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ABSTRACT
We consider extreme value analysis for independent but nonidentically distributed observations. In par-
ticular, the observations do not share the same extreme value index. Assuming continuously changing
extreme value indices, we provide a nonparametric estimate for the functional extreme value index. Besides
estimating the extreme value index locally, we also provide a global estimator for the trend and its joint
asymptotic theory. The asymptotic theory for the global estimator can be used for testing a prespecified
parametric trend in the extreme value indices. In particular, it can be applied to test whether the extreme
value index remains at a constant level across all observations.
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1. Introduction

Extreme value analysis makes statistical inference on the tail
region of a distribution function. Balkema and de Haan (1974)
show that extreme observations above a high threshold follows
approximately a scaled generalized Pareto distribution (GPD).
Consequently, one main parameter governs the tail behavior:
the shape parameter in the GPD, also known as the extreme
value index. Estimation of this parameter is therefore of prime
importance for tail inference. Classical extreme value analysis
assumes that the observations are independent and identically
distributed (iid). Recent studies aim at dealing with the case
when observations are drawn from different distributions. In
this article, we aim at dealing with non-iid observations: we
consider a continuously changing extreme value index and try
to estimate the functional extreme value index accurately.

Consider a set of distribution functions Fs(x) for s ∈ [0, 1]
and independent random variables Xi ∼ F i

n
(x) for i = 1, . . . , n.

Here Fs(x) is assumed to be continuous with respect to s and
x. To perform extreme value analysis, assume that Fs ∈ Dγ (s),
where D· denotes the max-domain of attraction with corre-
sponding extreme value index. In this article, we consider the
case that the function γ is positive and continuous on [0, 1]. The
goal is to estimate the function γ and test the hypothesis that
γ = γ0 for some given function γ0, based on the observations
X1, . . . , Xn.

The idea for estimating γ (s) locally is similar to the kernel
density estimation. More specifically, we will use only obser-
vations Xi in the h-neighborhood of s, that is, i ∈ In(s) ={

i :
∣∣ i

n − s
∣∣ ≤ h

}
, where h := h(n) is the bandwidth such that

as n → ∞, h → 0 and nh → ∞. Correspondingly there
will be [2nh] observations for s ∈ [h, 1 − h]. To apply any
known estimators for the extreme value index, such as the Hill
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estimator, we choose an intermediate sequence k := k(n) such
that as n → ∞, k → ∞ and k/n → 0. Then we use the top
[2kh] order statistics among the [2nh] local observations in the
h-neighborhood of s to estimate γ (s). The local Hill estimator
for γ (s) is defined as follows. Rank the [2nh] observations Xi
with i ∈ In(s) as X(s)

1,[2nh] ≤ · · · ≤ X(s)
[2nh],[2nh]. Then,

γ̂H(s) := 1
[2kh]

∑
i∈In(s)

(
log Xi − log X[2nh]−[2kh],[2nh]

)+ . (1)

We start with considering the local asymptotic normality.
Under some suitable conditions for k and h, we can show that,
as n → ∞, for each fixed s ∈ (0, 1),

√
2kh

(
γ̂H(s) − γ (s)

) d→ N(0, (γ (s))2).

This result is comparable with the asymptotic normality of the
Hill estimator, but now the estimation is based on observations
with different extreme value indices. The speed of convergence
is

√
2kh because only the top [2kh] order statistics are used in

the estimation.
Next, we consider testing the hypothesis that γ (s) = γ0(s)

for all s ∈ [0, 1]. Although we are able to estimate the function
γ locally, since the local estimators use only local observations,
their asymptotic limits are obviously independent. That pre-
vents us from constructing a testing procedure. In addition, the
local estimators converges with a slow speed of convergence
1/

√
2kh. To achieve the stated goal, we consider the estimation

of �(s) = ∫ s
0 γ (u)du and test the equivalent hypothesis that

� = �0 where �0 is a function defined as �0(s) = ∫ s
0 γ0(u)du

for s ∈ [0, 1].
The function � is estimated by aggregating the local esti-

mators of γ (s) to a “global estimator” as follows. Consider
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a discretized version of γ̂H(s): γ̂H
(
(2[ s

2h ] + 1)h
)
. Define the

estimator of �(s) as the integral of the discretized version as
follows: for all 0 ≤ s ≤ 1,

�̂H(s) =
∫ s

0
γ̂H
(
(2[ u

2h
] + 1)h

)
du. (2)

Note that γ̂H(s) is only defined for s ≤ 1 − h. For u > 1 − h,
we may have (2[ u

2h ] + 1)h = (2[ 1
2h ] + 1)h. Therefore, we need

to extend the range of the estimator γ̂H(s) to accommodate this
case: we define γ̂H((2[1/(2h)] + 1)h) := γ̂H((2[1/(2h)] − 1)h).

Note that
{
�̂H(s)

}
s∈[0,1] is a stochastic process defined on

[0, 1]. We shall show that, under the same conditions on k and
h used in the local estimation, under a Skorokhod construction,
there exists a series of Brownian motions {Wn(t)} such that, as
n → ∞,

sup
0≤s≤1

∣∣∣∣√k
(
�̂H(s) − �(s)

)
−
∫ s

0
γ (u)dWn(u)

∣∣∣∣ P→ 0.

There are two notable features in this asymptotic relation.
Firstly, the convergence is uniformly for all s ∈ [0, 1]. Secondly,
the speed of convergence for the estimators �̂H(s) is 1/

√
k. From

these two features, it is possible to construct efficient testing
methods to test the null hypothesis that �(s) = �0(s) for all
s ∈ [0, 1] with some given function �0.

Our approach can be regarded as a combination of kernel
density estimation and extreme value statistics. To prove the
local and global asymptotic normality, we need to combine two
limiting procedures as the number of observations tending to
infinity. First, the observations used are from a h-neighborhood
that is shrinking. Second, within each h-neighborhood, we need
to apply a threshold to all observations that is increasing toward
infinity. If the h-neighborhood shrinks too fast, there will not
be sufficient observations in each neighborhood for statistical
inference. If it shrinks too slowly, we would have involved too
many observations with vary different extreme value indices
such that the estimation is distorted. Therefore, the two limiting
procedures have to be balanced such that the resulting estima-
tors possess proper asymptotic behavior.

For that purpose, we assume some conditions regarding the
choice of k and h that are related to the speed of variation of
the distribution function Fs and the continuity of the extreme
value index γ (s); see conditions (4)–(7). The first two conditions
(4) and (5) are typical assumptions in kernel density estimation
and extreme value statistics, respectively. The third condition (6)
ensures that the extreme value index function γ (s) is sufficiently
smooth. In other words, observations in the h-neighborhood
have extreme value indices that are not too far off. Notice that
γ (s) governs the parametric structure of the limit only. In order
that a unified “threshold” can be applied to all observations in
the h-neighborhood, we further assume the smoothness of the
intermediate quantiles as in condition (7). These conditions are
not too restrictive, see Example 2.1.

The most close studies to our approach are Gardes and
Girard (2010) and Goegebeur, Guillou, and Schorgen (2014).
The setups of these two studies are similar to our analysis
albeit formulated in a conditional setup. The former focuses
on nonstochastic covariates, whereas the latter focuses on ran-
dom covariates. Both approaches proposed estimators using

observations locally and established the local asymptotic nor-
mality only. To obtain the local asymptotic normality, the con-
ditions assumed in these two studies are quite different from
our conditions and the results obtained therein also differ from
our results. Besides, we attempt to establish a global result for
�̂H(s). The global asymptotic result is necessary for conducting
hypothesis testing.

Our article is also related to, but differs from, heteroscedastic
extremes. Einmahl, de Haan, and Zhou (2016) model the tail
region of distributions of non-iid observations by considering
the quotient between tails of different distributions and a com-
mon tail. By assuming that such quotients stay positive and finite
as one goes further into the tail, the asymptotic constant is called
“scedasis.” Within such a framework, the extreme value index
remains unchanged across the non-iid observations. Compared
to the heteroscedastic extremes, we allow for continuously
changing extreme value index and try to estimate the functional
extreme value index accurately. In our case, the tails of the
probability distributions are of different order, that is, the quo-
tient between the tails of the distributions at two locations with
different extreme value indices tends to either zero or infinity. In
other words, we are dealing with distributions that differ much
more than in the heteroscedastic extremes. Therefore, our situ-
ation cannot be handled in the same way as in heteroscedastic
extremes.

This article is also related to the literature dealing with the
variation or trend in extreme value index when considering
a purely parametric model such as the generalized extreme
value (GEV) distribution or the GPD. First, one may model the
trend in the parameters of such models as a specific functional
of the covariates; see, for example, Smith (1989) for the GEV
model and Davison and Smith (1990) for the GPD model.
Second, the trend can also be nonparametrically estimated using
various local estimation techniques; see, for example, Davison
and Ramesh (2000) using the local likelihood method, Hall
and Tajvidi (2000) using the local linearization method, among
others. Compared to all these studies, we do not impose a fully
parameterized model and therefore maintain a semiparametric
approach.

Finally, this article contributes to the literature on testing the
null hypothesis of constant extreme value index. Quintos, Fan,
and Phillips (2001) and more recently Hoga (2017) considered
testing a change point in the tail index. Einmahl, de Haan,
and Zhou (2016) proposed two tests for the same purpose.
Nevertheless, in all these studies, the main asymptotic result for
the constructed tests is under a more restrictive null than having
constant extreme value index only. In contrast, we consider a
wider null hypothesis potentially including models with con-
stant extreme value index that are excluded from the null of the
two existing studies. In addition, our study allows for testing
the null hypothesis of having a general prespecified trend in
the extreme value index beyond the constant function, such as
γ (s) = γ0(s) for all s.

We demonstrate the performance of our testing procedure by
extensive simulation studies. In addition, our estimation proce-
dure for the γ (s) function is also validated when the function
differs from a constant function. We apply our developed
method to two datasets. The first dataset consist of daily pre-
cipitations at Saint-Martin-de-Londres, France from 1976 and
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2012. The testing results show that we do not reject the constant
extreme value index in this period. The second dataset consist
of the losses of the S&P 500 index. The testing results show
that we do not reject the constant extreme value index in the
period from 1988 to 2012 but do reject this null in a longer
period from 1963 to 2012. In the second application, we deal
with the presence of serial dependence in the data. Nevertheless,
we prefer to postpone the incorporation of serial dependence
in the theory in order not to overload the already complicated
article.

The article is organized as follows. Our main theorems
regarding the local and global estimators are presented in Sec-
tion 2. The testing procedure is established in Section 3 with
simulations. Section 4 is devoted to the applications. Proofs are
postponed to the Appendix.

2. Main Theorem

We need the following conditions for obtaining the asymptotic
theories of the local and global estimators.

First, we assume the usual second order condition, but uni-
formly for all s ∈ [0, 1] as follows. Denote Us = (1/(1 − Fs))←
as the quantile function corresponding to the distribution Fs.
Suppose there exists a continuous negative function ρ(s) on
[0, 1] and a set of auxiliary functions As(t) that are continuous
with respect to s, such that

lim
t→∞

Us(tx)
Us(t) − xγ (s)

As(t)
= xγ (s) xρ(s) − 1

ρ(s)
, (3)

holds for x > 1/2 and uniformly for all s ∈ [0, 1]. A similar
uniform second order condition has been adopted in Einmahl
and Lin (2006).

Next, we require that the intermediate sequence k and the
bandwidth h are properly chosen as follows: there exists some
positive constant ε > 0 such that as n → ∞,

h = hn → 0, k = kn → ∞, kn/n → 0,
knhn∣∣log hn

∣∣ → ∞, (4)

�1,n :=
√

kn sup
0≤s≤1

∣∣∣∣As

(
n
kn

)∣∣∣∣→ 0, (5)

�2,n :=
√

kn log kn sup
|s1−s2|≤2hn

|γ (s1) − γ (s2)| → 0, (6)

�3,n := sup
|s1−s2|≤hn

∣∣∣∣∣∣∣∣∣∣

Us1

(
n

kn

)
Us2

(
n

kn

) − 1

As2

(
n
kn

)
∣∣∣∣∣∣∣∣∣∣
→ 0, (7)

Condition (4) ensures that the number of high order statistics
used in each local interval tends to infinity. Condition (5) is the
one usually required for extreme value analysis to guarantee to
have no asymptotic bias in the estimator. Condition (6) assumes
that kn is compatible with the hn-variation in the γ function.
Condition (7) states that

(
1 − k

n

)
-quantiles of distributions are

sufficiently smooth in short h-intervals.
The following theorem gives the local asymptotic normality

for the estimator γ̂H(s) defined in (1).

Theorem 2.1. Let X1, X2, . . . , Xn be independent random vari-
ables with distributions Xi ∼ F i

n
(x), where Fs(x) is a set of

distribution functions defined on s ∈ [0, 1]. Assume that Fs(x)

is continuous with respect to s and x and Fs ∈ Dγ (s) where γ (s)
is a positive continuous function on [0, 1]. Assume conditions
(3)–(7). Then as n → ∞, we have that for all s ∈ (0, 1),

√
2kh

(
γ̂H(s) − γ (s)

) d→ N(0, (γ (s))2).

Remark 2.1. The result of Theorem 2.1 is still valid under
weaker conditions if replacing

√
k in (5) and (6) by

√
kh.

The next theorem gives the asymptotic normality of the
global estimator �̂H(s) defined in (2).

Theorem 2.2. Assume the same conditions as in Theorem 2.1.
Then under a Skorokhod construction, there exists a series of
Brownian motions Wn(s) such that as n → ∞,

sup
s∈[0,1]

∣∣∣∣√k
(
�̂H(s) − �(s)

)
−
∫ s

0
γ (u)dWn(u)

∣∣∣∣ P→ 0.

We show through an example that the assumptions in (4)–(7)
are consistent and not too restrictive.

Example 2.1. Suppose Us(t) = tγ (s)(1+tρ(s)). Then, we get that

Us(tx)
Us(t) − xγ (s)

tρ(s) = xγ (s)
(

xρ(s) − 1
) (

1 + tρ(s)
)−1

.

Further, we assume that γ and ρ are continuous function such
that γ (s) > 0, ρ(s) < 0 and γ (s) + ρ(s) 	= 0 for all s ∈
[0, 1]. Denote ρ̄ = sup0≤s≤1 ρ(s) < 0, ρ = inf0≤s≤1 ρ(s) ≤
ρ̄, and assume that ρ > 2ρ̄. In addition, we assume Lips-
chitz continuity for the γ and ρ functions: for any s1, s2 ∈
[0, 1], |γ (s1) − γ (s2)| < c1 |s1 − s2| and |ρ(s1) − ρ(s2)| <

c2 |s1 − s2| for some c1, c2 > 0. With this setup, the second order
condition (3) holds with As(t) = tρ(s).

We find proper choices for k = kn and h = hn as follows.
First choose k = kn = nη for some η ∈

( −ρ

−ρ+1 , −2ρ̄
−2ρ̄+1

)
. Here

we use the assumption ρ > 2ρ̄. Next, we choose h = hn = n−ξ

where ξ > 0 is determined as follows. Since η >
−ρ

−ρ+1 implies
that η > (−ρ)(1 − η), we can choose a positive value ξ such
that η > ξ > max((−ρ)(1 − η), η/2). We now verify that with
these choices, conditions (4)–(7) holds.

First, condition (4) holds due to the fact that η > ξ .
Second, condition (5) holds if

√
k
(n

k
)ρ̄ → 0 as n → ∞. This

is guaranteed by the fact that η <
−2ρ̄

−2ρ̄+1 .
Third, condition (6) holds if h

√
k log k → 0 as n → ∞. This

is guaranteed by the fact that ξ > η/2.
Finally, we find necessary conditions to ensure condition (7).

Note that
Us1
( n

k
)

Us2
( n

k
) − 1

As2

(n
k
) =

[(n
k
)γ (s1)−γ (s2) − 1(n

k
)ρ(s2)

+
(n

k

)γ (s1)−γ (s2)+ρ(s1)−ρ(s2)

− 1
](

1 +
(n

k

)ρ(s2)
)−1

.
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Therefore, (7) holds if as n → ∞,

h
(

log
(n

k

)) (n
k

)−ρ → 0.

This is guaranteed by the fact that ξ > (−ρ)(1 − η).
To conclude, we have shown that our required conditions are

consistent. Notice that this example can be easily generalized to
Us(t) = C(s)tγ (s)(1 + D(s)tρ(s)), with some proper continuous
function C(s) > 0 and D(s) on [0, 1]. Further the power in the
Lipschitz continuity condition of γ and ρ could be any positive
number, not necessarily one. Therefore, our required conditions
are not too restrictive.

3. Testing Trends in Extreme Value Indices

Theorem 2.2 provides the possibility to test if the extreme value
indices follow a specific trend, that is, H0 : γ (s) = γ0(s) for all
s ∈ [0, 1], with some given function γ0. Similar to testing the
specific trend in the “skedasis” function in Einmahl, de Haan,
and Zhou (2016), we apply an equivalent test to test H0 : �(s) =
�0(s) ∈ [0, 1] for all s, where �0(s) = ∫ s

0 γ0(u)du. Clearly, one
may construct a Kolmogorov–Smirnov (KS) type test with the
testing statistic defined as

T := sup
s∈[0,1]

∣∣∣�̂H(s) − �0(s)
∣∣∣ .

Then, Theorem 2.2 implies that under the null hypothesis H0 :
�(s) = �0(s) for all s ∈ [0, 1], as n → ∞,

√
kT d→ sup

s∈[0,1]

∣∣∣∣
∫ s

0
γ (u)dW(u)

∣∣∣∣ ,

where W(u) is a standard Brownian motion defined on [0,1].
It is often of interest to test whether the extreme value index

remains constant over time, without prior knowledge on the
constant extreme value index, that is, H0 : γ (s) = γ for all
s ∈ [0, 1] without specifying γ . In this case, one may use �̂H(1)

as an estimator of the constant extreme value index γ and define
the testing statistic as

T̃ := sup
s∈[0,1]

∣∣∣∣∣ �̂H(s)
�̂H(1)

− s

∣∣∣∣∣ .

It is straightforward to show that under the null hypothesis H0 :
γ (s) is a constant for all s ∈ [0, 1], as n → ∞,

√
kT̃ d→ sup

s∈[0,1]
|B(s)| ,

where B(s) is a standard Brownian bridge defined on [0,1]. Note
that the limit distribution is identical to that in the classical KS
test.

We run a simulation study to demonstrate the finite sample
performance of the testing procedure using T̃. In all our simu-
lations we generate m = 2000 samples with n observations in
each sample. We start with setting the sample size to n = 5000.
For the two parameters k and h, we choose several combinations
between k = 100, 200 and h = 0.025, 0.04.

For each sample, we simulate the observations from the
following data generating process

Xi = Z1/γ (i/n)
i , i = 1, 2, . . . , n,

where {Zi}n
i=1 are iid observations from the standard Fréchet

distribution with distribution function F(x) = exp (−1/x) for
x > 0. For the function γ (s) we consider either a linear trend as
γ (s) = 1 + bs or a trend following the sin function as γ (s) =
1+ c sin(2πs). If b = 0 or c = 0, the two model resemble the iid
case, that is, the null hypothesis that the extreme value indices
remain constant holds. We consider four alternative cases: b =
1, b = 2, c = 1/4, and c = 1/2. In total, we have 20 sets of
simulations due to the various choices of k, h and the model of
γ (s).

For each simulated sample j we apply the test T̃ in Section 3
to test whether the extreme value indices remain constant and
obtain the corresponding p-value, pj, for j = 1, 2, . . . , m. For
the simulations based on b = 0 (or c = 0), that is, when the null
hypothesis holds, we make QQ-plots between the simulated p-
values across all m samples that are below 0.1 against a uniform
distribution on [0,0.1]. If the size of the test is agrees with the
significance level, the dots in the QQ-plots should line up on the
45 degree line. Figure 1 presents four QQ-plots corresponding
to four choices of (k, h). The plots confirm the validity of our
test under the null hypothesis.

Next, for all sets of simulations, we calculate the rejection
rate based on each significance level α as #

{
j : pj < α

}
/m for

α = 0.01, 0.05, and 0.1. The rejection rates are reported in
Table 1.

In the first panel, we observe that under the null hypothesis,
the rejection rates, that is, the Type I error, are close to the
significance levels. The difference between the two choices of h is
negligible when choosing k = 200. The difference between the
two choices of k is also negligible when considering h = 0.025.
For k = 100 and h = 0.04, the test is conservative.

In the next two panels, the rejections rates can be read as
the power of the test. Between the two choices of h, h =
0.025 leads to a slightly higher power for rejecting the linear
trend, while h = 0.04 leads to a slightly higher power for
the sin trend. Between the two choices of k, k = 200 leads
to a much higher power in all alternative models. Therefore,
choosing a higher k is preferred as long as the bias is not an
issue, whereas the choice of h depends on the shape of the
trend.

When comparing across the models, the power is higher for
b = 2 (c = 1/2) than for b = 1 (c = 1/4). This is in line
with the intuition that the test is more powerful to detect larger
deviation from the null hypothesis of having constant extreme
value index.

Finally, for the two sin trends: c = 1/4 and c = 1/2, we
plot the average of the estimated γ (s) across the m samples (the
solid line) and its corresponding 95% confidence interval for
each given s. There are two ways to construct the confidence
interval. First, we use the asymptotic theory in Theorem 2.1 to
construct the confidence interval based on the averaged estimate
of γ (s) (the dotted lines). Second, we can obtain an empiri-
cal confidence interval from the m estimates (the dash-dotted
lines). The comparison between the two provides a validation
of our asymptotic theory. In this exercise, we fix k = 200 and
h = 0.025.

Figure 2 shows the estimation result for the sin trends.
Firstly, the average estimates across m sample resembles the
true value of the γ (s) function (the dash line). Secondly, the
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Figure 1. QQ-plots for simulated p-values below 0.1

Table 1. Rejection rates in simulations: sample size n = 5000.

k = 200 k = 100

α h = 0.025 h = 0.040 h = 0.025 h = 0.040

iid observations
0.1 0.104 0.117 0.092 0.071
0.05 0.051 0.053 0.052 0.029
0.01 0.011 0.010 0.013 0.006

Linear trend

b = 1
0.1 0.831 0.682 0.539 0.375
0.05 0.731 0.559 0.407 0.262
0.01 0.505 0.338 0.207 0.095

b = 2
0.1 0.989 0.960 0.843 0.703
0.05 0.970 0.917 0.743 0.584
0.01 0.888 0.740 0.480 0.271

Sin trend

c = 1/4
0.1 0.500 0.696 0.254 0.393
0.05 0.388 0.597 0.165 0.292
0.01 0.195 0.385 0.064 0.126

c = 1/2
0.1 0.991 0.999 0.850 0.932
0.05 0.976 0.994 0.770 0.886
0.01 0.921 0.984 0.533 0.687
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Figure 2. Estimated varying extreme value indices: sin trends.

confidence intervals derived from our asymptotic theory are
close to that obtained from the simulation indicating the validity
of our asymptotic theory. In both cases, the empirical confidence
interval is shifted slightly upward compared to the theoreti-
cal confidence interval. This shift cannot be explained by the
estimation bias because the average estimates is close to the
true value. An alternative explanation is that the asymptotic
normality requires large 2kh, but in this simulation, 2kh = 10 is
rather low. To validate this reasoning, we make QQ-plots for the
estimates of γ (1/2) against the standard normal distribution in
Figure 3. The solid line has a slope of 1/

√
2kh. The deviation

of the dots from the solid line indicates that the current level
of 2kh is rather low for having normality of the estimates.
Although the middle part of the distribution might be close to a
normal distribution, both left and right tails are deviating from
normality.

Besides working with large sample size n = 5000, we also
consider a smaller sample size: n = 2000. For the small sample
size, we keep h = 0.025 and h = 0.04, but choose different
levels of k at k = 100 and k = 50. The results for rejection
rates is reported in Table 2. The general patterns observed in
the simulations for n = 5000 are preserved.

4. Application

We apply our developed method to two datasets to test whether
the extreme value indices remain unchanged over time. If not
rejecting the null, we estimate the constant extreme value index.
If rejecting the null, we estimate the time variation in the
extreme value indices. Throughout the application analysis, we
choose h = 0.025.

4.1. Application 1: Precipitation at
Saint-Martin-de-Londres

We employ a dataset consisting of the precipitation at Saint-
Martin-de-Londres from 1976 to 2015, with 14,610 daily obser-
vations. We test the constancy of the extreme value indices over
the entire period. The obtained p-values against various levels of
k are shown in the upper panel of Figure 4. We do not reject the
null hypothesis under the 5% significance level (the dash line).
We then estimate the constant extreme value index by applying
the Hill estimator to all observations, that is, estimating �(1).
The obtained estimates against various levels of k are shown in
the lower panel of Figure 4. By choosing k = 200, we get the
estimate for the constant extreme value index at 0.395.
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Figure 3. QQ plots for the estimates of γ (1/2)

Table 2. Rejection rates in simulations: sample size n = 2000.

k = 100 k = 50

α h = 0.025 h = 0.040 h = 0.025 h = 0.040

iid observations
0.1 0.089 0.079 0.132 0.079
0.05 0.048 0.035 0.074 0.037
0.01 0.011 0.004 0.022 0.007

Linear trend

b = 1
0.1 0.517 0.397 0.367 0.204
0.05 0.406 0.285 0.260 0.124
0.01 0.186 0.114 0.099 0.028

b = 2
0.1 0.837 0.683 0.570 0.375
0.05 0.760 0.542 0.461 0.266
0.01 0.490 0.281 0.208 0.106

Sin trend

c = 1/4
0.1 0.277 0.438 0.222 0.227
0.05 0.188 0.334 0.129 0.157
0.01 0.071 0.138 0.038 0.040

c = 1/2
0.1 0.876 0.945 0.582 0.696
0.05 0.811 0.908 0.470 0.579
0.01 0.574 0.765 0.228 0.304

4.2. Application 2: Loss Returns of S&P 500

We employ the same dataset as in Einmahl, de Haan, and Zhou
(2016), that is, the S&P 500 index, from 1988 till 2012 . We
construct daily loss returns defined as Xt = log(Pt/Pt+1), where
Pt is the index on day t. This results in a sample with 6302
observations.

Similar to Einmahl, de Haan, and Zhou (2016), we also test
the constancy of the extreme value indices over a subperiod
from 1988 to 2012 (6302 observations). The obtained p-values
against various levels of k are shown in the upper panel of
Figure 5. We do not reject the null hypothesis for k up to 750
under the 5% significance level (the dash line). This result differs
from the conclusion in Einmahl, de Haan, and Zhou (2016)
where the constancy of the extreme value index in the period
from 1988 to 2012 was rejected. We interpret the difference
by the fact that we are testing a broader null. Notice that in
the heteroscedastic extremes model in Einmahl, de Haan, and
Zhou (2016), the skedasis function is assumed to be bounded

away from 0 and +∞, whereas our model potentially allows for
unbounded skedasis in the null hypothesis. As a consequence,
our test for the constancy of the extreme value index may have
a lower power.

Since the null hypothesis is not rejected for the sample from
1988 to 2012, we consider an extended sample from 1963 to 2012
(12586 observations). The result is shown in the lower panel of
Figure 5. We reject having a constant extreme value index during
this long period for k ranging from 250 to 750 under the 5%
confidence level. Based on this analysis, we conclude that there
is a change of extreme value index during the period from 1963
to 2012.

One concern in the aforementioned analysis is that financial
data such as stock returns exhibits serial dependence. The pres-
ence of serial dependence would in general enlarge the asymp-
totic variance of the local estimators for γ (s). Correspondingly,
the critical value of the proposed test should be higher. By using
the test based on assuming no serial dependence, we tend to over
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Figure 4. Testing the constancy of the extreme value indices: precipitation.

reject the null. Given that the analysis using the data from 1988
to 2012 did not reject the null, accounting for serial dependence
may not alter the conclusion. However, the rejection result
based on the data from 1963 to 2012 may suffer from the serial
dependence issue. Therefore, we conduct additional analysis as
follows. We split the dataset into two subsets that consist of daily
returns on the even and odd days, respectively. In other words,
we do not take returns from consecutive trading days. The split
of the full dataset helps to mitigate the serial dependence and
data from each subset is more close to the iid assumption. We
conduct our tests in each subset with the results presented in
Figure 6.

From the two figures in Figure 6, we observe that the null
hypothesis is not rejected at 5% level, for the dataset containing
daily returns on the even days only. For the daily returns on
the odd days, the result is not conclusive either: for k ranging
from 400 to 600, the null hypothesis is not rejected at 5% level.
However for a lower choice of k, such as k = 200 or k = 300, the
null is rejected under 5% level. Overall, the additional analysis
reveals that the rejection result for the full dataset might be
affected by the serial dependence. With accounting for serial
dependence, there is no conclusive evidence that the extreme
value index varies over this period.

Finally, we plot the estimated �(s) function (the solid line)
and the corresponding 95% confidence band uniformly for all
s ∈ [0, 1] in Figure 7 for the period from 1963 to 2012. In
this analysis, we use k = 400, for which the null hypothesis of
having a constant extreme value index was rejected. We obtain
the confidence band in two ways.

Without having prior information on the shape of �(s), we
obtain from Theorem 2.2 that as n → ∞,

sup
s∈[0,1]

∣∣∣√k
(
�̂H(s) − �(s)

)∣∣∣ d→ sup
s∈[0,1]

∣∣∣∣
∫ s

0
γ (u)dW(u)

∣∣∣∣ ,

where W(u) is a Brownian motion. We simulate the quantile of
the limit and use that for constructing the uniform confidence
band. Since the limit distribution involves the function γ (s),
we plug the estimate of the γ (s) function into the stochastic
integral and simulate the statistic sups∈[0,1]

∣∣∫ s
0 γ̂H(u)dW(u)

∣∣
one million times. Then we take the numerical 95% quan-
tile among the one million simulations, denoted as q(0.95).
Eventually, the uniform confidence band can be constructed
as [�̂H(s) − q(0.95)/

√
k, �̂H(s) + q(0.95)/

√
k]. The upper and

lower bound for the confidence band are shown by the dotted
lines in the upper panel of Figure 7. The dash line indicates the
function s�̂H(1), which corresponds to the case γ (s) = γ for all
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Figure 5. Testing the constancy of the extreme value indices: S&P 500 index.

s ∈ [0, 1]. The dash line lies always within the confidence band
which is seemingly contradictory to our testing result. Notice
that the construction of the uniform confidence band is not
based on the null hypothesis in the testing analysis. The width
of the band is therefore relatively wider due to the stochastic
integral.

To be consistent with the testing procedure, we construct
a uniform confidence band under the null hypothesis that
γ (s) = γ for all s ∈ [0, 1] in the lower panel of Figure 7.
More specifically, we use the quantile of the limit distribution
�̂H(1) sups∈[0,1] |B(s)| where B(s) is a Browanian bridge, instead
of the simulated q(0.95) in determining the uniform width of
the confidence band. The result shows that the straight line
s�̂H(1) falls out of the uniform confidence band in the region
s ∈ [0.3, 0.5]. This is in line with our testing result.

Appendix A: Proofs

We start with presenting auxiliary results that are necessary for the
proof of our main theorems. Then we establish the asymptotic theory
for the “local tail empirical process.” Finally, we provide the proof for
the two main theorems.

A.1. Auxiliary Results

The following lemma shows that under the conditions of Theorem 2.1,
the quantile function in the regularly variation property does not vary
much in a h-neighborhood. Denote qn = k1+ε for some ε > 0.

Lemma A.1. Under the conditions of Theorem 2.1, as n → ∞,

√
k sup

|s1−s2|≤h,1/2≤x≤qn

∣∣∣∣∣∣
Us1

(
n
k x
)

Us2

(
n
k

)
xγ (s2)

− 1

∣∣∣∣∣∣→ 0. (A.1)

Proof of Lemma A.1. Write

Us1

(
n
k x
)

Us2

(
n
k

)
xγ (s2)

=
Us1

(
n
k x
)

Us1

(
n
k

)
xγ (s1)

·
Us1

(
n
k

)
Us2

(
n
k

) ·xγ (s1)−γ (s2) =: I1 ·I2 ·I3.

Firstly, the second order condition (3) ensures that (see Theorem
2.3.9 in de Haan and Ferreira (2006)) uniformly for all s1 ∈ [0, 1], x ≥
1/2, as n → ∞, ∣∣∣∣∣∣

I1 − 1

As1

(
n
k

)
∣∣∣∣∣∣ = O(1).
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Figure 6. Testing the constancy of the extreme value indices: S&P 500 index (1963–2012).

Together with the condition (5), we get that as n → ∞,
√

k sup
s1∈[0,1],x≥1/2

|I1 − 1| = o(1).

Secondly, the conditions (5) and (7) ensure that n → ∞,
√

k sup
|s1−s2|≤h

|I2 − 1| = o(1).

Lastly, from the condition (6), we get that as n → ∞,

√
k sup

|s1−s2|≤h,1/2≤x≤qn

∣∣log x
∣∣ |γ (s1) − γ (s2)|

< 2
√

k log k sup
|s1−s2|≤h

|γ (s1) − γ (s2)| → 0.

It implies that
√

k sup|s1−s2|≤h,1/2≤x≤qn |I3 − 1| = o(1).
The lemma is then proved by combining the three components.

For any given s ∈ [0, 1], denote Us,n = max{
i:
∣∣∣ i

n −s
∣∣∣≤h

} U i
n

and

Us,n = min{
i:
∣∣∣ i

n −s
∣∣∣≤h

} U i
n

. Obviously Us,n ≤ Us ≤ Us,n. The

following is a direct corollary from Lemma A.1.

Corollary A.1. As n → ∞,

�4,n := √
k sup

0≤s≤1,1/2≤x≤qn

∣∣∣∣∣∣
Us,n

(
n
k x
)

Us
(

n
k

)
xγ (s)

− 1

∣∣∣∣∣∣→ 0,

�5,n := √
k sup

0≤s≤1,1/2≤x≤qn

∣∣∣∣∣∣
Us,n

(
n
k x
)

Us
(

n
k

)
xγ (s)

− 1

∣∣∣∣∣∣→ 0.

A.2. Proof of Theorem 2.1

We prove the theorem by constructing upper and lower bounds for the
local estimator γ̂H(s) at a fixed s.

The local estimator is based on observations Xi with i ∈ In(s) ={
i :
∣∣∣ i

n − s
∣∣∣ ≤ h

}
. Write Xi = U i

n
(Zi) for 1 ≤ i ≤ n, where {Zi}n

i=1
are iid standard Pareto distributed random variables. To construct the
local Hill estimator, we rank the observations {Xi : i ∈ In(s)} into order
statistics as X(s)

1,[2nh] ≤ · · · ≤ X(s)
[2nh],[2nh]. We also rank {Zi : i ∈ In(s)}

into order statistics as Z(s)
1,[2nh] ≤ · · · ≤ Z(s)

[2nh],[2nh]. Notice that

since the U i
n

functions are different, the order statistic X(s)
j,[2nh] may not

correspond to the order statistic Z(s)
j,[2nh] for j = 1, 2, . . . , [2nh].
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Figure 7. Estimating the �(s) function: S&P 500 index.

Nevertheless, recall the notations Us,n = max{
i:
∣∣∣ i

n −s
∣∣∣≤h

} U i
n

and

Us,n = min{
i:
∣∣∣ i

n −s
∣∣∣≤h

} U i
n

. The inequalities

Us,n(Z(s)
j,[2nh]) ≤ X(s)

j,[2nh] ≤ Us,n(Z(s)
j,[2nh]),

for all j = 1, 2, . . . , [2nh], are obtained as follows. Take the upper bound
as an example. Since there are j random variables among {Zi : i ∈ In(s)}
that are lower or equal to Z(s)

j,[2nh], and the U-functions corresponding
to these Zi are all bounded below U, we get that there are at least j
random variables among {Xi : i ∈ In(s)} that are bounded below by
Us,n(Z(s)

j,[2nh]). This proves the inequality for the upper bound. A similar
argument can be made for the lower bound.

Therefore, we get an upper bound for γ̂H(s) as follows,

γ̂H(s) = 1
[2kh]

[2kh]∑
j=1

(
log X(s)

[2nh]−j+1,[2nh] − log X(s)
[2nh]−[2kh],[2nh]

)

≤ 1
[2kh]

[2kh]∑
j=1

(
log Us,n(Z(s)

[2nh]−j+1,[2nh])

− log Us,n(Z(s)
[2nh]−[2kh],[2nh])

)

= 1
[2kh]

[2kh]∑
j=1

(
log

Us,n(Z(s)
[2nh]−j+1,[2nh])

Us
(

n
k

)

− log
Us,n(Z(s)

[2nh]−[2kh],[2nh])

Us
(

n
k

) )
. (A.2)

We would now apply Corollary A.1 to bound the two terms in (A.2).
For that purpose it is necessary to check that as n → ∞,

Pr
(

k
n

Z(s)
[2nh]−j+1,[2nh] ∈ [1/2, qn], for all j = 1, 2, . . . , [2kh]

)
→ 1.

(A.3)
For the lower bound of 1/2, it follows from the fact that

k
n Z(s)

[2nh]−[2kh],[2nh]
P→ 1, as n → ∞. For the upper bound, notice

that, as n → ∞,

Pr
(

k
n

Z(s)
[2nh],[2nh] ≤ qn, for all s ∈ [0, 1]

)

≥ Pr
(

k
n

max
1≤i≤n

Zi ≤ k1+ε

)
≥ Pr

(
max1≤i≤n Zi

n
≤ kε

)
→ 1.
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Here, we consider the maxima over all Zi across all observations, and
use the fact that max1≤i≤n Zi

n = Op(1) as n → ∞. In this way, we have
verified the upper bound qn in (A.3).

Now, we are ready to apply Corollary A.1 to the two terms in (A.2)
and continue the inequality as follows: as n → ∞, within the set{

k
n Z(s)

[2nh]−j+1,[2nh] ∈ [1/2, qn], for all j = 1, 2, . . . , [2kh]
}

,

γ̂H(s) ≤ 1
[2kh]

[2kh]∑
j=1

⎛
⎝γ (s) log

Z(s)
[2nh]−j+1,[2nh]

n/k
+ log

(
1 + �4,n√

k

)

−γ (s) log
Z(s)

[2nh]−[2kh],[2nh]
n/k

− log
(

1 − �5,n√
k

)⎞⎠

= γ (s)
1

[2kh]

⎛
⎝[2kh]∑

j=1
log

Z(s)
[2nh]−j+1,[2nh]

Z(s)
[2nh]−[2kh],[2nh]

⎞
⎠

+
(

log
(

1 + �4,n√
k

)
− log

(
1 − �5,n√

k

))

=: γ (s)Jn(s) + 1√
k

o(1),

where Jn(s) = 1
[2kh]

∑[2kh]
j=1 log

Z(s)
[2nh]−j+1,[2nh]

Z(s)
[2nh]−[2kh],[2nh]

. Note that the o(1) term

in the remainder part 1√
k

o(1) is uniform for all s ∈ [0, 1].
Similarly, one can establish a lower bound for γ̂H(s): as n →

∞, within the set
{ k

n Z(s)
[2nh]−j+1,[2nh] ∈ [1/2, qn], for all j = 1,

2, . . . , [2kh]},
γ̂H(s) ≥ γ (s)Jn(s) + 1√

k
o(1).

Hence, together with (A.3), we get that as n → ∞,

γ̂H(s) = γ (s)Jn(s) + 1√
k

oP(1). (A.4)

To obtain the theorem, we only need to show that
√

2kh(Jn(s) − 1)

converges to a standard normal distribution as n → ∞.
If we disregard the order, then the set{

log
Z(s)

[2nh]−j+1,[2nh]
Z(s)

[2nh]−[2kh],[2nh]
: 1 ≤ j ≤ [2kh]

}
is a set of iid standard

exponentially distributed random variables. We denote them, without

loss of generality, as
{

E(s)
j

}[2kh]
j=1

. From the central limit theorem, we

get that

√
2kh(Jn(s)−1) =

√
2kh

[2kh]
√

[2kh]
(

1
[2kh]

[2kh]∑
j=1

log E(s)
j −1

)
d→ N(0, 1),

as n → ∞. Notice that here we use the fact that kh → ∞ as n → ∞
from the condition (4).

A.3. Proof of Theorem 2.2

Next, we prove the global asymptotic normality in Theorem 2.2, which
is a uniform result over all s ∈ [0, 1].

Recall the definition of �̂H(s) in (2) as

�̂H(s) =
∫ s

0
γ̂H
(
(2[ u

2h
] + 1)h

)
du,

which is the partial integral of a discretized version of the function
γ̂H(·). We apply the same discretization to the function γ (·) as follows:
define

γ̃ (s) =
⎧⎨
⎩

γ
(
(2[ s

2h ] + 1)h
)

, for s ∈ [0, 2h[1/(2h)]),

γ
(
(2[ 1

2h ] − 1)h
)

, for s ∈ [2h[1/(2h)], 1].

Further define �̃(s) = ∫ s
0 γ̃ (u)du. We first compare �̂H(s) to �̃(s)

and show that under a Skorokhod construction there exists a series of
Brownian motions {Wn(s)} such that as n → ∞,

sup
s∈[0,1]

∣∣∣∣√k
(
�̂H(s) − �̃ (s)

)
−
∫ s

0
γ̃ (u)dWn(u)

∣∣∣∣ P→ 0. (A.5)

Later on, we handle the uniformly negligible difference between γ̃ (·)
and γ (·).

Since the estimator �̂H(s) involves the local estimators γ̂H(s) at
various locations s = (2p − 1)h for p = 1, 2, . . . , [1/2h], we first revisit
the proof of Theorem 2.1 to get the expansion (A.4) uniformly for all
s = (2p − 1)h, p = 1, 2, . . . , [1/(2h)]. One important step in the proof
of Theorem 2.1 is to verify that Pr

(
1
2 ≤ k

n Z(s)
[2nh]−j+1,[2nh] ≤ qn

)
→ 1

as n → ∞, for a fixed s. To achieve the uniform result, we have
to show that this inequality holds uniformly for all s = (2p − 1)h,
p = 1, 2, . . . , [1/(2h)]. The following lemma guarantees the validity
of such a uniform inequality.

Lemma A.2. Under the conditions in Theorem 2.2, as n → ∞,

Pr
(

k
n

Z((2p−1)h)

[2nh]−j+1,[2nh] ∈ [1/2, qn], ∀1 ≤ j ≤ [2kh] + 1,

1 ≤ p ≤ [1/(2h)]
)

→ 1.

Proof of Lemma A.2. The validity of the upper bound qn has already
been proved in the proof of Theorem 2.1 as follows. As n → ∞,
Pr
(

k
n Z(s)

[2nh],[2nh] ≤ qn, for all s
)

→ 1. Consequently, it holds for all
s = (2p − 1)h, p = 1, 2, . . . , [1/(2h)].

For the lower bound, we shall prove that: as n → ∞,
Pr
(

k
n Z((2p−1)h)

[2nh]−[2kh],[2nh] ≥ 1/2, for all p = 1, 2, . . . , [1/(2h)]
)

→ 1.

Notice that the order statistics Z((2p−1)h)

[2nh]−[2kh],[2nh] are iid across p =
1, 2, . . . , [1/(2h)]. This implies that, for any fixed s0,

Pr
(

k
n

Z((2p−1)h)

[2nh]−[2kh],[2nh] ≥ 1/2, ∀1 ≤ p ≤ [1/(2h)]
)

=
(

Pr
(

k
n

Z(s0)
[2nh]−[2kh],[2nh] ≥ 1/2

))[1/(2h)]
.

We continue to establish the lower bound for the right hand side. For
convenience, we omit the superscript (s0). Since Z[2nh]−[2kh],[2nh] is
the ([2nh] − [2kh])th order statistic among [2nh] iid standard Pareto
distributed random variables, 1/Z[2nh]−[2kh],[2nh] is the ([2kh] + 1)th
order statistic, U[2kh]+1,[2nh], among [2nh] iid uniformly distributed
random variables U1, U2, . . . , U[2nh]. Hence,

Pr
(

k
n

Z[2nh]−[2kh],[2nh] ≥ 1/2
)

= 1 − Pr
(n

k
U[2kh]+1,[2nh] > 2

)

= 1 − Pr

⎛
⎝[2nh]∑

i=1
1{Ui≤2k/n} ≤ [2kh]

⎞
⎠

≥ 1 − exp

⎧⎨
⎩−[2nh]

2

( [2kh]
[2nh] − 2k

n

)2 1
2k
n

(
1 − 2k

n

)
⎫⎬
⎭

≥ 1 − exp(−Ckh),
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for some C > 0. Here the first inequality is an application of a stronger
version of the Hoeffding’s inequality for binomial distributions: Theo-
rem 2(ii) in Okamoto (1959), with replacing n, p, and c therein by [2nh],
2k
n and 2k

n − [2kh]
[2nh] , respectively. Consequently,

Pr
(

k
n

Z((2p−1)h)

[2nh]−[2kh],[2nh] ≥ 1/2 for all p = 1, 2, . . . , [1/(2h)]
)

≥ (1 − exp(−Ckh)
)[1/(2h)] .

As n → ∞, we have that 1
2h exp(−Ckh) → 0 since kh/

∣∣log h
∣∣ → ∞

and kh → ∞, see the condition (4). The lemma is proved.

We continue with the proof of Theorem 2.2. Recall that in the proof
of Theorem 2.1, the expansion (A.4) is proved for each given s. From the
uniform bounds for all s = (2p − 1)h, p = 1, 2, . . . , [1/(2h)] given in
Lemma A.2, following the same lines, we obtain the expansion (A.4)
uniformly for all s = (2p − 1)h, p = 1, 2, . . . , [1/(2h)], that is, as
n → ∞,

√
k sup

1≤p≤[1/(2h)]

∣∣∣γ̂H((2p − 1)h) − γ ((2p − 1)h)J(p)
n
∣∣∣ = oP(1),

where J(p)
n = 1

[2kh]
∑[2kh]

j=1 log
Z((2p−1)h)

[2nh]−j+1,[2nh]
Z((2p−1)h)

[2nh]−[2kh],[2nh]
.

Again, we regard the set

{
log

Z((2p−1)h)

[2nh]−j+1,[2nh]
Z((2p−1)h)

[2nh]−[2kh],[2nh]
: 1 ≤ j ≤ [2kh]

}
as a

set of iid standard exponentially distributed random variables denoted
as
{

E(p)

j : 1 ≤ j ≤ [2kh]
}

. Then J(p)
n = 1

[2kh]
∑[2kh]

j=1 E(p)

j .
We deal with the two regions s ≤ 2h[1/(2h)] and s ≥ 2h[1/(2h)]

separately.
For s ≤ 2h[1/(2h)], we obtain the expansion of the estimator �̂H(s)

as follows:

�̂H(s) = 2h
[s/(2h)]∑

p=1
γ̂H((2p−1)h)+ (s−2h[s/(2h)])γ̂H ((2[s/(2h)] + 1)h) .

Notice that

�̃H(s) = 2h
[s/(2h)]∑

p=1
γ ((2p − 1)h)+ (s − 2h[s/(2h)])γ ((2[s/(2h)] + 1)h) .

By comparing the two with applying the uniform asymptotic expan-
sion of γ̂H((2p − 1)h), for p = 1, 2, . . . , [s/(2h)] + 1, we get that

sup
s≤2h[1/(2h)]

∣∣∣√k
(
�̂H(s) − �̃(s)

)
−
(

L(1)
n (s) + L(2)

n (s)
)∣∣∣ = oP(1),

where

L(1)
n (s) : = 2h

√
k

[s/(2h)]∑
p=1

γH((2p − 1)h)(J(p)
n − 1),

L(2)
n (s) : = √

k(s − 2h[s/(2h)])
γH ((2[s/(2h)] + 1)h) (J([s/(2h)]+1)

n − 1).

We further study the asymptotic behavior of L(1)
n (s) and L(2)

n (s).
Notice that for any 1 ≤ p 	= q ≤ [1/(2h)], the interval [(2p −

2)h, 2ph) and [(2q − 2)h, 2qh) are disjoint. Therefore, we can collect
all E(p)

j for all j = 1, 2, . . . , [2kh] and p = 1, 2, . . . , [1/(2h)] and
regard them as [2kh][1/(2h)] iid standard exponentially distributed
random variables. The random variables E(p)

j for j = 1, 2, . . . , [2kh] and

p = 1, 2, . . . , [1/(2h)] is a sequence of m = [2kh][1/(2h)] independent
standard exponential random variables. For convenience, we relabel
E(p)

j −1 as Y1, Y2, . . . , Ym, that is, Y(p−1)[2kh]+j = E(p)

j −1 and define
the partial sum process

Sn(u) = 1√
m

[mu]∑
i=1

Yi,

for u ∈ [0, 1]. With a variation of the notation

S̃n(u) := Sn

(
u

2h[1/(2h)]
)

,

we can rewrite that

J(p)
n − 1 = 1

[2kh]
[2kh]∑
j=1

(E(p)

j − 1) =
√

m
[2kh] (S̃n(2hp) − S̃n(2h(p − 1))),

for p = 1, 2, . . . , [1/(2h)]. With this new notation, we have that

L(1)
n (s) = 2h

√
km

[2kh]
∫ 2[s/(2h)]h

0
γ̃ (u)dS̃n(u),

L(2)
n (s) = 2h

√
km

[2kh] γ ((2[s/(2h)] + 1)h)
( s

2h
−
[ s

2h

])
∫ 2h[s/(2h)]+2h

2h[s/(2h)]
dS̃n(u).

To handle the S̃n process, we first apply Theorem 2.2(ii) in Csörgő
and Horváth (1993) to get an asymptotic expansion of the Sn process.
Note that E(etY1) = e−t 1

1−t for all t < 1. By verifying the condition
in that theorem, we obtain that under a Skorokhod construction, there
exists a series of Brownian motions Wn(u) and a constant C1 such that

Sn(u) = Wn(u) + θn(u),

where as n → ∞,

Pr

(
sup

u∈[0,1]
|θn(u)| ≤ C1

log m√
m

)
→ 1. (A.6)

Define

θ̃n(u) := S̃n(u) − Wn(u) = Wn

(
u

2h[1/(2h)]
)

− Wn(u) + θn

(
u

2h[1/(2h)]
)

.

As n → ∞, from the modulus of continuity, we have that

Pr
(

sup
u∈[0,1]

∣∣∣∣Wn

(
u

2h[1/(2h)]
)

− Wn(u)

∣∣∣∣
≤ C2(2h)1/2 ∣∣log(2h)

∣∣1/2
)

→ 1,

for some positive constant C2. Together with (A.6), we get that, as
n → ∞,

Pr
(

sup
u∈[0,2h[1/(2h)]]

∣∣∣θ̃n(u)

∣∣∣
≤ C2(2h)1/2 ∣∣log(2h)

∣∣1/2 + C1
log m√

m

)
→ 1,
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which implies that

Pr
(

sup
u∈[0,2h[1/(2h)]]

∣∣∣θ̃n(u)

∣∣∣
≤ C3(h1/2 ∣∣log h

∣∣1/2 + k−1/2 log k)
)

→ 1, (A.7)

for some positive constants C3.
Write, for j = 1, 2,

L(j)
n (s) = L(W,j)

n (s) + L(θ̃ ,j)
n (s),

where L(W,j)
n (s) and L(θ̃ ,j)

n (s) are defined by replacing the process S̃n in
the expression of L(j)

n by the processes Wn and θ̃n, respectively. Since γ̃

is a step function, L(W,j)
n (s) and L(θ̃ ,j)

n (s) should be read as sums instead
of stochastic integrals.

Firstly, we handle L(W,1)
n (s) and L(W,2)

n (s) as follows. Notice that

[2kh]
2h

√
km

L(W,1)
n (s) =

∫ 2[s/(2h)]h
0

γ̃ (u)dWn(u)

=
∫ s

0
γ̃ (u)dWn(u)

− γ ((2[s/(2h)] + 1)h)

∫ s

2h[s/(2h)]
dWn(u).

With denoting w(s, h) = s
2h −

[
s

2h

]
∈ [0, 1), we have that as n → ∞,

∣∣∣∣ [2kh]
2h

√
km

(
L(W,1)

n (s) + L(W,2)
n (s)

)
−
∫ s

0
γ̃ (u)dWn(u)

∣∣∣∣
=γ ((2[s/(2h)] + 1)h)

∣∣∣∣w(s, h)

∫ 2h[s/(2h)]+2h

2h[s/(2h)]
dWn(u)

−
∫ s

2h[s/(2h)]
dWn(u)

∣∣∣∣
=γ ((2[s/(2h)] + 1)h)

∣∣∣∣w(s, h)

∫ 2h[s/(2h)]+2h

s
dWn(u)

− (1 − w(s, h))

∫ s

2h[s/(2h)]
dWn(u)

∣∣∣∣
≤γ̄

(∣∣∣∣∣
∫ 2h[s/(2h)]+2h

s
dWn(u)

∣∣∣∣∣+
∣∣∣∣
∫ s

2h[s/(2h)]
dWn(u)

∣∣∣∣
)

=oP(1),

where γ̄ is the uniform upper bound of the γ (·) function and the final
oP(1) term is uniformly for all s ≤ 2h[1/(2h)] thanks to the uniform
continuity of the Brownian motion. Since [2kh]

2h
√

km
→ 1 as n → ∞, we

get that

sup
s≤2h[1/(2h)]

∣∣∣∣L(W,1)
n (s) + L(W,2)

n (s) −
∫ s

0
γ̃ (u)dWn(u)

∣∣∣∣ = oP(1).

Next, we handle L(θ̃ ,j)
n (s) for j = 1, 2 by inequalities. As n → ∞,

[2kh]
2h

√
km

→ 1, which leads to

∣∣∣∣L(θ̃ ,1)
n (s) + L(θ̃ ,2)

n (s)
∣∣∣∣

≤ 2
∣∣∣∣
[s/(2h)]∑

p=1
γ ((2p − 1)h)(θ̃n(2ph) − θ̃n(2(p − 1)h))

+ γ ((2[s/(2h)] + 1)h)w(s, h) ·

(θ̃n(2h[s/(2h)] + 2h) − θ̃n(2h[s/(2h)]))
∣∣∣∣

≤ 2

∣∣∣∣∣∣
[s/(2h)]∑

p=1
θ̃n(2ph)(γ ((2p − 1)h) − γ ((2p + 1)h))

∣∣∣∣∣∣
+ 2γ̄

(∣∣∣θ̃n(2h[s/(2h)] + 2h)

∣∣∣+ 2
∣∣∣θ̃n(2h[s/(2h)])

∣∣∣)
≤ 2[s/2h] sup

u∈[0,1]

∣∣∣θ̃n(u)

∣∣∣ · �2,n√
k log k

+ 6γ̄ sup
u∈[0,1]

∣∣∣θ̃n(u)

∣∣∣
≤
(

2
2h

√
k log k

+ 6γ̄

)
C3
(

h1/2 ∣∣log h
∣∣1/2 + k−1/2 log k

)
,

where γ̄ is the uniform upper bound of the γ (·) function. In the last
step, we use the inequality (A.7). The conditions (4) and (6) imply that
as n → ∞, the upper bound, which does not depend on s, converges
to zero. Therefore, by combining the four components, L(W,j)

n (s) and

L(θ̃ ,j)
n (s) for j = 1, 2, we get that as n → ∞,

sup
s≤2h[1/(2h)]

∣∣∣∣√k
(
�̂H(s) − �̃(s)

)
−
∫ s

0
γ̃ (s)dWn(s)

∣∣∣∣ = oP(1).

We extend this result to include the remaining part s ∈
[2h[1/(2h)], 1]. We first apply the established result for s = 2h[1/(2h)]
to obtain that as n → ∞,∣∣∣∣∣
√

k
(
�̂H(2h[1/(2h)]) − �̃(2h[1/(2h)])

)
−
∫ 2h[1/(2h)]

0
γ̃ (s)dWn(s)

∣∣∣∣∣
= oP(1).

Therefore, to include the remaining part s ∈ [2h[1/(2h)], 1], it suffices
to show that as n → ∞,

sup
s∈[2h[1/(2h)],1]

√
k(s − 2h[1/(2h)])

∣∣∣∣γ̂H((2[1/(2h)] − 1)h)

− γ ((2[1/(2h)] − 1)h)

∣∣∣∣ = oP(1),

sup
s∈[2h[1/(2h)],1]

|γ ((2[1/(2h)] − 1)h)(Wn(s) − Wn(2h[1/(2h)]))|

= oP(1).

The first limit relation is ensured by the local asymptotic normality of
γ̂H((2[1/(2h)] − 1)h). The second limit relation follows from the uni-
form continuity of Wn and the fact that the γ (·) function is uniformly
bounded. Therefore, we can extend the region of s to the full interval
[0, 1] and obtain (A.5).

Finally, we show that γ̃ (·) and �̃(·) can be replaced by γ (·) and �(·)
in (A.5). From the definition of γ̃ (·), it is straightforward to verify that

sup
s∈[0,1]

|γ̃ (s) − γ (s)| ≤ sup
|s1−s2|≤2h

|γ (s1) − γ (s2)| = �2,n√
k log k

.

Consequently, the condition (6) ensures that as n → ∞,

sup
s∈[0,1]

√
k
∣∣∣∣
∫ s

0
γ (u)du −

∫ s

0
γ̃ (u)du

∣∣∣∣ ≤ �2,n
log k

→ 0.
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Lastly, we show that as n → ∞,

sup
s∈[0,1]

∣∣∣∣
∫ s

0
γ (u)dWn(u) −

∫ s

0
γ̃ (u)dWn(u)

∣∣∣∣ P→ 0. (A.8)

Notice that for any fixed n,
{∫ s

0 (γ̃ (u) − γ (u))dWn(u)
}

0≤s≤1 is a
martingale. We apply the Doob’s inequality for the sub-martingale{∣∣∫ s

0 (γ̃ (u) − γ (u))dWn(u)
∣∣}

0≤s≤1 and get that for any fixed n and
ε > 0,

Pr

(
sup

s∈[0,1]

∣∣∣∣
∫ s

0
γ (u)dWn(u) −

∫ s

0
γ̃ (u)dWn(u)

∣∣∣∣ ≥ ε

)

≤ 1
ε2 E

∣∣∣∣
∫ 1

0
γ (u)dWn(u) −

∫ s

0
γ̃ (u)dWn(u)

∣∣∣∣
2

= 1
ε2

∫ 1

0
(γ (u) − γ̃ (u))2du ≤ 1

ε2

(
�2,n√
k log k

)2

.

By taking n → ∞ and applying the condition (6), we obtain (A.8).
Consequently, we have proved the theorem.
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