
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2018 

Relationships Between Factors Influencing Biofilm Formation and Relationships Between Factors Influencing Biofilm Formation and 

Pathogen Retention in Complex Rhizosphere Microbial Pathogen Retention in Complex Rhizosphere Microbial 

Communities Communities 

Aaron Coristine 
cori0980@mylaurier.ca 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Environmental Microbiology and Microbial Ecology Commons, Food Microbiology 

Commons, Immunology of Infectious Disease Commons, Integrative Biology Commons, Microbial 

Physiology Commons, Molecular Biology Commons, Pathogenic Microbiology Commons, and the 

Terrestrial and Aquatic Ecology Commons 

Recommended Citation Recommended Citation 
Coristine, Aaron, "Relationships Between Factors Influencing Biofilm Formation and Pathogen Retention in 
Complex Rhizosphere Microbial Communities" (2018). Theses and Dissertations (Comprehensive). 2030. 
https://scholars.wlu.ca/etd/2030 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/50?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/86?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/86?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/35?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1302?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/51?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/51?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/52?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/20?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/2030?utm_source=scholars.wlu.ca%2Fetd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	1	of	182	

	

	

	

 

Relationships Between Factors Influencing Biofilm Formation and Pathogen 

Retention in Complex Rhizosphere Microbial Communities  

by 

 

Aaron Coristine 

 

THESIS 

Submitted to the Department of Biology 

Faculty of Science 

In partial fulfillment of the requirements for 

the 

Master of Science in Integrative Biology 

Wilfrid Laurier University 

2017 

 

Aaron Coristine 2017© 



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	2	of	182	

	

Abstract 

Riparian wetlands are unique habitats facilitating all forms of life. The riverbanks of these 
environments provide ideal conditions for bacteria, plants, and higher organisms. Of particular 
interest to this research was the variation in microbial community structure at high, intermediate 
and poor water quality impacted areas. Assessing the capabilities of plants to retain microbial 
pathogens was identified. Root systems and corresponding soil are ideal locations for bacterial 
deposition, resulting in attachment at these areas. Biofilm production in these regions is 
important for long-term establishment, leading to persistence and potential naturalization. 
Opportunistic pathogens originating from mammalian fecal matter are introduced into these 
water systems, largely due to anthropogenic impacts. Wastewater treatment facilities, 
agricultural operations and livestock farming all contributed to determining water quality. This 
research investigated the levels of Salmonella spp., Enterococcus spp. and Escherichia coli 
deposition within riparian wetlands. The objectives of this research were to 1) isolate 
opportunistic pathogens from the environment, 2) assess impacts of contaminant exposure on 
resistance profiles and how water quality may effect this, 3) compare rhizospheric, rhizoplane 
and waterborne isolate contaminant response behavior, 4) assess levels of adhesion mechanism 
and biofilm production to determine the influence of water quality and isolate source (analyte). 
The overarching goal of this research project was to best determine the innate capabilities of 
opportunistic pathogens to be retained in the rhizosphere, rhizoplane and water systems in 
riparian zones. Additionally, determining their abilities to generate biofilm and successfully 
grow at varying levels of water quality was investigated.). A range of temperatures (11oC, 28oC, 
37oC) were utilized to evaluate the ability of pathogens to synthesize adhesion mechanisms, 
generate biofilm and resist contaminants. At 11oC, the ability to produce amyloids, biofilms and 
survive during antibiotic exposure was low compared to raised temperatures to higher 
temperatures. At 28oC and 37oC, a threshold was reached resulting in synthesis of curli, cellulose 
and extra polymeric substances as well as increased biofilm formation. Pathogens isolated from 
rhizospheric soil and root samples were best able to generate biofilms and adapt to contaminant 
stressors. Resistance profiles were more robust at high temperatures, as 80% of isolates were 
susceptible to most antibiotics 11oC, while 70% of isolates resisted 7 or more antibiotics at 28oC 
and 37oC. Ciprofloxacin, amoxicillin and clavulanic acid, chloramphenicol and ceftazidime 
resulted in 70% susceptibility whereas vancomycin, tetracycline, linezolid and doxycycline were 
resisted by 85% of isolates. Under dynamic growth conditions, Enterococcus faecalis acclimated 
to 1mM-0.05mM of copper and chloramphenicol, however, was inhibited by 0.05-0.0125 mM of 
silver. Further, E. faecalis isolated from high water quality sites were more efficient biofilm 
producers at 28oC under dynamic conditions. This research suggests that although water quality 
influences microbial behavior, temperature and varying plant communities at riparian areas may 
be better parameters to utilize when measuring microbial pathogen retention in the environment.   
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1 
Background & Thesis Objectives 

 
1.1 Opportunistic Organisms 

 
An opportunist is an organism that exploits favorable conditions. These conditions could be a 

change in temperature, food source, environment, and more. Opportunistic pathogens may be of 

fungal, protozoan, viral or bacterial origin (Katano et al., 2014; Parke and Gurian-Sherman, 2001). 

In particular, bacterial genera such as Pseudomonas sp., members of Enterobacteriaceae, such as 

Salmonella sp., and also Enterococcus sp., contain pathogenic species and strains (Stover et al., 

2000; Lebreton et al., 2012). Bacterial opportunistic organisms often are associated with a 

mammalian origin, with particular niche preference inside the human gastrointestinal tract (Zhang 

et al., 2016). Initially acting as colonizers of the gut and intestinal microflora, these groupings of 

microorganisms possess abilities which may be detrimental to human health, with the most 

profound effects showing in the immunocompromised (Gordon, 2008). The ability for adaptation 

in unique environments and utilize these new surroundings enable these opportunists to not only 

survive, but become highly successful in regeneration and persistence. The environmental 
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persistence of opportunistic pathogens is of growing concern, requiring attention and research to 

best determine causes of pathogen retention.  

 Environmental Relevance of Bacterial Pathogens   

The introduction of opportunists into the environment, especially watersheds fed by various types 

of surface water, results in unlimited deposition throughout the water system (Kistemann et al. 

2002). The impacts of anthropogenic activities like agro-industrial and wastewater treatment 

operations generate water runoff that frequently drains into larger water systems (Hooda et al., 

2000). This type of effluent often contains high microbial loads, with indicator organisms, for 

instance coliforms, providing information regarding water contamination due to introduced fecal 

matter (Cook, 1979). Savichtcheva and Okabe (2006) demonstrated how mammalian feces shed 

into the environment through water systems is a signature reason for water pollution and pathogen 

introduction into the environment. 

When organisms originating from mammalian GI tracts are released and introduced into various 

environmental settings, opportunities for persistence and naturalization are presented. Genera of 

bacteria that have had significant levels of environmental introduction and colonization include, 

but are not limited to, fecal coliforms like Escherichia coli, Salmonella spp., and Enterococcus 

spp. (Anderson et al., 2005). In reference to microniches, mammalian digestive systems are ideal 

locations for bacterial colonizers, containing high amounts of nutrients and water, as well as 

providing conditions of consistent temperature and pH (Guarner and Malagelada, 2003).  
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In the environment, microorganisms that originated in a host require areas providing similar 

benefits [resources]. These include temperature, pH, water availability and most importantly, 

sources of energy (Williams et al., 2005; Mawdsley et al., 1995). As mentioned, digestive systems 

in higher organisms can provide desirable conditions, but this can also generate intense 

competition for resources. The competitive nature of microorganisms further advances their ability 

to succeed in changing surrounding environments, allowing for growth and succession of the 

strongest competitors (Weller, 1988). Colonizers belonging to the intestinal microflora not only 

require the resources mentioned previously, but also structures to which they can adhere. This is 

done to establish [colonize] themselves, aiding in exposure to varying biotic and abiotic factors, 

contributing to their efficacy for success (Dimkpa, 2009). The ability to acclimate to the new 

surrounding and establish themselves in a new niche as strong competitors is what may possibly 

lead to environmental persistence, even naturalization (Weller, 1988; DeAngelis et al. 2010). 

Abiotic factors like water, soil and plant root structure, all play key roles in facilitating 

environmental success and establishment of microbes. These three materials are the basis for 

establishing ecosystems and habitats, whether on a macro or micro scale. Types of habitats that 

facilitate growth and persistence of bacteria are wetlands consisting of water, soil, vegetation and 

aquatic plants, fundamental ecological areas (Stanely et al. 2003). Characteristics of freshwater 

wetlands, particularly at riparian zones, include types of vegetation, soil and water. Inhabitants of 

these ecosystems include primary producers and consumers, including microbial grazers 

facilitating essential cycles (nitrogen, sulphur) and fungi aiding in plant growth (Ingham et al. 

1985). 
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1.2 Wetlands 

 Water Quality 

Water quality is an important attribute measuring the degree of pollutants, namely chemical and 

biological, influencing biotic factors and impacting organisms using these waters.. Key 

biogeochemical processes occur in these environments, such as nitrogen, sulfur and phosphorous 

cycles which also can assist in pollutant removal from source waters (Reddy and D’Angelo, 1996). 

High levels of organic matter released into large water systems, for example the Grand River 

watershed, results in higher dissolved organic matter (DOM) and nutrient loading (Kivaisi, 2001). 

The Grand River Conservation Authority measures water quality based on several parameters 

which include dissolved oxygen, pH, conductivity and nutrient levels such as nitrogen and 

phosphorous (GRCA, 2016). Often, eutrophication, or excess amounts of organic nutrients, like 

phosphates and nitrates, may be attributed to both natural and anthropogenic sources such as 

organic decomposition or livestock operations (Jansen et al., 1994; Johnston, 2009). 

 Soil Types 

Soil composition is a very important characteristic of wetlands. Specifically, impacts of soil type 

and plant composition affect microbial community dynamiscs (Berg and Smalla, 2009). There are 

three common forms of soil; clay, sand and silt. Size, porosity, hydrophobicity as well as a net 

negative charge are important characteristics affecting soil-microbe interactions (Gannon et al., 

1991). Gestel and colleagues (1996) showed that loam, a mixture of all three elements, is most 

ideal for retaining microorganisms within the soil. Naturally, this allows bacteria to maximize 



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	15	of	182	

	

surface area and charge ratios, utilizing physiological mechanisms to form attachments within 

biofilm matrices to these soil particles, resulting in immobilization and subsequent environmental 

persistence (Stevik et al., 2004). Bacteria maintain net negative charges due to outer LPS and 

teichoic acid membrane structures resulting from the presence of phosphate (Neuhaus and 

Baddiley, 2003). Gross and colleagues (2013) demonstrated the importance of surface charge in 

adherence, as they engineered a Staphylococcus aureus mutant lacking D-Aalanine synthesis in its 

teichoic acid synthesis, thus resulting in an increased overall negative membrane charge (Neuhaus 

and Baddiley, 2003). This adversely affected the organisms’ ability to generate biofilms and 

adherence to abiotic surfaces, thus signifying the importance of electrostatic forces on attachment. 

Additionally, the production of extracellular polymeric substances (EPS) with net positive, or 

neutral (polar) charges potentially masking negatively charged surfaces, further enables bacterial 

adherence to negatively charged surfaces (Vu et al. 2009). 

Rhizoplane and rhizosphere 

Riparian wetlands are extremely diverse habitats, comprised of trophic levels containing numerous 

primary producers and consumers. Such areas are highly unique ecological environments in that 

they are the first interface between land and water. Particularly, they consist of aquatic (growing 

from riverbed and fully submerged), immersed (breaching the water surface) and terrestrial 

vegetation (Fritioff and Greger, 2010). Freshwater rivers carve through these ecosystems, 

depositing transient materials in the soil retained in the river banks. Within these river banks and 

in shallow waters, vegetation such as grasses, shrubs and trees provide food for consumers above 

and below the soil. Beneath the top soil layer, plants establish intricate root systems. The area 
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directly corresponding to the surface of a root is the rhizoplane, whereas the bulk soil mass 

surrounding the roots is known to be the rhizoplane (Figure. 1). 

Various plant types, whether aquatic or terrestrial, generate oxygen and support many organisms. 

Further, the role of plants in ecosystems as food sources is critical. Their ability to photosynthesize 

and generate their own sources of food from sunlight not only enables them to grow, but to also 

support an extremely diverse grouping of eukaryotic and prokaryotic life. Specifically, plants 

generate varying types of carbohydrate compounds for their own use, as well as food sources for 

microbial and fungal life living in the soil horizons (A and B zones). These associations may result 

in symbiotic relationships with plants, working together as the microorganism offers Nitrogen in 

exchange for sugars (Hodge et al., 2001). 

The area where root surfaces directly contact soil, or the rhizoplane-rhizosphere interface, contains 

root exudate; organic compounds containing carbohydrates for food, in addition to amino acids, 

flavonoids and antimicrobial substances (Hodge et al. 2001). Plant type, in conjunction with water 

quality (ie. nutrient levels, salinity, pollution) influence the prokaryotic functional profiles found 

within soil (Buee et al., 2009). On root surfaces (rhizoplane) and within the root-soil interface 

(rhizosphere), microorganisms generate adhesive substances called biofilms, utilizing specific 

adhesion mechanisms to persist on plant roots and the surrounding soil (Walker et al., 2003). An 

example of this was shown by Walker and colleagues (2003) regarding the plant pathogen 

Pseudomonas aeruginosa, which not only generates biofilms, but penetrates plant roots resulting 

in mortality.   
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Furthermore, the plant root zones and surrounding soil may act as primary locations for water 

filtration (April and Sims, 1990; Saad et al. 2013). Additionally, the deposition and accumulation 

of environmental contaminants such as antibiotics and metals often occurs in the soil and roots in 

these habitats. Often in the environmental setting metal ions such as Cu2+, Fe2+/3+ and K2+, are 

cationic (positively charged). Soil and root surfaces (exudate) are anionic (negatively charged), 

thus the attraction of opposing charges results in ionic binding of these molecules, resulting in 

adherence to root structures and soil particles, sorption and retention, notably seen with Pb, Cu 

and Zn (Yoon et al., 2006).  

 

Figure 1. Rhizoplane and rhizospheric zones.  
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Ecophysiology 

Functional redundancy is a phenomenon found in some environmental ecosystems. Regarding 

microbial ecology, different species can assist in similar processes, such that one or more phyla 

may be comparable (Wohl et al., 2004). In other words, although populations may differ within 

certain types of wetland ecosystems, similar processes will still occur. Further, microbial feedback 

loops exist within these environmental settings allowing for communication throughout the 

population, as seen during quorum sensing during biofilm formation in the rhizoplane-rhizosphere 

interface (Miller and Bassler, 2001).  

High soil nutrient levels due to decomposition of organic matter, in conjunction with soil 

dynamics, play predominate roles in microbial community assemblages (ie. diazotroph 

congregants) (Picerno and Lovell, 2000). Key species of microorganisms are found in these 

communities to help generate essential compounds, such as Nitrobacter and Rhizobium, that aid 

in nitrogen conversion and fixation. However, wetland ecosystems not only harbor microbes native 

to soil and biogeochemical processes, but also serve as a potential sink for deposited opportunistic 

pathogens. Of interest are microorganisms released into the watershed with the ability to adversely 

impact human health, such as Salmonella, Enterococcus, Escherichia coli and Pseudomonas spp.  

An important indicator of water quality is the measurement of fecal abundance, evaluating total 

coliform levels, enabling microbial source tracking (Cohen and Shuval, 1972; McQuaig et al., 

2012). At poor water quality wetlands for example, coliforms would be expected in higher loads 

than at high qulity areas. As enteric pathogens are associated with fecal-polluted water, they travel 

in the water system following stream flow dynamics. An example of this can be seen within the 
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Grand River watershed, with high quality reference sites located at the headwaters with decreasing 

quality as the water flows southward (downstream) in this alluvial system (Jamieson et al., 2004), 

which results in increased pathogen carriage and deposition as the water flows downstream. 

1.3 Biofilms  

Biofilms are complex structures facilitating environmental persistence as well as acting as critical 

structures in disease utilized by infectious microorganisms (Hall-Stoodley et al., 2004). Conditions 

such as oxygen and nutrient levels are key factors influencing microbial species present in 

environmental biofilm structures, contributing to complexity and size (Hall-Stoodley et al., 2004). 

As environmental settings and conditions widely vary, the structure of microbial biofilms are 

reflective of their surroundings, providing an intricate, networked system facilitating 

communication, antibiotic resistance, but most of all, survival and persistence (Hall-Stoodley et 

al., 2004).  

Functions 

As stated, biofilms assist in persistence due to adhesion to various objects, biotic and abiotic. For 

successful growth and maturation of the biofilm, chemical signals are required to facilitate 

communication. For example, acyl homoserine lactone synthase (AHL) is a necessary signaling 

molecule in pathogenic bacteria such as Vibrio sp., Salmonella sp. and Enterococcus facilitating 

determination of population densities (Schaefer et al., 1996). Within the environment, further 

research has shown that some plants have the ability to exude substances mimicking AHL, 

resulting in adherence and population growth on plant roots (Teplitski et al., 2000). 
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Structure 

Although biofilm function remains constant, providing channels for chemical signal and nutrient 

delivery, the physical structure is shaped by abiotic factors such as water flow and wind (Klausen 

et al., 2003; Stoodley, 1999). Further, nutrient levels and environmental responses influence the 

structure and integrity of the biofilm, promoting conditions which only prokaryotic planktonic 

organisms may adapt to (Sauer et al., 2002; Klausen et al., 2003). Identification and study of 

biofilms shows how intimate form and function truly are, exposing diverse delivery channels 

within, allowing for nutrient and waste exchange (deBeer et al., 1994). deBeer and associates 

(1994) showed that biofilms consisted of tunnel-like structures that facilitated nutrient flow, while 

also identifying microbial biofilm motility capabilities.  

Growth, adhesion and dispersal 

Biofilm generation occurs over multiple stages, progressively becoming larger (surface area), more 

dense and specialized (O’Toole et al., 2000). Specific physiological mechanisms aid in attachment, 

primarily consisting of curli fibers which aggregate together and form amyloid structures (Zhou et 

al., 2013). In addition, cellulose and fimbriae are alternate adhesion mechanisms facilitating 

biofilm initiation. A study by Saldaña and colleagues (2009) demonstrated that fimbriae used to 

adhere to surfaces in enterohemorrhagic E. coli required expression of csgA (curli) and bcsA 

(cellulose), co-activated by the csgD domain. Further, it was shown that the c-di-GMP complex 

within some microorganisms such as Gluconobacter and Salmonella is regulated by the GGDEF 

and EAL domains, requiring activity for biofilm formation, which may serve as a key target site 

for therapeutic interventions of associated diseases (Römling et al., 2005). Further, microbial 
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biofilms have the ability to detach from surfaces moving to more ideal, opportune environments 

(Figure. 2). Biofilms have been shown to detach and move in the water, slowly moving across 

surfaces, or utilize twitching motility to move and re-colonize (Hall-Stoodley and Stoodley, 2005). 

 

Figure 2. Biofilm dispersion methods exhibited by various pathogenic microorganisms, as 

described by Hall-Stoodley and Stoodley (2005). 

1.4 Human pathogens and environmental naturalization 

Water sources can become contaminated with infectious microorganisms. Notable enteric bacteria 

originating from mammalian hosts are Salmonella, Enterococcus, and E. coli. When feces are 

released or manure is washed into surface waters, they are transported and deposited in various 
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locations in the water system (Jamieson et al., 2002). Salmonella is the causative agent of 

samonellosis and typhoid fever, with numerous serotypes collectively affecting millions annually 

(Wang et al., 2013). Enterococci are notable microorganisms that are a major contributor to urinary 

tract infections, endocarditis, and sepsis. Currently, vancomycin-resistant Enterococci (VRE), are 

becoming more common due to lack of susceptibility to vancomycin, making these infections, 

which can be waterborne, very difficult to eradicate (Roberts, 2016).  

E. coli is a common opportunistic pathogen which can cause many adverse effects. Originating 

from the mammalian digestive tract, it has the potential when taken in from food and water to 

cause conditions that range from UTI’s to hemorrhagic gastroenteritis (Griffin and Tauxe, 1991). 

E. coli is associated with water contamination and fecal coliforms due to agricultural runoff, and 

has increasingly become persistent, almost naturalized, in the environment following retention 

(Ksoll et al., 2007). Lastly, Pseudomonas is an opportunistic pathogen that may cause nosocomial 

infections in hospital patients, specifically burn victims or those with open wounds (Schaeburg et 

al. 1991; Hota et al., 2009). Pseudomonads are indigenous to the environment and notable biofilm 

formers, allowing them to more readily persist or acclimate to new environments (Tymensen et 

al., 2015). Further, infections in burn victims or patients with Cystic Fibrosis are in part due to 

environmental contamination of hospitals and surgical tools (Lyczak et al., 2000; Oliver et al., 

2000). 

1.5 Antibiotics 

Antibiotics are chemically synthesized compounds used for therapeutic intervention. Frequently 

known as antibacterial or antimicrobials, they are used to reduce, prevent or eradicate diseases 
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attributed to microorganisms (Cars et al.,2001). There are two groupings of antibiotics depending 

on the desired outcome; bacteriostatic or bactericidal. Bacteriostatic antibiotics are used to reduce 

replication of organisms causing infection, however, the desired outcomes are reversible when the 

drugs are absent (Cioffi et al., 2005). Conversely, bactericidal drugs were designed with the 

purpose to kill all bacterial cells- a non-reversible effect (Morones et al., 2005).  

First discovered by Alexander Fleming in 1928, Pencillin was the product of molds growing and 

secreting compounds observed to have inhibitory effects on nearby microorganisms. Not only was 

this revolutionary for the pharmaceutical industry for novel findings and future production, this 

shed light on a key event; prokaryotes generate and secrete antibiotics as survival adaptations in 

the environment. The family of Actinomycetes, particularly the genus Streptomyces sp., has been 

found to synthesize over half of the antibiotic compounds utilized by the pharmaceutical industry 

(Walsh, 2003). Using these as a basis for further development, various classes of drugs have been 

designed to invoke specific responses and effects on microbes. Table 1 describes various drug 

types as well as their bacteriostatic or bactericidal effects, in addition to the specific action they 

have on bacterial cells.  

It was identified that at specific life stages (stationary phase), antibiotic-producing microorganisms 

were releasing higher levels of antimicrobial compounds (Gramajo et al., 1993). This represents a 

survival adaptation allowing for environmental success, enabling these organisms to outcompete 

other microbes in the same communities (Burgess et al., 1999). On the other hand, this adaptation 

has potentially facilitated increasing environmental resistance to drugs, as selective adaptations 



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	24	of	182	

	

and chromosomal mutations are often going to occur in response to stress (Baker-Austin et al., 

2006).  

Classes and modes of action 

There are many types of antibiotic drug classes, however, my research focuses on a representatives 

of frequently prescribed drug classes (Table 2.5). With such a diverse family of pharmaceuticals, 

bacterial populations are managed by either direct killing, or limiting replication. The best known 

are antibiotics derived from B-lactams, such as Penicillin. This drug class contains beta lactam 

rings and act to result in a bactericidal effect on microbes in inhibition of peptidoglycan synthesis 

necessary for cell wall generation.  

Other bactericidal drug classes commonly prescribed are Aminoglycosides and Quinolones. The 

former consists of specific amino sugars that facilitate protein synthesis inhibition in Gram-

negative microorganisms via irreversible binding of ribosomal subunits (Hoffman et al., 2005). 

Notable prescribed aminoglycosides are Streptomycin and kanamycin. Fused aromatic rings that 

have attached carboxylic acid functional groups signify Quinolones. By inhibiting the function of 

topoisomerase and DNA gyrase, this drug class amplifies DNA supercoiling, resulting in DNA 

fragmentation (Ding et al. 2016)..  

Common bacteriostatic intervention includes Tetracyclines, Amphenicols and Macrolides. The 

first of these three contain a core hydrocarbon ringed structure (multiple benzene rings), targeting 

protein synthesis (Joseph et al., 2016).. Macrolides and Amphenicols also inhibit ribosomal 
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function, affecting protein synthesis, transpeptidation and incomplete peptide synthesis (Mingoia 

et al., 2015).  

Over recent decades, an antibiotic resistance crisis has occurred. Antimicrobial drugs which once 

were highly effective against all bacterial classes are now becoming ineffective. Bacterial 

resistance is largely attributed to three specific types of resistance mechanisms. Firstly, efflux 

pumps are utilized by pathogenic microorganisms to actively prevent therapeutic drugs 

[antibiotics] from accumulating within the cytoplasm. Often these are H+ or ATPase driven 

mechanisms, with domains embedded in the inner membrane that initially bind based on charged 

attractions, and pump outwards through the outer membrane (Levy, 2002). Secondly, replacement 

or modification of a target active site within the microbe may occur. This can occur either by a 

gene mutation or an imported gene, resulting in replacement enzymes (Leclercq and Courvalin, 

1991). An example of this is observed in Stapylococcus aureus, which produces mecRI fragments 

to cleave and repress methicillin. Lastly, similar to target modification, opportunists have the 

ability to produce degrading enzymes specific to antibiotics (Wright, 2005).  

Table 1. Antibiotic classes, modes of action, effects and their general uses.   

Antibiotic Class Mode of 
Action 

Effect Examples Uses 

Beta-Lactams Inhibit cell 
wall synthesis 

Bactericidal Amoxicillin and 
Clavulanic Acid, 
Ampicillin 

Gram + 



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	26	of	182	

	

Tetracyclines Blocks 
protein 
synthesis 

Bacteriostatic Tetracycline Cholera, 
Yersinia 

Quinolones and 
Fluoroquinolones 

Inhibits cell 
wall synthesis 

Bactericidal 

Bacteriostatic 

Ciprofloxacin Clostridium, 
Streptococcus 

Aminoglycosides Inhibit 
protein 
synthesis 

Bactericidal Gentamycin Gram - 

Macrolides Inhibits 
protein 
synthesis 

Bactericidal 

Bacteriostatic 

Erythromycin Gram +, - 

Cephalosporins Disrupt 
peptidoglycan 
formation 

Bactericidal Ceftazidime, 
Cefazolin 

Gram +, - 

Sulfonamides Inhibit folate 
synthesis 

Bacteriostatic  Sulfadiazine, 
Bactrim 

Gram +, - 

 

1.6 Antibiotic resistance 

Resistance to antibiotics has been trending upwards in the past few decades. Due to the consistent 

use of antibiotic pharmaceuticals, as well as the lack of designed and synthesized alternatives, 

there is decreasing susceptibility to many opportunistic bacterial pathogens (Packey and Sartor, 

2010). Specifically, microorganisms causing nosocomial infections in hospitals are showing 

higher resistance profiles recently (Hollenbeck and Rice, 2012). This emerging phenomenon is 

due to acquired and naturally occurring resistance mechanisms present in various bacterial species. 

Resistance genes are responsible for these unique mechanisms, of which the ability to horizontally 
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pass this genetic information amongst other bacteria, such as within an established biofilm, further 

influences widespread resistance (Allen et al., 2010). 

Natural and acquired resistance 

As mentioned, antibiotic resistance has been a multi-decade problem continually on the rise. 

Naturally acquired resistance includes genetic traits which innately are located on bacterial 

plasmids, conferring resistance as replication occurs. Acquired resistance is the event by which a 

microorganism has inherited a resistance gene from a source alternative to their plasmid, possibly 

through environmental DNA, or horizontal gene transfer (HGT) using pilus-mediated exchange 

with other bacteria. Multiple modes of exposure can result in this trend of resistance, whether as a 

naturally innate process due to chromosomal mutations or frequent exposure to high 

concentrations of antibiotics (Martinez, 2012). Additionally, previously discussed mechanisms, 

for instance, HGT, and early exposure in a bacterial lifecycle to organisms naturally synthesizing 

antimicrobials, specifically Streptomyces, may have environmental implications on acquired 

resistance profiles (Sizova et al., 2001).  

Antibiotic producing bacteria are equipped with the machinery necessary to both synthesize and 

degrade antibiotics (Canton, 2009). Further, adapted and specialized intrinsic systems to combat 

antibiotics (target site modification, enzyme degradation) have influenced resistance. Microbial 

communication is vital for exchange of genetic information and chemical cues signaling stress. 

Complex microbial communities form biofilms made up of varying genera of bacteria. Each may 

possess a gene conferring resistance to a particular antibiotic (or antibiotic producer), and can 

exchange this information within the biofilm (Allen et al., 2010). Quorum sensing and multi-
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component regulatory pathways, for instance biofilm production initiation in Pseudomonas 

fluorescens (ClpP protein synthesis pathway) have helped microbial species engineer self-

protective mechanisms, likely due to increasing selective pressures (O’Toole and Colter, 1998). 

At the biofilm-external environment interface, eDNA has been shown to deposit and play a very 

key role as a biofilm component. The significance of eDNA, or extracellular DNA, deposition is 

that this may also provide further opportunities for genetic exchange and increased resistance as 

found by Riesenfeld and colleagues (2010).  

1.7 Fundamental elements for microbial growth 

There are approximately 100 bioessential elements in the periodic table, containing both macro 

and micro nutrients when discussing bacteria. The elements C, N, S, O in particular are crucial for 

the development of nucleotides, amino acids and protein synthesis, as well as facilitating the 

structural integrity of the cell wall, particularly teichoic acid and peptidoglycan synthesis (Atilano 

et al., 2010). Macronutrients are elements which are required in very large quantities for general 

growth, replication and duties various species of bacteria carry out (Berg, 2010). Micronutrients 

involve elements which are needed in very minimal amounts, as excess would be detrimental. 

In particular, earth metals and rare earth elements are groupings of naturally occurring substances 

which strongly impact bacterial growth (Brantley et al., 2001). Frequently known as trace metals, 

and can be toxic not only to bacteria, but also higher organisms that may see increased levels. Na, 

Ca2+, Mg2+, Mn2+, Zn2+ and Fe2+/3+ are examples of soft earth metals which can be utilized by 

bacteria for structural support, redox catalysts and Lewis Acids, as described by Brantley, 
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Liermann and Bau (2001). The high affinity for metal binding, particularly Fe2+/3+, Cu2+/3+, and 

Zn2+, results in increased catalytic activity at various binding sites and translocation complexes 

(Hughes and Poole, 1989; Atilano et al., 2010).  

Ca2+ plays a strong role in Gram-negative bacterial cell wall synthesis by selectively binding and 

forming cross-linked membranes (Hughes and Poole, 1989). The geometry and charge of a metal 

is critical for binding or entering the bacterial cell, with elements such as Zn2+ that are flexible, 

more readily utilized (McHale and McHale, 1994; Bachi, 2014). Alkali and alkaline earth metals 

serve many important purposes and can be thought as macronutrients. Also, electron availability 

for metals found in the first two periods are s orbital elements, thus weaker binding affinity and 

electronegativity when compared to transition metals. 

 Transition metals and rare earth elements have much stronger binding affinities due to their 

increased electronegativity, ionization energy and smaller atomic radii. These attributes make d 

orbital elements much stronger binders to organic molecules and bacterial cells [Ligand Field 

Theory] (Gerloch et al., 1981; Brantley et al., 2001), possibly outcompeting binding of alkali and 

alkaline earth metals.  

Additionally, transition metals in the 3d block are thought to be the most important, however, those 

in the 4th and 5th rows of the periodic table are most toxic (Wackett et al., 2004). Mercury, Tin and 

even Aluminum (2p) have all been proven toxic to microorganisms in low concentrations, likely 

do to their soft, malleable properties, allowing them to be good organic binders (DeSilve et al., 

2002).  
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1.8 Ligand Binding  

Binding at essential sites, such as protein generation or nucleic acid conformation sites, can result 

in unwanted oxidative phosphorylation, membrane permeability and other mutagenic effects 

(Hughes and Poole, 1989). Metals play very crucial roles in the life cycle of microbes. Ca and Na 

are important activators of calmodulin, enabling flagellar activity in response to photo or 

chemotaxis (Vyas et al., 1989). Zn and Cu have been shown to provide structural roles, such as 

generating heat-stable bridges and promote conformational changes of enzyme and active site 

complexes (Forest et al., 2000). Zn2+, Mg2+, Ni2+/3+ and Fe2+/3+ aid in generating Lewis acids, 

enhancing the ability of acid phosphatases and push forward hydrolysis reactions (Corma and 

Garcia, 2002).  

Lastly, Fe and Cu aid in redox catalyst activity, particularly involving enzymes needed for electron 

transport in cytochromes, Fe-S protein function and Cu electron transfer proteins (Wasser et al., 

2002). Wasser and associates also showed that Fe and Cu are critical for the function of various 

enzyme classes, most notably oxygenases, oxidases and hydrogenases. These metals have been 

shown to decrease inner and outer sphere structural reorganization during oxidation-reduction 

reactions, and also (re)organize electron carriers (Sigfridsson et al., 2001).  

Geometry, electron binding capability and pH are three of the most important attributes for metal 

transport and binding. Further, the presence of various essential elements N and S, favoring 

binding to transition metals (Hughes and Poole, 1989), with molecule size (atomic radius) affecting 

electron donation. With regard to transition metals, the strength of the Lewis acid will dictate 

binding selectivity of the bacteria (Corma and Garcia, 2002). For example, if Cu is present and in 
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excess, frequent ligand binding would almost always be expected, due to analytical masking 

[precipitation or complexation with proteins] (Hughes and Poole, 1991).  

1.9 Metal uptake, transport and removal mechanisms 

Bacterial cells are remarkable in their abilities to acquire and transport necessary molecules to 

sustain growth and function. Gram-negative bacteria have an outer membrane with porins, non-

hydrophilic pores which are specially designed to allow metal ions to enter and pass through 

(Thurman et al., 2009). Not only do these channels facilitate metal take up, but capsular and slime 

layer formation are also crucial for metallic binding (Chen et al., 1995). This is likely due to the 

net negative charge exposed on the surfaces of both Gram classes of microorganisms, attracting 

the positively charged cations, resulting in alternative metal binding (Beveridge and Fyfe, 1985).   

Primary translocation of metals can be achieved using aqueous channels or the lipid phase of 

bacterial membranes, dependent on the proton motive force function (Nies and Silver, 1995). 

Secondary transport of metals includes types of electron transport chains and terminal electron 

acceptors in aerobic and anaerobic microorganisms, ATP hydrolysis and also photosynthetic 

electron transport (Hughes and Poole, 1989). Ionophores, ion-selective channels embedded in the 

bacterial membrane, further obliges metal transport. One of the best studied metal acquisition and 

transport systems are those of siderophores, chelating Fe ions with high affinity. These 

siderophores are specialized ligands in microorganisms that facilitate iron acquisition and 

utilization, however, are absent in strict anaerobes, Lactobacilli and Legionella sp. (Pandey et al., 

1994; Hughes and Poole, 1989). Conversely, other genera of microbes possess varying siderophore 

structures, and can be seen in Mycobacterium, utilizing mycobactin [exochelin], and similarly, 
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enterobactin [enterochelin] found in the family of Enterobacteriaceae. Studies have also shown 

that along with Fe2+, Cu2+/3+ may be taken up by these secreted siderophores, as found by Koh and 

Henderson (2015), when showing that uropathogenic E. coli produced yersiniabactin capable of 

binding exogenous ferric and cupric ions. Additionally, other strains of E. coli possess citrate 

hydroxamate, whereas, other enteric microbes have cyclic tricatecholates facilitating ion take up 

(Powell et al., 1983; Hughes and Poole, 1989). 

2.0 Contaminant Effects on Biofilms Antibiotics 

Biofilm structures are critical for microbial establishment and success. Acting as reservoirs for 

microbial life, facilitating communication and function between varying species is key for 

colonizing vertebrate and plant hosts. Antibiotic production from plants via root exudate, as well 

as naturally produced antimicrobial compounds (Streptomycetes spp.) contribute to reduced, 

disrupted or lack of biofilm growth (Hajipour et al., 2012). Certain classes of antibiotics, namely 

B-Lactams and Quinolones, affect the ability for cell wall synthesis. Additionally, macrolides and 

sulfonamides reduce the ability to generate proteins necessary for biofilm formation and protein 

synthesis. 

Mah and O’Toole (2001) characterized the differences in genetic expression between planktonic 

and biofilm-bound cells. They showed that microorganisms contained within the biofilm had 

higher tolerance to antibiotics, likely associated with the rpoS-mediated stress response regulation 

system, invoking biocide resistance. Biofilms act as not only a virulence factor, but also a 

protective layer or shield against antimicrobials. Porous channels and molecule delivery systems 

within the biofilm allow for incorporation of antibiotics and transport to more sensitive areas (ie. 
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inner portions) of the biofilm, causing more direct attacks and reduction in biofilm formation 

(Schafer et al., 1996) 

Metals 

Although metals are essential to microbial life, whether required in high amounts such as Fe2+/3+ 

or in trace levels as with Cu, they can be detrimental to microbial function. Rare earth elements 

such as Ag2+ and Au3+ have proven to be detrimental to microbial biofilm growth. Specifically, 

nanoparticles have been utilized as inorganic disinfectants targeted to disrupt biofilm formation 

and invoke toxic effects on organisms such as humans (Hajipour et al., 2012). Hajipour (2012) 

and colleagues demonstrated that metal oxide nanoparticle toxicity inhibits varying Gram glasses.  

Gram-negative microbes like E. coli are much more susceptible to copper oxides than Gram- 

positive bacteria like Staphylococcus aureus or Bacillus subtilis, by protein function (Yazdankhah 

et al., 2014). 

Further, it has been shown that in freshwater microbial communities, varying copper 

concentrations (0, 1, 3, 10 µm) induced changes in heterotrophic metabolism and microbial 

physiology using Biolog™ plates (Massieux et al., 2004). Additionally, as heavy metals and toxic 

levels of trace elements negatively impacts assembled biofilm structures, excess Cd2+, Cu2+, Pb2+, 

Zn2+, Al2+, and Cr2+ increased microbial EPS production as well as increased corrosion rates of 

metals (Fang et al., 2002). 

1.9 Antibiotic and Metal Combinations 
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Na+ and K+ have been shown to selectively bind valinomycin, an environmentally produced 

antibiotic by Streptomyces sp., allowing for selective transport and uptake across bacterial cell 

membranes (Rose and Henkens, 1974). Selective channels like ionophores within the bacterial 

membrane can act as antibiotic delivery systems within the environment (Sun et al., 2016). 

Similarly, siderophore complexes generated by both Gram classes of bacteria facilitate not only 

iron acquisition, but also copper and other metals (Balasubramanian et al., 2011).  

Thus, competition for iron and other essential trace elements requires mechanisms more efficient 

than transferrin (vertebrates) to obtain Iron (Skaar, 2010). Although nutrients are limited, microbial 

pathogens are specialized and highly efficient scavengers. This is notable during host infection, 

increasing local body temperature and siderophore activity, improving iron uptake. In the 

[ecological] environmental setting, iron availability is a critical factor in ecosystem composition 

and stability (Tagliavini and Rombola, 2001). At low levels of iron, microorganisms have shown 

to generate antibiotic-like compounds that are structurally similar to siderophores, antagonizing 

competitors and giving them a mechanistic advantage for acquiring iron (Penyalver et al., 2001). 

Correspondingly, iron antibiotics have been synthesized due to the efficient uptake systems made 

by bacteria, as albomycin and ferrimycin are transported through Fe channels (Braun and Braun, 

2002). 

The importance of having an understanding of charged ions is critical to assessing synergism 

between metals and antibiotic metabolites in the environment. Further research is required to better 

elucidate how metal uptake may correlate with antibiotic efficacy. Knowing siderophore and other 

ion transport mechanisms, in addition to charged attractions of molecules regarding biofilms, 
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antibiotics and metals, novel findings will ensue. Environmentally, the deposition of contaminants 

in wetlands within the rhizosphere not only affect microbial communities and retained 

opportunistic pathogens, but may change their functional profiles. Specifically, the effects of 

constant contaminant exposure on persisting pathogens likely facilitates changes in metal and 

antibiotic resistance profiles.  

Research Need 

Much remains to be learned regarding pathogen fate in an environmental setting following 

deposition. The ability and extent of harmful microorganisms to be retained in areas such as 

watershed wetlands is still largely unknown. Specifically, pathogen-rhizosphere interactions 

facilitating environmental persistence requires more focus. For example, biofilm formation in 

these organisms when exposed to environmental conditions is less well understood. In particular, 

the biofilm-forming capability of pathogenic microorganisms, which may facilitate environmental 

retention, requires further investigation. In addition, the enhanced synergistic effect contaminants 

occurring in watersheds may have on these pathogens and their ability to be retained through 

biofilm formation requires better understanding. Elucidating biofilm-rhizosphere interactions 

along with pathogens exposed to water contaminants, such as antibiotics, and metals will provide 

invaluable information regarding the ability of microbes with pathogenic potential to persist within 

conditions presented in environmental retention areas.  

Hypothesis 
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Based on current research, pathogens expressing genes responsible for enhanced biofilm 

production, which may lead to rhizosphere persistence, are expected. Increased biofilm-forming 

potential should be expressed by these pathogens, which will influence contaminant resistance 

profiles. Specifically, in the presence of waterborne contaminants such as antibiotics, enhanced 

biofilm production is also expected. A synergistic response between antibiotics and other 

contaminants is possible, influencing biofilm formation. Changes in pathogen behavior  will occur 

as adaptation to new roles in these environmental microbial communities is expected. This will 

lead to enhanced functions, such as increased biofilm formation and contaminant resistance. Rich 

amounts of nutrients released from the plant roots may enhance conditions within the rhizosphere 

that will contribute to environmental persistence and enhanced resistance profiles. The overarching 

hypothesis for this research paper is that enhanced biofilm production resulting from 

environmental pressures will enable opportunistic pathogens, such as Salmonella spp., 

Enterococcus spp., and E. coli to be retained in the rhizosphere of watershed wetlands. 

Objectives 

1) Isolate opportunistic pathogens from rhizoplane, rhizosphere and water samples of riparian 

wetlands. 

2) Evaluate the ability of these isolated microorganisms to respond to adverse conditions 

caused by contaminant stress, including antibiotics and metals. 

3) Quantify the amount of contaminant-resisting opportunistic pathogens from each sampling 

area and determine how water quality may influence resistance profiles. 
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4) Determine the ability of isolated opportunistic pathogens to produce adhesion mechanisms 

and biofilm to assess impacts of water quality on these capabilities  
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2 
Methods 

Experimental Approach 

The integrative nature of this project can be seen to some extent in the experimental approach 

(Figure 2.1.). A series of culture-based and molecular-based methods were used to assess antibiotic 

effects and biofilm formation in changing environments (ie. temperatures) as well as both static 

and dynamic conditions. Biofilm formation was studied on an organismal level, and considered at 

a cellular level.    
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Figure 2.1. Schematic representation of experimental approach. This diagram details the 
specific processes used to test a linkage between biofilm formation and the stressors that 
mimic host and/or non-host environments. 
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Field Sites and Isolation Parameters 

In order to better understand patterns of biofilm formation and bacterial expression of biofilm 

components, it is important to have samples from a variety of different locations. Salmonella spp., 

E. coli, and Enterococcus spp. samples were each isolated from locations of high, medium and 

low water quality at freshwater locations (Table 2.1). The isolates from low quality sites were 

expected to have recently been in a host environment and more tolerant to contaminant-induced 

stress (Mbuthia et al., 2013; Wang et al., 2014). The sampling locations were subsequently divided 

into rhizosphere, rhizoplane and water locations (Table 2.1). The different sites were chosen in 

order to compare the biofilm-forming capabilities and resistance profiles of bacteria isolated from 

different zones and environmental conditions. Locations of isolation are described below, and 

specific methods of Escherichia coli, Enterococcus spp. and Salmonella spp. isolation are outlined 

in Sections 2.3 and 2.4. 

All riparian wetland samples were obtained from sites located in the Grand River watershed. The 

river, with head waters beginning in Dufferin, ON and draining into Lake Erie at Port Maitland, is 

an expansive system extending over 300 km. Throughout the watershed, much effluent is brought 

into the river via surface runoff from agriculture (livestock), as well as hospital waste, and 

municipal waste water discharge. All isolates of E. coli, Salmonella spp., and Enterococcus spp. 

were obtained at areas along the river. High water quality sites such as Shand Dam and West 

Montrose were determined to be minimally impacted by anthropogenic influence, and determined 

to be the most pristine as dictated by lowest amounts of introduced discharge. Canagagigue, 

Conestogo and Bridge and Lancaster sites were intermediate (medium) water quality, having 
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effluent from hospital and treated municipal waste water discharge, as well as surface agricultural 

runoff, influencing water conditions. Lastly, Rare and Doon sites were considered the poorest 

(low) water quality areas, being the most heavily impacted by anthropogenic-source effluent 

discharge into Grand River surface waters. These sampling locations were determined based on 

nutrient levels as measured by the Grand River Conservation Authority. Areas exceeding 

designated criteria values for N and P were considered low water quality, and conversely low 

values of N and P considered high water quality.  
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Table 2.1. Locations of E. coli, Enterococcus spp. and Salmonella spp. isolation, water quality 
and human impacts.  

Site Name Water Quality Isolates Anthropogenic Impact 

Enterococcus 
spp. 

Salmonella 
spp. 

E. coli 

Shand Dam High 9 1 1 Wastewater treatment facilities 

West Montrose High 6 5 1 Wastewater treatment facilities 

Canagagigue 
Creek 

Intermediate 0 3 0 Agriculture and livestock 

operations 

Conestogo Intermediate 0 3 0 Agriculture and livestock 

operations 

Bridge and 
Lancaster 

Intermediate 13 2 1 Wastewater treatment facilities  

Doon Poor 12 3 1 Wastewater treatment, 

agriculture, livestock 

Rare Poor 0 0 1 Wastewater treatment, 

agriculture, livestock 
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Table 2.2. List of organisms isolated from rhizoplane, rhizosphere and water analytes. 

Sampling Zone Microorganism 

Enterococcus spp. Salmonella spp. E. coli 

Rhizospheric soil 23 5 1 

Rhizoplane 13 3 3 

Water 6 7 2 

Total 42 15 6 

 

Control Organisms: 

In addition to the environmental isolates, Salmonella enterica, E.coli, and Enterococcus faecalis 

lab strains (Cassandra Helt, Janice Thomas) were  used as biological controls for assessing the 

presence of biofilm components. As well, each organism’s DNA was used for positive controls 

when carrying out PCR on environmental isolates. These controls were obtained from the Wilfrid 

Laurier Teaching Lab (Emily McConnel) and also the American Type Culture Collection 

(Virginia, USA).  

As described by Tutulan (Unpublished, 2015) and Römling (2003), engineered strains of 

Salmonella enterica were used for adhesion mechanism analysis. A wild-type strain, UMR1, 

expressed both curli fimbriae and cellulose. The three remaining controls utilized were MAE14, 

MAE299, and MAE755. These engineered strains were all mutants, expressing only curli fimbriae 

(MAE299), only cellulose (MAE14) or neither (MAE755). 

General Growth Conditions 
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Note: All media recipes are included in Appendix A. Media was prepared as described on 

manufacturer’s bottle. 

E. coli, Enterococcus spp., and Salmonella spp. strains were routinely maintained in Luria-Bertani 

broth (Fisher Scientific, Markham, ON) and LB agar at 35±2°C. The isolates were grown at 

temperatures of 11°C, 28°C and 37°C when testing for biofilm formation and expression of biofilm 

components. These temperatures were chosen to represent both environmental and host 

environments and to assess optimal expression of biofilm components.  A temperature of 11°C is 

often encountered in the environment during cooler seasons, 37°C is a mammalian host 

temperature and 28°C is the optimal temperature for expression of curli fimbriae and cellulose for 

the S. enterica controls and may be at the higher end of environmental temperatures (Römling et 

al., 2003). Antibiotic exposure assays utilized the same temperatures. The duration at each 

condition varied, as incubation at 11oC ranged from 72-96 h, 28-36 h at 28oC and 18-24 h at 37oC. 

Salmonella spp. Isolation 

Salmonella spp. were collected from the environment using a swab collection technique as 

specified by Standard Methods (APHA, 2005). A swab was constructed using sterilized 

cheesecloth, and placed under water using a pig-tailed spike. After 3 d, the swab was collected 

along with approximately 100 mL of water. Processing of the samples began the same day of 

collection. The Salmonella spp. isolation protocol used is similar to the procedure described by 

McEgan and colleagues (2014), as well as Cassandra Helt (Wilfrid Laurier, 2014). All media used 

for the isolation of Salmonella spp. was purchased from BD DifcoTM Missisauga, ON. Upon arrival 

to the lab, 90 mL of the samples were inoculated in 10 mL of 10x buffered peptone water (BPW), 
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which allows for non-selective recovery of Salmonella spp. by acting as a buffer and providing a 

nutrient rich environment (BDTM, 2015). The flasks were then placed incubator-shaker (Fisher 

Scientific, Whitby, Canada) at 37°C for 24 h at 140 rpm (Helt, 2014). Root and soil samples were 

taken from each site using a Hori all-in-one knife and placed in a sterile Whirlpak™ bags. Samples 

were weighed into 5g samples and mixed with 100 mL of BPW, sonicated for 60 s and then filtered 

through 0.45 µm, 47 mm mixed cellulose filters (Difco, Fisher Scientific; Ottawa, Canada). 

Following the recovery period, samples underwent selective enrichment using Tetrathionate Broth 

(TB) with 2% (v/v) iodine solution. The media promotes Salmonella spp. growth because of their 

ability to reduce tetrathionate, while the iodine and oxgall in the medium prevents the growth of 

coliforms (BDTMb, 2015). From the BPW sample solution, 1 mL was inoculated into 9 mL of the 

TB with 2% (v/v) iodine. As a negative control, 1mL of E. coli BL21 grown in LB broth was 

inoculated into the TB media, and S. enteritidis grown in LB was inoculated as a positive control. 

These controls were carried out throughout the rest of the isolation process. The isolation step was 

performed in duplicate, and samples were incubated in a New Brunswick incubator for 24 h at 

37oC. 

The next selective enrichment medium was Modified Semisolid Rappaport-Vassiliadis (MSRV). 

This media is for the detection of motile Salmonella spp., to distinguish this organism from the 

closely related, non-motile Shigella (BDTM, 2015). From the TB- Sample mix, 100 µL was 

inoculated into the center of the MSRV plate, in triplicate, and incubated with the agar-side facing 

up at 44 ± 2°C for 24 h. If samples were motile, they would leave a halo of growth around the 

point of inoculation. 
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The third selective enrichment medium used was MacConkey (MAC) agar. This medium allows 

for the differentiation between lactose fermenters and non-lactose fermenting organisms, such as 

Salmonella spp. (BDTM, 2015). On this agar, Salmonella spp. is expected to appear as colorless 

colonies, while lactose fermenters, such as E. coli, would appear pink. Using a small micropipette 

tip, about 2 µL of culture were picked up from the most outer edge of the halo on MSRV. The 

culture was then transferred to MAC, in duplicate, and quadrant streaked using a flame-sterilized 

loop, and incubated at 37°C for 24 h. 

 

Biochemical Testing 

Following the selective enrichment procedures, three biochemical tests were performed in parallel 

in order to determine which environmental isolates were presumptive Salmonella spp. isolates 

(isolates yielding characteristics of Salmonella spp.). The three biochemical tests were carried out 

using Triple Sugar Iron (TSI), Lysine Iron Agar (LIA) and Urea broth. All three were inoculated 

using a single colony picked from MAC. The TSI agar was inoculated using a stab and streak 

method, and a positive Salmonella spp. result was determined by the formation of blackening of 

media (H2S precipitation), gas production and dextrose fermentation (discoloration of media). LIA 

was inoculated using the double stab and streak method. Salmonella spp. also produces H2S in this 

medium due to reducing ferrous sulfate (blackening of media). Finally, isolates were inoculated 

into Urea broth. Salmonella spp. does not contain the urease enzyme, therefore, a negative Urea 

broth test result is considered positive for Salmonella spp.. A positive Salmonella spp. control was 

used for each test, and a negative control made using Klebsiella pneumoniae. All inoculated tests 
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were incubated for 48 h at 37°C. A positive result for Salmonella spp. in urea broth is a no-change 

reaction, which is where the broth does not undergo color change, as the urease enzyme is not 

present in Salmonella species. 

PCR Colony Confirmation 

The presumptive Salmonella spp. isolates were confirmed using colony PCR. The primers used 

for Salmonella spp. confirmation are genus specific primers of the invA invasion protein Sal-F 

5´CGTTTCCTGCGGTACTGTTAATT 3´ and Sal-R 5´AGACGGCTGGTACTGATCGATAA 

3´ (Shannon et al., 2007).  DNA was isolated using Qiagen TM Soil DNA isolation kits, using 

provided Qiagen TM Soil DNA Isolation protocols. The PCR master mix was prepared for the 25 

µL reactions using reaction solutions from Sigma-Aldrich (Oakville, ON, CAN). Each reaction 

contained 1x Go-TaqTM Flexi Green PCR Buffer, 1.5 µM MgCl2, 0.5 µM of Sal-F and Sal-R, 

200µM dNTP, Milli-Q water (enough to complete a 25 µL reaction) and 0.2 µL Go-TaqTM Flexi. 

The PCR Reaction was carried out using the iCycler Thermal Cycler System (Bio-Rad, CA, United 

States). The PCR conditions began with an initial denaturation step at 94°C for 5 min, followed 

by 35 cycles of 20 sec at 94°C and 1 min at 65°C and a final extension step of 7 minutes at 72°C. 

Once the reaction ended, the PCR products were held at 4°C until they were stored at -20°C. S. 

enteritidis and E. coli were used as the positive and negative controls, respectively. To observe the 

PCR products, 7 µl were then loaded onto a 2% (w/v) agarose gel in 1X tris-acetate-EDTA (TAE) 

buffer and run for 60 min at 100V. The gels were then stained in ethidium bromide (0.5 µg/Ml 

EtBr) solution for 20 min, and decolorized in water for 5 min. The gels were imaged using a 
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BioRadTM GelDocTM XR (CA, United States). Salmonella spp. isolates were confirmed by the 

presence of an 82 base pair band. 

E. coli Isolation 

E. coli was isolated using the membrane filtration technique as described by Food and Drug 

Administration (FDA, 2002). Water samples were diluted to 10-1 and 10-2 and 10mL were filtered 

through 0.45 µm, 47 mm mixed cellulose filters (Difco, Fisher Scientific; Ottawa, Canada). 

Additionally, 1 mL and 10 mL of the undiluted samples were also filtered. As a positive control, 

100 µL of 18 hr E. coli culture was filtered.  Root and soil samples were weighed into 5g samples 

and mixed with 100 mL of buffer, sonicated for 60 seconds and then filtered through 0.45 µm, 47 

mm mixed cellulose filters (Difco, Fisher Scientific; Ottawa, Canada). The filters were then placed 

onto mFC media (Difco, Fischer Scientific) supplemented with 100 µg/L BCIG (5-bromo-4-

chloro-3-indolyl-beta-D-glucuronide) as per Lyautey and colleagues (2010) (Sigma-Aldrich, 

Oakville, ON, Canada). The plates were then incubated at 44 ± 0.5°C for 24 h in a New 

Brunswick™ Scientific Classic Series C76 Waterback Shaker (Edison, New Jersey, USA), full 

beaker of water. After incubation, colonies were checked for color, with positive E. col growth 

confirmed if blue. The selected isolates were streaked for purity onto LB agar, DNA extracted 

using QiagenTM DNA extraction kits, and molecular confirmation using Eco-F and Eco-R primers 

were used (Table 2.3). 

 

 Enterococcus spp. Isolation 
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Enterococcus spp. isolates were obtained using similar sampling and analytical processing 

techniques (membrane filtration) as described American Public Health Association (APHA, 1998) 

similar to E. coli. Root and soil samples were weighed into 5g samples and mixed with 100 mL of 

buffer, sonicated for 60 s and then filtered through 0.45 µm, 47 mm mixed cellulose filters (Difco, 

Fisher Scientific; Ottawa, Canada). Water samples were diluted to 10-1 and 10-2 and 10 mL were 

filtered through 0.45 µm, 47 mm mixed cellulose filters (Difco, Fisher Scientific; Ottawa, Canada). 

The filters were then placed onto m-Enterococcus (Difco, Fischer Scientific) media and incubated 

at 37oC for 48 h in a New Brunswick™ incubator with a large, full beaker of water. Positive 

isolates appeared maroon as maroon colonies, which were then streaked for purification on Bile 

Esculsin Agar (Difco, Fischer Scientific) and incubated for 24 h at 37oC. Black colonies 

surrounded by darkened media were considered positive for group D streptococci. The selected 

isolates were streaked for purity onto LB agar, grown in LB for 18 h at 35±2oC and DNA extracted 

using QiagenTM DNA extraction kits. Molecular confirmation using genus and species specific 

primers for Enterococcus spp. (Table 2.3).  

Molecular confirmation of Enterococcus spp. and E. coli (Methods adapted from Helt, 2012) 

Enterococcus spp. isolates were identified using genus- and species-specific multiplex PCR in 

order to distinguish three common species of Enterococcus, including; E. faecalis, E. faecium, and 

E. durans. Genus-specific PCR primers to 16S rRNA genes were designed previously and used in 

each reaction to confirm the genus Enterococci (Deasy et al., 2000). For species-specific 

identification, the enterococcal superoxide dismutase (sodA) gene sequences were used. A 

previous report identified the manganese-dependent superoxide dismutase gene sodA as an ideal 
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gene for species identification of enterococci (Poyart et al., 2000). Four sets of PCR primers (Table 

2.2) were used as previously published (Deasy et al., 2000; Jackson et al., 2004) and synthesized 

by Sigma-Aldrich Canada Ltd. (Oakville, ON, Canada). The PCR master mix consisted of 1.25 

µL of genus and species-specific primers (16 µM) for E. durans, and E. faecium, with the exception 

of E. faecalis (FL1, FL2 primers), in which 2.5 µL was added to the base mix, consisting of 3 mM 

MgCl2, 0.2 mM deoxynucleoside triphosphate mix, 5 X GoTaq Flexi Buffer (4.5 µL), and 2.5 U 

of GoTaq Flexi DNA Polymerase (Promega, Fisher Science). PCR was performed using a 

BioRad™ Icycler iQ PCR machine. The PCR mixtures were performed in a final volume of 22.5 

µL consisting of 20 µL of master mix and 2.5 µL of template (or a single isolated colony). 

Following an initial denaturation at 95°C for 4 min, products were amplified by 30 cycles of 

denaturation at 95°C for 30 s, annealing at 55° for 1 min, and elongation at 72°C for 1 min.  

Amplification was followed by a final extension at 72°C for 7 min. Ten microliters of PCR product 

was electrophoresed on a 1.6% (w/v) sodium borate agarose gel and confirmed under UV light 

after ethidium bromide (EB) staining. Similarly, E. coli isolates were confirmed using species-

specific PCR primers as previously developed by Lee et al., (2006) (Table 2.3). PCR mixture (20 

µL) contained 5 X GoTaq Flexi Buffer (4.0 µL), 2.5 mM MgCl2, 0.2 mM deoxynucleoside 

triphosphate mix, 1.0 U of GoTaq Flexi DNA Polymerase (Promega), and 2.0 µL of each primer 

(10 µM). The PCR conditions were 95°C for 5 min for pre-denaturing, followed by 35 cycles at 

95°C for 20 s, 60°C for 1 min, and a final extension at 72°C for 10 min. PCR products were 

examined on 1.6% (w/v) sodium borate agarose gels and confirmed under UV light after Ethidium 

Bromide (EB) staining.  
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Table 2.3. Genus and species specific primers for multiplex PCR molecular confirmation of 
Enterococcus spp. and E. coli. 

Strain Primer Sequence (5’-3’) Product 

Size (bp) 

Reference 

Enterococcus 
spp. 

E1 

E2 

TCAACCGGGGAGGGT 

ATTACTAGCGATTCCGG 

733 Deasy et al. 
(2000) 

E. faecalis FL1 

FL2 

ACTTATGTGACTAACTTAACC 

TAATGGTGAATCTTGGTTTGG 

360 Jackson et 
al. (2004) 

E. faecium FM1 

FM2 

GAAAAAACAATAGAAGAATTAT 

TGTTTTTTGAATTCTTCTTTA 

215 Jackson et 
al. (2004) 

E. durans DU1 

DU2 

CCTACTGATATTAAGACAGCG 

TAATCCTAAGATAGGTGTTTG 

295 Jackson et 
al. (2004) 

Escherichia coli Eco-F 

Eco-R 

GTCCAAAGCGGCGATTTG 

CAGGCCAGAAGTTCTTTTTCCA 

<100 Lee et al. 
(2006) 

 

      

Figure 2.2. Confirmation bands of Enterococcus faecalis (top line; 360 base pairs) and 

Enterococcus faecium (bottom line;215 base pairs).  
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2. Biofilm 

Adhesion Mechanisms 

Calcofluor-infused agar plates were used for the initial detection of cellulose, or similar 

exopolysaccharides. Cultures were inoculated on LB plates containing 0.025% (w/v) Calcofluor 

white (Fluorescent Brightener 28, Sigma-Aldrich, MO, USA). If an exopolysaccharide, such as 

cellulose, is present it binds to the Calcofluor dye and fluoresces under UV light (Römling et al., 

2003). The isolates were streaked onto the agar and incubated at temperatures of 10°C, 21°C, 28°C 

and 37°C. After incubation, the colonies were observed for fluorescence under 300 nm UV light 

using a Hoefer Scientific Mighty Bright UV light box. For positive and negative controls, UMR1, 

MAE14, MAE299 and MAE775 were plated and incubated at 28°C. Each isolate was tested in 

triplicate. 

Congo red (Fluka Analytical, Sigma Aldrich, MO, USA and Fisher Scientific, Ottawa, Canada) 

and Coomassie Brilliant Blue (Fisher Scientific) infused LB agar (final concentrations of 40 µg 

ml-1, 15µg ml-1, respectively) were used to detect the presence of curli fimbriae and cellulose 

produced by bacterial colonies (Römling et al., 2003). After incubation, the colonies exhibit 

different morphotypes based on the presence of curli fimbriae and/or cellulose. The rdar (red, dry 

and rough) morphotype is expressed by organisms that produce both curli fimbriae and cellulose 

as part of their extracellular matrix; the pdar (pink, dry and rough) morphotype expresses only 

cellulose, bdar (brown, dry and rough) only curli. A saw (smooth and white) morphotype expresses 
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neither component (Römling et al., 2003). Similar to the Calcofluor plates, isolates were incubated 

on Congo Red plates at different temperatures. The previously mentioned controls, UMR1, 

MAE14, MAE299 and MAE775 were plated and incubated at 28°C and used as a guide while 

comparing morphotypes of environmental isolates. This assay was completed in triplicate. 

Static Biofilm Generation 

This assay was modelled after Merritt and researchers (2011) with some modifications. This assay 

allowed for qualitative and quantitative observation of the amount of biofilm formed. Bacterial 

isolates were grown in LB broth overnight. The samples were then diluted 1:100 in fresh medium 

and 100 µL of each sample were transferred in quadruplicate to a 96-well microtiter plate (Non- 

Tissue Culture Treated, Flat Bottom with Low Evaporation Lid, Corning Inc., NY, USA). Each of 

the isolates were inoculated in four different plates for incubation at various temperatures. The 

plates were then incubated; at 37°C for 18-24 h, 28°C for 36-48 h, and 11°C for 96 h. After 

incubation, the microtiter plates were washed twice with distilled water and left to air-dry. The 

plates were then stained with 125 µL of 0.1% (w/v) crystal violet solution. The crystal violet stains 

the bacterial cells that are adhered to the sides of the wells; these cells are those that typically 

produce extracellular substances (i.e., proteins and exopolysaccharides) which facilitate 

attachment to the surface and can lead to biofilm formation. The crystal violet in the wells was 

then solubilized using 200 µL 30% (v/v) acetic acid and measured for absorbance at 600nm in a 

xMark TM Bio Rad Microplate Absorbance Spectrophotometer. A high absorbance reading 

corresponded with heavy biofilm growth whilst minimal absorbance indicated scarce biofilm 
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formation (Merrit et al., 2011). This experiment was repeated 3 times to ensure results were 

consistent between trials. 

Assessing Biofilm Growth 

After determining the absorbance values of the crystal violet bound to attached cells, the degree of 

biofilm formation was assessed. The biofilms were characterized as previously described by 

Stepanovic and colleagues (2000). The values were classified as no biofilm, weak biofilm, 

moderate biofilm and strong biofilm, by comparing the absorbance of the Crystal Violet 

solubilized in 30% acetic acid (v/v) (AB) to the negative control, or blank, which was 30% acetic 

acid (v/v) (ABc). The categories are outlined in Table 3.2. 

Table 2.4. Biofilm Classification System 

No Biofilm AB*≤ ABc** 

Weak Biofilm ABc < AB≤ 2x ABc 

Moderate Biofilm 2xABc < AB ≤ 4x ABc 

Strong Biofilm 4x ABc<AB 

*AB= absorbance at 600nm reading of crystal violet solubilized in 30% acetic acid (v/v) 

**ABc= absorbance at 600nm reading of the negative control, or blank (30% acetic acid (v/v) 
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Dynamic Biofilm Formation  

Using a BioFlux 200© (Fluxion Biosciences™), constant conditions (flow; dyne) mimicked 

environmental conditions that may influence microbial biofilm formation. E. faecalis isolates 

obtained from high, intermediate and poor water quality sites were grown up in LB Broth for 18 

h. All isolates were extracted from rhizoplane and rhizosphere samples.  Aliquots of 100 µL of 

fresh media were used to prime inlet wells. Lid interface was screwed on using a torque wrench, 

and a force of 1 dyne was used to push media through wells (inlet to outlet; approximately 5 

minutes). Next, 20 µL of grown culture was placed in the outlet wells. At a force of 2 dynes for 5 

seconds, cultures were pushed into viewing area. Using a Nikon™ Ti E Eclipse [bright field] 

microscope, biofilm production was visualized and captured (Figure 4.24). After waiting 10 

minutes, 700 µL of fresh LB Broth was added to the inlet wells, and another 10 minutes was 

allowed for incubation. Videos and images were taken at 0, 18 and 24 h. Using Calcofluor (0.025% 

w/v), extra polymeric substances were stained, and a DAPI used for fluorescent imaging.  

Antibiotic Response 

Antibiotics for susceptibility testing were chosen based on suggested groupings by the Clinical 

and Laboratory Standards Institute (2015) of antibiotics, World Health Organization list of most 

important drugs, as well as relevance in the Grand River Watershed (generally used for E. coli, 

Enterococcus spp., and Salmonella spp. infections, and previous research on Salmonella 

susceptibility completed by Janis Thomas and Cassandra Helt in the Applied Microbiology 

Research Lab supervised by Dr. Robin Slawson (Thomas, 2011; Helt, 2012). 
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Table 2.5. Susceptibility Testing Antimicrobial Compounds 

Class Antimicrobial 

Name 

Drug 

Code 

Disk 

Potency 

(µg) 

Action 

Penicillin’s Ampicillin A 10 bactericidal 

 Amoxicillin/ 

Clavulanic acid 

AmC 20/10 bactericidal 

Cephalosporin’s Ceftazidime Ctx 30 bactericidal 

Aminoglycosides Streptomycin S 10 bactericidal 

Tetracycline’s Tetracycline 

Doxycycline 

T 

D 

30 bacteriostatic 

Fluoroquinolones Ciprofloxacin Cip 5 bactericidal 

Glycopeptide Vancomycin V 30 bactericidal 

Amphenicol Chloramphenicol  

 

C 30 bacteriostatic 

Sulfonamides Sulfasoxazole Sul 30 bactericidal 
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Sulfadiazine G 

Oxazolidinones Linezolid L 30 bacteriostatic 

 

Disc-Diffusion Assay 

Environmental isolates were tested for antimicrobial susceptibility using antibiotic discs (BD) 

listed in Table 2.5. Antibiotic resistance was determined as described by the Clinical and 

Laboratory Standards Institute, using the Kirby-Bauer disk diffusion method (CLSI, 2007). 

Isolates were grown in LB Broth to a 0.5 McFarland standard of turbidity, after which 100 µL 

were transferred onto Mueller-Hinton (MH) agar. Disks of antibiotics listed in Table 2.4 

(purchased from BD, MD, USA) were then placed on the inoculated plates using sterilized 

tweezers. Following incubation at 37°C for 18-24 h, 28oC for 48 h and 11oC for 96 h, the zones of 

inhibition were measured and used to categorize the isolates as susceptible, intermediately 

resistant, or resistant according to the CLSI zone diameter interpretive standards for each antibiotic 

(CLSI, 2007). This was done in triplicate and the average zone of inhibition was used to determine 

resistant or susceptible behavior.  

Dynamic Contaminant Response 

Environmentally isolated Enterococcus faecalis was grown overnight (18 h) to a McFarland 

standard of 0.5. Silver nitrate (AgNO3), Copper Nitrate (Cu[NO3]2) and Chloramphenicol stock 

solutions were made at a concertation of 0.1 M then diluted to environmentally relevant values 

(Cooke, 2014; Pileggi et al., 2016). Concentrations varied by chemical, which were diluted with 
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50 mL LB broth during exposure trials and can be found in Table 2.6. Using a shaking chest 

incubator (New Brunswick Scientific, Edison, NJ), 250 mL Erlenmeyer flasks were incubated at 

120 rpm and 280C for 24 h. Absorbance (450 nm) was taken every 2 h, for 24 h, using a 

spectrophotometer (Jenway, UK). Data was plotted using Microsoft Excel (2013).  

Table. 2.6. Concentrations (millimolar) of metals and antibiotics used in contaminant response 
exposure trials.  

AgNO3 Cu[NO3]2 Chloramphenicol AgNO3  

+ Chloramphenicol 

Cu[NO3]2  

+ Chloramphenicol 

0.5 mM 10 mM 0.5 mM 0.2 mM + 0.2mM 1 mM + 0.2 mM 

0.25mM 1 mM 0.25 mM 0.1 mM + 0.2 mM 0.5 mM + 0.2 mM 

0.0125 

mM 

0.5 mM 0.0125 mM 0.2 mM + 0.1 mM  0.2 mM + 0.2 mM 

0.0625 

mM 

0.25 mM 0.0625 mM - - 
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3 

Contaminant Response Measurements in Environmentally Isolated Opportunistic 

Pathogens 
The ability of environmentally isolated microbial pathogens to respond to contaminant stress was 

assessed. Isolates from high, intermediate and poor water quality areas found at riparian zones 

along the Grand River Watershed were obtained from root, soil and water samples. The following 

sections will present findings of how enteric opportunistic pathogens such as Salmonella spp., 

Escherichia coli, and Enterococcus spp., colonize environmental settings. Exposure to a range of 

temperatures in the presence of stressors, particularly antibiotics and metals, will also be evaluated.  

This chapter addresses the research question of how contaminant exposure, particularly antibiotic 

metabolites and metals, may influence microbial behavior in an environmental setting. At each 

water quality site, rhizosphere soil, roots (rhizoplane) and water samples were collected, processed 

and analyzed. The objectives evaluated in this chapter were as follows. 

1) Isolate opportunistic pathogens from rhizoplane, rhizosphere and water samples of riparian 

wetlands. 
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2) Evaluate the ability of these isolated microorganisms to respond to adverse conditions 

caused by contaminant stress, including antibiotics and metals. 

3) Quantify the amount of contaminant-resisting opportunistic pathogens from each sampling 

area and determine how water quality may influence resistance profiles. 

By considering a range of temperatures which could include optimal and stressful conditions, the 

ability to replicate and grow in the presence of antimicrobials was assessed. Microbial responses 

to individual stressful stimuli (antibiotics or metal) as well as in combination were assessed. 

Specifically, the effect exposure to these stressful conditions has on the growth of environmental 

E. faecalis, Salmonella spp., and E. coli isolates was measured. Firstly, antibiotic exposure using 

the disc diffusion method at 11oC, 28oC and 37oC are presented. Each assay is subdivided to show 

comparisons of antibiotic profiles between isolated genera of microbes and also environmental 

zones these organisms were re-isolated from. Rhizospheric soil, rhizoplane [root] and water 

samples were collected and processed as discussed in Chapter 2 to obtain these organisms. 

Contaminant response trials were conducted using an Enterococcus faecalis isolate extracted from 

rhizospheric samples obtained from a low water quality sampling area.  

3.1 Effectivity of Antibiotic Exposure at 37oC 

Antibiotic tolerance and the ability to measure microbial growth in the presence of antimicrobials 

was carried out using the Kirby-Bauer Disc Diffusion assay. As described in Table 2.5, 12 different 

antibiotics were chosen for usage. They were selected based on their environmental relevance, 

particularly in the GRWS, as well as their ranking on the necessary antibiotics list compiled by  

World Health Organization. Microorganisms were grown for 18 h in LB and then spread-plated 
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on Mueller-Hinton agar, incubated at 37oC, 28oC, and 11oC in the presence of antibiotic-soaked 

discs, then analyzed after 24 h, 48 h and 96 h. Zones of inhibition were measured (mm) and 

compared to known values using data charts supplied in BD BBL™ Sensi-Disc™ Antimicrobial 

Testing Kits. Each was done in triplicate and was designated as resistant or susceptible based on 

known values. 

										

		

Figure 3.1. Resistance profiles of pathogen isolates grown at 37oC. Kirby-Bauer disc diffusion 
results of microorganisms isolated from high quality wetlands (left), intermediate water 
quality impacted wetlands (center) and low water quality impacted wetlands (right). In order 
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from front, first, are the antibiotics chose. AM= ampicillin, AMC = amoxicillin and 
clavulanic acid, CFZ = ceftazidime, C = chloramphenicol, CIP = ciprofloxacin, D = 
doxycycline, L= linezolid, G= sulfadiazine, SUL= sulfasoxazole, S= streptomycin, V= 
vancomycin, and T= tetracycline. 

Antibiotic profiles for all isolates obtained from impacted riparian wetlands are depicted in Figures 

3.1. As seen, there is a general decrease in resistance profiles from high, to low water quality 

impacted wetlands.  Enterococcus spp. was most prominent at each site (Table 2.1) and had more 

robust resistance profiles, whereas E. coli and Salmonella spp. were lesser (Table 2.1, 2.2). 

Interestingly, susceptibility increased as site quality decreased when isolates grew in the presence 

of antibiotics at host body temperature (37oC). All isolates from high water quality impacted 

wetlands showed greater than 50% resistance against 75% of antibiotics.   

Amoxicillin and clavulanic acid, followed by chloramphenicol and ciprofloxacin, had the lowest 

percentage of resistance with values of 20-37%, with the exception of Salmonella isolated at poor 

water quality sites. At intermediate quality wetlands, there are increases in resistance to 

doxycycline and linezolid, however decreases were observed in the majority of other 

antimicrobials. Both tetracycline and vancomycin invoked high resistance in the isolated 

pathogens from high and intermediate water quality impacted sites, whereas at lower water quality 

sampling sites showed there was less observed resistance. Evaluating each site shows the affinity 

of Enterococcus spp. to successfully grow in the presence of stress-inducing chemicals like 

antibiotics. Interestingly, Salmonella spp. isolates showed higher levels of resistance to 

doxycycline and ciprofloxacin (100%) at poor quality sites when compared to those of better water 

quality.  
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The next series of figures depicts antibiotic resistance profiles based on environmental sample 

type. Figure 3.2 (left column)corresponds with isolated pathogens from high water quality areas, 

whereas (center column) represents those from intermediate water quality and (right column) from 

poor water quality. Additionally, environment samples retrieved included soil (rhizosphere soil), 

roots (rhizoplane) and water, represent the specific location these pathogens were isolated from.  
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Figure 3.2. Percentage of opportunist resistance during antibiotic exposure at 37oC. Kirby-
Bauer disc diffusion results of microorganisms isolated from the roots, soil and water of 
riparian zones sampled at high quality wetlands are shown (left), intermediate water quality 
impacted sites (center) and poor water quality impacted sites (right).  

An initial trend that is apparent is that rhizospheric analytes yielded the highest percentages of 

isolates showing resistance when grown at 37oC. At high water quality impacted sites (Shand Dam 

and West Montrose) 100% of isolates were resistant to tetracycline, and 8 other antibiotics with 

resistance equal to or greater than 50 percent. Isolates obtained from water samples showed poorest 

resistance values, whereas rhizospheric isolates had intermediate to complete resistance profiles. 

In high and intermediate quality wetlands, resistance was highest for doxycycline, linezolid, 

tetracycline, vancomycin, sulfisoxazole and sulfadiazine. Isolates at intermediate sites were most 

susceptible to ciprofloxacin, chloramphenicol, ceftazidime, ampicillin and amoxicillin which 

shows differing trends when compared to both high and low quality sites. At low quality sites, 40-

100% of isolates originating from rhizospheric samples displayed 100% resistance to ciprofloxacin 

and ceftazidime.   

A more detailed representation of specific pathogen resistance profiles originating from the 

rhizosphere of high water quality impacted sites is examined in Figure 3.3. After growth at 37oC 

for 18 h, the rhizosphere was again the most densely populated region with opportunistic 

bacteria, followed by rhizoplane and water samples. Enterococcus spp. organisms were 

consistently found in each sample type in highest numbers, followed by Salmonella spp. and E. 

coli. All three genera were 100% resistant to tetracycline when isolated from the rhizosphere 

with at least 50% of isolates showing multidrug resistance to greater than 4 antimicrobials 
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(vancomycin, sulfisoxazole, sulfadiazine, linezolid and doxycycline). The least amount of 

resistance displayed by organisms isolated in the rhizosphere was to ceftazidime and 

ciprofloxacin, with greater than 60% susceptibility as see in Figure 3.3.		

	

Figure 3.3. Percentage of resistant opportunistic pathogens isolated from high water 
quality areas exposed to antibiotics at 37oC. Organisms isolated from the rhizoplane (left), 
rhizosphere (center) and water (right). 

Salmonella spp. and Enterococcus spp. originating from the rhizosphere showed 100% resistance 

to several antibiotics; tetracycline, vancomycin, sulfisoxazole, doxycycline and linezolid. At high 
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quality sites, Salmonella spp. resistance was most prevalent in the rhizoplane. E. coli recovery was 

minimal in rhizosphere and water samples, however Enterococcus spp. found in abundance, in all 

sample types. Similar resistance profiles were seen in the water, root and soil (MDR to 5 or more 

antibiotics), as well as increased survivability when exposed to ampicillin and amoxicillin.   

Figure 3.4 shows that at intermediate water quality wetlands, Enterococcus spp. isolates were more 
prominent than other isolated pathogens and had more diverse resistance profiles. Salmonella spp., 
surprisingly, was the only organism isolated from the rhizoplane which showed resistance, 
whereas, all organisms except E. coli isolated from water displayed resistance. Similar resistance 
profiles are seen across the sampled genera of microbes, as resistance to tetracycline, vancomycin, 
doxycycline, linezolid and sulfadiazine was greater than 60%. Amoxicillin (80-100% 
susceptibility), ampicillin (60-100%), streptomycin (75-100%), ciprofloxacin (85-100%) and 
ceftazidime (80-100%) were effective inhibitors of microbial growth in isolates from all sample 
type 



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	67	of	182	

	

		

Figure 3.4. Percentage of resistant opportunistic pathogens isolated from intermediate water 
quality areas exposed to antibiotics at 37oC. Organisms isolated from the rhizoplane (left), 
rhizosphere (center) and water (right). 

Chloramphenicol was an effective inhibitor of growth when comparing rhizosphere and rhizoplane 

isolates, however evoked less of a response against enterocccal isolates from water (100% 

resistance). Ciprofloxacin elicited the strongest degree of inhibitory effects (85-100% 

susceptibility), as isolates regardless of source struggled to grow in the presence of this antibiotic.  

Enterococcus spp. isolated from the rhizosphere were the only group of microorganisms displaying 
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phenotypic resistance as heavy growth on media, whereas most other isolates that were susceptible 

to ciprofloxacin resulted as clear and no growth. 

In Figure 3.5, our analysis of results indicates that at poor water quality sites, Salmonella spp. 

isolates were less resistant than E. coli and Enterococcus spp. in the water, but in no other zones. 

Rhizosphere samples yielded E. coli isolates 100% resistant to tetracycline, sulfasoxazole, 

sulfadiazine, linezolid and doxycycline. Enterococcal isolates showed a broad range of resistance, 

with 75% of the antibiotics used showing ineffective responses. Ciprofloxacin was less likely to 

inhibit growth, with only 30% effectivity in Enterococcus spp. isolates. E. coli was 100% 

susceptible to vancomycin, streptomycin, ciprofloxacin, chloramphenicol, ceftazidime, ampicillin 

and amoxicillin whilst, again, 50% of enterococcal isolates showed resistance to each drug the 

organisms were measured against. 
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Figure 3.5 Percentage of resistant opportunistic pathogens isolated from low water quality 
areas exposed to antibiotics at 37oC. Organisms isolated from the rhizoplane (left), 
rhizosphere (center) and water (right). 

E. coli isolates from the rhizoplane were 100% resistant to several drugs; tetracycline, vancomycin, 

sulfasoxazole, sulfadiazine, linezolid, doxycycline, ciprofloxacin, ampicillin and amoxicillin. 

Unlike at higher water quality areas, E. coli isolates from low water quality impacted areas resulted 

in increased MDR profiles. Enterococci showed a diverse resistance profile, but again was least 

affected by sulfadiazine and sulfasoxazole, whereas other antibiotics resulted in resistance to 50% 

or less of all enterococcal isolates (Table 2.2, 2.3 show locations and water quality).  
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Lastly, Salmonella were the only organisms isolated from water samples at low quality sites to 

show any resistance. Surprisingly, these isolates were susceptible to all drugs used except for 

chloramphenicol and ceftazidime, which had proved effective at sampling locations of higher 

water quality. 

In this next series of exposure trials, the same 12 antibiotics were used, however the temperature 

growth conditions were changed to 28oC. Incubation occurred over 48 h, with analysis again 

examining for zones of resistance or susceptibility. This temperature was chosen as it is reflective 

of both environmental and adhesion mechanism plus exopolysaccharide promoting conditions 

(Romling, 2003; Barnhart and Chapman, 2006).  

3.2 Effectivity of Antibiotic Exposure at 28oC 

The following figures correspond to the total pathogen resistance of all opportunistic pathogen 

isolates from high, intermediate and low water quality impacted sampling locations. Again, the 

three genera are measured against each other to gain an understanding how both wetland condition 

and water quality impacts the degree of resistance observed. All 3 genera of organisms were 

resistant to tetracycline (65+%), vancomycin (80+%), sulfasoxazole (at least 50% of isolates) and 

sulfadiazine (58+%), showing at an environmentally relevant temperature of 28oC resulted in 

similar outcomes as at a host body temperature, 37oC. 	
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Figure 3.6. Resistance profiles of pathogen isolates grown at 28oC. Kirby-Bauer disc diffusion 
results of microorganisms isolated from high quality wetlands (left), intermediate water 
quality impacted wetlands (center) and low water quality impacted wetlands (right). In order 
from front, first, are the antibiotics chose. AM= ampicillin, AMC = amoxicillin and 
clavulanic acid, CFZ = ceftazidime, C = chloramphenicol, CIP = ciprofloxacin, D = 
doxycycline, L= linezolid, G= sulfadiazine, SUL= sulfasoxazole, S= streptomycin, V= 
vancomycin, and T= tetracycline. 

Unlike exposure at 37oC (Figure 3.1), Salmonella spp. showed the strongest potential for success 

when exposed to antibiotics, followed by Enterococcus spp. and E. coli. At high water quality 

sites, all E. coli and Salmonella spp. isolates showed 80% or greater resistance to tetracycline, 
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vancomycin, sulfadiazine, sulfasoxazole, linezolid, and ampicillin. Enterococci isolates were 80% 

or greater resistance to linezolid, doxycycline, and vancomycin. E. coli isolated from high water 

quality impacted areas showed 50% or greater resistance to ceftazidime, amoxicillin and 

ampicillin, which were highly effective against other microorganisms and at varying temperature. 

All three groups of pathogens showed resistance to at least 75% or more of the antibiotics 

introduced when incubated at 28oC (Fig 3.6).  

Isolates grown from intermediate water quality sites at 28oC were completely susceptible to 

ciprofloxacin. E. coli displayed 100% resistance, to 66% (8/12) of antibiotics measured against, 

specifically tetracycline, vancomycin, sulfasoxazole, sulfadiazine, linezolid, doxycycline and 

ampicillin.  Enterococci isolates showed partial to strong resistance against tetracycline, 

vancomycin, sulfasoxazole, sulfadiazine, linezolid and doxycycline. Salmonella spp. strongly 

resisted tetracycline (80%), vancomycin (78%), sulfadiazine (65%), sulfasoxazole (78%), 

linezolid (90%) and doxycycline (90%). Both enterococci and Salmonella spp. were susceptible 

(<40% resistance) to ciprofloxacin, chloramphenicol, ceftazidime, ampicillin and amoxicillin. E. 

coli was least resistant to ciprofloxacin, ceftazidime and ampicillin (all less than 20%), however 

100% resistant against amoxicillin and clavulanic acid.  

Microorganisms originating from sampled zones at low water quality sites and exposed to 

antibiotics at 28oC again demonstrated that sulfadiazine, sulfasoxazole, linezolid and doxycycline 

were least effective at inhibiting microbial growth using this assay (60% or greater). Enterococci 

were most susceptible (>50%) to ciprofloxacin, chloramphenicol, ceftazidime, ampicillin and 

streptomycin, however most resistant to vancomycin and linezolid (>70%). All Salmonella spp. 
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were highly susceptible to all antibiotics except amoxicillin with clavulanic acid (100% 

resistance), whereas E. coli was 100% susceptible to ceftazidime and 60% susceptible to 

ciprofloxacin. Enterococcal isolates showed uniform levels of resistance amongst varying water 

quality, with 70% or greater resistance to doxycycline, tetracycline, vancomycin, sulfadiazine and 

sulfasoxazole.   

Figure 3.7 illustrates antibiotic resistance categorized by analyte type pathogens were retrieved 
from, incubated at 28oC, where all isolates from the rhizosphere, rhizoplane and water were 100% 
resistant to vancomycin. Microorganisms obtained from rhizospheric soil were 100% resistant to 
tetracycline, linezolid and doxycycline, and greater than 50% of isolates showing resistance to 
ampicillin, chloramphenicol, sulfadiazine and sulfasoxazole. Root-isolated bacteria showed 50% 
or greater resistance to ampicillin, chloramphenicol, doxycycline, linezolid, sulfadiazine, 
sulfasoxazole and chloramphenicol, and less than 50% of isolates showed resistance to 
ciprofloxacin, amoxicillin, ceftazidime and streptomycin. Further, organisms isolated from the 
water at high quality impacted sampling locations were resistant to 80% or more measured 
antibiotics, but least resistant (<50%) to ceftazidime. 
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Figure 3.7. Percentage of opportunist resistance during antibiotic exposure at 28oC. Kirby-
Bauer disc diffusion results of microorganisms isolated from the roots, soil and water of 
riparian zones sampled at high quality wetlands are shown (left), intermediate water quality 
impacted sites (center) and poor water quality impacted sites (right).  

Soil-borne organisms isolated at medium water quality sites (Fig 3.7, center) were 100% resistant 

to tetracycline, vancomycin, sulfadiazine, sulfasoxazole, linezolid, doxycycline and 

chloramphenicol. These organisms were also 100% susceptible to ampicillin, amoxicillin, 

ceftazidime, ciprofloxacin, and streptomycin. Additionally, less than 20% of organisms found both 

in water and root samples were susceptible to ciprofloxacin, ceftazidime, ciprofloxacin, ampicillin 

and amoxicillin.  Root-isolated bacteria were least susceptible (<50%) to tetracycline, vancomycin, 
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streptomycin, sulfadiazine, sulfasoxazole, linezolid, and doxycycline. Similarly, water-borne 

pathogens were best able to grow (50%) in the presence of doxycycline, linezolid, sulfadiazine, 

tetracycline and vancomycin as opposed to other antibiotics.  

Further, at low water quality sites (Fig 3.7) microorganisms isolated from root samples had highest 

levels of multidrug resistance. Overall, greater than 50% of the total isolates were again resistant 

to tetracycline, vancomycin, sulfadiazine, sulfasoxazole, linezolid, doxycycline and, unlike higher 

quality sites, ampicillin. Streptomycin, ciprofloxacin, chloramphenicol, ceftazidime and 

amoxicillin. Organisms originating from water samples were only resistant to ceftazidime whilst 

greater than 50% of soil-isolated pathogens were not inhibited by vancomycin, sulfadiazine, 

sulfasoxazole, and linezolid. Greater than 60% of these organisms were susceptible to ampicillin, 

chloramphenicol, and doxycycline. Resistance to chloramphenicol, ampicillin and ceftazidime was 

surprising when compared to conditions of 37oC (Figure 3.4), where isolated opportunists were 

most inhibited by these pharmaceuticals.  
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Figure 3.8. Percentage of resistant opportunistic pathogens isolated from low water quality 
areas exposed to antibiotics at 28oC. Organisms isolated from the rhizoplane (left), 
rhizosphere (center) and water (right).  

Pathogen resistance profiles categorized by environmental sample type (rhizosphere, rhizoplane 

and water) were isolated from intermediate water quality wetlands then exposed at 28oC to the 

antibiotic regime. In figure 3.8, it is apparent that E. coli were most likely to be isolated at the 

rhizoplane, followed by Enterococcus spp. No Salmonella spp. isolates from the rhizosphere were 

resistant. All E. coli isolates displayed multidrug resistant behavior to tetracycline, vancomycin, 
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sulfasoxazole, sulfadiazine, streptomycin, linezolid, doxycycline and amoxicillin, however were 

susceptible to ciprofloxacin, ceftazidime, chloramphenicol and ampicillin. Enterococcal isolates 

obtained that were more affected by antibiotics other pathogens resisted. However, greater than 

50% of isolates displayed resistance to tetracycline, vancomycin, sulfadiazine, sulfasoxazole, 

linezolid and doxycycline. Complete susceptibility (100% of isolsats) occurred when exposed to 

ciprofloxacin and amoxicillin, and less than 40% of pathogens were successful [growth] when 

exposed to ampicillin, chloramphenicol, streptomycin and ceftazidime. 
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Figure 3.9. Percentage of resistant opportunistic pathogens isolated from low water quality 
areas exposed to antibiotics at 28oC. Organisms isolated from the rhizoplane (left), 
rhizosphere (center) and water (right).  

Notably, within the rhizosphere samples (center), only Salmonella spp. was able to resist 

antimicrobials. All were resistant to tetracycline, vancomycin, sulfadiazine, sulfasoxazole, 

linezolid, doxycycline and chloramphenicol, whereas 100% isolate susceptibility was observed 

when exposed to streptomycin, ciprofloxacin, ceftazidime, ampicillin and amoxicillin with 

clavulanic acid.  

All Enterococcus spp. resisted tetracycline, vancomycin, linezolid, doxycycline and 

chloramphenicol.  More than half of these isolates were susceptible to all other drugs tested. 

Salmonella spp. did not show full isolate resistance (100%) to any antibiotic with the exception of 

linezolid, however, greater than 50% of isolates were resistant to tetracycline, sulfasoxazole, 

sulfadiazine and doxycycline. Less than 20% of these organisms were resistant to ampicillin and 

chloramphenicol.  

Figure 3.10 displays that Enterococcus spp. and E. coli were the only pathogens isolated within 

the rhizosphere which showed antimicrobial-resistant behavior. The latter showed 100% resistance 

to doxycycline, linezolid, sulfadiazine, sulfasoxazole and vancomycin with complete susceptibility 

to all other antibiotics.  Enterococcus spp. isolates were completely resistant to only linezolid, but 

greater than 50% of isolated pathogens still demonstrated resistance to tetracycline, vancomycin, 

sulfadiazine, sulfasoxazole and amoxicillin. More than 60% of all pathogens were susceptible 

(30% or less) to amoxicillin, ceftazidime, chloramphenicol, ciprofloxacin and streptomycin.  
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Figure 3.10. Percentage of resistant opportunistic pathogens isolated from low water quality 
areas exposed to antibiotics at 28oC. Organisms isolated from the rhizoplane (left), 
rhizosphere (center) and water (right). 

Similar trends are seen in pathogen responses to antibiotic exposure; particularly E. coli and 

Enterococcus spp. isolation. Complete resistance was observed by E. coli to tetracycline, 

vancomycin, sulfadiazine, sulfasoxazole, linezolid and doxycycline. Complete susceptibility was 

seen against streptomycin, ciprofloxacin, chloramphenicol, ceftazidime, ampicillin and 
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amoxicillin. Enterococcal isolates from the rhizoplane were not 100% resistant to any 

pharmaceutical, however greater than 60% showed resistance to linezolid, sulfadiazine, 

sulfasoxazole, and vancomycin. Less than 40% resistance was seen when exposed to ampicillin, 

chloramphenicol, and tetracycline, and were completely susceptible to streptomycin, 

ciprofloxacin, amoxicillin and ceftazidime. Lastly in Figure 3.10 (right), Salmonella was the only 

water-isolated pathogen that grew in the presence of antibiotics, albeit only ceftazidime.  

3.3 Effectivity of Antibiotic Exposure at 11oC 

The final set of conditions to which pathogenic isolates were exposed involved the same group of 

antibiotics which were used in the previous trials. A temperature of 11oC was chosen, as this 

condition was expected to be less ideal, introducing more stressful conditions to the isolates.  

Shown in Figure 3.11 are similar trends to that observed previously at higher temperatures; 

whereby high water quality wetlands appear to contain the most resistant microorganisms. 

Microorganisms isolated from intermediate water quality impacted wetlands showed the second 

greatest level of resistance, and low water quality wetland isolates yielded the least amount of 

growth and antibiotic resistance during the assay.	
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Figure 3.11. An overview of pathogenic isolates when grown at a cold temperature, 11oC, in 
the presence of antibiotic stressors. The left row represents organisms from high quality 
sampling sites, middle intermediate quality areas and the right row, isolates from poor water 
quality impacted areas. AM= ampicillin, AMC = amoxicillin and clavulanic acid, CFZ = 
ceftazidime, C = chloramphenicol, CIP = ciprofloxacin, D = doxycycline, L= linezolid, G= 
sulfadiazine, SUL= sulfasoxazole, S= streptomycin, V= vancomycin, and T= tetracycline. 

Sulfadiazine showed least effectivity, less than 20%, when exposed to isolated from all wetlands 

regardless of water quality type, whereas amoxicillin, ceftazidime, chloramphenicol, ciprofloxacin 

and linezolid were pharmaceuticals isolates were most susceptible. Enterococcus spp. isolates 

from high water quality areas had more diverse resistance patterns where a greater range of 

pharmaceuticals were resisted, followed by Salmonella spp. and lastly E. coli. These isolates 
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showed the greatest resistance to amoxicillin and streptomycin, whereas, Salmonella spp. and 

Enterococcus spp. were 100% susceptible. Isolates from intermediate quality sites were most 

resistant to sulfadiazine (Enterococcus spp. 25%, Salmonella spp. 40% and E. coli 90%). Notably, 

isolates found at the poor water quality sites were most susceptible to a broader range of antibiotics, 

although E. coli proved resistant against sulfadiazine, vancomycin and tetracycline (40%, 60% and 

90%). 

Represented in Figure 3.12 is an overview of the total resistance profiles demonstrated respectively 

after exposure to all genera from rhizospheric soil, rhizoplane and water samples. The first row of 

data represents sampling zones from high water quality areas, followed by intermediate quality in 

the middle and then low water quality. Isolates from high water quality areas proved to have more 

diverse levels of resistance, meaning that a wider range of antimicrobials were resisted when 

compared to isolates from lower water quality impacted areas. 
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Figure 3.12. At 11oC, resistance profiles of organisms isolated from high, intermediate and 
low water quality wetlands are shown. On the left, resistance profiles for root, soil and water 
samples taken from high quality wetlands is plotted. In the middle rows, organisms isolated 
from intermediate water quality sampling areas and corresponding resistance profiles are 
shown, followed by low water quality sites on the right. 

The success of microbial growth when exposed to two thirds of antibiotics is evident in pathogens 

isolated from all sample types at high water quality areas. Although most genera isolated proved 

to be less than 50% resistant to all antimicrobials, the largest diversity of resistance is found here. 

Root and soil-borne microbes were more tolerant than those found in the water, having shown 
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resistance against amoxicillin, ampicillin, ceftazidime, vancomycin and tetracycline. Vancomycin, 

as seen at higher water quality sites, had the largest number (20-50%) of resistant microorganisms. 

Moreover, microbes found in river water samples at the intermediate quality sites showed the 

highest levels of resistance (30-50% isolate resistance to 5 or more antimicrobials) in comparison 

to those isolated from roots and soil (maximum 20% isolate resistance for sulfadiazine), 

successfully growing (greater than 50 % of total isolates) when exposed to ceftazidime, 

doxycycline, linezolid, streptomycin, vancomycin and tetracycline at intermediate water quality 

sites. Soil isolates had the least amount of resistance to the 12 drugs used for exposure, while root-

isolated microbes were less susceptible to ampicillin, sulfadiazine, and vancomycin (10%, 20% 

and 10% resistant). Lastly, at low water quality sites, water-originating isolates were susceptible. 

Root and soil microbes showed near identical resistance profiles, as each set of isolates were only 

partially resistant to ampicillin, amoxicillin, sulfadiazine, streptomycin and tetracycline.  

At high water quality impacted locations, up to 30% of isolates obtained from the rhizoplane, 

rhizosphere and water, resisted ampicillin, amoxicillin and ceftazidime. Also, similar levels of 

pathogen resistance were identified for each analyte type, from all sampling locations, for 

streptomycin, vancomycin and tetracycline (20%-70%).  

In Figure 3.13, comparisons highlight impacts of sample type on each pathogen for high water 

quality impacted isolates (Enterococcus spp., Salmonella spp. and E. coli). Specifically, trends 

seen in Enterococcus spp, Salmonella spp. and E. coli isolated from rhizospheric soil, rhizoplane 

and water can be seen. 
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Figure 3.13. Three target pathogens are measured against various antibiotics at 11oC. Root 
isolates are found in the left rows of the bar graph, soil originating isolates in the center and 
organisms found in the water on the right.  

Pathogens isolated from root samples showed highest resistance profiles when compared to soil 

and water originating isolates. Although Salmonella spp. showed the 30% isolate resistance to 

multiple antibiotics (ampicillin, ciprofloxacin and tetracycline) at 11oC, Enterococcus spp. were 
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more diverse resistance, growing when exposed to ampicillin, amoxicillin, ceftazidime, linezolid 

and sulfadiazine. E. coli was most resistant to ampicillin and streptomycin (40% isolate resistance). 

Enterococcus spp. isolates found in soil samples at high water quality impacted sites were the only 

resistant microbes, with 20-50% of isolates growing in the presence of ampicillin, amoxicillin, 

ceftazidime, sulfadiazine and vancomycin. Similarly, enterococci isolated from water at low water 

quality impacted sites shared familiar patterns of resistance, with 40% or less of the isolates able 

to grow when exposed to ampicillin, linezolid, sulfadiazine, vancomycin and tetracycline. 

Intermediate water quality impacted isolate response is depicted in Figure 3.14 and shows similar 

trends as observed in Figure 3.13. 
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Figure 3.14. All genera of pathogens that were isolated from intermediate water quality sites 
were grown in the presence of antibiotics at 11oC. Bacterial isolates originating from 
rhizospheric soil, roots and water were processed and exposed to the 12 antibiotics. 	

When grown at 11oC, organisms which were isolated from intermediate water quality sites showed 

higher antibiotic susceptibility than organisms from higher water quality impacted sites. All 

microorganisms from these sites which were isolated from rhizosphere soil were 100% susceptible 

to all antimicrobials to which they were exposed. Enterococcus spp. showed low (less than 10% 

of isolates) levels of resistance to ampicillin, sulfadiazine, sulfasoxazole and tetracycline, whereas 

80% of E. coli resisted sulfadiazine. Overall, Salmonella spp. and Enterococcus spp. showed the 
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best ability to grown during exposure to these pharmaceuticals, as 90% of enterococcal isolates 

grew in the presence of ampicillin, linezolid, and vancomycin. 10-30% of Salmonella spp. isolates 

were also able to grow when exposed to ceftazidime, doxycycline, sulfadiazine, sulfasoxazole, 

vancomycin and tetracycline.  

Lastly, Figure 3.15 depicts the final series of data obtained throughout the exposure trials, 

comparing the 3 genera of pathogens retrieved from poor water quality impacted areas. It is noted 

that there was minimal resistance, as well as minimal growth at 11oC. Overall, microbial growth 

on Mueller-Hinton agar proved greater inhibition had occurred than in trials at higher temperatures 

(28oC and 37oC). 
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Figure 3.15. Resistance profiles of all genera of bacteria that were isolated from low water 
quality sites were grown in the presence of antibiotics at 11oC. Rhizoplane, rhizospheric soil 
and water isolates are shown. 

Sites which were impacted by poor water quality yielded the lowest profiles of antibiotic resistance 

out of all sampling areas. All organisms which were isolated from water samples were susceptible 

at 11oC to all antibiotics. In root samples, Enterococcus spp. showed 10-20% isolates resistance to 

ampicillin and tetracycline, whereas, 100% of E. coli fully resisted vancomycin and tetracycline. 

Similarly, less than 10% of enterococcal isolates from soil samples showed resistance to 
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ampicillin, amoxicillin, sulfasoxazole and tetracycline, while 90% of E. coli isolates were resistant 

to vancomycin and sulfadiazine. Salmonella spp. isolates from all three zones (rhizoplane, 

rhizosphere, and water) were highly susceptible to all antibiotics.  

3.4. Multi-Drug Resistance under Varying Growth Conditions of Pathogens Isolated 

This next section is a brief summary of multi-drug resistance (MDR) found throughout the project. 

MDR was determined by grouping pathogen isolates together that exhibited resistance to 0-2, 3-5, 

6-7, and 10 or more antimicrobials. Figure 3.16 shows differences in resistance profiles amongst 

all genera when grown at host temperature over 24 h.  
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Figure 3.16. Multidrug resistance was measured and compared among pathogens isolated 
from each water quality impacted site.   

It is observed that in poor water quality impacted areas, Enterococcus spp. had a broader range of 

MDR, containing isolates falling in each category of MDR. Salmonella was resistant to the fewest 

pharmaceuticals in these areas, followed by E. coli. As water quality increases (intermediate), 

Salmonella isolates obtained here are more prevalent to resist 3-5 antimicrobials (66%), then 6-7 

or 8-9 (both 15%), whereas Enterococcus spp. were more likely to show MDR to between 6-7 

antimicrobials (57%). E. coli was 100% resistant to 3-5 antibiotics. As seen at poor water quality, 

Enterococcus spp. showed a range of MDR, however, appeared more likely to resist 6-7 (31%) 

and 8-9 (38%) of the antibiotics. Salmonella showed an even distribution of MDR, as each 

category from 3-5 to greater than 10 had equal likelihood of displaying MDR (25%).  

Figure 3.17 measures MDR found in pathogens again isolated from all water quality sampling 

sites, with a respect to sample type origins. The goal of this was to show that there may be different 

levels of MDR depending on isolate location (ie. rhizospheric soil, rhizoplane/root, or water). The 

bars towards the back of the chart represent lesser levels of MDR, whereas the bars foremost 

correspond with high MDR levels. 
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Figure 3.17. Multidrug resistance was measured and compared in organisms isolated from 
each water quality impacted sites and grouped by analyte type they were isolated from.  

Notably, poor and high water quality impacted areas show the most variation in MDR. In the 

rhizospheric soil, isolates were equally resistant (20% of isolates) to o-2, 3-5 and 6-7 of the 

antimicrobials, and 40% resistance to 8-9. Rhizoplane isolates were more likely to show MDR to 

6-7 (37%) than >10 (27%) or 3-5 (27%). At intermediate quality sites, 50% of waterborne isolates 

were resistant to 8-9 antibiotics, followed by the next highest MDR in rhizoplane areas where 50% 

of isolates showed MDR to 3-7 antimicrobials.  

Figure 3.18 depicts MDR observed in pathogens isolated from all water quality sampling sites.. 

The goal of this was to show that there may be different levels of MDR depending on isolate genus 

>10 

6	to	7

0	to	2

0
10
20
30
40
50
60
70
80
90

100

Root Soil Water Root Soil Water Root Soil Water

>10 8 25 33.3 0 0 17 27.2 0 0

8	to	9 25 50 33.3 0 0 50 9 40 0

6	to	7 50 25 16.6 50 0 33 36.3 20 0

3	to	5 16.6 0 16.6 50 100 0 27.2 20 0

0	to	2 0 0 0 0 0 0 0 20 100

Nu
m
be

r	o
f	R

es
ist
ed

	A
nt
ib
io
tic
s

Pe
rc
en

t	o
f	I
so
la
te
s

High																																			Intermediate																																		Low

Pathogen-Associated	Analyte	Multidrug	Resistance	at	37oC



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	93	of	182	

	

when exposed to antibiotics at 28oC. The bars towards the back of the chart represent lesser levels 

of MDR, whereas the bars foremost correspond with high MDR.  

Figure 3.18. Multidrug resistance was measured and compared among pathogens isolated 
from each water quality impacted site. Incubation occurred for 48h at 28oC, then zones of 
inhibition were measured. 

Shown above, 100% of Salmonella spp. isolated from low water quality impacted sites were 

resistant to 2 or less antibiotics. Enterococcal isolates were more likely to be resistant to 3-5 

antimicrobials (57%) in comparison to MDR of 6-7 (7%), 8-9 (14%) or 10 or more (14%). E. coli 

isolates from low water quality impacted sites were either resistant to 3-5 or 8-9 (50% each). At 

intermediate water quality impacted areas, 100% of E. coli isolates were resistant to 8-9 

pharmaceuticals, whereas, 84% of enterococci isolated showed MDR to either 6-7 and or 10 or 
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more antibiotics, while 14% resisted 8-9. 66% of Salmonella spp. isolated at intermediate water 

quality impacted areas resisted 6-7 antimicrobials, followed by 17% of isolates resistant to 3-5 and 

another 17% resisting 0-2. Lastly, at high water quality impacted areas, resistance was uniform 

amongst Salmonella spp. as MDR was 25% for exposure to 3-5, 6-7, 8-9 and 10 or more 

pharmaceuticals. All E. coli isolates and 50% of enterococcal isolates were resistant to 8-9 

pharmaceuticals. Further, 12.5% of Enterococcus spp. at high water quality impacted wetlands 

showed MDR to 10 or more antibiotics, another 12.5% resistant to 6-7 and lastly the final 25% of 

isolates resistant to 3-5.  

Figure 3.19 depicts MDR displayed by pathogens when grown at 28oC based on where the 

pathogen originated. The goal of this was to show that there may be different levels of MDR 

depending on isolate location (ie. rhizospheric soil, rhizoplane or water), and how conditions like 

temperature (28oC) affect resistance or susceptibility. The bars towards the back of the chart 

represent lesser levels of MDR, whereas the bars foremost correspond with high MDR.  
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Figure 3.19. Multidrug resistance was measured and compared in organisms isolated from 
each water quality impacted sites and grouped by analyte type they were isolated from. They 
were incubated at 28oC for 48 h, then zones of inhibition were measured for resistance.   

At low water quality impacted sampling areas, 100% of waterborne isolates were resistant to 3-5 

drugs but showed no MDR to more than 5. More than half of soil isolates (60%) displayed MDR 

to 3-5 drugs, while 20% resisted 0-2 and another 20% of isolates resisted 8-9. Root isolates ranged 

in MDR, with 19% resisting 10 or greater, 19% showing MDR to 8-9 followed by 10% of isolates 

in the 6-7 range and finally over half (54.5%) exhibiting MDR to 3-5. At intermediate water quality 

impacted wetlands, waterborne isolates were more likely to resist 6-7 drugs (50%) followed by 3-

5 (34%) and 0-2 (16%). Root-associated [rhizoplane] isolates were most likely to resist 6-7 

pharmaceuticals (48%) followed by 36% within the 3-5 MDR range and 21% within 7-8. All 
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rhizospheric soil isolates were resistant to 6-7 pharmaceuticals. Lastly, waterborne pathogens at 

high water quality impacted sites resulted in 33% of isolates resistant to 10 or more antibiotics, 

another 33% resisting 8-9, and then the remaining 32% resistant to 7 or fewer. Rhizospheric soil 

isolates were more likely to show MDR to 6-7 antibiotics (50%), followed by 25% in the 8-9 and 

the final 25% in the 3-5 MDR range. Lastly, rhizoplane root samples yielded 42% of isolates 

resistant to 8-9 drugs followed by 25% showing MDR to 6-7, 17% with MDR to 10 or more and 

the final 17% in the 3-5 range.  

Figure 3.20 depicts MDR demonstrated by pathogens isolated from varying water quality sampling 

sites, based on where the pathogen originated. The goal of this was to show that there may be 

different levels of MDR depending on isolate location (ie. rhizospheric soil, rhizoplane or water), 

and how less ideal conditions like temperature (11oC) affect resistance or susceptibility. The bars 

towards the back of the chart represent lesser levels of MDR, whereas the bars foremost correspond 

with high MDR.  
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Figure 3.20. Multidrug resistance was measured and compared among pathogens isolated 
from each water quality impacted site. Incubation occurred for 96h at 11oC, then zones of 
inhibition were measured. 

Unlike in Figures 3.16 to Figure 3.19, the range of MDR for all environmental samples ranges 

between 0-2 or 3-5, but no more. As seen in rhizoplane, rhizosphere and water samples at low 

water quality impacted sites, the greatest level of MDR was found in 60% of rhizospheric soil 

isolates (3-5 antibiotics resisted). The majority of isolates from both rhizoplane (82%) and water 

(100%) had MDR to 0-2 antibiotics. At intermediate water quality impacted areas, 100% of 

waterborne isolates resisted 3-5 drugs, followed 42% of rhizoplane and 33% of rhizosphere 

isolates. Lastly, at high water quality impacted wetlands, 75% of rhizoplane isolates were within 

the 0-2 MDR range, followed by 67% of waterborne and 50% rhizospheric soil isolates. Multidrug 
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resistance was highest in soil-isolated organisms at high water quality sites for this site type, as 

50% resisted 3-5 antimicrobials.  

Figure 3.21 depicts MDR found in different genera of pathogens again isolated from all sampling 

sites, however focus’ on where the pathogen genus. Exposure took place at 11oC. The goal of this 

was to show that there may be different levels of the degree of growth and MDR depending on 

isolate genera. The bars towards the back of the chart represent lesser levels of MDR, whereas the 

bars foremost correspond with high MDR.  

	

Figure 3.21. Multidrug resistance was measured and compared in organisms isolated from 
each water quality impacted sites and grouped by analyte type they were isolated from. They 
were incubated at 28oC for 48 h, then zones of inhibition were measured for resistance.   
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Intermediate water quality wetlands showed the highest percentages of isolates with MDR range 

of 3-5. All (100%) of E. coli, 50% of Salmonella spp., 36% of Enterococcus spp. resisted 3-5 

pharmaceuticals. At low water quality impacted wetlands, 50% of E. coli isolates resisted 3-5 

antibiotics followed by 28.5% of Salmonella spp. isolates. At areas of high water quality impact, 

25% of both Salmonella spp. and Enterococcus spp. showed MDR to a maximum of 3-5 

pharmaceuticals. All remaining isolates at all water quality areas were within the 0-2 MDR range.  

3.5 Measuring the Effects of Metal Exposure on Pathogenic Isolates  
 

Contaminant response is a critical aspect of understanding the behavior of bacteria acclimating to 

a new environment. Particularly, the ability for fecal organisms like Enterococcus faecalis to grow 

in the presence of contaminants, such as the metals copper and silver alone and combined with an 

antimicrobial (chloramphenicol), is measured. This section aims to help gather an understanding 

of behavior of these organisms in riparian wetlands, when exposed to multiple stressors. An isolate 

from poor [low] water quality impacted wetlands was chosen to test the hypothesis of organism’s 

located in these areas being better equipped to respond to contaminant stress.  

Although there are less abiotic factors being influenced here (ie. only temperature and contaminant 

levels [nm]), direct influence of stressors are observed. Enterococcus faecalis was selected for this 

series of exposure trials due to the relative abundance the organism was found based on sample 

site water quality and environmental sample type. In Figures 3.22 through 3.26, an E. faecalis 

isolate from a low water quality impacted wetland was grown in the presence of two metals, copper 

and silver, and one antibiotic, chloramphenicol. This enterococcal isolate originated from the 

rhizosphere and displayed antimicrobial resistance to most (75%) of the tested antibiotics, 
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including chloramphenicol. The metals and antibiotic chosen were environmentally relevant, as 

per data obtained from the MOECC. Additionally, combinations of copper and chloramphenicol 

and then silver and chloramphenicol were used as exposure settings. Using results obtained from 

the antimicrobial susceptibility trials, 28oC was chosen as this was a condition invoking resistant 

behavior. This assay was done in triplicate and the average absorbance for each trial used to 

generate logarithmic growth curves.  

Assessing the Ability of Environmentally Isolated Enterococcus faecalis to Respond to 
Metal Contaminants Alone and in Combination with an Antibiotic  

In Figure 3.22, the growth of E. faecalis was measured every 2 h throughout a 24 h exposure trial. 

Four concentrations of copper were used (10 mM-0.25 mM). Absorbance readings were taken at 

450 nm. Standard error of the mean was calculated and used to generate error bars. Each condition 

was done in triplicate. 
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Figure 3.22. A gradient of molar concentrations of copper nitrate were used to measure the 
growth and response of an Enterococcus faecalis isolate at 28oC. E. faecalis was isolated from 
a low water quality impacted wetland in the Grand River watershed. This was done in 
triplicate and the average absorbance plotted.  

Over the course of a 24 h exposure to all conditions, growth was not inhibited by the presence of 

copper (Figure 3.22). The absorbance began to increase immediately, with turbidity in the flasks 

increasing after 2 h. At 10 h, it appears exponential phase had completed and stationary phase 

began, then entering death phase after 12-13 h. At earlier time points, conditions with lower 

concentrations of copper exceeded growth than that of the positive (no copper) control. 

In Figure 3.23, the growth of E. faecalis was measured over 24 h, at 28oC when exposed to silver. 

Four concentrations of silver were used (0.5 mM-0.0625 mM). Absorbance readings were taken 

every 2 h, at 450 nm.    
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Figure 3.23. A gradient of molar concentrations of silver nitrate were used to measure the 
growth and response of an enterococcal isolate from a low water quality impacted wetland 
in the Grand River watershed at 28oC. This was done in triplicate and the average 
absorbance plotted. 

In Figure 3.23, higher concentrations of silver had more noticeable inhibitory effects on the 

microbial growth. After about 6 h, E. faecalis appears to leave the lag phase and enters log phase 

when exposed to 0.5 mM and 0.0625 mM of silver, whereas, at higher concentrations took more 

time (6-10 h), for a positive growth response to be seen.	
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In Figure 3.24, the growth of E. faecalis was measured over 24 h, at 28oC when exposed to 

chloramphenicol. Four concentrations of chloramphenicol were used (0.5 mM-0.0625 mM). 

Absorbance readings were taken every 2 h, for 24 h using a spectrophotometer at 450 nm.    

	

Figure 3.24. A gradient of molar concentrations of the antibiotic chloramphenicol were used 
to measure the growth and response of an enterococcal isolate from a low water quality 
impacted wetland in the Grand River watershed at 28oC. This was done in triplicate and the 
average absorbance plotted. 

In contrast to Figure 3.23, exposure to chloramphenicol (Figure 3.24) resulted in better adaptation 

and growth earlier in the time cycle. At much earlier time points (4-8 h), Although the time point 

varied for initiating lag phase, this isolate appeared to tolerate all exposure conditions 

concentrations.  
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In Figure 3.25, the growth of E. faecalis was measured over 24 h, at 28oC when exposed to both 

silver and chloramphenicol. Three combinations of chloramphenicol (0.2mM-0.1mM) and silver 

were used (0.2mM-0.1mM). Absorbance readings were taken every 2 h, for 24 h using a 

spectrophotometer.    

	

Figure 3.25. A gradient of molar concentrations of a mixture of silver nitrate and 
chloramphenicol were used to measure the growth and response of an enterococcal isolate 
from a low water quality impacted wetland in the Grand River watershed at 28oC. This was 
done in triplicate and the average absorbance plotted. 

The combination of silver and chloramphenicol shown in Figure 3.25 (0.02 mM AgNO3 + 0.02 

mM chloramphenicol and 0.02 mM AgNO3 + 0.001 mM chloramphenicol) shows that microbial 

growth was inhibited until 18 h, when absorbance began to increase. Further, the combination in 
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which 0.001 nM of silver and 0.02nM of chloramphenicol was used resulted in the highest degree 

of growth over 24 h at 28oC.   

In Figure 3.25, the growth of E. faecalis was measured over 24 h, at 28oC when exposed to copper 

and chloramphenicol. Three combinations of chloramphenicol (0.02 mM-0.01 mM) and copper (1 

mM-0.25 mM) were used. Absorbance readings were taken every 2 h, for 24 h using a 

spectrophotometer.    

	

Figure 3.26. A gradient of molar concentrations of a mixture of copper nitrate and 
chloramphenicol were used to measure the growth and response of an enterooccal isolate 
from a low water quality impacted wetland in the Grand River watershed at 28oC. This was 
done in triplicate and the average absorbance plotted. 
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Lastly, the exposure involving both chloramphenicol and copper (Figure 3.26) resulted in growth 

occurring at an earlier time point in comparison to other combinatory approaches, but was lesser 

(absorbance at time point) than when E. faecalis was exposed solely to copper or chloramphenicol 

alone. After  8 h of growth, log phase was initiated, which E. faecalis in the 0.1 nM CuNO3 + 0.02 

nM chloramphenicol conditions began exponential growth. All other conditions resulted in a 

similar acclimation at this time point where microbial growth occurs at a higher rate (absorbance 

increases). At 4-6 h, there is a delay in all exposure conditions before entering lag phase. 

Conditions with the highest levels of copper began replication before those with reduced levels.  

Discussion 

In this section, we looked to address the innate capabilities of isolated opportunistic pathogens to 

respond to various contaminant stress. Based on data collected by the GRCA, Ministry of 

Agriculture and Ministry of Environment and Climate Change, specific pharmaceutical 

metabolites and metals were chosen. The selected pharmaceuticals and metals were utilized for 

the purpose of providing an accurate reflection of what would be found at riparian wetlands 

varying from high to low water quality. At poor water quality impacted wetlands, metal and 

antimicrobial metabolites would be found in higher quantities in comparison to wetlands of higher 

water quality, thus predicted that microbial stress response would be more well adapted at these 

conditions. The objectives for this set of experiments were to, firstly, isolate opportunistic 

pathogens from rhizoplane, rhizosphere and water samples of riparian wetlands, secondly, evaluate 

the ability of these isolated microorganisms to respond to adverse conditions caused by 

contaminant stress, including antibiotics and metals, and lastly, quantify occurrences of 
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contaminant-resisting opportunistic pathogens from each sampling area to determine how water 

quality may influence resistance profiles. 

The research hypothesis stated that exposure to stress-inducing conditions reflective of abiotic 

factors would result in possible acclimation. In response, opportunistic pathogen replication would 

not be halted. What was found was that, when exposure to varying classes of antibiotics at different 

temperature conditions, opportunistic pathogen isolates were better able to survive during 

exposure at 28oC and above. Further, we posited that low water quality impacted sites would 

exhibit a higher efficacy of resistance to antibiotic stress. Analysis proved otherwise, where it was 

found that all isolates from high water quality impacted sites were more efficient resistors of 

pharmaceuticals. Interestingly, the E. faecalis strain obtained from a rhizospheric analyte at a low 

water quality impacted sampling site showed acclimating capabilities to toxic metals and 

chloramphenicol. It was expected that trials measuring exposure of the isolate to silver and 

chloramphenicol would inhibit growth. This proved to be false, as E. faecalis, which was initially 

inhibited, acclimated to the conditions, initiating replication.  

By reviewing levels of contaminant exposure in the GRWS (Cooke et al., 2014; Pileggio et al. 

2016), antibiotic type and metal concentrations were selected. Water quality was determined using 

GRCA data providing information on Nitrogen and Phosphorous levels in the GRWS. Highly 

impacted areas were more likely to have higher levels of N and P due to direct introduction of 

contaminated waters by anthropogenic sources. Conversely, minimally impacted sampling 

locations were identified as having lesser levels of N and P present in surface waters. Intermediate 

quality impacted areas were regarded as possessing mid-range levels of N and P. The designation 
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of high, intermediate or low water quality impacted areas is utilized to represent levels of nutrient 

loading in waters, indicating contamination and pollution of a water source. Specifically, levels of 

organic N and P, whether free or bound (nitrates, nitrites, phosphates, orthophosphates) contribute 

to nutrient loading, and possible eutrophication (Greening and Janick, 2006; Tsiaras et al. 2014).  

Additionally, information gathered by WHO (2017) globally essential antibiotics to combat 

bacterial infections (ie. enterococcal bacteremia, salmonellosis) provided relevance to the needs 

of this study. By isolating and assessing microbial responses to varying conditions, like antibiotic 

exposure at fluctuating temperature conditions, novel findings of the behavior of environmentally 

deposited opportunistic pathogens was found. Further, measuring the response of microbial 

pathogens to other contaminants, specifically various metals, aided in elucidating responses to 

unfavorable conditions presented by a different type of invoked stress. In particular, measuring 

responses between over-stimulating levels of copper (a micronutrient), and silver (antimicrobial 

properties) yielded surprising results. 

Firstly, when examining the results gathered after exposure to the 12 selected antibiotics, multiple 

major trends were revealed. Initially, I hypothesized that isolates from high water quality impacted 

quality sites would have minimal efficacy when grown in the presence of antimicrobials (Leclerc 

and Moreau, 2002; Payment et al. 2000). Conversely, I thought isolates located from low water 

quality impacted areas would be more tolerant, and physiologically display a better response (ie. 

growth) (Teitzel and Parsek, 2003; Winfield and Groisman, 2003; Trebitz et al., 2007). 

Intermediate water quality impacted sites were expected to have an average number of isolated 

opportunistic pathogens showing both susceptible and resistant behavior (Pandey et al., 2014; 
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Fong and Lipp, 2005). Additionally, I hypothesized that at lower temperatures the isolated 

microorganisms would be more susceptible during exposure trials, increasing resistant behavior 

linearly with rising temperatures (28oC, 37oC). 

Moreover, I expected that the rhizosphere would provide the most numbersome amount of resistant 

opportunistic pathogens isolated, as this environmental zone is highly accommodating to microbial 

communities (Karim et al., 2004; Berg and Smalla, 2009; Brundrett, 2009). This was predicted as 

there are high levels of nutrients (root exudate), water, and organic matter, such as root and soil, 

which organisms can adhere to (Piceno and Lovell, 2000; Ferguson and Signoretto, 2011). 

Analyzed results (Table 2.1) proved that what was occurring in the GRWS was not what we had 

expected. At high water quality impacted areas, pathogens were more numbersome and likely to 

be recovered from environmental samples in comparison to analyte from lower water quality 

impacted areas. Perhaps this was due to increased naturalization and persisting behavior of 

opportunists at high water quality sites.  

Of course, this could also be explained by decreased microbial competition that may be occurring 

at high water quality impacted areas, which theoretically should have a lesser load of opportunistic 

pathogens than areas defined as intermediate and poor water quality. At locations containing 

higher nutrient loads, pollution due to non-point sources would introduce higher loads of fecal run-

off, thus naturally having higher loads of opportunistic pathogens present. The key difference in 

these settings is that at high water quality areas, nutrients are lesser than at low water quality areas, 

thus microbial competition is more prominent as they compete for resources. Conversely, areas 

with low water quality have such high nutrient levels that organisms do not have to adapt to 
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survive. This may also be a trait of pathogenic isolates from low water quality impacted areas and 

how their corresponding response to antibiotics is less efficient than those form higher water 

quality impacted zones. 

Although the initial prediction of bacterial persistence and isolate recovery was proved to be 

opposite our hypothesis, what we did find in all locations was consistency regarding pathogen 

recovery. Rhizoplane and rhizosphere analytes yielded the highest amounts of recovered isolates, 

followed by lower numbers of isolates recovered from water samples (Table 2.2). Interestingly, E. 

coli and Salmonella spp. were isolated much less frequently than Enterococcus spp., which 

apparently is a very successful environmental persistor. It is likely that the rhizoplane and 

rhizospheric areas yielded high isolate recovery due to expansive root systems providing surfaces 

to adhere to (Teplitski et al., 2000). Equally important are nutrient levels found in these regions, 

which are very high due to organic decomposition occurring in the upper soil horizons, as well as 

nutrients provided through this root exudate (Stanley and Lazazzera, 2004). In comparison, the 

ratio of isolates recovered from water were identified to be less numbersome (Table 2.2). 

 In research done by Janice Thomas (2012) out of Dr. Slawson’s Applied and Environmental 

Microbiology lab, her experiments were highly successful in retrieving organisms like Salmonella 

spp. from water. The research done now identified water samples to be less reliable sources for 

retrieving pathogenic isolates. An important factor for the difference in recovered values could be 

explained by weather events, such as temperature fluctuations according to seasonality, and 

extreme weather events, including heavy winds and rain. The research presented here was 
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concerned with deposited organisms that may persist in the rhizosphere and rhizoplane in 

comparison to those more likely to be transient. 

After isolating and purifying the opportunistic pathogens from all sampling locations, exposure 

trials revealed a very interesting trend. At low temperatures (11oC), classified in this research as 

stress-inducing, responses to antibiotics were poor. When temperatures increased to a higher range 

including environmental (28oC) and host conditions (37oC), antimicrobial susceptibility decreased. 

As seen in Figure 3.1 and Figure 3.6, bacterial responses to 75% or greater types of antibiotics 

they were exposed to showed the ability to resist. In Figure 3.11, there is a much greater chance 

that 25% of isolates or more, from each genera were, susceptible to up to 100% of antibiotics they 

were exposed to.  

During stress-inducing events, it has been shown that microorganisms enter a dormant phase, often 

in the form of sporulation, to best withstand adverse conditions (Seuntjens et al., 2004; Yergeau 

et al., 2014). During these period, these organisms are less metabolically active, thus would be 

expected to have a decreased ability to produce antibiotic resistance mechanisms as this requires 

a great amount of energy. Moreover, as conditions become more favorable and stressful stimuli is 

decreased, increases in resistance was identified. This is due to increased metabolically activity, 

resulting in more efficient nutrient acquisition to facilitate physiological events, like protein 

assembly and efflux transport systems (Bengoechea and Skurnik, 2000; Konkel and Tilly, 2000). 

Additionally, at increased temperatures, rhizoplane and rhizospheric isolates were better able to 

adapt and grow during exposure (Figure 3.2, Figure 3.7) in comparison to waterborne isolates. As 

well, at 11oC, antimicrobial susceptibility increased, however, the most resistant behavior was also 
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found in rhizosphere and rhizoplane samples (Figure 3.12). Root surface and soil charge often 

compliment those of antimicrobial metabolites and other pharmaceuticals, which may influence 

the resistance profiles of opportunists retained in these areas. This may enhance their capabilities 

to acclimate to stressful conditions as greater exposure to static levels over time could facilitate 

behavioral adaptation (Ramey et al., 2004).  

Not only did the rhizosphere yield the highest numbers of opportunistic pathogens isolated, having 

approximately 60% more isolates found than any other sample type (Table 2.1), Enterococcus 

faecalis and Enterococcus faeceium were the most prominent species. These organisms were 

confirmed using multiplex PCR (Table 2.5, Figure 2.2). Salmonella spp. and E. coli were found in 

surprisingly low amounts (30-70% less likely than Enterococcus spp.), possibly due to the time of 

year sampling occurred or due to constraints on mimicking environmental conditions in the 

laboratory, resulting in viable but not detectable (VBNC) organisms. Berg and colleagues (2005) 

as well as Patel et. al (2009) demonstrated that the rhizosphere is an ideal location for pathogenic 

retention, as both teams isolated organisms like Staphylococcus. Patel and associates (2009) 

displayed using Stenotrophomonas and enterohemorrhagic E. coli from this zone, the importance 

of electrostatic charge, nutrient and water availability on pathogen persistence.  

Retention of pharmaceuticals in the rhizoplane and rhizosphere occurs by binding of 

complimentary-charged compounds (Liu et al., 2016). In particular, exposure of environmentally 

persisting microbial pathogens to retained pharmaceutical metabolites and metallic ions could 

influence contaminant-resisting behavior (Malchi et al., 2014). Effects of absorbed contaminants 

would be expected to affect both the water quality and microorganismal behavior. Freshwater 
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wetlands innately act as biological filtration systems, often providing a tertiary level of water 

purification (Ji et al., 2002). As polluted water flows through riparian wetlands, present 

contaminants would be deposited in soil,  likely leaching into the various soil horizons 

(Verhoevena and Meulemanb, 1999).  

It was evident during exposure at 37oC that Enterococcus spp. and Salmonella spp. isolates from 

high water quality impacted sites were exceptionally resistant to more drugs than at any other water 

quality or temperature (Figure 3.16). It would appear as though more Salmonella spp. isolates were 

resistant to 10 or more pharmaceuticals when compared against Enterococcus spp., however this 

may actually be a limitation, as there were four times more Enterococcus spp. isolates. This is 

reinforced in the category of resistance to 6 to 7, and 8 to 9 antimicrobials.  Additionally, it should 

be noted that in a healthcare setting, enterococcal infections have proved extremely troublesome 

and difficult to eradicate, such as vancomycin-resistant strains, reinforcing the validity of results 

found in this study. Similar to multi-drug resistance found at high water quality impacted areas 

involving Salmonella spp., E. coli isolates showed to be divided evenly in multiple drug resistance, 

with 50% resisting 6-7, and 50% resisting 8-9. This trend would possibly change as more isolates 

were collected and analyzed, as it is unlikely that 100% of E. coli isolates should display resistance 

to drug classes they are not commonly treated against. 

At high water quality impacted locations, antibiotic resistance may be higher as the organisms in 

these riparian areas may have the ability of less microbial turnover. Specifically, in areas that are 

less prone to contaminant introduction by urbanized or agricultural effluent, it would be expected 

that survivability would be high in the microbes present at these locations (Moriarty, 1999). More 
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specifically, the ability for nutrient acquisition, competition and increased, specialized functions 

of metabolic processes would be prevalent in these areas (Macler and Merkle, 2000). Conversely, 

at areas of low water quality, there are such frequent levels of high contaminant and nutrient 

cycling that microorganisms deposited there never have an opportunity to adapt, and acclimate to 

these settings. As seen in the multidrug resistance trials, pathogens at these high water quality 

sampling areas were much more efficient at resisting seven or more antibiotic in comparison to 

isolates located from intermediate and poor water quality areas. 

Further, at these locations, rhizoplane and rhizospheric-originating isolates were best able to 

survive during exposure to wider ranges of drug class. This would reinforce the notion that not 

only are higher water quality impacted wetlands more hospitable for opportunistic pathogen 

success, yet also that these zones are much more desirable for colonization as opposed to the water 

column. At these specific zones, the ability for establishment is promoted due to high nutrient 

sources and large surface areas for attachment, resulting in robust and dynamic communities. Due 

to this, these areas see the highest degree of opportunist replication, where genetic transfer and 

mutations are occurring at higher rates, additionally impacting the ability to tolerate and even resist 

contaminants. Although multi-drug resistance to 75% or greater classes of antibiotics was most 

likely found at high water quality areas, some Enterococcus spp. isolates were able to resist 

multiple antibiotics at all wetlands assessed.  

Throughout the GRWS, isolates obtained performed poorly when exposed to ciprofloxacin (Figure 

3.16-3.20), which increases DNA supercoiling by decreasing gyrase activity. Alternatively, when 

exposed to cell-wall inhibitors such as vancomycin, resistance was high. This suggests that 
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inherent capabilities may be present in these environmental strains, correlating to findings in 

hospital settings about secondary acquired infection, specifically vancomycin-resistant 

enterococci. However, antimicrobials which affected protein synthesis, such as chloramphenicol, 

resulted in mixed levels of resistance, yielding some susceptible and others resistant when exposed. 

I selected an E. faecalis isolate from a low water quality impacted sampling location for exposure 

to copper, silver and chloramphenicol. This isolate performed well during chlorapmehnicol 

exposure, and was selected to determine effects of environmentally relevant levels of the above 

contaminants. As seen in Figure 3.22, copper had not elicited a lethal effect, as growth occurred 

in all concentration ranges. This was surprising as copper, known to be a micronutrient, did not 

prove toxic when levels were high in the system, suggesting possible increases in efflux 

mechanisms to reduce toxicity, as noted earlier (Macler and Merkle, 2000). When silver was 

introduced to E. faecalis, minimal growth was noted in all concentrations, which were markedly 

lower than those of copper (Figure 3.23). Silver is inherently antimicrobial, inhibiting signal 

transduction as well as releases reactive oxygen species, disrupting microbial cells. It was seen 

that during silver exposure trials, lethal effects were seen in higher concentrations, however 

possible acclimation may have occurred as amounts of silver decreased (Figure 3.23). 

Interestingly, in a dynamic system which this assay was conducted. As time increased, so did E. 

faecalis’ capability to adapt to the presence of chloramphenicol. This suggests that in comparison 

to a closed system, opportunistic pathogens may perform better during exposure to certain 

contaminants, increasing resistant behavior (Figure 3.24) as nutrient availability is constant. 
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Notably, when combinatory trials of either metal plus chloramphenicol were undertaken, growth 

effectively occurred in both conditions. However, as Figure 3.25 would show, acclimation to 

copper and chloramphenicol occurred more quickly than in the trials containing silver and 

chloramphenicol (Figure 3.26). This may be due to, again, increased activity of efflux mechanisms 

reducing internal microbial contaminant accumulation, or perhaps mutations occurring as 

replication occurred over time, resulting in acquired resistance. This may shed light on how 

opportunistic pathogen retention and performance varies when regarding water quality. There is 

data to suggest that processes are occurring at high water quality areas that reinforce resistant 

behaviour, however also evidence to suggest acclimation and resistance can occur at areas of low 

water quality.  Additionally, the ability for retention in the rhizosphere and rhizoplane at these 

riparian zones enables opportunistic retention, which also reinforces contaminant resistance due 

to adherence of metals and pharmaceuticals in these zones. Further work is required to better 

elucidate resistant behavior of Salmonella spp., Enterococcus spp., and E. coli, as well as other 

known opportunistic pathogens that may pose the risk of environmental naturalization. 
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4	

Effects of Water Quality on Bacterial Pathogen Biofilm Formation 

The ability of environmentally isolated microbial pathogens to synthesize adhesion mechanisms 

and generate biofilms was assessed. Isolates from high, intermediate and poor water quality areas 

found at riparian zones along the Grand River Watershed were obtained from root, soil and water 

samples. The following sections will present findings of how enteric opportunistic pathogens such 

as Salmonella spp., Escherichia coli, and Enterococcus spp., colonize environmental settings. 

Exposure to a range of temperatures, including 11oC, 28oC and 37oC, were utilized to help 

understand biofilm-producing capabilities of isolated pathogens, under static and dynamic 

conditions. 

This chapter addresses the research question of how temperature, water quality and environmental 

zones (rhizosphere, rhizoplane and water) influences microbial behavior. At each water quality 

site, rhizospheric soil, roots (rhizoplane) and water samples were collected, processed and 

analyzed. The objectives investigated in this chapter were: 
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1) Measure the ability of environmentally isolated opportunistic pathogens, Salmonella spp., 

Enterococcus spp., and Escherichia coli, to produce attachment structures. 

2) Evaluate the biofilm-forming capabilities of the above opportunistic pathogens and 

determine how this may be affected by water quality and temperature.  

3) Assess how static versus dynamic conditions influence biofilm-forming capabilities in 

opportunistic pathogens isolated from the rhizosphere, rhizoplane and water, to determine 

how location in riparian wetlands influences persistence. 

Similar to the contaminant-response trials, temperature parameters were kept constant (11oC, 28oC 

and 37oC). Static conditions involved inoculation in 96 well microtiter dishes or on dye-infused 

agars. Dynamic conditions provided a force by means of an introduced flow rate (0.2 dyne), to 

help mimic natural settings isolates were derived from. Each assay is sub-divided to best reflect 

trends of biofilm and adhesion mechanism profiles amongst isolated pathogens and the 

environmental analyte (rhizoplane, rhizosphere, water) these organisms were isolated from.   

4.1. Opportunistic Pathogen Proteinaceous and Carbohydrate Attachment Mechanisms 

Initial attachment is imperative for planktonic cells to initiate biofilm formation. A proteinaceous 

structure, curli fimbriae, is produced to help this initial attachment and was evaluated. Also, a 

polysaccharide substance, cellulose, is generated to assist in attachment. Using Congo Red 

infused media, microbial efficacy of synthesizing these structures was assessed. Known 

morphotypes (Romling, 2003) were used as phenotypic morphotype references. Brown, dry and 

rough morphology (bdar) corresponded with proteinaceous growth, such as curli fimbriae or pili.  

Pink, dry and rough morphology (pdar) characterized carbohydrate-rich adhesion structures, such 
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as cellulose or glycoasminoglycans. Red, dry and rough morphotypes (rdar) represents both 

proteinaceous and carbohydrate production. Each assay was conducted in triplicate. 

Figure 4.1 provides a representation of the abilities of Salmonella spp., E. coli and Enterococcus 

spp. isolates from ranging water quality impacted wetlands to produce adhesion structures. This 

was measured using Congo Red infused LB Agar. Incubation occurred at 11oC for 96 h, 28oC for 

36-48 h, and 37oC for 24 h. 
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Figure 4.1. Expressed adhesion morphotypes of isolated Salmonella spp., Enterococcus spp., 
and E. coli isolates from high, intermediate and low water quality wetlands, at 11oC, 28oC, 
and 37oC. The sample types listed include pathogen type and water quality that group of 
isolates was obtained from. For example, H E. coli represents E. coli from high water quality 
impacted sites, M, medium water quality impacted areas, and L, low water quality impacted 
sites. 

At 11oC (left), 16% of Salmonella spp. from intermediate water quality impacted sites generated 

both mechanisms, in comparison to high and low water quality impacted areas. Salmonella spp. 

isolates from low water quality impacted areas were more efficient at producing either extracellular 

polysaccharides (50%) or proteins (50%). Near 15% of Salmoenlla spp. isolated from intermediate 

and low water quality impacted sites were capable of producing cellulose, while approximately 

10% produced curli. All remaining isolates did not express either. The majority of Enterococcus 

spp. were unable to produce either appendage, as high (71%), intermediate (80%) and low (80%) 

water quality impacted isolates lacked either. However, isolates from each location (25%, 10%, 

and 10%) extracellularly produced proteinaceous components, possibly indicative of pili. 

Regarding E. coli, 10% of isolates from high water quality impacted areas produced both curli and 

cellulose, however 40% (H), 25% (I) and 20% (L) of isolates singularly expressed carbohydrate 

synthesis. Around 25%( H) and 13% (L) exuded highly proteinaceous substances.  

At 28oC (center), increases in expression of protein and carbohydrate combinations were observed.  

Salmonella spp. isolates (100%) from low water quality impacted areas displayed this, whereas 

about 70% form high and 60% from intermediate water quality sites synthesized both. Regarding 

curli fimbriae, 20% (H), 15% (I) and 0% (L) of Salmonella spp. displayed this growth.  The 

remaining, 20% (H), and 25% (I) of these isolates seemingly showed morphotypes for cellulose. 

Approximately 65% (H), 70% (I) and 75% (L) of Enterococcus spp. isolates were unable to create 
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any either. Interestingly, 22% (H) exhibited the ability to manufacture both proteins and 

carbohydrates. Similar to Salmonella spp. isolates, 66% (H), and 100% (I,L) E. coli displayed rdar 

morphotype, indicating combinatory generation. At high water quality impacted areas, between 

15-20% of E. coli constructed either curli fimbriae or cellulose. 

Incubation at 37oC resulted in 83% (H), 100% (I) and 100% of E. coli expressing a rdar 

morphotype, an increase of nearly 20% at high water quality impacted sites. As well, 100% of 

Salmonella spp. low water quality impacted areas proved efficient curli and cellulose producers, 

while 50% (H) and 83% (I) displayed this behaviour. A maximum of 13% of Enterococcus spp. 

were capable of protein or carbohydrate construction. Similar trends were seen in enterococcal 

isolates form all sites, as the majority (60% or greater) produced neither. 

4.2. Analyte-Specific Pathogen Protein and Carbohydrate Adhesion Expression 

Figure 4.2 examines variation in adhesion mechanisms categorized by type of analyte 

environmental pathogens were retrieved from. In correlation with Figure 4.1,  lower temperatures 

yielded minimal expression. In analyte which Salmonella spp. and E. coli was recovered from, 

combinations of protein and carbohydrate synthesis appears common. Analyte for which 

Enterococcus spp. was derived from was least likely to produce either biological compound. 
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Figure 4.2. Adhesion mechanism profiles of isolated opportunistic pathogens purified from 
rhizoplane (root), rhizosphere (soil) and water samples from high, intermediate and low 
water quality wetlands, at 11oC, 28oC, and 37oC. 

Similar to Figure 4.1, most isolates perform poorly during growth at this temperature. At each 

sampling area, pathogens isolated from the rhizoplane or rhizosphere performed better than those 

which were extracted from water. In the rhizoplane, 63% (H), 45% (I) and 66% (L) either did not 

grow or have a distinct morphotype. Nearly 20% (H), 35% (I) and 9% (L) of rhizoplane isolates 

H	Root

H	Water

M	Soil

L	Root

L	Water

0

10

20

30

40

50

60

70

80

90

100

None PDAR BDAR RDAR None PDAR BDAR RDAR None PDAR BDAR RDAR

11o C 28o C 37o C A
na

ly
te

 T
yp

e a
nd

 W
at

er
 Q

ua
lit

y

Pe
rc

en
t o

f I
so

la
te

s

Temperature (Celcius)

Analyte-Associated Pathogen Adhesion Mechanism Synthesis

H Root
H Soil
H Water
M Root
M Soil
M Water
L Root
L Soil
L Water



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	123	of	182	

	

generated extracellular polysaccharides, whereas 8% (H) 14% (I) and 25% (L) expressed some 

protein growth. Isolates originating from the rhizosphere were more likely to generate protein than 

either a carbohydrate, both or neither, as 50% (H), 67% (I) and 44% (L) expressed a phenotypes 

conventional to cellulose or other external carbohydrates. Waterborne isolates were moderately 

successful, as   

When temperature increases from 11oC to 28oC, expression of curli fimbriae and cellulose is 

noticed in water isolates (100%). As noted in Table 2.1 and Table 2.2, E. coli and Salmonella spp. 

were predominantly isolated from water. In the rhizoplane (68%, 60%, 63%) and rhizosphere (58% 

63% and 69%), it was observed that many isolates were unable to generate either mechanism, 

corresponding with isolated Enterococcus spp. Moreover, up to25% of all isolates taken from 

rhizosphere and rhizoplane samples were capable of producing curli fimbriae and up to 15% 

capable of generating cellulose. Additionally, it was noticed that rhizosphere samples from all 

locations retained organisms capable of producing both mechanisms (6%, 3%, 10%). Similar 

trends continued as temperature rose to 37oC, where increases in expression of both extracellular 

modifications were enhanced. 

4.3. Opportunistic Pathogen Extra Polymeric Substance (EPS) Production 

In relation to generating physiological adhesion appendages, EPS production is critical to the 

establishment and maturation of biofilms. In this section, isolated opportunistic pathogens from all 

sample sites assessed affinities for EPS production. All organisms were grown overnight (18-24 

h) and cultivated on LB agar containing Calcofluor (w/v%), which fluoresced under UV light if 

EPS was produced. EPS is a poly-saccharide biopolymer exuded from bacterial biofilms, 
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promoting attachment and adsorption of environmental substances. Each assay was carried out in 

triplicate. 

 

Figure 4.3. Extracellular Polymeric Substance profiles of the isolated opportunistic 
pathogens Salmonella spp., Enterococcus spp., and E. coli from high, intermediate and low 
water quality wetlands, at 11oC, 28oC, and 37oC. The pathogens were categorized as low 
(poor), intermediate, or strong EPS producers. The sample types listed include pathogen 
type and water quality that group of isolates was obtained from. For example, H E. coli 
represents E. coli from high water quality impacted sites, M, medium water quality impacted 
areas, and L, low water quality impacted sites. 
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As with expression and assembly of proteinaceous and carbohydrate-rich extracellular structures, 

temperature significantly impacted EPS growth. At 11oC, the majority of isolates from all water 

quality sites were limited in their ability to produce EPS. High water quality impacted wetland 

isolates (25%) were most likely be strong producers of EPS in comparison to isolates from lower 

water quality impacted sites. Enterococcal isolates from high, intermediate and poor water quality 

impacted areas were able to produce strong amounts of EPS. The majority of E. coli isolated 

produces EPS in minimal amounts, with isolates from low quality sites demonstrating intermediate 

at best production. Salmonella spp. and Enterococcus spp. isolates at high water quality impacted 

sites are best able to generate EPS at low temperatures, as each have 20-40% of isolates capable. 

Increased water quality does show an increasing trend in EPS production in these two organisms, 

whereas E. coli from lesser water quality areas may be more efficient in EPS. 

As temperature increased to 28oC, all obtained isolates from each sampled site showed at least 

intermediate EPS production values (40% of enterococcal isolates, 45% of E. coli.). Poor water 

quality sites housed the highest isolate number of intermediate EPS production, whereas high 

quality wetland isolates had the highest percentage of strong EPS production. At host temperature, 

a shift to strong EPS production for isolates at all sites was observed, whilst minimal numbers of 

isolates still generated intermediate amounts of EPS. 

Additionally, as the temperature increases so does the ability for each genus to produce EPS.  At 

37oC, the ability for EPS production greatly increases. All isolated pathogens from all varying 

water quality wetlands show strong EPS production, with high water quality areas having the 

strongest total profile (all 3 microorganisms’ ability to produce). E. coli and Salmonella spp. show 
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better capabilities to produce this EPS, whereas Enterococcus spp. isolates range from 

intermediate to strong generative abilities. 

4.4. Pathogen-Associated Analyte EPS Production 

Figure 4.4 provides an overview of EPS production at varying water quality impacted sites and 

corresponding sample types (rhizoplane, rhizosphere, water), when grown at 11oC. The first series 

of data (on the left) corresponds with the ability to produce low, intermediate and high amounts of 

EPS at high water quality impacted sites. This is followed by production capabilities at 

intermediate (middle) and poor water quality areas (right). 
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Figure 4.4. Extracellular Polymeric Substance profiles of isolated opportunistic pathogens 
purified from rhizoplane (root), rhizosphere (soil) and water samples from high, 
intermediate and low water quality wetlands, at 11oC, 28oC, and 37oC. 

At the lowest temperature condition, low levels of EPS production were predominant, followed by 

intermediate and then strong levels. At high and intermediate water quality impacted areas, root 

and soil isolates were more likely (30-90%) to produce intermediate levels of EPS. Further, up to 

40% of these isolates were strong EPS producers. As conditions warmed, a shift from low EPS 

producers, to intermediate at worst, was noticed. Rhizosphere and rhizoplane isolates from all 
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types of water quality improved to at least 65% strong EPS production, whereas the rest of isolates 

from these regions produced intermediate levels. Noticeably, waterborne isolates were weak 

performs regarding EPS production, as about 40% of these isolates from high and intermediate 

water quality sites were efficient EPS producers. Interestingly, low water quality impacted area 

isolates were highly efficient at EPS production. At the warmest temperature condition, all 

organisms display peak EPS production, as at least 70% of all isolates appeared to be strong 

generators. Again, rhizosphere and rhizoplane isolates performed well.  

4.5. Environmental Pathogen Biofilm Formation 

A static biofilm assay was undertaken (as described in chapter 2) using 96-well microtiter dishes 

to determine, based on absorption, how effective environmental isolates were at producing biofilm 

material. The biofilm adhering to the polystyrene surface of the wells was stained with crystal 

violet and dissolved using acetic acid. Absorbance was measured using a BioRad plate Xmark 

plate reader. This was not a specific assay, meaning the total amount of biofilm produced was 

measured as opposed to specific components, as seen in the previously. Depending on temperature 

and incubation time, comparisons between pathogens and environmental sample source (sample 

type, rhizospheric soil, rhizoplane or water) were again assessed. Each assay was carried out in 

quadruplicate. 
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Figure. 4.5. A non-specific microtiter biofilm assay used to quantify the degree of biofilm-
forming capabilities of Salmonella spp., Enterococcus spp., and E. coli from high, 
intermediate and low water quality wetlands, at 11oC, 28oC, and 37oC. 
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Figure 4.6. A non-specific microtiter biofilm assay used to quantify the degree of biofilm-
forming capabilities of environmental pathogens associated with rhizoplane (root), 
rhizosphere (soil) and water analyte from high, intermediate and low water quality wetlands, 
at 11oC, 28oC, and 37oC. 

The ability to form static biofilms without any external influence other than temperature was 

measured. In Figure 4.5, the total amount of biofilm production was compared at 11oC for the 

sampled areas. The majority of isolates were weak biofilm formers, however, each type of water 

quality site had isolates that were produced strong biofilms. Isolates from low water quality 

High	Root

High	Water

Medium	Root

Medium	Water

Low	Root

Low	Water

0

10

20

30

40

50

60

70

80

90

100

11o	C 28o	C 37o	C

An
al
yt
e	
Ty
pe
	a
nd
	W

at
er
	Q
ua
lit
y

Pe
rc
en
t	
of
	Is
ol
at
es

Temperature	 (Celcius)

Pathogen-Associated	Analyte	Non-Specific	 Biofilm	Formation	

High	Root

High	Soil

High	Water

High	Water

Medium	Root

Medium	Soil

Medium	Water

Medium	Water

Low	Root

Low	Soil

Low	Water



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	131	of	182	

	

impacted sites formed the least amount of biofilm, whereas isolates from intermediately water 

quality impacted sites made up the majority of intermediate biofilm formers, and lastly isolates 

from more pristine areas the strongest biofilm formers.  

Figure 4.6 examines variation at low temperatures in biofilm production between genera that were 

isolated and purified. Low quality sites primarily provided weak to intermediate biofilm formers, 

however, 45% of enterococcal isolates form high water quality impacted sited proved to be strong 

biofilm formers under these static conditions. As site quality increased, again so did biofilm 

forming capabilities. E. coli and Salmonella isolates were stronger biofilm generators than 

Enterococcus, however these ratios became more even amongst organisms from high quality sites. 

All three genera had organisms that could form strong biofilms, however Enterococcus again had 

isolates that fell into all categories. 

Figure 4.6 shows that in all sampled areas, water-isolated bacteria were least-best at generating 

strong biofilms. At low quality sites, bacteria from the soil produced similar amounts of 

intermediate and strong biofilms. Increasing water quality resulted in increased biofilm production 

for soil and root originating microbes, as medium quality sites yielded soil bacteria that were highly 

proficient in biofilm production. High quality sites provided organisms isolated from roots, soil 

and water that were most efficient at biofilm generation in comparison to lesser quality areas.   

Non-specific biofilm formation at 28oC shows a marked increase in biofilm production for all 

isolates. In comparison to those exposed at 11oC, isolates from all water quality sites improved in 

biofilm production at a relatively higher temperature than that observed previously. Low quality 
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sites had even distributions of intermediate and strong biofilm formers, whereas medium water 

quality sites were all strong generators. 

It is evident that all genera from medium quality sites are proficient biofilm formers, as they all 

generated strong biofilms (Figure 4.5). Salmonella spp. from poor water quality sites all formed 

strong biofilms, whereas, E. coli and Enterococcus were both comparable amongst intermediate 

and strong biofilm formers. At high quality sites, E. coli and Enterococcus isolates improved in 

biofilm production, as both exceeded 80% of total isolates forming strong biofilms. Salmonella 

spp. generated strong biofilms under all conditions.  

Biofilm production based on sample type was assessed. All isolates from corresponding samples 

were grown at a 28oC for 48 h. The data on the left represents isolates found in Rhizospheric soil, 

the rhizoplane and water from high water quality sites. The middle portion represents those from 

intermediate water quality, and the data series on the right corresponds with poor water quality.   

All root, soil and water samples from medium quality sites displayed strong biofilm production. 

Rhizospheric soil and water-derived isolates from low water quality areas generated strong 

biofilms, while root samples had more intermediate than strong producers. This clearly changed 

as water quality improved, with majority of isolates from rhizosphere, rhizoplane and water 

samples at intermediate and high water quality impacted wetlands strong biofilm producers. 

The final temperature used in assessing static biofilm growth was at 37oC. An increase from 11oC 

to 28oC, 90% of isolates were highly proficient in biofilm generation (Figure 4.5). All organisms 

from high, medium and low impacted sites proved to be efficient biofilm formers, as again all 
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isolated from intermediate water quality impacted sites consistently showed strong biofilm 

formation. 

At low water quality impacted locations, 100% Salmonella spp. isolates were intermediate biofilm 

producers. Conversely, Salmonella spp. isolated at low water quality areas shifted to intermediate 

biofilm formers, whereas enterococcal biofilm strength increased. At high quality sampling areas, 

Enterococcus generated the strongest biofilms, followed by Salmonella and E. coli. All 

environmental samples yielded bacteria capable of forming biofilms at high temperatures, as only 

soil and roots at low quality sites, and roots from high quality sites, retained organisms with 

intermediate biofilm-producing capabilities, at minimum.  

At 37oC, intermediate water quality impacted sites showed 100% of isolates were strong biofilm 

formers. At poor water quality impacted sites, 18-23% of rhizoplane and rhizosphere-isolated 

organisms produced intermediate levels of biofilm, while the remaining percentage were strong 

biofilm formers. Similarly, less than 20% of rhizoplane isolates from high water quality areas were 

intermediate biofilm producers whereas all other organisms isolated from rhizoplane, rhizosphere 

and water samples were strong biofilm producers.  

4.6. Dynamic Biofilm Generation 

The previous sections of Chapter 4 examined the capabilities of environmentally persisting 

opportunistic pathogens’ efficacy at biofilm and adherence mechanism production under static 

conditions. With the help of Christopher Bartlett, the ability to measure biofilm during dynamic 

conditions was measured. Using the BioFlux 200 System (Fluxion Biosciences, Alameda, CA, 

USA) quantification of planktonic attachment and biofilm maturation under fluid conditions was 
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achieved (ie. flowrate in dynes). For this experiment, E. faecalis was chosen as the test organism 

due to high retrieval yields from high, intermediate and low water quality impacted wetlands.   

Dynamic biofilm formation over the span of 24 h is visually summarized in Figure 4.7. Each row 

corresponds with a specific E. faecalis isolate from either high, intermediate or low water quality 

impacted sampling areas. At maturation (24 hr), biofilms were stained with Calcofluor to show 

EPS production at 28oC. 

Table 4.1. Enterococcus faecalis isolate legend for pathogens assessed for determining biofilm 
production efficiency under dynamic conditions. 
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Figure 4.7. E. faecalis from high, intermediate and low water quality impacted wetlands were 
grown under dynamic conditions using the Bioflux™ system. Eight isolates from each water 
quality site were chosen, and grown for 24 h at 28oC. Images were captured at 0 (2nd row), 
18 (3nd row) and 24 h (4th panel), and stained with Calcofluor at the final time point (right). 
Images on the right showing increased blue color signifies heavy biofilm growth, whereas the 
same image in the 4th column appears as dark black. 

When examining the dynamic biofilm growth using the Bioflux™ system, various levels of biofilm 

production occurred over the 24 h growth period at 28oC (Figure 4.6). The first seven rows 

correspond with biofilm growth captured at 0 h, 18 h and 24 h. As seen for all isolates obtained 

from high water quality wetlands, the planktonic phase shows minimal adherence to the walls of 

the microtiter dish. After 18 hours, 75% of isolates in this trial appear to generate strong biofilms 

(H1-H5, H8), whilst two others (H6,7) are not as proficient. In H4 and H8, a comet-like appearance 

in biofilm structure is observed, signifying the formation of biofilms under flowing conditions. 

For the 75% of isolates forming strong biofilms at 18 h, similar trends are seen over the next six 
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hours. At 24 h, we see maturation of the biofilm (dark black), especially in H1,4 and 8, where they 

are extremely dense. When stained with Calcofluor, the noticeable interaction of the stain with 

EPS fluoresces using DAPI (blue). Strongly intense blue coloration represents increased EPS 

production. In H6 and H7, biofilm has covered the surface of the flow-through channels more 

uniformly than in any of the others,. 

The intermediate water quality areas (I1-I8) resulted in almost 50% of E. faecalis at 18 hours 

between heavy and low biofilm producers. I1,4,5,6 7 and 8 appear to be slowly producing adhesive 

mechanisms, showing more even distributions around channel walls as opposed to attaching and 

increasing density at distinct locations as seen in the strong biofilm formers isolated from high 

water quality areas. As the incubation proceeds for 6 more hours and maturation continues, there 

is an apparent increase in biofilm production [density], again seen in the fourth column as dark 

black areas, and bright blue when stained with Calcofluor. At intermediate water quality locations, 

I6,7, and 8 show areas where biofilm production is more pronounced (uniform), while in all others 

the blue intensity is not as obvious.  

Lastly, the isolates obtained from low water quality areas showed a poor ability to form biofilms, 

or sub-optimally binding Calcofluor. All isolates show the least proficient ability to generate 

biofilms after 18 hours when compared to isolates originating from higher water quality impacted 

areas, however I, 5-8 appear to have increased production at 24 h. When staining, it is seen that, 

although there are dense (dark) areas when looking at the microscopic images, Calcofluor may not 

have bound, resulting in ineffective DAPI imaging. Areas of thick biofilm and active replication 

are not as apparent here as in the higher water quality isolates. 
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 Discussion 

Assessing pathogen fate and persistence in the environment is a comprehensive task. This portion 

of the research project aimed to assess isolated pathogens that may have originated from 

mammalian fecal matter, that have been recovered from the environmental setting. Chapter 4 

examines the capabilities of environmentally isolated pathogens (Salmonella spp., E. coli, 

Enterococcus spp.) to synthesize curli fimbriae, cellulose, and extracellular polymeric substances. 

Additionally, under static conditions net biofilm production was quantified to measure correlations 

between specific adhesion mechanisms, and non-specific complete biofilm production. Lastly, this 

section aimed to identify how variation of environmental conditions, specifically static versus 

dynamic conditions, affected microbial pathogen adherence and establishment. 

In this chapter, the specific objectives measured were to, firstly, measure the ability of 

environmentally isolated opportunistic pathogens, Salmonella spp., Enterococcus spp., and 

Escherichia coli, to produce attachment structures. Next, evaluate the biofilm-forming capabilities 

of the above opportunistic pathogens and determine how this may be affected by water quality and 

temperature. The final objective was to assess how static versus dynamic conditions influence 

biofilm-forming capabilities in opportunistic pathogens isolated from the rhizosphere, rhizoplane 

and water, to determine how location in riparian wetlands influences persistence. 

Similar to contaminant exposure in Chapter 3, it was posited that at areas highly impacted by 

contaminants, urbanization and agriculture, opportunistic pathogens would be better able to 

produce adherence mechanisms, enabling them to acclimatize to these conditions (Cabral, 2010). 

Correspondingly, these pathogens would be capable of producing strong biofilm structures under 
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both static and dynamic conditions, producing robust biofilms (Dunny et al., 2014). Conversely, 

at areas least impacted by anthropogenic influences, opportunistic pathogen isolates should be 

poorer biofilm producers (Kaiser et al., 2013).  

Further, it was thought that at these areas of low water quality, nutrient levels would be in 

abundance thus more favorable to colonize these regions when compared to high water quality 

areas, having lower nutrient availability. Comparably, the ability to form biofilm structures and 

persist were thought to influence contaminant resisting behavior, resulting in a higher degree of 

microbial succession at low water quality areas. 

Regarding analyte sources for which microbial pathogens were retrieved, we anticipated that at all 

riparian wetlands sampled, biofilm-forming capabilities would be best displayed by rhizosphere 

and rhizoplane organisms. As mentioned in Chapter 1 and Chapter 3, the increased surface area 

and nutrient levels at these regions would be more favorable to establish, resulting in upregulation 

of adhesive mechanisms. Additionally, waterborne isolates were projected to be least efficient 

biofilm formers, as when in the water there is not nearly as much material for microbes to attach.  

In the first series of assays, Congo Red-infused media was utilized to determine whether cellulose 

or curli fimbriae were produced by Salmonella spp., and E. coli isolates, whereas pili is produced 

by Enterococcus spp. (Chapter 2). What was found was that, similar to contaminant exposure trials 

at 11oC (Figure 3.14), the efficiency of adhesion mechanism activity was lesser than at 28oC and 

37oC. When evaluating levels of mechanistic expression, E. coli from high water quality areas and 

Salmonella spp. from intermediate water quality areas displayed the ability to produce both 

carbohydrate-rich and proteinaceous mechanisms (Figure 4.1). 
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 Moreover, it appears as though Enterococcus spp. isolates performed poorly in this assay, which 

is not surprising as these Gram-positive bacteria are not known to synthesize either curli nor 

cellulose. Instead, they produce proteinaceous pilli (type IV), aggregative substances as well as 

enterococcal surface proteins. These physiological mechanisms assist in cell interactions with 

surfaces when initializing attachment, as seen in E. faecalis strains resulting in hospital-acquired 

infections. With this in mind, the data showing that cellulose and curli-like morphotypes identified 

for enterococcal isolates may be due to a decreased selectivity of Congo Red for binding proteins. 

Congo Red is an azo dye, binding organic substrates and resulting in pigmentation. As Salmonella 

spp. and E. coli are known producers of both structures, it was not surprising to see one or both 

mechanism produced. However, it is notable that at low temperatures, these mechanisms were not 

only generated by these organisms, but contaminant response also occurred (Figure 3.13). 

Although resistance to multiple pharmaceuticals was found to be a maximum of two at low 

temperatures (Figure 3.20), the data suggests that perhaps there is a correlation between adhesin 

synthesis and resistant behavior. 

As temperature increased, so did the ability for curli fimbriae and cellulose synthesis. At 28oC, E. 

coli and Salmonella spp. isolates improved drastically, where at high and low water quality 

impacted areas 100% of these isolates produced both. Not surprisingly, multi-drug resistance 

markedly increased in these organisms (Figure 3.18), further suggesting synergistic behavior 

relating biofilm structure and performance during contaminant exposure. 

 Also, Enterococcus spp. had apparent increases in both mechanisms (Figure 4.1), which is 

fascinating as this genus of microorganism does not synthesize these mechanisms, reinforcing the 
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idea of the level of affinity Congo Red has for proteinaceous compounds. Notably, resistance to 

contaminants also shows a linear increase with temperature and amyloid synthesis in this group of 

pathogens, again contributing to the possibility of biofilm synthesis facilitating contaminant 

response.  

Regarding environment sample types these pathogens were isolated, rhizoplane samples from high 

water quality areas contributed one of the most diverse expression of extracellular proteins and 

carbohydrates, followed next by rhizospheric samples from intermediate (M) water quality 

impacted areas. All other analyte types from high, intermediate and low water quality impacted 

areas showed similar profiles in no mechanisms, or singular expression at 11oC (Figure 4.5). 

Similarly, multidrug resistance was found to be low at these areas, however at high and low water 

quality sites, rhizoplane and rhizosphere isolates did perform better than waterborne pathogens 

(Figure 3.21).  

An interesting level of resistance was found in waterborne isolates from intermediate water quality 

impacted sampling areas in waterborne pathogens, which may address the efficiency of curli and 

cellulose in initial establishment (Figure 4.5), or reveal differences in time of collection 

(seasonality) and sample size. This was expected, as at lower temperatures signal transduction and 

detoxifying systems are not as active compared to less stressful conditions (Wood et al. 2013). 

When measurements of adhesion mechanisms were compared to contaminant response and 

resistance profiles at 28oC, a positive correlation was found. Studies have shown that this is a 

cardinal temperature for adhesion activity, seeming that when organisms are cultivated at this 

temperature, optimal expression of these mechanisms results (Romling et al., 2012; Romling et 
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al., 2003). Increasing temperature resulted in not only up-regulation of pathogen adhesion 

mechanisms, but also resistant behavior. As E. coli and Salmonella spp. improved to at least 80% 

curli and cellulose production (Figure 4.1), multidrug resistance also improved. When isolated 

from high water quality impacted areas, 75% or greater Salmonella spp. and 100% of E. coli 

isolates resisted at least 5 or more antibiotics. In relation to this, 66% of Salmonella spp. resisted 

5 or more pharmaceuticals at intermediate water quality areas, however non proved resistant at 

low water quality areas (Figure 3.18). E. coli maintained resistant behavior, as 50% of isolates 

were not affected by 5 or more antibiotics. 

Enterococcal isolates showed the greatest levels of pharmaceutical resistance, however appeared 

to express the least amount of adhesion mechanisms. Of these pathogens, 25% or greater resisted 

up to 5 antibiotics, and 50% or more resisted 8 to 12 (Figure 3.18). Although Congo Red is useful 

in identifying adhesion mechanisms in organisms producing curli fimbriae and cellulose, it may 

not be best for those utilizing other proteinaceous or carbohydrate-rich adhesins.  

Further, when measuring amyloid presence, it was noted that again waterborne isolates proved 

most efficient, generating both structures. Surprisingly, areas denser in nutrients, containing large 

surfaces areas for attachment, provided isolates that did not express this behavior (Zhang et al. 

2013). This, again, is interesting in comparison to the rhizosphere and rhizoplane isolates in this 

assay, however is not surprising as this group of samples was comprised of E. coli and Salmonella 

spp. (Toledo-Arana et al., 2001; Bonafonte et al., 2000). There was not a marked increase in 

adhesin behavior between 28oC and 37oC, further suggesting that the most impactful transition in 

adhesion expression occurs at or before 28oC.  
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Regarding water quality, a similar trend appears throughout all organisms isolated. This was 

unexpected, as we predicted low water quality impacted areas to be more specialized in amyloid 

synthesis. Perhaps these findings reveal that, in a laboratory setting where variables are easily 

controlled, microorganisms can potentially revert to a specific behavior as their new environmental 

setting is not as taxing. There is no microbial competition, so the need to create biofilms for 

protection of nutrient acquisition is minimal.  

Also, abiotic stressors, such as contaminate levels, nutrient levels, predation, pH and more, are less 

hostile in the laboratory setting. Further, the influence of plant assemblages at these water quality 

areas may correlate with adhesin expression. Throughout the GRWS, similar plant types were 

found at West Montrose and Shand Dam when measured with those from Doon and RARE. This 

would help explain the similar trends noticed at each wetland. Further, soil composition, moisture 

and charge were similar, however varied with seasonality. The influence of plants on microbial 

establishment is significant, as plants produce specific antimicrobials, invoking stressful 

conditions for grazing or attached bacteria (Maschner et al., 2004; Bossio et al., 1998). This may 

also contribute to drug resistance identified in Chapter 3. 

Adhesion mechanisms like curli fimbriae and cellulose promote attachment of planktonic 

microorganisms to surfaces, where chemical signaling molecules like N-acyl-homoserine lactone 

and N-acetyl-glucosamine facilitate communal growth and well-developed biofilms (Teplitski et 

al., 2000; Waters and Bassler, 2005). When planktonic microbes adhere to a surface and establish 

themselves, signaling to others results in attachment (Figure 4.7). The ability to quorum sense and 

produce a very mature, specialized biofilm enables microorganisms to not only remain in the 
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environmental setting, but also acquire nutrients. More importantly, biofilms are a source of 

contaminant response, resulting in upregulation of adhesion mechanisms resulting in enhanced 

biofilm production (White-Ziegler et al., 2007). Channels formed in mature biofilms help transport 

metals, chemicals, nutrients and more, throughout the architecture of the community (Stanley and 

Lazazzera, 2004). Similar to efflux mechanisms in singular cells, biofilms may act as a highly 

efficient detoxifying mechanism (Sabater et al.,2002). Moreover, Diffusion of nutrients was more 

efficient in less-dense biofilms, as transport was more effective and the biofilm community was 

more effective in self-purification, and that micro colonies may be best able to survive in these 

areas (Stanley and Lazazzera, 2004). 

Not only are these mechanisms important for environmental persistence and success, but also for 

establishing infection in hosts, which may also shed light on resistant behavior seen in Chapter 3. 

The notable abilities of these pathogens to illicit infection is largely attributed to being able to 

penetrate host enterocytes and colonize in mammals resulting in infection (Yu et al., 2012). As 

well, similar mechanisms are required to adhere or penetrate plant structures, such as roots, to 

become established (Benakanakere and Kinane, 2012; Ma et al. 2017). 

Assessing extracellular polymeric substance (EPS) in pathogenic isolates revealed near-identical 

trends as seen throughout Congo Red trials. The largest noticeable difference was that 

Enterococcus spp. isolates were much more efficient at producing this carbohydrate-rich substance 

compared to curli and cellulose. As identified by Cobo and colleagues (2008), Enterococcus are 

notable biofilm formers, particularly notorious for causing hospital-acquired (nosocomial) 

infection, it is not surprising they were isolated in high quantity. Further, their presence in the 
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environment suggest not only fecal contamination, but high levels of acclimatization du to biofilm 

production, retention in the rhizosphere and contaminant resistance (Baquero et al., 2011). 

There are several surface adhesion molecules which are innate in E. faecalis and E. faecium, which 

help reason why at low temperatures and varying water quality, high biofilm production was 

observed. Aggregative substances may enable cell-cell recognition thus resulting in the generation 

of thicker biofilms under sub-optimal conditions, when they become more favorable, are 

increasingly expressed in areas high in sugar content, such as plant roots (Clewe1l and Weaver, 

1989; Creti et al. 2006). In addition, pili synthesis and Microbial Surface Components Recognzing 

Ahesive Matrix Molecules (MSCRAMMs) enable initial planktonic adherence to abiotic surfaces 

and secreting or containing extracellular matrix components (Sillanpää et al., 2008; Sillanpää et 

al., 2004). 

It was seen that increasing temperature positively correlated with the number of EPS producers, 

with the two warmer (28oC and 37oC) temperatures resulting in highest levels of expression. 

Similarly, when comparing this to levels of resistant behavior (Figure 3.16-Figure 3.20), the ability 

to synthesize adhesion mechanisms and EPS result in at least 50% resistance to 5 or more drugs 

when exposure occurs at 28oC or greater. High water quality sampling sites generated the most 

EPS, followed by low water quality impacted areas. Nguyen and Yuk (2013) observed similar 

trends when measuring pathogenic biofilm formation on abiotic surfaces, showing that Salmonella 

spp. formed stronger, more resistant biofilms at 37oC, followed by the next highest biofilm 

production efficiency at 28oC. Figures 4.5 and 4.6 show the ability of the pathogens of interest to 

generate non-specific biofilm. In a study done by Jones and Bradshaw (1996), Salmonella and E. 
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coli displayed the ability to generate EPS over a span of 72 h, noting efficiency of polysaccharide 

production resulting in biofilm adherence, which further improved throughout biofilm maturation.  

Enterococcal biofilms utilize EPS as a way for protecting internal, active cells of the community 

as well as communication when enduring stressful stimuli (Santos et al., 2008). The esp-encoded 

gene, enterococcal surface proteins, has bene shown to upregulate in expression at increased 

temperature (Johnston and Jaykus, 2004). Further, when comparing adhesion mechanisms 

identified in these environmental isolates to static biofilm formation, it was shown that whether 

esp-producing genes were active or not, biofilm formation still was initiated from planktonic (2h) 

to microcolony (8h) and lastly a complex biofilm structure after 24 h (Kristich et al., 2004). To 

my knowledge, the calcofluor staining of EPS production of environmental E. faecalis isolates 

exposed to dynamic conditions is novel. The ability to assess in real-time the capabilities of 

pathogens to adhere to surfaces and replicate in high numbers is extremely important in beginning 

to understand environmental persistence. Although this assay was carried out in a singular trial, 

the biofilm and EPS levels imaged (Figure 4.24) can be reinforced by the data found in all other 

adhesion-specific and general biofilm measuring assays. 

Further, within enterococcal biofilm matrices, the exchange of important transposable elements 

such as antibiotic resistance and biofilm growth is facilitated (George et al., 2005). Confocal laser 

scanning microscopy was initially used to assess biofilm generation, however, since has been 

replaced with using atomic force microscopy (Morris et al., 1999) and now in this study, a 

combination of brightfield-fluoresence microscopy utilizing Bioflux dynamic conditions enabled 

measuring of environmentally isolated pathogen biofilm formation.  
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In summary, when comparing results for adhesion mechanism formation, EPS production and 

biofilm formation under static conditions, temperature was a significant factor. As temperature 

increased from stressful conditions (11oC) to adhesion mechanism-stimulating (28oC) and host 

(37oC) temperatures, curli fimbriae, cellulose and EPS was more actively synthesized in all 

pathogens, from all water quality sites. Additionally, the sample type, particularly root and soil 

organisms, were more efficient biofilm producers. Surprisingly, at areas of higher water quality, 

biofilm formation occurred better than at lower water quality impacted areas. The impact that 

temperature has on biofilm structure is significant. Next, organisms from soil samples were 

second highest for both biofilm production and resistance capabilities, lastly followed by those 

found in water samples. Further, at higher temperatures, rhizoplane and rhizospheric isolates 

were prominent biofilm synthesizers and contaminant resistors as hypothesized.  
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5 
Summary, Conclusions and Future Directions 

5.1. Summary  

At the conclusion of this study: 

• it was found that the Grand River Watershed and the sampled riparian zones were 

acceptable habitats for opportunistic pathogen retention. Microbes of mammalian [fecal] 

origin, namely E. coli, Enterococcus spp., and Salmonella spp. were often found in 

wetlands varying from high (good) to low (poor) water quality. Enterococcus spp. was 

most often to be isolated from all wetlands and water quality, followed by Salmonella 

spp. and lastly E. coli. Key abiotic factors, specifically temperature and contaminant 

levels, were determinants of microbial growth. 

• It was found that at low (sub-optimal) temperatures like 110C, microbial resistance to 

antibiotics was low and often isolates were susceptible to multiple classes of antibiotics. 

Additionally, adhesion mechanisms like curli fimbriae and cellulose, extra polymeric 
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substances (EPS) and static biofilm formation occurred at the lowest reported rates. As 

temperature increased to 280C, antibiotic effects were reduced and isolates were able to 

better respond [grow] in the presence of the stressor. Amyloid structure and biofilm 

thickness were more efficiently produced. At host temperature, 370C, similar results were 

found as at 280C.  

• Notably, most Enterococcal isolates from the GRWS appeared to be heavily resistant to 

vancomycin, a clinically relevant antibiotic often used to treat enterococcal infection. 

Enterococcal biofilm synthesis varied amongst sampling areas, with high water quality 

sampling areas resulting in the most efficient biofilm formers. As well, resistance profiles 

(least susceptible) were higher for all microorganisms at high water quality areas, 

followed by poor and intermediate quality sites.  

• Organisms which were found isolated from the rhizoplane and rhizosoheric soil proved as 

the best biofilm formers and had highest levels of MDR, followed by waterborne 

pathogens that were isolated.  

• At low to high levels of copper (mM) based on environmental values, E. faecalis 

appeared to adapt to stressful conditions as exposure time increased, and grew more 

successfully than at varying levels of silver and chloramphenicol. When exposed to 

combinatory additives of silver and chloramphenicol, as well as copper and 

chloramphenicol, acclimation was most likely to happen at low levels (0.2 mM) of 

chloramphenicol and copper (1mM-0.2mM. Under dynamic conditions, biofilm 

formation was observed to occur effectively over 24 h in isolated E. faecalis strains. 



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	153	of	182	

	

Those located at high water quality areas were proficient biofilm formers, retaining 

Calcofluor better than those isolated from poor and intermediate water quality areas. 

5.2. Integrative Nature of Research 

This research project incorporated many aspects of biological and chemical sciences. Firstly, 

ecology and environmental biology was utilized to help determine and choose sampling locations 

within the Grand River Watershed. Having knowledge of the river topography, areas of 

discharge from varying anthropogenic sources and understanding microbial ecology were critical 

to this project. Identifying microbial niches in roots, soil and water at varying riparian zones 

enabled the sampling process allowing for the beginning of pathogen isolation. Upon bringing 

samples to the lab, the processing and understanding of microbial metabolism was critical to 

isolation and cultivation of pathogens. Molecular biology aided in confirmation of isolated 

organisms, whether by species or genus, allowing for further assays to help gain a better 

understanding of environmental behaviour. The ability to use molecular techniques to answer 

questions regarding bacteria will help further the field of microbiology. 

5.3. Future Directions 

Obviously when beginning a project, it is nice to see it through to the end. In the nature of 

environmental research, specifically regarding bacteria, this is easier said than done. The time 

required to isolate and purify organism cultures, and run many replicates of multiple assays is 

tremendous. If time allowed, there are areas for which this research could be further bolstered, 

having more molecular biology and mesocosm scale experiments incorporated to add depth to 



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	154	of	182	

	

similar projects and fulfill many research needs. The following are all ideas which, if time were 

not a factor or this project were continued after I leave it, would be beneficial. 

1) Compile a library of genes in addition to the esp (enterococcal surface protein) gene 

influencing enterococcal adherence, virulence and persistence. Additionally, investigating 

genes influencing environmental persistence and naturalization of Salmonella spp. and E. 

coli will further address current unanswered questions in applied microbiology. 

2) Community level assessments of opportunistic pathogens and those with naturalizing 

potential using rapid sequencing, such as Illumina sequencing, would aid in the time 

required (at a cost of high price), but would provide great detail as to organisms which 

may be present in certain communities. To be specific, mammalian pathogens and fecal-

indicating bacteria would in rhizosphere and rhizoplane samples, as well as in biofilm 

material they may form, would help elucidate environmental behaviour of these 

organisms. 

3) Lastly, determining ways to limit the exchange of environmental resistance genes and 

reduce anthropogenic sources as a factor is key to the health of watersheds. Better 

practices to limit the use of antibiotics in agriculture, or limit exposure to water sheds, 

may help in lowering causes and effects of antibiotic resistance.  
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Appendix A 

Luria Bertani Broth (LB Broth) 

Enzymatic Digest of Casein .................................................... 10 g  

Yeast Extract.............................................................................. 5 g  

Sodium Chloride ....................................................................... 5 g  

Final pH: 7.3 ± 0.2 at 25°C 

 

Luria Bertani Agar (LB Agar) 

Enzymatic Digest of Casein .................................................... 10 g  

Yeast Extract.............................................................................. 5 g  

Sodium Chloride ....................................................................... 5 g  

Agar ......................................................................................... 12 g  

Final pH: 7.3 ± 0.2 at 25°C  

 

Xylose Lysine Deoxycholate (XLD) Agar 

Yeast Extract.............................................................................. 3 g 

Lactose......................................................................................7.5g 
Sucrose.................................................................................... 7.5 g 

Xylose .................................................................................... 3.5 g 

L-Lysine..................................................................................... 5 g  

Ferric Ammonium Citrate....................................................... 0.8 g 

Phenol Red .......................................................................... .0.08 g  

Sodium Chloride ....................................................................... 5 g 
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Sodium Deoxycholate ............................................................ 2.5 g  

Sodium Thiosulfate ................................................................ 6.8 g  

Agar ...................................................................................... 13.5 g 

Final pH: 7.4 ± 0.2 at 25°C 

 

Hektoen Enteric (HE) Agar 

Enzymatic Digest of Animal Tissue...................................... 16.5 g  

Yeast Extract............................................................................... 3 g  

Bile Salts Mixture ................................................................... 4.5 g  

Lactose.........................................................................................12g 
Sucrose.......................................................................................12 g 

Salicin ........................................................................................ 2 g  

Sodium Chloride ....................................................................... 5 g  

Sodium Thiosulfate ................................................................... 5 g  

Ferric Ammonium Citrate....................................................... 1.5 g  

Bromthymol Blue................................................................ 0.065 g  

Acid Fuchsin .......................................................................... 0.1 g  

Agar ..................................................................................... 13.5 g 

Final pH: 7.6 ± 0.2 at 25°C 

 

MacConkey Agar 

Enzymatic Digest of Gelatin..................................................... 17 g  

Enzymatic Digest of Casein .................................................... 1.5 g 

Enzymatic Digest of Animal Tissue........................................ 1.5 g  

Lactose ..................................................................................... 10 g  

Bile Salts Mixture ................................................................... 1.5 g  



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	172	of	182	

	

Sodium Chloride ........................................................................ 5 g  

Neutral Red.............................................................................0.03 g  

Crystal Violet....................................................................... 0.001 g  

Agar ...................................................................................... 13.5 g  

Final pH: 7.1 ± 0.2 at 25°C 

	

Tetrathionate Broth 

Enzymatic Digest of Casein..................................................... 2.5 g  

Enzymatic Digest of Animal Tissue ....................................... 2.5 g  

Bile Salts ................................................................................... 1 g  

Calcium Carbonate .................................................................. 10 g 

Sodium Thiosulfate ................................................................. 30 g 

Final pH: 8.4 ± 0.2 at 25°C 

	

Rappaport Vassiliadis Enrichment Broth 

Sodium Chloride.......................................................................8.0 g  

Potassium Phosphate, monobasic ..........................................0.60 g  

Potassium Phosphate, dibasic ................................................0.40 g  

Magnesium Chloride, anhydrous* .......................................13.58 g  

Malachite Green ..................................................................0.036 g  

Iodine……………………………………………………….…0.1g 

Final pH: 5.2 ± 0.2 at 25°C 

 

Rappaport Vassiliadis Modified Semisolid Medium 

Enzymatic Digest of Casein ................................................. 4.59 g 

Novobiocin………………………………………………… 20 mg  
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Casein Acid Hydrolysate...................................................... 4.59 g  

Sodium Chloride .................................................................. 7.34 g  

Potassium Dihydrogen Phosphate........................................ 1.47 g  

Magnesium Chloride, Anhydrous....................................... 10.93 g  

Malachite Green Oxalate ................................................... 0.037 g  

Agar ....................................................................................... 2.7 g  

Final pH: 5.6 ± 0.2 at 25°C 

	

m-Enterococcus Agar 

Enzymatic Digest of Casein .................................................... 15 g  

Enzymatic Digest of Soybean Meal .......................................... 5 g  

Yeast Extract................................................................................5g 

Dextrose.....................................................................................	2	g		

Dipotassium Phosphate.............................................................. 4 g  

Sodium Azide........................................................................... 0.4 g  

2,3,5-Triphenyl Tetrazolium Chloride..................................... 0.1 g 

Agar .......................................................................................... 10 g  

Final pH: 7.2 ± 0.2 at 25°C 

	

Bile Esculin Agar 

Beef Extract ............................................................................ 11 g  

Enzymatic Digest of Gelatin................................................ 34.5 g 

Esculin.........................................................................................1g 
Oxbile........................................................................................ 2 g  

Ferric Ammonium Citrate...................................................... 0.5 g  

Agar ........................................................................................ 15 g  
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Final pH: 6.6 ± 0.2 at 25°C 

 

m-FC-BCIG Agar 

Enzymatic Digest of Casein ................................................. 10.0 g  

Enzymatic Digest of Animal Tissue....................................... 5.0 g  

Yeast Extract........................................................................... 3.0 g  

Sodium Chloride .................................................................... 5.0 g  

Lactose ................................................................................. 12.5 g  

Bile Salts ................................................................................ 1.5 g  

Aniline Blue ........................................................................... 0.1 g  

BCIG………………………………………………………….0.2g 

Agar ...................................................................................... 15.0 g  

Final pH: 7.4 ± 0.2 at 25°C 

 

Triple Sugar Iron Agar 

Enzymatic Digest of Casein ...................................................... 5 g  

Enzymatic Digest of Animal Tissue........................................... 5 g  

Yeast Enriched Peptone..............................................................10g 

Dextrose..................................................................................... 1 g  

Lactose.......................................................................................10g 
Sucrose..................................................................................... 10 g  

Ferric Ammonium Citrate....................................................... 0.2 g  

Sodium Chloride ....................................................................... 5 g  

Sodium Thiosulfate ................................................................ 0.3 g  

Phenol Red ......................................................................... 0.025 g  

Agar ..................................................................................... 13.5 g  
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Final pH: 7.3 ± 0.2 at 25°C 

 

Lysine Iron Agar 

Enzymatic Digest of Gelatin...................................................... 5 g  

Yeast Extract................................................................................3g 

 Dextrose..................................................................................... 1 g  

L-Lysine................................................................................... 10 g  

Ferric Ammonium Citrate....................................................... 0.5 g  

Sodium Thiosulfate ............................................................... 0.04 g  

Bromcresol Purple ................................................................ 0.02 g  

Agar .....................................................................................*13.5 g  

*10 -15 g according to gel strength Final pH: 6.7 ± 0.2 at 25°C 

 

Urea Broth 

Enzymatic Digest of Casein.......................................................10g 

Dextrose..................................................................................... 1 g  

Sodium Chloride ....................................................................... 5 g  

Monopotassium Phosphate ....................................................... 2 g  

Urea ......................................................................................... 20 g  

Phenol Red ......................................................................... 0.012 g  

Final pH: 6.8 ± 0.2 at 25°C 

 

 

	

 



Aaron	Coristine	

	

Environmental	Factors	Affecting	Pathogen	Retention	

Page	176	of	182	

	

R Codes 
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