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ABSTRACT
Theories of self-efficacy and approaches to learning are well-
established in the psychology of learning. However, studies on rela-
tionships between the primary constructs on which these theo-
ries are developed are rarely reported in mathematics education
research. Thus, the purpose of the current study is to provide empir-
ical evidence for a potential causal relationship between perceived
self-efficacy and approaches to learning. The present study adopts
a cross-sectional survey research design that includes 195 engineer-
ing students enrolled on a first-year introductory calculus course. The
data are collected using two well-developed and validated instru-
ments with established high psychometric properties. Two hypothe-
ses are formulated and tested using a structural equation modelling
approach coupled with a weighted least square mean and variance
adjusted estimator. The findings show that a high sense of perceived
self-efficacy has a strong tendency to induce a deep approach to
learning mathematics. In contrast, a low sense of perceived self-
efficacy induces a surface approach to learning mathematics with
a strong effect. This study represents a shift from the usual correla-
tional studies that characterize quantitative research in mathemat-
ics education literature to causal relation research. Therein, causal
assumptions are made and tested against the collected data, and
some recommendations are made for future studies.
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1. Introduction

Mathematics instruction that leads to satisfactory learning outcomes in terms of high per-
formance as measured in examinations, understanding that supports future progression,
engaged, motivated and enthusiastic students, has not been an easy task. Students, teach-
ers, parents, researchers, policymakers, and other education stakeholders seek possible
solutions to the global trend of poor performance in mathematics. The utility of mathe-
matics transcends several educational levels, employment, and career opportunities, which
explains why engineering students value the subject (Tossavainen et al., 2019). Mastery of
introductory first-year mathematics courses is crucial to successful performance on core
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engineering courses at later years in the university. However, many first-year engineer-
ing students struggle with these courses, and their poor performance compels some of
them to develop negative attitudes towardmathematics and change their career aspirations
(Braathe & Solomon, 2015; Martínez-Sierra & García-González, 2016). Since students suf-
fer most of the associated effects of poor performance in mathematics, a study that focuses
on factors that emanate from the students is equally important. Several empirical studies
have linked a variety of factors to poor performance in mathematics. These factors include
but are not limited to mathematics anxiety (Dowker et al., 2016), attitudes toward math-
ematics (Dowker et al., 2019), academic motivation (Tossavainen et al., 2019), perceived
self-efficacy (Williams & Williams, 2010), approaches to learning (Maciejewski & Mer-
chant, 2016), conception of mathematics (Yang et al., 2019), prior mathematics knowledge
(Zakariya, 2016), and self-concept (Pajares & Miller, 1994).

Two of these factors (perceived self-efficacy and approaches to learning) have received
increased attention recently. The reason for this increased attentionmay lie in their satisfac-
tory prediction of students’ performance in mathematics (Loo & Choy, 2013; Maciejewski
& Merchant, 2016; Williams & Williams, 2010). Perceived self-efficacy is linked to Albert
Bandura’s self-efficacy theory, which is grounded in the agentic social cognitive theory
(Bandura, 1997). Perceived self-efficacy encapsulates ‘beliefs in one’s capabilities to orga-
nize and execute the courses of action required to produce given attainments’ (Bandura,
1997, p. 3). With a particular focus on engineering students, perceived self-efficacy has
been defined as ‘a person’s belief that he or she can successfully navigate the engineering
curriculum and eventually become a practicing engineer’ (Jordan et al., 2010, p. 2). It is an
important personal factor that facilitates improved students’ performance in mathemat-
ics and boosts perseverance when undertaking difficult tasks (Bandura, 2012). Empirical
studies have revealed that students with a high sense of perceived self-efficacy have low
mathematics anxiety, high motivation to learn, positive attitudes toward mathematics, and
increased interest in the subject (Bandura, 1997). Perceived self-efficacy has also been
reported to predict students’ performance in mathematics better than mathematics self-
concept and prior knowledge of mathematics (Pajares &Miller, 1994). Efficacy beliefs have
also been found to exert a more substantial direct effect on students’ performance in a
mathematics problem-solving activity than mental ability, mathematics anxiety, and high
school mathematics content level (Pajares & Kranzler, 1995).

Students approach their learning of mathematics in different ways. However, these
diverse ways of learning have been postulated by the approaches to learning theory to con-
verge to two main approaches (Marton & Booth, 1997). Some engineering students learn
mathematics with the motives of developing a deep understanding of its concepts (deep
approach). In contrast, other students are extrinsically motivated to learn mathematics,
such as satisfying the curriculum requirement, and thereby concentrate on crucial points
(surface approach) to pass the course (Zakariya et al., 2020). Deep approaches to learn-
ing have generally been associated with an improved performance of first-year students on
mathematics tasks more than surface approaches (Maciejewski & Merchant, 2016). How-
ever, there are some studies where a surface approach to learning mathematics has been
reported to have a slightly higher positive correlation with performance than the deep
approach to learning among engineeringmasters students (Svedin et al., 2013). Approaches
to learning are strongly related to attitudes towardmathematics, conceptions ofmathemat-
ics, and enjoyment ofmathematics. Prior studies have shown a positive correlation between
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deep approach and attitudes toward mathematics and a negative correlation between sur-
face approach and the latter (Alkhateeb & Hammoudi, 2006). The surface approach to
learning predicts performance better than the enjoyment of mathematics, mathematics
anxiety, motivation, the utility of mathematics, and gender (García et al., 2016).

Despite the success and satisfactory performance of both approaches to learning and
perceived self-efficacy in predicting students’ mathematics achievement, studies on causal
relations between these constructs are rarely reported in the literature. Admittedly, some
correlational studies are available which focus on science courses e.g. chemistry (Ardura &
Galán, 2019), students enrolled on earth science programmes (Shen et al., 2016), and teach-
ers in training (Phan, 2011). Thus, the purpose of the current study is to provide evidence
for a potential causal relationship between perceived self-efficacy and approaches to learn-
ing among engineering students enrolled on a first-year calculus course. The present study
is significant because if such a causal relation is revealed, then it is worth seeking inter-
ventions on one of the two constructs that can be designed to boost the other construct,
which will, in turn, enhance students’ performance. It is important to remark that the cur-
rent study is not aimed at discovering an outright causal relation between the research
constructs. Instead, causal assumptions are made therein to develop a model, and data are
collected to test the causal model such that empirically-based arguments can be articulated
to justify the plausibility of the model. As such, the main research question that this study
attempts to address is: Does perceived self-efficacy influence the adoption of either deep or
surface approach to learning mathematics among first-year engineering students?

2. Conceptual framework

A conceptual framework that can justify the relationship between approaches to learning
mathematics and perceived self-efficacy among engineering students, rests on ideas from
two psychological theories. Namely, approaches to learning theory and self-efficacy theory.
The ontological and epistemological postulates of these theories and arguments that result
in hypothesis formulations are presented in this section.

3. Student approaches to learning (SAL) theory

SAL theory can be linked to several studies of Marton and his colleagues on explorations
and characterizations of approaches that university students adopt while reading some
passages of prose and extracts of newspaper articles before being examined on their under-
standing of the presentedmaterials (Marton& Säljö, 1976, 2005). Their qualitative analyses
reveal diverse approaches to students’ learning, which are highly motivated by prior expe-
rience, social factors, and the meanings that the students attached to learning (Marton &
Booth, 1997). According to SAL theory, learning – a change in the experience of people
about the world – forms a non-dualistic relationship between an individual and every-
thing outside of it that is neither individually constructed nor environmentally imposed
(Marton & Booth, 1997). Thus, it can be argued that students’ approaches to learning vary
because of the feedback relationship between students’ motivation to learn, intentions, and
learning context. However, these various students’ approaches to learning can be generally
classified into deep and surface approaches (Marton & Säljö, 2005).
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Biggs (2012) describes deep approaches to learning as ‘activities that are appropriate to
handling the task so that an appropriate outcome is achieved’ while surface approaches
to learning, on the other hand, encapsulate ‘activities of an inappropriately low cognitive
level, which yields fragmented outcomes that do not convey the meaning of the encounter’
(p.42). As such, considering the nature of engineering programmes in which students are
being trained to solve practical problems, it is expected, if not required, that students adopt
approaches that will facilitate the development of high cognitive skills required to solve
these problems. Furthermore, approaches to learning according to SAL tradition (Mar-
ton & Booth, 1997) are predictable from students’ learning conception – ‘a qualitatively
distinct manner in which the subjects were found to voice the way they thought about
learning’ (p.36), motives, intents, and the learning situations. For instance, engineering
students who conceive calculus tasks as something useful and which proper understand-
ing of it is necessary for intellectual development are likely to adopt deep approaches to
learning the course. On the other hand, students who conceive calculus tasks as a mere
requirement to move to the next level of study are likely to adopt surface approaches to
learning the course. Thus, a deep approach to learning is intrinsically motivated, while a
surface approach to learning is extrinsically motivated (Hounsell, 2005; Marton & Säljö,
2005).

It is important to remark that learning situations in the context of mathematics learn-
ing also include the nature of mathematics tasks. Such that the approaches students adopt
to learning the subject are highly influenced by the nature of the tasks. Maciejewski and
Merchant (2016), in an empirical cross-sectional study, show that there is a strong correla-
tion between a deep approach to learning and students’ first-year grades on mathematics
tasks while a surface approach to learning has no significant correlation. However, for year-
two, year-three, and year-four students, there is a strong negative correlation between the
surface approach to learning and students’ grades in which a deep approach shows no sig-
nificant correlation. These discrepancies and inconsistencies in strength and direction of
correlation coefficients between approaches to learning mathematics and students’ grades
are argued, using Bloom’s taxonomy, to stem from the different nature of mathematics
tasks at the different years of study (Maciejewski & Merchant, 2016). As such, considering
its task specificity, approaches to learningmathematics are best investigated by focusing on
a set of students who are following a common mathematics course.

4. Self-efficacy theory

Perceived self-efficacy is an essential component of the agentic social cognitive theory
that describes behavioural changes of an individual as continuously being modified and
regulated through a feedback interaction with social factors (Bandura, 2001). Unlike the
traditional social cognitivism, it is argued that both social structure and personal agency
‘function interdependently rather than as disembodied entities’ (Bandura, 2012, p. 15).
Thus, a rejection of an ontological position of dualism between social structure and
personal agency. As such, agentic social cognitive theory relies on an epistemological
proposition called ‘reciprocal determinism’ introduced by Bandura (1986, 2012). Recipro-
cal determinism describes human functioning as a triadic feedback causal model between
personal, environmental, and behavioural factors. Therefore, it can be argued that per-
ceived self-efficacy of engineering students on mathematics tasks is not a fixed construct
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since it an integral part of the personal factors that are embedded in the reciprocal deter-
ministic model. Instead, it is causally affected by changes in the model. Borgonovi and
Pokropek (2019) elaborate more on this concept when they write ‘reciprocal determin-
ism describes the sets of relationships underlying the interactions between: (a) individuals’
exposure to mathematics tasks, (b) mathematics self-efficacy beliefs, and (c) mathematics
ability’ (p. 269).

Perceived self-efficacy contributes significantly to regulating affective, cognitive, deci-
sional, and motivational processes of human functioning (Bandura, 2001, 2002). It is an
essential construct in the learning process as it serves as a stimulus for students not to give
up on difficult learning situations such that desired outcomes are achieved. It makes the
individual’s involvement very active and boosts morale to see to the attainment of a desir-
able outcome (Bandura, 1997, 2012). Since self-efficacy beliefs regulate some decisional
processes of a learner, it can be argued that there is a causal relationship between perceived
self-efficacy and approaches to learningmathematics. This is because students’ approaches
to learning a content are crucial components of their decisional processes (Biggs, 1993).
Another proxy construct through which perceived self-efficacy can be causally linked with
approaches to learning is students’ motivation. Intrinsic motivation has been shown to
induce a deep approach to learningwhile extrinsicmotivation to induce a surface approach
to learning (Marton & Booth, 1997). As such, it is expected that perceived self-efficacy
is causally related to deep and surface approaches through motivation as an intervening
construct since self-efficacy beliefs regulate motivational processes (Bandura, 1997).

To substantiate the argument on the causal relationship between approaches to learn-
ing mathematics and perceived self-efficacy, one could also turn to some findings that
have been reported in other fields. For instance, Diseth (2011), in a study involving 177
first-year undergraduate students following a psychology course used a causal model to
expose a negative relation between self-efficacy and surface approaches to learning, and
an indirect positive relationship between self-efficacy and deep approaches to learning.
The study by Shen et al. (2016) also reports a strong positive relationship between the
deep approach to learning earth sciences and perceived self-efficacy. After an extensive
search of the literature, the only quantitative study the authors could find on approaches to
learning mathematics, and perceived self-efficacy is a correlational study by Zakariya et al.
(2019). Therein, deep approaches to learningmathematics are found to have a positive cor-
relation with perceived self-efficacy on calculus tasks, and a negative correlation is found
between the latter and surface approaches to learning. Thus, based on the aforementioned
discussion, the following hypotheses are formulated.

Hypothesis one: There is a positive causal effect of perceived self-efficacy on deep approaches
to learning a first-year introductory calculus course among engineering students.

Hypothesis two: There is a negative causal effect of perceived self-efficacy on surface
approaches to learning a first-year introductory calculus course among engineering students.

5. Methodology

5.1. Participants

The focus of the current study, using a cross-sectional survey research design, is on
first-year engineering students at a leading Norwegian university. Even though they
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are enrolled on different engineering programmes, they followed a common introduc-
tory first-semester calculus course at the university. A total of 195 (47 females) stu-
dents who voluntarily gave their consent took part in the study. The sample corre-
sponds to about 65% of the total population of first-year engineering students who were
invited to participate in the study. This response rate is considered high in the literature
(Babbie, 1990).

5.2. Materials

Twowell-developed survey instrumentswere used for collecting the research data. The first
instrument was a Norwegian language adaptation of the revised two-factor study process
questionnaire (R-SPQ-2F). This instrument was initially conceptualized and operational-
ized based on SAL theory tomeasure students’ approaches to learning by Biggs et al. (2001)
andwas adapted tomathematics learning context amongNorwegian first-year engineering
students by Zakariya et al. (2020). The Norwegian adaption of the R-SPQ-2F is a 19-item
questionnaire that measures two dimensions (deep and surface) of approaches to learning
mathematics on a five-point Likert scale from (1) never or only rarely true of me, through
(3) it is true of me about half the time, to (5) it is always or almost always true of me. The
deep approach subscale has ten items with a reliability coefficient of .81, and the surface
approach subscale has nine items with a reliability coefficient of .72 (Zakariya et al., 2020).
The construct validity of the Norwegian adaption of R-SPQ-2F has been studied involving
several comparisons of competing models using confirmatory factor analyses (Zakariya,
2019). Despite the availability of other measuring instruments of students’ approaches to
learning, such as the approaches and study skills inventory for students (ASSIST), R-SPQ-
2F was adopted in the current study for a few reasons. First, it has been validated and
available in Norwegian, which is the main language of instruction in the university under-
graduate programmes. Second, it is concise with only 19 items, unlike the ASSIST, with 52
items and has strong psychometric characteristics. Third, given that approaches to learning
are context-specific, an adapted R-SPQ-2F into mathematics context is likely to possess a
high predictive power.

The second instrument used for collecting data in the current study was a calculus
self-efficacy inventory (CSEI) developed by (Zakariya et al., 2019). The CSEI is a 13-item
instrument developed based on guidelines for constructing perceived self-efficacy scales as
explicated by the Bandura’s self-efficacy theory (Bandura, 2006). The inventory contains
calculus final exam-like questions inwhich the students are required to rate howmuch con-
fidence they have in solving the questions correctly on a scale from 0 to 100. It was found to
have high construct validity with unidimensionality of its items, high discriminant valid-
ity, and a high reliability index of .90 (Zakariya et al., 2019). The CSEI was adopted in the
current study not only for its strong psychometric properties and because its theoretical
foundation suits our conceptual framework but also for its specificity in measuring stu-
dent perceived self-efficacy on calculus tasks. The Norwegian adaption of R-SPQ-2F and
the CSEI were embedded in an on-line survey tool and administered to the students via
their email addresses. The data collection exercise took about two weeks, and the collected
data were screened for outliers and missing values. There was no case of outliers, and few
data were missing at random, which were less than 1% of the total data collected and, as
such, do not pose any challenge to the analyses.
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Figure 1. A hypothesized causal model of the relations between perceived calculus self-efficacy and
approaches to learning mathematics.

5.3. Data analysis

The collected data were analysed using a structural equation modelling (SEM) approach.
This involved testing the plausibility of the hypothesized causal relations betweenperceived
self-efficacy and approaches to learning mathematics, as shown in Figure 1. As succinctly
put by Bollen and Pearl (2013), ‘SEM is an inference engine that takes in two inputs, qual-
itative causal assumptions, and empirical data, and derives two logical consequences of
these inputs: quantitative causal conclusions and statistical measures of fit for the testable
implications of the assumptions’ (p.309). It is thus argued that the use of SEM in exposing
the causal relationship between the current research constructs is justified, and an alter-
native statistical model that can do a satisfactory job in evaluating these causal claims is
unlikely (Bullock et al., 1994). All the model parameters such as factor loadings, effect
weights, residuals, and intercepts were evaluated using the weighted least square mean and
variance adjusted (WLSMV) estimator with theta parameterization. WLSMV was used
because of its satisfactory high performance in the analysis of categorical data such as the
ones obtained using the Likert scale (Suh, 2015).

Figure 1 presents a graphical representation of the hypotheses one and two of the cur-
rent study. The big oval shape with a label ‘cse’ represents the latent variable of the students’
perceived calculus self-efficacy (henceforth refers to as self-efficacy) as measured by its
13 observed variables (rectangles with labels ‘cse01’ to ‘cse13’) accompanied by the small
oval shapes with small arrows pointing to each rectangle indicating the associated errors
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in predicting each observed variable. In a similar manner, the big oval shapes with the
labels ‘deep’ and ‘surface’ represent the latent variables of deep and surface approaches to
learning mathematics, respectively, each of which is measured by its respective number of
observed variables (‘al01’-‘al19’). The single-headed arrow between ‘cse’ and ‘deep’ and
the one between ‘cse’ and ‘surface’ both indicate the hypothesized causal relations between
these latent constructs with their respective signs as postulated in the hypotheses one and
two. The double-headed arrow with a negative sign is an expected negative correction
between deep and surface approaches. This is because a student with a high score on sur-
face approach items of the R-SPQ-2F is expected to have a low score on the deep approach
items.

The causal model presented in Figure 1 carries with it a few assumptions that are
subject to testability. Prominent assumptions are represented by causal arrows from the
self-efficacy to the two dimensions of approaches to learning. The observed variables are
also assumed to relate to their respective latent constructs in a linearly causal manner. The
errors of the observed variables are assumed to be uncorrelated with each other and with
any of the latent constructs. It is also assumed that none of the observed variables exhibits
a cross-loading i.e. each observed variable is assumed to expose only one latent construct.
These qualitative assumptions are the elements that make a whole of the causal model pre-
sented in Figure 1 onwhich data are collected, analysed, and their plausibility is ascertained
using some goodness of fit (GOF) indices. The following GOF indices are used to judge an
acceptable fit: Tucker-Lewis index (TLI) and comparative fit index (CFI) with values close
to or greater than .90 (Bentler, 1990), standardized rootmean square residual (SRMR)with
a value less than .80 (Hu & Bentler, 1999), and root mean square error of approximation
(RMSEA) with a value less than or equal to .10 (MacCallum et al., 1996). Chi-square statis-
tics are reported, and its ratio to the degree of freedom of less or equal to 3 (Brown, 2015)
is used to assess a model fit. Also, chi-square statistics are also used to compare competing
models using a difference test.

6. Results

6.1. Measurementmodel evaluations

The evaluation of the hypothesized causal model presented in Figure 1 proceeds in two
steps. The first step concerns fitting a separate measurement model for both CSEI and R-
SPQ-2F. This step is a preliminary step to the structural equationmodelling of the relations
between the research constructs. The ensuing results are presented in Table 1 with Model
1 for the CSEI measurement model and Model 2 for the R-SPQ-2F measurement model.
Table 1 also presents improved results for both Model 1 and Model 2.

The results presented in Table 1 reinforce a rejection of Model 1. Consequently, a rejec-
tion of some assumptions associated with this model. This is evident with a high ratio of
chi-square value to df (higher than 3), a low TLI value (lower than .90), and a high RMSEA
value (higher than .10). Thus, the results show some inconsistency between the data col-
lected and the hypothesized model. As such, Model 1 was improved upon by adding two
error covariances between ‘CSE09’ and ‘CSE11’ as well as between ‘CSE12’ and ‘CSE13’,
the results of which are presented in Table 1 (Improved Model 1). There is a significant
improvement in Model 1 after modifying it, as shown in Table 1 with a reduced ratio of
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Table 1. Selected GOF indices for the evaluations of CSEI and R-SPQ-2F measurement models.

CSEI R-SPQ-2F

Fit statistics Model 1 Improved Model 1 Model 2 Improved Model 2

Chi-square value (χ2) 250.18 184.92 461.92 300.15
Degree of freedom (df ) 65 63 151 148
χ2 / df 3.85 2.94 3.06 2.03
TLI .88 .92 .77 .89
CFI .90 .94 .80 .90
SRMR .07 .06 .09 .07
RMSEA .12 .10 .10 .07

chi-square value to df, improved TLI and CFI, and reduced SRMR and RSMEA. The chi-
square difference test exposes this improvement better as it returns a significant difference
in chi-square values (χ2(2) = 65.26, p < .001) between Model 1 and Improved Model 1.
These are all suggestive of the plausibility of the Improved Model 1.

Similarly, the results presented in Table 1 (Model 2) also show that the hypothesized
measurement model for the R-SPQ-2F should be rejected. This is evident with a high ratio
of chi-square value to df (higher than 3), a low TLI and CFI values (far lower than .90),
and a high SRMR value (higher than .08). As such, Model 2 was improved upon by
allowing ‘al10’ and ‘al19’ to cross-load on the deep approach to learning in addition to
the surface approach to learning they were initially hypothesized. Also, an error covari-
ance between ‘al15’ and ‘al18’ was included to achieve the model results presented in
Table 1 (Improved Model 2). As it can be read from Table 1 (Improved Model 2), all the
GOF indices are within the cutoff criteria coupled with a significant chi-square difference
test (χ2(3) = 161.77, p < .001) which affirm the plausibility of the improved version of
Model 2. The model modifications that have been carried out in this section are all guided
by modification indices of the respective output during the analyses, and its conceptual
implications are presented in the next section.

6.2. Structural model evaluations

After the validation of themeasurementmodels, we proceed to the second step of the analy-
ses, which concerns investigating the causal relations between self-efficacy and approaches
to learning mathematics. The ensuing results of the selected fit statistics show the ratio of
chi-square value to df to be 1.59, a TLI value to be .90, a CFI value to be .91, an SRMR
value to be .07, and an RMSEA value to be .06 which are suggestive of an acceptable fit of
the model. The causal estimates, as well as the associated standardized model parameters
such as factor loadings, factor variance, and error covariance, are presented in Figure 2.

The results presented in Figure 2 show all the significant standardized factor load-
ings and error covariances. Figure 2 shows that there is a significant positive causal
effect of the self-efficacy on deep approaches to learning a first-year introductory calculus
(β = .54, p < .001) with a medium significant effect size of .29, and a significant negative
causal effect of self-efficacy on surface approaches to learning a first-year introductory cal-
culus (β = −.47, p < .001) with amedium significant effect size of .22. The results confirm
the hypotheses one and two, respectively. These results can be interpreted to mean, given
a unit metric increase in self-efficacy (e.g. cse+ 1) there is a corresponding effect of a .54
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Figure 2. A validated causal model of the relations between self-efficacy and approaches to learning
mathematics.

times a unit metric increase on deep approaches to learning, and a corresponding effect
of a .47 times a unit metric decrease in surface approaches to learning among engineering
students. Further, the respective effect sizes show that self-efficacy accounts for 29% of the
variability in deep approaches to learning and 22% variability in the surface approaches
to learning. At this juncture, it is important to remark that the results presented in Figure
2 are valid up to the group level, and there could be some discrepancy when it comes to
each individual student that took part in the study. Further discussion on these results is
presented in the next section.

7. Discussion, limitations, and conclusion

7.1. Discussion

The current study attempts to provide evidence for possible causal relations between
self-efficacy and approaches to learning an introductory calculus course among first-year
engineering students. In order to achieve this, both measurement and structural eval-
uations of models based on data collected using CSEI and R-SPQ-2F are reported in
the current study. We improved on the CSEI measurement model by adding two error
covariances. The first error covariance was between ‘CSE09’ and ‘CSE11’. These two items
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measure students’ confidence in solving two different indefinite integral tasks. As such, an
error covariance between these items could account for any error source from the com-
mon topic from which these two items have been drawn. The second error covariance was
between ‘CSE12’ and ‘CSE13’, which can also be justified from a common topic (appli-
cations of integral calculus) from which the two items have been drawn. The addition of
these two error covariances negates the lack of it that was initially assumed in the CSEI
measurement model. Thus, it demonstrates how the plausibility of model assumptions can
be tested in the SEM framework, which is contrary to those who think SEM assumptions
are never tested (e.g. Freedman, 1995). Further, the addition of these error covariances also
shows amarked difference between SEM framework and regressionmodels because, in the
latter, errors are always assumed to be orthogonal i.e. uncorrelated with each other (Bollen
& Pearl, 2013).

The measurement model of the R-SPQ-2F was also improved upon by allowing items
al10 (‘I find I can get by in most assessments by memorizing key sections rather than try-
ing to understand them’) and al19 (‘I find the best way to pass examinations is to try to
remember answers to likely questions’) that are initially on the surface approach dimen-
sion to cross-load on the deep approach dimension (Zakariya et al., 2020). A common
aspect of these two items revolves around the memorization of key concepts. The finding
of the current study suggests that the memorization technique is not peculiar to surface
approach learners. Rather, students that adopt a deep approach to learning mathematics
may also use the memorization technique. This finding, on the one hand, corroborates
a report of widespread use of the memorization technique found among high achieving
Asian students as ameans of understanding (Kember, 1996). On the other hand, it suggests
Entwistle (1997) could be right when he wrote: ‘memorization is a necessary precursor to
understanding, and for other purposes it is a way of reinforcing understanding’. Thus, a
deep approach learner can as well use memorization techniques strategically to recall defi-
nitions of concepts, theorems, and procedures of carrying out some special differentiation
or integration in a first-year calculus course.

Another model improvement of the R-SPQ-2F is the addition of an error covari-
ance between al15 (‘I believe that lecturers shouldn’t expect students to spend significant
amounts of time studyingmaterial everyone knows won’t be examined’) and al18 (‘I see no
point in learningmaterial which is not likely to be in the examination’) which are bothmea-
suring surface approaches to learning (Zakariya et al., 2020). This error covariance seems
to be conceptually justified as both items share a common latent factor and emphasise skip-
ping materials that are not going to be on students’ examination questions. Moreover, this
finding also fits into the body research that has advocated the inclusion of error covariances
between some other items of surface approach dimension of the R-SPQ-2F (e.g. Önder &
Besoluk, 2010).

Of prime importance in the current study is the established potential causal relation
between self-efficacy and approaches to learning mathematics. It was found that self-
efficacy has a positive effect on the deep approach to learning and a negative effect on the
surface approach to learning. This seems to be the first time such a finding is being reported
onmathematics learning of engineering students. However, our findings, on the one hand,
do support a negative relation between self-efficacy and approaches to learning among psy-
chology students reported by Diseth (2011). On the other hand, our findings establish a
reverse relationship as compared to the report by Ardura and Galán (2019) on self-efficacy
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and approaches to learning Physics and Chemistry among secondary school students.
Therein, Ardura and Galán (2019) proposed, tested, and found small effects (from – .12
to .25) between the dimensions of approaches to learning on self-efficacy. The reported
potential causal effects between self-efficacy and approaches to learning mathematics in
the current study are far away higher than the reverse effects by Ardura and Galán (2019).
These suggest that our model establishes a better and more appropriate causal direction
of the relationship between these constructs. Further, the estimates of the potential causal
effects between self-efficacy and approaches to learning in the current study are higher than
the correlation coefficients between these constructs in earth sciences (Shen et al., 2016)
and in mathematics (Zakariya et al., 2019).

Even though, the percentages of explained variance in deep approaches to learning
(29%) and surface approaches to learning (22%) that are accounted by the self-efficacy
seem low in the current study they are substantially higher than reported values in the lit-
erature (e.g. Diseth, 2011). These percentages of explained variance are reflections of the
fact that there are other factors e.g. motivation, nature ofmathematics tasks, etc., that influ-
ence approaches to learningmathematics, which our proposedmodel does not account for.
Admittedly, we do not seek to propose a model that explains every relation between self-
efficacy and approaches to learning mathematics. Instead, the current study has attempted
to provide evidence for a potential causal relationship between these constructs. The find-
ings of the current study, therefore, will serve as justifications of designing self-efficacy
interventions by university lecturers, engineering course coordinators, and other stake-
holders who are directly involved in the teaching of mathematics to engineering students
as proxies to induce desired learning approaches in their students.

7.2. Limitations

Despite the promising strength of the current study in providing evidence on the causal
relation between the two important student-source factors, some limitations can be
acknowledged. First, the current study is confined within the two research constructs
without relating the ensuing effects to students’ performance in the introductory calcu-
lus course. The authors acknowledge that it would have been more interesting to see how
these effects translate either directly or indirectly from self-efficacy through approaches
to learning to students’ grades in the course. However, students’ grades are not included
in the model because of the unavailability of these grades to the researchers at the time
of the study. A future study will be conducted with this intention. Second, given that the
scope of the current study is limited to first-year engineering students at one university,
its findings might be limited to this student population. Perhaps, the inclusion of students
from year two, year three and year four or students following other programmes in the
study and other institutions would have increased the generalization power of its find-
ings. Third, and closely related to the second limitation is the lack of cross-validation of
the established structural model of the relation self-efficacy and approaches to learning.
To this end, we recommended replicated evaluations of this model in independent sam-
ples and across different student populations. Lastly, the authors declare that the model
proposed and evaluated in the current study is neither an absolute model nor a simplifi-
cation of reality between the research constructs. Rather, attempts have only been made
to understanding the complex relationship between these constructs from a theoretical
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and empirical perspective. Future in-depth analyses are recommended using case studies,
longitudinal design studies, and experimental design studies.

8. Conclusion

The current study was motivated by the dearth of studies on relationships between two
well-established psychological theories that concern students’ learning of mathematics
in higher education. Therein, empirical evidence is provided for a potential causal rela-
tion between self-efficacy and approaches to learning a first-year calculus course among
engineering students. A high sense of self-efficacy is found to induce the adoption of a
deep approach to learning, while low sense self-efficacy induces an adoption of a surface
approach to learning. We claim this to be an original contribution to the literature when
it comes to the learning of mathematics among engineering students. As such, more stud-
ies are recommended using diverse methodological approaches and designs to understand
further the relations between self-efficacy and approaches to learning mathematics.
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