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ABSTRACT
Steinley, Hoffman, Brusco, and Sher (2017) proposed a new method for evaluating the per-
formance of psychological network models: fixed-margin sampling. The authors investigated
LASSO regularized Ising models (eLasso) by generating random datasets with the same mar-
gins as the original binary dataset, and concluded that many estimated eLasso parameters
are not distinguishable from those that would be expected if the data were generated by
chance. We argue that fixed-margin sampling cannot be used for this purpose, as it gener-
ates data under a particular null-hypothesis: a unidimensional factor model with inter-
changeable indicators (i.e., the Rasch model). We show this by discussing relevant
psychometric literature and by performing simulation studies. Results indicate that while
eLasso correctly estimated network models and estimated almost no edges due to chance,
fixed-margin sampling performed poorly in classifying true effects as “interesting” (Steinley
et al. 2017, p. 1004). Further simulation studies indicate that fixed-margin sampling offers a
powerful method for highlighting local misfit from the Rasch model, but performs only
moderately in identifying global departures from the Rasch model. We conclude that fixed-
margin sampling is not up to the task of assessing if results from estimated Ising models or
other multivariate psychometric models are due to chance.

KEYWORDS
exploratory data analysis;
IRT; network Psychometrics;
Ising models; fixed-
margin sampling

Investigating the utility of fixed-margin
sampling in network psychometrics

The field of network psychometrics (Marsman et al.,
2018), which aims to estimate graphical models (repre-
sented visually as networks) from psychological data, has
grown popular in recent years. In a commentary on a tar-
get article (Forbes, Wright, Markon, & Krueger, 2017a)
relating to the replicability of network models, Steinley,
Hoffman, Brusco, & Sher (2017) proposed a new method
for evaluating the performance of psychopathological net-
work models estimated from binary data. The method
takes a binary dataset and resamples random values while
keeping both the row and column margins intact in order
to obtain intervals around any parameter. We will term
this method fixed-margin sampling. The focus of Steinley
et al.’s (2017) commentary was on LASSO regularized
Ising models (eLasso; van Borkulo et al., 2014). The target

article’s conclusion was that these networks “have limited
replicability,” (p. 969) but in a comprehensive re-analysis,
Borsboom et al. (2017) showed that replicability of
eLasso Ising networks was in fact very good. Steinley
et al. (2017), on the other hand, re-evaluated one of the
datasets using their newly proposed method and deter-
mined that “many of the results are indistinguishable
from what would be expected by chance” (p. 1000),
labeled such findings “uninteresting” (p. 1004), and sug-
gested that “previously published findings using [eLasso]
should be reevaluated using the above testing procedure”
(p. 1008). In a rebuttal to the re-analysis of Borsboom
et al. (2017), Forbes, Wright, Markon, & Krueger (2017b)
rely, in part, on the results of Steinley et al. (2017) by tak-
ing these findings as further evidence that methods such
as eLasso have “limited replicability and utility” (p. 1011).

As the conclusions of Steinley et al. (2017) may have
considerable implications for the eLasso method and
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research from different disciplines on which this meth-
odology is based (e.g., Agresti, 1990; Barber & Drton
2015; Hastie, Tibshirani, & Friedman, 2001; Hastie,
Tibshirani, & Wainwright, 2015; Meinshausen &
B€uhlmann, 2006; Pearl, 2000; Tibshirani, 1996; van
Borkulo & Epskamp, 2014), we set out to evaluate the
proposed fixed-margin sampling method. On the basis
of this examination, we conclude that fixed-margin sam-
pling leads to data being generated under a very specific
null-hypothesis (i.e., unidimensionality with interchange-
able indicators; the Rasch model), rather than under
random chance. The null-distribution therefore imposes
a strong structure on the generated data-matrices that
cannot be considered random, especially in light of
known model equivalences between Rasch models and
Ising models (e.g., Marsman et al., 2018). As such, if the
aim is “to distinguish [empirical findings] from random
chance” (Steinley et al., 2017, p. 1008), fixed-margin
sampling will provide an inappropriate null-hypothesis.

The remainder of this article is outlined as follows.
First, we discuss the methodology and its origin, fol-
lowed by a description of relevant psychometric litera-
ture and an explanation why the null-hypothesis of
fixed-margin sampling method is inappropriate for
assessing if parameters are due to chance. Second, we
discuss why fixed-margin sampling is powerful in the
analysis of networks connecting two sets of entities
(e.g., actors and movies), but perform poorly when
applied to networks of random variables (e.g., symp-
toms). Third, we evaluate the utility of fixed-margin
sampling both in assessing parameters of the Ising
model as well as assessing Rasch models in simulation
studies. Finally, we re-evaluate the results presented by
Steinley et al. (2017) in light of our conclusions regard-
ing the utility of the method in network psychometrics.

Fixed-margin sampling

Steinley et al. (2017) propose to (1) simulate 1,000 random
binary matrices with the same dimensions and margins
(row and column sum-scores) as the original data, (2)
compute a network structure for each generated dataset,
(3) derive a relevant statistic (e.g., edge weight or centrality
index) from each of these networks, (4) order the repeated
samples of the statistic, (5) take the 5th and 995th ordered
sample to create an interval,11 and (6) check if the observed

statistic lies within the computed interval. In their
reported Table 1, Steinley et al. are very clear on the
interpretation of results from this method. If an edge-
weight (or any other statistic) lies within this interval,
it is classified as “uninteresting” (p. 1004). If it is not in
this interval, it is classified as “potentially interesting”
(p. 1004). For example, suppose we observe an esti-
mated edge weight of 0.3 between two nodes. Next, we
can resample the data-matrix, while keeping both row-
and column-totals fixed to the original margins (sam-
ple people that endorse the same number of items, and
sample variables that are endorsed by the same num-
ber of people), to generate 1,000 networks leading to
1,000 repetitions of the edge estimate in question.
Suppose the 5th ordered sample is 0.1 and the 995th
ordered sample is 0.5. Steinley et al. (2017) would
deem the estimated edge-weight of 0.3 “uninteresting”
(p. 1004). While we argue against this interpretation in
this article, we retain the terminology in line with
Steinley et al. (2017) throughout the remainder of this
article. We use the term “(potentially) interesting” to
describe an edge for which the observed weight lies
outside that of the interval created using fixed-margin
sampling. We use the term “uninteresting” to describe
an edge for which the observed weight lies within (or
is equal to the boundary of) the interval obtained using
fixed-margin sampling.

The inspiration for the procedure suggested by
Steinley et al. (2017) comes from the ecology literature
(Connor & Simberloff, 1979). Suppose we have data of
several species of birds (rows in a dataset), which live or
do not live on a set of islands (columns in a dataset).
We may encode with a 1 if a type of bird lives on an
island, and with a 0 if it does not. An ecologist may be
interested in observing that several species of birds co-
occur. However, when analyzing such data, the
researcher must control for two factors: the common-
ness of a type of bird and the size of an island. Two spe-
cies that are common (e.g., a pigeon and a dove) are
likely to co-occur on many islands due to chance alone.
Alternatively, on a large island (e.g., Vancouver Island),
we would expect many types of birds by chance alone.
To control for these effects, the ecologist keeps the mar-
gins fixed when sampling random data, so as to obtain a
null-distribution of co-occurrence given the commonness
of birds and size of islands. Methodology to simulate
data with fixed margins has been developed in response
(Harrison & Miller, 2013; Miller & Harrison, 2013).

From ecology to psychometrics

From a psychometric perspective, when controlling
for the commonness of birds and the size of islands,

1Steinley et al. (2017) term these intervals confidence intervals. We have
opted to avoid this terminology as the term x% confidence interval is
commonly used to denote an interval in which x% of intervals
constructed in such fashion should contain the true parameter of interest.
The Steinley et al. (2017) method does not construct such confidence
intervals, which are still a topic of future research for centrality indices in
particular (Epskamp et al., 2017).
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the ecologist used two latent variables: a row effect
(commonness of bird) and a column effect (size of
the island), for which the marginal sums act as a
proxy. Translating to a psychological dataset, in which
columns indicate variables and rows indicate people,
the column effect may be seen as difficulty to endorse
a particular item, and the row-effect as the ability of a
person to endorse all items. The most general model
for handling ability and difficulty is the Rasch model,
a variant of item-response theory (IRT) which is well
known as the simplest unidimensional factor model in
which all items are interchangeable indicators of a sin-
gle latent variable (Rasch, 1960). In the Rasch model,
each item has a difficulty, corresponding to how often
the item is endorsed (e.g., a symptom such as suicidal
thought is much “harder” to endorse than a symptom
such as sleep problems), and each person has an abil-
ity, the latent variable, corresponding to how likely a
person is to endorse multiple items. This model is
structurally so simple that it can be determined com-
pletely by the margins of a binary dataset (the sum-
scores of each row and each column in the dataset).
Sampling binary matrices, while keeping the margins
fixed, is, in fact, a non-parametric form of sampling
from a Rasch model (Verhelst, 2008). It should be no
surprise then that the literature on sampling binary
matrices while keeping margins fixed, including litera-
ture cited by Steinley et al. (2017), has many referen-
ces to Rasch models (e.g., Harrison & Miller, 2013).
In fact, the methodology proposed by Steinley et al.

(2017) has already been described in the psychometric
literature before, but is not referenced by Steinley
et al. (2017). Verhelst (2008) describes exactly the
same methodology, calling it “a nonparametric test of
the Rasch model” (p. 705).

Fixed margin sampling induces strong
unidimensionality

By sampling datasets in which only the row- and col-
umn-totals are fixed to be identical to the original
data, Steinley et al. (2017) do not sample random data
as intended. Rather, they sample data under a unidi-
mensional Rasch model (Verhelst, 2008). To illustrate
this, we sampled 1,000 random datasets with margins
constrained to be the same as the margins of the data-
set evaluated by Steinley et al. (2017): the NCS-R
dataset (Kessler et al., 2003). We followed the fixed-
margin sampling procedure described by Steinley
et al. (2017), generating datasets using the supplemen-
tary Matlab codes from Miller & Harrison (2013),2

which Steinley et al. (2017) cite as the source of their
methodology, and constructing the 99% intervals for
each edge-weight by taking the 5th and 995th ordered
value. The 99% intervals of the eigenvalues of the
Pearson product moment correlation matrix derived
from this fixed-margin sampling procedure are shown

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Component

NCS−R observed Coin−flip Fixed column sums Fixed row sums Fixed−margin sampling

Figure 1. Scree-plot of eigenvalues based on (black) the NCS-R dataset, (blue) sampling random binary datasets with the same
margins as the NCS-R, (red) sampling random binary datasets with the same column sums as the NCS-R, (purple) sampling random
binary datasets with the same row sums as NCS-R, and (green) random coin-flip data. The green “coin-flip” area is near invisible as
it is near identical to the red “fixed column sums” area.

2http://jwmi.github.io/software.html
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in Figure 1. For comparison, we also included (a) the
eigenvalues of the original NCS-R dataset, (b) the 99%
intervals of eigenvalues based on coin-flip random
data (every cell is 1 with 50% probability), (c) random
data with the same row-sums as the NCS-R, and
(d) random data with the same column-subs as the
NCS-R. As Figure 1 makes clear, fixed-margin sam-
pling (as well as keeping only the row sums fixed)
leads to overt unidimensionality, which strongly devi-
ates from the definition of randomness typically taken
in psychology and psychometrics. Keeping the column-
sums fixed, in contrast to keeping both column- and
row-sums fixed, has little to no effect on the correl-
ational structure. Of note, if one should take such strong
unidimensionality as a definition of randomness, then
results obtained with every model that assumes unidi-
mensionality (e.g., factor models) should be re-eval-
uated and will likely be classified as uninteresting.

The Rasch model and the Ising model

The Rasch model is statistically equivalent to a specific
type of Ising model: the Curie-Weiss model as shown
in Figure 2 (Epskamp, Maris, Waldorp, & Borsboom,
2018; Kruis & Maris, 2016; Marsman et al., 2018;
Marsman, Maris, Bechger, & Glas, 2015). As such,
generating data under a Rasch model is identical to
generating data under a Curie-Weiss model.
Therefore, when generating random data while keep-
ing margins constrained, the expected network model
is a fully connected network with roughly the same
edge weights (Epskamp, Kruis, & Marsman, 2017). As
factor models typically perform adequately on psycho-
logical data, the expected network structures likely
feature many clusters of items intended to measure a
latent trait. In fact, the equivalence between network
models and factor models was an important part of
the reasoning behind the use of network models: a
model of direct interactions may lead to data indistin-
guishable from a general factor model (Van Der Maas
et al., 2006). As such, it is not surprising that many
edges are not different from what is to be expected in
fixed-margin sampling, especially when applied to var-
iables designed to measure a single or multiple highly
correlated latent variables. We would therefore not
expect networks to show many results Steinley et al.
(2017) would deem (potentially) interesting.

How does the fixed-margin test work?

The fixed-margin sampling procedure gives rise to
such strong unidimensionality because the sum-scores

of people do not behave as would be expected due to
chance. Many people have no symptoms at all, and
some people have many symptoms. This distribution
of the sum-score is not a nuisance parameter that
should be controlled for in psychological research
akin to the commonness of birds. In fact, the entire
field of psychopathology aims to explain why symp-
toms co-occur and why some people have a high
sum-score on symptom inventories. As such, sampling
random datasets while keeping margins constrained
both induces unidimensionality and takes away the
very thing we aim to explain. So, what does the fixed-
margin sampling actually test? Verhelst (2008) is very
clear on that: the method tests “if the Rasch model is
valid” (p. 705), which we can equivalently state as “if
the Curie-Weiss model is valid.” When the Curie-
Weiss model is the true generating model, we would
thus not expect the fixed-margin sampling to classify
any result as (potentially) interesting.

Networks of entities and networks of
random variables

To understand why fixed-margin sampling is a useful
technique in some areas of network science, but has
limited utility for network psychometrics, it is import-
ant to discuss the difference between such psychomet-
ric models and other networks commonly constructed
in network science (e.g., social or railroad networks;
Newman, 2010). The crux of the matter lies in that a
psychometric network is not a network of entities, but
rather a network of random variables. This section will
discuss the difference between these types of networks.

Suppose we are interested in relationships between
actors. We can form a data-matrix with columns indi-
cating actors, rows indicating movies, and a 1 (0)
indicating an actor played (did not play) in a movie:

We can use this data to construct an actor–movie net-
work of actors and movies in which an edge connects
an actor to a movie when that actor played a role in
that movie:

Inception – Leonardo DiCaprio –Titanic –KateWinslet

Such a network can be termed a two-mode network
(bipartite graph; Steinley et al., 2017), as the nodes
consist of two sets of entities: movies and actors. Note
that movies and actors are not random variables, as
they do not take on multiple states, such as “on” or

Leonardo DiCaprio Kate Winslet

Titanic 1 1
Inception 1 0
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“off.” Rather, it is the edge that can be “present” or
“absent.” Furthermore, the connections are observed
and typically serve as the dependent variables in a
network study. Fixed-margin sampling provides an
adequate null distribution for the absence or presence
of such ties, given that some actors play in many
movies and some movies feature many actors. In add-
ition, one could take a natural projection of the two-
mode network into a one-node network. Consider, for
example, the actor–actor network:

Leonardo DiCaprio – Kate Winslet

The connection between the two actors is directly
observable as both actors share a movie (Titanic), as
can be seen from the two-mode network. Likewise, a
movie–movie projection could be formed:

Inception – Titanic

Again, fixed-margin sampling provides an adequate
null distribution for parameters of these networks, as
both one-mode networks are directly derived from the
two-mode actor-movie network. If we were to include
several movies with a large ensemble cast of actors,
we would expect many links in the actor–actor net-
work by chance given the properties of the two-mode
network. Similarly, if we would include several actors
who played in many movies, we would expect links in
the movie–movie network by virtue of the same prop-
erties of the two-mode network.

Now consider a symptom-presence data matrix,
with rows indicating people, columns indicating
symptoms, and a 1 (0) indicating the presence
(absence) of a symptom:

Then, it is not sensible to encode this data as a two-
mode network of entities:

Depressed mood – Bob – Fatigue – Alice

It is not sensible because “fatigue” is not an entity in
the world that interacts with both Bob and Alice.
Likewise, the symptoms present in Bob are not likely to
affect the symptoms present in Alice, assuming Bob and
Alice do not know each other.3 We could take the one-
mode projection to form a person–person network:

Bob – Alice

But this network makes no sense, as Bob and Alice do
not interact with one-another because they both have
fatigue. Likewise, we could form the one-mode symp-
tom-symptom network:

Depressed mood – Fatigue

But again, it is questionable if this network makes
sense, given that, in this dataset, the presence of
fatigue is independent of the presence of depressed
mood (in fact, in the example above, depressed mood
has no variance).

Instead of symptoms being entities, Bob and Alice
have their own set of symptoms, which can be either
present (1) or absent (0). The nodes thus represent
random variables, and not entities. Such networks of
random variables aim to explain why certain realiza-
tions of one variable (e.g., a person suffering from
depressed mood) co-occur with realizations of another
variable (e.g., the same person suffering from fatigue).
Edges between the nodes represent some statistical
relationship, such as a (partial) correlation, that can-
not directly be observed but needs to be estimated
from data (Epskamp, Borsboom, & Fried, 2018), and
that, by using vetted methods (Borsboom, Robinaugh,
Psychosystems Group, Rhemtulla, & Cramer, 2018),
come close to some “true” network model. The inter-
est in studying networks of random variables is not to
study the relationships between entities, but rather to
explain the likelihood of different states that may
occur, and why some variables tend to be in the same
state. The actor–actor network does not aim to
explain why some movies contain many actors, but
the symptom network does aim to explain why some
people endorse many symptoms (i.e., why they
develop psychopathology; Cramer et al., 2016).

In sum, binary data matrices as typically used in
(network) psychometrics should not be interpreted as
two-mode networks, as the columns and rows do not
represent different sets of entities but rather random
variables and independent realizations respectively.
While fixed-margin sampling adequately controls for
the total number of connections (degree) of each node
in the two-mode networks of entities, it introduces
strong structure in the data-matrix used to estimate
networks of random variables, as it conditions on one
of the most important things the network of variables
aims to explain: the number of present variables. As
the data-matrix should not be interpreted as a two-
mode network, the derived psychometric networks
should also not be interpreted as one-mode projec-
tions. This, however, is exactly the way in which
Steinley et al. (2017) interpret the data matrix as well
as the Ising model (p. 1008):

Depressed mood Fatigue

Bob 1 1
Alice 1 0

3It is typical to assume independence of cases in many
statistical analyses.
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“Generally, there are two types of networks that can
be considered: (1) networks that directly assess the
relationships between the same set of observations
(e.g., one-mode matrices as described above), and (2)
affiliation networks where the connections are assessed
between two sets of observations (two-mode matrices
as described above). Clearly, psychopathology networks
fall into the class of affiliation matrices where the
connections are measured between observation and
diagnostic criteria. The relationships between the
criteria are then then derived by transforming the
two-mode affiliation matrix to a one-mode so-called
‘overlap/similarity’ matrix between the criteria, where
traditional network methods are applied to this
overlap/similarity matrix.”

Simulation studies

As argued above, fixed-margin sampling induces strong
unidimensionality. Combining fixed-margin sampling
with eLasso Ising model estimation should therefore be
interpreted as a method for assessing the performance
of the Rasch model, not general Ising models. To show-
case this, we performed three simulation studies. In the

first study, we generated data under three types of Ising
models and assessed the performance of eLasso in
retrieving the network structure as well as fixed-margin
sampling in correctly classifying true (false) effects as
interesting (uninteresting). In the second study, we
investigated the performance of fixed-margin sampling
coupled with eLasso estimation in multi-dimensional
departures from the Rasch model. Finally, in the third
study, we investigated the performance of fixed-margin
sampling coupled with eLasso estimation in departures
from the Rasch model in discrimination of indicators.
The results of these studies are described below.

Simulation study 1: Performance of eLasso and
fixed-margin sampling in Ising models

We simulated data under three of the simplest forms
of the Ising model (Figure 2): an independence model
(left panel) in which four binary variables were simu-
lated at random (all edge parameters are zero), a
Curie-Weiss model (Kac, 1968) in which all edge
parameters are of the same (non-zero) strength

●●●

●●●

●●●●●

●

●

●

●●

●

●

●

●●

●●●

●●●●●

● ●● ●●●

●

●●●●●

● ●●●

●●●●●●●

●●●

●●

●

●●

●

●

●

●●●●●

●

●

●●●

●●●

●●

●

●●●

●

●●●●●●

●

●●●●

●●●●

●●●●●

●●

●●●●●●●●●●●

●●●●●

● ●●●

●

●

●

●●●●●●●●●●●●●

●●●●● ●

●

●

●●

●●●●●

●●

●

●●●

●

●

●●●●

●

● ●●●●●●●

●

●●● ●●●●●●●●●●●●●●●

●

●●●●●●●●●● ●●●● ●

●

●●● ●●●● ●●●●● ●●●●●●●●●● ●●●●●● ● ● ●● ●● ●● ●● ●●●●

●●●●●●●●●● ●●●

●

●●●●●● ●●

●

●●●●●●●●●●●●●●●●●

●

●●● ●● ●●●● ●●●●●●●●●

●●
●

●

●

●●
●●

●

● ●●●●
●
●
●

●

●●●
●
●
●
●●●
●●●●●●●●● ●●●●●●●●●● ●●●

●
●
●
●●● ●●●● ●●●●● ●●●●

●●●●●● ●●●●●● ● ● ●● ●● ●● ●● ●●●●

●●

●

●

●●●●

●

●●●

●

●

●

●●

●

●
●

●

●●
●●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●
●●●●
●
●●
●
●●●●●●●
●
●●

●●

●

●

●
●●●●●●●●
●

●●

●●●●

●●●●

●●●
●●●●●●●●

●

●●

●
●

●

●

●

●
●●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●●
●●
●
●●●
●●
●●●●●
●
●●
●

●

●●

●
●

●

●

●
●

●●●●●
●
●●
●

●●●
●
●●●
●
●●

●
●

●●●
●●●●●●●●●●

●●
●●●

●●●
●

●●●
●●●●

Sensitivity
(true positive rate)

Specificity
(true negative rate) Average absolute bias

independence
C

urie−W
eiss

chain

25 50 100 250 500 1000 25 50 100 250 500 1000 25 50 100 250 500 1000

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

sample size (N)

4 nodes

●●●●
●

●

●●

●

●●●

●●●

●

●
●
●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●
●
●

●
●

●●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●● ●●

●●

●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●

●●

●●●●●

● ●

●●●

●

●●●●●●

●

●

●

●●

●●

●●

●●●●●●

●

●●

●

●

●

●●

●

●

●

●●

●

● ●

●●

●

● ●
●

●●●●●●●●●●●●●●●● ●
●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●

●●
●

●

●●●●●● ●●●●●●●● ●●●●
●
●●●●

●
● ●●● ●●●●● ●●●●● ●● ●●●● ●●

●
●●●

●●
●●●●●●●●●●●
●
●
●
●●●●● ●●●●●

●
●●●●●●●●●
●
●●●●●●● ●

●
●●●●●
●
●●
●
●●●●●●●●

●

●●●●

●

●●●●●● ●●●●●●●●●
●
●● ●●●●●●●

●
●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●

●

●●●

●
●●●

●

●●●●

●●

●●●
●

●●●●●●

●●●●●●●●●

●●
● ●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●● ●●●●● ●● ●●● ●●●●● ●●●●● ●● ●●●● ●●●●●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●●●
●
●

●

●
●●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●

●●

●

●●
●

●

●●●●●

●

●

●
●●●

●
● ●●

●

●●

●

●

●●●●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●
●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●●●
●● ● ●●●

Sensitivity
(true positive rate)

Specificity
(true negative rate) Average absolute bias

independence
C

urie−W
eiss

chain

25 50 100 250 500 1000 25 50 100 250 500 1000 25 50 100 250 500 1000

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

sample size (N)

8 nodes

edge weight (W): 0.1

edge weight (W): 0.2

edge weight (W): 0.3

edge weight (W): 0.5

Figure 2. Results from simulation study 1 assessing the performance of eLasso Ising model estimation (left) and models under
which data were simulated (right).
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(middle panel),4 and a chain model (right panel), in
which some edges are zero and some edges are non-
zero. Simulating data under such true models has the
advantage that we now know exactly when an esti-
mated parameter is in the true model and when it
arose due to chance. Table 1 shows an overview of
possible outcomes in the estimation procedure: an
edge can either be present or absent in the true
model, and correctly identified as such (true positive
and true negative respectively), or incorrectly identi-
fied to be present when absent (false positive/Type I
error) or absent when present (false negative/Type II
error). False positives indicate edges that are detected
due to chance. For the independence model, any edge
in the estimated network arose due to chance. For the
chain model, any edge in the estimated network that
is zero in the true model arose due to chance. As a
result, these simulations allow us to evaluate both
eLasso and fixed-margin sampling approaches and
their ability to identify genuine edges in the network.

Common metrics to evaluate the performance of
an estimation procedure are the sensitivity, specificity,
and, bias (Epskamp & Fried, 2018; van Borkulo et al.,
2014). The sensitivity, also known as the true positive
rate, indicates the proportion of true edges that were
also estimated:

sensitivity ¼ # true positives
# true positivesþ # false negatives

:

The specificity, also known as the true negative rate,
indicates the proportion of true absent edges that
were also estimated as being absent:

specificity ¼ # true negatives
# true negativesþ # false positives

:

Finally, the bias indicates the average absolute devi-
ation from the true and estimated parameters:

bias ¼ 1
# parameters

X
jtrue parameter� estimated parameterj:

Ideally, sensitivity should increase with larger sample
sizes (indicating an increase in statistical power), specifi-
city should be high all-around (indicating that few edges
are detected due to chance) and bias should decrease

with larger sample sizes (indicating that parameters con-
verge to the true values). Each cell of Table 1 can be
classified as (potentially) interesting or uninteresting,
leading to eight possible outcomes for each parameter
in a simulation study. To evaluate the performance of
fixed-margin sampling, we propose to assess how often
this method classifies true effects as (potentially) inter-
esting and false effects as uninteresting. We graphically
display all possible outcomes below.

We simulated data of four variables under the fol-
lowing simplified form of the Ising model (Epskamp,
Maris, Waldorp, & Borsboom, 2018):

P xð Þ ¼ 1
Z
exp

1
2

xTX x

� �
;

in which x denotes a vector of observed dichotomous
variables,5 encoded with �1 or 1, Z denotes a normal-
izing constant, and X encodes the network structure.
The Ising model typically also includes a threshold
vector (intercepts), which we set to 0 here, leading to
a base-rate of 50% chance on a 1 and 50% chance on
a �1 for all variables. To obtain the 4-node models
shown in Figure 2, we can set the network structure
for the independence model as follows:

X ¼
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
664

3
775;

the Curie-Weiss model as follows:

X ¼
0 W W W
W 0 W W
W W 0 W
W W W 0

2
664

3
775;

And finally, the chain model as follows:

X ¼
0 W 0 W
W 0 W 0
0 W 0 W
W 0 W 0

2
664

3
775:

We used the same method for generating data in all
models. Data were generated with the IsingSampler
package for R, using the Coupling from the Past algo-
rithm (Murray, 2007; Propp & Wilson, 1996), a variant of

4Of note, eLasso is not the most appropriate method to estimate Curie-
Weiss models, as it assumes and searches for a model that is sparse
(contains missing edges; Epskamp et al., 2017). The Curie-Weiss model is
better estimable using the methodology of Marsman et al. (2015), which
we did not evaluate here as it was not mentioned by Steinley
et al. (2017).

5We chose to generate data encoded with �1 and 1 because it is more
common in Ising modeling, it simplifies the matrix Ising model
expression, and allows the threshold vector to be fixed at 0 for 50%
base-rates. The Ising model matrix based on data encoded with �1 and
1 is proportional to the matrix encoding the Ising model corresponding
to data encoded with 0 and 1 (zeroes remain zeroes in both cases). As
such, the choice is arbitrary. In the simulation study, we transformed the
results from eLasso (which uses 0 and 1) to results based on an �1 and
1 encoding.
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the Metropolis-Hastings algorithm in which convergence
is guaranteed. We varied the number of nodes from 4 to
8. In the 4-node networks, edge-weight (W) varied
between 0.1, 0.3, and 0.5. In the 8-node networks, edge-
weight (W) varied between 0.1, 0.2, and 0.3, as the
W¼ 0.3 variant of the Curie-Weiss model already led
to most sampled cases either endorsing (scored 1) or
not endorsing (scored �1) all items, and higher edge-
weights lead to convergence problems in generating
data. We generated data using a sample size (N) of 25,
50, 100, 250, 500, and 1,000 and repeated every condi-
tion 100 times. This led to 3 (condition)� 2 (#
nodes)� 3 (W)� 6 (N)� 100¼ 10,800 simulated data-
sets. We performed eLasso using the default settings

of the IsingFit package for R. Next, we implemented
the fixed-margin sampling as described by Steinley
et al. (2017).

Results
The main results of the simulations study are shown
in Figure 2 (showing the performance of eLasso net-
work estimation) and Figure 3 (showing the perform-
ance of fixed-margin sampling). Figure 2 shows that
eLasso adequately retrieves the true network structure:
specificity of eLasso was high all-around, indicating
that eLasso rarely wrongly estimates an edge due to
chance alone. Sensitivity increases with sample size,

Table 1. Possible outcomes of estimated edges in a model.
Edge present in true model Edge absent in true model

Edge present in estimated model True positive False positive (Type I error)
Edge absent in estimated model False negative (Type II error) True negative

The estimation procedure works correctly if it mostly estimates true positives or true negatives. In the case of a false positive (Type I error), the presence
of an edge in the estimated model is due to chance. In the case of a false negative (Type II error), the estimation procedure lacked statistical power to
detect the true edge.
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independence
C

urie−W
eiss

chain

25 50 100 250 500 1000 25 50 100 250 500 1000 25 50 100 250 500 1000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

sample size (N)

4 nodes

edge weight (W): 0.1 edge weight (W): 0.2 edge weight (W): 0.3

independence
C

urie−W
eiss

chain

25 50 100 250 500 1000 25 50 100 250 500 1000 25 50 100 250 500 1000

0.00
0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15
0.20
0.25

sample size (N)

8 nodes

false edge = (potentially) interesting

false missing = (potentially) interesting

true edge = not interesting

true missing = not interesting

false edge = not interesting

false missing = not interesting

true edge = (potentially) interesting

true missing = (potentially) interesting

Figure 3. Results from simulation study 1 assessing the performance of fixed-margin sampling. The areas indicate the
proportion of every possible outcome. Outcomes indicating good performance are placed on the bottom, and outcomes
indicating poor performance are placed on the top. The horizontal black lines indicate the sum of all outcomes indicating good
performance.
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indicating that with higher power more true edges are
detected. The bias in estimated network structures is
low and decreases with sample-size, although it should
be noted that in the independence model this is aided
by LASSO regularization putting edges exactly at 0.
The simulations indicate that eLasso converges to the
true models: with increasing sample-size, sensitivity
becomes higher and bias lower. This is expected
behavior: eLasso, akin to significance testing, cannot
distinguish between a true null hypothesis and noisy
data (Epskamp & Fried, 2018). As a result, with small
sample sizes, eLasso will err on the side of caution
and set edges to zero in the case of limited evidence
that an edge is non-zero.

Figure 3 shows the performance of fixed-margin
sampling in classifying true and false effects as (poten-
tially) interesting and uninteresting respectively. Given
the above theoretical description of the equivalence
between Rasch and Curie-Weiss models, “classified as
(potentially) interesting” should be interpreted as “is
not to be expected given a Curie-Weiss or Rasch
model.” As anticipated, fixed-margin sampling shows
very poor performance in the Curie-Weiss model and
the independence model (a special case of Curie-
Weiss model). Regardless of the sample size, the cor-
rectly identified present (Curie-Weiss) or absent
(independence) edges are not identified as being
(potentially) interesting. At lower sample-sizes, fixed-
margin sampling correctly classifies false missing
edges in the Curie-Weiss model (due to lack of
power) as uninteresting. Also as expected,

performance of fixed-margin sampling was better in
the chain model. In the 4-node simulation, fixed-mar-
gin sampling correctly classified most true effects as
(potentially) interesting, although it required a relatively
high sample size (N> 500 with four variables) to attain
this precision. In the 8-node network, fixed-margin sam-
pling correctly classified true edges as (potentially) inter-
esting at high sample-size, but incorrectly classified true
missings as uninteresting. It should be noted here that
the 8-node chain model is much sparser (higher propor-
tion of edge-weights set to 0) than the 4-node chain-
model. In conclusion, while eLasso performs well in esti-
mating the true network structure, and rarely estimates
an edge due to chance alone (false positive), fixed-mar-
gin sampling performs very poorly to moderately in
classifying true and false effects as (potentially) interest-
ing and uninteresting respectively.

Simulation study 2: Multidimensional departures
from the Rasch model

In this second simulation study, we investigated the
utility of fixed-margin sampling coupled with eLasso
Ising model estimation in datasets generated from
multidimensional departures from the Rasch model.
We generated data using the multidimensional IRT
(MIRT; Reckase, 2009) model shown in Figure 4. The
MIRT model models the probability distribution of a set
of binary encoded (0 or 1) observed variables (yÞ given a
set of latent variables (hÞ. We denote the observed varia-
bles vector with y as it is encoded with 0 and 1 rather

1 1 1 11 1 1 1

C

RRRR

1 1

1 1

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

θ1 θ2

θ3 θ4

Figure 4. Simulation setup for the second simulation study. The generated model is a multidimensional item-response model, in
which the correlation between two main factors was varied as well as the strength of two residual correlations.
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than �1 and 1 commonly used in Ising modeling and
used above. 6 The MIRT model then is:

P y j hð Þ ¼
Y
i

exp a0ih�di
� �

1þ exp a0ih�di
� � ;

in which di indicates the difficulty of the ith item and
ai indicates the ith row of a discrimination matrix A,
which is comparable to a factor-loading matrix in fac-
tor analysis. In this simulation model, we generated
latent variables h from a multivariate normal distribu-
tion with means of 0 and the following variance–
covariance matrix:

var hð Þ ¼
1 C 0 0
C 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775;

which indicates that the first two factors are correlated
at q¼C, and the last two factors are independent. We
varied C between 0, 0.25, 0.5, 0.75, and 1. Next, we
specified the discrimination matrix to be:

A ¼

1 0 0 0
1 0 R 0
1 0 R 0
1 0 0 0
0 1 0 0
0 1 0 R
0 1 0 R
0 1 0 0

2
66666666664

3
77777777775
;

in which R corresponds to the strength of the residual
covariance, which we varied between 0 (no residual
correlation), 1 (as much covariance due to the residual
factor as due to the main factor) and 2 (more covari-
ance due to the residual factor than due to the main
factor). Finally, we drew the difficulty parameters
from standard normal distributions. Of note, in the
special case of C¼ 1 and R¼ 0, the MIRT model
above reduces to a Rasch model. Thus, the simulation
was set up to depart from Rasch models in two ways:
multi-dimensionality (C) and residual correlations (R).
Multidimensionality can be seen as a global departure
from the Rasch model, because it affects the correla-
tions among all variables, whereas residual correla-
tions can be seen as a local departure, because they
affect single pairs of variables (i.e., variables 2 and 3,
and 6 and 7). We varied N again between 25, 50, 100,
250, 500, and 1,000. Every condition was replicated
100 times, leading to 5 (C)� 3 (R)� 6 (N)� 100¼
9,000 generated datasets.
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Figure 5. Results from the second simulation studies. The box-plots indicate the proportion of edges that were classified as
(potentially) interesting, with the dashed line indicating the proportion of the two pairs of interest (2–3 and 6–7) compared to all
possible edges (8� 7/2¼ 28). The bars in the background indicate the proportion either one (blueþ orange area) or both (blue
area) the edges of interest were classified as (potentially) interesting.

6We use 0 and 1 encoding here because it is more common in MIRT, as
well as simplifies the expression. Note, again, that the encoding is
arbitrary for the Ising network structure, and a network obtained under
one encoding can be transformed to a network obtained under a
different encoding.
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Results

Figure 5 shows the results of the second simulation
study. As expected, in the special case of the Rasch
model (C¼ 1 and R¼ 0) almost no edges were classi-
fied as (potentially) interesting. Departing from the
Rasch model by both varying the factor correlation or
the strength of residuals leads to more edges being
classified as (potentially) interesting. However, it is of
note that even at N¼ 1,000 only a moderate propor-
tion of the edges was classified as (potentially) inter-
esting, even when two uncorrelated factors were
simulated. Of note, when simulating two uncorrelated
factors with no residual correlation (C¼ 0 and R¼ 0),
edges between indicators of the same factor were clas-
sified as interesting more often than edges between
the two factors.7 When the magnitudes of the resid-
uals were increased, the two relevant edges (2–3 and
6–7) were classified to be (potentially) interesting with
high probability. Because varying C structurally changes
the entire model for all variables to be completely differ-
ent from the Rasch model (when C¼ 0 two independent
factors cause the item responses), and R only leads to
deviations in specific parts of the model (two residual
correlations), the results indicate that fixed-margin
sampling coupled with eLasso Ising model estimation
performed very well in detecting local departures from

the Rasch model, but is only moderately capable of
detecting global departures from the Rasch model. Of
note, the dataset analyzed by Steinley et al. (2017) con-
sisted of indicators of two disorders. These simulations
suggest we should not expect many edges to be classified
as (potentially) interesting in such a case even though
the model is not a Rasch model. This is in line with the
findings of Steinley et al. (2017).

Simulation study 3: Interchangeability
of indicators

The Rasch model dictates both unidimensionality and
interchangeability of indicators. Where the second
simulation study investigated multidimensional
departures from the Rasch model, the third simulation
study was set up to investigate departures in
interchangeability from the Rasch model. The two-
parameter logistic model, (2PL) also known as the
Birnbaum model (Birnbaum, 1968), generalizes the
Rasch model to incorporate that some items are better
indicators of the latent factor than other items (these
items are said to discriminate better). We simulated
data under a unidimensional 2PL model as shown in
Figure 6 by specifying:

A ¼

1�3D
1�2D
1�D
1

1þ D
1þ 2D
1þ 3D

2
666666664

3
777777775
:

If D¼ 0, all discrimination parameters are equal
and thus the 2PL reduces to the Rasch model. If

1−3D 1−2D 1−D 1 1+D 1+2D 1+3D

1

Y1 Y2 Y3 Y4 Y5 Y6 Y7

θ

Figure 6. Simulation setup for the third simulation study. The generated model is a unidimensional item-response model known
as the two-parameter logistic model or Birnbaum model (Birnbaum, 1968). When D¼ 0, the model reduces to a Rasch model.

7Closer inspection of the generated Ising models revealed that the Ising
models estimated from data in the C¼ 0 and R¼ 0 condition generally
formed two fully connected clusters (indicators of each factor clustering
together), with little to no connections between the clusters. Ising models
estimated from the fixed-margin samples in this condition were mostly
very sparse and only contained a few connections. As such, while edges
in the two clusters featured adequate probability of being classified as
(potentially) interesting, most estimated missing edges were classified as
uninteresting.
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D> 0, the seventh item will discriminate best and
the first item will discriminate worst. We varied D
between 0, 0.1, 0.2, and 0.3. The (single) latent vari-
able and the difficulty parameters were all generated
from standard normal distributions. N was again
varied between 25, 50, 100, 250, 500, and 1,000,
and each condition was again replicated 100 times.
In total, 4 (D)� 6 (N)� 100¼ 2,400 datasets
were generated.

Results

Figure 7 shows the results of the third simulation
study. As expected, when D¼ 0 (Rasch model), hardly
any edges (1.1% over all conditions) were classified as
(potentially) interesting. When discrimination
increased, only edges between indicators with strong
discrimination parameters were classified as (poten-
tially) interesting, and only in large samples. The edge
between the two most important indicators, Y6 and Y7

was classified to be (potentially) interesting in 95% of
the N¼ 1,000 datasets. In lower sample sizes, even
when there were strong differences in discrimination
fixed-margin sampling coupled with eLasso Ising
model estimation did not identify many edges to be
(potentially) interesting. As such, the results from the
third simulation study are in line with the results
from the second simulation study: fixed-margin sam-
pling coupled with eLasso Ising model estimation may
be useful in identifying local departures from the
Rasch model (strongly discriminating indicators), but

not global departures from the Rasch model (when a
2PL model generated the data, many edges were still
not classified as interesting).

Discussion

We evaluated the utility of fixed-margin sampling (as
proposed by Steinley et al. 2017) for drawing inference
from eLasso Ising models (van Borkulo et al., 2014)
using both psychometric literature and simulation
studies. Both indicate that fixed-margin sampling
results in datasets which are indistinguishable from
what is generated under a Rasch model, and, thus,
also indistinguishable from what is generated under a
Curie-Weiss model (an Ising model in which all edges
are identical). Consistent with prior work (Barber &
Drton, 2015; van Borkulo et al., 2014), we showed
that the eLasso performed well in estimating Ising
models: few edges were detected due to chance alone
and, with increasing sample size, parameter estimates
converged on the true values and all edges were
detected. In contrast, fixed-margin sampling per-
formed poorly in classifying true effects as (poten-
tially) interesting, demonstrating that this test is not a
suitable test for the purpose Steinley et al. (2017) pro-
posed. In addition, we investigate the potency of
fixed-margin sampling coupled with eLasso Ising
models to detect departures from Rasch (or, equiva-
lently, Curie-Weiss) models. Results indicated that
fixed-margin sampling performs well in identifying
local departures from the Rasch model (strong
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Figure 7. Results of the third simulation study. Each row indicates one of the potential edges in the estimated eLasso Ising model,
and box color and label indicate the proportion of times the edge was classified as (potentially) interesting.
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residual correlations or strongly discriminating indi-
cators), but lacked statistical power to detect global
departures from the Rasch model (many parameters
were not classified as interesting even if the data
were generated by two independent factors or a fac-
tor-model in which indicators were not interchange-
able). Overall, these results indicate that the
conclusion reached by Steinley et al. (2017), that
“many of the [eLasso] results are indistinguishable
from what would be expected by chance” (p. 1000),
is unwarranted.

The utility of fixed-margin sampling

While fixed-margin sampling is sensible in the ana-
lysis of two-mode networks between sets of entities, as
discussed above, it may not readily be utilized to
assess the performance of regularized Ising models or
other multivariate statistical models based on datasets
in which columns represent random variables and
rows represent independent samples from some distri-
bution. As the implied null-model is a Rasch model,
however, the method does show great potency in
assessing how well a Rasch model can describe the
data (Verhelst, 2008). In this context, fixed-margin
sampling is then interpreted as a non-parametric test
for the Rach model. Combining fixed-margin sam-
pling with Ising model estimation as proposed by
Steinley et al. (2017), may be very interesting, espe-
cially in the context of abnormal psychology, as the
disease model used in the DSM implicitly assumes a
Rasch model (symptoms as interchangeable indicators
of an underlying disorder). Combining fixed-margin
sampling with Ising model estimation not only allows
one to test this hypothesis, but also to see where the
Rasch model misfits, without having to estimate Rasch
parameters. Our simulations indicated that fixed-mar-
gin sampling performed adequately in identifying
where misfit of the Rasch model occurs. While fixed-
margin sampling therefore provides a useful null-dis-
tribution to test where the Rasch model misfits, it
does not provide a useful null-distribution to assess if
Ising model (of which the Rasch model is a special
case) parameters are due to chance.

Is unidimensionality an appropriate null-
distribution in network psychometrics?

As network psychometrics has started as an alternative
to latent variable modeling, one might argue that taking
a Rasch model as null-distribution is sensible. As dis-
cussed, however, the Rasch model is not distinguishable

from certain Ising models (i.e., Curie-Weiss models). As
such, when taking the Rasch model as a null-hypoth-
esis, a failure to reject the null model (Rasch) does not
imply the Rasch model to be true. Because of model
equivalences, a Curie-Weiss model may still underlie
the data. Fixed-margin sampling may have utility in
seeing where a Rasch model or Curie-Weiss model
does not explain the data, but it does not have utility in
evaluating whether an Ising model is the underlying
data-generating model. Residual network models are
currently being developed that allow researchers to
study the network structure beyond the influence of a
latent variable (Chen, Li, Liu, & Ying, 2016; Epskamp,
Rhemtulla, & Borsboom, 2017).

Of note, when using unidimensionality with inter-
changeable indicators as null-distribution, our simula-
tions indicate that one should not expect many edges to
be classified as (potentially) interesting when the Rasch
model is not true. Even when generating two independ-
ent factors, only a moderate number of edges were clas-
sified as (potentially) interesting.8 In this light, the
number of 65% of the edges classified as (potentially)
interesting reported by Steinley et al. (2017) is fairly high
and indicates that their analyzed dataset strongly devi-
ates from what is to be expected given a Rasch or Curie-
Weiss model. This makes sense, as the analyzed dataset
contains indicators of two disorders, not one, and is fur-
ther highly influenced by the zero-imputation strategy
used to overcome the skip-structure of the data-adminis-
tration (Borsboom et al., 2017). As such, when applying
fixed-margin sampling to assess unidimensionality, it is
best to analyze a dataset in which unidimensionality is
plausible (e.g., indicators of only one disorder).

Conclusions

While fixed-margin sampling is a promising method
for analyzing two-mode networks between entities
(e.g., bird–habitat or actor–movie networks), care
should be taken when using fixed-margin sampling to
evaluate networks of random variables aimed to
explain observed states of random variables, such as
the Ising model. Our evaluation shows that the fixed-
margin sampling cannot readily be used to assess if

8It is possible that LASSO regularization itself influences these results.
LASSO regularization pushes many parameters, both in the original data
and in the fixed-margin samples, to zero (Epskamp, Kruis, & Marsman,
2017), leading to both observed parameters and one or both interval
boundaries based on the fixed-margin samples to be exactly zero. It is
possible that unregularized Ising model estimation performs better, but
this investigation was beyond the scope of this article, and unregularized
Ising model estimation is not trivial (Epskamp et al., in press).
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edges in the Ising model are due to chance, as the
implied null-model, a unidimensional factor model
with interchangeable indicators, is inappropriate.
Instead, applying fixed-margin sampling in combin-
ation with Ising models should be used as a method
for highlighting local violations of such factor models.
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