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ABSTRACT
In this paper, we consider the estimated weights of the tangency
portfolio. We derive analytical expressions for the higher order non-
central and central moments of these weights when the returns are
assumed to be independently andmultivariate normally distributed.
Moreover, the expressions formean, variance, skewness and kurtosis
of the estimatedweights are obtained in closed forms. Later,we com-
plement our resultswith a simulation studywheredata from themul-
tivariate normal and t-distributions are simulated, and the first four
moments of estimated weights are computed by using the Monte
Carlo experiment. It is noteworthy to mention that the distributional
assumption of returns is found to be important, especially for the
first two moments. Finally, through an empirical illustration utilizing
returns of four financial indices listed in NASDAQ stock exchange, we
observe the presence of time dynamics in higher moments.
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1. Introduction

The fundamental goal of the portfolio theory, as devised byMarkowitz [39], is to determine
an efficient way of portfolio allocation. The mean–variance optimization technique plays a
central role in allocating investments among different assets. According to it, the investor
allocates thewealth among risky assets bymaximizing the expected return based on a given
level of risk or by minimizing the risk for a given level of expected returns. The trade-off
between the risk and return of the portfolio is at the heart of portfolio theory, which seeks to
find optimal allocations of the investor’s initial wealth to the available assets. The tangency
portfolio (TP) is one such portfolio which consists of both risky and risk-free assets. In
order to have entire understanding of the conditions and processes in a portfolio, the study
on its statistical properties is crucial and unavoidable. Therefore, in this paper, we derive
analytical results for the higher moments of TP estimated weights, which also include the
expressions for skewness and kurtosis.

Statistical properties of the estimated TP weights are intensively discussed in the exist-
ing literature. For example, Britten-Jones [20] developed an F-test for the TPweights, while
Bodnar [6] delivered sequential monitoring procedures for the TP weights. The univariate
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density of the TP weights as well as its asymptotic distribution under the assumption of
independently and multivariate normally distributed returns are obtained by Okhrin and
Schmid [44]. Later on, Bodnar and Okhrin [16] derived the explicit density of the linear
transformation of the estimated weights and suggested several exact tests of general linear
hypothesis about the elements of the portfolio weights. Kotsiuba and Mazur [34] derived
the approximate density function formula for the weights, which is based on the Gaussian
integral and the third-order Taylor expansion. A test on the location of the TP on the set
of feasible portfolios is developed byMuhinyuza et al. [42]. Bodnar et al. [15] extended the
results by Bodnar and Okhrin [16] in the setting when both the population and the sample
covariance matrices are singular. Moreover, they established the high-dimensional asymp-
totic distribution of the estimated weights of the TP when both the portfolio dimension
and the sample size increase to infinity. In [46], the authors delivered new theory-based
portfolio strategies which are the combinations of the naive 1/N rule with the sophisti-
cated theory-based strategies. Shrinkage estimators for the optimal portfolio weights that
allow us to shrink the estimated classical Markowitz weights to the deterministic target
portfolio weights are proposed by, for example, Wang [47]. More recently, Bauder et al. [5]
studied the distributional properties of the weights of the TP from the Bayesian point of
view.

To contribute to the existing literature on TP weights, in this paper, we aim to derive the
higher ordermoments of the sample weights of the TP in closed formswhen the returns are
assumed to be independently and multivariate normally distributed. The results presented
here are further derived from [32], where the idea was discussed in a more compact form.
This article, however, can be seen as a detailed extension of the mentioned working paper.
Let us note that there is a reasonable amount of the literature available (see, e.g. [30,33])
discussing portfolio selection based on higher moments of asset returns, but not much has
been done from the perspective of the distribution of portfolio weights. This article is a step
further in this direction. Higher order moments can be used for the approximation of the
density function of the estimated weights (see, e.g. [37]). As argued by Okhrin and Schmid
[44], the knowledge of portfolio weights leads to information about the expected portfolio
return and the variance of the portfolio return. Since the expected portfolio returns play a
crucial role in most financial theories, the knowledge of the first two moments of the esti-
mated portfolio weights can be helpful in learning about the expected portfolio return as
well as the portfolio finance. Similarly, via deriving expressions for moments greater than
2, such as the skewness and kurtosis of estimated weights, we would be able to understand
the tail and asymmetric behavior of the fraction of wealth allocated to assets in the port-
folio. It will help us in indicating howmuch the estimated weights deviate from normality.
More specifically, the measures of skewness and kurtosis can account for asymmetry and
tail risk. In [44], the authors show that the moments of the optimal portfolio weights are
very sensitive to changes in themoments of stock returns. The obtained expressions for the
higher moments of the estimated portfolio weights can, therefore, be very informative for
practitioners to account for tail risks in making portfolio strategies. Following the lines of
[18], we obtain explicit relations of minimum VaR and minimum CVaR portfolio weights
in terms of estimated tangency portfolio weights, where these higher moments come into
play a significant role in accounting for portfolio risk. Thesemeasures, for our chosen port-
folios, will help to better understand the driving forces of the market’s portfolio risk since
the distributional properties of weights are the consequential inputs for investment and
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asset allocation decisions, pricing derivatives and hedging against portfolio risk. In this
particular article, we would obtain explicit expressions for partial cases such as the mean,
variance, skewness, and kurtosis. More specifically, we will take a look at the skewness and
kurtosis for measuring the deviation from the normal distribution. It would be interesting
to see how moments of estimated weights behave when the assumption of normally dis-
tributed data is violated.We are going to analyze it numerically by simulating data from the
multivariate t-distribution with 5 and 10 degrees of freedom, and by computing moments
of the TP weights using the Monte Carlo experiment.

This paper is organized as follows. In Section 2, we present our main results where
we deliver explicit formulas for the higher order non-central and central moments of the
estimated TP weights. Moreover, we derive the mean, variance, skewness and kurtosis in
closed forms. Section 3 is devoted to stress possible application implications of the main
results. In Section 4, we establish auxiliary results which we use in proving the main results
of Section 2. The results of simulation studies and applications are given in Section 5,
while Section 6 summarizes the paper. All the proofs of the main results are collected
in the appendix. Proofs of auxiliary results and some tables are collected in the online
supplementary materials.

2. Main results

We consider a portfolio that consists of k assets. Let xt = (x1t , . . . , xkt)T be the
k-dimensional vector of log-returns of these assets at time t = 1, . . . , n. The fraction of the
wealth allocated to the ith asset in the portfolio is denoted bywi, and letw = (w1, . . . ,wk)

T

be the vector of weights. Let the mean vector of the asset returns be denoted by μ and the
covariance matrix by � which is assumed to be positive definite.

In [36,38], the authors showedboth theoretically and empirically that themean–variance
optimal portfolio problem is equivalent tomaximizing the expected quadratic utility. Since
the risk is usually measured by the variance of the portfolios return, the optimal portfolio
without a risk-free asset is obtained by minimizing the portfolio variance for a given level
of the expected return under the constraintwT1k = 1 where 1k denotes the vector of ones.
However, if short selling is allowed and a risk-free asset, with return rf , is available, then
part of investor’s wealth is invested into the risk-free asset, whereas the rest of the wealth
is invested into the portfolio from the efficient frontier. The return of risky assets is given
as μp = wT(μ − rf 1k)+ rf with the variance σ 2

p = wT�w.
In this paper, we consider the weights of the TP that are obtained as the solution to the

following optimization problem:

max
w

[
μp − α

2
σ 2
p

]
, (1)

where α > 0 denotes the investor’s attitude towards risk and is called risk aversion. The
higher number ofα representing lesser tolerance to risk. This level of aversion to risk can be
characterized by defining the investor’s indifference curve which represents the investor’s
preferences for risk and return. There is a large amount of literature on measuring risk
aversion, and a different approach has been suggested to estimate this coefficient. Themost
common choice of the risk aversion lies between 1 and 3, but one can find a wide range of
α in the literature – from 0.2 to 10 and even higher (see, e.g. [27] and references therein).
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Let us note that in order to obtain an explicit solution to the investor’s problem we do
allow short sales, i.e. no restrictions are placed on the portfolio weights. Since � > 0, the
TP weights are given by

wTP = α−1�−1(μ − rf 1k). (2)

The vector of the tangency portfolio weights wTP that is defined in (2) determines the
structure of the portfolio that corresponds to risky assets only, while 1 − wT

TP1k determines
the part of the wealth that should be invested in the risk-free asset. According to Ingersoll
[31], the TP lies on the intersection of the mean–variance frontier and the tangency line
drawn from the portfolio consisting of the risk-free asset.

Since μ and � are unknown parameters, the investor cannot determine wTP. Conse-
quently, both μ and � need to be estimated. There are numerous estimation techniques
for the mean vector (see [17,25]), covariance matrix and its inverse (see [7,22,26]). In
this paper, we consider the classical unbiased sample estimators for μ and � which are
expressed as

x = 1
n

n∑
j=1

xj and S = 1
n − 1

n∑
j=1
(xj − x)(xj − x)T.

Throughout the paper, it is assumed that the asset returns x1, . . . , xn are independent
and identically distributed (iid) such that xt ∼ Nk(μ,�), t = 1, . . . , n. Replacingμ and�

with x and S in (2), we obtain the sample estimator ŵTP of TP weights wTP, i.e.

ŵTP = α−1S−1(x − rf 1k). (3)

In this paper, we focus on the linear combination of the TP weights. In particular, we
are interested in

θ = lTwTP = α−1lT�−1(μ − rf 1k),

where l is a k-dimensional vector of constants. From the investment point of view, the
choice of vector l can be made in different ways. For example, if lT = (1, 0, . . . , 0) then an
investor will know the behavior of the TPweight of the first asset in the portfolio. Similarly,
if lT = (1, 1, 0, . . . , 0), the behavior of the sum of the first two assets in the portfolio can be
analyzed and so on. If, on the other hand, l = 1k, it means an investor is only interested in
knowing about how much will be invested into the risky assets.

In a more general setting, the sample estimator of θ is given by

θ̂ = lTŵTP = α−1lTS−1(x − rf 1k).

In Theorem 2.1, we deliver explicit expressions for the higher order non-central and
central moments of θ̂ . Both expressions depend on a confluent hypergeometric function
1F1(a; b; x), which is defined as

1F1(a; b; x) = 1 + a
b
x + a(a + 1)

b(b + 1)
x2

2!
+ · · · =

∞∑
k=0

(a)k
(b)k

xk

k!
,

where (a)k and (b)k are Pochhammer symbols [1]. Note that the computation of a con-
fluent hypergeometric function is a standard routine within many mathematical software
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packages, such as in R. Let us also note that the non-central and central moments of the
estimated TP weights exist only up to the order (n − k)/2, while the moments of the order
higher than (n − k)/2 do not exist at all.

Theorem 2.1: Let x1, . . . , xn be iid random vectors with x1 ∼ Nk(μ,�), k<n−1 and
� > 0. Also, let l be a k-dimensional vector of constants, s̆ = nμ̆TRlμ̆ with μ̆ = μ − rf 1k
and Rl = �−1 − �−1llT�−1/lT�−1l. Then

(a) the rth order moment of θ̂ is given by

μr := E[θ̂ r] = (n − 1)r

αr(n − k − 2) · · · (n − k − 2r)

×
⎡
⎣(lT�−1μ̆)r +

�r/2�∑
j=1

(
r
2j

)
(2j)!
(2n)jj!

(
lT�−1μ̆

)r−2j (
lT�−1l

)j

×
⎛
⎝1 +

j∑
m=1

(
j
m

) (
k − 1

n − k + 1

)m
c̆m

⎞
⎠

⎤
⎦ , n − k > 2r,

where

c̆m = (k − 1 + 2(m − 1)) · · · (k − 1)
(n − k − 2(m − 1)− 1) · · · (n − k − 1)

e−s̆/2
1F1

(
m + k − 1

2
;
k − 1
2

;
s̆
2

)
;

(b) the rth order central moment of θ̂ is given by

μr := E[(θ̂ − μ1)
r] = (−μ1)

r +
r∑

i=1

(
r
i

)
(−μ1)

r−i(n − 1)i

αi(n − k − 2) · · · (n − k − 2i)

×
⎡
⎣(lT�−1μ̆)i +

�i/2�∑
j=1

(
i
2j

)
(2j)!
(2n)jj!

(
lT�−1μ̆

)i−2j (
lT�−1l

)j

×
⎛
⎝1 +

j∑
m=1

(
j
m

) (
k − 1

n − k + 1

)m
c̆m

⎞
⎠

⎤
⎦ , n − k > 2r.

Remark 2.1: From (3), we can observe that the sample estimator of TP weights ŵTP
depends on the inverse of the sample covariance matrix S. In Theorem 2.1, we assume
that k < n − 1, and it ensures that the distribution of S to be non-singular, which makes
it invertible. If k>n−1, then S is singular and a regular inverse cannot be taken. This
problem has been addressed in the portfolio context by employingMoore–Penrose inverse
(see [13–15]). Alternatively, various regularization techniques can be used. For example,
one can employ the ridge-type approach that is based on adding a diagonal matrix to the
covariance matrix [45], Landweber–Fridman iterative algorithm [35], the spectral cut-off
that is based on a singular value decomposition [24], a form of Lasso where the l1 norm
of the optimal portfolio weights is penalized [21], or an iterative method that is based on
second-order damped dynamical systems [28].
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The following corollary delivers the expressions of the mean and the variance for ŵTP.

Corollary 2.2: Let x1, . . . , xn be iid random vectors with x1 ∼ Nk(μ,�), k < n − 1, and
� > 0. Also let μ̆ = μ − rf 1k and δ = nμ̆T�−1μ̆. Then the mean and the variance of ŵTP
are given by

E[ŵTP] = n − 1
n − k − 2

wTP and Var[ŵTP] = d̆(0)1 wTPwT
TP + d̆(0)2 α−2�−1

with

d̆(0)1 = (n − k)(n − 1)2

(n − k − 1)(n − k − 2)2(n − k − 4)
,

d̆(0)2 = (n − 1)2(n − 2 + δ)

n(n − k − 1)(n − k − 2)(n − k − 4)
.

FromCorollary 2.2, we can see that the sample estimator of the weights is biased, mean-
ing that the E[ŵTP] �= wTP. However, note that for large sample size, asymptotically, the
estimator is unbiased since limn→∞ E[ŵTP] = wTP. Consequently, the sample estimator
of the TP weights is consistent, i.e. plimn→∞ŵTP = wTP, where plim denotes convergence
in probability.

In the next corollary, we derive the expressions for skewness and the kurtosis of
θ̂ = lTŵTP.

Corollary 2.3: Let x1, . . . , xn be iid random vectors with x1 ∼ Nk(μ,�), k<n−1 and
� > 0. Also, let l be a k-dimensional vector of constants, θ̆ = lT�−1μ̆ with μ̆ = μ − rf 1k,
and s̆ = nμ̆TRlμ̆ with Rl = �−1 − �−1llT�−1/lT�−1l. Then the skewness θ̂ is given by

Skewness[θ̂] =
(
d̆(1)1 θ̆3 + d̆(1)2 θ̆ lT�−1l

) (
d̆(0)1 θ̆2 + d̆(0)2 lT�−1l

)−3/2

with d̆(0)1 and d̆(0)2 , which are defined in Corollary 2.2, and

d̆(1)1 = 16(n − 1)3

(n − k − 2)3(n − k − 4)(n − k − 6)
,

d̆(1)2 = 12(n − 1)3

n(n − k − 2)2(n − k − 4)(n − k − 6)

(
1 + s̆ + k − 1

n − k − 1

)
,

while the kurtosis of θ̂ is expressed as

Kurtosis[θ̂] =
(
d̆(2)1 θ̆4 + d̆(2)2 θ̆2lT�−1l + d̆(2)3 (lT�−1l)2

) (
d̆(0)1 θ̆2 + d̆(0)2 lT�−1l

)−2
,

where

d̆(2)1 = 3(n − 1)4[(n − k)(n − k − 6)(n − k − 8)− (n − k − 2)2(n − k − 10)]
(n − k − 2)4(n − k − 4)(n − k − 6)(n − k − 8)

,

d̆(2)2 = 6(1 + c̆1)(n − 1)4[(n − k − 2)2 − (n − k + 2)(n − k − 8)]
n(n − k − 2)3(n − k − 4)(n − k − 6)(n − k − 8)

,
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d̆(2)3 = 3(1 + 2c̆1 + c̆2)(n − 1)4

n2(n − k − 2)(n − k − 4)(n − k − 6)(n − k − 8)
,

with

c̆1 = s̆ + k − 1
n − k − 1

and c̆2 = s̆2 + (2s̆ + k − 1)(k + 1)
(n − k − 1)(n − k − 3)

.

One of the important factors to consider when selecting the optimal portfolio for a par-
ticular investor is the degree of risk aversion coefficient α, where the higher the number
is, the lesser the tolerance to risk becomes. We observe that the skewness and kurtosis of
estimated portfolio weights are found to be not depending on α, and the level of risk aver-
sion does not influence these higher moments. This finding is consistent with the existing
literature (see, e.g. [23]). It indicates that the magnitude of the investor’s tolerance level to
risk does not affect the higher moments (skewness and kurtosis) of estimated weights.

The proofs of the main results are provided in the appendix.

3. Application implications of main results

The results obtained in Section 2 can be used inmany different ways. Below we summarize
few applications which are of immediate interest both for theoreticians and practitioners.

It is well known that the cumulants and moments can be used to define the probabil-
ity distribution of a random variable under study. For example, for the Gaussian case, all
cumulants of order greater than two are zero; therefore, higher order cumulants can be
used for testing of Gaussianity as well as for proving classical central limit theorems.

Let us consider the characteristic function of θ̂ = lTŵTP denoted by ϕθ̂ (t), t ∈ R. It can
be expressed using series expansion that is given by

ϕ
θ̂
(t) = E

[
eitθ̂

]
= 1 +

∞∑
j=1

μj
(it)j

j!
, t ∈ R,

where μj = E[θ̂ j]. It also holds that (−i)j(djϕ
θ̂
(t)/dtj)|t=0 = μj. Hence, we can observe

the connection between moments of θ̂ and its characteristic function that completely
defines the probability distribution. Having the characteristic function of θ̂ , the cumulant
generating function can be defined as (see [37])

ψ
θ̂
(t) = ln

[
ϕ
θ̂
(t)

] =
∞∑
j=1

κj
(it)j

j!
, t ∈ R,

where κj denotes the jth cumulant of θ̂ that can be obtained in terms of moments. For
example, κ1 = μ1, κ2 = μ2 − μ2

1, etc. (see [48]).
FromTheorem 2.1 we know that the non-central and centralmoments of θ̂ exist only up

to the order (n − k)/2, while the moments of the order higher than (n − k)/2 do not exist
at all. Consequently, we can deliver the approximations of the characteristic and cumu-
lant generating functions of θ̂ that are based on the higher order moments and cumulants
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expressed as

ϕ
θ̂
(t) ≈ 1 +

�(n−k)/2�∑
j=1

μj
(it)j

j!
and ψ

θ̂
(t) ≈

�(n−k)/2�∑
j=1

κj
(it)j

j!
.

Let us recall that the skewness is a measure for the degree of symmetry in the distribu-
tion and deviation from zero to the left or right side indicates the presence of asymmetry.
Negatively skewed distributions lead to a long left tail which, from an investor’s perspec-
tive, can mean a greater chance of extremely negative outcomes. While the positive skew
implies a long right tail, it can result in a greater chance of extremely positive outcomes. On
the other hand, the kurtosis is a measure of the fatness in the tails and deviation from 3 for
a Gaussian distributed variable, is an indicator of the presence of tails fatter than Gaussian,
and therefore, increases the likelihood of extreme events. The closed-form expressions pre-
sented in Corollaries 2.2 and 2.3, can be used as a measure of asymmetry and tail behavior
in the fraction of weights allocated to different assets in the portfolio. Moreover, with the
help of standard deviation, one can observe how dramatically estimated portfolio weights
oscillate over a period of time.

The quantification of the risk of a portfolio has been of immense interest both for theo-
reticians and practitioners. Usually, the variance of the portfolio is considered as ameasure
of the portfolio risk. However, it is not always an appropriate risk measure since it takes
into account a two-sided risk. A recent development in this direction highlights that the
quantile-based measures are well-suited functions to quantify risk. Among these, the most
popular are the Value-at-Risk (VaR) and Conditional VaR (CVaR), where the latter is also
known as the expected shortfall (see, e.g. [2]). In contrast to the variance, the VaR and
the CVaR are one-sided risk measures. The Basle Committee on Banking Supervision
allows banks to use VaR when determining their capital-adequacy requirements arising
from their exposure to market risk. The portfolio selection problems based on minimiz-
ing the portfolio VaR (CVaR) have been considered in a number of literature studies. For
example, Alexander and Baptista [3,4] suggested the application of the VaR and the CVaR
as measures of the risk in Markowitz’s optimization problem instead of the variance and
examined the economic implications of a mean-VaR model for portfolio selection. A brief
connection between the TP and the minimum VaR portfolio has been drawn by Bodnar
and Zabolotskyy [19] while focusing mainly on the riskiness of an optimal portfolio which
maximizes the Sharpe ratio. Following the lines of Bodnar et al. [18], we obtain explicit
relations of minimum VaR and minimum CVaR portfolio weights in terms of estimated
tangency portfolio weights, where these higher moments come into play their role. Since
the main concern for the minimum VaR and minimum CVaR measure is a tail risk, the
knowledge of higher moments of estimated weights can, therefore, be helpful for practi-
tioners in better understanding the driving forces of markets portfolio risk and making
asset allocation decisions against the portfolio risk.

4. Auxiliary results

In this section, we present the auxiliary results, which are used in proving our main results
of Section 2 and can be applied in the discriminant analysis (see [9]). Let us note that our
findings are complementing the existing results obtained in [8,10–12,16,34].
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The assumption of normally distributed data is a standard in different fields of applied
and theoretical statistics. Consequently, we can find many expressions involving the esti-
mated mean and the estimated covariance matrix of a k-dimensional normal distribution,
i.e. xt ∼ Nk(μ,�) for t = 1, . . . , n and n> k, where n is a sample size. Considering the
sample estimators of μ and � that are defined in (3) and assuming normality, we obtain
that

x ∼ Nk

(
μ,

1
n
�

)
and (n − 1)S ∼ Wk(n − 1,�),

whereWk(n − 1,�) stands for a k-dimensional Wishart distribution with n−1 degrees of
freedom and a positive definite covariance matrix�; moreover, x and S are independently
distributed (see [43, Chapter 3]). Hence, we can observe that the sample estimator ŵTP of
the TP weights wTP given in (3) is expressed as a product of an inverse Wishart random
matrix and a Gaussian random vector. The same structure appears in the discriminant
analysis, where the coefficients of a discriminant function that maximizes the discrepancy
between two datasets are expressed as a product of an inverse Wishart randommatrix and
a Gaussian random vector (see, e.g. [9]).

Both objects in the portfolio theory and discriminant analysis can be generalized in
the expression lTA−1z, where l is a k-dimensional vector of constants,A ∼ Wk(n,�), and
z ∼ Nk(μ, λ�)which is independent ofA. We assume that n> k, implying that thematrix
A is non-singular. We also assume that λ > 0 is a constant and � is a positive definite
matrix.

In the next theorem, we consider the higher order moments of the generalized expres-
sion lTA−1z.

Theorem 4.1: Let A ∼ Wk(n,�), n> k and z ∼ Nk(μ, λ�) with λ > 0 and positive
definite �. Furthermore, let A and z be independent and l be a k-dimensional vector of
constants. Then the rth order moment of lTA−1z is given by

E
[
(lTA−1z)r

]
= 1
(n − k − 1) · · · (n − k − 2r + 1)

×
⎡
⎣(lT�−1μ)r +

�r/2�∑
j=1

(
r
2j

)
(2j)!
2jj!

(
lT�−1μ

)r−2j

×
(
λlT�−1l

)j ⎛⎝1 +
j∑

m=1

(
j
m

)
cm

⎞
⎠

⎤
⎦

for n−k+ 1>2r with

cm = (k − 1 + 2(m − 1)) · · · (k − 1)
(n − k − 2(m − 1)) · · · (n − k)

e−s/2
1F1

(
m + k − 1

2
;
k − 1
2

;
s
2

)
,

where s = μTRlμ/λ and Rl = �−1 − �−1llT�−1/lT�−1l.

The proof of Theorem 4.1 is given in the online supplementary materials. From
Theorem 4.1, we can observe that the non-central and central moments of the estimated
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TP weights exist only up to the order (n − k)/2, while the moments of the order higher
than (n − k)/2 do not exist at all. It is also noticed that the formula for the higher order
moments of lTA−1z depends on the confluent hypergeometric function.

Now we consider an explicit formula for the higher order central moments of lTA−1z
which is given in the next corollary, while its proof is given in the online supplementary
materials.

Corollary 4.2: Let A ∼ Wk(n,�), n> k and z ∼ Nk(μ, λ�) with λ > 0 and positive
definite �. Furthermore, let A and z be independent and l be a k-dimensional vector of
constants. Then the rth order central moment of lTA−1z is given by

E
[(

lTA−1z − E[lTA−1z]
)r] = (−κ1)r +

r∑
i=1

(
r
i

)
(−κ1)r−i

(n − k − 1) · · · (n − k − 2i + 1)

×
⎡
⎣(lT�−1μ)i +

�i/2�∑
j=1

(
i
2j

)
(2j)!
2jj!

(
lT�−1μ

)i−2j

×
(
λlT�−1l

)j ⎛⎝1 +
j∑

m=1

(
j
m

)
cm

⎞
⎠

⎤
⎦

for n−k+ 1>2r with κ1 = (1/(n − k − 1))lT�−1μ and

cm = (k − 1 + 2(m − 1)) · · · (k − 1)
(n − k − 2(m − 1)) · · · (n − k)

e−s/2
1F1

(
m + k − 1

2
;
k − 1
2

;
s
2

)
,

where s = μTRlμ/λ and Rl = �−1 − �−1llT�−1/lT�−1l.

In the following corollary, we deliver the expressions of the second-order central
moment, the third-order centralmoment, and the fourth-order centralmoment for lTA−1z
in closed forms without using the confluent hypergeometric function. These results play
a fundamental role in the understanding of the variation, asymmetry, and tail behavior of
the estimated weights. The proof of the corollary can be found in the online supplementary
materials.

Corollary 4.3: Let A ∼ Wk(n,�), n> k and z ∼ Nk(μ, λ�) with λ > 0 and positive
definite �. Furthermore, let A and z be independent and l be a k-dimensional vector of
constants. Also, let s = μTRlμ/λ with Rl = �−1 − �−1llT�−1/lT�−1l. Then

(a) the second-order central moment of lTA−1z is given by

E[(lTA−1z − E[lTA−1z])2] = d(0)1 (lT�−1μ)2 + d(0)2 lT�−1l,

for n−k>3 with

d(0)1 = n − k + 1
(n − k)(n − k − 1)2(n − k − 3)

, d(0)2 = λ(n − 1)+ μT�−1μ

(n − k)(n − k − 1)(n − k − 3)
;
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(b) the third-order central moment of lTA−1z is given by

E[(lTA−1z − E[lTA−1z])3] = d(1)1 (lT�−1μ)3 + d(1)2 lT�−1μ · lT�−1l

for n−k>5 with

d(1)1 = 16
(n − k − 1)3(n − k − 3)(n − k − 5)

,

d(1)2 = 12λ
(n − k − 1)2(n − k − 3)(n − k − 5)

(
1 + s + k − 1

n − k

)
;

(c) the fourth-order central moment of lTA−1z is given by

E[(lTA−1z − E[lTA−1z])4] = d(3)1 (lT�−1μ)4 + d(3)2 (lT�−1μ)2lT�−1l

+ d(3)3 (lT�−1l)2

for n−k>7 with

d(2)1 = 3[(n − k + 1)(n − k − 5)(n − k − 7)− (n − k − 1)2(n − k − 9)]
(n − k − 1)4(n − k − 3)(n − k − 5)(n − k − 7)

,

d(2)2 = 6λ(1 + c1)[(n − k − 1)2 − (n − k + 3)(n − k − 7)]
(n − k − 1)3(n − k − 3)(n − k − 5)(n − k − 7)

,

d(2)3 = 3λ2(1 + 2c1 + c2)
(n − k − 1)(n − k − 3)(n − k − 5)(n − k − 7)

,

with

c1 = s + k − 1
n − k

and c2 = s2 + (2s + k − 1)(k + 1)
(n − k)(n − k − 2)

.

5. Simulation studies and application

5.1. Simulation studies

The theoretical results of the paper are obtained under the assumption that the returns are
independently and multivariate normally distributed. In this section, we also discuss what
happens when the assumption of normality is violated. In particular, it is done numer-
ically by simulating data from the multivariate t-distribution with 5 and 10 degrees of
freedom. Inwhat follows, the symbol tk(ν,μ,�) stands for the k-variate t-distributionwith
ν degrees of freedom, the location parameter μ and the dispersion matrix � as defined in
[29, Section 2.7.2.4].

In our simulations, we put k ∈ {5, 10, 15}, rf = 0.001 and l = 1k. The results for
k ∈ {10, 15} are available in the online supplementary materials. Each element of the mean
vector μ is uniformly distributed on [−1, 1], and the covariance matrix � is taken to be
diagonal, where each diagonal element is uniformly distributed on [0, 1]. For the Gaussian
data, themean and variance estimates depend onα, while it is not the case for skewness and
kurtosis. In order to see how they behave for the non-Gaussian data, we consider several
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values of α ∈ {3, 5, 10, 50, 100} and study its effect on the moments of estimated weights
together with the sample size n ∈ {30, 60, 120}.

The simulated data consist of N = 105 independent realizations which are used to fit
the corresponding moment estimators with Epanechnikov kernel. The bandwidth param-
eters are determined via cross-validation for every sample. Below we summarize the
corresponding algorithm:

(i) Generate independently x1, . . . , xn from tk(νi,μ, ((νi − 2)/νi)�), i ∈ {1, 2}, with
ν1 = 5 and ν2 = 10;

(ii) Generate θ̂ = lTŵTP by using

θ̂ = α−1lTS−1(x − rf 1k),

where x = (n−1)
∑n

i=1 xi and S = (n − 1)−1 ∑n
i=1(xi − x)(xi − x)T;

(iii) Repeat (i) –(ii) N times.

The results of this simulation study are presented in Table 1. It is interesting to notice
that the mean and variance estimates vary for different values of risk aversion coefficient
α. In general, lesser tolerance to risk leads to reduce the magnitude of expected value and
variance of estimated weights. It has been observed that the distributional assumption of
returns is important, especially, for the first twomoments, which help to construct portfolio
strategies, such as the efficient frontier curve. For all the cases, a relatively large reduction in
the magnitude of the first two moment estimates has been noticed. In particular, smaller
values of mean and variance can be seen for non-Gaussian returns. However, for skew-
ness and kurtosis, the result is otherwise, and as pointed out earlier, they do not show any
dependence onα, even for the non-Gaussian data.We further notice that, with the increase
in sample size n and the degrees of freedom ν for the t-distributed data, the estimated
moments converge to nominal values provided by the Gaussian distribution, and this find-
ing is in accordance with the existing theory. Now, we can observe interesting behavior for
the first two moments. They are very similar to the normal distribution for larger sample
sizes and higher degrees of freedom in t-distribution. And it should be so according to
the classical theory, i.e. where for larger degrees of freedom in t distribution, the resulting
behavior should be closer to the normal distribution. The overall picture does not change
much with the increase in k, see Tables 1–2 in the online supplementary materials. Fur-
thermore, we provide the bias and MSE measures, and the 95% CIs of the estimated TP
weights. The results are reported for the Gaussian and t-distributed cases in Tables 3–8 in
the online supplementary materials. As can be seen, the estimator shows some biases for
small n, but with the increase in sample size n and number of assets k, it starts reducing. It is
interesting to point out here that relatively large bias andMSE, and wider CIs are observed
for small n and large k, which further reduces with the increase in α.

5.2. Application

In this section, we present the results of the empirical study, where we show how theoretical
results obtained in Section 2 can be applied to real data. We consider weekly data of k = 4
financial indexes1 which are listed inNASDAQstock exchange. Their abbreviated symbolic
names areIXTC, IXCO, TRAN, INDS. The data are taken for the period fromAugust
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Table 1. Mean, variance, skewness and kurtosis of the estimated TP weights.

n = 30 n = 60 n = 120

Risk aversion Moments N5(μ,�) t5(5,μ, 0.6�) t5(10,μ, 0.8�) N5(μ,�) t5(5,μ, 0.6�) t5(10,μ, 0.8�) N5(μ,�) t5(5,μ, 0.6�) t5(10,μ, 0.8�)

α = 3 Mean 0.693058 0.823531 0.739655 0.611893 0.677623 0.633911 0.578853 0.617318 0.590747
Variance 0.442182 0.800563 0.561839 0.146369 0.260536 0.184290 0.061006 0.111257 0.076105
Skewness 0.635559 0.705868 0.668208 0.378587 0.435739 0.402370 0.249499 0.251552 0.269590
Kurtosis 5.248779 5.304775 5.289139 3.773318 3.902418 3.772289 3.333380 3.374525 3.335348

α = 5 Mean 0.415835 0.492226 0.441431 0.367136 0.408328 0.380652 0.347312 0.369663 0.352586
Variance 0.159185 0.291613 0.199524 0.052693 0.094338 0.066394 0.021962 0.040233 0.027381
Skewness 0.635559 0.726802 0.675312 0.378587 0.445028 0.440394 0.249499 0.240287 0.255678
Kurtosis 5.248779 5.517219 5.321095 3.773318 3.969844 3.879399 3.333380 3.358223 3.329926

α = 10 Mean 0.207917 0.247109 0.222150 0.183568 0.204042 0.189601 0.173656 0.184632 0.176978
Variance × 10 0.397963 0.732816 0.504198 0.131732 0.235984 0.165355 0.054905 0.100686 0.068726
Skewness 0.635559 0.759917 0.700800 0.378587 0.438122 0.406656 0.249499 0.257948 0.274644
Kurtosis 5.248779 5.420355 5.401659 3.773318 3.898568 3.884597 3.333380 3.407303 3.351953

α = 50 Mean × 10 0.415835 0.492298 0.440564 0.367136 0.408150 0.380350 0.347312 0.369670 0.353839
Variance × 102 0.159185 0.289685 0.200941 0.052693 0.095361 0.065758 0.021962 0.040143 0.027416
Skewness 0.635559 0.756199 0.682990 0.378587 0.445572 0.404225 0.249499 0.235320 0.272103
Kurtosis 5.248779 5.789996 5.379279 3.773318 3.915872 3.795098 3.333380 3.372282 3.313795

α = 100 Mean × 10 0.207917 0.246221 0.221592 0.183568 0.203620 0.189536 0.173650 0.184987 0.176462
Variance × 103 0.397963 0.726510 0.507236 0.131732 0.237021 0.164691 0.054905 0.100726 0.068846
Skewness 0.635559 0.740576 0.715550 0.378587 0.416021 0.413437 0.249499 0.262654 0.265099
Kurtosis 5.248779 5.391738 5.712833 3.773318 3.830333 3.841699 3.333380 3.381111 3.327772

Note: The returns are assumed to be independently multivariate normally and t-distributed. k is taken to be 5, and l = 1k .
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Figure 1. The rolling estimators for themean (top-left), variance (top-right), skewness (bottom-left) and
kurtosis (bottom-right) of four financial indexes with the estimation window of 300 weeks and α = 3.

2007 to April 2017.Weekly log returns on each index have been considered, due to the fact
that they usually follow the Gaussian distribution. The weekly log returns on the three-
monthUS treasury bill are used as the risk-free rate. The risk aversion coefficient α is taken
as 3.

Figure 1 presents the dynamic behavior of mean, variance, skewness, and kurtosis for
the estimated TP weights by using the rolling estimator with the estimation window of 300
weeks, i.e. n = 300. We observe that mean for all the indices shows a noticeable dynamic
behavior. More specifically, for IXTC and TRAN we observe that expected values are neg-
ative throughout the sample period, which indicates short selling for these indices. While
for TRAN, INDS indices, positive expected values can be seen for almost all the sample
period.

From the top-right plot of variance, a time-varying structure can be seen for all stock
indices. A shift in variance can be observed after mid-2014 which seems to settle down to
its original position by the end of the sample period.

The bottom-left plot of skewness displays almost similar behavior as for the mean plot
for all the stock markets and do not deviate significantly from zero (the nominal skew-
ness for the normally distributed data). However, a minimal negative skewness is observed
throughout the sample period for IXTC and TRAN indices. Finally, the bottom-right plot
of kurtosis shows decent variation for most of the stocks, except for IXTC which shows a
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relatively high variation. However, the overall dynamic revolves around the nominal kurto-
sis for a normal distribution. Through this empirical exercise, we confirm that there exists a
reasonable time-varying behavior in the moments of estimated TP weights, but eventually,
they can be nicely approximated by the normal distribution for a large sample size.

6. Conclusions

In this paper, we studied higher order moments of the estimated TP weights obtained
under the assumption of normally and independently distributed returns. In particular,
we derived the higher order non-central and central moments of estimated weights that
depend on the confluent hypergeometric function. Moreover, we provided the expressions
for the mean, variance, skewness and kurtosis in closed forms without using the confluent
hypergeometric function. The results are supported by a simulation study where data from
normal and the multivariate t-distributions have been simulated and moments of the esti-
mated TP weights have been evaluated by using a Monte Carlo experiment. The investor’s
attitude towards risk influences the portfolio strategy and can be displayed through, such
as the efficient frontier .2 Through this simulation study, we noticed a sharp decline in the
mean and variance of estimated weights with high-risk aversion parameter. The skewness
and kurtosis, however, remain almost unchanged with respect to the varying nature of the
risk aversion parameter, which indicates that tolerance to risk does not derive the tail risk
of estimated weights. For a small sample, the values of skewness and kurtosis of estimated
weights show some deviation from the normal distribution. However, it is observed that
the estimated weights can be well approximated by a normal distribution for a large sample
size. Additionally, we studied the behavior of Bias, MSE and CIs of the sample estimator of
TP weights. Bias and MSE are found to be relatively large for small sample size and small
risk aversion, while they are significantly reduced for large sample size. These results are
available in the online supplementary materials.

Through the empirical study for four financial indexes listed in the NASDAQ stock
exchange, we obtained first four moments’ expressions aiming to observe the presence
of time-varying behavior. For some stocks, we observed that expected values are negative
throughout the sample period, which indicates short selling for these indices. A reasonable
time-varying structure is observed for a variance with a few relatively high values under
the sample period. While the skewness and kurtosis revolve around their average values
since the sample size is taken to be relatively large.

Notes

1. Note that the number of indexes k = 4 is used here for illustration purposes, and similar results
can easily be obtained for any k such that k<n.

2. It also holds for a continuous-time Merton’s portfolio (see [40,41])
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Appendix

Here we collect all the proofs of our main results obtained in Section 2.

Proof of Theorem 2.1.: From [43, Chapter 3], we have that

x ∼ Nk

(
μ,

1
n
�

)
and V := (n − 1)S ∼ Wk(n − 1,�);

moreover, x and V are independently distributed. Since

θ̂ = lTŵTP = α−1lTS−1(x − rf 1k) = n − 1
α

lTV−1(x − rf 1k),

the rest of the proof follows from Theorem 4.1 and Corollary 4.3. �

Proof of Corollary 2.2.: From Corollary 4.3, we get the first two moments of θ̂ which are given by

E[θ̂] = n − 1
n − k − 2

θ and Var[θ̂] = d̆(0)1 θ2 + d̆(0)2 α−2lT�−1l

with d̆(0)1 and d̆(0)2 which are the same as in the formulation of the corollary.
Moreover, since l is an arbitrary vector of constants, we get the statement of the corollary. �

Proof of Corollary 2.3.: The skewness of θ̂ is given by

Skewness[θ̂] = μ3[
Var(θ̂)

]3/2 μ3[
Var(θ̂)

]3/2 = μ3

(
d̆(0)1 θ2 + d̆(0)2 α−2lT�−1l

)−3/2
,

where Var(θ̂) is obtained from Corollary 2.3. From Corollary 4.3, it follows that

μ3 = d̃(1)1 (lT�−1μ̆)3 + d̃(1)2 lT�−1μ̆ · lT�−1l,

where

d̃(1)1 = 16(n − 1)3

α3(n − k − 2)3(n − k − 4)(n − k − 6)

d̃(1)2 = 12(n − 1)3

α3n(n − k − 2)2(n − k − 4)(n − k − 6)

(
1 + s̆ + k − 1

n − k − 1

)

with s̆ = nμ̆TRlμ̆ and Rl = �−1 − �−1llT�−1/lT�−1l. Furthermore, μ3 can be rewritten in the
next form

μ3 = α−3
(
d̆(1)1 θ̆3 + d̆(1)2 θ̆ lT�−1l

)
,

where d̆(1)1 and d̆(1)2 are the same as in the formulation of the corollary. Putting all above together we
get the skewness of θ̂ .
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We later move on and derive the explicit formula for the kurtosis of θ̂ . It holds that

Kurtosis[θ̂] = μ4[
Var(θ̂)

]2 = μ4

(
d̆(0)1 θ2 + d̆(0)2 α−2lT�−1l

)−2
.

Using Corollary 4.3, we obtain

μ4 = d̃(2)1 (lT�−1μ̆)4 + d̃(2)2 (lT�−1μ̆)2lT�−1l + d̃(2)3 (lT�−1l)2,

where

d̃(2)1 = 3(n − 1)4[(n − k)(n − k − 6)(n − k − 8)− (n − k − 2)2(n − k − 10)]
α4(n − k − 2)4(n − k − 4)(n − k − 6)(n − k − 8)

,

d̃(2)2 = 6(1 + c̆1)(n − 1)4[(n − k − 2)2 − (n − k + 2)(n − k − 8)]
α4n(n − k − 2)3(n − k − 4)(n − k − 6)(n − k − 8)

,

d̃(2)3 = 3(1 + 2c̆1 + c̆2)(n − 1)4

α4n2(n − k − 2)(n − k − 4)(n − k − 6)(n − k − 8)
,

with

c̆1 = s̆ + k − 1
n − k − 1

and c̆2 = s̆2 + (2s̆ + k − 1)(k + 1)
(n − k − 1)(n − k − 3)

.

Moreover, μ4 can be rewritten as

μ4 = α−4
(
d̆(2)1 θ̆4 + d̆(2)2 θ̆2lT�−1l + d̆(2)3 (lT�−1l)2

)
,

where d̆(3)1 , d̆(3)2 , and d̆(3)3 are the same as in the formulation of the corollary. It completes the proof
of the corollary. �
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