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ABSTRACT
Despite the central role of proofs in mathematics, research often
shows that school textbooks offer limited support for the teaching
and learning of proof-related reasoning. This study contributes to
this field of research by studying Swedish and Finnish upper sec-
ondary textbooks on logarithms and combinatorics. Justifications
in expository sections are analysed and students’ tasks are catego-
rized according to the type and nature of reasoning they require.
The findings imply that opportunities to learn proof-related reason-
ing are few, and are more oriented towards deductive reasoning in
Finnish textbooks and towards empirical reasoning and conjecturing
in Swedish textbooks. The results are discussed in relation to simi-
lar studies from both Scandinavian and United States contexts, and
address future research and development of the theoretical framing
of proof-related reasoning.
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1. Introduction

Proofs are central components of mathematics. They are the agreed-upon way to settle
questions about mathematical truth and ‘the facet of mathematical activity that character-
izes and distinguishes the subject ofmathematics’ (Baylis, 1983, p. 409). Though few school
curricula emphasize proofs, there is a growing consensus that reasoning and proving (in
a broad sense) should be part of schooling in all grades and all mathematics topics (e.g.
National Council of Teachers of Mathematics, 2000, 2009; Stylianides & Stylianides, 2017).
However, it is well documented that students at all levels (including university e.g. Hemmi,
2008; Weber, 2001) have difficulties with proofs, especially in understanding the role of
examples, counterexamples, and specific cases (e.g. Almeida, 2001; Harel & Sowder, 2007;
Sevimli, 2018; Stylianides, Stylianides &Weber, 2017).

As textbooks are used in classrooms all over the world, researchers’ interest has
increased in how they treat proofs and proving. Textbooks have been pointed out as one
possible factor behind the marginal place of proof in mathematics classrooms (Stylianides,
Stylianides & Weber, 2017). The body of research is growing (e.g. Bergwall & Hemmi,
2017; Davis, Smith, Roy, & Bilgic, 2014; Otten, Gilbertson, Males, & Clark, 2014; Stacey
& Vincent, 2009; Stylianides, 2009; Thompson, Senk, & Johnson, 2012) but limited, and
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still strives to describe the current state of the art (Stylianides, 2014). General findings are
that textbooks offer few opportunities to learn proofs, but there are exceptions and varia-
tion within and between countries, textbook series, and mathematical topics. Even when
opportunities are few, they differ in character.

Terminology and analytical frameworks1 differ among researchers, but a common
methodological approach is to study textbook explanations and/or reasoning activities in
students’ tasks. In a study of a reform-oriented middle-school (Grades 6–8) curriculum
programme in the United States, Stylianides (2009) found that 40% of the tasks included
reasoning-and-proving. Few studies report such high figures. According to Glasnovic
Gracin (2018), argumentation and reasoning activities are not present at all in Croatian
(Grades 6–8) mathematics textbooks, except in chapters on triangle similarity. Regard-
ing textbook explanations, Stacey and Vincent (2009) found that in Australian Grade
8 textbooks, slightly more than half of the explanations were deductive, with variation
among topics from 17% to 100%. Thompson et al. (2012) compared textbook material
on exponents, logarithms, and polynomials from 20 United States upper secondary school
textbooks (reform-oriented as well as traditional) for three different courses (Algebra 1,
Algebra 2, and Precalculus). They found that from Algebra 1 to Precalculus, there was a
slight increase in proof-related tasks, tasks requiring reasoning about a general case, and
tasks about developing and evaluating arguments. On average, though, only 6% of the text-
book tasks involved proof-related reasoning. In expository sections, approximately half of
the mathematical properties addressed were justified, half of them with general proofs. In
United States textbooks on geometry, Otten et al. (2014) found that the percentage of jus-
tified properties was around 75%, with general proofs in approximately 35% of the cases.
Twenty-five per cent of the tasks were proof-related.

Bergwall and Hemmi (2017) compared Swedish and Finnish upper secondary school
textbooks on primitive functions and definite integrals. In both countries, around 50% of
the statements in expository sections were justified. The justifications were almost always
general proofs in the Finnish books, whereas the Swedish books mostly based their justi-
fications on specific cases. Also, the mathematical structure was emphasized more in the
Finnish books, with clear labelling of statements and proofs. The share of proof-related
tasks was low in all textbooks (between 7% and 18%). In the Finnish textbooks, most of
them asked the student to prove or show something. Such proving tasks existed in the
Swedish books as well, but tasks about investigating the truth of a given statement were as
common as those about arguing for a certain statement. Tasks about making a conjecture
or evaluating an argument were also more common in the Swedish books. In summary,
the Finnish textbooks offered more opportunities for formal deductive reasoning about
general cases, while the Swedish textbooks placed more emphasis on conjecturing and
inductive reasoning.

Comparisons of different countries highlight and contrast differing educational tradi-
tions regarding proofs and proving, and Sweden and Finland provide interesting cases in
several respects. They are neighbouring countries with a common history, and Finland
has a Swedish-speaking minority. However, several studies indicate that many aspects of
mathematics education differ (e.g. Bergwall & Hemmi, 2017; Knutsson, Hemmi, Bergwall,
& Ryve (2013); Hemmi & Ryve, 2015; Hemmi, Lepik, & Viholainen, 2013), and Finnish
students have outperformed Swedish (and most Western countries’) students in many
international evaluations (TIMSS and PISA, among others). In the present paper, Swedish
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and Finnish upper secondary mathematics educations are further investigated through an
analysis of textbook material on logarithms and combinatorics. Data on justifications in
expository sections, and on the type and nature of reasoning in students’ tasks, are com-
bined with similar data from Bergwall andHemmi (2017) to answer the following research
question: What characterizes opportunities to learn proof-related reasoning offered by
Swedish and Finnish upper secondary textbooks?

2. Method

2.1. Mathematics topics

In school mathematics, proofs have often been confined to high school geometry. This
led Thompson et al. (2012) to investigate other topics: exponents, logarithms and poly-
nomials. Bergwall and Hemmi (2017) followed with a similar study of integral cal-
culus. The present study aims to widen and deepen the results of Thompson et al.
(2012) and Bergwall and Hemmi (2017) by focusing on logarithms and combinatorics.
Logarithms were chosen for comparison with the results from the United States con-
text provided by Thompson et al. (2012), and combinatorics was chosen to examine
whether proof-related reasoning is handled differently depending on the character of
the topic. Compared to definite integrals (one of the topics of (Blinded 1) Bergwall &
Hemmi, 2017), the theoretical foundation of combinatorics is much simpler: the for-
mer requires ε − δ formalism, the latter only the addition and multiplication principles.
Also, combinatorics can easily be related to everyday situations. Taken together, an anal-
ysis of textbook sections on logarithms and combinatorics complements earlier studies
and has the potential to broaden the picture and provide data for different kinds of
comparisons.

2.2. Swedish and Finnish curricula

Swedish and Finnish upper secondary schools are course-based, with national steering
documents2 prescribing the content and learning outcomes in general terms. Here, we
briefly describe the courses for students preparing for higher studies in science and tech-
nology. For a detailed analysis of proof in Swedish and Finnish steering documents, see
Hemmi et al. (2013).

In Sweden there are five mathematics courses. Logarithms are introduced in the
second course and combinatorics in the fifth. In the Finnish setting there are 13
courses. Combinatorics is found in the fifth and logarithms are introduced in the eighth
course.

The general objectives in the Swedish steering documents state that students should be
given opportunities to develop their abilities to follow, conduct and assess mathematical
reasoning. Proofs are explicit components of all courses but one, for instance in relation
to trigonometry, derivatives, and number theory (Swedish National Agency for Education,
2011). The general objectives in the Finnish steering documents state that students should
‘learn to appreciate precision of presentation and clarity of argumentation’, ‘learn to per-
ceive mathematical knowledge as a logical system’, and ‘become accustomed to making
assumptions, examining their validity, justifying their reasoning and assessing the validity
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of their arguments and the generalizability of the results’ (Finnish National Board of Edu-
cation, 2004). Proof is however a core content in a non-mandatory specialization course
in number theory and logic. Neither country’s objectives contain explicit statements about
proofs in relation to logarithms and combinatorics.

2.3. Swedish and Finnish textbooks

Textbooks are frequently used in both school systems (Boesen et al., 2014; Joutsenlahti
& Vainionpää, 2010), with publishers providing textbooks from a free market without
state control or certification. For the present study, textbooks from the series Matem-
atik 5000 (Alfredsson, Bråting, Erixon, & Heikne, 2011, 2013), MatematikOrigo (Szabo,
Larson, Viklund, Dufåker, & Marklund, 2012, 2013) and Ellips (Kontkanen, Lehtonen,
Luosto, & Westermark, 2007; Kontkanen, Lehtonen, Luosto, Savolainen, & Westermark,
2007) were chosen. These series are referred to as Sw1, Sw2 and Fi1, respectively. Sw1
has a dominant market position in Sweden, Sw2 being its primary competitor. Fi1 has
been the only Finnish material translated to Swedish for Finland’s Swedish-speaking stu-
dents, while its Finnish version is one of two series that dominate the market for Finnish
speakers. Our estimate is that Sw1, Sw2 and Fi1 reflect what around 90% of Swedish- (and
many Finnish-) speaking students have used in recent decades in preparation for higher
studies.

All textbooks have expository sections, where the authors present new concepts, for-
mulate and justify statements, and present worked examples, mixed with students’ exercise
sets. Chapters usually end with sets of mixed problems. In the Swedish books the chapters
begin with introductory problem-solving activities (whereby students can discover some
of the chapter’s central ideas) and usually end with spreads offering historical notes, group
activities, and sets of discussion questions or true/false questions. Also, the Swedish books
frequently have subsections on applications. The Finnish books often contain additional,
and more advanced, material in special sections at the end of the books.

Regarding proof, all textbook series contain sections explicitly devoted to proofs and
proving in correspondence with the steering documents, but not within chapters on
logarithms and combinatorics.

2.4. Data sample

Since logarithms and combinatorics belong to different courses, the data sample consists of
textbook material from two books from each textbook series. Sections on logarithms and
combinatorics were identified by reading the content pages. All passages and tasks related
to these topics and placed within the identified sections were included.

All textbooks introduce logarithms together with exponential equations. Sections on
powers and exponents that precede the introduction of logarithms have not been included,
and neither have subsections on the derivative of the logarithm function.

Regarding combinatorics, therewere subsections in the Swedish books addressing prob-
ability, the binomial theorem, and Pascal’s triangle. In such subsections, onlymaterials and
tasks involving combinatorial reasoning have been included.

The quantities of analysed textbook material are summarized in Table 1.



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 5

Table 1. Distribution of analysed textbook material.

Textbook series Justifications Worked examples Students’ tasks

Sw1 9 43 342
Sw2 9 41 427
Fi1 15 44 223
Total 33 128 992

2.5. Analytic approach

In the following subsections, we discuss the concept of proof-related reasoning and dis-
cuss when a textbook can be said to have provided an opportunity to learn proof-related
reasoning. This discussion forms the basis for the analytic frameworks and procedures.

2.5.1. Definitions related to proof-related reasoning
Mathematical proofs vary in form and serve different purposes (e.g. De Villiers, 1990),
but always outline how a certain mathematical property is a logical consequence of other
known (or assumed) properties. Such processes to settle questions of doubt are conceptu-
alized as deductive proof schemes (Harel & Sowder, 1998). In contrast, the external and
empirical proof schemes (Harel & Sowder, 1998, 2007), often seen among mathematics
learners, refer to whether conviction about truth comes from external factors or is based
on empirical data and specific cases. In the literature, empirical proof schemes are also
called empirical responses (Bell, 1976) and pragmatic justifications (Balacheff, 1988).

In this paper, any empirical or deductive argument meant to convince the reader of the
truth of a mathematical statement will be called a justification. When evaluating justifi-
cations for, or produced by, school students, one cannot expect justifications to meet the
standards of rigour, precision and formalism of mathematicians’ proofs; the students’ prior
knowledge of mathematics and mathematical reasoning must be taken into consideration.
To be able to talk about proofs at all levels of schooling, we therefore follow the notions of
Stylianides (2007), and consider a justification to be a proof if it is a connected sequence of
assertionswith the following characteristics: (1) it builds on statements that can be assumed
to be accepted by the classroom community, (2) it uses valid forms of reasoning that can
be assumed to be known to the classroom community, and (3) it is communicated using
forms of expressions appropriate for the classroom community. For upper secondary text-
books, this should be more or less equivalent to what ‘any mathematician or mathematics
teacher would likely call a proof’ (Thompson et al., 2012, p. 259).

Mathematical statements are usually general, in the sense that they ascribe a property to
an infinite class of objects. A proof presents an argument valid for all objects in the relevant
class at once. The reasoning behind such an argument differs from one based on a specific
case. Following Thompson et al. (2012), these two major kinds of reasoning, general and
specific, will be referred to as types of reasoning. Of course, an argument with a specific case
is enough to prove a statement about that specific case or to refute a false general statement.
However, if a specific case is used as conviction for a universal statement, it is an example
of an empirical proof scheme.

A specific case offers important insights intowhy a statement is true, or about how a gen-
eral proof might appear. It might even contain all relevant aspects of a general argument
in such a way that ‘one can see the general proof through it because nothing specific to the
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[case] enters the proof’ (Movshovitz-Hadar, 1988, p. 19). Such generic cases, or transparent
pseudo-proofs, have great pedagogical value, but we will not refer to such reasoning as gen-
eral, even though Harel and Sowder (2007) count it as a kind of deductive proof scheme.
The distinction between specific and general types of reasoning is, therefore, closer to
Balacheff ’s distinction between pragmatic and conceptual justifications (Balacheff, 1988).

A justification can fail to be a proof for other reasons than not being sufficiently general.
For instance, the level of rigour or formalismmay be too low, or the argument can be based
on vague or intuitive ideas, or on visual impressions from diagrams. Such justifications can
also have great pedagogical value and explanatory power (cf. Hanna, 2018). For analytical
purposes, we chose to widen the class of specific justifications to include all non-proof
justifications instead of defining additional types of reasoning.

Proofs produced by mathematicians are end products. They are the result of a long
chain of successive refinements (cf. Lakatos, 2015), and need not bear any trace of the pro-
cesses that initially led the mathematician to believe in the conclusion. These processes
may involve formulating, investigating, and revising conjectures; finding and construct-
ing counterexamples and supporting examples; and developing, evaluating, investigating,
finding flaws in, correcting, outlining, or filling in details in arguments. Once again fol-
lowing Thompson et al. (2012), these different elements of reasoning will be grouped in
categories of natures of reasoning (see later sections for details). Together, they consti-
tute proof-related reasoning. In this paper, an underlying assumption is that, to understand
proofs and their role inmathematics and to develop an ability to construct proofs, students
need to be engaged in reasoning activities that vary in type and nature.

2.5.2. Opportunities to learn proof-related reasoning in textbooks
The written textbook is only one link in the chain between the written curriculum and
student learning (Stein, Remillard, & Smith, 2007). The opportunities to learn (Hiebert &
Grouws, 2007) that a student is offered depend on how the curriculum is enacted in the
classroom. Saying that a textbook offers an opportunity to learn proof-related reasoning is
an indication that a potential opportunity exists. We consider such opportunities to occur
in the following areas:

• Expository sections when the authors highlight amain result and present some justifica-
tion for this result, when there are worked examples involving proof-related reasoning,
and when the authors discuss the concepts of proof and proving

• Students’ exercises and activities when they involve proof-related reasoning

The opportunities to learn proof-related reasoning are characterized by the type and nature
of reasoning. Analytic frameworks and procedures are adopted more or less directly from
Thompson et al. (2012), with adaptations similar to Bergwall and Hemmi (2017).

2.5.3. Procedure and framework for analysis of expository sections
In the analysis of expository sections, the unit of analysis has been a main result, along
with its justification(s). Amain result refers to a true mathematical statement that the text-
book authors highlight, e.g. with a coloured background or a frame, or by labelling it as a
theorem, principle, or rule. Statements in the inline text are considered main results if they
are accompanied by worked examples illustrating their use.
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Table 2. Framework for justifications in expository sections.

Code Type of justification Description

G General proof The statement is justified with a proof.
S Specific case or other non-proof

justification
The statement is justified using a deductive argument based on a
specific case, or that has other flaws that makes it a non-proof
justification.

L Left to the student A justification of the statement is explicitly left to the student to
complete, typically with a problem in the exercises for which a
justification of some type is required.

N No justification No justification is provided, and no explicit mention is made of
leaving the justification to the student.

Table 3. Framework for nature of reasoning in textbook tasks.

Code Nature of reasoning Task in which student is asked to . . .

M Make a conjecture make a conjecture, formulate a true mathematical statement, or
find the precise conditions for a certain statement to be true

I Investigate a conjecture investigate whether a given conjecture or statement is true or false
D Develop an argument justify or explain why a certain statement holds
E Evaluate an argument evaluate whether a certain justification or solution is correct
C Correct or identify a mistake find and/or correct an error in an argument or a solution
X Counterexample find a counterexample to a false mathematical statement
P Outline a proof outline an argument without the details of a full proof
O Other use some other element of proof-related reasoning
N Not proof-related do something not proof-related

When all main results were identified, data on their labelling, logical structure and gen-
erality were collected. All the main results’ justifications were then classified in terms of
the type of reasoning, as shown in Table 2. Notes were also taken about labelling, proof
techniques, and whether the justification was placed before or after the statement.

Finally, worked examples in expository sections were analysed and categorized in the
same way as students’ tasks.

2.5.4. Procedure and framework for analysis of students’ tasks
In the analysis of textbook tasks, the unit of analysis has been a task, exercise or activity
with its own label, number or name. All such tasks have been categorized as proof-related
(PR) or not proof-related. A task is considered proof-related if it involves any of the natures
of reasoning specified in Table 3. In addition to nature of reasoning, such tasks are char-
acterized by their type of reasoning, i.e. if they involve reasoning about a specific (S) or a
general (G) case.

Tasks have been analysed from the perspective of the intended student (e.g. Weinberg
&Wiesner, 2011). To accomplish this perspective, it has been assumed that the student has
followed the textbook strictly, worked with all the preceding material, and comprehended
it. The answer section has been used to understand the textbook authors’ intentions and
expectations.We have strived to give single codes for nature and type of reasoning, unless a
task explicitly asks the student to do things involving different natures or types of reasoning.

The analysis of the data set proceeded iteratively. First, all ‘ordinary’ tasks (not intro-
ductory activities or special tasks at the end of the chapters) were preliminarily classified.
After comparison with tasks and analytical decisions made during our work reported in
Bergwall and Hemmi (2017), the complete data set was analysed anew. A sample of tasks
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Table 4. Examples of tasks in the Swedish textbooks illustratingdifferent natures and types of reasoning

Ex Task Code

1 Investigate with your calculator and write down the following values: lg 2, lg 20, lg 200, lg
2000. (a) What pattern can you see? Explain. (b) What should lg 20000 and lg 0.2 be?
(Sw1, Book 2c, p. 120)

GM/SM

2 (a) Give an example of a positive number which also has a positive ten-logarithm. (b) Give
an example of a positive number which has a negative ten-logarithm. (c) Explain when
the ten-logarithm of a positive number is positive and when it is negative. (Sw2, Book
2c, p. 100)

N/N/GM

3 The number of permutations of a certain sample is always greater than the number of
combinations. True or false? Motivate your answer! (Sw1, Book 5, p. 57)

GI

4 Gina says that lg 400 must be greater than 2 but less than 3. Is she right? Answer the
question without using a calculator, and justify your answer. (Sw1, Book 2c, p. 120)

SI

5 Explain why one cannot calculate log2(−5). (Sw2, Book 2c, p. 113) SD
6 Using the power laws, show that lg Ay = y · lg A. (Sw1, Book 2c, p. 122) GD
7 In the EU parliament, there are 754 people from 27 states. Show that at least 28 people are

from the same state. (Sw1, Book 5, p. 10)
SD

8 Ludvig and Philip are discussing the box principle. ‘The box principle says that if I have
13 t-shirts to dye green, blue or red, I will always get at least 4 t-shirts of every colour’,
Ludvig says. ‘No’, Philip says, ‘the box principle only says that you always get at least one
t-shirt of every colour’. Is either of them correct? Justify. (Sw2, Book 5, p. 99)

SE

9 What errors do they make? (a) Pierre simplifies lg 37 − lg 8 and gets lg 37/ lg 8. (b) Fia
simplifies lg 5x2 and gets 2 lg 5x. (Sw1, Book 2c, p. 122)

SC/GC

Table 5. Examples of proof-related tasks in the Swedish textbook series.

Ex Task Code

10 Let’s say thatm objects should be placed in n boxes. What should be written in the square
for the statement to be true? ‘Ifm > � then at least one of the boxes will contain more
than k objects’. (Sw2, Book 5, p. 63)

GM

11 Per says that a doubling of sound intensity implies an increase in the sound level by 3 dB.
Investigate whether this is true. Choose several different intensities. (Sw2, Book 2c, p.
114)

GI

12 Is there any number k that solves the equation C(8, 5) = P(8, k)? Justify your answer.
(Sw2, Book 5, p. 69)

SI

13 Show that if the pH value decreases by 1, then the concentration of hydrogen ions
increases by a factor of 10. (Sw2, Book 2c, p. 110)

GD

14 Kalle solves the equation lg x2 = 4 like this: lg x2 = 4, 2 lg x = 4, lg x = 2, x = 102. (a)
Kalle finds it strange that the equation does not have two solutions when ‘x is squared’.
Show by testing that the equation has the roots x = −100 and x = 100. (b) Solve the
equation in such a way that you get both roots. Explain what is wrong with Kalle’s
solution. (Sw2, Book 2c, p. 123)

SD/GC

15 Lise and Erik solve the equation 3 · 5x = 12 correctly, but in two different ways. Lise gets
x = lg 4/ lg 5 and Erik gets x = (lg 12 − lg 3)/ lg 5. Give suggestions for how Lise and
Erik might have reached their answers. (Sw2, Book 2c, p. 110)

SO

16 At a Nordic conference there were 31 students from Sweden, Norway, Denmark, Finland,
and Iceland. (a) Which number is n (the number of ‘boxes’)? (b) Show that some country
is represented by at least 7 students. (Sw1, Book 5, p. 10)

SO/SD

representing different natures and types of reasoning, as well as tasks found difficult to
classify, were selected and discussed with colleagues at a seminar. Based on this discus-
sion, final analytical principles were settled upon, and were applied during a final coding
iteration of the complete data set.

Below, we describe the adaptation and operationalization of the framework for nature
of reasoning (Table 3), exemplified with proof-related tasks from Sw1 and Sw2 (Table 4).
Additional tasks are discussed in the Results section (Tables 5–6).
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Table 6. Examples of proof-related tasks in the Finnish textbook series.

Ex Task Code

17 Show that the value of the expression (logab/logacb) − (logad/logcd) is independent of
the numbers a, b, c, and d, which all are greater than one.

GD

(Fi1, Book 8, p. 126)

18 Prove.
(
n
k

)
=

(
n

n − k

)
GD

(Fi1, Book 6, p. 74)

M tasks focus on what is true; they are about formulating true mathematical state-
ments, typically based on inductive reasoning and generalization. In the answer section
of Example 1 (Table 3), the authors write ‘As the number increases by a factor of 10, lg
increases by lg 10 = 1’, which is a general mathematical statement. The word ‘should’ in
Example 1(b) indicates that the student should make a guess based on the pattern seen in
(a). Hence, these tasks are M tasks: the first general, the second specific. The M category
also includes tasks involving describing the precise conditions for a statement to be true
(Example 2). Specifying conditions is an important aspect of conjecturing. Tasks which
only require transformations between different forms of representations are not considered
M tasks.

I tasks ask if something is true; i.e. the student is to determine the truth value of a given
statement (Example 3), or whether a statement is correct or not (Example 4). The category
does not include tasks with other kinds of choices, like which of two numbers is the greater
or whether a certain function is increasing or decreasing.

D tasks ask why a statement is true (Example 5). The focus is on deductive reasoning,
how things connect to and follow from each other. The result to argue for should be explicit
in the task. Proving tasks, i.e. those that ask the student to showor prove a certain statement,
fall into this category (Examples 6 and 7). When ‘show’ refers to describing a procedure, as
in ‘Show how one uses logarithms to compute (a) 23 (b) 5 · 8’ (Sw1, Book 2c, p. 124), the
task has not been considered proof-related. However, in cases of doubt as to the textbook
authors’ intentions, tasks have been coded as D tasks rather than as not proof-related. If
students are called to explain their thinking in a task of another nature, as in Examples 1
and 4 above, double codes have not been used. The procedures of simplifying, developing
or factorising expressions are seen as algebraic equivalents of calculating and computing.
Hence, tasks phrased as ‘Simplify the expression . . . ’, without an articulated goal, are con-
sidered not proof-related. However, tasks formulated as ‘Derive the formula . . . ’, with the
formula explicit in the task, are considered D tasks.

E tasks present an argument and ask the student to evaluate its validity. It should not
be explicit in the task whether the argument is correct or not. In Example 8, Ludvig’s and
Philip’s words are considered arguments since they describe a situation (number of t-shirts
and colours), formulate a conclusion (number of t-shirts of each colour), and present a
warrant for their conclusion (Dirichlet’s box principle).

C tasks present the student with a false statement or an invalid argument and ask the
student to determine exactly what has gone wrong, i.e. give a plausible reason behind an
erroneous answer or point out a flaw in an argument (and not simply present a correct
answer or argument).
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X tasks explicitly ask the student to provide a counterexample to a false universal state-
ment.Other tasks involving proving something iswrong or explainingwhy something does
not work (like Example 7) are considered D tasks.

P tasks are tasks in which a student is asked to outline a proof without providing the level
of details necessary to make it a full proof. The opposite situation, i.e. a task that outlines a
proof and asks the student to fill in the details, belongs to the D category.

O tasks are tasks that do not fit into any of the categories of natures of reasoning
described above, but that involve other elements of reasoning essential in proving. This
category was not part of the original framework in Thompson et al. (2012). It was intro-
duced to collect material for a discussion on revisions of the framework itself. All tasks
placed in this category are accounted for in the Results section.

N tasks, finally, are all the remaining tasks. They are considered ‘not proof-related’.

3. Results

Results for the Swedish textbook series are presented first, followed by those for the Finnish
series. Examples of proof-related tasks (in addition to those in Table 4) are presented
in Tables 5–6. Quantitative data are summarized in Tables 7–9, together with data from
Blinded Bergwall and Hemmi (2017).

3.1. Swedish textbooks

3.1.1. Expository sections
The Swedish books introduce logarithms for base 10 and present the logarithm laws for
products (lg(a · b)), quotients (lg(a/b)), and powers (lg(ab)). In subsequent sections, Sw2
also presents the laws for arbitrary bases, while Sw1 only mentions that they hold for any
base. In both books, all addressed laws are labelled as such. In Sw2, there is an introductory
activity and exercises preceding the presentation of the laws, from which the student has a
possibility to conjecture them.

Sw1 justifies one of the logarithm laws with a general proof placed before the statement,
but leaves the others unjustified. Sw2 proves all logarithm laws for base 10 with proofs
placed after the statement, but also provides specific justifications for two of them before
they are stated. Proofs for arbitrary bases turn up as students’ exercises. Neither Sw1 nor
Sw2 offers proof-related worked examples on logarithms.

Both textbooks’ combinatorics chapters start with introductory activities whereby stu-
dents can get acquainted with, and conjecture, the addition and multiplication principles.
However, the basic versions of these principles (with two independent choices) are merely
combinatorial representations of addition and multiplication and are hence not classified
as main results.

In subsequent sections, the textbooks define and address formulas for permutations and
combinations, and presentDirichlet’s box principle. In total, Sw1 addresses sixmain results
and justifies five of them, while Sw2 addresses four and justifies all. Neither the results
nor the justifications are clearly labelled as such. All justifications are specific. In Sw1 all
justifications are placed before the statement, while in Sw2 half of them are. Both text-
books contain examples of specific justifications expressed in ways that give the student a
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chance to conjecture the general result. Proof-related worked examples are offered in both
textbooks, but are related only to Dirichlet’s box principle.

3.1.2. Students’ exercises
The selected material from Sw1 and Sw2 contains 342 and 427 student tasks, respectively.
Forty-four tasks in Sw1 and 65 in Sw2 are proof-related. In both textbook series, the ratio
of proof-related tasks is higher in sections on combinatorics than in those on logarithms.
All categories of natures of reasoning, except the X and P categories, are represented in
both series. More than half of the proof-related tasks are D tasks, which is the dominant
category, while E and C tasks are very few. In Sw1 specific tasks dominate, whereas in Sw2
the general tasks are in the majority.

Both textbooks haveM tasks on logarithms involving identifying/generalising a pattern
(Example 1, Table 4). Sw2 also provides M tasks of a more descriptive character (Example
2(c)). There are no M tasks on combinatorics in Sw1, but Sw2 provides two specific and
two general tasks. One task has the character of stating precise conditions (Example 10,
Table 5) and another involves identifying/generalising a pattern.

There are specific and general I tasks, on logarithms as well as combinatorics, in both
textbooks. The I tasks are frequently formulated as yes/no questions (Example 4) or
true/false questions (Example 3). Sw1 has spreads at the end of every chapter with such
tasks, often providing connections to definitions and well-known misconceptions. Sw2
also has I tasks with scientific contexts (Example 11), and while some I tasks are conceptual
(Example 3) others are more algebraically oriented (Example 12).

Both textbook series contain specific as well as general D tasks on both topics. Specific
tasks dominate in Sw1, general tasks in Sw2. Proving tasks always use the imperative ‘show’;
never ‘prove’. Most of them are general (Example 6), but there are also specific proving
tasks (Example 7). They also appear in applications (Example 13). D tasks that are not
proving tasks often have an explanative character, and are typically formulated as ‘Why
is . . . ’ (Example 5) or ‘Explain why . . . ’.

E tasks were found only in combinatorics, and there was only one each in Sw1 and Sw2
(Example 8).

Sw1 contained two C tasks on logarithms, one specific and one general (Example 9),
both focusing on the identification of an error. Sw2 has one general C task on logarithms
(Example 14) and one specific C task on combinatorics. These include correcting an error.

There were no X or P tasks in either of the Swedish textbooks.
Finally, six O tasks were found; i.e. tasks that did not fit the other natures of reason-

ing but include elements one can argue are proof-related. These were of two kinds. The
first includes a call to explain the thinking behind a presented calculation. Such tasks are
neither about evaluating an argument nor correcting a mistake, but in the practice of prov-
ing and reading proofs, one often faces situations with missing details and must identify
the underlying idea. Sw2 presents one such task on logarithms (Example 15) and one on
combinatorics. Sw1 also has one with an amendment to evaluate the explained argument’s
correctness. This task was double-coded as OE.

The second kind occurs once in each textbook. In tasks on Dirichlet’s box principle,
the student is asked which data correspond to objects and boxes, respectively (Example
16). Matching the given data to preconditions of a mathematical theorem is often the first
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step in a proving process. When a mathematician realizes that a new situation fulfils the
preconditions of a known theorem, it is often of great value.

3.2. Finnish textbook

3.2.1. Expository sections
After an example in which an exponential equation is solved numerically, Fi1 immediately
defines logarithms for arbitrary bases. Sevenmain results are addressed: the logarithm laws
and identities, such as logaa = 1. In the next section, four properties for the logarithm
function, including continuity and monotonicity, are addressed (defining properties not
counted). All results are labelled as properties. There is nomaterial fromwhich the student
can conjecture them.

Five of the addressed results are justified, all of themwith general proofs. On three occa-
sions, the proofs are placed before the statement. Some of the unjustified results turn up in
students’ exercises.

The combinatorics chapter has a short introduction that explains the concept of combi-
natorics, but no introductory activity. The chapter’s first section addresses twomain results
(general versions of the addition and multiplication principles), and the second section
addresses three (formulas for permutations and combinations). The last mentioned are
not labelled as results.

One of the addressed combinatorics results is justified with a specific case, three with a
general proof, and one with a specific case as well as a general proof. All justifications are
placed before the statements. Central concepts are introduced through worked examples
before they are defined. In two cases (the general multiplication principle and number of
permutations), these are presented so that students can conjecture the general result.

All justifications are unlabelled, but the authors use phrases like ‘we prove’. There are
no proof-related worked examples, for either logarithms or combinatorics.

3.2.2. Students’ exercises
Of 223 student exercises, Fi1 only has six proof-related tasks on logarithms and six on
combinatorics. One is an I task, the others are D tasks.

The only I task is a specific true/false question about the number of possible ways to
combine pizza toppings.

All the D tasks are general proving tasks, more frequently phrased ‘prove that’ than
‘show that’. Four involve proving unjustified logarithm properties addressed in the expos-
itory sections. In two tasks, the student is asked to show that the value of a para-
metric expression is independent of the parameters (Example 17, Table 6). Regard-
ing combinatorics, most D tasks consist of proving certain identities for combinations
(Example 18).

4. Discussion

The aim of the present study was to characterize opportunities to learn proof-related rea-
soning offered in Swedish and Finnish upper secondary textbooks. Textbook material
on logarithms and combinatorics from three textbook series has been analysed, with a
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Table 7. Type of reasoning in justifications in expository sections

No justification
(N)

Left to
student (L)

Specific
case (S)

General
proof (G)

Total no. of
main results

Sw1 Logarithms & combinatorics 3 5 1 9
Primitive functions & integrals 13 6 1 20
Total 16 11 2 29

Sw2 Logarithms & combinatorics 3 1 5 3 9
Primitive functions & integrals 5 11 2 18
Total 8 1 16 5 27

Sw1+ Sw2 Logarithms & combinatorics 6 1 10 4 18
Primitive functions & integrals 18 17 3 38
Total 24 1 27 7 56

Fi1 Logarithms & combinatorics 6 2 8 15
Primitive functions & integrals 10 2 3 12 27
Total 16 2 5 20 42

Remark on double coding: Two logarithm justifications in Sw2 were coded SG, one combinatorics justification in Sw2 was
coded LS, and one combinatorics justification in Fi1 was coded SG.

focus on types and natures of reasoning in justifications in expository sections and stu-
dents’ exercises. The textbook series are the ones that most Swedish speaking students
in Sweden and Finland have used in recent decades in preparation for higher studies in
mathematics. Below is a summary of the main findings, highlighting the similarities and
differences between Swedish and Finnish textbooks. These results are related to findings
from textbook material on integral calculus obtained from the same textbook series and
reported by Bergwall and Hemmi (2017) (see Tables 7–9). The results are also compared
with results regarding United States textbooks presented in Thompson et al. (2012) and
Otten et al. (2014) (see Tables 10–11). Finally, limitations of the present study, implications
for teaching, and suggestions for future research are discussed.

4.1. Comparison between Swedish and Finnish textbooks

4.1.1. Expository sections
In all textbooks, the addressed main results describe general properties (i.e. properties
for infinite classes of objects). They are mostly clearly labelled as principles or laws. The
Finnish books differ from the Swedish ones in that they provide amore detailed and formal
exposition, and address more results. They also head more directly for general results. For
instance, logarithms are immediately introduced for arbitrary bases. The Swedish books
start with base 10 and view logarithms for arbitrary bases as a generalization, the properties
of which the students have to induce themselves. However, the Swedish books usually offer
introductory activities and exercises through which students can discover and conjecture
general properties.

Both the Swedish and Finnish books usually formulate main results after presenting a
justification. Main results are justified about as often in the Swedish books (13 of 19) as
in the Finnish ones (10 of 16). Justifications are always unlabelled. The main difference
is that in the Finnish books justifications are almost always (9 of 10) general proofs and
phrases like ‘we prove’ are frequently used. Specific arguments dominate in the Swedish
books. Proof-related worked examples are, on the other hand, only found in the Swedish
books.
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Table 8. Labelling and placement of main results and justifications in expository sections.

Main results Justifications

Labelling Labelling Placement

Total no. Theorem Rule, law, etc. No/other
Total no. of justified

main results Proof Check, etc. No/other Before After

Sw1 Logarithms & combinatorics 9 6 3 6 6 6
Primitive functions & integrals 20 1 6 13 7 7 7
Total 29 1 12 16 13 13 13

Sw2 Logarithms & Combinatorics 9 7 2 6 6 3 5
Primitive functions & integrals 18 1 4 13 13 13 13
Total 27 1 11 15 19 19 16 5

Sw1+ Sw2 Logarithms & Combinatorics 18 13 5 12 12 9 5
Primitive functions & integrals 38 2 10 26 20 20 20
Total 56 2 23 31 32 32 29 5

Fi1 Logarithms & combinatorics 15 12 3 9 9 7 2
Primitive functions & integrals 27 6 17 4 15 7 8 7 8
Total 42 6 29 7 24 7 17 14 10

Remark on double coding: Two logarithm statements in Sw2 had specific justifications placed before and general justifications placed after the main results.
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Table 9. Type and nature of reasoning in proof-related students’ exercises.

Typeof reasoning Nature of reasoning

Total no.
of tasks PR tasks S G M I D E C X P O

Sw1 Logarithms & Combinatorics 342 44 27 17 2 12 26 1 2 2
Primitive functions & Integrals 418 74 51 23 11 35 26 2
Total 760 118 78 40 13 47 52 1 4 2

Sw2 Logarithms & Combinatorics 427 65 25 40 9 9 41 1 2 4
Primitive functions & Integrals 449 46 18 28 3 19 21 1 2
Total 876 111 43 68 12 28 62 2 4 4

Sw1+ Sw2 Logarithms & Combinatorics 769 109 52 57 11 21 67 2 4 6
Primitive functions & Integrals 867 120 69 51 14 54 47 1 4 0
Total 1636 229 121 108 25 75 114 3 8 6

Fi1 Logarithms & Combinatorics 223 12 1 11 1 11
Primitive functions & Integrals 524 38 16 26 1 8 29
Total 747 50 17 37 1 9 40

Remark on double coding: One combinatorics task in Sw1 was coded EO and one logarithms task in Sw2 was coded MI.

To conclude, all textbooks convey a picture of mathematics properties as typically being
general, but proofs are more visible in the Finnish books. They provide more opportuni-
ties for learning formal, deductive reasoning, and that general properties require general
arguments, i.e. for developing deductive proof schemes. However, the Swedish textbooks
offer better opportunities for the discovery of general properties.

The findings are in line with those reported by Bergwall and Hemmi (2017). In integral
calculus, proofs were evenmore visible in Fi1 since they were frequently labelled as proofs.
Also, the proofs were often placed after the theorems, hence emphasizing their verification
role.

When it comes to proof-relatedworked examples, the results differ from that of Bergwall
and Hemmi (2017). In integral calculus such examples were only found in the Finnish
books, but now only in the Swedish. However, these tasks are few in number and of very
specific kinds. The conclusion is therefore that the Swedish and Finnish books alike offer
limited opportunities to learn proof-related reasoning from worked examples.

4.1.2. Students’ exercises
Thepercentage of proof-related tasks is low in all textbooks but higher in the Swedish books
(around 14%) than in the Finnish ones (5%). In Fi1 only one proof-related task is about
a specific case. This is an investigate a conjecture task (I task) while all general tasks are
develop an argument tasks (D tasks). More precisely they are proving tasks. In the Swedish
books many proof-related tasks are about a specific case (65% in Sw1, 40% in Sw2). D
tasks dominate but are often informal and ask the student to explain or motivate. In the
Swedish books, about one-third of the proof-related tasks involve making or investigating
conjectures. Though few, there are also tasks in the categories of evaluating and correcting
arguments. Finally, there are a few tasks in which the student has to match given data to
preconditions of a theorem or suggest plausible thinking behind a presented calculation or
derivation.

Our conclusion is that all the textbooks offer few opportunities to learn proof-related
reasoning, but that more opportunities exist in the Swedish books. They also offer more
variation in natures of proof-related reasoning. As in the case of expository sections, the
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Swedish books are more oriented towards conjecturing, evaluation and empirical proof
schemes while the Finnish are oriented towards deductive proof-schemes, since almost all
proof-related tasks are general proving tasks.

Once again, the findings are in line with those reported by Bergwall andHemmi (2017).
Regarding the number of proof-related tasks in integral calculus and their distribution
between general and specific, there were only small differences between Sw2 and Fi1. In
integral calculus, the Finnish textbook had a handful of I tasks, all focused on determining
whether a certain function is a primitive function to another function, or has a primitive
function. Otherwise, D tasks were as dominant in integral calculus as in logarithms and
combinatorics, while the Swedish textbooks offered a higher variation. It is worth noting
that none of the books included tasks involving providing a counterexample or outlining
a proof.

The findings may seem to be in contrast with the fact that proofs are more strongly
emphasized in the Swedish national steering documents than in the Finnish ones. One
possible explanation for this could be that the Swedish steering documents only emphasize
proof within other topics (mainly geometry, trigonometry and number theory).

4.2. Comparisonwith United States textbooks

Regarding logarithms, Thompson et al. (2012) found that on average, 61% of properties
addressed in expository sections in United States textbooks were justified. Just over half
of the justifications were general proofs. In the Swedish and Finnish books, half of the
main results were justified, but all justifications used general arguments. Regarding stu-
dents’ tasks, 7% of the tasks in the United States textbooks were proof-related, compared
to 10% in the Swedish and 4% in the Finnish. While all Finnish proof-related tasks were
general D tasks, approximately 75% of the Swedish and 50% of the United States tasks were
general, most of them in the D category, but occasionally also in the M, I and E categories.
These figures do not suggest definite differences between textbook traditions in the three
countries, especially since there was great variation between the analysed United States
textbooks. The findings indicate that, compared to an average United States textbook, the
Finnish textbooks, and to some extent the Swedish ones, aremore oriented towards general
justifications. Also, the Swedish and United States textbooks are more alike when it comes
to variation in natures of reasoning.

Next, we review the aggregated data on United States textbooks as reported by Thomp-
son et al. (2012) and on Swedish and Finnish textbooks (Sw1, Sw2 and Fi1) as reported here
and in Bergwall and Hemmi (2017). In all countries, results addressed in expository sec-
tions are justified in approximately 60%of the cases. The Swedish books stand out in having
fewer general justifications than their Finnish and United States counterparts (Table 10).
The high number of general justifications on logarithms seems to be an exception. How-
ever, 14% of the Swedish textbook tasks are proof-related, whereas about 6% of the Finnish
and United States textbook tasks are proof-related.

Regarding distribution over types and natures of reasoning, the Swedish and United
States books are very similar (Table 11). Here, the Finnish books stand out with a higher
percentage of general tasks and D tasks. However, it is worth noting that Thompson et al.
(2012) report a shift during upper secondary school towards a higher proportion of general
tasks and D tasks. Their results from precalculus textbooks are similar to the overall results
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Table 10. Type of reasoning in justifications in expository sections by country.

No justification Left to student Specific case General proof Total

Sweden 41% 2% 47% 12% 58
Finland 38% 5% 12% 48% 42
United States 39% 11% 22% 31% 383

Remark: Percentages do not sum to 100% due to occasional double coding and round-off errors.

Table 11. Type and nature of reasoning in proof-related students’ exercises by country.

Type of reasoning Nature of reasoning
Total no.
of tasks PR tasks S G M I D E C, X, P, O

Sweden 1636 14.0% 53% 47% 11% 33% 50% 1.3% 6,1%
Finland 747 6.7% 34% 74% 2.0% 18% 80% 0% 0%
United States 9742 5.4% 46% 48% 15% 31% 44% 1.9% 11%

Remark: Types and natures are reported in relation to the total number of proof-related tasks. Percentages do not sum to
100% due to occasional double coding, X tasks without type classification, and round-off errors.

obtained from Fi1, which are strongly influenced by integral calculusmaterial from the last
mandatory part of the Finnish upper secondary school curriculum.

The study by Thompson et al. (2012) included textbook material on exponents, loga-
rithms and polynomials. In United States textbooks on geometry, Otten et al. (2014) report
higher frequencies of justified statements and proof-related tasks. This indicates that proofs
continue to be more emphasized in school geometry than in other mathematics topics.
Based on formulations in Swedish and Finnish steering documents, it is plausible that the
situation is similar in these countries.

4.3. Limitations and future research

We have analysed material from textbooks that most Swedish-speaking (and many
Finnish-speaking) students in Sweden and Finland have used when preparing for higher
studies in mathematics, science, and technology. Hence, the conclusions set out in this
paper only regard what this group of students have typically encountered when studying
logarithms and combinatorics (and integral calculus) at the upper secondary level. To gen-
eralise further, one would need to extend the data set to other topics and textbook series.
To draw general conclusions about Finnish textbook traditions, Finnish textbooks (written
in Finnish) must be included. Extensions to geometry would be of special interest, since
proofs are oftenmore emphasized in geometry and since there are studies fromother coun-
tries for comparison (e.g. Otten et al., 2014). However, even when researchers use similar
methods, there is no guarantee that analytic frameworks are applied in the sameway, which
limits the accuracy of such comparisons.

Thompson et al. (2012) report that opportunities to engage in proof-related reason-
ing differ between mathematics topics and changes during upper secondary schooling.
Findings on this issue for the Swedish and Finnish contexts will be reported in a paper
in progress. Such studies are important in understanding the transition to tertiary educa-
tion, where students experience difficulties with the increased focus on proofs and a higher
level of formalism.
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During the analytical process, situations occurred whereby the framework and its
categories did not feel sharp or exhaustive enough to capture all relevant aspects of proof-
related reasoning. Revisions and modifications of the frameworks are of theoretical value
as well as analytical importance, since they represent a conceptualization of aspects of rea-
soning that are important in relation to proving. Regarding the nature of reasoning, the
counterexample and outline a proof categories are important even if no such tasks were
found. For the sake of symmetry, these categories should be supplemented with categories
for finding supportive examples and for filling in the details in an outlined proof. Investi-
gations of conditions, and the refinement of conditions to make a statement true, are also
important aspects of reasoning that have no evident place in the current framing (though in
the present study such tasks were placed in the investigate andmake a conjecture categories,
respectively). Also, tasks involving explaining the thinking behind a certain argument or
calculation and tasks involving relating a certain situation to conditions of a theorem were
found. There is room for refinement regarding the type of reasoning as well. When func-
tions are involved, there is a difference between a situation which can be represented using
a finite number of parameters and onewhich cannot (e.g. Bergwall, 2015). Regarding struc-
ture and visibility, it might be equally important to analyse the embedding of statements
and justifications in the overall presentation (Bergwall, 2017). All such refinements of the
framework need to be tested against data and founded in theoretical considerations.

A revised framework could be a useful tool for the analysis of teaching episodes as well
as textbook material. Such a framework could be a starting point for a discussion about
design principles for textbooks and learning activities that promote the learning of proof.
A natural and necessary next step is to study how opportunities for proof-related reason-
ing provided in textbooks play out in the classroom context. Such studies could include
the perspectives of the teacher as well as the student. One interpretation of the results pre-
sented in this study is that textbooks offer teachers limited support for teaching proof. If we
think of mathematics as having both ‘empirical’ elements (experiments, constructing and
studying examples and special cases, making guesses and conjectures, using intuition, and
making generalizations) and ‘deductive’ elements (verifications, explaining connections,
formalization, making derivations, and proofs), teachers need support for teaching both
these aspects and how they are related. The findings reported in this paper indicate that
textbooks seldom fill this double role.

Notes

1. Concepts relevant for the present study (justification, proof-related reasoning etc.) are defined in
the subsection on analytical approach.

2. At the time of writing, a revision of the Finnish national curriculum is being implemented. All
references in this paper are to the former version, implemented in 2005.
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