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ABSTRACT
We present new results on optimization problems where the
involved functions are evenly convex. By means of a general-
ized conjugation scheme and the perturbation theory intro-
duced by Rockafellar, we propose an alternative dual problem
for a general optimization one defined on a separated locally
convex topological space. Sufficient conditions for converse
and total duality involving the even convexity of the pertur-
bation function and c-subdifferentials are given. Formulae for
the c-subdifferential and biconjugate of the objective func-
tion of a general optimization problem are provided, too. We
also characterize the total duality bymeansof the saddle-point
theory for a notion of Lagrangian adapted to the considered
framework.
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1. Introduction

An important part of mathematical programming from both theoretical and
computational points of view is the duality theory. Rockafellar (cf. [1]) devel-
oped the well-known perturbational approach (see also [2]), consisting in the use
of a perturbation function as the keystone to obtain a dual problem for a general
primal one by means of the Fenchel conjugation. Both problems always satisfy
weak duality (the optimal value of the dual problem is less or equal to the optimal
value of the primal one), as a direct consequence of the Fenchel–Young inequal-
ity, whereas conditions ensuring strong duality (no duality gap and dual problem
solvable) can be found inmany references in the literature. Another related inter-
esting problem in conjugate duality theory is the notion of converse duality. It
corresponds to the situation where there is no duality gap and the primal prob-
lem is solvable. This issue was investigated in the convex setting in [3] for Fenchel
duality and later extended in [4].

In this paper we propose a new dual problem to a general primal one defined
on locally convex spaces bymeans of a generalized conjugation scheme and study

CONTACT M. D. Fajardo md.fajardo@ua.es

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is anOpenAccess article distributedunder the termsof theCreative CommonsAttribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2020.1756287&domain=pdf&date_stamp=2020-04-24
http://orcid.org/0000-0002-1139-7504
mailto:md.fajardo@ua.es
http://creativecommons.org/licenses/by/4.0/


2 M. D. FAJARDO ET AL.

converse duality for this primal–dual pair. This pattern,which is inspired by a sur-
vey done by Martínez-Legaz where generalized convex duality theory is applied
to quasiconvex programming, is called c-conjugation scheme and it was devel-
oped in [5]. In the same way like in the classical context convexity and lower
semicontinuity of the perturbation function are required in most of the regu-
larity conditions – see for instance [6] – the use of the c-conjugation scheme is
associated with the even convexity of such a function. Evenly convex sets (func-
tions) are a generalization of closed and convex sets (functions), see, for instance,
[7]. Fenchel called in [8] a set evenly convex, e-convex in brief, if it is the inter-
section of an arbitrary family, possibly empty, of open halfspaces. Such sets have
been employed to study the solvability of semi-infinite linear systems containing
infinitely many strict inequalities in [9], whereas some important properties in
terms of their sections and projections are given in [10]. Due to [7], an extended
real-valued function defined on a locally convex space is said to be e-convex if its
epigraph is e-convex. According to [5], the c-conjugation scheme is suitable for
this class of functions in the sense that the double conjugate function equals the
original one if it is proper and e-convex. This result can be seen as the e-convex
counterpart of the celebrated Fenchel–Moreau theorem. Concerning the usage
of e-convexity in finance mathematics and consumer theory, we refer to [11,12].
Some recent applications of the c-conjugate scheme in the direction of formu-
las for asymptotic functions and multi-marginal monotone sets can be found in
[13,14], respectively.

The theory developed in [5]motivated in [15] the generalization of somewell-
known properties of the sum of the epigraphs of two Fenchel conjugate functions
and the infimal convolution, and, as an application, conditions for strong Fenchel
duality were derived. Later, in [16], the perturbation approach was used to build
a dual problem by means of the c-conjugate duality theory, and the counterparts
of some regularity conditions, i.e. conditions ensuring strong duality, from the
Fenchel conjugate setting were obtained. Moreover, in [17] regularity conditions
for strong duality between an e-convex problem and its Lagrange dual were estab-
lished. In [18] we analysed the problem of stable strong duality, and deduced
Fenchel and Lagrange type duality statements for unconstrained and constrained
optimization problems, respectively. In [19] the Fenchel–Lagrange dual prob-
lem of a (primal) minimization problem, whose involved functions do not need
to be e-convex a priori, was derived. Furthermore, some relations between the
optimal values of the Fenchel, Lagrange and Fenchel–Lagrange dual problems
were presented. Finally, in [20] we used the formulation of the Fenchel–Lagrange
dual problem from [19] to derive a characterization of strong Fenchel–Lagrange
duality.

The purpose of the paper is twofold. First, we analyse the fulfillment of con-
verse duality for a primal–dual pair expressed via the perturbation function,
where its even convexity will play a fundamental role. In order to avoid repet-
itive arguments, we have decided to derive the aforementioned converse duality
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in the general form, leaving as an application the natural particularizations into
the previously mentioned special cases. As a second target, we address the prob-
lem of total duality (no duality gap and both problems solvable) from this general
perspective. Moreover and extending in this way results from the convex set-
ting [21–23], we provide some formulae for the c-subdifferential and biconjugate
of the objective function of a given general optimization problem. Motivated by
[2], we highlight the analysis of saddle-point theory and its relation with total
duality for e-convex problems through the study and application of Lagrangian
functions.

The layout of this work is as follows. Section 2 contains preliminary results
on e-convex sets and functions to make the paper self-contained. Section 3 is
dedicated to sufficient conditions for strong converse duality and biconjugate
formulae. Section 4 is devoted to new results on c-subdifferentials which allow
to characterize total duality for a general primal–dual pair. Moreover, the ε-c-
subdifferential of the objective function of the considered problem is expressed
via the ε-c-subdifferential of the considered perturbation function. Last but not
least in Section 5 we extend the saddle-point theory from the classical framework
to e-convex problems, showing its close relation with total duality and we close
the paper with a short section dedicated to some final remarks, conclusions and
ideas for future work.

2. Preliminaries

Let X be a nontrivial separated locally convex space, lcs in brief, equipped with
the σ(X,X∗) topology induced by X∗, its continuous dual space endowed with
the σ(X∗,X) topology. The notation 〈x, x∗〉 stands for the value at x ∈ X of the
continuous linear functional x∗ ∈ X∗. Let Y be another lcs. By R++ we denote
the set of positive real numbers. For a set D ⊆ X we denote its convex hull and
its closure by convD and clD, respectively.

According to [24], a set C ⊆ X is evenly convex, e-convex in short, if for every
point x0 /∈ C, there exists x∗ ∈ X∗ such that 〈x − x0, x∗〉 < 0, for all x ∈ C. Fur-
thermore, for a set C ⊆ X, the e-convex hull of C, e − convC, is the smallest
e-convex set in X containing C. For a convex subset C ⊆ X, it always holds
C ⊆ e − convC ⊆ clC. This operator is well defined because the class of e-convex
sets is closed under arbitrary intersections. Since X is a separated lcs, X∗ �= {0}.
As a consequence of the Hahn–Banach theorem, it also holds that X is e-convex
and every closed or open convex set is e-convex as well.

For a function f : X → R̄, we denote by domf = {x ∈ X : f (x) < +∞} the
effective domain of f and by epif = {(x, r) ∈ X × R : f (x) ≤ r} and grhf =
{(x, r) ∈ X × R : f (x) = r} its epigraph and its graph, respectively. We say that
f is proper if epif does not contain vertical lines, i.e. f (x) > −∞ for all x ∈ X,
and domf �= ∅. By clf we denote the lower semicontinuous hull of f, which is the
functionwhose epigraph equals cl(epif ). A function f is lower semicontinuous, lsc
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in brief, if for all x ∈ X, f (x) = clf (x), and e-convex if epif is e-convex in X × R.
Clearly, any lsc convex function is e-convex, but the converse does not hold in
general as one can see in [19, Ex. 2.1].

The e-convex hull of a function f : X → R, e − convf , is defined as the largest
e-convex minorant of f. Based on the generalized convex conjugation theory
introduced by Moreau [25], a suitable conjugation scheme for e-convex func-
tions is provided in [5]. Let us consider the space W := X∗ × X∗ × R with the
coupling functions c : X × W → R and c′ : W × X → R given by

c(x, (x∗, u∗,α)) = c′
(
(x∗, u∗,α), x

)
:=

{
〈x, x∗〉 if 〈x, u∗〉 < α,
+∞ otherwise.

(1)

Given two functions f : X → R and g : W → R, the c-conjugate of f, f c : W →
R, and the c′-conjugate of g, gc′ : X → R, are defined

f c(x∗, u∗,α) := sup
x∈X

{
c(x, (x∗, u∗,α)) − f (x)

}
,

gc
′
(x) := sup

(x∗,u∗,α)∈W

{
c′

(
(x∗, u∗,α), x

) − g(x∗, u∗,α)
}
,

with the conventions (+∞) + (−∞) = (−∞) + (+∞) = (+∞) − (+∞) =
(−∞) − (−∞) = −∞.

Functions of the form x ∈ X → c(x, (x∗, u∗,α)) − β ∈ R̄, with (x∗, u∗,α) ∈
W and β ∈ R are called c-elementary, and, in a similar way, functions of the form
(x∗, u∗,α) ∈ W → c(x, (x∗, u∗,α)) − β ∈ R̄ with x ∈ X and β ∈ R are called c′-
elementary. In [5] it is shown that the family of proper e-convex functions from
X to R̄ along with the function identically equal to +∞ is actually the family
of pointwise suprema of sets of c-elementary functions. Similarly, a function g :
W → R̄ is e′-convex if it is the pointwise supremumof sets of c′-elementary func-
tions, and the e′-convex hull of an extended real function g defined onW, denoted
by e′ − convg, is the largest e′-convexminorant of it.Moreover, a setD ⊂ W × R

is e′-convex if there exists an e′-convex function g such that epig = D. The e′-
convex hull of a setD ⊂ W × R, denoted by e′ − convD, is the smallest e′-convex
set containing D.

The following counterpart of the Fenchel–Moreau theorem for e-convex and
e′-convex functions was shown in [11, Prop. 6.1, Prop. 6.2, Cor. 6.1].

Theorem 2.1: Let f : X → R ∪ {+∞} and g : W → R̄. Then

(i) f c is e′-convex; gc′ is e-convex.
(ii) e − convf = f cc′ and e′ − convg = gc′c.
(iii) f is e-convex if and only if f cc′ = f ; g is e′-convex if and only if gc′c = g.
(iv) f cc′ ≤ f ; gc′c ≤ g.
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The following lemma and proposition were shown in the finitely dimensional
case in [7,26], respectively, and can be generalized for infinitely dimensional
spaces easily. Recall that the recession cone of a nonempty convex subset A ⊆ X
is defined by recA = {u ∈ X : a + u ∈ A, foralla ∈ A}.

Lemma 2.2: Let C ⊆ X be a nonempty e-convex set and y ∈ X such that there
exists x0 ∈ X verifying x0 + λy ∈ C, for all λ ≥ 0. Then y ∈ recC.

Proposition 2.3: Let C ⊆ X × R be a nonempty e-convex set such that (0, 1) ∈
recC. Then h(x) = inf{a ∈ R : (x, a) ∈ C} is an e-convex function and epih =
C ∪ grhh.

For convenience in Section 3, we need to ensure the fact that certain e-convex
sets in X × R with (0, 1) ∈ recC must be epigraphs of e-convex functions. This
requirement will be fulfilled via the following definition.

Definition 2.4: A non-empty e-convex set C ⊆ X × R with (0, 1) ∈ recC is
functionally representable if grhh ⊆ C, for h(x) = inf{a ∈ R : (x, a) ∈ C}.

Remark 2.1: A non-empty e-convex set C ⊆ X × R with (0, 1) ∈ recC is func-
tionally representable if epih = C, where h(x) = inf{a ∈ R : (x, a) ∈ C}.

3. Converse duality and biconjugation

Let � : X × Y → R be a perturbation function for (GP) and 0 ∈ PrY(dom�).
Its c-conjugate �c : (X∗ × Y∗) × (X∗ × Y∗) × R → R, is defined by

�c((x∗, y∗), (u∗, v∗),α)

= sup
(x,y)∈X×Y

{
c̄
((
x, y

)
,
((
x∗, y∗) , (u∗, v∗) ,α)) − �

(
x, y

)}
,

where c̄ : (X × Y) × (X∗ × Y∗) × (X∗ × Y∗) × R → R is

c
((
x, y

)
,
((
x∗, y∗) , (u∗, v∗) ,α)) =

{
〈x, x∗〉 + 〈

y, y∗〉 if 〈x, u∗〉 + 〈
y, v∗〉 < α,

+∞ otherwise.
(2)

Also in this point we recall the associated coupling function to c̄, which will be
used in Section 3.2, c̄′ : (X∗ × Y∗) × (X∗ × Y∗) × R × (X × Y) → R,

c̄′(((x∗, y∗), (u∗, v∗),α), (x, y)) = c̄((x, y), ((x∗, y∗), (u∗, v∗),α)). (3)

Proceeding along the lines of [15], we consider the following primal–dual pair of
problems, which verify weak duality,

(GP) inf �(x, 0)

s.t. x ∈ X,
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(GDc) sup
{ − �c ((0, y∗) , (0, v∗) ,α) }

s.t. y∗, v∗ ∈ Y∗,α > 0.

This dual problem can also be expressed via the infimum value function p : Y →
R, defined by p(y) := infx∈X �(x, y), in the following way:

(GDc) sup{−pc
(
y∗, v∗,α

)}
s.t. y∗, v∗ ∈ Y∗,α > 0.

From (GDc) one can derive the minimization (primal) problem

(GPc) inf �c ((0, y∗) , (0, v∗) ,α)
s.t. y∗, v∗ ∈ Y∗,α > 0

and, under appropriate regularity conditions, the optimal value of (GPc) is
equal to the optimal value of its dual, with the last problem being solvable
as well. Let us calculate this dual problem, which we denote by (GD). If we
consider the biconjugate function �cc′ : X × Y → R, then, for all (x, y) ∈ X ×
Y , ((x∗, y∗), (u∗, v∗)) ∈ X∗ × Y∗ and α ∈ R,

�cc′(x, y) + �c((x∗, y∗), (u∗, v∗),α) ≥ c((x, y), ((x∗, y∗), (u∗, v∗),α)).

Taking y = 0, x∗ = u∗ = 0 and α > 0, �cc′(x, 0) + �c((0, y∗), 0, v∗),α) ≥ 0,

inf
y∗,v∗∈Y∗,

α>0

�c((0, y∗), (0, v∗),α) ≥ sup
x∈X

{−�cc′(x, 0)} ≥ sup
x∈X

{−�(x, 0)}. (4)

We consider the following dual problem for (GPc)

(GD) sup{−�(x, 0)}
s.t. x ∈ X.

It follows that v(GD) ≤ v(GPc) and, moreover, strong duality for (GPc) − (GD)

is equivalent to converse duality for (GP) − (GDc). In [16], via the e-convexity of
the perturbation function, some regularity conditions for a general primal prob-
lem (GP) and its general dual (GDc) were obtained. In particular, assuming the
properness and e-convexity of �, the closedness-type one,

PrW×R

(
epi�c) is e′−convex, (C5)

was introduced to guarantee strong duality for the primal–dual pair (GP) −
(GDc). Due to [16, Lem. 5.3] this condition can be expressed (under the men-
tioned hypotheses) as PrW×R(epi�c) = epi�(·, 0)c.

In order to be able to provide a counterpart of (C5) for the pair (GPc) − (GD),
we need first a suitable perturbation function for the new primal problem that
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plays the role of �. Let us consider � := �c and the perturbation variable
space to be X∗ × X∗. � is always e′-convex, an important feature which rep-
resents a difference from the standard context of strong duality on e-convex
problems – see [16,18,20]. Recall that there the perturbation function is assumed
to be e-convex in order to use the mentioned regularity condition. Naming
G := �c((0, ·), (0, ·), ·) the new objective function, and defining the spaceWY :=
Y∗ × Y∗ × R, G : WY → R̄, one rewrites (GPc) as

(GPc) inf G(y∗, v∗,α)

s.t. y∗, v∗ ∈ Y∗,α > 0.

Observe that if�((0, y∗), (0, v∗),α) := G(y∗, v∗,α), for all (y∗, v∗,α) ∈ WY , this
means that the function� can be considered as a perturbation function for (GPc)
and, consequently, a dual problem for it would be

(GDc) sup{−�c′(x, 0)}
s.t. x ∈ X.

In the case � is e-convex, �c′ = �, and we obtain

(GDc) sup{−�(x, 0)}
s.t. x ∈ X.

Since the biconjugate function is important to develop converse duality, let us
analyse further properties of the function �cc′ .

Theorem 3.1: It always holds (�(·, 0))cc′ ≥ �cc′(·, 0). If� is proper and e-convex
and (C5) is satisfied, one obtains (�(·, 0))cc′ = �cc′(·, 0).

Proof: Let us take (x∗, u∗,α) ∈ W. Then,

(�(·, 0))c(x∗, u∗,α) = sup
x∈X

{c(x, (x∗, u∗,α)) − �(x, 0)}

= sup
x∈X

{c̄((x, 0), ((x∗, 0), (u∗, 0),α)) − �(x, 0)}

≤ sup
x∈X,y∈Y

{c̄((x, y), ((x∗, 0), (u∗, 0),α)) − �(x, y)}

= �c((x∗, 0), (u∗, 0),α)

≤ inf
y∗,v∗∈Y∗ �c((x∗, y∗), (u∗, v∗),α). (5)

Taking now the c′-conjugate of the first and last function in (5), we obtain,

(�(·, 0))cc′(·)
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≥
(

inf
y∗,v∗∈Y∗ �c((·, y∗), (·, v∗),α)

)c′

(·)

= sup
x∗,u∗∈X∗

y∗,v∗∈Y∗,α∈R

{c(·, (x∗, u∗,α)) − �c((x∗, y∗), (u∗, v∗),α))}

= sup
x∗,u∗∈X∗,

y∗,v∗∈Y∗, α∈R

{c̄′(((x∗, y∗), (u∗, v∗),α), (·, 0)) − �c((x∗, y∗), (u∗, v∗),α))}

= �cc′(·, 0). (6)

When � is proper and e-convex and (C5) holds, one has by [16, Prop. 5.4]
strong duality for the primal–dual pair (GP) − (GDc), i.e. for all (x∗, u∗,α) ∈ W,
(�(·, 0))c(x∗, u∗,α) = miny∗,v∗∈Y∗ �c((x∗, y∗), (u∗, v∗),α). The chain in (6) is
then a chain of equalities, and one obtains (�(·, 0))cc′ = �cc′(·, 0). �

Next we present the counterparts of Lemma 5.1, 5.2 and 5.3 from [16] that are
necessary for proving the converse duality statement.

Lemma 3.2: It holds

�((0, ·), (0, ·), ·)c′ ≤ inf
x∈X �c′(x, ·).

Proof: Fixing y ∈ Y , for all x ∈ X, ((x∗, u∗), (y∗, v∗)) ∈ X∗ × Y∗ and α ∈ R, we
have

c′(((x∗, u∗), (y∗, v∗),α), (x, y)) − �((x∗, u∗), (y∗, v∗),α) ≤ �c′(x, y).

Let x∗ = y∗ = 0. Then, for all x ∈ X, (u∗, v∗,α) ∈ Y∗ × Y∗ × R, c′((u∗, v∗,α), y)
− �((0, u∗), (0, v∗),α) ≤ �c′(x, y). Then, �((0, ·), (0, ·), ·)c′(y) ≤ infx∈X �c′

(x, y). �

We continue with aMoreau–Rockafellar-type result involving the c′-conjugate
of the function �((0, ·), (0, ·), ·) that is also of interest per se.

Lemma 3.3: �((0, ·), (0, ·), ·)c′ is the e-convex hull of infx∈X �c′(x, ·).

Proof: We have, for all (y∗, v∗,α) ∈ Y∗ × Y∗ × R,

( inf
x∈X �c′(x, ·))c(y∗, v∗,α) = sup

y∈Y

{
c(y, (y∗, v∗,α)) − inf

x∈X �c′(x, y)
}

= sup
(x,y)∈X×Y

{
c((x, y), ((0, y∗), (0, v∗),α)) − �c′(x, y)

}

= �c′c((0, y∗), (0, v∗),α) = �((0, y∗), (0, v∗),α),
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due to the e′-convexity of� and Theorem 2.1. Taking into account that, applying
again Theorem 2.1 it yields e − conv(infx∈X �c′(x, ·)) = (infx∈X �c′(x, ·))cc′ , we
conclude that e − conv(infx∈X �c′(x, ·)) = �((0, ·), (0, ·), ·)c′ . �

Lemma 3.4: If the e-convex hull of PrY×R(epi�c′) is functionally representable,
then epi� ((0, ·), (0, ·), ·)c′ is the e-convex hull of PrY×R(epi�c′).

Proof: First, we see that PrY×R(epi�c′) ⊂ epi�((0, ·), (0, ·), ·)c′ . Take any point
(y,β) ∈ PrY×R(epi�c′). It means that there exists x ∈ X such that�c′(x, y) ≤ β ,
and, for all (x∗, y∗), (u∗, v∗) ∈ X∗ × Y∗ and α ∈ R, we have

c′(((x∗, y∗), (u∗, v∗),α), (x, y)) − �((x∗, y∗), (u∗, v∗),α) ≤ β .

Take x∗ = u∗ = 0. Then, for all (y∗, v∗,α) ∈ Y∗ × Y∗ × R,

c′((y∗, v∗,α), y) − �((0, y∗), (0, v∗),α) ≤ β .

We have �((0, ·), (0, ·), ·)c′(y) ≤ β and (y,β) ∈ epi�((0, ·), (0, ·), ·)c′ . Hence,
e − convPrY×R(epi�c′) ⊂ epi�((0, ·), (0, ·), ·)c′ . (7)

On the other hand, let us observe that (y,β) ∈ epi�((0, ·), (0, ·), ·)c′ if and only
if

sup
(y∗,v∗,α)∈Y∗×Y∗×R

{
c′((y∗, v∗,α), y) − �((0, y∗), (0, v∗),α)

} ≤ β ,

or, recalling the definition of the infimum value function p,

sup
(y∗,v∗,α)∈Y∗×Y∗×R

{
c′((y∗, v∗,α), y) − pc(y∗, v∗,α)

} ≤ β ,

which means that pcc′(y) ≤ β . Thus, by Theorem 2.1 it follows

epi�((0, ·), (0, ·), ·)c′ = epi(e − convp). (8)

Now, let C = e − conv(PrY×R(epi�c′)). Taking any point (x, y,�c′(x, y)) ∈
epi�c′ , we have (y,�c′(x, y)) ∈ C and, for all λ ≥ 0, (y,�c′(x, y)) + λ(0, 1) =
(y,�c′(x, y) + λ) ∈ C. According to Lemma 2.2, (0, 1) ∈ recC, and since C is
functionally representable by assumption, due to Remark 2.1 we obtainC = epih
with h(x) = inf{a ∈ R : (x, a) ∈ C}. If we show that h = e − convp, we have,
using also (8), the chain

epi�((0, ·), (0, ·), ·)c′ = epi(e − convp) = epih = C

= e − conv(PrY×R(epi�c′)).

Take some y ∈ domh such that h(y) > −∞. Combining (7) with (8), we deduce
that C ⊆ epi(e − convp). Moreover, for all a ∈ R such that (y, a) ∈ C, we have
e − convp(y) ≤ a, so e − convp(y) ≤ h(y).
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In the case h(y) = −∞, there exists a sequence {ar} ⊂ R, ar < −1/r, for all
r ∈ N, verifying (y, ar) ∈ C, for all r ∈ R, hence (y, ar) ∈ epi(e − convp) and
e − convp(y) = −∞.

Finally, we show that for all y ∈ domp, h(y) ≤ p(y). Notice that from the
e-convexity of h and the definition of the e-convex hull of a function, we deduce
h(y) ≤ e − convp(y).

Let y ∈ domp, with p(y) > −∞, denote a = p(y). Then infx∈X �(x, y) = a,
and there exists a sequence {xr} ⊂ X such that limr→+∞ �(xr, y) = a and(

y,�(xr, y)
) ∈ PrY×R(epi�) ⊆ PrY×R(epi�c′) ⊆ C,

for all r ∈ N, then h(y) ≤ �(xr, y), for all r ∈ N, and h(y) ≤ a.
In the case p(y) = −∞, there exists a sequence {xr} ⊂ X such that�(xr, y) <

−1/r, for all r ∈ N, and, since (y,�(xr, y)) ∈ C, for all r ∈ N, we have h(y) ≤
�(xr, y), for all r ∈ N, concluding h(y) = −∞. �

We give the following sufficient condition to converse duality, assuming that
� is a proper and e-convex function,

PrY×R

(
epi�c′

)
is e − convex and functionally representable. (C5)

Remark 3.1: Althoughunder e-convexity of the perturbation function� it holds
�c′ = �, we kept in the formulation of (C5) the function �c′ , in order to have a
similar formulation to (C5).

Proposition 3.5: If � is proper and e-convex, the regularity condition (C5)
guarantees the converse duality between (GP) and (GD).

Proof: According to Lemma 3.4, under (C5) one has

PrY×R(epi�c′) = epi�((0, ·), (0, ·), ·)c′ . (9)

On the other hand, it is clear that

PrY×R(epi�c′) ⊂ epi inf
x∈X �c′(x, ·), (10)

since, taking (ȳ, β̄) ∈ PrY×R(epi�c′), there exists x ∈ X such that �c′(x̄, ȳ) ≤ β̄ ,
then infx∈X �c′(x, ȳ) ≤ β̄ . Now, we show that

inf
x∈X �c′(x, ·) = �((0, ·), (0, ·), ·)c′ . (11)

Due to Lemma 3.2, it is enough to show that, for all y ∈ Y , one has

inf
x∈X �c′(x, y) ≤ �((0, ·), (0, ·), ·)c′(y). (12)

Take any point y ∈ Y and denote a = �((0, ·), (0, ·), ·)c′(y) ∈ R. Then, accord-
ing to (9) it yields that (y, a) ∈ PrY×R(epi�c′). Hence, by (10), (y, a) ∈
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epi infx∈X �c′(x, ·) and (12) holds. Now, let γ = v(GPc), and let us observe that
if α ≤ 0, (y∗, v∗,α) /∈ dom(�(0, ·), (0, ·), ·), for any (y∗, v∗) ∈ Y∗ × Y∗. To show
the latter statement, it suffices to take any point x ∈ domF and check that it holds
c((x, 0), (0, y∗), (0, v∗),α) − �(x, 0) = +∞. Then

−γ = sup
(y∗,v∗)∈Y∗×Y∗,α>0

{ − �((0, y∗), (0, v∗),α)
}

= sup
(y∗,v∗)∈Y∗×Y∗,α>0

{
c(0, (y∗, v∗,α)) − �((0, y∗), (0, v∗),α)

}
= �((0, ·), (0, ·), ·))c′(0) = inf

x∈X �c′(x, 0),

where the last equality comes from (11). Since the perturbation function is e-
convex, �c′ = �, and we have −γ = infx∈X �(x, 0) = − supx∈X{−�(x, 0)} =
−v(GD) = −v(GPc). Moreover and due to (0,−γ ) ∈ epi�((0, ·), (0, ·), ·)c′ ,
equation (9) implies that there exists x̄ ∈ X such that �(x̄, 0) ≤ −γ and
−�(x̄, 0) ≥ v(GD), so (GD) is solvable. �

Next proposition states an alternative formulation for condition (C5).

Proposition 3.6: If � is proper and e-convex, and e − convPrY×R(epi�c′) is
functionally representable, then PrY×R(epi�c′) is e-convex if and only if

�((0, ·), (0, ·), ·)c′ = min
x∈X �c′(x, ·).

Proof: According to Lemma 3.4 and taking also into consideration Lemma 3.2,
PrY×R(epi�c′) is e-convex if and only if PrY×R(epi�c′) = epi�((0, ·), (0, ·), ·)c′ .
In particular, this means that for all y ∈ dom�((0, ·), (0, ·), ·)c′ , there exists x̄ ∈ X
such that �c′(x̄, y) = �((0, ·), (0, ·), ·)c′(y). By Lemma 3.2, this is equivalent to
�c′(x̄, y) = minx∈X �c′(x, y) = �((0, ·), (0, ·), ·)c′(y). �

The following corollary arises from Lemma 3.2 and Proposition 3.6.

Corollary 3.7: It always holds
(
inf
x∈X �(x, ·)

)cc′

≤ inf
x∈X �cc′(x, ·).

Moreover, if � is proper and e-convex, and (C5) holds, then
(
inf
x∈X �(x, ·)

)cc′

= min
x∈X �cc′(x, ·).

Remark 3.2: Despite the similarity between converse duality and strong duality,
see for instance [18], the property of being functionally representable makes a
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difference between them. It is totally necessary since the e-convex envelope of a
given epigraph is not, in general, an epigraph anymore.

Example 3.8: Let us consider the function f, defined on R:

f (x) =

⎧⎪⎨
⎪⎩

+∞ if x < 0,
1 if x = 0,
x2 if x > 0.

It is clear that

epi f = {
(x,α) ∈ R

2 : x > 0,α ≥ x2
} ∪ ({0} × [1,+∞[)

and

e − conv epi f = {
(x,α) ∈ R

2 : x > 0,α ≥ x2
} ∪ ({0}×]0,+∞[),

which is not an epigraph.

4. C-subdifferentiability

4.1. New results and application to total duality

The subdifferentiability of a function at a point associated with the c-conjugation
scheme was considered in [5] as a particular case of the notion of c-
subdifferentiability introduced in [11, p. 246]. We also denote by ∂ the classical
(convex) subdifferential.

Definition 4.1: Let f : X → R̄ be a function. A vector (x∗, u∗,α) ∈ W is a c-
subgradient of f at x0 ∈ X if f (x0) ∈ R, 〈x0, u∗〉 < α and, for all x ∈ X,

f (x) − f (x0) ≥ c(x, (x∗, u∗,α)) − c(x0, (x∗, u∗,α)).

The set of all the c-subgradients of f at x0 is denoted by ∂cf (x0) and is called the
c-subdifferential set of f at x0. In the case f (x0) /∈ R, it is set ∂cf (x0) = ∅.

The notion of c′-subdifferentiability that we introduce comes also from [11, p.
246].

Definition 4.2: Let g : W → R̄ be a function. Then, x ∈ X is a c′-subgradient of
g at (x∗

0, u
∗
0,α0) ∈ W if g(x) ∈ R, 〈x, u∗

0〉 < α and, for all (x∗, u∗,α) ∈ W,

g(x∗, u∗,α) − g(x∗
0, u

∗
0,α0) ≥ c′((x∗, u∗,α), x) − c′((x∗

0, u
∗
0,α0), x).

The set of all the c′-subgradients of g at (x∗
0, u

∗
0,α0) is denoted by ∂c′g(x∗

0, u
∗
0,α0).

In the case g(x∗
0, u

∗
0,α0) /∈ R, it is set ∂c′g(x∗

0, u
∗
0,α0) = ∅.
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We state now the counterparts of [2, Prop. 5.1 (Ch. I)] for c-subdifferentials
and c′-subdifferentials, particularizing Proposition 6.3 in [11].

Lemma 4.3: Let f : X → R̄ be a function and x0 ∈ domf . Then (x∗, u∗,α) ∈
∂cf (x0) if and only if 〈x0, u∗〉 < α and f (x0) + f c(x∗, u∗,α) = c(x0, (x∗, u∗,α)).

Lemma 4.4: Let g : W → R̄ be a function and (x∗
0, u

∗
0,α0) ∈ domg. Then x ∈

∂c′g(x∗
0, u

∗
0,α0) if and only if

〈
x, u∗

0
〉
< α0 and

g(x∗
0, u

∗
0,α0) + gc

′
(x) = c′((x∗

0, u
∗
0,α0), x). (13)

Next is the counterpart to [1, Cor. 23.5.1] via the c-conjugation scheme.

Proposition 4.5: Let f : X → R̄ and x ∈ domf . If (x∗, u∗,α) ∈ ∂cf (x) then x ∈
∂c′ f c(x∗, u∗,α) and the converse statement holds if f is e-convex.

Proof: Let (x∗, u∗,α) ∈ ∂cf (x). By Lemma 4.3, 〈x, u∗〉 < α and,

f (x) + f c(x∗, u∗,α) = c(x0, (x∗, u∗,α)). (14)

As c(x, (x∗, u∗,α)) = c′((x∗, u∗,α), x) and (f c)c′ ≤ f , we get

(f c)c
′
(x) + f c(x∗, u∗,α) ≤ c′((x∗, u∗,α), x) (15)

which means that x ∈ ∂c′ f c(x∗
0, v

∗
0,α0) according to Lemma 4.4. Now, in the case

f is e-convex, we have (f c)c′ = f , hence (14) and (15) are equivalent. �

Remark 4.1: As a consequence of [11, Prop.6.3], if f is e-convex, (x∗, u∗,α) ∈
∂cf (x) if and only if x ∈ ∂c′ f c(x∗, u∗,α). In Proposition 4.5 the e-convexity of f is
not necessary in one sense of the equivalence.

We apply these results to total duality for (GP) − (GDc), that is

min
x∈X �(x, 0) = max

y∗,v∗∈X,α>0
{−�c(((0, y∗), 0, v∗),α)},

i.e. the situation when both the primal and the dual have optimal solutions and
their optimal values coincide. In the classical setting (see [2]), total duality for
(GP) − (GD) and finiteness of both optimal values amounts to the existence
of a point (x̄, ȳ∗) ∈ X × Y∗ satisfying (0, ȳ∗) ∈ ∂�(x̄, 0), or, equivalently, see [1,
Th. 23.5], �(x̄, 0) + �∗(0, ȳ∗) = 0, being, in that case, x̄ an optimal solution of
(GP) and ȳ∗ an optimal solution of (GD).

Proposition 4.6: Let � : X × Y → R̄, x̄ ∈ X and (ȳ∗, v̄∗, ᾱ) ∈ Y∗ × Y∗ × R.
Then ((0, ȳ∗), (0, v̄∗), ᾱ) ∈ ∂c�(x̄, 0) if and only if x̄ is an optimal solution to
(GP), (ȳ∗, v̄∗, ᾱ) a solution to (GDc) and v(GP) = v(GDc) ∈ R.
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Proof: If ((0, ū∗), (0, v̄∗), ᾱ) ∈ ∂c�(x̄, 0), then an application of Lemma 4.3
implies �(x̄, 0) +�c((0, ȳ∗), (0, v̄∗), ᾱ) = 0, with ᾱ > 0. Further

v(GP) ≤ �(x̄, 0) = −�c((0, ȳ∗), (0, v̄∗), ᾱ) ≤ v(GDc) ≤ v(GP), (16)

in such a way that v(GP) = v(GDc) ∈ R and both problems are solvable. Assum-
ing (16) true, we get �(x̄, 0) + �c((0, ȳ∗), (0, v̄∗), ᾱ) = 0 and, as (ȳ∗, v̄∗, ᾱ)

is an optimal solution of (GDc), it holds ᾱ > 0. Hence, by Lemma 4.3,
((0, ȳ∗), (0, v̄∗), ᾱ) ∈ ∂c�(x̄, 0). �

Remark 4.2: Notice that for � e-convex, a necessary and sufficient condition
for total duality for (GP) − (GDc) is (by Propositions 4.5 and 4.6) the existence
of x̄ ∈ X, (ȳ∗, v̄∗, ᾱ) ∈ Y∗ × Y∗ × R satisfying (x̄, 0) ∈ ∂c′�(ȳ∗, v̄∗, ᾱ).

4.2. ε-c-subdifferentiability

Next we extend the characterizations of ε-subdifferential formulae for convex
functions from [22] to the current e-convex setting. First, recall the definition of
the ε-c-subdifferential of a function f : X → R̄ from [15, Def. 4].

Definition 4.7: A vector (x∗, u∗,α) ∈ W is an ε-c-subgradient of f at x̄ ∈ X if
f (x̄) ∈ R, 〈x̄, u∗〉 < α and, for all x ∈ X,

f (x) − f (x̄) ≥ c(x, (x∗, u∗,α)) − c(x̄, (x∗, u∗,α)) − ε. (17)

The set of all the ε-c-subgradients of f at x̄ is denoted by ∂c,εf (x̄) and is called the
ε-c-subdifferential set of f at x̄. If f (x̄) /∈ R, take ∂c,εf (x̄) = ∅.

Note that (17) amounts to f (x0) + f c(x∗, u∗,α) ≤ c(x0, (x∗, u∗,α)) + ε.
In [22, Th. 3.1] the ε-subdifferential of the objective function of (GP) is charac-

terized bymeans of the ε-subdifferential of the considered perturbation function
via a lsc regularity condition. Its e-convex counterpart follows.

Theorem 4.8: Let � be e-convex. For all ε ≥ 0 and all x ∈ X,

∂c,ε�(·, 0)(x) = ∩η>0PrX∗×X∗×R(∂c,ε+η�(x, 0))

holds if and only if the function infy∗,v∗∈Y∗ �c((·, y∗), (·, v∗), ·) is e′-convex.

Proof: �(·, 0)c is the e′-convex hull of infy∗,v∗∈Y∗ �c((·, y∗), (·, v∗), ·), according
to [16, Lem. 5.2]. Consequently, the fact that infy∗,v∗∈Y∗ �c((·, y∗), (·, v∗), ·) is
e′-convex can be equivalently characterized by the inclusion epi((�(·, 0))c) ⊆
epi(infy∗,v∗∈Y∗ �c((·, y∗), (·, v∗), ·)), too. Note also that one has

∂c,ε�(·, 0)(x) ⊇ ∩η>0PrX∗×X∗×R(∂c,ε+η�(x, 0))

even without taking � to be e-convex.
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In first place, take an arbitrary pair ((x∗, u∗,α), r) ∈ epi(�(·, 0)c), i.e.
�(·, 0)c(x∗, u∗,α) ≤ r. Let x ∈ dom(�(·, 0)) and ε = r + �(x, 0) − c(x, (x∗, u∗,
α)) ≥ 0. Then (�(·, 0))c(x∗, u∗,α) + �(x, 0) ≤ c(x, (x∗, u∗,α)) + ε, i.e. (x∗, u∗,
α) ∈ ∂c,ε�(·, 0)(x). Using the hypothesis, whenever η > 0 there exist y∗

η, v∗
η ∈ Y∗

for which ((x∗, y∗
η), (u∗, v∗

η),α) ∈ ∂c,ε+η�(x, 0). Fixing η > 0, we get

�(x, 0) + �c((x∗, y∗
η), (u

∗, v∗
η),α) ≤ c̄((x, 0), ((x∗, y∗

η), (u
∗, v∗

η),α)) + ε + η,

followed by

∗�(x, 0) + inf
y∗,v∗∈Y∗ �c((x∗, u∗), (y∗, v∗),α)

≤ c(x, (x∗, u∗,α)) + ε + η, ∀η > 0.

Letting η tend towards 0 and taking into consideration the value of ε, it follows

�(x, 0) + inf
y∗,v∗∈Y∗ �c((x∗, u∗), (y∗, v∗),α) ≤ r + �(x, 0),

i.e.((x∗, u∗,α), r) ∈ epi(infy∗,v∗∈Y∗ �c((·, y∗), (·, v∗), ·)).
To show the converse statement, let ε ≥ 0 and x ∈ X. If �(x, 0) = +∞ one

has ∂c,ε�(·, 0)(x) = ∂c,ε+η�(x, 0) = ∅ for all η > 0.
Assume further that �(x, 0) ∈ R. For ((x∗, u∗,α), r) ∈ ∂c,ε�(·, 0)(x), one has

�(·, 0)c(x∗, u∗,α) + �(x, 0) ≤ c(x, (x∗, u∗,α)) + ε. Since the hypothesis means
that �(·, 0)c = infy∗,v∗∈Y∗ �c((·, y∗), (·, v∗), ·), one obtains

�(x, 0) + inf
y∗,v∗∈Y∗ �c((x∗, y∗), (u∗, v∗),α) ≤ c(x, (x∗, u∗,α)) + ε.

Moreover, fixing η > 0 there exist y∗
η, v∗

η ∈ Y∗ such that

�(x, 0) + �c((x∗, y∗
η), (u

∗, v∗
η),α) ≤ c̄((x, 0), ((x∗, y∗

η), (u
∗, v∗

η),α)) + ε + η,

i.e. ((x∗, y∗
η), (u∗, v∗

η),α) ∈ ∂c,ε+η�(x, 0), which yields the conclusion. �

A simpler formula for the ε-subdifferential of the objective function of (GP)

by means of the ε-subdifferential of the considered perturbation function can
be found in [22, Th. 4.1], under a stronger regularity condition. Its e-convex
counterpart follows, extending [15, Th. 11] for general optimization problems.

Theorem 4.9: Let � be e-convex. For all ε ≥ 0 and all x ∈ X,

∂c,ε�(·, 0)(x) = PrW(∂c,ε�(x, 0))

holds if and only if (C5) is fulfilled.

Proof: By [16, Lem. 5.3], the condition (C5) is equivalent to the inclusion
epi((�(·, 0))c) ⊆ PrWepi(�c) (since the opposite one is always valid). Note also
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that ∂c,ε�(·, 0)(x) ⊇ PrW(∂c,ε�(x, 0)) in general. To show the direct statement,
take some ((x∗, u∗,α), r) ∈ epi(�(·, 0)c) and x ∈ dom(�(·, 0)), and let ε = r +
�(x, 0) − c(x, (x∗, u∗,α)) ≥ 0. Analogously to the proof of Theorem 4.8, one
obtains y∗

ε , v∗
ε ∈ Y∗ for which ((x∗, y∗

ε), (u∗, v∗
ε), α) ∈ ∂c,ε�(x, 0), i.e.

�(x, 0) + �c((x∗, y∗
ε), (u

∗, v∗
ε),α) ≤ c((x, 0), ((x∗, y∗

ε), (u
∗, v∗

ε),α)) + ε.

Employing the value of ε, one gets (((x∗, y∗
ε), (u∗, v∗

ε),α, r) ∈ epi�c, which yields
(C5).

Now, let ε ≥ 0 and x ∈ X. If �(x, 0) = +∞ one has ∂c,ε�(·, 0)(x) =
∂c,ε�(x, 0) = ∅. Let further �(x, 0) ∈ R. For ((x∗, u∗,α), r) ∈ ∂c,ε�(·, 0)(x),
one has (�(·, 0))c(x∗, u∗,α) + �(x, 0) ≤ c(x, (x∗, u∗,α)) + ε. By [16, Prop. 5.4],
(C5) implies �(·, 0)c = miny∗,v∗∈Y∗ �c((·, y∗), (·, v∗), ·). Consequently for every
(x∗, u∗,α) ∈ W there are some y∗, v∗ ∈ Y∗ such that

�c((x∗, y∗), (u∗, v∗),α) + �(x, 0) ≤ c̄((x, 0), (x∗, y∗), (u∗, v∗),α) + ε,

i.e. ((x∗, y∗), (u∗, v∗),α) ∈ ∂c,ε�(x, 0), which yields the conclusion. �

5. Saddle-point theory on e-convex problems

In the classical setting there exists a connection between saddle-point theory and
total duality. This relation comes due to the fact that saddle-points can be char-
acterized in terms of optimal solutions for the primal and the dual problem – see
[2, Sect. 3.3]. In the following we extend the definition of Lagrangian function
and saddle-point theory into the application of the c-conjugation scheme. The
following definitions are the counterpart of Definitions 3.1 and 3.2 in [2], respec-
tively. For more on Lagrangian functions in the classical (convex) case we refer
the reader to [27, Sect. 3.3].

Definition 5.1: The function L : X × (Y∗ × Y∗ × R++) → R̄ defined by

L(x, (y∗, v∗,α)) = inf
y∈ Yx

{�(x, y) − c(y, (y∗, v∗,α))}

whereYx = dom�(x, ·), for each x ∈ X, is called the c-Lagrangian of the problem
(GP) relative to �.

Remark 5.1: In [11, Sec.3], Martínez-Legaz introduced a Lagrangian function
expressed in terms of a general coupling function and connected with duality
theory. The Lagrangian function from Definition 5.1 can be seen as a particular
case, with u0 = 0.
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In the classical setting, the Lagrangian function of (GP) relative to �, L : X ×
Y∗ → R̄,

L(x, y∗) = inf
y∈Y{�(x, y) − 〈

y, y∗〉},
satisfies that Lx : Y∗ → R̄, defined for all x ∈ X by Lx(y∗) = L(x, y∗), is a concave
and upper semicontinuous function. Nevertheless, the function Ly∗ : X → R̄

given by Ly∗(x) = L(x, y∗) for all y∗ ∈ Y∗ is convex when � is convex – see
[2, Sect. 3.3]. In our context, the function Lx : Y∗ × Y∗ × R++ → R̄, which is
defined for all x ∈ X by

Lx(y∗, v∗,α) = L(x, (y∗, v∗,α)),

verifies that −Lx = �(x, ·)c and it is e′-convex. However, we cannot guarantee
that for all (y∗, v∗,α) ∈ Y∗ × Y∗ × R++, the function L(y∗,v∗,α) : X → R̄ given
by L(y∗,v∗,α)(x) = L(x, (y∗, v∗,α)) = −�(x, ·)c(y∗, v∗,α) is convex when � is so.

Example 5.2: Let us consider (P) infx∈R{f (x) + g(Ax)}, where f : R → R, g :
R → R̄ and A : R → R are defined as

f (x) = x, g(y) = δ]−∞,0](y),A(z) = z,

with the perturbation function �(x, y) = f (x) + g(Ax + y). Take the point
(y∗, v∗,α) = (1, 1, 1) ∈ R

3 and let us calculate L(1,1,1) : R → R̄.

L(1,1,1)(x) = inf
y≤−x

{x − c(y, (1, 1, 1))} =
{
infy≤−x{x − y} if x > −1,
−∞ otherwise.

Taking into account that, if x>−1 and y ≤ −x then x − y ≥ x − 1 > −2, we
conclude

L(1,1,1)(x) =
{

−2 if x > −1,
−∞ otherwise,

which is not convex.

Definition 5.3: A point (x̄, (ȳ∗, v̄∗, ᾱ)) ∈ X × (Y∗ × Y∗ × R++) is called a
saddle-point of L if

L(x̄, (y∗, v∗,α)) ≤ L(x̄, (ȳ∗, v̄∗, ᾱ)) ≤ L(x, (ȳ∗, v̄∗, ᾱ)),

holds for all x ∈ X and (y∗, v∗,α) ∈ Y∗ × Y∗ × R++.

The c-Lagrangian of the problem (GP) relative to � is related to both optimal
values in the following way (see [11, Sec.3]).
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Proposition 5.4: One always has

v(GDc) = sup
y∗,v∗∈Y∗

α>0

inf
x∈X L(x, (y

∗, v∗,α)).

If �(x, ·) is e-convex at 0, for all x ∈ X, it also holds

v(GP) = inf
x∈X sup

y∗,v∗∈Y∗
α>0

L(x, (y∗, v∗,α)).

Proposition 5.5: Let us assume that �(x, ·) is e-convex at 0, for all x ∈ X. Then,
(x̄, (ȳ∗, v̄∗, ᾱ)) ∈ X × (Y∗ × Y∗ × R++) is a saddle-point of L if and only if x̄ is a
optimal solution of (GP), (ȳ∗, v̄∗, ᾱ) is a optimal solution of (GDc) and v(GP) =
v(GDc) ∈ R.

Proof: Let (x̄, (ȳ∗, v̄∗, ᾱ)) ∈ X × (Y∗ × Y∗ × R++) be a saddle-point of L. From
[11, Sec.3] it can be obtained

− �c((0, y∗), (0, v∗),α) = inf
x∈X L(x, (y

∗, v∗,α)) (18)

and

�(x, 0) = sup
y∗,v∗∈Y∗

α>0

L(x, (y∗, v∗,α)) (19)

Taking into account (18) and (19), we have

−�c((0, ȳ∗), (0, v̄∗), ᾱ)) = inf
x∈X L(x, (ȳ

∗, v̄∗, ᾱ)) = L(x̄, (ȳ∗, v̄∗, ᾱ))

= sup
y∗,v∗∈Y∗,α>0

L(x̄, (y∗, v∗,α)) = �(x̄, 0).

Then, in particular �(x̄, 0) + �c((0, ȳ∗), (0, v̄∗), ᾱ) ≤ 0 and, applying Lemma
4.3, we have that ((0, ȳ∗), (0, v̄∗), ᾱ)∈ ∂c�(x̄, 0), which finishes the proof in virtue
of Proposition 4.6.

For the converse statement, since v(GP) = �(x̄, 0), v(GDc) = −�c((0, ȳ∗),
(0, v̄∗), ᾱ) and v(GP) = v(GDc) ∈ R we obtain, using (18) and (19) that

L(x̄, (y∗, v∗,α)) ≤ �(x̄, 0) = −�c((0, ȳ∗), (0, v̄∗), ᾱ) ≤ L(x, (ȳ∗, v̄∗, ᾱ)).

Hence, �(x̄, 0) = L(x̄, (ȳ∗, v̄∗, ᾱ)) and (x̄, (ȳ∗, v̄∗, ᾱ)) is a saddle-point of L. �

Remark 5.2: In a more general framework, Penot and Rubinov in [28] related
the Lagrangian and the pertubational approach (or parametrization approach, as
it is named in that paper) to duality for optimization problems. In order to allow a
more comprehensive comparison between their work and ours, we have adapted
their notation to the one used in this work. Given a set Z, a Lagrangian for (GP) is
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a function L : X × Z → R̄whichmust verify that F(·) = supz∈Z L(·, z), in which
case, the optimal value of (GP) satisfies

v(GP) = inf
x∈X supz∈Z

L(x, z).

Note that no convexity or topological assumptions were imposed on the
involved functions in this case. Defining a dual functional for (GP), as dL(z) =
infx∈X L(x, z), for every z ∈ Z, a dual problem for (GP) is

(GDL) sup
z∈Z

dL(z),

and for this primal-dual pair of optimization problems there holds weak duality.
According to [28, Prop. 1 (Sect. 3.3)], if � : X × Y → R̄ is a perturbation func-
tion for (GP), and, for all x ∈ X, �(x, ·) is Hc-convex at 0 (see [28, Sect. 2] for a
definition), then

L(x, z) = inf
y∈Y{�(x, y) − c(y, z)} (20)

is a Lagrangian for (GP). Here c : Y × Z → R̄ is any coupling function. As it can
be observed, the function L in Definition 5.1 is not the same as (20): if we take the
infimum on Y, the function in Definition 5.1 is always −∞, except perhaps for
points (x̄, (0, 0, ᾱ)) ∈ X × (Y∗ × Y∗ × R++), because of the special structure of
the coupling functions we considered.

6. Final remarks, conclusions and future work

In this paper we present new results regarding evenly convex (e-convex) func-
tions, in particular converse and total duality statements for e-convex problems
that extend their counterparts from the (classical) convex case. Other results can
be generalized to the current setting as well, for instance the ε-duality statements
from [29], however the proofs work straightforwardly and present no difficulty
so we opted not to include them here. On the other hand, some results known
at the moment for proper, convex and lower semicontinuous functions, such as
the maximal monotonicity of their subdifferentials or the fact that their proximal
point operators are single valued, do not hold in general for e-convex functions
– check for instance the function considered in [19, Ex. 2.1].

We extend in this article the notion of converse duality from the convex
setting to e-convex optimization problems, providing a sufficient closedness-
type regularity condition for it and an alternative formulation using the infi-
mum value function. In order to prove the mentioned results we introduced
the notion of functionally representable functions and we also gave a new
Moreau–Rockafellar type result for e′-convex functions. We introduced the con-
cept of the c′-subdifferential of a function, providing novel characterizations of
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the elements of c-subdifferentials and c′-subdifferentials, respectively, and study-
ing how total duality is connected with them. Formulae for the c-subdifferential
and biconjugate of the objective function of a given general optimization prob-
lem are provided, too. On the other hand, we extend the definition of the classical
Lagrangian towards the e-convex setting by means of the c-conjugation scheme
and relate the corresponding saddle-points to total duality. The results for gen-
eral optimization problems can be specialized for constrained and unconstrained
optimization problems as well.

We have restricted ourselves to closedness type regularity conditions, but
taking into consideration [18, Sect. 3] one can alternatively provide interiority
type ones to the same end as well. Using the connection between the c- and c′-
subdifferentials and the notion of c-conjugation, other paths can be followed
along this direction. On the other hand, the investigations from [30] on sub-
differentials of e-convex functions can be continued in the vein of this paper,
too. Last but not least other properties of proper, convex and lower semicontinu-
ous functions and formulae involving them could be extendable to the e-convex
setting.
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