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1. Introduction

Let G:= (G, +,0) be a finite group written additively but not necessarily abelian, with neutral
element 0. As usual, we let My(G) denote the near-ring of zero-preserving functions on G under
the operations of pointwise addition and function composition. We consider subnear-rings
Py(G), the near-ring of polynomial functions on G, and Cy(G), the near-ring of congruence pre-
serving functions on G. We recall Py(G) is the subnear-ring generated by the inner automor-
phisms of G while a function f € My(G) is congruence preserving if, for each x,y € G and normal
subgroup N of G, if x —y € N, then f(x) — f(y) € N.

We let 7(G) denote the lattice of normal subgroups of G and recall #(G) is lattice isomorphic
to the congruence lattice of G. For any subgroup H of G, the normal closure H of H is defined
by H=n{N € #(G)|N D H}. For x € G we let ¥ = (x) and thus we have f € Co(G) if and only
if f(x) — f(y) e x—y for all x,y € G. We have I(G) = (Inn(G)) = Py(G) C Co(G) C My(G).

In this paper we continue the investigation initiated in [11] as to when Cy(G) is a ring. Of
course, if Cy(G) is a ring so is Py(G) and from Chandy ([3]), Py(G) is a ring if and only if G is a
2-Engel group, i.e., every element of G commutes with all of its conjugates. Since a group G of
nilpotency class at most 2 is 2-Engel, in this investigation we restrict to nilpotent groups of class
at most 2, and using standard results, can restrict to p-groups of class at most 2. (See [11].) For
finite abelian groups, A, Cy(A) is a ring if and only if A is 1-affine complete, and the 1-affine
complete finite abelian groups are known ([11]). Recall that a group G is 1-affine complete (1-ac)
means Cy(G) = Py(G). For background material and history see [10, pp 158-160].

Several necessary conditions on finite non-abelian nilpotent p-groups of class 2 for Cy(G) to
be a ring were given in [11] (see Theorem II.1 below) and in these cases for p # 2 all the groups
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G were 1-ac. The first examples of 1-ac non-abelian p-groups were given by Dorda ([6]). These
groups were p-groups, nilpotent of class 2, exp (G) = p, |G| = p®,p > 2.

In light of this example and some GAP examples, we restrict our attention to finite non-abelian
p-groups, G, p # 2, of class 2 and Z(G) = [G, G] and G/|[G, G] is elementary abelian, that is a special
p-group. Recall that a finite group G is special if G is elementary abelian or G is nilpotent of class 2,
Z(G) =[G, G] and G/[G, G] is elementary abelian. (The first occurrence we have found of these groups
is in Hall and Higman ([9])). From group theory one finds that a non-abelian p-group, G, is special if G
is nilpotent of class 2 and Z(G) = [G, G] = ®(G) (the Frattini subgroup of G). A special p-group has
exponent p or p” ([7]). We focus here on non-abelian special p-groups, G, exp (G) = p,p # 2.

A further reason for restricting to these special p-groups is that Verardi ([13]) has shown that
there exists an injective map G—G, from the class of finite groups into the class of special p-
groups of exponent p. Thus information about the associated special p-group G, may be used to
obtain information about G.

In the remainder of the paper G will denote a non-abelian special p-group, p # 2, of exponent
p. As usual, Z(G) denotes the center of G, [G,G] =G, the commutator subgroup, and
My(G), Cy(G) and Py(G) as defined above.

2. Background results: old and new

As indicated at the end of the previous section, henceforth our groups G will be non-abelian special
p-groups of exponent p # 2. For ease of exposition we denote this by “Let G € NAS(expp # 2)”.

For G € NAS(expp # 2), let n(G) denote the lattice of normal subgroups of G. Let D,E €
1(G), DCG, {0}CE. The pair (D, E) is called a splitting pair if for each N € #(G),N C D or N 2
E. If G contains a splitting pair, we say G splits or G is split. In the case D=E, we say D is a cut-
ting element and G is cut.

For x € G, we let [x,G] = ([x,g]lg € G) = {[x. gllg € G}. We have X = (x) + [x,G] and X is
abelian ([11, 3.3]).

For use in the sequel we collect some (mostly) known results. We note that some of these
hold for any non-abelian p-group of nilpotency class 2.

Theorem IL.1. Let G € NAS(expp # 2). If any one of the following holds:

G is split ([11, 3.1]);

|G| < p® ([11, 4.7]);

G is abelian by cyclic ([11, 4.6]);

There exists x € G such that [x, G| is cyclic ([6, Hilfsatz 9]);
The derived subgroup G' = [G, G] is cyclic ([11, 4.1]);

G' is 2-generated, that is G' = 7, DZy,

S

then Co(G) is not a ring and thus G is not 1-ac.

Proof. For (4), Dorda ([6]) constructs a function g € Co(G) — Py(G). One finds that g(id + id) #
g-id+g-id so Cy(G) is not a ring. For (6), we take G’ = (c1, ;) = Z,DZ,. Let x € G — Z(G)
and note [x,G] = G/, otherwise [x, G| is cyclic and the result follows from (4). For N € n(G), if
NZZ(G) then for x € N — Z(G), G’ = [x, G] C N. Thus Z(G) cuts G and we use (1). O

We mention two additional cases. In [4], Corsi Tani proved that if G is a finite p-group of nil-
potency class 2 having an automorphism ¢ # id, with gcd(|o|,p) =1, and such that ¢(N) C N
for all N € #(G), then G € NAS(expp # 2) and G is cut. Thus these groups are not 1-ac and
Co(G) is not a ring. Gorenstein ([7]) calls G € NAS(expp # 2) extra special if |G'| = p and pro-
ceeds to discuss the use of extra special groups in the classification problem of finite simple
groups. From Theorem II.1, extra special p-groups, G, are not 1-ac and Cy(G) is not a ring.
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We know if G is not cut then 5(G) is a simple lattice ([2, Lemma 6.1]). For H,K € 5(G) the
interval I(H, K) is said to be a prime interval if |I(H,K)| =2 and in this case we write H < K.
From lattice theory, when 7n(G) is simple then any two prime intervals are projective, hence if
H < K and A < B, then B/A and K/H are Cy(G) isomorphic (See also [1] and [2]).

Lemma I1.2. Let G € NAS(expp # 2),|Z(G)| > p*. Let f € Cy(G). Then

2. If G is not cut, then h=f—k-ide Cy(G), where kecZ, is given in part I,
and h(G) C Z(G),h(Z(G)) = {0}.

Proof.

1. Let x,y € Z(G) and f € Cy(G). Then f(x) € X so f(x) = k.- x and f(y) =k, - y, k. k, € Z,.
Since f € Co(G),f(x) —f(y) €x—y, that is k.-x—k,-y=k(x—y),k € Z, Therefore
(ky — k)x = (k, — k)y. If (x) # (), then ky =k =k,. If (x) = (y), then since |Z(G)| > p?,
there exists w € Z(G), (w) # (x) and (w) # (y). But then k, =k, = k,, so f|, = {-id,{ €
Zy. (This also follows from ([12]) since Z(G) is affine complete.)

2. Let NNM €n(G),{0} < N C Z(G) and M < G. Then I({0},N) and I(M, G) are projective so
G/M and N/{0} are Co(G) isomorphic. For f € Co(G) we find from the first part, f|, =
0-id,l € Ly, so for h=f —(-id,h(Z(G)) = (f — £ -id)(Z(G)) = {0}. Thus h(G) C N{M €
n(G) IM < G} € Z(G). O

From Theorem II.1 we know if G is cut, G is not 1-ac. Thus in the sequel, when G is not cut
and when attempting to show that arbitrary f € Cy(G) is also a polynomial function, without loss
of generality we consider h = f — ¢ - id.

We introduce some further notation and concepts. Let G € NAS(expp # 2). Then G/Z(G)
and Z(G) = G’ are Zy-vector spaces, say

G/Z(G) = (e1 + Z(G), ....en + Z(G)) and Z(G) = (cy, ..., ¢s)

50 G = (e, ..en,Cr,-06) and |G| = p"*,n = dimg, (G/Z(G)),s = dimz, (Z(G)). Note T :=
{leisei]|]1 <i < j< n}is a generating set for Z(G) = G’ so without loss of generality we take B :
= {c1,....¢;} € T. Thus each [e;, e € T — B is a linear combination of elements from B. See
Cortini ([5]) for this representation of G € NAS(expp # 2).

We mention that another computational approach to non-abelian special p-groups of exponent
p is given by Grundhofer and Stroppel ([8]) in their investigations of Heisenberg groups. This
approach is used to obtain information about automorphisms of these special p-groups.

We next introduce a directed graph in which the defining information of our groups is
enclosed. Let G € NAS(expp # 2) be given by G = (e}, ...,en 1, ..., ¢;) and the linear combina-
tions for [es,ex] € T — B, [es, ex] = D i, of (ci. The vertices are the generators {ey,...,e,} and the
directed edges are [ee],i<j. For xy€Gx=3 1 aiei+z,y=73 " bjej+2,2,2 €
Z(G), [x, y] can be determined from the graph.

Example I1.3
A.  Gis full. G is isomorphic to (e, ..., s, C1, ...
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B. G is circular. G is isomorphic to (ey, ..., ey, C1, ..., Cn) [€i> €i41] = ¢; where we take e, = e,
and other [ey, e] = 0. For n=4 we have

€1
¥
€4 ]
& %
€3

€1

+(12

C1

Cf—————€9
€3

where [ej, e 1] = ¢, 1 < i< 4 (with es = e1), and [ey, e4] = ¢; + ¢2. Note [es, e4] = [e1, 3] + [e2, €3]
s0 [e2,es — €3 + e1] = 0. Thus G is isomorphic to

by by
bi;

where by = e;,b, = e5, b3 = e3,by = ey — e3 + e;. Therefore G is circular.

C. Consider G given by

In the next section, with the aid of this graphical representation, we determine new classes of
non-abelian special p-groups of exponent p which are 1-ac and new classes which are not 1-ac.
In these latter classes, Cy(G) is not a ring.

3. Main results

As usual, G € NAS(expp # 2),|G| = p"™,n = dimgz, (G/Z(G)), s = dimgz, (Z(G)).

Theorem II1.1. (Full) Let G = {ej, ..., €p, €15 -.» Cs), 1 > 3,8 = ; . Then G is 1-ac.

Proof. Let f € Cy(G). As we have shown above, we may assume that f(G) C Z(G), so we let
f(u) = [u,dy),u,d, € G. We also let [e,e] =c¢; for 1<i<j<n From f(es)—f(e1) €
[e2 — e1, G] we have f(e;) — f(e1) = [e2 — ey, x] for some x € G. It follows that
[ez’dfz - del] = [ez’dez} - [ez’del] - [el’dfl} + [el’del]
= fle2) = fler) + [er, dey] — [e2, ]
= [e2 — e, x] — [e2 — e1, de ]
S [62 — €1, G]
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So we have [e;,d,, — d,,] € [e2 — €1, G] N [e2, G]. Furthermore,

[e2 — €1, G] = ([e2 —en, €], [e2 — €1, e2], [e2 — €1, €35 .05 [€2 — €1, €4))

= (Clz,C23 — €135+ Con — C1n>,

while
[e2, G] = ([ea, e1], [€2> €2], [€2: €3], -5 [€25 €n]) = (C125 €235 05 Con)-

From the linear independence of the c;, it follows that [e; — e1, G] N [e2, G] = (c12), and hence
de, — d., is forced to have the form ae, + fe; + ¢, 0, f € Zy,c € Z(G).Alf we let d; =d,, +oe +¢
then [e),di] = [e1,d,,] and e, d,,] = [e2,de, + cter + fer + ¢] = [e2,d1 + fer] = [e2,d1]. We put
d = d, so that f(e;) = [e1,d] and f(e;) = [e,, d]. For j > 3, it follows similarly that f(e;) — f(ez) €
lej — €2, G| and so [ej,d, —d] € [ej — €2, G| N [ej, G| = (czj). Using f(ej) — f(e1) € [ej — e1, G] we
get [ej,de, — d] € [¢; — e1, G| N [e1, G| = (cyj) s0 [ejd,, — d] =0, and f(e;) = [e;, d],i = 1,2,...,n.

For oej, let f(ue;) = [nej,gl,g € G. Using f(ae;) — f(ei) € [oej — e, G|,i # j, we get [uej, g —
d] = 0 and f(xe;) = [oej, d].

Thus we find d € G, f(ce;) = [0e;, d] for each i € {1,...,n},a € Z.

Now let u = ue; +ujej+c,i #ju; 70 #uj, c€ Z(G). As above we find [u,d, —d] €
lesG]N e, Gl = (c;j) and  for  k#ik#j,[u,d, —d| € [u+e,G]Nle, G Ne,G] = {0}.
Hence f(u) = [u, d].

By induction, f(D_1, uie; +¢) = D1, uieid] so f € Py(G), that is, G is 1-ac.

We may now assume n > 4. For if n=3, then s < (;) = 3. If s=3 then from the above the-
orem, G is 1-ac. If s=1 or s=2, then from Theorem IL1, Cy(G) is not a ring. For n=2, s=1
we are again finished using Theorem IL1. It should be mentioned that the “full” case n = 3,5 =3
is the example of Dorda mentioned above.

Theorem II1.2. (Circular) Let G be circular, i.e., G is isomorphic to (e, ..., ey, C1, ..., Cu) [€i €ir1] =
c; where we take e, 1 = e), and the other [es, ex] = 0. Then G is 1-ac if and only if Cy(G) is a ring
if and only if n is odd.

Proof. We have

e
Cnp, LNgSt
e e
Cn—1 \(;2
€n—1 €3
c3
€4

¢y
where we take ¢; = [e;, e;41] and identify e, :-el,i =1,..,n.
Let n be even, s = n,|G| = p*" and define a function h € M,(G) by

h <Z kie,- + C> = Z (—1)i+1kiki+1c,-, where kn+1 = kl,
i=1

i=1

and where ¢ € Z(G) is arbitrary. We show h € Cy(G) and show Cy(G) is not a ring.
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Now

h (Zk,e,») —h <Z£ie,~> = (=) (kikis1 — Litis1)ci, where Loy = £y
i=1 i=1 i=1
= (k1k2 — 6162)61 - (k2k3 — 6263)62 + (k3k4 — é3€4)C3
— (k4k5 - E4£5)C4 + =
+ (knflkn - gnflén)cnfl - (knkl - gnel)cn- (*)
Also,

i=1
= <(kn - gn)cn - (kz - fz)Cb (kl - 51)C1 - (ks - 53)C2>
(kz - 62)62 - (k4 - €4>C3, (k3 - 43)63 - (ks - 55)64,

(kn72 - £n72)cn72 - (kn - En)cnfla (knfl - En,1)6n71 - (kl - el)cn>~
We see that (%) can be written as

— kl[(kn — En)Cn — <k2 — Zz)Cl] + gz[(kl — gl)cl — (k3 — gg,)Cz]
—ks[(ky — la)cy — (ka — ly)cs] + La[(ks — £3)cs — (ks — Ls)cy]

— kp1[(kn—2 — lu—z)cn—2 — (kn — €n)cn—1] + Lu[(kn—1 — lu—1)cn—1 — (k1 — £1)ca),

that is,

h (i kiei> — h (i &'6,‘) S [i(kl - gi)eis G

i=1

for all k;,¢; € Z,, which implies h € Co(G). However, h(e; + e;) = ¢; = h(—e; — e;), from which
it follows that ho(—id) # —h, so Cy(G) is not a ring.

Suppose now n is odd. As above we take ¢; = [e;, €;41],1 < i < n, and identify e,;; as ;. We
take f € Co(G) and show f € Py(G). Recall that we may assume without loss of generality that
f(x) € [x,G] for all x € G.

From f(e;) € [e:,G],1 <i<mn, we have f(e;) € (ci—1,¢;),1 <i<n, (identifying ¢y = c,), say
f(e,') =0 1Ci—1 + %26, 1 < i< m,1,0%2 € ZP' Next, from f(e,') —f(e,urz) S [ei — €i12, G] we get

O, 1Ci—1 O, 2C — Qig2,1Cih1 — %2, 2Cir2 = A1(Ci + Cip1) + AaCioy + A3Civa, Ai € Zp,

since [e; — €12, G] = (¢i + ¢it1, ¢io1, Cir2). This forces o;r = —i12,1,1 <i<n, and by putting
T = 0i_1,2,1 <i < n, we find that f(e;) = [e;, d] where d = Y1, Te;.

Take p € Py(G) where p(x) = [x,d],x € G and let h =f — p € Cy(G). Now h(e;) =0,1 <i <
n, and we show h(x) = 0 for all x € G, that is f € Py(G) and G is 1-ac.

Let k € Zp,k & {0,1}. Then h(ke;) — h(ei—>) € [ke; — ei_2, G] = (ci_3, kci—1 + ¢i—2, ¢i), where we
take c3=c¢y,3.c2=cr2c1=c1 and h(ke) — h(ei;) € [ke; — ei2, G = {ci_1, ke; +
Cit1>Cira) which implies h(ke;) =0,k ¢ {0,1}. But h(ke;)) =0 for ke€{0,1} so we
have h(ke;) = 0,1 <i < nk € Z.

We also find h(ke; + le;) =0 if |i—j| > 2. In fact, for |i—j| > 2,h(ke; + le;) — h(lej) €
leiG] = (ci—1,¢i) and  h(ke; + le;) — h(ke;) € [ej, G] = (cj-1,¢j). Since (ci-1,¢i) N (cji-1,¢;) = {0}
for |i — j| > 2, h(ke; + lej) = 0,k, L € Zj.
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We next show that h(ke; + leir1) =0,k ¢ € Z, —{0}. From h(ke; + leir,) — h(leir,) €
[ei, G] = {(ci—1,c;) and h(ke; + Leiy1) — h(ke;) € [eir1, G] = (ci»civ1), we find that h(ke; + le;) €
(ci), say

h(ke; + leiy1) = p;(k,€)ci, where p;(k,1) € Zy.
But, for me ZP — {0},]’1(](61 + €€i+1) — h(£€i+1 + mei+2) S [kei — me;i, G] = <kCi + Mciy1,Ciz1s
Cit2), thatis, p;(k, £)c; — p; 1 (6, m)ciyy = A(kci 4+ mciyy) for some 4 € Zy. This implies that
P (6m) = —mk~" p;(k, ) (1)

for all 1 <i < n,k,{,mc Z, — {0}. (Note that p;(k,£) = 0 if at least one of k and / is zero.) The
right-hand side of (1) equals the left-hand side for all k € Z, — {0}. Hence, k™'p;(k,{) =
pi(1,4),k € Z, — {0}, so that

pi(k,€) = kpy(1,£),k € Z,, — {0}. @)

Hence, from (1), p, (¢, m) = —mp;(1,¢). Put £ =1, and p,,(1,m) = —mp;(1,1), which implies
m~'pi1(L,m) = —p;(1,1), m € Zy —{0}. So, m™'p;y (1,m) = p;;;(1,1), giving

Pir(Lm) =mp;(1,1). (3)
From (2) and (3),
pi(k, €) = klp;(1,1). (4)
Now, put k =¢ =m =1 in (1). Then
pr(11) = (1 1) = pra (1) = —py (1 1) = o = py(1,1) = —py (1, 1),
since n is odd. From p,(1,1) = —p,(1,1) we have p;(1,1) =0, and hence also —p,(1,1) =
py(L,1) =---=—p,(1,1) =0. By (4), pi(k,¢) =0,1 <i<nkleZ, This shows that h(ke; +

leiy) = 0c; = 0,1 <i < m,k, £ € Zp. So we now have that
h(ke; + lej) = 0,1 < i,j < n,k,{ € Z,.

We proceed by induction. Let 2 <t < n, and assume that h(kje; + kye;, + - - + kee;,) = 0 for
any {i,i,....it} C {1,2,..,n} and any ki, ks, ...,k € Z,. Then, without loss of generality, put
w=Y""""kie;, with all k; #0. Then h(w) —h(w — kie;) € [e1, G] = (cwrc1) and h(w) — h(w —
kses) € [es, G] = (c2, c3) implies h(w) € {cu, 1) N {cz, c3) = {0}. We conclude that

h <Z kiei> =0,k; € Zp.
-1

Thus, h(x) = 0,x € G and f € Py(G). O

In Theorem II.1 several sufficient conditions were stated for a group G to have Cy(G) not a
ring. Most of these conditions lead to G being split. In Example 3.2 (2) of [11], GAP was used to
find a group H, not split, and a function f € Cy(H) — Py(H) with Cy(H) not a ring. In the next
theorem we give a construction process for a large collection of groups G € NAS(expp # 2) to
construct a function f € Co(G) which shows Cy(G) is not a ring.

First some notation. For a,b,c,d € G we have a 2 x 2 determinant

a b
c d

]:m&—m4
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For x,y € G,x =Y ., xie; + Zj-:l UGy = iy yiei + Zj':l YiG

[%y] = Z (xiyj — xyi) [en 6] = Z

1<i<j<n 1<i<j<n

Xie;j xje,-
yiej Vi€

>

similar to the wedge product in multilinear algebra.
Using the above definition of determinant we define a “wedge” product for

X1 oo Xt> Y15 - Yk € G by
/\ (xl x2 DR xk) _
yl yz N yk >
af, -tuple.

For an abelian subgroup, A, of G, A 2 Z(G), we choose a basis {e; + Z(G),....,e; + Z(G)} for
A/Z(G) and extend this to a basis {e; + Z(G),....es + Z(G),er11 + Z(G), ....en + Z(G)} of
G/Z(G). Thus without loss of generality we have G=H-+ A where H = {es1,...,e,)
and A = (ey,....er) + Z(G).

Theorem III.3. (Wedge) Let G=H + A as above with A=Y 4+ Z(G),Y = {e1,....e;). If there
exist Ty, ...,y € Y such that

X1 X2
Y1 )2

X1 X3

Y1 )3

Xk—1 Xk
Yk—1 Yk

> 3 eeey

T+ - Ty
ii. [ej,m] # O for at least one j € {{+1,...,n},

i /\<etz+1 e")zO,and

then Cy(G) is not a ring.

Proof. For suitable mpyy,..,m, € Y, ie., m, £+ 1 <i<n, satisfying i) and ii), we will show that
the function f € My(G), defined by

f<;xiei> = [;xiei) inni]

i=(+1
n n
= [inei, inni], since [¢j» 7] =0,1<j<41<i<n
i=(+1 i=(+1

is in Cy(G), but not in Py(G). Moreover, we'll show that, for some non-zero ¢ =3, dic; €
Z(G), f(OoI, xie) =f(>r,(—xi)e;) = ¢, which shows that Cy(G) contains a non-distributive
element, hence Cy(G) is not a ring.

First we show that for arbitrary x =" | xie,y = > 1, yiei € G,

)~ 0) =f<§"j ) —f(D) : [Z( - y)en G] =[x .6

i=1

Now, for suitable 7;, (¢ + 1 < i < n) (those given by i) and ii)):

i=0+1 =1 =0+l i=ft]
n n n n
= E xjej, E (xi — yi)mi| + g (% — yj)eps g YiTti
j=t+1 i=t+1 j=t+1 i=t+1

=L+ R, where R€ [x—y,G].
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We show that also L € [x — y,G]:

j=l+1 i=(+1
n n
DI I CESDICE)
j=lli=l+1
n n
= Z xj(xi — yi)[en ), by i)
j=+1i=0+1
= Z Z [(x,- — y,-)e,»,xjnj]
j=lli=l+1
= Z [(xi —yi)ei, Z xﬂ'[;|
i=l+1 j=t+1
€ [x—»G].

This shows that f € Co(G). By ii), there is an ip(£+ 1 < iy <) such that [e;,,7;,] # 0. So
flei) = [ei> mi] = [—€ip — mi] = f(—ey,). It follows that fo(—id) # —(foid), showing that Cy(G)
is not a ring. 0O

Note that condition ii) is necessary here. Otherwise we could have chosen all 7; = 0 and i) is
still satisfied. But in this case f would be the zero function, hence distributive.

€1
€5 €2
(&1 C2

Cy Co

Example II1.4. Let G be given by

e—— €3
Then G=H+ A with H = (e, e3,e4) and A = (e, e5) + Z(G). We have A (el € e4> =0
and [e;, es] # 0. Thus Cy(G) is not a ring. G e @

From Theorem IL1, if G has a maximal abelian normal subgroup A of order |A| = p"~'** then
Co(G) is not a ring. As an application of the wedge theorem we consider the case where a max-
imal abelian normal subgroup, A, has order p"?** and G/A is not cyclic. As above we choose a
basis {e; + Z(G), ...,en—2 + Z(G)} of A/Z(G) and get G = (e,—1,e,) +A, A = {(e1,....en—2) +Z(G).

For i=1,2,...n—2,[e;, Gl = ([ei-en—1), [eren]). If [een—1] =0 or [e,e,] =0, then from
Theorem IL.1, Co(G) is not a ring. Thus we take [e;, e,_1] # 0 # [e;, eq] for i € {1,2,...,n — 2}. Let
A= {lenen1]]1 <i<n—2) and A, = ([eren]]1 <i<n—2). If {[ee,1]]l <i<n—2}is
linearly dependent over Z,, then 27;12 o;lei,e,—1] =0 and not all «; =0. So, from

72 e e, 1] = 0, we see that y = 3" oe; is in A and y # 0. We have A <€n0—1 e;> =0
and [e,, y] # 0, otherwise y € Z(G), a contradiction. From the Wedge Theorem, Cy(G) is not a

ring. Thus we now take {[e,e, 1]|]1 <i<n—2} to be linearly independent and similarly
{[ei»en])|1 < i< n—2} is linearly independent. We have |A,_;| = p" 2 = |A,|.

Suppose A, 1 NA, # {0}, say [he, 1] = [g en)sh g € A, say g = Y17 Bies, not all f; = 0. If
[g.en1] =0 then 0= Z:’;lz pileien—1], a contradiction to the linear independence of
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{leien1]|1 <i<n—2}. Wehave A (e’:gl Z’) =0,h,g € A and [e,—1,8] # 0. so Cy(G) is not
a ring. Consequently |A,_; + A,| = p*** or Cy(G) is a ring.
So we have

Theorem IIL5. Let G € NAS(expp # 2) and let G=H + A, A € n(G), A abelian with Z(G) C A
and |G/A| = p*. If s < 2n — 4 then Co(G) is not a ring. O

We use the notation and definitions from the above discussion. When s £ 2n —4,
then s > 2n — 4.

If s=2n—4, then [e,_1,e,] =0 or [e,_1,e,] € Ay_1 + A,. Suppose [e,—1,e,) € A,y + Ay, say
len—1,€n) = 27;12 %ilei> ea1] + 2?212 Bilesen]. Let g= Z::f o%ie; and h= Z;;Z Biei  so
[en—1.€n) = [, €n—1] + [h,e,], hence [e,—1,e, +g] = [he,]. Let &, =e,+ ¢ and note [e,_1,&,] =
[h,e,] = [h,e,] so [e,—1 —h,é,) =0 and [e;e,—1 —h] = [ee,—1] and [e e, +g] = [enen)i =
1,2,...,n—2. By using the basis, {ej,es....e, 2,€,-1 —h, e, +g¢1,....¢;}, we have G=
(en—1 — g en + h) + A with [e, — g,e,—1 + h] =0 so when s = 2n — 4 we may take [e,_,e,] = 0.
When n=4 we see that G is circular with n even so Cy(G) is not a ring. The case for n > 4,s =
2n — 4 remains open.

When s > 2n—4 and n=4, then s =2n—3, since s<n(n+1)/2 =06 and s=6 is the full
case. For n=4 and s=5 one finds via tedious calculations that G is 1l-ac. The case n>4
remains open.

In conclusion, we have identified several further classes of non-abelian p-groups, G, p # 2, for
which Cy(G) is a ring if and only if G is 1-ac. However, the original conjecture as to whether this
is true for all finite non-abelian p-groups, p # 2, remains open.
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