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CLASSROOM NOTE

Arc length of function graphs via Taylor’s formula

Patrik Nystedt

Department of Engineering Science, University West, Trollhättan, Sweden

ABSTRACT
Weuse Taylor’s formulawith Lagrange remainder to prove that func-
tions with bounded second derivative are rectifiable in the case
when polygonal paths are defined by interval subdivisions which are
equally spaced. As a means for generating interesting examples of
exact arc length calculations in calculus courses, we recall two large
classes of functions f with the property that

√
1 + (f ′)2 has a primi-

tive, including classical examples by Neile, van Heuraet and Fermat,
as well as more recent ones induced by Pythagorean triples of func-
tions. We also discuss potential benefits for our proposed definition
of arc length in introductory calculus courses.
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1. Introduction

One of the first experiences ofmeasurements that we encounter in our lives is that of length.
Even young children are involved inmany everyday activities that concern lengthmeasure-
ments. Questions such as ‘How tall am I?’ or ‘How long can you jump?’ or ‘How far is it to
my friends house?’ arise naturally from them. In the early years of schooling we are taught
how to measure lengths of straight lines using a ruler and express our findings in appro-
priate units. In middle school, we are presented with the problem of measurement of the
circumference a the circle and how to relate this to the length of its diameter. For many
students the transition from understanding straight line measurements to comprehending
length measurement of non-linear curves is not so easily accomplished. Indeed, it is only
natural for them to pose questions such as ‘How can we measure something curved using
a straight ruler?’ or ‘What do we really mean when we speak of the length of a curve?’.
As teachers, we have to treat these questions seriously, because when pondering over this,
the students are placed in very good company. Indeed, over the millennia, many of our
greatest thinkers failed to provide satisfying answers to such questions. For instance, the
Greek philosopher Aristotle (384–322 BC) stated the following concerning comparisons
of motions along straight lines and along circles:

But, once more, if the motions are comparable, we are met by the difficulty aforesaid, namely
that we shall have a straight line equal to a circle. But these are not comparable. (Heath, 1970,
p. 141)
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With some exceptions (for instance Archimedes rectification of the circle using a spiral,
see e.g. Richesnon, 2013), Aristotle’s view on thesematters persisted amongst scholars even
up to the time of Descartes (1596–1650) who wrote the following in his work La Géométrie
from 1637:

. . . the ratios between straight and curved lines are not known, and I believe cannot be dis-
covered by human minds, and therefore no conclusion based on such ratios can be accepted
as rigorous and exact. (Smith Lantham, 1954, p. 91)

Descartes would only 20 years later be proved wrong on this point by Neile who showed
how to rectify the semi-cubical parabola y3 = ax2. Independently, both van Heuraet and
Fermat came to the same conclusion within a few years after Neil’s discovery (Traub, 1984).
After that, of course, Newton and Leibniz fully developed the calculusmachinery including
formulas for arc length using integrals (Edwards, 1979, p. 217, 242).

2. Arc length in calculus teaching

The first time students are exposed to arc length calculations of general functions is in
introductory calculus courses. In popular calculus books (see e.g. Adams, 2006; Hass
et al., 2017; Stewart, 2015) the concept of curve length is typically defined in the following
way.

Definition 2.1: Let A and B be two points in the plane and let |AB| denote the distance
between A and B. Let C be a curve in the plane joining A and B. Suppose that we choose
points A = P0, P1, P2, . . . , Pn−1 and Pn = B in order along the curve. The polygonal line
P0,P1,P2, . . . ,Pn constructed by joining adjacent pairs of these points with straight lines
forms a polygonal approximation to C, having length Ln = ∑n

i=1 |Pi−1P1|. The curve C
is said to be rectifiable if the limit L of Ln, as n → ∞ and the maximum segment length
|Pi−1Pi| → 0, exists. In that case L is called the length of C.

Note that if we use this definition, then we are not calculating a limit of a sequence, in
the usual sense that the students are used to, but rather the limit of a net in the following
sense (for the details, see e.g. Bear, 1995 or Olmstead, 1961). A directed set is a non-empty
set D equipped with a partial ordering ≺ satisfying the following three conditions:

(i) α ≺ α for all α ∈ D;
(ii) if α ≺ β and β ≺ γ , then α ≺ γ ;
(iii) if α,β ∈ D, then there is γ ∈ D such that α ≺ γ and β ≺ γ .

A net is a function defined on a directed set. Note that a sequence is a type of net, with
D being the set of natural numbers directed as usual, namely that n ≺ mmeans n ≤ m. In
Definition 2.1,D is defined to be the set of choices of finite sets of points along the curve C,
with the first point being A and the last being B. If α and β are two such choices, then put
α ≺ β if α ⊆ β , that is if β is a refinement of α. In an analogous fashion, Riemann sums
can be considered as limits of nets by defining refinements of partitions of intervals. So the
approach using nets covers in a natural way many seemingly unrelated mathematical con-
cepts in a beautiful way. It also has the advantage of making different types of limit proofs
look like sequence limit proofs. However, it is highly abstract and it is also unsuitable for
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concrete calculations, for instance using computer simulations. Disregarding these difficul-
ties, the typical calculus book (see e.g. Adams, 2006; Hass et al., 2017; Stewart, 2015) will
then state some variant of the following result which is then used in exercises to calculate
lengths of function graphs in particular cases.

Theorem2.2: If f is a real-valued function defined on [a, b]with the property that its deriva-
tive exists and is continuous on [a, b], then f is rectifiable on [a, b] and its length L equals∫ b
a
√
1 + f ′(x)2 dx. In that case, if G is a primitive function of

√
1 + (f ′)2 on [a, b], then

L = G(b) − G(a).

The typical ‘proof’ of this result runs as follows. For the partition {a = x0 < x1 < x2 <

· · · < xn = b}, let Pi be the point (xi, f (xi)), 0 ≤ i ≤ n. By the mean-value theorem there
exists ci ∈ (xi−1, xi) such that f (xi) − f (xi−1) = f ′(ci)(xi − xi−1). A few lines of calculation
now yield that Ln = ∑n

i=1
√
1 + f ′(ci)2�xi which can be recognized as a Riemann sum for∫ b

a
√
1 + f ′(x)2 dx which ends the proof by invoking the fundamental theorem of calculus

(FTC).
The problem with this ‘proof’ is that it is, in fact, not a proof at all. Why? Well, because

it relies on the FTC which is not proved in full detail in any of the popular calculus texts in
use today. Sure, parts of it are proved, but the hardest part concerning the convergence of
Riemann sums is left out. The reason for skipping this is that a presentation including all
details will be long and complicated. For instance, in Tao’s book (Tao, 2006) the definition
of general Riemann sums and proofs of properties such as these, including the FTC, takes
more than 30 pages, excluding an argument for the crucial fact that continuous functions
on compact intervals are uniformly continuous, which would make the presentation even
longer.

We sympathize with the method of ‘cheating’ with the theory in calculus courses. To
be honest, we can, of course, not prove every statement made in the course. However, we
feel that leaving out a valid argument concerning such a central fact as the convergence of
Riemann sums should be regarded as cheating at the wrong place.

In a recent article (Nystedt, 2019), we argue that the integral therefore should be defined
using equally spaced subdivisions of the interval using only left (or right endpoints). We
call the corresponding sumsEuler sums, inspired by the fact that Euler (1768, Part I, Section
I, Chapter 7) proposed such sums for the approximative calculations of integrals.

Definition 2.3: Suppose that f is a real valued function defined on an interval [a, b].
For all n ∈ N and all k ∈ Z, we put �x = (b − a)/n and xk = a + k�x. We say that
In = ∑n−1

k=0 f (xk)�x is the nth Euler sum of f on [a, b] and we say that f is Euler integrable
on [a, b] if the limit I = limn→∞ In exists. In that case, we call I the integral of f on [a, b]
and we write this symbolically as

∫ b
a f (x) dx = I.

In (Nystedt, 2019), we show, using an idea of Poisson (see Bressoud, 2011 or Gra-
biner, 1983), utilizing Taylor’s formula with Lagrange remainder, that the following version
of the FTC easily can be proved in just a few lines of calculation.

Theorem 2.4: If F is a real-valued function defined on [a, b] such that its first derivative
exists and is continuous on [a, b], and its second derivative exists and is bounded on (a, b),
then f = F′ is Euler integrable on [a, b] and

∫ b
a f (x) dx = F(b) − F(a).



4 P. NYSTEDT

3. Simplified arc length

In this article, we parallel our investigations in Nystedt (2019) and use Euler sums to define
length of function graphs (see Definition3.1). We prove (see Theorem 3.4), using our ver-
sion of the FTC, assuming some regularity conditions, that length of function graphs can
be calculated via integrals using the classical formula given in Theorem 2.2.

Definition 3.1: Suppose that f is a real-valued function defined on an interval [a, b]. For all
n ∈ N we put �x = (b − a)/n, and for all k ∈ {0, 1, . . . , n − 1}, we put xk = a + k�x and
�yk = f (xk+1) − f (xk). We say that Ln = ∑n−1

k=0
√

(�x)2 + (�yk)2 is the nth polygonal
length of f on [a, b] and we say that f is rectifiable on [a, b] if the limit L = limn→∞ Ln
exists. In that case, we call L the arc length of f on [a, b].

The above definition is mathematically crystal clear and the polygonal lengths of this
form are easy for students to calculate in particular cases (see Section 5). To prove themain
result of the article, we need Taylor’s formula with Lagrange remainder, a result which we
now state, for the convenience of the reader.

Theorem 3.2: Let n be a non-negative integer. If f is a real-valued function defined on [a, b]
such that its nth derivative exists, is continuous on [a, b], and is differentiable on (a, b), then
there exists c ∈ (a, b) such that

f (b) =
n∑
j=0

f (j)(a)
j!

(b − a)i + f (n+1)(c)
(n + 1)!

(b − a)n+1.

Proof: For a short proof, see e.g. Hardy (1908), Nystedt (2019) and Olmstead (1961). �

In the proof of our main result, we also need the following lemma.

Lemma 3.3: If A, B and C are real numbers, with A>0, then there is a real number D,
between 0 and C, such that

√
A + (B + C)2 =

√
A + B2 + (B + D)C√

A + (B + D)2
.

Proof: Define the function g : R → R by g(x) =
√
A + (B + x)2, for x ∈ R. Since A>0,

the function g is differentiable at all x ∈ Rwith derivative g′(x) = (B + x)/
√
A + (B + x)2.

The claim now follows from Theorem 3.2 with n = 0, a = 0 and b = C (that is, the mean
value theorem). �

Theorem 3.4: If f is a real-valued function defined on [a, b] such that its first derivative
exists and is continuous on [a, b], its second derivative exists and is bounded on (a, b), then
f is rectifiable on [a, b] if and only if the function

√
1 + (f ′)2 is Euler integrable on [a, b]. In

that case, the length L of f on [a, b] equals
∫ b
a
√
1 + f ′(x)2 dx. If, in addition,

√
1 + (f ′)2 has

an antiderivative G on [a, b], then L = G(b) − G(a).
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Proof: We use the notation introduced earlier. From Theorem 3.2 with n = 1, we get that

�yk
�x

= f ′(xk) + f ′′(ck)�x
2

for some ck ∈ (xk, xk+1), depending on k and �x, for k ∈ {0, . . . , n − 1}. Thus, from
Lemma 3.3, it follows that√

1 +
(

�yk
�x

)2
=
√
1 +

(
f ′(xk) + f ′′(ck)�x

2

)2

=
√
1 + f ′(xk)2 + (f ′(xk)2 + D)f ′′(ck)�x

2
√
1 + (f ′(xk) + D)2

for some real number D between 0 and f ′′(ck)�x/2. Hence

Ln =
n−1∑
k=0

√
(�x)2 + (�yk)2

=
n−1∑
k=0

√
1 +

(
�yk
�x

)2
�x

=
n−1∑
k=0

√
1 + f ′(xk)2�x +

n−1∑
k=0

(f ′(xk) + D)f ′′(ck)(�x)2

2
√
1 + (f ′(xk) + D)2

which proves the claim, since

∣∣∣∣∣
n−1∑
k=0

(f ′(xk) + D)f ′′(ck)(�x)2

2
√
1 + (f ′(xk) + D)2

∣∣∣∣∣ ≤ (�x)2

2

n−1∑
k=0

|f ′′(ck)| ≤ M(b − a)2

2n
→ 0,

as n → ∞, for any M satisfying |f ′′(x)| ≤ M when a< x<b. The last part follows from
Theorem 2.4. �

Remark 3.5: From the above proof, we immediately get the error bound

|L − Ln| ≤ M(b − a)2

2n
,

for all n ∈ N, whereM = sup{|f ′′(x)|; a < x < b}, for the nth polygonal length.

4. Primitives of
√
1 + (f ′)2

It seems to be a common opinion amongmathematics teachers that there are few examples
of functions f for which

√
1 + (f ′)2 has a primitive function. In this section, we show that

this is far from true by recalling two large classes of such functions.
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4.1. The examples of Neile, van Heuraet and Fermat

Neile, van Heuraet and Fermat all considered rectification of curves of the type

f (x)n = axn+1

for positive integers n and positive real numbers a (see e.g. Traub, 1984). Here, we will not
follow their original approaches, but instead use modern tools from a typical calculus class
to investigate this problem.We will also make a particular choice of the constant a to make
our calculations simpler.

Proposition 4.1: If n is a positive integer and 0 ≤ x1 ≤ x2, then the function

f (x) = n
n + 1

x(n+1)/n

is rectifiable over over [x1, x2] with length

n2−n−1
∫ t2

t1
(t2 − 1)n−1(t2 + 1)2t−n−2 dt, (1)

where t1 and t2 are strictly positive numbers given by t1 = x1/n1 +
√
1 + x2/n1 and t2 = x1/n2 +√

1 + x2/n2 .

Proof: Since f ′(x) = x1/n it follows fromTheorem 2.2 that f is rectifiable over [x1, x2] with
length ∫ x2

x1

√
1 + x2/n dx. (2)

If we make the substitution s = x1/n, then dx/ds = nsn−1 and therefore (2) equals∫ s2

s1
nsn−1

√
1 + s2 ds, (3)

where s1 = x1/n1 and s2 = x1/n2 . It is well known that it is always possible to find a primitive
function of an expression which is rational in s and

√
1 + s2 by making the substitution

t = s +
√
1 + s2.

Indeed, from the equality

(t − s)2 = 1 + s2

we get that

s = t2 − 1
2t

and thus √
1 + s2 = t − s = t − t2 − 1

2t
= t2 + 1

2t
.
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From the equality

s = t2 − 1
2t

we get that
ds
dt

= t2 + 1
2t2

.

Therefore (3) equals∫ t2

t1
n · (t2 − 1)n−1

(2t)n−1 · t
2 + 1
2t

· t
2 + 1
2t2

dt = n2−n−1
∫ t2

t1
(t2 − 1)n−1(t2 + 1)2t−n−2 dt,

where

t1 = s1 +
√
1 + s21 = x1/n1 +

√
1 + x2/n1

and

t2 = s2 +
√
1 + s22 = x1/n2 +

√
1 + x2/n2 .

Note that since

t2 ≥ t1 = x1/n1 +
√
1 + x2/n1 > x1/n1 +

√
x21 = 2x1/n1 ≥ 0,

the integrand in (1) is a bounded continuous function and hence is the integral in (1)
convergent. �

To illustrate the above result, we will consider some examples. Note that we will use the
same notation as in Proposition 4.1.

Example 4.2: Let n = 1. This is the problem of the rectification of the parabola f (x) =
x2/2. From Proposition 4.1 it follows that the length of f over [x1, x2] equals

2−2
∫ t2

t1
(t2 + 1)2t−3 dt = 1

4

∫ t2

t1
t + 2t−1 + t−3 dt =

[
t2

8
+ ln(t)

2
− t−2

8

]t2
t1
,

where t1 = x1 +
√
1 + x21 and t2 = x2 +

√
1 + x22. To simplify this, note that

t21 = 2x21 + 1 + 2x1
√
1 + x21.

and

(

√
x21 + 1 + x1)(

√
x21 + 1 − x1) = 1,

so that

t−1
1 =

√
x21 + 1 − x1

which in turn implies that

t−2
1 = 2x21 + 1 − 2x1

√
1 + x21.

Analogous equalities hold for t2 and x2. The length of f over [x1, x2] hence equals

1
2 [x
√
1 + x2 + ln(x +

√
1 + x2)]x2x1 .
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Remark 4.3: Although the general primitive function of t−1 is ln|t|, we can remove the
absolute value in our examples, thanks to the limits of the integrals being positive, as stated
by Proposition 4.1.

Example 4.4: Let n = 2. This is the problem of the rectification of the semicubical
parabola f (x) = 2x3/2/3. From Proposition 4.1 it follows that the length of f over [x1, x2]
equals

2−2
∫ t2

t1
(t2 − 1)(t2 + 1)2t−4 dt = 1

4

∫ t2

t1
t2 + 1 − t−2 − t−4 dt

= 1
12

[t3 + 3t + 3t−1 + t−3]t2t1

= 1
12

[(t + t−1)3]t2t1 ,

where t1 = √
x1 + √

1 + x1 and t2 = √
x2 + √

1 + x2. To simplify this, note that

(
√
x1 + 1 + √

x1)(
√
x1 + 1 − √

x1) = 1

so that

t−1
1 = √

x1 + 1 − √
x1,

and analogously for t2 and x2. The length of f over [x1, x2] hence equals

1
12 [(2

√
x + 1)3]x2x1 = 2

3 [(x + 1)3/2]x2x1 .

Note that the use of the general result in Proposition 4.1 is unnecessary in this case since
we see immediately that if f (x) = 2x3/2/3, then f ′(x) = √

x so that the length of f over
[x1, x2] equals ∫ x2

x1

√
1 + f ′(x)2 dx =

∫ x2

x1

√
1 + x dx = 2

3
[(1 + x)3/2]x2x1 .

Example 4.5: Let n = 3. This is the problem of the rectification of the curve f (x) =
3x4/3/4. From Proposition 4.1 it follows that the length of f over [x1, x2] equals

3
16

∫ t2

t1
(t2 − 1)2(t2 + 1)2t−5 dt = 3

16

∫ t2

t1
t3 − 2t−1 + t−5 dt

= 3
16

[
t4

4
− 2ln(t) − t−4

4

]t2
t1
,

where t1 = x1/31 +
√
1 + x2/31 and t2 = x1/32 +

√
1 + x2/32 . To simplify this, note that

t41 = (2x2/31 + 1)2 + 4x2/31 (1 + x2/3) + 4x1/31 (2x2/31 + 1)
√
1 + x2/31

and

(

√
1 + x2/31 + x1/31 )(

√
1 + x2/31 − x1/31 ) = 1
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so that

t−1
1 =

√
1 + x2/31 − x1/31

which in turn implies that

t−4
1 = (2x2/31 + 1)2 + 4x2/31 (1 + x2/3) − 4x1/31 (2x2/31 + 1)

√
1 + x2/31

Analogous equalities hold for t2 and x2. The length of f over [x1, x2] hence equals

3
8 [x

1/3(2x2/3 + 1)
√
1 + x2/3 − ln(x1/3 +

√
1 + x2/3)]x2x1 .

Remark 4.6: The reader might argue that the ‘simplifications’ made in Examples 4.2, 4.4
and 4.5 are, in fact, not simplifications at all. Indeed,with the access to a scientific calculator,
the student would find it easier to first calculate the values of t1 and t2 and then inserting
them into the result (1) in terms of t. Nevertheless, we have chosen to include the more
complicated formulas depending on x1 and x2 since the techniques involved in obtaining
them, using products of conjugate expressions, are instructive and might, if an instructor
so wished, be used as challenging exercises for the students.

4.2. Pythagorean triples of functions

Suppose that we seek two functions p and q such that f ′ = p/q and 1 + (f ′)2 = g2 where g
is some function towhichwe canfind a primitive functionG. This implies that 1 + p2/q2 =
g2 or equivalently that (p2 + q2)/q2 = g2. Oneway to accomplish this is if p2 + q2 = r2 for
some function r of reasonably simple type. This means that (p, q, r) is a Pythagorean triple
of functions. It is a classical result in number theory that such triples, consisting of integers,
can be parametrized by p = k(m2 − n2), q = k(2mn) and r = k(m2 + n2), where k,m and
n are positive integers with m>n, and with m and n coprime and not both odd (see e.g.
Long, 1972). In Kubota (1972) Kubota has shown that the same kind of result holds in
any unique factorization domain (UFD). In particular, it holds for polynomial rings R[X],
since they are Euclidean domains and hence UFD’s. The bottom line is that we can use this
kind of parametrization to yield examples of rectifiable curves in the following way.

Proposition 4.7: Suppose that m and n are positive continuous functions defined over the
closed interval [a, b]. If f and G are differentiable functions defined over [a, b] satisfying

f ′ = m
2n

− n
2m

and

G′ = m
2n

+ n
2m

,

then f is rectifiable over [a, b] with length G(b) − G(a).
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Proof: Since

√
1 + (f ′)2 =

√
1 +

(m
2n

− n
2m

)2

=
√(m

2n

)2 + 1
2

+
( n
2m

)2

=
√(m

2n
+ n

2m

)2
=
∣∣∣m
2n

+ n
2m

∣∣∣
= m

2n
+ n

2m
= G′

the claim follows from Theorem 2.2. �

Let us illustrate Proposition 4.7 in three examples.

Example 4.8: A problem which often comes up in calculus textbooks is to calculate the
length of a portion of the hyperbolic cosine function over any interval [a, b]. Based on our
calculations above, it is easy to see why. Indeed, if we put f (x) = cosh(x), then f ′(x) =
sinh(x) = m/(2n) − n/(2m) where m = ex and n = 1 are positive and continuous over
[a, b]. Since G(x) = sinh(x) is a primitive function of m/(2n) + n/(2m) = cosh(x), the
length of f (x) = cosh(x) over [a, b] equals sinh(b) − sinh(a). The corresponding task for
the students could therefore be:

Problem 4.9: Show that the length of

f (x) = cosh(x)

over the interval [0, 1] equals
e
2

− 1
2e
.

Example 4.10: Define functions m = 4x and n = x2 + 1 over any interval [a, b] where a
is positive. Thenm and n are positive. We need to find f so that

f ′(x) = m
2n

− n
2m

= 4x
2x2 + 2

− x
8

− 1
8x

.

We choose

f (x) = ln(2x2 + 2) − x2

16
− ln(x)

8
.

Next, we need to find a primitive G of the function

m
2n

+ n
2m

= 4x
2x2 + 2

+ x
8

+ 1
8x

.
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We choose

G(x) = ln(2x2 + 2) + x2

16
+ ln(x)

8
.

The length of f over [a, b] equals G(b) − G(a). Now we can construct a challenging task
for the students:

Problem 4.11: Show that the length of

f (x) = ln(2x2 + 2) − x2

16
− ln(x)

8
over the interval [1, 2] equals

3
16

+ ln(5) − 7ln(2)
8

.

Example 4.12: Define functionsm = (x + 2)2 and n = (x + 1)(x2 + 1) over any interval
[a, b] where a > −2. We need to find f so that

f ′(x) = m
2n

− n
2m

= (x + 2)2

2(x + 1)(x2 + 1)
− (x + 1)(x2 + 1)

2(x + 2)2
.

Since
(x + 2)2

2(x + 1)(x2 + 1)
= x

4(x2 + 1)
+ 7

4(x2 + 1)
+ 1

4(x + 1)
and

(x + 1)(x2 + 1)
2(x + 2)2

= x
2

− 3
2

− 5
2(x + 2)2

+ 9
2(x + 2)

we can choose

f (x) = ln(x2 + 1)
8

+ 7tan−1(x)
4

+ ln(x + 1)
4

− x2

4
+ 3x

2
− 5

2(x + 2)
− 9ln(x + 2)

2
.

Next, we need to find a primitve G of the function
m
2n

+ n
2m

= x
4(x2 + 1)

+ 7
4(x2 + 1)

+ 1
4(x + 1)

+ x
2

− 3
2

− 5
2(x + 2)2

+ 9
2(x + 2)

.

We choose

G(x) = ln(x2 + 1)
8

+ 7tan−1(x)
4

+ ln(x + 1)
4

+ x2

4
− 3x

2
+ 5

2(x + 2)
+ 9ln(x + 2)

2
.

The length of f over [a, b] equals G(b) − G(a). Now we can construct a really challenging
task for the students:

Problem 4.13: Show that the length of

f (x) = ln(x2 + 1)
8

+ 7tan−1(x)
4

+ ln(x + 1)
4

− x2

4
+ 3x

2
− 5

2(x + 2)
− 9ln(x + 2)

2
over the interval [0, 1] equals

7π
16

− 5
3

+ 9ln(3)
2

− 33ln(2)
8

.
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5. Discussion

In this article, we have presented a simplified definition of arc length as a limit of polygonal
sumswhere the subdivision of the interval is uniform.We feel that such an approachwould
support the students’ learning of calculus for many reasons.

First of all, we have provided a complete proof that the polygonal lengths converge
precisely when the associated integral

L =
∫ b

a

√
1 + f ′(x)2 dx (4)

exists. In many popular calculus books the proof of this fact is incomplete since conver-
gence of the nets associated with general Riemann sums is not proved.

Secondly and perhapsmore importantly, the students can, using a simple computer pro-
gram, easily calculate approximations of our simplified polygonal lengths, before using (4).
For instance, suppose the students are given the task of calculating the arc length of
f (x) = 2x3/2/3 over the interval [3, 8]. For n ∈ N we have that �x = 5/n and thus

Ln =
n−1∑
k=0

√√√√25
n2

+
(
2
3

(
3 + 5k + 5

n

)3/2
− 2

3

(
3 + 5k

n

)3/2
)2

.

Using a computer program, rounding off to four decimal places, we get

L1 ≈ 12.6508 L2 ≈ 12.6622 L3 ≈ 12.6646 L4 ≈ 12.6655

L5 ≈ 12.6659 L10 ≈ 12.6665 L20 ≈ 12.6666 L100 ≈ 12.6666

which strongly suggests that L = 38/3. After this the students can try tomake the exact cal-
culation, which, as we saw before, is the rectification of the semicubical parabola. Namely,
since f ′(x)2 = x, we get, using Theorem 2.2, that

L =
∫ 8

3

√
1 + x dx =

[
2(1 + x)3/2

3

]8
3

= 2 · 93/2
3

− 2 · 43/2
3

= 38
3
,

which confirms what the students guessed. The students could then move on to try to
calculate the length of the parabola f (x) = x2/2 over the interval [0, 1]. Again, making
approximative calculations, we have �x = 1/n and thus

Ln =
n−1∑
k=0

√√√√ 1
n2

+ 1
4

((
k + 1
n

)2
−
(
k
n

)2
)2

.

Using a computer program, rounding off to four decimal places, we get

L1 ≈ 1.1180 L2 ≈ 1.1404 L3 ≈ 1.1445 L4 ≈ 1.1459 L5 ≈ 1.1466

L10 ≈ 1.1475 L20 ≈ 1.1477 L100 ≈ 1.1478 L200 ≈ 1.1478.
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After this, the students could try to calculate the exact value of the integral. From the
discussion in the previous section, this is the length of the parabola, which equals∫ 1

0

√
1 + x2 dx =

√
2
2

+ ln(1 + √
2)

2
.

Finally, the students could try to calculate the length of f (x) = x3/3 over the interval [0, 1].
Numerically, they would easily get L100 = 1.0894, rounding off to four decimal places.
However, when considering the exact length calculation, they have to dealwith the problem
of calculating ∫ 1

0

√
1 + x4 dx

which is a so-called elliptic integral (see e.g. Hancock, 1958) and is impossible to calculate
exactly using the elementary functions. It is our firm belief that students should be sub-
jected to the calculation of such integrals in a typical calculus course, in order for them to
appreciate the numerical calculations, which, after all, are crucially important for them in
a future work-life as e.g. engineers.
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