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ABSTRACT
Using theWeeks-Chandler-Andersen separation scheme,we explored equilibriumproperties of fully
penetrable soft spheres with an attractive tail. When the radial distribution function of the reference
system is computed bymeans of the integral equation theory using the hyper-netted-chain closure,
this separation scheme predicts pressure-density isotherms, vapour-liquid phase coexistence, and
surface tension in good agreement with the results from Monte Carlo simulations even though the
attractive portion of the interparticle potential has a significant effect on the radial distribution func-
tion. Despite its simplicity, themodel potential we studied, with a certain parameter value, exhibits a
non-monotonic temperature dependence of the liquid phase density over a wide range of pressure.
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1. Introduction

Soft spheres are characterised by a repulsive pairwise
interaction that increases relatively slowly with decreas-
ing interparticle distance when compared to commonly
used functions such as the Lennard-Jones potential. Soft
spheres find their utility in studying colloidal suspension
and polymer solutions [1]. In recent years, soft spheres
are often employed in meso scale simulations such as the
dissipative particle dynamics (DPD) [2].

These particles are often fully penetrable in that the
interparticle potential remains finite even when multiple
particles occupy exactly the same position in space. The
simplest of such bounded interparticle potential models
is a step function, for which the potential energy is a posi-
tive constant up to some cut-off interparticle distance and
vanishes beyond this distance. Schmidt developed a den-
sity functional for this model fluid based on the funda-
mental measure theory and predicted bulk fluid proper-
ties accurately at low packing fractions [3]. Other purely
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repulsive potentials, including Guassian core model [4]
and exponential core model [5] were also studied.

The penetrable square well potential, a bounded ver-
sion of square well potential, is the simplest model that
exhibits vapour-liquid coexistence [6–8]. To study inter-
facial phenomena by means of DPD, Liu et al. [9] intro-
duced a penetrable potential function constructed from
cubic spline functions.

While particle based simulation techniques, such
as molecular dynamics and Monte Carlo (MC) sim-
ulation [10], remain the primary tools for explor-
ing the physical properties and dynamical behaviour
of soft spheres, the computational demands imposed
by these methods justify an effort to explore the
same using a more analytical and computationally less
demanding approaches. It is also of great interest to
explore how well the existing theories of liquids [11]
can predict the thermodynamic behaviour of soft
spheres.
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The integral equation theory is one such approach, in
which one determines the radial distribution function by
solving the Ornstein-Zernike (OZ) relation [11]. Various
equilibrium properties of the system follows from this
function. Since the OZ relation involves the total and the
direct correlation functions, both of which are unknown,
it needs to be supplemented by an additional so-called
closure relation involving these functions.

For soft spheres, the hyper-netted-chain (HNC) clo-
sure [11] is known to yield a satisfactory result. The
approach is particularly efficient computationally when
applied to homogeneous phases. Recently, Malescio
et al. [12, 13] used HNC to successfully reproduce phase
diagrams in qualitative agreement with simulation and to
predict the onset of mechanical instability of high density
liquid phases.

However, HNC is not without some serious limita-
tions. If it is applied to a system capable of exhibiting
the vapour-liquid phase coexistence, the solution often
becomes increasingly difficult to find as one approaches
unstable (or even metastable) states. While this may be
reasonable on a physical ground, it frustrates an attempt
to predict the phase diagram accurately. It also implies
that physical properties of an inhomogeneous system
cannot be studied by means of a simple gradient the-
ory [14–19], which requires the free energy density of a
homogeneous system at all density values between those
at the phase coexistence.

In this work, we consider three versions of HNC based
approach. In the first version, which we shall refer to
as HNC0, the full potential, consisting of both repul-
sive and attractive parts, will be treated by means of
HNC. This version is subject to the limitations just indi-
cated. In the second version, the potential energy is
separated into a purely repulsive and a purely attrac-
tive parts according to the Weeks-Chandler-Andersen
(WCA) scheme [20]. Only the repulsive part is treated
using HNC. When the contribution from the attractive
part is treated by the first order perturbation theory, this
leads to a scheme we refer to as WCA/P. By changing
howwe treat the attractive part, we arrive at the third ver-
sion to be referred to asWCA/V. The predictions of these
approaches will be compared against the results fromMC
simulations.

We introduce the model potential in Section 2 and
describe our theoretical approach for computing ther-
modynamic properties in Section 3. Section 4 briefly
describes the details ofMC simulations. The results of our
computations are presented in Section 5.We conclude the
article with a few remarks in Section 6. Appendix pro-
vides a short derivation of the key formula for calculating
the surface tension.

2. Model potential

Following the work of Ref. [9], we consider the interpar-
ticle potential energy of the form

φ(r) = ε [Wcw(r/Rc)− Wdw(r/Rd)] , (1)

where

w(x) =

⎧⎪⎨
⎪⎩
1 − 6x2 + 6x3 (x ≤ 1/2)
2(1 − x)3 (1/2 < x ≤ 1)
0 (x > 1).

(2)

consists of cubic spline functions and has a continuous
second derivative. In this work, we set ε = 18.75, Wc =
2, Rc = 0.8, Rd = 1, and consider three values of Wd:
Wd = 0.9, 0.95, and 1. The resulting potential energy is
shown in Figure 1.

Using the WCA separation scheme [20], we split the
potential energy at rmin, where φ(r) takes its minimum
value φmin, into the repulsive part:

φr(r) =
{
φ(r)− φmin (r ≤ rmin)

0 (r > rmin)
(3)

specifying the interparticle potential in the reference sys-
tem, and the attractive part:

φa(r) =
{
φmin (r ≤ rmin)

φ(r) (r > rmin).
(4)

3. Integral equation theory

Letψ := βF/N, where β = 1/kBT is the inverse temper-
ature, F is theHelmholtz free energy, andN is the number

Figure 1. Model potential given by Equations (1) and (2). ε =
18.75,Wc = 2, Rc = 0.8, and Rd = 1.
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of particles in the system. Then,

ψ(T, ρ) = ln(�3ρ)− 1 + ψexc(T, ρ), (5)

where � is the thermal wavelength of the particle and ρ
is the number density of particles. The first two terms on
the right-hand-side, taken together, represent the ideal
gas contribution andψexc is the contribution toψ arising
from the interparticle potential.

Under the WCA separation of the potential energy,
ψexc is further divided into ψr and ψa due, respectively,
to φr and φa:

ψ(T, ρ) = ln(�3ρ)− 1 + ψr(T, ρ)+ ψa(T, ρ). (6)

For brevity and notational clarity, we present our
method only for cases in which the WCA separation is
employed (WCA/P andWCA/V). The formulation with-
out this scheme (HNC0) can be recovered as a special
case in which φr(r) ≡ φ(r) and φa(r) ≡ 0. Accordingly
ψr(T, ρ) ≡ ψexc(T, ρ) and ψa(T, ρ) ≡ 0 in HNC0.

3.1. Hyper-netted-chain closure

To determineψr, we find the radial distribution function
gr(r) of the reference system by solving the OZ relation

hr(r) = cr(r)+ ρ

∫
cr(|r − r′|)hr(r′) dr′ (7)

combined with the HNC closure:

cr(r) = hr(r)− ln[hr(r)+ 1] − βφr(r), (8)

where cr(r) and hr(r) = gr(r)− 1 are direct and total
correlation functions, respectively.

Once gr(r) is found, ψr is obtained using a thermody-
namic identity

ψr(T, ρ) = −βpr(T, ρ)
ρ

+ βμr(T, ρ), (9)

where pr is the contribution to the pressure due to the
repulsive interaction φr and is evaluated by the virial
equation of state as

− βpr(T, ρ)
ρ

= 1
6
βρ

∫
r
dφr
dr

gr(r) dr. (10)

Under HNC [11],

βμr(T, ρ) = 1
2
ρ

∫
hr(r)[hr(r)− cr(r)] dr

− ρ

∫
cr(r) dr. (11)

3.2. Perturbation theory

According to the first order perturbation theory,

ψa(T, ρ) = 1
2
βρ

∫
φa(r)gr(r) dr. (12)

Once ψa(T, ρ) is known, we can evaluate the contribu-
tion pa to the pressure arising from φa by

βpa(T, ρ)
ρ2

=
(
∂ψa

∂ρ

)
T
. (13)

Alternatively, pa may be evaluated using the virial
equation of state as

βpa(T, ρ)
ρ2

= −1
6
β

∫
r
dφa
dr

gr(r) dr. (14)

Upon integration with respect to ρ, we obtain

ψa(T, ρ) =
∫ ρ

0

βpa(T, ρ)
ρ2

dρ. (15)

In the low density limit, gr = e−βφr . Thus,

lim
ρ→0

βpa(T, ρ)
ρ2

= −2π
3
β

∫
dφa
dr

e−βφrr3 dr. (16)

This may be evaluated by a numerical quadrature and
gives the value of the integrand in Equation (15) at ρ = 0.

Equations (12) and (15) define the methods we refer
to asWCA/P andWCA/V, respectively. In both cases, the
contribution fromφa to the chemical potential is given by

βμa(T, ρ) = ψa(T, ρ)+ βpa(T, ρ)
ρ

. (17)

3.3. Phase coexistence

Densities of coexisting phases, ρv and ρl, are determined
by the equality of the pressures

p(T, ρv) = p(T, ρl) (18)

and that of the chemical potentials:

μ(T, ρv) = μ(T, ρl). (19)

3.4. Inhomogeneous system

We resort to the gradient theory to describe a vapour-
liquid interface. In this theory, the free energy F[ρ] of
an inhomogeneous system is a functional of the density
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profile ρ(r) and is given by [14–19]

βF[ρ] =
∫
V

[
f0(T, ρ)+ f2(T, ρ) |∇ρ|2] dr, (20)

where f0 := ρψ is the free energy density of a bulk homo-
geneous phase and [11, 18, 19]

f2(T, ρ) := 1
12

∫
c(r)r2 dr. (21)

We used the random phase approximation to compute
c(r):

c(r) = cr(r)− βφa(r). (22)

The surface tension γ of a vapour-liquid interface is given
by [19]

βγ (T) = 2
∫ ρl

ρv

√
f2(T, ρ)

[
f0(T, ρ)+ βp − βμρ

]
dρ,

(23)
where p and μ refer to the coexisting bulk phases.
Appendix provides a short derivation of Equation (23).

3.5. Numerical procedure

Equations (7) and (8) were solved iteratively to find cr(r)
and hr(r) at evenly spaced 501 grid points on 0 ≤ r ≤
Rmax = 5. We examined the effect of doubling Rmax or
adding 500 more grid points under a few conditions.
Except for a few instances to be stated explicitly, no
discernible effect was observed.

At each temperature and density, HNC0 yields pr and
μr directly without requiring an integration with respect
to ρ. Accordingly, we have considered only those den-
sity values around the phase coexistence. Since WCA/V
requires integration with respect to ρ as indicated by
Equation (15), we solved Equations (7) and (8) for well
over 200 density values. WCA/P shares the same set of
data with WCA/V.

This allowed us to find an initial estimate for the coex-
isting densities by plotting μ versus p curve using ρ as
a parameter and finding the density values at which the
curve intersects itself. The initial estimate was further
refined using the Newton-Raphson method [21].

In this and other computations, it becomes necessary
to estimate various thermodynamic quantities and their
density derivatives at arbitrary densities. For this pur-
pose, we representedψexc,βpexc := β(pr + pa),βμexc :=
β(μr + μa), and f2 using a cubic spline interpolant. In
constructing the interpolant, we used the fact that the first
three of these quantities are zero at ρ = 0. To evaluate
f2(T, ρ = 0), we used the expression for gr(r) in the low
density limit in Equation (8). Under the random phase

approximation, this gives

lim
ρ→0

c(r) = e−βφr(r) − 1 − βφa(r). (24)

We also need to specify the density derivatives of the
above listed quantities both at the lowest (ρ = 0) and at
the highest densities forwhich data is available. Following
a recommendation in Ref. [22], the derivative was esti-
mated by representing the four data points at either end
of the density values by a cubic polynomial.

A similar procedure was used for ψa in WCA/P so
that βpa/ρ2 can be evaluated by differentiation as indi-
cated by Equation (13). In constructing the interpolant
as described above, however, the following expression
is available based on the low density approximation of
gr(r):

(
∂ψa

∂ρ

)
T

∣∣∣∣
ρ=0

= 2πβ
∫
φa e−βφrr2 dr. (25)

4. Monte Carlo simulation

To assess the accuracy of our theoreticalmethods, we per-
formed a series ofMC simulations in canonical andGibbs
ensembles [23]. The bulk properties were computed not
only for the system of particles interacting with the full
potential φ, but also for the reference system in which the
interparticle potential is purely repulsive and is given by
Equation (3).

The canonical ensemble simulation for bulk proper-
ties were performed in a cubic box of various sizes chosen
to contain a reasonable number of particles. For ρ < 1,
1 ≤ ρ < 10, and 10 ≤ ρ ≤ 18, the side length of the cube
was 20, 12, and 8, respectively. The surface tension was
evaluated in canonical ensemble simulations involving
10000 particles in a rectangular box of height 40 and a
square base with the side length 8. At each state point
considered, we performed 10 independent simulations,
each involving sampling over 4 × 105 MC cycles. The
resulting error bars were smaller than the symbols used
to represent the data, and will not be shown.

TheGibbs ensemble (GEMC) simulation involved two
cubic boxes, one for the vapour phase and the other for
the liquid. We adjusted the total number of particles so
that the average volume for these boxes are approximately
123 and 83, respectively. Only one simulation, involving
sampling over 4 × 105 MC cycles, was performed at each
temperature value.

In all cases, the periodic boundary condition was
applied in each direction and equilibration was carried
out over at least 4 × 104 MC cycles.
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5. Results

To compare the HNC predictions, ghnc(r), for the radial
distribution function against the results, gmc(r), of MC
simulations, we quantified their difference by means of

‖�g‖ := 1
Rg

∫ Rg

0

∣∣ghnc(r)− gmc(r)
∣∣ dr, (26)

where we dropped the usual factor of 4πr2 to empha-
sise the small r region (r ≤ 1), which is expected to have
a more direct impact on the accuracy of the perturba-
tion theory. Figure 2 shows ‖�g‖ for Wd = 1 and Rg =
Rmax = 5. Since the unweighted average of g(r) over the
interval 0 ≤ r ≤ Rg is of the order of unity, we see that
the error is generally well within a few % for both actual
and reference systems. For the latter, there is a sudden
increase in ‖�g‖ at ρ = 1. This is due to the finite size
effect in MC simulations and results from our choice of
the system volume described in Section 4. Using a larger
system size reduced the magnitude of the jump, but only
with a significant increase in the computational effort.
For the actual system, the error is seen to grow rapidly
towards the centre of the figure. This occurs as the system
approaches the spinodal region (at kBT = 1) or binodal
lines (at kBT = 2) either from the vapour or the liquid
sides and the iterative solution of Equations (7) and (8)
becomes increasingly difficult. The error ‖�g‖ in this
region, especially for the liquid phases, was slightly larger
with Rmax = 10 than with Rmax = 5 (using Rg = 5 for
both cases), presumably because correlations with longer
wavelengths are permitted when Rmax is larger.

Figure 2. Density dependence of the difference in the radial
distribution functions between HNC and MC for the system
interacting with the reference (φr) and the full (φ) potentials.
Wd = 1.

Figure 3. Pressure versus density isotherms.Wd = 1.

Figure 3 shows the p versus ρ isotherms for the actual
system. A good agreement is observed between the MC
simulation on the one hand and predictions fromHNC0,
WCA/P, and WCA/V on the other. We note that MC
results for the liquid phase fall between the predictions
of WCA/P and WCA/V. Isotherms from HNC0 agrees
more closely with WCA/P except for low density liquid
phases. We also note that the HNC0 results show a dis-
continuous jump in pressure (at ρ ≈ 10.3 for kBT = 1
and at ρ ≈ 8.4 for kBT = 2). This occurs at higher densi-
ties if Rmax = 10. A convergent solution of Equations (7)
and (8) became impossible to find at these densities if
Rmax = 20. We took this as an indication that a homo-
geneous phase at these densities, at least according to
HNC0, is unstable.

When computing pr by Equation (10), only the values
of gr(r) in the range 0 ≤ r ≤ 1 are involved. In Figure 4,
we compare ghnc(r) against gmc(r). While HNC is seen
to be reasonably accurate in predicting g(r) for both
actual and reference systems, deviation from gmc(r) is
noticeable for 0 ≤ r ≤ 1. In fact, when we set Rg = 1
in Equation (26), ‖�g‖ of the actual system increased
approximately by a factor of 2 for the vapour and 5 for
the liquid phases. Nevertheless, ‖�g‖ is still very small,
and hence the good agreementwe observed for p between
MC and HNC0 is not surprising.

A change in ‖�g‖ of a similar magnitude was
observed for the reference system when we used Rg = 1
in Equation (26). In the case of WCA/P and WCA/V,
however, the contribution from the attractive potential
must also be included. Figure 4 reveals a considerable
difference in the radial distribution function between
the actual and the reference systems. This situation is in
stark difference from a system of Lennard-Jones parti-
cles, in which g(r) of the reference system (defined by
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Figure 4. The radial distribution function from HNC and an MC
simulation. To improve visibility, graphs for ρ = 14 and 18 are
shifted upwardly by 1 and 2, respectively. kBT = 1 andWd = 1.

the WCA scheme) and the actual system are very simi-
lar, with nearly perfectly coincident r values for peaks and
valleys of g(r).

To quantify the accuracy of the first order thermo-
dynamic perturbation method, we evaluated the second
order term using the approximate expression [11, 24]:

ψ(2)a (T, ρ) ≈ −1
4
βρ

(
∂pref
∂ρ

)−1

T

∫
[φa(r)]2 gr(r) dr,

(27)
where pref := ρkBT + pr. In Figure 5, we compare ψ(2)a
against ψa given by Equation (12). We observe that these
two quantities are comparable at gas phase densities, but
the importance of ψ(2)a decreases rapidly with increas-
ing density. At ρ = 10, for example, ψ(2)a /ψa is approxi-
mately 0.032 at kBT = 1.5 and 0.01 at
kBT = 0.5.

The phase diagrams from WCA/P and WCA/V are
also in good agreement with the results from GEMC
simulations as shown in Figures 6 and 7. As with any
other mean-field theory applied to model potentials with
a harsh repulsive core, we observe that WCA/P and
WCA/V both over-predict the critical temperature. For
the range of Wd values we considered, WCA/P and
WCA/V predict very similar vapour phase densities,
though the former tends to perform slightly better. In
the case of the liquid phase, WCA/P is reasonably accu-
rate forWd = 0.9 and 0.95. ForWd = 1, however, GEMC
results tend to interpolate WCA/P and WCA/V over a
wide range of temperature. HNC0 results are generally in
agreement withWCA/P at low temperatures. For the liq-
uid phase, they approach WCA/V results as temperature
is increased. At higher temperatures, HNC0 failed to pro-
vide a convergent solution for ρ values around the phase

Figure 5. The relative importance in the thermodynamic pertur-
bation theory of the second order termψ(2)a in comparison to the
first order termψa given by Equations (27) and (12), respectively.
Wd = 1.

Figure 6. Phase diagram showing vapour-liquid phase
coexistence.

coexistence. As a result, the binodal lines terminated
prematurely as seen in Figure 6.

Interestingly, MC, HNC0, WCA/P, and WCA/V all
predict that the liquid phase density for Wd = 0.95
increases with increasing temperature up to kBT ≈ 0.5.
This behaviour is related to the sign of the coefficient of
thermal expansion, −ρ−1(∂ρ/∂T)p, of the liquid phase
at and near the phase coexistence. To see this, we note
that ρ = ρ(T, p), and hence

dρ =
(
∂ρ

∂T

)
p
dT +

(
∂ρ

∂p

)
T
dp. (28)



MOLECULAR PHYSICS 7

Figure 7. Vapor phase density at saturation.

TheClaussius-Clapeylon relation holds along the binodal
lines:

dp = sv − sl
1/ρv − 1/ρl

dT, (29)

where sl and sv denote the entropy per particle in the liq-
uid and the vapour phases, respectively. Eliminating dp
from Equation (28), we arrive at(

∂ρ

∂T

)
vle

=
(
∂ρ

∂T

)
p
+ sv − sl

1/ρv − 1/ρl

(
∂ρ

∂p

)
T
, (30)

where the subscript ‘vle’ indicates that the derivative is
taken while maintaining the vapour-liquid phase coexis-
tence. Insofar as the second term on the right hand side is
expected to be positive, (∂ρ/∂T)vle > 0 if (∂ρ/∂T)p > 0.
Figure 8 shows that the latter derivative from MC sim-
ulations indeed is positive up to kBT ≈ 0.4 over a very
wide range of pressure. HNC0, WCA/P, and WCA/V all
correctly capture this behaviour at least qualitatively.

As shown in Figure 9, WCA/P and WCA/V both pre-
dict the surface tension γ reasonably well. WCA/V is
more accurate at Wd = 1 but WCA/P becomes compa-
rably accurate as Wd is decreased. For all Wd values we
studied,WCA/P andWCA/V over-predict γ at very high
temperature values. This is a consequence of these the-
ories over-predicting the critical temperature. We recall
that HNC0 fails when applied to unstable phases and
hence cannot be used to predict γ within the framework
of the gradient theory.

For a sufficiently strong attractive potential, particles
in the system may collapse to form a small blob. Accord-
ing to the Fisher and Ruelle criterion [25, 26], the system
at kBT = 0 is unstable with respect to this collapse if∫

φ(r) dr < 0, (31)

Figure 8. Temperature dependence of the the liquid phase den-
sity at p = 0.01, p = 1, and p = 10.Wd = 0.95. For eachmethod
and at each temperature, the density is larger for a higher
pressure.

Figure 9. Surface tension γ of the vapour-liquid interface at
saturation.

which gives Wd > 1.024 for the model potential we are
considering in this work. At non-zero temperatures, the
entropic effect is expected to prevent the collapse ifWd is
exactly 1.024. As Wd is increased, however, the collapse
should be observable even at non-zero temperatures.

Taking the failure of the iterative solution of Equa-
tions (7) and (8) as indicating the onset of this instabil-
ity, Malescio et al. [12, 13] showed that HNC0 predicts
the onset in an excellent agreement with the Fisher and
Ruelle criterion for several soft sphere potentials.

In contrast, we do not expectWCA/P orWCA/V to be
capable of predicting this form of instability since the ref-
erence system for whichHNC equation is solved is purely
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repulsive. Nevertheless, we found that WCA/V (as well
as HNC0) predicts a form of mechanical instability (in
addition to the spinodal) when the density is increased
far beyond the liquid density at the vapour-liquid
coexistence.

As an example, we considered threeWd values:Wd =
1.020, 1.024, and 1.028. The onset of this mechanical
instability is identified by(

∂p
∂ρ

)
T

= 0. (32)

This equation is solved at various temperatures and the
solution, ρ, is shown in Figure 10. At least for Wd =
1.020 and 1.024, WCA/V is seen to considerably under-
estimate ρ compared to HNC0. In both HNC0 and
WCA/V, p decreased rapidly when ρ is increased beyond
ρ. The iterative solution of Equations (7) and (8) even-
tually failed to converge at ρmax.

In Figure 10, open symbols indicate that p(T, ρ) < 0.
Since the pressure takes the local minimum at the liq-
uid phase spinodal density ρspl before it reaches the local
maximum at ρ, we have p(T, ρ

sp
l ) < p(T, ρ) < 0. The

vapour phase, if existed, should have a positive pressure.
As a result, the system has no vapour-liquid coexistence
at the temperature and theWd value indicated by an open
symbol in Figure 10. This means that, as the temperature
is dicreased, the binodal lines terminate at T satisfying
p(T, ρ) = 0, where ρ for a givenWd is a function of T
only.

This is illustrated in Figure 11, which shows the liq-
uid densities at saturation, ρ, and ρmax forWd = 1.024.
Compared toHNC0,WCA/Vpredicts the termination of
the binodal line (due to p(T, ρ) being zero) at a much

Figure 10. The density ρ, beyond which a high density fluid
phase is mechanically unstable, plotted versus temperature. An
open symbol indicates a fluid phase with a negative pressure.

higher temperature. The HNC0 predictions follow the
GEMC results more closely in this temperature range.

However, the high density phase in GEMC simulation
crystallised at and below kBT = 0.78, thus preventing
a meaningful comparison between HNC0 and GEMC.
The crystal phase had 4- and 6-fold rotational symme-
tries, pointing to the face-centred-cubic structure. As
with ρ, WCA/V predictions of ρmax are considerably
smaller than those of HNC0. In agreement with what
we saw for Wd = 0.9, 0.95, and 1, the binodal line from
HNC0 terminated prematurely as the temperature was
increased.

WCA/P exhibited a rather peculiar behaviour at
kBT = 0.2 and 0.4. The p versus ρ isotherms have a local
maximum at ρ(> ρ

sp
l ), which is followed by a localmin-

imum. With a further increase in ρ, p increased rapidly
before the iterative procedure failed at the same ρmax
value as for WCA/V. (WCA/P and WCA/V share the
same value for ρmax, but not for ρ). The two extrema
eventually merged into a single inflection point, which
disappeared at around kBT = 0.6. The sharp increase in
p and the eventual failure of the iterative process were
observed at all temperature values.

A failure of the iterative process is often identified
as an onset of some instability. To gain an insight into
the nature of this instability, we examined the radial
distribution function and noticed an emergence and a
sudden growth of a peak near r = 0. This is shown in
Figure 12 for Wd = 1.024 using the value of ghnc(r) at
r = 0.01, this value of r being the smallest available from
our computation. Similar plots for other values of Wd
(1.020 and 1.028) are omitted in the figures as they are
indistinguishable from the graphs for Wd = 1.024. The

Figure 11. Liquid phase density at saturation (ρeql ) shown with
the onset ofmechanical instability (ρ) and themaximumdensity
(ρmax) abovewhich iterative solution of Equations (7) and (8) fails.
Wd = 1.024. An open symbol forρ indicates a negative pressure.
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Figure 12. Density dependence of the radial distribution func-
tion at r = 0.01 using the HNC closure. kBT = 1 andWd = 1.024.
The filled circules indicate the values at the onset of mechanical
instability (ρ = ρ).

figure clearly indicates a significant overlapping of parti-
cles with increasing ρ as envisaged in the literature [12,
13, 26].

The rapid increase in ghnc(r = 0.01) occurs at lower
densities for the reference system than for the actual sys-
tem. This is expected and leads to the under-prediction of
ρ and ρmax byWCA/Vmentioned earlier: The energeti-
cally favourable interaction is operational only for r0 ≤
r ≤ Rd = 1, where r0 is determined by φ(r0) = 0, and
this delays the overlapping of the particles in the actual
system.

We emphasise that the overlapping of particles is
observed even in the reference system, in which the inter-
particle potential is non-negative. There appears to be no
reason for such particles to condense into a small blob.
Even though a repulsive force from a single particle may
be weak, a strong repulsive force would be generated if
multiple of such particles fully overlap. Thus, it does not
appear unreasonable to speculate that, at least in the case
of the reference system and by extension in the actual
system with small Wd values, the new phase may be a
crystal, in which each lattice point consists of multiple
overlapping particles. A systematic exploration of this
possibility would require a density functional theory of
crystals [27–29] along with extensive and very demand-
ing (due to the very high density values involved) MC
simulations, which is beyond the scope of this study.

6. Concluding remarks

We examined the accuracy of the WCA separation
scheme for fully penetrable soft spheres with a bounded
potential energy. When the total and direct correlation

functions of the reference system are determined by the
HNC closure, this separation scheme leads to predic-
tions of equilibrium properties of both homogeneous
and inhomogeneous systems in a good agreement with
MC simulations. In contrast to more commonly stud-
ied potentials characterised by a harsh repulsive core,
however, the radial distribution function of the reference
system differs noticeably from that of the actual system.

The model potential we studied, despite its simplicity,
leads to a non-trivial equilibrium behaviour. For exam-
ple, the liquid phase density, as a function of temperature,
is not monotonic over a very wide range of pressure
at least for one of the Wd values we examined. With
increasing density, the liquid phase eventually becomes
mechanically unstable. If the attractive part of the poten-
tial energy is sufficiently strong, we expect the liquid
phase to collapse and form a high density blob. However,
the reference system (without an attractive potential) is
likely to form a crystal phase instead, in which each lat-
tice point consists ofmultiple overlapping particles. Thus,
unless the attractive potential is sufficiently strong, the
above mentioned mechanical instability might point to a
crystal phase formation. A systematic exploration of this
possibility, however, is left to a future work.
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Appendix. Surface tension

The equilibrium density profile of a vapour-liquid interface
(at the phase coexistence) is determined by minimising the
grand potential �[ρ], which is a functional of the density

profile. Focusing on the unit area of the interface that runs
perpendicular to the z-axis,

β�[ρ] =
∫ h/2

−h/2

[
f0(T, ρ)+ f2(T, ρ)ρ̇2 − βμρ

]
dz, (A1)

where ρ̇ := dρ/dz and h is the height of the system with z = 0
at its centre. We place z = 0 within the interfacial region and
suppose that h is taken sufficiently large so that z = ±h/2 is
well within the bulk phases.

As discussed in detail in Ref. [19], we can profitably exploit
the analogy with mechanics by regarding z as the time and ρ as
the position of a particle subject to the potential energy −f0 +
βμρ. Themass of the particle is position dependent and is given
by 2f2 (> 0).

In this mechanical analogy, Equation (A1) is the action
integral in which

L(ρ, ρ̇) := f0(T, ρ)+ f2(T, ρ)ρ̇2 − βμρ (A2)

is the Lagrangian. Lagrange’s equation of motion

d
dz

(
∂L
∂ρ̇

)
− ∂L
∂ρ

= 0 (A3)

leads to

βμ0(T, ρ)−
(
∂f2
∂ρ

)
T
ρ̇2 − 2f2(T, ρ)ρ̈ = βμ, (A4)

where ρ̈ := d2ρ/dz2 and

βμ0(T, ρ) :=
(
∂f0
∂ρ

)
T
. (A5)

The non-linear second order ordinary differential equation,
Equation (A4), would have to be solved numerically under the
boundary conditions that limz→∞ ρ = ρv and limz→−∞ ρ =
ρl. This proves to be a rather non-trivial task due to (1) the
existence of the additional solutions ρ(z) ≡ ρv and ρ(z) ≡ ρl
besides the onewe seek, (2) an extreme sensitivity of the numer-
ical solution to the initial value of ρ̇, say at z = 0 where wemay
set ρ = (ρv + ρl)/2, and (3) the failure of themost of the differ-
ential equation solvers to conserve a constant of motion exactly
even in a simpler case in which f2 is independent of ρ.

Fortunately, the mechanical analogy mentioned above
reveals the existence of the first integral of Equation (A4). In
fact, sinceLdoes not depend explicitly on z, the energy function

e := ∂L
∂ρ̇
ρ̇ − L = f2ρ̇2 − f0 + βμρ (A6)

is a constant of motion [31], and hence is independent of z.
Evaluating the right-hand-side of Equation (A6) for either of
the bulk phases at coexistence, in which ρ̇ = 0, we find that
e = βp. Recalling the double-tangent construction, by means
of which one can find the coexisting densities [31], we see that
f0 + βp − βμρ ≥ 0. Thus, solving Equation (A6) for ρ̇ and
arbitrarily choosing the negative root so that the liquid phase
is on the left of the vapour phase, we arrive at [19]

ρ̇ = −
√

1
f2(T, ρ)

[
f0(T, ρ)+ βp − βμρ

]
. (A7)

It is relatively easy to solve this first order ordinary differen-
tial equation numerically using, for example, the fourth order
Runge-Kutta method under the boundary condition that ρ =
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(ρv + ρl)/2 at z = 0 and integrating in both positive (vapour
phase) and negative (liquid phase) directions.

The surface tension is the excess per unit area of the inter-
face of the grand potential over that of the hypothetical sys-
tem [31–33]. The latter consists of bulk vapour and liquid
phases in contact with each other across a sharp dividing sur-
face parallel to the interface, but each behaving as if it is a
piece of a bulk homogeneous phase. This leads to the following
expression for γ :

βγ (T) =
∫ h/2

−h/2

[
f0(T, ρ)+ f2(T, ρ)ρ̇2 + βp − βμρ

]
dz.

(A8)

Using Equation (A6), we can rewrite this equation as

βγ (T) = 2
∫ h/2

−h/2

[
f0(T, ρ)+ βp − βμρ

]
dz. (A9)

Another application of Equation (A7) results in Equation (23).
Clearly, it is unnecessary to find ρ(z) if we are interested in γ
only.


	1. Introduction
	2. Model potential
	3. Integral equation theory
	3.1. Hyper-netted-chain closure
	3.2. Perturbation theory
	3.3. Phase coexistence
	3.4. Inhomogeneous system
	3.5. Numerical procedure

	4. Monte Carlo simulation
	5. Results
	6. Concluding remarks
	Acknowledgments
	Disclosure statement
	ORCID
	References

