose kðAÞ 6¼ 1 and let A ¼ g1 � ::: � g‘, where ‘ 2 N and g1, :::, g‘ 2 G0: Then

A exp ðGÞ ¼ g
ord g1ð Þ
1

� � exp Gð Þ
ord g1ð Þ � ::: � g

ord g‘ð Þ
‘

� � exp Gð Þ
ord g‘ð Þ

,

which implies that
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exp Gð Þ,
X‘

i¼1

exp Gð Þ
ord gið Þ

( )
¼ f exp Gð Þ, exp Gð Þk Að Þg � L A exp Gð Þð Þ:

It follows by k Að Þ 6¼ 1 that jL A exp Gð Þð Þj � 2:
2. Suppose T is a zero-sum subsequence of S with jL Tð Þj � 2: It follows by L Sð Þ � L Tð Þ þ

L ST�1ð Þ that jL Sð Þj � jL Tð Þj � 2:
3. Suppose k Að Þ < 1 and k Að Þ is minimal over all minimal zero-sum sequences over G0. Let

g 2 supp Að Þ: Then there exist s 2 N and minimal zero-sum sequences W1, :::,Ws such that

A

�
ord gð Þ
vg Að Þ

�
¼ gord gð Þ �W1 � ::: �Ws:

Since

k A

�
ord gð Þ
vg Að Þ

�� �
¼

	
ord gð Þ
vg Að Þ



k Að Þ ¼ 1þ

Xs

i¼1

k Wið Þ > 1þ sð Þk Að Þ,

we have
� ord gð Þ

vg Að Þ
� 6¼ sþ 1 and hence L A

�
ord gð Þ
vg Að Þ

�� ������
����� � 2: w

For commutative and finitely generated monoids, we have the following result.

Proposition 2.3. Let H be a commutative unit-cancellative monoid. If Hred is finitely generated,
then hf Hð Þ is finite.

Proof. We may assume that H is reduced and not half-factorial. Suppose H is finitely generated
and suppose A Hð Þ ¼ fu1, :::, ung, where n 2 N: Set A0 ¼ fQi2I ui j ; 6¼ I � 1, n½ �g: Then A0 is

finite and hence there exists M 2 N such that jL aM0
� �j � 2 for all a0 2 A0 with va0b not half-fac-

torial. Let a 2 H n H� such that vab is not half-factorial. It suffices to show that jL aMð Þj � 2:

Suppose a ¼ uk11 � ::: � uknn , where k1, :::, kn 2 N0: Set I0 ¼ fi 2 1, n½ �jki � 1g and a0 ¼
Q

i2I ui:
Then a0 divides a and va0b ¼ vab is not half-factorial, whence jL aM0

� �j � 2 and jL aMð Þj � 2: w

If G0 is a finite subset of an abelian group, then B G0ð Þ is finitely generated [12, Theorem
3.4.2] and thus hf G0ð Þ < 1: We refer to [8, Sections 3.2 and 3.3] and [14] for semigroups of
ideals and semigroups of modules that are finitely generated unit-cancellative but not necessarily
cancellative.

Example 2.4. The following examples will help us to illustrate some important points.

1. Let (e1, e2) be a basis of Z2 and let G0 ¼ fe1, � e1, e2, � e2, e1 þ e2, � e1 � e2g: Then
A G0ð Þ ¼ fe1 �e1ð Þ, e2 �e2ð Þ, e1 þ e2ð Þ �e1 � e2ð Þ, e1e2 �e1 � e2ð Þ, �e1ð Þ �e2ð Þ e1 þ e2ð Þg: Since
e1 �e1ð Þ � e2 �e2ð Þ � e1 þ e2ð Þ �e1 � e2ð Þ ¼ e1e2 �e1 � e2ð Þ � �e1ð Þ �e2ð Þ e1 þ e2ð Þ, we obtain G0

is not half-factorial. Furthermore, we have G1 is half-factorial for every non-empty proper
subset G1(G0: Let A 2 B G0ð Þ: If supp Að Þ ¼ G0, then jL Að Þj � 2 and vAb ¼ B G0ð Þ is not
half-factorial. If supp Að Þ(G0, then vAb ¼ B supp Að Þ� �

is half-factorial and jL Að Þj ¼ 1:
Therefore hf G0ð Þ ¼ 1:

2. Let G be a cyclic group with order n and let g 2 G with ord gð Þ ¼ n, where n 2 N�3: Set
G0 ¼ fg, � gg: Then G0 is not half-factorial. Let A0 ¼ g �gð Þ: Then vA0b is not half-factorial
and jL An�1

0

� �j ¼ 1, whence hf G0ð Þ � n: Let A 2 B G0ð Þ such that vAb is not half-factorial.
Then supp Að Þ ¼ G0 and A0 divides A, whence jL Anð Þj � 2: Therefore hf G0ð Þ ¼ n: Let G ffi
C2
2 and let (e1, e2) be a basis of G. Set G1 ¼ fe1, e2, e1 þ e2g: Then G1 is not half-factorial. Let

A1 ¼ e1e2 e1 þ e2ð Þ: Then vA1b is not half-factorial and jL A1ð Þj ¼ 1, whence hf G1ð Þ � 2: Let
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A 2 B G1ð Þ such that vAb is not half-factorial. Then supp Að Þ ¼ G1 and A1 divides A, whence
jL A2ð Þj � 2: Therefore hf G1ð Þ ¼ 2:

3. Let H be a bifurcus monoid (i.e., 2 2 L að Þ for all a 2 H n H� [ A Hð Þð Þ). For examples, see
[1, Examples 2.1 and 2.2]. Since for every a 2 H n H�, we have f2, 3g � L a3ð Þ, it follows
that hf Hð Þ � 3 and hf Hð Þ is the minimal integer t 2 N such that jL atð Þj � 2 for all a 2
H n H�: Therefore hf Hð Þ ¼ 3 if and only if there exists a0 2 A Hð Þ such that L a20

� � ¼ f2g:
4. Let H � F ¼ F� � p1, :::, ps½ � be a non-half-factorial finitely primary monoid of rank s and

exponent a (see [12, Definition 2.9.1]). For every a ¼ �pt11 :::p
ts
s 2 F, we define jjajj ¼

t1 þ :::þ ts, where t1, :::, ts 2 N0 and � 2 F�: Let a 2 H nH�: Since H is primary, we have
H ¼ vab is not half-factorial. Thus hf Hð Þ is the minimal integer t 2 N such that jL atð Þj � 2
for all a 2 H nH�: Suppose a0 2 H with jja0jj ¼ minfjjajj : a 2 H nH�g: Then a0 2 A Hð Þ
and L a20

� � ¼ f2g, whence hf Hð Þ � 3:

If H nH� ¼ p1:::psð ÞaF and s � 2, then H is bifurcus and hence hf Hð Þ ¼ 3: Suppose s¼ 1 and

H nH� ¼ p1ð ÞaF: Let b ¼ �pb 2 H: Then p3a divides b4. It follows by p3a ¼ pað Þ3 ¼ paþ1p2a�1

that jL b4ð Þj � 2, whence hf Hð Þ � 4: If 3b � 4a, then p3a divides b3 and hence jL b3ð Þj � 2: If
ðHTML translation failedÞ, then b is an atom and b3 ¼ �3p2a�1p3b� 2a�1ð Þ, whence jL b3ð Þj � 2: If
3b ¼ 4a� 1, then L b3ð Þ ¼ f3g: Put all together, if a  1 mod 3, then hf Hð Þ ¼ 4:
Otherwise hf Hð Þ ¼ 3:

3. Proof of main theorem

Proposition 3.1. Let G0 � G be a non-half-factorial subset and let S be a zero-sum sequence over
G0 with supp Sð Þ ¼ G0:

1. If G0 is an LCN-set, then jL Q
g2G0

gord gð Þ
� �

j � 2:

2. If jG0j ¼ 2, then jL Q
g2G0

gord gð Þ
� �

j � 2:

3. If G0 is a minimal non-half-factorial subset, then jL S exp Gð Þð Þj � 2:

4. If jfg 2 G0jord gð Þ=vg Sð Þ ¼ exp Gð Þgj � 1, then jL S exp Gð Þð Þj � 2:

Proof. 1. Suppose G0 is an LCN-set. Since G0 is not half-factorial, there exists a minimal zero-
sum sequence T over G0 such that k Tð Þ > 1: Note that T is a subsequence of

Q
g2G0

gord gð Þ: Then
there exist W1, :::,Wl 2 A G0ð Þ such thatY

g2G0

gord gð Þ ¼ T �W1 � ::: �Wl:

Thus k
Q

g2G0
gord gð Þ

� �
¼ jG0j ¼ k Tð Þ þPl

i¼1 k Wið Þ > 1þ l: The assertion follows by fjG0j, 1þ
lg � L

Q
g2G0

gord gð Þ
� �

:

2. Suppose jG0j ¼ 2 and let G0 ¼ fg1, g2g: If G0 is an LCN-set, the assertion follows by 1.

Suppose there exists a minimal zero-sum sequence T over G0 with k Tð Þ < 1: Let T0 ¼ gl11 � gl22 be

the minimal zero-sum sequence over G0 such that k T0ð Þ is minimal. If minford g1ð Þ
l1

,
ord g2ð Þ

l2
g � 2,

say
ord g1ð Þ

l1
� 2 then

T2
0 ¼ g

ord g1ð Þ
1 �W, where W is an on-empty zero-sum sequence:

Thus k Wð Þ ¼ 2k T0ð Þ � 1 < k T0ð Þ, a contradiction to the minimality of k T0ð Þ: Therefore

minford g1ð Þ
l1

,
ord g2ð Þ

l2
g > 2 and hence
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g
ord g1ð Þ
1 � gord g2ð Þ

2 ¼ T2
0 � V, where V is non-empty zero-sum sequence:

It follows that
���L g

ord g1ð Þ
1 � gord g2ð Þ

2

� ���� � 2:

3. Suppose that G0 is a minimal non-half-factorial set. If S has a minimal zero-sum subse-
quence A with k Að Þ 6¼ 1, then the assertion follows by Lemma 2.2. If G0 is an LCN-set, then the
assertion follows from 1 and Lemma 2.2.2. Therefore we can suppose L Sð Þ ¼ fk Sð Þg and suppose
there exists a minimal zero-sum sequence T over G0 with k Tð Þ < 1:

Let T0 ¼
QjG0j

i¼1 g
li
i be the minimal zero-sum sequence over G0 such that k T0ð Þ is minimal. The

minimality of G0 implies that li � 1 for all i 2 1, jG0j½ �: After renumbering if necessary, we let

ord g1ð Þ
l1

¼ min
ord gið Þ

li
ji 2 1, jG0j½ �

� �
:

By Lemma 2.2.3, L T

�
ord g1ð Þ

l1

�
0

 ������
����� � 2: If T

�
ord g1ð Þ

l1

�
0 divides S exp Gð Þ, then the assertion follows by

Lemma 2.2.2. Suppose T

�
ord g1ð Þ

l1

�
0 -S exp Gð Þ: Let

I ¼ i 2 1, jG0j½ �
����
	
ord g1ð Þ

l1



li > exp Gð Þvgi Sð Þ

( )
:

Thus for each i 2 I, we have

2ord gið Þ > li

	
ord gið Þ

li



� li

	
ord g1ð Þ

l1



> exp Gð Þvgi Sð Þ � exp Gð Þ,

which implies that ord gið Þ ¼ exp Gð Þ, vgi Sð Þ ¼ 1, and
� ord g1ð Þ

l1

�
>

ord gið Þ
li

¼ exp Gð Þ
li

:

Let i0 2 I such that li0 ¼ maxfliji 2 Ig: Therefore for every j 2 1, jG0j½ � n I, we have

lj �
exp Gð Þvgj Sð Þ� ord g1ð Þ

l1

� � exp Gð Þvgj Sð Þ
exp Gð Þ
li0

¼ li0vgj Sð Þ:

Note that for every i 2 I, we have li � li0 ¼ li0vgi Sð Þ: It follows by vgi0 T0ð Þ ¼ li0 ¼ li0vgi0 Sð Þ ¼
vgi0 Sli0ð Þ that

Sli0 ¼ T0 �W, where W is a zero� sum sequence over G0 n fgi0g:
By the minimality of G0, we have G0 n fgi0g is half-factorial which implies that k Wð Þ 2 N:

Therefore k T0ð Þ ¼ li0k Sð Þ � k Wð Þ is an integer, a contradiction to k T0ð Þ < 1:
4. Let G1 ¼ fg 2 G0jord gð Þ ¼ exp Gð Þvg Sð Þg: Suppose G0 n G1 is not half-factorial. If G0 n G1

is an LCN-set, then the assertion follows by Proposition 3.1.1 and Lemma 2.2.2. Otherwise there
exists a minimal zero-sum sequence A over G0 n G1 such that k Að Þ < 1: We may assume

that k Að Þ is minimal over all minimal zero-sum sequences over G0 n G1 and that minford gð Þ
vg Að Þ jg 2

supp Að Þg ¼ ord g0ð Þ
vg0 Að Þ for some g0 2 supp Að Þ � G0 n G1: Thus by Lemma 2.2.3, we have����L A

�
ord g0ð Þ
vg0 Að Þ

�� ����� � 2: The definition of G1 implies that

A
dord g0ð Þ
vg0 Að Þe divides S exp Gð Þ

and hence the assertion follows.

COMMUNICATIONS IN ALGEBRAVR 7



Suppose G0 n G1 is half-factorial. Then G1 is non-empty and hence G1 ¼ fg0g for some g0 2
G0: If G0 is an LCN-set, then the assertion follows by Proposition 3.1.1 and Lemma 2.2.2.
Otherwise there exists a minimal zero-sum sequence A over G0 such that k Að Þ < 1: We may
assume that k Að Þ is minimal over all minimal zero-sum sequences over G0 and that

min
ord gð Þ
vg Að Þ jg 2 supp Að Þ

n o
¼ ord g1ð Þ

vg1 Að Þ for some g1 2 supp Að Þ � G0: Thus by Lemma 2.2.3, we have����L A

�
ord g1ð Þ
vg1 Að Þ

�� ����� � 2: For every g 2 G0 n G1, we obtain

vg Að Þ
	
ord g1ð Þ
vg1 Að Þ



� vg Að Þ

	
ord gð Þ
vg Að Þ



< 2ord gð Þ � exp Gð Þvg Sð Þ:

If vg0 Að Þ� ord g1ð Þ
vg1 Að Þ

� � ord g0ð Þ ¼ exp Gð Þ, then

A

�
ord g1ð Þ
vg1 Að Þ

�
divides S exp Gð Þ

and hence jL S exp Gð Þð Þj � 2:
Otherwise for every g 2 G n G1, we have

exp Gð Þ
vg0 Að Þ <

	
ord g1ð Þ
vg1 Að Þ



�

	
ord gð Þ
vg Að Þ



�

	
exp Gð Þvg Sð Þ

2vg Að Þ


� exp Gð Þvg Sð Þ

vg Að Þ :

Therefore vg Að Þ < vg0 Að Þvg Sð Þ for all g 2 G0 n G1 which implies that A divides Svg0 Að Þ: Thus there
exists a zero-sum sequence W over G0 n G1 such that Svg0 ðAÞ ¼ A �W: Since G0 n G1 is half-factor-
ial, we obtain kðAÞ ¼ vg0ðAÞkðSÞ � kðWÞ is an integer, a contradiction to kðAÞ < 1: w

Proof of Theorem 1.1. By the definition of transfer Krull monoid, it suffices to prove the asser-
tions for H ¼ BðG0Þ and hence H is half-factorial if and only if G0 is half-factorial. If G0 is half-

factorial, it is easy to see that hf G0ð Þ ¼ 1 and
���L Q

g2G0
g2ord gð Þ

� ���� ¼ 1: Therefore we only need to

show that (b) implies (c) and that (d) implies (c).
(b) ) (c) Suppose hf G0ð Þ ¼ 1 and assume to the contrary that G0 is not half-factorial. Then

there exists A 2 A G0ð Þ such that k Að Þ 6¼ 1, whence supp Að Þ is not half-factorial. Therefore
hf supp Að Þ� � � 2, a contradiction.

(d) ) (c) Suppose
���L Q

g2G0
g2ord gð Þ

� ���� ¼ 1 and assume to the contrary that G0 is not half-fac-

torial. If G0 is an LCN set, then Proposition 3.1.1 implies that
���L Q

g2G0
gord gð Þ

� ���� � 2, a contra-

diction. Thus there exists an atom A 2 A G0ð Þ with k Að Þ < 1 and we may assume that k Að Þ is
minimal over all atoms of B G0ð Þ: Let g0 2 supp Að Þ: Then by Lemma 2.2.3, we have

L A
dord g0ð Þ
vg0 Að Þe

� ������
����� � 2, a contradiction to A

�
ord g0ð Þ
vg0 Að Þ

�
j Q

g2G0
g2ord gð Þ: w

Proof of Theorem 1.2. By the definition of transfer Krull monoid, it suffices to prove all assertions
for H ¼ B Gð Þ:

1. Suppose exp Gð Þ < 1: If jGj � 3, then 2 implies that hf Gð Þ < 1: If jGj � 2, then B Gð Þ is
half-factorial and hence hf Gð Þ ¼ 1:

Suppose exp Gð Þ ¼ 1: If there exists an element g 2 G with ord gð Þ ¼ 1, then An ¼
nþ 1ð Þg� � �ngð Þ �gð Þ is an atom for every n 2 N: Since f nþ 1ð Þg, � ng, � gg is not half-factor-

ial and jL An
nð Þj ¼ 1 for every n � 2, we obtain that hf Gð Þ � n for every n � 2, that is, hf Gð Þ ¼
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1: Otherwise G is torsion. Then there exists a sequence gið Þ1i¼1
with gi 2 G and limi!1 ord gið Þ ¼

1: It follows by 1 that hf Gð Þ � hf hgii
� � � ord gið Þ for all i 2 N, that is, hf Gð Þ ¼ 1:

2. If G is an elementary 2-group and e1, e2 are two independent elements, then fe1, e2, e1 þ e2g
is not a half-factorial set and jL e1e2 e1 þ e2ð Þð Þj ¼ 1 which implies that hf Gð Þ � 2 ¼ exp Gð Þ:
Otherwise there exists an element g 2 G with ord gð Þ ¼ exp Gð Þ � 3: Since fg, � gg is not half-

factorial and
���L gord gð Þ�1 �gð Þord gð Þ�1
� ���� ¼ 1, we obtain hf Gð Þ � ord gð Þ ¼ exp Gð Þ:

Let S be a zero-sum sequence over G such that supp Sð Þ is not half-factorial. In order to prove

hf Gð Þ � b3 exp Gð Þ�3
2 c, we show that ����L Sb

3 exp Gð Þ�3
2 c

� ����� � 2:

Set G0 ¼ supp Sð Þ: If G0 is an LCN-set, the assertion follows by Proposition 3.1.1. Suppose there
exists an atom A 2 A G0ð Þ with k Að Þ < 1: Let A0 2 A supp Sð Þ� �

be such that k A0ð Þ is minimal

over all minimal zero-sum sequences over G0 and set A0 ¼ gl11 � ::: � glyy , where y, l1, :::ly 2 N and
g1, :::, gy 2 supp Sð Þ are pairwise distinct elements. If there exists j 2 1, y½ � such that 2lj � ord gjð Þ,
then g

ord gið Þ
j divides A2

0 and hence A2
0 ¼ g

ord gjð Þ
j �W for some non-empty sequence W 2

B supp Sð Þ� �
: Thus k Wð Þ ¼ 2k A0ð Þ � 1 < k A0ð Þ, a contradiction to the minimality of k A0ð Þ:

Therefore

2li � ord gið Þ � 1 for all i 2 1, y½ �:

After renumbering if necessary, we assume
ord g1ð Þ

l1
¼ min

ord gið Þ
li

ji 2 1, y½ �
n o

: Then

li

	
ord g1ð Þ

l1



� li

	
ord gið Þ

li



� li

ord gið Þ þ li � 1

li
� ord gið Þ þ

ord gið Þ � 1

2
� 1 � 3 exp Gð Þ � 3

2
,

which implies that A
dord g1ð Þ

l1
e

0 divides Sb
3 exp Gð Þ�3

2 c: The assertion follows by Lemma 2.2.3.
3(a). Suppose that G is cyclic and that g 2 G with ord gð Þ ¼ jGj � 3: We will show

that hf Gð Þ ¼ exp Gð Þ:
Let S be a zero-sum sequence over G such that supp Gð Þ is not half-factorial. It suffices to

show that jL S exp Gð Þð Þj � 2: If jfg 2 supp Sð Þjord gð Þ ¼ jGjvg Sð Þgj � 1, then the assertion follows

from Proposition 3.1.4. Suppose jfg 2 supp Sð Þjord gð Þ ¼ jGjvg Sð Þgj � 2: Then there exist distinct

g1, g2 2 supp Sð Þ such that ord g1ð Þ ¼ ord g2ð Þ ¼ jGj: We may assume that g1 ¼ kg2 for some k 2
N�2 with gcd k, jGjð Þ ¼ 1: It follows by k gjGj�k

1 � g2
� �

< 1 that G0 ¼ fg1, g2g ¼ fg1, kg1g is not

half-factorial. By Proposition 3.1.2, we obtain that jL S exp Gð Þð Þj � 2:
3(b). Suppose G is a finite abelian group with exp Gð Þ � 6: We need to prove that hf Gð Þ ¼

exp Gð Þ: Let S be a zero-sum sequence over G such that supp Gð Þ is not half-factorial. It suffices

to show that jL S exp Gð Þð Þj � 2:
If supp Sð Þ is an LCN-set, the assertion follows by Proposition 3.1.1. Thus there is a minimal

zero-sum sequence W over supp Sð Þ such that

k Wð Þ < 1:

By Proposition 3.1.2 and Lemma 2.2.2, we have

jsupp Wð Þj � 3:
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Suppose W j S: Since k Wð Þ < 1, it follows by Lemma 2.2 that jL W exp Gð Þð Þj � 2 and hence

jL S exp Gð Þð Þj � 2: Therefore we may assume that W-S, whence jWj � jsupp Wð Þj þ 1 � 4: It fol-

lows that 6 � exp Gð Þ � jWj
k Wð Þ > jWj � 4:

We distinguish two cases according to exp Gð Þ 2 f5, 6g:
Case 1. exp Gð Þ ¼ 5:
Then, G ffi Cr

5 and for all W 2 A supp Sð Þ� �
with k Wð Þ < 1, we have that

W-S, jsupp Wð Þj ¼ 3, and jWj ¼ 4:

Let W0 be an atom over supp Sð Þ with k W0ð Þ < 1: Then

W0 ¼ g21g2g3 and S ¼ Tg1g2g3,

where g1, g2, g3 2 supp Sð Þ are pairwise distinct and T 2 F supp Sð Þ n fg1g
� �

with r Tð Þ ¼ g1:
We may assume T is zero-sum free. Otherwise T ¼ T0T0, where T0 is a zero-sum sequence

and T0 is zero-sum free. We can replace S by T0g1g2g3, since
���L T0g1g2g3

� �5� ���� � 2 implies that

jL S5ð Þj � 2: Therefore S is a product of at most three atoms and every term of S has order 5.
Assume to the contrary that jL S5ð Þj ¼ 1, that is, L S5ð Þ ¼ fjTj þ 3g: Since g51g

5
2g

5
3 ¼

W2
0 g1g32g

3
3

� �
is a zero-sum subsequence of S5, we obtain that g1g32g

3
3 is an atom. Note that

g21g2g3
� �2

S ¼ g41T
� �

g1g
3
2g

3
3

� �
is a zero� sum subsequence of S5:

Suppose S is an atom. Then L g41T
� � ¼ f2g and hence jg41Tj � 2� 4 ¼ 8, that is, jTj � 4: It

follows by f5g ¼ L S5ð Þ ¼ fjTj þ 3g that jTj ¼ 2, a contradiction.
Suppose S is a product of two atoms. Then L g41T

� � ¼ f3g and hence jg41Tj � 3� 4 ¼ 12, that

is, jTj � 8: It follows by f10g ¼ L S5ð Þ ¼ fjTj þ 3g that jTj ¼ 7, a contradiction.
Suppose S is a product of three atoms. Then L g41T

� � ¼ f4g which implies that T ¼ T1T2T3T4

such that g1Ti is zero-sum for all i 2 1, 4½ �: Since g1Ti j S, we obtain k g1Tið Þ � 1 and hence

jg1Tij � 5: Therefore jg41Tj � 4� 5 ¼ 20, that is, jTj � 16: It follows by f15g ¼ L S5ð Þ ¼
fjTj þ 3g that jTj ¼ 12, a contradiction.

Case 2. exp Gð Þ ¼ 6:
Let W be an atom over supp Sð Þ with k Wð Þ < 1: If jWj ¼ 4, then jsupp Wð Þj ¼ 3 and hence

W must be of the form

W ¼ g21g2g3

where g1, g2, g3 2 supp Sð Þ are pairwise distinct. Since g61
� �

g62
� �

g63
� � ¼ W3 g32g

3
3

� �
, we obtain that

jL g61g
6
2g

6
3

� �j � 2: It follows from the fact that g61g
6
2g

6
3 divides S exp Gð Þ that jL S exp Gð Þð Þj � 2:

If jWj ¼ 5, then jsupp Wð Þj ¼ 3 or 4 and hence W can be written in one of the following ways.

i. W ¼ g31g2g3, where g1, g2, g3 2 supp Sð Þ are pairwise distinct.

ii. W ¼ g21g
2
2g3, where g1, g2, g3 2 supp Sð Þ are pairwise distinct.

iii. W ¼ g21g2g3g4, where g1, g2, g3, g4 2 supp Sð Þ are pairwise distinct.

Suppose (i) holds. Then 0 ¼ 2r Wð Þ ¼ 6g1 þ 2g2 þ 2g3 ¼ 2g2 þ 2g3: Since g61
� �

g62
� �

g63
� � ¼

W2 g22g
2
3

� �2
, we obtain that jL g61g

6
2g

6
3

� �j � 2: It follows from the fact that g61g
6
2g

6
3 divides S exp Gð Þ

that jL S exp Gð Þð Þj � 2:
Suppose (ii) holds. Then 0 ¼ 3r Wð Þ ¼ 6g1 þ 6g2 þ 3g3 ¼ 3g3: Thus ord g3ð Þ ¼ 2 and hence

k Wð Þ � 1=2þ 4=6 > 1, a contradiction.
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Suppose (iii) holds. Then 0 ¼ 3r Wð Þ ¼ 6g1 þ 3g3 þ 3g3 þ 3g4 ¼ 3g2 þ 3g3 þ 3g4: Therefore

W0 ¼ g32g
3
3g

3
4 is zero-sum. If W0 ¼ g61g

6
2g

6
3g

6
4 Wð Þ�3 is not a minimal zero-sum sequence, then

jL g61g
6
2g

6
3g

6
4

� �j � 2 and hence jL S exp Gð Þð Þj � 2: If W0 is minimal zero-sum, then g61g
6
2g

6
3g

6
4 ¼

g61
� �

W2
0 implies that jL g61g

6
2g

6
3g

6
4

� �j � 2 and hence jL S exp Gð Þð Þj � 2: w
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