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ABSTRACT
It is well known that near-linear dependencies in the atomic orbital (AO) basiswill impede electronic-
structure calculations since the inverse AO overlap matrix will be ill-defined. However, small eigen-
values will also impact the locality of the virtual density matrix. The virtual density matrix is relevant
for developing efficient local approaches in electronic-structure theory, and recent literature shows
that orthogonal molecular orbitals (MOs) are not optimal for exploiting locality. As size of molecules
treated is increasingandhigh-quality basis sets areused, theproblem isbecomingmorepronounced
and challenges similar to those for extended systems appear. Here it is shown that the spectrum of
the AO overlap matrix puts severe restrictions on the locality of the virtual density matrix, and that
locality cannot be recovered by excluding components corresponding to near-singular eigenvalues.
The effect is seen even when eigenvalues are orders of magnitude from being near-singular, and
occurs also for small basis sets such as cc-pVDZdependingon themolecular system.Non-orthogonal
orbitals do not constitute a solution to the problem, but they may be more convenient since lack of
locality in the density matrix can be shifted fromMO coefficients to the inverse MO overlap matrix.
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1. Introduction

With todays powerful computers, electronic-structure
methods are routinely being applied to larger and larger
molecular systems employing high-quality atomic orbital
(AO) basis sets. A high-quality AO basis is especially
important when describing electron correlation or if
molecular properties such as excitation energies, polar-
isabilites etc., are to be computed. For large molec-
ular systems, local correlation approaches [1–5] and
electronic-structure embedding theories [6–14] have
been exceedingly popular approaches for extending the
applicability range of accurate wave function mod-
els. These approaches exploit the locality of phyical
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interactions such as the dynamical electron correlation
effects and locality of molecular properties. However,
as larger three-dimensional systems and highly ordered
extended systems are considered, increasing the size of
theAObasis set will quickly introduce near-linear depen-
dencies in the basis. Near-linear dependencies in the AO
basis is characterised by eigenvalues of the AO overlap
matrix which tend toward numerical zero, and is quali-
tatively different than the problem of exact linear depen-
dencies, as pointed out by Löwdin and collaborators [15].
This is a well-known problem, discussed as early as in
1952 by Parmenter [16], and for molecular systems near-
linear dependencies arise since AOs on different centers
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are non-orthogonal to each other. In particular, this is a
pronounced issue for highly ordered three-dimensional
extended systems, as discussed by both Löwdin [17,18]
and by Aissing and Monkhorst [19]. Aside from the
non-orthogonality of AOs, the problem is intensified by
the fact that the AOs are developed and designed to
describe atoms in free space and smallmolecular systems.
Hence, when considering dense three-dimensional sys-
tems, there is an concerted effect from AOs on different
centers which greatly enhances near-linear dependencies
since the space is spanned much faster when expanding
the basis set on multiple atomic centers than on a single
atomic center.

Near-linear dependencies will impede calculations
since numerical noise will be enhanced in the calcula-
tion. For a general calculation, a much-used and sim-
ple solution to the problem of near-linear dependen-
cies is to carry out a canonical orthogonalisation of the
AO overlap matrix followed by exclusion of compo-
nents [15] with eigenvalues lower than a given threshold,
typically around 10−6. This removes near-linear depen-
dencies from the basis, without compromising the qual-
ity, and the calculation may be performed. This scheme
can be justified by considering the analysis of Lykos
and Schmeising [20], showing that the eigenvectors of
the AO overlap matrix with the largest eigenvalues are
so-called maximum overlap orbitals. I.e. orbitals gener-
ated by eigenvectors with small eigenvalues represents a
small overlap with the AO basis, and hence excluding
such eigenvectors does not deteriorate the quality of the
basis set appreciably. However, which numerical value
for threshold to use is rather arbitrary and the threshold
is not a size-intensive measure. A more profound prob-
lemwith near-linear dependencies arises when locality of
orbital spaces are to be exploited. Near-linear dependen-
cies in the AO basis will result in a non-local orthogonal
molecular orbital (MO) space, as the occupied and vir-
tual density matrices are connected via the inverse AO
overlap. When eigenvalues of the AO overlap matrix are
small, the inverse AOoverlap will be non-local and hence
the density matrices must reflect this non-locality. The
occupied density matrix reflects the physics of the system
and will only contain components necessary for this. The
virtual density matrix, however, will contain the resid-
ual space and will have to abide by the behaviour of the
inverse AO overlap matrix. Since the density matrix is
a direct connection of orthogonal MO coefficients, the
orthogonal MOs cannot be local if the density matrix
is non-local. The eigenvalues of the AO overlap matrix
will therefore dictate the extent of the orthogonalisa-
tion tails if localising MOs for such a density matrix.
The non-locality is not a result of the occupied and vir-
tual partitioning, and will also be seen for e.g. Löwdin

symmetric orthogonalised AOs. The Löwdin symmet-
ric orthogonalisation of the AOs is generated by the
inverse square root of the AO overlap matrix, and it gen-
erates an orthogonal basis that in the least-square sense
resembles the original AOs most [21]. They are usu-
ally considered to be local, but the locality of this basis
depends directly on the locality of the inverse AO overlap
matrix. A general discussion on how orthogonalisation
impacts locality has previously been discussed [22], but
not in terms of the dependence on the spectrum of the
AO overlap matrix. For non-orthogonal MOs, the coef-
ficients connect via the inverse of the MO overlap, and
therefore local MO coefficient vectors may describe a
non-local density matrix provided that the inverse of
the MO overlap is non-local. Thus, the non-orthogonal
orbitals are localisable even if orthogonal orbitals are not,
although localisation of non-orthogonal orbitals require
particular attention to the parametrisation [23]. Amuch-
used set of non-orthogonal orbitals to span the virtual
space is the set of projected atomic orbitals (PAOs). In
addition to being non-orthogonal, it is a redundant and
non-normalised set. Recent literature shows that PAOs
are more suitable for local correlation methods (either
directly [24] or as starting point for orbitals tailored for
given occupied orbitals [25–27]) than localised orthog-
onal MOs [28,29]. Orthogonal MOs may have a highly
localised main distribution [30], but if the space spanned
by orthogonalisation tails of localMOs away from a given
region is significant, they will not represent an efficient
basis. This has been numerically shown by Hansen et al.
[24] It should be noted that orbitals exploited for reduced
orbital spaces need in principle not be local, but rather
tailored for the property in question. Examples of this are
the pair-natural orbitals [26,31] for the correlation prob-
lem and natural transition orbitals [32] and correlated
natural transition orbitals [33,34] for vertical excitation
energies. The success of these approaches lies in their
specificity of generating suitable orbitals for the prop-
erty in question rather than a general orbital space for
a given region. These approaches will not be discussed
here.

Despite a variety of discussions on the connection
between eigenvalues of the AO overlap matrix and
important quantities such as orbital energies and over-
lap with original AO basis [20,35], symmetry property
of orbitals [35], and accuracy [36], a discussion on the
connection to spatial locality is lacking. In this paper, the
connection of the near-linear dependence of theAObasis
and orbital space locality is discussed. The connection
between the eigenvalues AO overlapmatrix and themax-
imumachievable locality of an orthogonal orbital space is
discussed from both a theoretical and numerical point of
view. The discussion illustrates that the concerted effort
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of AOs has a far greater impact on the locality of resulting
orbital spaces, than the locality of each individual AO
in a given basis. The consequences of the AO basis set
may in some cases be circumvented by the use of non-
orthogonal redundant orbitals, such as PAOs, to space the
virtual orbital space. However, the PAOs do not consti-
tute a solution to the general underlying problem with
the AO basis. Thus, for any extension in developments
for the local approaches, e.g. for molecular properties,
the problem of the underlying AO basis will present itself
in new forms. For this, the paper offers no solutions.
However, it does raise the question whether one also
for large and dense molecular systems must take inspi-
ration from literature on extended systems, where basis
sets used have no small exponents due to the concerted
effect of AOs.

The paper is organised as follows. In Section 2 an
overview of the connection between the spectrum of the
AO overlap matrix and density matrices is discussed,
and in Section 3 the consequences of near-linear depen-
dencies are characterised numerically and the effect
of removing such components is illustrated and dis-
cussed. A summary and concluding remarks are given in
Section 4.

2. Theory

In this Section, we review the connection between the
spectrum of the AO overlap martrix and the occu-
pied and virtual density matrices. The density matrices
are then discussed in terms of orthogonal and non-
orthogonal MOs.

2.1. The atomic orbital overlapmatrix

The AO overlap matrix S is defined by the elements

Sμν = 〈
χμ|χν

〉
, (1)

where {χτ |τ = 1, 2, . . . ,m} is a collection of AOs cen-
tered on the different atomic centers in the molecule.
The AOs have varying spatial extent depending on the
AO basis set chosen and nuclear charge, but S will be a
matrix local in space even for AO basis sets augmented
with diffuse functions. Local in space here means that
the elements Sμν as a function of distance, Rμν , between
the centers of the χμ and χν displays a clear distance
decay. We may carry out an eigenvalue decomposition of
S to obtain the matrix of orthogonal eigenvectors, U =
(u1,u2, . . . ,um), and the diagonal matrix of correspond-
ing eigenvalues �,

S = U�UT, �ij = λiδij. (2)

The inverse of S is given by

S−1 = U�−1UT. (3)

When S is near singular, i.e. one or more eigenvalue are
tending toward numerical zero, the inversion can be car-
ried out by excluding eigenvectors ui corresponding to λi
which are below some threshold (typically around 10−6).
Whereas S always is local in space, the spatial locality of
S−1 will be compromised by themagnitude of the inverse
eigenvalues of S. Removing components corresponding
to eigenvalues larger than the threshold, e.g. on the order
of 10−4, will compromise the basis set quality and further
(for unchanged S) destroy orthogonality of orbitals. One
may consider removing components based on a minimal
change in matrix norm such as Frobenius or l2 norm.
The norm of the change of S upon exclusion of eigen-
values will then be the square root of the sum of removed
squared eigenvalues.Hence, onemay use this approach to
require a maximum norm of the change in S upon exclu-
sion, but the dense spectrum of Swill still pose a problem
in terms of the balance between reducing the magni-
tude of S−1 and changing S. Other approaches, such as
rank-revealing QR factorisation may also be used. How-
ever, the diagonals of the upper right triangular matrix,
R, will not display a clear reduction in numerical rank.
The diagonals ofRwill exhibit a structure similar to those
of the eigenvalues of S, namely a densely packed spec-
trum without an obvious cut-off. This is likely a conse-
quence of the nature of the problem, i.e. that the problem
only arises due to the concerted effect of AOs on many
centers.

2.2. The connection to themolecular orbital space

Consider a set of occupied,Co, and virtual,Cv, MO coef-
ficients whichmay either be a set of start guess orbitals or
a set of optimised Hartree–Fock orbitals. For orthogonal
orbitals, the coefficients must satify,

CoCT
oS + CvCT

v S ≡ DoS + DvS = 1, (4)

where the definitions of the occupied density matrix,Do,
and the virtual density matrix,Dv, have been introduced.
The occupied density matrix is responsible for describ-
ing the electronic density of the molecular system, and
the virtual density matrix may be viewed as the resid-
ual space from the Hartree–Fock calculation. For post-
Hartree–Fock models, the residual space will be crucial
for accurate calculations. I.e. going from a small AO basis
to a large AO basis will have a certain effect on the occu-
pied density matrix, but the significant impact will be for
the virtual density matrix. Further, since the occupied
density matrix must describe the electronic density, its
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form and spatial locality with respect to distance decay
will be governed by requirements of the molecular sys-
tem. This is not the case for the virtual density matrix.
The virtual density matrix will, due to Equation (4), be
required to fulfill

Dv = S−1 − Do. (5)

Near-linear dependencies, as discussed in Section 2.1,
will therefore have severe consequences for the spatial
locality of the virtual density matrix. Orthogonal orbitals
must directly reflect non-locality of a density matrix
through

[Dv]μν =
virt∑

a
CμaCνa, (6)

wherewehave used the virtual densitymatrix as an exam-
ple. Hence, if [Dv]μν is large for χμ and χν centered
far from each other, there must be one or several vir-
tual orbital coefficient vectors,Ca, which have significant
elements both for element Cμa and Cνa.

For non-orthogonal molecular orbitals (but with
occupied and virtual space orthogonal to each other), the
density matrices are given by

Do = Co(Smo
oo )−1Co, (7)

Dv = Cv(Smo
vv )−1Cv, (8)

where Smo
oo and Smo

vv are the occupied-occupied and
virtual-virtual blocks, respectively, of the MO overlap
matrix Smo = CTSC. For a non-orthogonal set, element
[Dv]μν is generated by two virtual orbitals coefficient
vectors connected by the inverse MO overlap matrix,

[Dv]μν =
virt∑

ab

Cμa(Smo
vv )−1

ab Cνb. (9)

Hence, some restrictions can move from the orbital coef-
ficient vectors themselves to the inverse MO overlap
matrix, when considering non-orthogonal MOs.

2.3. Physical significance of the eigenvalues of the
AO overlapmatrix

The eigenvectors of S, (u1,u2, . . . ,um), defines a new set
of non-orthogonal orbitals,

χ̄i =
∑

μ

χμuμi. (10)

The projection of the function χ̄i with the original basis
can be written as,

ωi =
∑

μ

|〈χμ|χ̄i
〉|2 = λ2i . (11)

Thus, the eigenvalues λi aremeasures of themagnitude of
overlap between the functions χ̄i and the original basis
set. As noted by Lykos and Schmeising [20] the eigen-
vectors of S constitute what they call maximum overlap
orbitals, i.e. orbitals which maximises the overlap with
the original basis set. Excluding eigenorbitals with corre-
sponding small eigenvalues therefore seems a reasonable
approach at first glance. However, for larger molecules
with AO basis sets of appreciable size, the spectrum of
eigenvalues becomes dense with an increasing number
of small eigenvalues. Excluding eigenorbitals based on a
cut-off values for the eigenvalues of such that the magni-
tude of the inverse eigenvalues of S does not exceed the
largest eigenvalues of S, will have an impact on computed
energy and properties.

3. Numerical illustrations

In this section we present numerical illustrations on
the connection between the spectrum of S and maxi-
mum achievable locality in MO spaces. Three different
molecular systems will be used for this purpose; eicosane
(C20H42), a finite graphene-sheet (C106H28) and a finite
slab of diamond (C331H216). The systems are chosen to
see the concerted effect of AOs in one dimension, two
dimensions and three dimensions, respectively. Since all
three systems only contain carbon and hydrogen, the
same AOs are involved for all three systems, i.e. the
differences between systems will be due to geometric
ordering of the AO centers. Due to Equation (5), we
will use the decay properties of S−1 to illustrate require-
ments on Dv. This to emphasise that the dominating
effects with respect to locality (or lack thereof) for the
virtual space is unrelated to the physical bonding sit-
uation of the molecule. Locality will be illustrated by
plotting the distance decay of a matrix. The absolute
value of the elements of a matrix, |Mμν |, are plotted as
a function of the distance, Rμν , between atomic centers
for AOs χμ and χν . For simplicity, only the maximum
absolute element, max|Mμν |, will be plotted for a given
distance Rμν .

3.1. The effect of near-dependencies on spatial
locality

In Figure 1 the distance decay (as described above) of
S−1 is shown for eicosane, graphene and diamond using
basis sets cc-pVDZ, cc-pVTZ and cc-pVQZ. The smallest
eigenvalue of S are tabulated in Table 1. First considering
the cc-pVDZ results, it is seen that the curves for all three
molecules display a decay behavior, where max|S−1

μν | is
reduced several orders of magnitude from Rμν = 2 Å to
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Figure 1. The distance decay of S−1 is plotted for eicosane (circles), graphene (triangles) and diamond (squares) for cc-pVDZ (left), cc-
pVTZ (middle) and cc-pVQZ (right).

Rμν = 12 Å. However, the curve for diamond (squares)
starts at higher numerical values than the curve for
eicosane (circles), whereas the curve for graphene (tri-
angles) at even higher numerical values than both dia-
mond and eicosane. As seen from Table 1 graphene has
the smallest λmin for cc-pVDZ. For the highly ordered
and planar graphene structure, rather small eigenval-
ues of S are already encountered with cc-pVDZ. For
cc-pVTZ, we see from Table 1 that the smallest eigen-
values of graphene and diamond are of the same order
ofmagnitude (6.32 × 10−7 and 4.05×10−7, respectively),
and they are several orders of magnitude lower than
for eicosane (λmin = 1.55 × 10−4). Looking at Figure 1
for cc-pVTZ (middle plot) it is seen that the curves for
graphene (triangles) and diamond (squares) both start
at max|S−1

μν | ≈ 105 for Rμν = 2 Å, whereas the curve for
eicosane (circles) starts at max|S−1

μν | ≈ 103 for Rμν = 2
Å. For cc-pVQZ (Figure 1, right plot) the curve for dia-
mond (squares) can barely be seen due to huge numerical
values of max|S−1

μν |, whereas the graphene curve (trian-
gles) is within the plot but display large numerical values
of max|S−1

μν |. For cc-pVQZ, λmin for graphene and dia-
mond are 5.97 × 10−8 and 7.17 × 10−10, respectively.
For cc-pVQZ the eicosane curve (circles) has shifted
upwards relative to cc-pVDZ and cc-pVTZ. Note that for
cc-pVQZ λmin for graphene and diamond indicates that

Table 1. The smallest eigenvalue og the AO overlap
matrix (λmin) and the number of eigenvalues below
10−3 (N <) for the combination of molecules and basis
sets discussed.

molecule (basis) λmin N <

eicosane (cc-pVDZ) 8.91×10−4 2
graphene (cc-pVDZ) 6.78×10−6 89
diamond (cc-pVDZ) 6.23×10−5 289
eicosane (cc-pVTZ) 1.55×10−4 19
graphene (cc-pVTZ) 6.32×10−7 206
diamond (cc-pVTZ) 4.05×10−7 974
eicosane (cc-pVQZ) 3.23×10−5 118
graphene (cc-pVQZ) 5.97×10−8 579
diamond (cc-pVQZ) 7.17×10−10 2937

near-linear dependencies should be removed to avoid
numerical issues in the calculation.

All three systems consist solely of carbon and hydro-
gens, and the results for each basis set therefore illustrates
the effect on locality due to the concerted effect of the
geometrical arrangement of centers of basis functions
rather than the effect of the locality of single AOs. Fur-
ther, the results show a cross-over where the least favor-
able system (in terms of locality of S−1) shifts from being
the highly-ordered planar graphene for cc-pVDZ to the
three-dimensional diamond structure for cc-pVQZ. For
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Figure 2. The distance decay of S−1 is plotted for eicosane (circles), graphene (triangles) and diamond (squares) for cc-pVDZ (left), cc-
pVTZ (middle) and cc-pVQZ (right). For the presented calculations, a canonical orthogonalisation of the basis was carried out, and all
components corresponding to eigenvalues smaller than 10−3 were removed. See Table 1 for how many components are removed in
each case.

cc-pVTZ the results for graphene and diamond are sim-
ilar. Thus, the nature of the bonding (non-local conju-
gated versus localised covalent bonding) is irrelevant for
the effects of locality on the virtual MO space as dic-
tated by S−1 (through Equation (5)), as the nature of S−1

is dominating. This further explains some of the mis-
interpretations of poor virtual locality of orbital spaces
of conjugated systems. Due to their planarity, the local-
ity of the virtual space will be more prone to effects of
eigenvalues ofS−1 thannon-planarmolecules in addition
to being affected by the less local nature of Do. How-
ever, the effect of S−1 will dominate over Do due to the
large norm of S−1. Note that it is the locality of the vir-
tual densitymatrix which display decay behaviour as S−1,
it will therefore be impossible for an orbital localisation
scheme to recover locality, as the density matrix is invari-
ant with respect to orthogonal transformations among
the orbitals.

3.2. Removing near-dependencies by canonical
orthogonalisation

Here we look at the effect of removing components of
the basis which corresponds to eigenvalues of S below a

given threshold. Although a common threshold to use is
usually on the order of 10−6, here we use an threshold
of 10−3. The threshold is chosen so that 1

λmin
is on the

same order of magnitude as λmax. Hence, all eigenvalues
contributing to the large norm of S−1 is removed to see
whether this recovers locality. In a practical calculation, a
threshold of this order of magnitude would compromise
the basis set and also destroy idempotency relations of
the density matrices over the unchanged S. In Figure 2
the distance decay of S−1 after removing components
for λi < 10−3 are plotted for eicosane (circles), graphene
(triangles) and diamond (squares) for cc-pVDZ (left),
cc-pVTZ (middle) and cc-pVQZ (right). For ease of com-
parison, Figure 2 is plotted on the same scale as Figure 1.
The number of removed components, N<, are listed in
Table 1.

Comparing Figure 2 to 1 it is seen that removing com-
ponents for small λi greatly reduces the numerical values
of max|S−1

μν |, as expected from Equation (3). As an exam-
ple, max|S−1

μν | at Rμν = 2 Å is reduced from ≈ 106 for
graphene (cc-pVQZ) to ≈ 102. Further, the max|S−1

μν |
values for all three molecular systems are seen to be of
similar order ofmagnitude. However, there is only a weak
decay behaviour. From 2 Å to 12 Å, max|S−1

μν | has not
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Figure 3. The distance decay of S for eicosane using cc-pVQZ.

decayed by one whole order of magnitude. For com-
parison, the distance decay of S for cc-pVQZ is plotted
in Figure 3 (note the different scales of the axis). This
implies that although the huge norm of S−1 has been
reduced, it will be impossible to properly localise molec-
ular orbitals since they must fulfill the tail behaviour
(behaviour at long Rμν) ofDv, as dictated by S−1.

3.3. Non-orthogonal sets of orbitals

The previous section illustrates that orthogonality has
severe consequences for locality of the virtual orbital
space, especially when considering highly ordered sys-
tems and/or large basis sets. Thus, one may turn to non-
orthogonal orbitals as they need not describe the non-
locality of the densitymatrix themselves (see Section 2.2).
In this section, we present numerical illustrations for a
commonly used set of non-orthogonal orbitals, the PAOs.
The PAOs constitute a non-orthogonal and redundant set
of orbitals. It is therefore of interest to see how the sets
of PAOs behave for one-, two-, and three-dimensional
systems as one increase the size of the basis set. In this
section, we consider the normalised PAOs (excluding
core orbitals). In Figure 4 the distance decay of nor-
malised orbital coefficients,Cpao = 1 − DoS, for PAOs is
plotted. Note the difference in scale on the y-axis com-
pared to Figure 1. From Figure 4 (left) it is seen that for
cc-pVDZ it is the curve for graphene (red triangles) that
stands out. Since the orbital norms need not reflect S−1,
the effect of a non-local structure Do can be seen for
graphene using cc-pVDZ. Looking at the results for cc-
pVTZ (Figure 4, middle) it is seen that the effects of the
underlying AO basis is increasing, as is mainly seen for
diamond (squares) which is three-dimensional. At this

Figure 4. The distance decay of Cpao is plotted for eicosane (circles), graphene (triangles) and diamond (squares) for cc-pVDZ (left),
cc-pVTZ (middle) and cc-pVQZ (right).
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point PAOs for graphene and diamond exhibit similar
distance decays. For cc-pVQZ (Figure 4, right) the curve
for diamond (squares) is above the one for graphene (tri-
angles). For all three basis sets the behaviour of the curves
for eicosane (circles) are similar.

Although Figure 4 is not directly comparable to
Figure 1 since here the coefficients are investigated
(whereas it was the virtual density matrix through S−1

in Figure 1), the same trends are seen in the two figures
with respect to the effect on ordered two- and three-
dimensional systems when the basis set is increased. The
problems are, however, less pronounced for the PAOs
than it is for orthogonal orbitals. Hence, using non-
orthogonal orbitals S−1 will be less detrimental to the
calculation, but not avoided.

4. Summary and concluding remarks

In this paper, the connection between the spectrum of
the AO overlap matrix and locality of density matrices is
discussed. The challenges arising due to the spectrum of
the AO overlap matrix is increasingly relevant as devel-
opments in electronic-structure theory pushes the limits
for the size of molecular systems and quality of basis
sets used. The problem arises due to the use of a non-
orthogonal AO basis as well as the fact that basis sets used
for large molecular systems are developed and designed
for single atoms and small molecular systems. For large
molecules, there is an concerted effect of AOs, similar
to that seen for extended systems. It is shown that when
eigenvalues of the AO overlap matrix becomes small (but
far from near-singular) the locality of the virtual den-
sity matrix will be severely impaired. The effect is seen
already for small basis sets such as cc-pVDZ. The local-
ity cannot be recovered by removing components corre-
sponding to small eigenvalues, and a consequence is that
orthogonal MOs is not a suitable basis to exploit local-
ity. The presented results explain why localised molec-
ular orbitals have been shown to perform poorly in
terms of e.g. compact descriptions of electron correlation
effects. The delocalisation effects through orthogonalisa-
tion affects compactness of representation. The orthogo-
nalisation tails of the orthogonal MOs will be significant,
even for small basis sets. Non-orthogonal sets of orbitals
will display better distance decay, as the non-locality of
the density matrices may be contained in the inverse
MO overlap rather than in the molecular orbital coeffi-
cients themselves.However, some of the same trends seen
for orthogonal orbitals are also seen for non-orthogonal
sets such as the PAOs, although to a less extent. Non-
orthogonality of orbitals may reduce the consequences,
but it does not fix the underlying problem of the AO
basis.

Acknowledgments

The author acknowledges financial support from the Norwe-
gian Research Council through project no. 275506, and com-
putations were performed on resources provided byUNINETT
Sigma2 – the National Infrastructure for High Perfromance
Computing and Data Storage in Norway.

Disclosure statement

No potential conflict of interest was reported by the author.

Funding

The author acknowledges financial support from the Norwe-
gian Research Council through project no. 275506, and com-
putations were performed on resources provided byUNINETT
Sigma2 – the National Infrastructure for High Performance
Computing and Data Storage in Norway.

References

[1] P. Pulay, Chem. Phys. Lett. 100, 151 (1983).
[2] C. Hampel and H.J. Werner, J. Chem. Phys. 104 (16),

6286–6297 (1996).
[3] M. Schütz, G. Hetzer, andH.J.Werner, J. Chem. Phys. 111

(13), 5691–5705 (1999).
[4] N. Flocke and R.J. Bartlett, J. Chem. Phys. 121 (22),

10935–10944 (2004).
[5] M. Ziółkowski, B. Jansík, P. Jørgensen, and J. Olsen, J.

Chem. Phys. 131, 124112 (2009).
[6] N. Govind, Y.A. Wang, and E.A. Carter, J. Chem. Phys.

110 (16), 7677–7688 (1999).
[7] R. Mata, H. Werner, and M. Schütz, J. Chem. Phys. 128,

144106 (2008).
[8] W. Li and P. Piecuch, J. Phys. Chem. A 114, 6721 (2010).
[9] Z. Rolik andM.Kallay, J. Chem. Phys. 135, 104111 (2011).
[10] S. Hofener and L. Visscher, J. Chem. Phys. 137, 204120

(2012).
[11] P.J. Bygrave, N.L. Allan, and F.R. Manby, J. Chem. Phys.

137 (16), 164102 (2012).
[12] R.H. Myhre, A. Sanchez de Meras, and H. Koch, J. Chem.

Phys. 141, 224105 (2014).
[13] S. Sæther, T. Kjærgaard, H. Koch, and I-M. Høyvik, J.

Chem. Theory Comput. 13, 5282–5290 (2017).
[14] D.J. Coughtrie, R. Giereth, D. Kats, H.J. Werner, and A.

Köhn, J. Chem. Theory Comput. 14 (2), 693–709 (2018).
[15] T. Ahlenius, J.L. Calais, and P.O. Löwdin, J. Phys. C: Solid

State Physics 6, 1896 (1973).
[16] R.H. Parmenter, Phys. Rev. 86, 552–560 (1952).
[17] P.O. Löwdin, J. Chem. Phys. 18 (3), 365–375 (1949).
[18] P.O. Löwdin, J. Appl. Phys. 33, 251 (1962).
[19] G. Aissing and H.J. Monkhorst, Int. J. Quant. Chem. 43,

733–745 (1992).
[20] P.G. Lykos and H.N. Schmeising, J. Chem. Phys. 35, 288

(1961).
[21] B.C. Carlson and J.M. Keller, Phys. Rev. 105 (1), 102–103

(1957).
[22] I-M. Høyvik, K. Kristensen, T. Kjærgaard, and P. Jør-

gensen, Theor. Chem. Acc. 133, 1417 (2014).



MOLECULAR PHYSICS 9

[23] I-M. Høyvik, J. Olsen, and P. Jørgensen, Mol. Phys. 1–10
(2016).

[24] A.S. Hansen, G. Baardsen, E. Rebolini, L. Maschio, and
T.B. Pedersen, Mol. Phys. 1, 1–11 (2020).

[25] R. Ahlrichs and W. Kutzelnigg, J. Chem. Phys. 48,
1819–1832 (1968).

[26] F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys.
130 (11), 114108 (2009).

[27] J. Yang, G.K. Chan, F.R. Manby, M. Schuetz, and H.J.
Werner, J. Chem. Phys. 136 (14), (2012).

[28] C. Krause and H. Werner, Phys. Chem. Chem. Phys. 14,
7591–7604 (2012).

[29] Q. Ma and H.J. Werner, WIREs Comput. Mol. Sci. 8 (6),
e1371 (2018).

[30] I-M. Høyvik and P. Jørgensen, Chem. Rev. 116 (5),
3306–3327 (2016).

[31] W. Meyer, Int. J. Quantum Chem. 5 (S5), 341–348
(1971).

[32] A.V. Luzanov, A.A. Sukhorukov, and V.E. Umanskii,
Theor. Exp. Chem. 10, 354–361 (1976).

[33] I-M. Høyvik, R. Myhre, and H. Koch, J. Chem. Phys. 146
(14), 144109 (2017).

[34] P. Baudin and K. Kristensen, J. Chem. Phys. 146, 214114
(2017).

[35] C.G. Zhan and F. Zheng, J. Mol. Struc.(Theochem) 226
(3), 339–349 (1991).

[36] D. Moncrieff and S. Wilson, Int. J. Quantum Chem. 101
(4), 363–371 (2005).


	1. Introduction
	2. Theory
	2.1. The atomic orbital overlap matrix
	2.2. The connection to the molecular orbital space
	2.3. Physical significance of the eigenvalues of the AO overlap matrix

	3. Numerical illustrations
	3.1. The effect of near-dependencies on spatial locality
	3.2. Removing near-dependencies by canonical orthogonalisation
	3.3. Non-orthogonal sets of orbitals

	4. Summary and concluding remarks
	Acknowledgments
	Disclosure statement
	Funding
	References

