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Abstract 

Within a wetland environment, bacteria in association with plant roots play a vital role in 

maintaining the health of freshwater ecosystems. In order to gain insight into the stability and 

processes occurring within natural and constructed wetland environments we need to develop a 

better understanding of the relationship between wetland plants, root-associated microbial 

communities and environmental factors. Human population growth and urbanization have 

resulted in greater contaminant loads (inorganic nutrients, fecal contamination etc.) entering our 

waterways. As such, we need a better understanding of how anthropogenic impacts influence the 

structure and function of the wetland-associated microbial communities that we rely on to 

maintain the integrity of our freshwater ecosystems. To meet this need we designed a series of 

experiments to investigate the hypothesis that wetland-associated microbial communities highly 

impacted by anthropogenic activities subjected to poor water quality inputs (high inorganic 

nutrient load) would differ from less impacted communities in terms of community structure, 

function, remedial capabilities and resilience. Furthermore, we hypothesized that plant species 

would play a role in how the associated microbial community would respond to these differences 

in water quality. To investigate these hypotheses we used a multi-faceted approach involving 

both in situ field-based studies (Grand River, ON) and ex situ lab-scale wetland mesocosm 

studies. We examined microbial communities in association with several different plant species 

(Phalaris arundinacea, Iris versicolor, Potamogeton natans and Veronica spicata) across field 

sampling locations (Grand River, ON). Lab-scale mesocosm studies involved sub-surface flow 

wetland mesocosms planted with either P. arundinacea or V. anagallis-aquatica receiving water 

from sites with contrasting water quality charactersitics. To ascertain the ability of the microbial 

communities associated with these mesocosm treatments to resist environmental perturbations, 

mesocosms were exposed to 5mg/L of inorganic phosphorus to simulate runoff from a rain 

event. We used PCR in combination with denaturing gradient gel electrophoresis (DGGE) to 

examine the structure of microbial communities in association with wetland plant roots and 

water-associated communities. Functional community characteristics were examined by 

obtaining community-level carbon source utilization patterns with Biolog
TM

 EcoPlates. We 

examined the influence of water quality and plant species on fecal contamination associated 

microbial pathogens by enumerating fecal coliforms as well as Salmonella spp., Escherichia coli 

and Enterococcus spp. specifically, from water and root-associated microbial communities using 

the membrane fecal coliform method and quantitative real-time PCR. The remediation potential 

of ex situ mesocosm-based microbial communities experiencing different water quality 

treatments in association with our study plant species were determined by quantifying inorganic 

nitrogen and phosphorus concentrations from mesocosm outflow water.  From our field-based 

studies we found that the structure and function of microbial communities in association with 

wetland plant roots was affected by sampling location, however this effect was dependent on the 

plant species in question as well as the root-associated community type (rhizoplane or 

rhizosphere). Furthermore, plant species differed in their retention of microbial DNA from fecal 

contamination associated microorganisms. Our ex situ mesocosm-based wetland studies yielded 

comparable results. We found that the root-associated microbial communities from P. 

arundinacea and V. anagallis-aquatica were altered structurally and functionally by the different 

water quality treatments. However, functional characteristics of P. arundinacea-associated 

communities were affected by water quality treatment to a greater extent than those communities 



 

ii 
 

associated with V. anagallis-aquatica. Furthermore, the influence of water quality treatment on 

microbial community structure and function differed by community type. Rhizoplane-associated 

microbial communities exhibited the most dramatic structural and functional changes when 

challenged with varying water quality treatments. Exposure to short-term phosphorus loading as 

5 mg/L of inorganic phosphorus resulted in changes to microbial community structure and 

function in both plant species-associated microbial communities, most notably within the 

rhizoplane. Structural and functional community diversity was reduced following the inorganic 

phosphorus treatment for rhizoplane-associated microbial communities. Both mesocosm-based 

wetland communities performed equally well at removing inorganic nutrient loads from the 

various water quality sources. 
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Chapter 1 

Introduction 

1.1 What are Wetlands?  

Wetlands are classified as ecosystems where the soil is saturated with water; they differ 

from upland ecosystems due to their high soil moisture levels and from aquatic ecosystems due 

to the presence of submerged aquatic vegetation and standing water of no more than 2 m in 

depth. This continuous presence of water is the factor that drives the type of vegetation that 

dominates the system and the animal communities that persist there (Cowardin et al., 1979).  

Freshwater wetlands receive their water primarily from surface waters (e.g. runoff, streams, 

rivers, lakes, and human-generated wastewater discharges) but also from groundwater and 

precipitation to a lesser extent. Similarly, the output from wetlands can contribute to each of 

surface water, groundwater and evapotranspiration (Carter, 1986). Contaminants and undesirable 

substances can enter wetlands through any of the water sources previously mentioned, however, 

the highest inputs are generally from source waters altered by human activities such as municipal 

and industrial wastewater discharges and runoff from agricultural and urban settings (Johnston, 

1991). Remediation of contaminated water entering a wetland can occur by three primary 

pathways: 1) physical retention of the contaminant within the wetland, 2) alteration of the 

contaminant via chemical reactions making it less harmful or 3) alteration of the contaminant by 

biological action (Sheoran and Sheoran, 2006).  
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1.2 The Structure of Microbial Wetland-Associated Communities  

 Wetland microbial communities can be discussed by considering three distinct habitat 

types: water communities, soil/sediment communities and plant-associated communities. Each of 

these habitat types will drive the selection of distinct microbial communities with unique 

community characteristics and capabilities.  

1.2.1 Water Microbial Communities 

 Water-associated wetland microbial communities can be isolated from either surface 

water in a surface flow wetland system, or discharge effluent in a subsurface flow wetland 

system lacking aboveground standing water.  Bacterial communities associated with water tend 

to be low in both total species diversity as well as overall numbers, as compared to communities 

associated with either soil or plants (Wetzel, 1975; Wassel and Mills, 1983). The structure and 

function of microbial communities associated with water vary due to changes in nutrient and 

organic matter availability (Gessner and Chauvet, 1994; Dodds et al., 2000), temperature 

(Boyero et al., 2011), system hydrology (Valett et al., 1997) and land use (Mullholland et al., 

2008). Physicochemical properties such as O2, oxidation reduction potential, pH and light are 

also significant in driving microbial community structure and function within these systems 

(Paerl and Pinckney, 1996). The most active water-associated microbial communities are 

typically isolated from detritus and microbial mat/biofilm communities at the sediment/water 

interface due to the higher concentration of nutrients and available surfaces for attachment (Paerl 

and Pinckney, 1996). Most of the information available on water-associated microbial 

communities originates from studies of lakes and free flowing water systems. Studies on 

wetland-associated water microbial communities in the literature are few and far between, and 
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largely focus on soil or sediment-associated communities. This could be due to the fact that 

soil/sediment communities are considered to be more significant in the remediation functionality 

of the wetland, and thus, more important to study. Wetland water with the exception of 

subsurface flow effluent, contains molecular oxygen which is a potent inhibitor of key metabolic 

nutrient transformations carried out by microbial assemblages (e.g. N2 fixation, denitrification, 

sulfate reduction, methanogenesis, metal reduction), this combined with the lower total number 

of bacteria associated with water vs. soil could lead researchers to discount the importance of 

water-associated communities in wetland functions (Jorgensen, 1983; Fay, 1992; Gallon, 1992). 

However, studies of lake water-associated microbial communities have shown that these 

microorganisms can play a significant role in inorganic phosphorus removal via sequestration 

and alteration of available inorganic phosphorus into biologically unavailable refractory 

phosphorus-containing compounds (Gächter and Mares, 1985; Gächter et al., 1988; Gächter and 

Meyer, 1993; Kulaev et al., 2005).  

1.2.2 Soil/Sediment Microbial Communities 

 Wetland soil or sediment microbial communities are known to play an important role in 

nutrient cycling and are especially valued within both natural and constructed wetlands due to 

their ability to remove excess inorganic nitrogen (Balser et al., 2002; Boon, 2006; Reddy and 

DeLaune, 2008). Microbial processes occurring within wetland soils that are significant to 

inorganic nitrogen removal include nitrification, anaerobic ammonium oxidation (Anammox) 

and denitrification (Wallace and Austin, 2008; Lee et al., 2009). Wetland soil microbial 

community structure and function have been shown to be driven primarily by the 

physicochemical properties of the soil. Physicochemical characteristics that have been shown to 

drive wetland soil community structure include carbon to nitrogen ratio (Peralta et al., 2013), 
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total carbon and inorganic nitrogen soil concentrations (Ligi et al., 2014), inorganic phosphorus 

concentrations (Wright and Reddy, 2000) calcium content (Ligi et al., 2014) and pH (Peralta et 

al., 2013; Ligi et al., 2014). Natural and constructed wetlands with similar physicochemical 

properties have been shown to have similar microbial community structures with respect to 

species diversity, such that the natural vs. constructed nature of the wetland seems to be less 

important in determining community structure than the chemical properties of the soil (Peralta et 

al., 2013). Similarly, the physical and chemical properties associated with soil or sediment are 

also a strong driver of vegetation development (Spieles, 2005).  Characteristics such as bulk, 

density, moisture, organic matter content, organic carbon and soil type are drivers of wetland 

plant community development (Ballantine and Schneider, 2009; Ehrenfelt et al., 2005). Plant 

community structure has been established as a key factor influencing wetland-associated 

microbial communities and can directly impact soil microbial communities by altering the 

physicochemical properties of the soil, particularly inorganic nutrient availability (Angeloni et 

al., 2006).  

1.2.3 Plant-Associated Microbial Communities 

 Microbial communities can be associated with all surfaces of the plant including leaves, 

stems and roots. With respect to remediation purposes, the root-associated bacteria are 

considered to be the most relevant. The rhizosphere can be defined as the narrow region of soil 

surrounding plant roots that is influenced by the growth, respiration and root secretions of the 

plant, while the rhizoplane is the microbial biofilm directly attached to the root surface 

(Berendsen et al., 2012).  The root-associated microbial community is unique in that it contains a 

high abundance of microbial organisms; the rhizoplane and rhizosphere can contain as many as 

10
11

 microbial cells per gram of root tissue and more than 30,000 prokaryotic species 
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(Egamberdivea et al., 2008; Mendes et al., 2011).  The high abundance of bacterial cells present 

in root-associated microbial communities is primarily a function of the organic deposits made by 

plant roots into the surrounding environment (also called rhizodeposits) which act as a source of 

nutrients for the associated microbiota (Baudoin et al., 2003; Philippot et al., 2013). In general, 

the carbon content of bulk soil is relatively low such that the microbial community of the soil is 

starved for carbon (Garbeva et al., 2011). Plants can actively secrete up to 40% of their 

photosynthates into the rhizosphere in the form of root exudates such as simple carbohydrates 

(sugars), carboxylic acids, and amino acids (Baudoin et al., 2003; Bais et al., 2006). 

Rhizodeposits may also come in the form of complex carbon compounds such as decaying root 

material from sloughed off border cells and mucilage (Philippot et al., 2013). The result of this 

increased nutrient source located in the micro-environment surrounding plant roots, is that 

microbial abundance is much greater than in the surrounding bulk soil, a phenomenon known as 

the rhizosphere effect (Berendsen et al., 2012).  

It is widely accepted that root-associated microbial communities are actively shaped by 

the plant (Haichar et al., 2008; Hartmann et al., 2009; Berendsen et al, 2012; Philippot et al., 

2013). For this reason, these communities have a species-specific composition that is distinct 

from the surrounding bulk soil (Costa et al., 2006). One of the primary forces driving the unique 

structure of these communities is the excretion of soluble carbon compounds by plant roots 

(Haichar et al., 2008; Hartmann et al., 2009). The composition of root exudates is plant species-

specific and can have a strong influence on the microbial community structure (Costa et al., 

2006; Berendsen et al., 2012). One way that root exudation profiles may shape the root-

associated microbial community is with the prevalence of specific root exudate compounds. For 

example, a strong correlation was found between the ability of root-associated bacterial isolates 
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to grow on citric acid as their sole carbon source and the ability of these bacteria to colonize the 

rhizosphere of tomato (Lycopersicon esculentum), cucumber (Cucumis sativus) and sweet pepper 

(Capsicum annuum), three species of plants which predominantly exude organic acids including 

citric acid, succinic acid and malic acid (Kamilova et al., 2006). Another way that plants may 

shape their root-associated communities is through the ratio of different types of root exudates 

secreted. For example, when the root exudation profiles of maize (Zea mays) plants were 

artificially modified by the exogenous application of artificial root exudates (carbohydrates 

(glucose, sucrose and fructose), carboxylic acids (citric acid, succinic acid, and lactic acid) and 

amino acids (alanine, serine and glutamic acid)) with contrasting ratios of carboxylic acids and 

amino acids, distinct microbial rhizosphere communities developed in each treatment (Baudoin 

et al., 2003).  

Plants may also actively control their root-associated microbial community composition 

through the secretion of secondary metabolites including antimicrobial compounds. For example, 

a group of heteroaromatic metabolites called benzoxazinoids are frequently released in large 

amounts from cereal roots where they act defensively against pathogenic bacteria, fungi and 

herbivorous insects (Niemeyer, 2009). One well studied example of this phenomenon is 2,4-

dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) which is the primary 

benzoxazinoid compound secreted by maize (Neal et al., 2012). The secretion of DIMBOA has 

been shown to significantly alter root-associated bacterial biomass and community structure in 

the rhizosphere (Chen et al., 2010). DIMBOA can also act as a chemo-attractant for some 

species of plant-beneficial bacteria such as Pseudomonas putida which has been attributed with 

plant growth-promoting properties. These include its ability to solubilise essential nutrients (e.g. 

phosphorus) and to produce the plant hormone indole-acetic acid (IAA) which plays an 
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important role in plant growth and maturation (Mehnaz and Lazarovits 2006). Roots of maize 

producing DIMBOA have been shown to actively attract high numbers of P. putida which are 

able to effectively establish themselves within the root-associated microbial community. 

DIMBOA-deficient maize mutants are colonized by P. putida in significantly lower numbers 

(Neal et al., 2012). Secondary metabolites that actively influence soil microorganisms and plant 

rhizosphere community structures are also known as allelochemicals (Whittaker and Feeny, 

1971). Plant roots can secrete many different types of these compounds which act as chemo-

attractants for different species of plant-beneficial bacteria (Whittaker and Feeny, 1971; Guo et 

al., 2011). One group of allelochemicals that have been identified as important in shaping root-

associated microbial communities are isoflavones.  Isoflavones have been shown to alter the 

structure of bacterial and fungal root-associated communities when applied exogenously in 

physiologically relevant concentrations (Qu and Wang, 2008). Isoflavones are also known to act 

as chemo-attractants for some bacterial species (e.g. Bradyrhizobium japonicum and Rhizobium 

meliloti), increasing rhizosphere colonization by these microbes when secreted by plant roots 

(Caetano-Anollés et al., 1988; Bias et al., 2006).  

Many bacterial species (plant-associated and otherwise) utilize diffusible molecules for 

cell-to-cell signalling to determine the density of cells belonging to their own species within a 

microenvironment. This type of signaling is called quorum sensing and is used to regulate certain 

genes that are normally expressed when cell density reaches a critical threshold, such as biofilm 

formation, adhesion, virulence factor expression, the production of antibiotics/exoenzymes and 

conjugal plasmid transfer (Teplitski et al., 2000; Waters and Bassler, 2005). In Gram-negative 

bacteria these cell-to-cell signaling molecules are known as acyl-homoserine lactones (AHL) and 

several recent studies have found that many species of plants are able to secrete substances that 
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either interfere with bacterial AHL-regulated quorum sensing or mimic AHL molecules resulting 

in the induction of AHL stimulated gene expression. For example, a group of secondary 

metabolites, halogenated furanones, from the red alga Delisea pulchra are structurally similar to 

AHL molecules and have been shown to interfere with AHL mediated behaviors such as 

swarming motility in Serratia liquefaciens and carbapenem antibiotic synthesis and exoenzyme 

virulence factor production in Erwinia carotovora (Manefield et al., 1999; Manefield et al., 

2001).  Additionally, exudates from pea (Pisum sativum) seedlings were found to contain several 

different compounds that mimicked AHL molecules, some of which stimulated AHL-dependent 

swarming motility in S. liquefaciens and others which inhibited AHL-dependent violacein 

(antibiotic) synthesis and extracellular protease and chitinase production (Teplitski et al., 2000). 

Furthermore, there are greater than 15 different compounds which have been identified from 

seedling exudates of barrel medic (Medicago truncatula) that stimulate or repress AHL-

dependent behavioral responses in quorum sensing bacteria (Gao et al., 2003).  

Another way that plant roots create a unique habitat for microorganisms is through some 

of the active physiological processes that are naturally occurring within the root (e.g. respiration, 

nutrient uptake). These processes create a gradient of physicochemical conditions providing 

diverse microhabitats suitable for a wide range of bacterial species with contrasting physiological 

requirements (Vymazal et al., 2007; Hartmann et al., 2009). One of the most obvious chemical 

gradients occurring in the zone surrounding plant roots is oxygen, as oxygen is secreted from 

plant roots as a by-product of photosynthesis (Hartmann et al., 2009). The concentration of 

oxygen in the rhizosphere can be as high as 36-66% of air saturation in species of wetland rush 

(Juncus inflexus and Juncus articulatus) with oxygen concentrations declining quickly with 

distance from the root (Blossfeld et al., 2011). This chemical gradient can play an important role 
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in structuring the bacterial communities as it provides a habitat for both aerobic bacterial species 

and bacterially-mediated processes that are reliant on oxygen (e.g. nitrification) as well as 

anaerobic and micro-aerotolerant bacterial species that require oxygen-depleted microhabitats 

and anaerobic or low oxygen environments to carry out their metabolism (e.g. denitrification and 

non-symbiotic nitrogen fixation) (Weiss et al., 2002; Vymazal et al., 2007). The oxygenation of 

soils by plant roots can also have a dramatic effect on redox potentials, with microenvironments 

ranging from oxidizing conditions near the plant root surface to reducing conditions further from 

the oxygen secreting zone of the root system (Flessa, 1994; Hartmann et al., 2009). A good 

example of the implications of this root-mediated redox gradient is the enhanced cycling of iron 

between its oxidized (Fe
3+

) and reduced (Fe
2+

) states, which is known to occur within the 

rhizosphere of wetland plants (Weiss et al., 2004). Iron-oxidizing bacteria and iron-reducing 

bacteria are both abundant on the roots of wetland plants, and it has been demonstrated that 

Fe(II) oxidation and Fe(III) reduction are coupled within the root zone, promoting localized iron 

cycling within root-associated microenvironments (Weiss et al., 2002; Weiss et al., 2004). 

Additionally, plant roots are known to have a large impact on the pH of the soil surrounding their 

roots (Hartmann et al., 2009). Plants secrete protons into the rhizosphere primarily in the form of 

un-dissociated acids such as carboxylic acids present in root exudates (Hinsinger et al., 2003; 

Hartmann et al., 2009). Additionally, the uptake of nutrients by the roots can lead to the release 

of dissociated protons into the rhizosphere to compensate for the acquisition of excess cations, as 

the process of nutrient acquisition by the roots is ultimately electroneutral (Sas et al., 2001; 

Hinsinger et al., 2003). Rhizospheric changes in pH can be dramatic, and differences between 

rhizosphere and bulk soil pH measurements of greater than 1 pH unit have been noted on 

numerous occasions (Hinsinger et al., 2003; Blossfeld et al., 2011). These pH differences 
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between the root surface and surrounding soil are dynamic rather than static (diurnal and 

seasonal variation), and can differ dramatically between plant species and even within the root 

architecture of a single plant (Blossfeld et al., 2011). Rhizosphere pH changes can be important 

for the mobilization of inorganic nutrients which, in turn, will affect microbial processes such as 

nutrient cycling (Hartmann et al., 2009; Weiss et al., 2002).  

1.3 Defining Water Quality 

In order to effectively address the remediation of contaminated source waters and/or the 

treatment of various types of wastewater effluents before they re-enter the watershed, it is 

important to be able to define water quality in a meaningful way. A thorough description of what 

constitutes both good and poor water quality can be an important tool employed in the 

remediation of contaminated source waters. It provides us with a set of parameters that we can 

measure in order to quantitatively monitor the status of water bodies. The World Health 

Organization has defined the quality of an aquatic environment as a set of  concentrations of 

inorganic and organic substances, the composition and state of the biological components of the 

aquatic ecosystem, and a description of both spatial and temporal variations in the water body 

that are affected by both internal and external factors (Chapman, 1996). Similarly, pollution of 

an aquatic environment is defined as any substance or energy that results in the impairment of 

water quality with respect to its anthropogenic uses (industrial, agricultural and municipal) or 

harm to human health or any living resources (Chapman, 1996). Additionally, the Joint Group of 

Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) states that 

pristine water quality is defined as the physical and chemical parameters that a body of water 

would have possessed before any type of anthropogenic impact had occurred, however, due to 
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atmospheric transport of contaminants, pristine waters are either very rare or non-existent in 

current times (GESAMP, 1988; Meybeck and Helmer, 1989). 

With increasing human populations alongside expansions in industrialization, our 

requirements for water have increased along with our need for higher water quality. Drinking, 

personal hygiene, fisheries, agriculture, transportation, industrial production , cooling in fossil 

fuel and nuclear power plants, hydropower generation and recreation activities have all imposed 

pressures on a limited water supply, each requiring different levels of water quality for proper 

use (Chapman, 1996). Conversely, each of these activities also leads to the discharge of 

wastewater resulting in an impact on water quality. Changes to the landscape, including 

urbanization and deforestation, and the accidental releases of chemical substances via leaching or 

gaseous emissions can also have a negative impact on water quality and the health of aquatic 

environments (Chapman, 1996). Meybeck et al. (1989) have identified several of the most 

important water quality issues which have arisen from these anthropogenic impacts. These 

include increased levels of pathogenic organisms, suspended solids, decomposable organic 

matter, nutrient pollution, eutrophication, salinisation, trace elements, organic micropollutants, 

acidification and modification of hydrological regimes. 

 Specific parameters used in the assessment of water quality are based on these 

widespread issues and include measurements of parameters reflecting the relative impact of each 

of these issues on the source water being tested. In order to assess the presence and abundance of 

pathogenic organisms present in source water, microbiological indicators are used. These 

indicators include measurements of the number of fecal coliforms, total coliforms and 

pathogenic bacteria such as Salmonella, Enterococcus, and Escherichia coli in a given volume of 

water (typically 100 mL) (Jamieson et al., 2002; Harwood et al., 2005). The impact of suspended 
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solids on a particular water source is determined by measuring the total suspended solids (or 

sediments) (TSS), by filtering water through a designated pore size (0.45 μM is typical) to 

determine the dry mass of the excluded sediment (expressed as milligrams per liter) (Caux et al., 

1997). Suspended solids can also be assessed by the measurement of turbidity which is the level 

of clarity/transparency of water. When biotic and abiotic substances are suspended or dissolved 

in water they can cause light to be scattered and absorbed rather than transmitted. A turbidity 

meter measures this scattering of light due to the presence of suspended matter (Wetzel, 1975). 

Decomposable organic matter is measured as total organic carbon (TOC), chemical oxygen 

demand (COD) and biological oxygen demand (BOD) (Chapman, 1996). TOC is a measurement 

of the concentration of carbon present from organic compounds in water, COD is a measurement 

of the chemicals in a water source that can be oxidized and BOD is a measurement of the organic 

carbons present that can be oxidized by microorganisms (Aziz and Tebbutt, 1980). Nutrient 

loading in water systems is typically monitored by routinely assessing the concentrations of 

several chemical compounds related to inorganic nitrogen (nitrate, nitrite and ammonia) and 

phosphorus (phosphate) (Chapman, 1996). These compounds are of particular importance 

because of their potential to impact aquatic organisms negatively. These negative impacts may 

include direct toxicity (nitrite and ammonia specifically) or indirect toxicity resulting from in situ 

biological transformations of the primary compounds (Carpenter et al., 1998). Furthermore, the 

presence of inorganic nitrogen and phosphorus in excess can also cause eutrophication which is 

detrimental to aquatica ecosystems (Carpenter et al., 1998). Inorganic nitrogen and phosphorus 

compounds are routinely deposited into our water systems in large quantities as they originate 

from many different anthropogenic activities (Carpenter et al., 1998).  Eutrophication is the 

result of greater than normal growth of both algae and macrophytes, as such, the extent of 
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eutrophication in a water system is measured by determining the concentration of chlorophyll a 

in the water; chlorophyll a is a photosynthetic pigment required by plants and algae for oxygenic 

photosynthesis (Schalles et al., 1998).  Salinity of a water sample can be evaluated by 

determining the concentrations of major dissolved ions (sodium, potassium, calcium, 

magnesium, chloride, sulfate) or by determining the electrical conductivity (EC) of the water 

(Chapman, 1996). EC is a measurement of the charge-carrying ability of the water due to the 

presence of dissolved ions and can be converted to a concentration of total dissolved salts (TDS) 

with a calculation based on the relationship between these two measurements (Hutchinson, 1957; 

Williams and Sherwood, 1994).  Monitoring trace elements typically entails measuring 

concentrations of trace metals as well as arsenic and selenium, while organic pollutants more 

broadly entails measurements of oil and hydrocarbon, surfactant, pesticide, phenol and organic 

solvent concentrations (Chapman, 1996). The level of acidification in a body of water is 

determined by measuring its pH (Chapman, 1996). Monitoring hydrological regimes involves 

measuring flow rates, water levels, river discharges and dissolved oxygen concentrations 

(Chapman, 1996).  

Water quality assessments typically involve the measurement and evaluation of each of 

these different aspects of water quality. A subset of these parameters tailored to the specific 

requirements for the water in question, or the type of pollutants commonly being deposited in a 

given water body may also be used (Chapman, 1996).  

 

 



 

14 
 

1.4 The Effects of Various Types of Anthropogenic Impacts on Wetland Microbial 

Communities  

1.4.1 Acid Mine Drainage and Coal Pile Runoff 

The primary water quality concerns associated with acid mine drainage (AMD) and coal 

pile runoff (CPR) are related to high concentrations of toxic heavy metals (e.g. Fe, As, Mn, Zn), 

sulfates and acidic pH levels (Johnson, 2003; Hallberg and Johnson, 2005). These conditions 

result from the oxidation of pyrite (FeS2), which occurs along with metal sulfides of commercial 

interest (Johnson, 2003).  Heavy metals can be removed from AMD and CPR within wetlands 

via precipitation of insoluble oxyhydroxide compounds, a process that is enhanced by microbial 

Fe(II) oxidation and dissimilatory sulfate reduction (Kirby et al., 1998; Hedin et al., 1998). 

Treatment of AMD and CPR with constructed wetland technology has been shown to be a cost- 

effective and low maintenance alternative to chemical treatment methods traditionally used to 

treat this type of effluent and has been shown to be effective at removing heavy metals 

(specifically Fe) and increasing the pH of effluents (Lloyd et al., 2004; Wieder, 1993). 

The majority of studies that have been published surrounding the treatment of AMD and 

CPR using wetlands are focused around the efficiency of these systems at addressing water 

quality concerns (e.g. metal removal, sulfate removal, pH increase). Very few studies have 

examined the impact of the effluent on the wetland-associated microbial communities and their 

ability to remediate wastewater (Weber et al., 2008). Among the few studies that have been 

published, several conclusions can be drawn as to how this effluent impacts wetland microbial 

communities.  
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Groups of microorganisms associated with effective remediation of AMD and CPR 

include acidophilic iron oxidizers (e.g. Acidithiobacillus ferrooxidans, Leptospirillum 

ferrooxidans), acidophilic sulfur oxidizers (e.g. Halothiobacillus neapolitanus, Sulfirimonas 

spp.), acidophilic heterotrophic bacteria (e.g. Frateuria spp., Alcaligenes spp, Bordetella spp.) 

and sulfate reducing bacteria (SRB) ( e.g. Thermodesulfovibrio spp.) (Hallberg and Johnson, 

2005; Logan et al., 2005; Nicomrat et al., 2008; Bomberg et al., 2015). Studies have shown that 

the introduction of AMD and CPR to constructed wetlands results in a shift in community 

structure towards an increase in these groups of microorganisms along with that of methanogens 

in wetland sediment communities (Hallberg and Johnson, 2005; Logan et al., 2005). Increases in 

acidophilic iron and sulfur oxidizers and heterotrophic acidophiles have also been shown to 

occur in water samples obtained from constructed treatment wetlands and wetland effluents 

(Hallberg and Johnson, 2005).  

The function of microbial wetland communities exposed to AMD and CPR have also 

been studied using various methodological approaches. Weber et al. (2008) and found that 

exposure to AMD caused a change in the functional community profile of a wetland water-

associated  microbial community by  increasing the diversity and evenness of carbon sources that 

could be used by the community (measured using Biolog
TM 

EcoPlates) and decreased  richness 

and average well color development (average usage of all carbon sources). Collins et al., (2004) 

also found that when plant-associated wetland microbial communities were exposed to CPR their 

functional profiles, measured as carbon utilization profiles (Biolog
TM 

EcoPlates), changed 

significantly. This was determined by obtaining samples from epiphytic surfaces of emergent 

vegetation in a series of surface flow constructed wetland systems receiving CPR. The effect of 

the CPR on the community was determined by observing differences in the functional profiles 
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from samples taken near the inlet vs. outlet of the constructed treatment wetland. The nature of 

the differences observed in the community functional profiles were not discussed in any detail, it 

was only stated that they differed significantly from one another. Similarly, another study done 

by Weber et al. (2010) found that microbial enzymatic activity, when measured indirectly by 

monitoring the transformation of fluoresceindiacetate (FDA) to fluorescein, was altered in 

interstitial water samples taken from constructed wetland mesocosms subjected to AMD, 

showing an overall decrease in community metabolic activity after exposure.  

Exposure of wetland microbial communities to AMD has not been shown to decrease the 

effectiveness of wetland-associated microbial communities at remediating impacted waters. For 

example, when Logan et al. (2005) observed a change in the microbial community structure of 

water collected from a permeable reactive barrier system treated with AMD, noting an increase 

in SRB and methanogens within the community, this change was associated with an increase in 

heavy metal removal (Mn, Zn). Similarly, structural changes in the water and sediment wetland 

microbial communities reported by Hallberg and Johnson (2005) in a composite constructed 

wetland system receiving AMD was associated with a decrease in effluent iron concentrations 

and an increase in effluent pH.  

The presence of plants in wetlands receiving AMD and CPR has been shown to stabilize 

microbial wetland-associated communities, reducing the impact of the AMD on microbial 

community functional profiles (Weber et al., 2008). Weber et al. (2008) found that interstitial 

water communities obtained from unplanted mesocosms exhibited  a more dramatic increases in 

carbon source usage diversity and evenness and a more dramatic decreases in average well color 

development and richness than constructed wetland mesocosms that contained plants 

(Phragmites australis). Weber et al. (2010) found that the presence of the wetland plant 
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Phragmites australis did not have an effect on the remediation (metal removal, pH increase) of 

AMD in constructed wetland mesocosms. Alternatively, Collins et al. (2004) found that planted 

wetland mesocosms had an effluent with higher pH and higher Mn concentrations than unplanted 

wetlands, although effluent iron concentrations were similar in planted and unplanted treatments.  

1.4.2 Oil/Petroleum Hydrocarbons 

 Oil extraction, refining and shipping processes often result in spilled crude oil which 

contains toxic components that have been shown to negatively impact aquatic ecosystem 

diversity and function (Baldwin, 1922; Kauss et al., 1973; Sanders et al., 1980; Atlas et al., 

1991; Lin and Mendelssohn, 1996). Many spill sites are too inaccessible or fragile to allow for 

mechanical cleanup of spilled oil and rely heavily on microbial processes for remediation (Atlas 

and Bartha, 1992; Brooijmans et al., 2009). There are several groups of wetland-associated 

microorganisms that have been shown to be effective at breaking down petroleum hydrocarbons 

and other toxic crude oil constituents such as SRBs, Pseudomonas spp., Acinetobacter spp. and 

Streptomyces spp. (Bachoon et al., 2001; Brooijmans et al., 2009; Huijie et al., 2011; Beazley et 

al., 2012). As such, constructed wetland technology can be a useful tool for the remediation of 

effluents containing crude oil (Nyman, 1999). An abundance of studies in the literature have 

examined the role of specific bacterial species involved in the metabolism of crude oil 

constituents, however very few studies have examined the in-depth impact of these effluents on 

overall wetland community structure and function, and how these two components interrelate.  

 It has been well established in the literature that exposure of microbial communities to 

crude oil results in a loss of microbial species diversity, but an increase in the abundance of 

resistant and hydrocarbon-degrading species (Atlas and Bartha, 1992; MacNaughton et al., 1999; 
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Nyman, 1999; Yergeau et al., 2012). Bachoon et al. (2001) found that the endogenous oil- 

degrading microorganisms in wetland microcosm sediments increased from approximately 0.1% 

of the total population to slightly less than 1% of the total population after exposure of the 

system to crude oil. This hydrocarbon-degrading bacterial population increase was determined to 

be attributed in some respect to an increase in the abundance of Pseudomonas spp. and 

Streptomyces spp., which increased in abundance post-oil exposure. When Beazley et al. (2012) 

examined the impact of the Deepwater Horizon oil spill on costal salt marsh sediments, they also 

reported an increase in the abundance and richness of previously described hydrocarbon-

degrading microbial phyla (Proteobacteria, Bacteroidetes, and Actinobacteria). Alternatively, 

Yergeau et al. (2012) found that oil-impacted sediments from the Athabasca River had a distinct 

microbial community as compared to less impacted sediments collected further downstream 

from oil sands tailings ponds. Correlations between hydrocarbon concentrations and specific 

bacterial genera were also found, including positive correlations between Schumannella 

(Actinobacteria), Hydrogenophaga (Betaproteobacteria), Azonexus (Betaproteobacteria), 

Salinimicrobium (Bacteroidetes), Achromobacter (Betaproteobacteria), and Gillisia 

(Bacteroidetes) and the sediment content of total petroleum hydrocarbons, total straight-chain 

hydrocarbons, total aromatic hydrocarbons, naphthenic acids, or the sum of the U.S. 

Environmental Protection Agency 16 priority polycyclic aromatic hydrocarbons. Conversely, 

negative associations were found between the sediment concentrations of these crude oil 

constituents and the relative abundances of   Sorangium (Deltaproteobacteria), Hyalangium 

(Deltaproteobacteria), Rhodopila (Alphaproteobacteria), and Mesorhizobium 

(Alphaproteobacteria) in the Athabasca River sediments. Hadwin et al., (2006) found that 

bacterial community structure in freshwater wetland sediments exposed to oil sands processed 
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water was correlated with the napthenic acid concentration in the sediments as determined by 

cluster analysis of phospholipid fatty acid profiles. Furthermore, Huijie et al. (2011) found that 

microbial communities isolated from mangrove sediments exposed to crude oil constituents 

including mixed polycyclic aromatic hydrocarbons (PAH), phenanthrene (PHE), pyrene (PYR) 

and benzo[a]pyrene (BaP) exhibited distinct communities from each other as well as from 

untreated sediments, as determined by structural microbial community analysis using denaturing 

gradient gel electrophoresis (DGGE). The resulting communities post-treatment were also shown 

to be differential in their abilities to remediate crude oil. The sediment community grown in the 

presence of PHE was more successful at degrading PHE than the previously unexposed control 

community and was also the most successful at degrading mixed PAHs of all the communities. 

This indicates that both the composition of the crude oil and the concentration of the crude oil 

constituents exposed to a wetland microbial community will play a role in determining the 

wetland microbial community structure which, in turn, will affect the ability of that community 

to remediate crude oil contaminated effluents. 

 The effects of crude oil exposure on the metabolic functions of wetland-associated 

microbial communities have also been examined, using both carbon source utilization patterns 

and metabolic activity measurements of microbial carbon emission rates (CO2 and CH4).  

Hadwin et al. (2006) found that when wetland sediments were exposed to varying concentrations 

of napthenic acids there was no significant difference in the carbon source utilization profiles 

generated by the wetland sediment microbial communities in each treatment. However, cluster 

diagrams created from DGGE data indicated that naphthenic acid content was an influential 

factor on wetland sediment bacterial community structure, indicating a discourse between the 

effects of crude oil exposure on community structure compared to community function. 
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Conversely, when Nyman (1999) exposed microcosms containing costal marsh sediments to two 

different types of crude oil (Arabian Crude and Louisiana Crude), it was reported that microbial 

carbon respiration increased compared to no oil treatments, and this increase was beyond what 

would have been expected from the amount of carbon added to the system from the oil. These 

findings indicate that microbial metabolic activity was enhanced by the addition of the crude oil 

to the system. This is contradictory to findings made by Hadwin et al. (2006), however these two 

studies used different methods to measure microbial metabolic activity and also studied different 

systems (sediments wetlands in the Athabasca oil sands vs. costal marsh sediment microcosms) 

which could account for the discontinuity in the findings.  

 Only one study examined the role of wetland plants altering the effects of crude oil on 

wetland-associated microbial communities. Nyman (1999) studied two groups of costal marsh 

sediments dominated by two different plant species, Panicum hemitomon Shult. and Sagittaria 

lancifolia L. It was reported that microbial carbon emissions differed between the sediments 

collected from the two different sites, with metabolic activity being 1.4 times faster in P. 

hemitomon sediments than S. lancifolia sediments, however both sediment microbial 

communities responded to the addition of crude oil similarly (increasing C emission rates). 

However, after crude oil addition, the percent of carbon emissions resulting from methane was 

higher in the P. hemitomon sediments than in the S. lancifolia sediments.   

1.4.3 Agricultural Runoff 

 Agricultural runoff contains extremely elevated levels of inorganic nutrients, primarily 

nitrogenous compounds (nitrate, nitrite, ammonium) and phosphates which can lead to 

eutrophication of natural water systems (Ghafari et al., 2008; Shaw et al.,2009). Microbial 
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processes, specifically nitrification-denitrification and anammox are extremely effective at 

removing excess inorganic nitrogen from influent water within wetlands (Faulwetter et al., 

2009). The role of microbial processes in the removal of inorganic phosphorus from wetlands is 

less well studied, but there is some evidence indicating that bacteria found in aquatic freshwater 

environments (water and sediments), are capable of assimilating large amounts of inorganic 

phosphorus under conditions of excess, and converting it into refractory phosphorus- containing 

organic compounds that are not biologically available (Gächter and Mares, 1985; Gächter et al., 

1988; Gächter and Meyer, 1993). Thus, wetlands present a viable option for the treatment of 

agricultural runoff, and have been shown to be effective at improving the water quality of 

various types of agricultural effluents (Vymazal et al., 2009). The majority of the studies that 

have been completed in this area have examined the efficiency of these constructed treatment 

wetland systems at remediating agricultural effluents. Relatively few studies have looked at the 

effects of these effluents on the microbial communities in the wetlands receiving these effluents. 

Among the studies that have been published, some conclusions can be drawn as to the effects of 

agricultural runoff on the structure and function of wetland-associated microbial communities.   

 The effect of elevated levels of inorganic nutrients on the structural profiles of wetland-

associated microbial communities is ambiguous. Ahn et al. (2007) treated wetland microcosms 

with either high or low concentrations of phosphorus, simulating P-loading that would be 

experienced by wetland communities receiving agricultural runoff. A difference in the sediment 

microbial communities under high (2.4 mg P/L) and low phosphorus (0.5 mg P/L) loading 

conditions was observed. Low-P treatments were associated with higher species diversity and 

richness than high-P treatments, which had slightly higher measures for species evenness. 

Increasing P-concentration resulted in the loss of microbial community members belonging to 
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the groups Acidimicrobium, Methylomonas, Propionibacterium, Rhodopila, Saccharopolyspora, 

Tar. Marianensis, Thiobacillus and Mycobacterium and resulted in an increase in the abundance 

of an unknown environmental clone (T78). They also found that these changes in community 

structure were associated with an increase in the removal of soluble reactive phosphorus (SRP) 

from the system in the high-P treatment, which showed a decrease in water SRP concentrations 

over a 1 month period while the low-P treatment exhibited no significant change in SRP 

concentration, or a moderate increase. Similarly, when Rich and Myrold (2004) examined the 

structure of wetland soil bacterial communities (agricultural field, riparian zone and creek bed) 

being exposed to high N load fertilizer runoff, they found a significant difference in the 

community structure of microbial denitrifiers at each location using the analysis of terminal 

restriction fragment length polymorphisms (TRFLPs). However, these community differences 

could also be attributed to other factors than N loading from fertilizer runoff, as plant community 

composition and soil chemistry was not equivalent among the sites. Cao et al. (2008) found that 

salt marsh sediment bacterial community structure was significantly correlated with the 

dissolved organic carbon content of the marsh sediments as determined by analysis using 

TRFLPs. However, Mentzer et al. (2006) did not see a significant change in the soil microbial 

community structure within prairie wetland microcosms subjected to either high or low nutrient 

treatments. Mentzer et al. (2006) used phospholipid fatty acid analysis (PFLA) to track changes 

in the community structure of wetland soil bacterial and fungal communities treated with 

fertilizer, ¼ strength fertilizer and no fertilizer. No significant change in the bacterial community 

structure was observed. However, the different nutrient loading treatments did have a significant 

effect on mycorrhizal and saprophytic fungal communities.  Although the majority of the studies 

published in the literature have found that conditions mimicking that of agricultural runoff did 
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result in structural changes to wetland microbial communities, there is some disagreement 

among the findings. The studies in question used very different types of wetland systems and 

different methods of measuring structural changes to microbial communities, which could 

explain some of the confounding results.  While only one study examined structural community 

changes in relation to microbial effluent remediation, that study found that structural community 

changes were accompanied by an increase in the ability of that community to remove soluble 

reactive phosphorus from the water (Ahn et al., 2007). 

Zhao et al. (2010) examined the effects of C:N:P ratios on the metabolism of wetland 

rhizosphere microbial communities in planted and unplanted pilot scale sub-surface flow 

constructed wetlands. The study consisted of 6 treatments, three treatments varied total organic 

carbon levels while maintaining stable N and P levels and three treatments varied total nitrogen 

levels while maintaining constant organic carbon and phosphorus levels. Microbial activity was 

monitored using Biolog
TM

 EcoPlates to measure carbon source utilization patterns. Total 

microbial activity, as measured by the average well color development (AWCD) in the EcoPlates 

was higher in the planted wetlands as compared to the unplanted wetlands but did not differ 

among C:N:P treatments. Furthermore, the diversity of carbon sources used again differed 

between planted and unplanted systems. However, among C:N:P treatments differences in 

metabolic diversity were only observed for unplanted systems where increasing organic carbon 

or nitrogen caused a reduction in diversity. This trend has been observed previously with other 

types of wetland systems and effluents, and indicates that the presence of plants may have a 

stabilizing effect on wetland-associated microbial communities, negating some of the effects 

effluents may have on the community structure and metabolic functionality of wetland microbial 

communities. For example, Ahn et al. (2007) found that the presence of plants in wetland 
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microcosms receiving high and low phosphorus loading treatments exhibited a less dramatic shift 

in microbial sediment community structure than in unplanted microcosms. Additionally, planted 

microcosms exhibited higher measures of species diversity and richness than unplanted 

microcosms in both treatments.  

Several other studies measured changes in microbial metabolic profiles by looking at 

specific microbial enzymatic activities. Mentzer et al. (2006) found that wetland sediment 

microbial communities exhibited increased extracellular activity (specifically β-glucosidase, acid 

phosphatase, chitobase, phenol oxidase and peroxidase) when subjected to increased inorganic 

nutrient loads in the form of fertilizers. Similarly, Cao et al. (2008) found that the activity of 

microbial denitrifying enzymes within salt marsh sediments differed significantly depending on 

the dissolved organic carbon content of the sediments. Alternatively, Rich and Myrold (2004) 

did not find a significant correlation between inorganic nitrogen loading in microbial sediment 

wetland communities receiving agricultural runoff and denitrification enzyme activity. As in the 

studies examining the effects of agricultural runoff on wetland microbial community structure, 

the findings on changes to microbial community functional profiles also indicates conflicting 

results, likely for similar reasons.  

1.4.4 Urban-Associated Impacts: Runoff and Wastewater Effluent 

 Urban impacts on water quality typically occur as increases in nutrient loads (dissolved 

organic carbon, inorganic nitrogen and phosphate), salinity (runoff from road systems) and 

pathogenic microorganisms associated with effluent from waste water treatment plants 

(WWTPs) (Meybeck et al., 1989). The methods employed in wetlands to remediate water inputs 

with high nutrient loads have been discussed previously, but what is of particular importance to 
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the remediation of urban wastewater effluents is the ability of wetland-associated microbial 

communities to reduce pathogen loads. Typical human fecal matter can contain a large number 

and variety of different pathogenic microorganisms causing disease in humans ranging from 

relativity non-serious gastroenteritis to life-threatening illnesses such as dysentery, cholera and 

typhoid fever (Chapman, 1996). Mechanisms of pathogen removal or reduction in wetlands 

include: 1) increased oxygenation in the rhizosphere (Curtis et al., 1992; Vymazal, 2005), 2) 

competition with resident microflora (Cooley et al., 2003; Cooley et al., 2006), 3) physical 

filtration through plant root systems (Kansiime and Nalubega,1999; Kansiime and van Bruggen, 

2000; Karathanasis et al., 2003 ), 4) retention and integration of pathogenic bacteria into 

rhizosphere communities (Kansiime and Nalubega,1999; Kansiime and van Bruggen, 2000) and 

5) secretion of antimicrobial compounds by plants and microorganisms in the plant rhizosphere 

(Gopal and Goel, 1993; Axelrood et al., 1996; Neori et al., 2000; Fett, 2006).  

 The impact of urban wastewater effluents on the structure of wetland-associated 

microbial communities has been investigated by a small number of papers, with conflicting 

findings being reported. For example, Wu et al. (2010) found that WWTP effluent containing 

fecal matter-impacted water column bacterial community compositions in costal urban 

watersheds, resulting in a higher ratio of Bacilli, Bacteroidetes, and Clostridia to α-

Proteobacteria in sites receiving higher WWTP effluent inputs. Ravit et al. (2003) conducted a 

study where the structure of two wetland sediment-associated microbial communities in brackish 

marshes dominated by Phragmites australis and Spartina altemiflora were compared using 

PFLA, when one marsh was undisturbed and one marsh was highly impacted by anthropogenic 

activity. The study reported that the microbial community structure in the sediment 

microorganisms associated with each plant species differed between the two sites. The 
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undisturbed site exhibited a community structure with a greater species richness and diversity 

than the site highly impacted by anthropogenic inputs. Alternatively, Perryman et al. (2011) 

examined the effects of urban storm water runoff and septic tank density on sediment microbial 

communities within stream ecosystems. Denitrifying community composition, as measured by 

TRFLPs of nosZ genes, was shown to be strongly influenced by the amount of storm water 

runoff being received by the site but not by the septic tank density surrounding the site. The more 

densely urbanized sites receiving greater amounts of storm water runoff exhibited higher 

sediment concentrations of cations, reactive phosphorus and lower organic carbon content while 

sites with higher septic tank density exhibited higher concentrations of nitrate and total sediment 

nitrogen. As well, Truu et al. (2009) examined soil microbial communities associated with Salix 

sp. being irrigated with secondary-treated wastewater over a three year period and did not 

observe any significant differences in the soil microbial community diversity, as measured by 

16S DGGE analysis, compared to control plots not receiving effluent, despite the fact that the 

irrigated plots had significantly higher concentrations of total nitrogen, phosphorus and 

potassium.  

 Findings surrounding the impact of urban effluents on the functional profiles of wetland-

associated microbial communities are similarly conflicting. For example, Ravit et al., (2003) 

found that sediment microbial enzyme activity in β-glucosidase, acid phosphatase, chitobase, 

phenoxidase and peroxidise was higher in wetland sediments that were not impacted by urban 

activities compared to similar wetlands receiving high urban wastewater effluent loads. 

Similarly, Truu et al. (2009) found that increased activity of microbial alkaline phosphatase and 

N-mineralization were associated with soil plots receiving secondary-treated wastewater effluent 

compared to untreated controls. However, in the same study when carbon utilization profiles 
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were examined using Biolog
TM

 EcoPlates, no significant differences were observed between the 

treated and untreated plots. In the case of these two studies, it becomes clear that the 

methodology being used to measure microbial functional changes and metabolic activities can 

determine the study outcome, with one method identifying differences among the treatments 

while the other did not detect any changes. This indicates that in order to get a more complete 

understanding of changes occurring in a microbial community at the functional level, multiple 

methods of measuring metabolic activity may be required.  

The removal efficiency of pathogenic microorganisms from various types of wastewater 

effluents using constructed treatment wetlands with emergent macrophytes has been evaluated. 

Reductions in indicator species have been shown to be between 90 and 99% which is comparable 

with other treatment processes traditionally used to reduce pathogen load in contaminated 

wastewater (Miescier and Cabelli, 1982; Wolverton, 1989; Watson et al., 1990).  Studies 

comparing the effectiveness of pathogen removal in both planted and unplanted constructed 

wetlands of the same type have shown that planted wetlands are significantly more effective at 

reducing pathogen load in wastewater (Rivera et al., 1995; Soto et al., 1999; Warren et al., 2000; 

Karathanasis et al., 2003). Additionally, the species of plants used in the constructed wetland is 

also an important factor to consider when examining constructed wetland parameters influencing 

pathogen removal efficiency. Karathanasis et al. (2003) showed that when comparing 

constructed wetland systems planted with cattails (Typha latifolia), fescue (Festuca 

arundinacea) and mixed plant species (yellow flag iris (Iris pseudacorus), canna lilies (Canna x. 

generalis), day lilies (Hemerocallis fulva), hibiscus (Hibiscus moscheutos), soft-stem bulrush 

(Scirpus validus), and mint (Mentha spicata)), the polyculture and cattail-planted constructed 

wetlands were more efficient than the fescue at removing fecal coliforms and fecal streptococci 
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from untreated domestic wastewater. This study also suggested an increase in removal efficiency 

with increased root biomass. Similarly, when fecal coliform removal in duckweed (Spirodela 

polyrhiza), water lettuce (Pistia stratiotes) and algal-based stabilization ponds were compared, 

differences were observed between the treatments with the algal-based system removing 

significantly more pathogens than either of the duckweed and water lettuce ponds, with 

duckweed removing pathogens more efficiently than water lettuce (Awuah  et al., 2004). 

1.4.5 Underlying Themes 

 By examining the effects of different types of effluents and water quality impacts on 

microbial wetland-associated communities, several general conclusions can be drawn. Firstly, 

the literature available agrees that the exposure of wetland microbial communities to wastewater 

typically leads to an altered microbial community structure in the majority of reports (e.g. Ravit 

et al., 2003; Hallberg and Johnson, 2005; Ahn et al., 2007; Cao et al., 2008; Wu et al., 2010). 

However, these structural changes may or may not be reflected in the functional profile of the 

community. This could be due to a few factors, for example, it is possible that changes on the 

functional level are occurring, however they are not being captured due to the methodology 

being used in that study. Alternatively, in methods such as carbon source utilization profiles 

using Biolog
TM

 EcoPlates (community level physiological profiling-CLPP), the change in the 

structure of the microbial community may be occurring at a level that is not being captured by 

the total community functional profile that is being shown with CLPP. The relative abundance of 

the microorganisms being enriched, or inhibited, by a given effluent may be too low relative to 

the total microbial community being captured during CLPP. Furthermore, the changes being 

made to the wetland-associated microbial community structure by exposure to a given effluent 

tends to enhance the ability of that community to remediate wastewater, and is not in any way 
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detrimental. As well, the changes being observed in microbial community structural and 

functional profiles tend to be more dramatic upon exposure to industrial effluents (AMD and 

crude oil), compared to urban or agricultural. This may be due to the nature of the water quality 

changes occurring in each different type of effluent. For example, the elevated concentrations of 

heavy metals being seen in AMD are far beyond what most organisms would ever experience in 

a natural unimpacted system. Similarly, most microbial communities would not typically be 

exposed to crude oil constituents, while high levels of inorganic nutrient loads and pathogenic 

microorganisms are more likely to occur in natural communities with changes in seasons, 

flooding and runoff. Additionally, with the exception of extremely high levels of nitrite and salts 

far beyond what is typical of WWTP effluent and field runoff, these types of contaminants are 

not as toxic to the organisms (Carpenter et al., 1998). As such, the changes we are seeing in the 

communities are less dramatic in the second instance.  

There is also a reoccurring trend in the literature with respect to the influence of plant 

presence on the response of microbial communities to changes in water quality conditions. The 

presence of plants imposes a stabilizing effect of microbial community structure and function, 

lessening the changes being observed upon exposure to a given effluent (Ahn et al., 2007; Weber 

et al., 2008; Weber et al., 2010). Furthermore, plant presence has consistently been shown to 

improve contaminant removal efficiencies in treatment wetlands exposed to impacted effluents 

with the exception of the removal of some heavy metals from AMD (Collins et al., 2004; 

Vymazal et al., 2009). 
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1.5 Future Research Needs  

 Overall, there is very little research available surrounding the impacts of water quality on 

wetland-associated microbial communities. Of the studies that have been done, most focus solely 

on the sediment-associated microbial community (e.g. Ravit et al., 2003; Rich and Myrold, 2004; 

Mentzer et al., 2006; Cao et al., 2008;Truu et al., 2009; Perryman et al., 2011). Very few studies 

examine the impact of these effluents specifically on root-associated or water-associated 

microorganisms. These communities (sediment, water, rhizosphere and rhizoplane) differ 

dramatically in structure and function. Considering the established importance of root-associated 

microbial communities in the remedial functions of wetlands, more effort needs to be put forth in 

the examination of how these communities may be impacted by changes in water quality. 

Ideally, all of these microbial communities should be examined together, as each one has an 

important role to play in how a wetland functions. Furthermore, many studies focus on 

constructed treatment wetlands, while relatively few studies have examined the impacts of these 

anthropogenic effluents on natural wetland systems. Natural wetland systems are extremely 

important in protecting the integrity of our aquatic ecosystems, so more work needs to be done in 

this area. Riparian zones in particular have not been studied in much detail, and they are often 

the only obstacle between runoff from urban and agricultural land and our waterways (Osborne 

and Kovacic, 1993). 

1.6 Research Hypotheses and Objectives 

To further our understanding of how changes to water quality can affect plant-bacteria 

community dynamics and their capacity to remediate contaminated water, I will be testing two 
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hypotheses. In order to test these hypotheses I will meet several objectives which are identified 

by the letters a-c corresponding with each hypothesis.  

1) Natural and constructed wetland systems highly impacted by anthropogenic activities will 

differ from less affected systems in community composition, function, remediation 

capabilities (ability to remove contaminants and pollutants from water) and response to 

environmental changes. 

a. Use an in situ field-based approach to examine similarities and differences among 

the microbial communities associated with a wetland plant (P. arundinacea) at 

sampling locations with contrasting water quality characteristics from a structural 

and functional perspective (Chapter 3). 

b. Use an ex situ mesocosm-based approach to look at structural and functional 

differences between  microbial communities associated with wetland plants 

treated with water from a low water quality sampling location and from a high 

water quality sampling location using lab-scale constructed wetland mesocosms 

(Chapter 5). The mesocosm-based approach will reduce some of the variability 

associated with field-based research and allow us to test the ability of the different 

wetland communities to remove contaminants. 

c. Use an ex situ mesocosm-based approach to examine how wetland-associated 

communities adapted to either high or low water quality conditions will respond 

to environmental perturbations by simulating a rain event with associated run-off . 

This will be achieved by loading inorganic phosphorus into the mesocosms. 

Changes to community structure, function and remedial capabilities will be 

monitored after the phosphorus loading event (Chapter 6).  
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2) The microbial community composition of wetland plants will differ among species. 

Different plant species will harbour unique microbial communities that vary in their 

community compositions, functionality, remediation capabilities and in their response to 

perturbations in water quality. 

a. Use an in situ field-based approach to compare community structural and 

functional characteristics between different plant species (I. versicolor, P. natans, 

V. spicata) at field locations with contrasting water quality characteristics 

(Chapter 4). 

b. Use an ex situ lab-based approach to compare the community structure, function 

and remediation capabilities of wetland-associated microbial communities in 

mesocosms planted with different plant species (P. arundinacea and V. anagallis-

aquatica) receiving contrasting water quality treatments (Chapter 5). 

c.  Compare the ability of high and low water quality-treated microbial communities 

associated with either P. arundinacea or V. anagallis-aquatica to resist 

perturbations in water quality by loading mesocosms with phosphorus (Chapter 

6). 
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Chapter 2 

General Materials and Methods 

2.1 Sample Collection and Preparation 

Bacterial communities were assessed from river water, rhizosphere soil and rhizoplane 

samples in field-based studies (Chapter 3 and 4), while interstitial water, inflow water, 

rhizosphere and rhizoplane material was assessed from mesocosm-based studies (Chapter 5 and 

6). River water samples and inflow water samples were collected aseptically in sterilized glass 

bottles from the middle of the riverbed 30 cm below the water’s surface. Interstitial water 

samples were collected by placing a sterile glass bottle beneath the outflow port of each 

mesocosm and collecting the water as it drained from the tank. Please note that for the majority 

of water samples (river water and mesocosm inflow water) one experimental replicate is 

reflected in the data. This is because there is only one central river, and in the case of the 

mesocosms, only one inflow bucket per water source treatment feeding all mesocosms at a given 

time. We felt that one sample would be reflective of the water conditions without significantly 

increasing the amount of samples being processed, which was also time sensitive. Therefore, 

when data represents averages and standard error reflects variation in experimental replicates 

only, these measurements will lack error bars. Rhizosphere soil samples were obtained by 

removing plant root systems and shaking roots to collect the attached soil. Samples were stored 

in Whirl-paks
® 

(The Aristotle Corporation, Stamford, Connecticut USA) for transport to the lab. 

Rhizoplane samples were collected by removing root material from the base of the plant using 

sterile forceps and nitrile gloves. Root samples were stored in Whirl-paks
®
 for transport to the 

lab where they were washed 3x in sterile sodium-free phosphate buffer before being weighed 
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into 3 g parcels and transferred to 297 mL of sterile buffer in glass bottles. Rhizoplane biofilm 

material was then obtained from washed roots using a Branson sonicator (Branson 2800 

Ultrasonic cleaner, Branson Ultrasonics, Richmond, Virginia USA), with sonication for 1 min, 

with a 1 min rest period, followed by another minute of sonication (Miyasaka et al., 1991; 

Bulgarelli et al., 2012).  

2.2 Structural Community Characterization 

Prior to the extraction of bacterial DNA, water and rhizoplane samples were filtered (250 

mL) under sterile conditions using a 0.22 µm polycarbonate filter (Millipore
TM

, Bedford, 

Massachusetts USA). The filters where then shredded aseptically using sterile scalpel blades and 

the filter pieces were placed into the bead tubes used for DNA extraction provided as part of the 

PowerSoil
TM

 DNA isolation kit (Mo-Bio Laboratories, Carlsbad, California USA). Soil samples 

(rhizosphere) were added to the bead tubes as described in the PowerSoil
TM

 DNA isolation kit 

protocol. DNA extraction was then performed as described in the DNA isolation kit protocol and 

extracted DNA was stored at -80°C until further processing occurred 7-14 days later. 

 Structural community analysis was performed using denaturing gradient gel 

electrophoresis (DGGE). This establishes a molecular fingerprint of the bacterial community by 

separating same-sized PCR products by their guanine-cytosine content which determines how 

readily they are denatured (Muyzer and Smalla, 1998). Extracted DNA was subjected to PCR 

using the primers 357f (5ʹ-CCTACGGGAGGCAGCAG-3ʹ) with a GC clamp attached to the 5' 

end (5ʹ-CGCCCGCCGCGCCCCGCG-CCCGTCCCGCCGCCCCCGCCCG-3ʹ) and 518r (5ʹ-

ATTACCGCGGCTGCTGG-3ʹ) (Sigma Aldrich, Oakville, Ontario CA) which targets the V3 

region of the 16S ribosomal DNA in bacteria (Ogino et al., 2001).  Due to accumulation of PCR 
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inhibitors within experimental mesocosms (Chapter 5 and 6), SsoAdvanced
TM

 Universal 

Inhibitor-Tolerant SYBR® Green Supermix (Bio-Rad Laboratories Inc., Hercules, California 

USA) was used for all PCR reactions related to mesocosm-based samples. The mastermix for 

this 50μL PCR reaction was prepared using 25 μL of SsoAdvanced
TM

 Universal Inhibitor-

Tolerant SYBR® Green Supermix, 0.5 μM of each primer, 15 μL of Milli-Q (Millipore) water 

and 5 μL of DNA template. The reaction was run on a Bio-Rad
TM 

i-cycler iQ (Bio-Rad 

Laboratories Inc., Hercules, California USA) under the following conditions: initial denaturation 

for 3 min at 98°C, followed by 20 cycles of 98°C for 15s, 65 °C for 1 min and 60°C for 1 min 

each. The annealing temperature was decreased by 1°C every 2 cycles to a temperature of 56°C 

on the 20
th

 cycle. This was followed by 10 additional cycles of 98°C for 15s, 55°C for 1 min and 

60°C for 1 min. The PCR product (5μL) was then run on a 1.5% (W:V) agarose gel in 1x TAE 

buffer at 100 V for 45 min to verify the success of the reaction. Gels were stained using ethidium 

bromide and imaged on a Bio-Rad
TM

 GelDoc
TM

 XR (Bio-Rad Laboratories Inc., Hercules, 

California USA). Successful reactions resulted in the presence of a 233 bp band and no PCR 

products visible in the negative lane. The negative lane was loaded with PCR product obtained 

from a reaction run with 5 μL of Milli-Q water in place of DNA template.  

 The DGGE was carried out through adaptation of the protocol described by Green et al. 

(2009). An 8% (W:V) polyacrylamide gel was prepared with a linear denaturing gradient from 

40 to 65% with 100% denaturant defined as 7M urea and 40% (V:V) formamide. A CBS 

Scientific
TM

 DGGE-2401 machine (CBS Scientific Inc., Del Mar, California USA) was used to 

run the gels for 17 hours at 70V and 60°C. The polyacrylamide gel was loaded with 20 μL of 

PCR product per lane. The middle and outside lanes of the gel were loaded with 15 µL of a 

DGGE ladder comprised of a 50:50 (v:v) mixture of PCR product obtained from the DNA of 
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microorganisms grown in pure-culture under lab conditions and 1M Tris HCl (pH 8). The DNA 

ladder contained an equal mixture of PCR product obtained from the following eleven 

microorganisms: Flavobacterium spp. (ATCC® 51823), Aeromonas hydrophilia (ATCC® 

49140), Bacillus cereus (Ward’s Science Plus), Alcaligenes faecalis (ATCC® 33950), Bacillus 

megaterium (ATCC® 10778), Pseudomonas aeruginosa (Ward’s Science Plus), Streptomyces 

griseus (ATCC® 10137), Nitrosomonas europaea (ATCC® 25978), Pseudomonas chlororaphis 

(ATCC® 13985), Desulfotomaculum nigrificans (ATCC® 19998), and Clostridium perfringens 

(NCTC® 8237). The ladder allows for warping and smiling of gels to be corrected using the 

appropriate software and acts as a standard to adjust for any differences between gels with 

respect to conformation or staining.  

 DGGE gels were stained using a 1X solution of SYBR Gold (Invitrogen, Burlington, 

Ontario CA) in 1X TAE buffer for approximately 90 min while shaking at 60 rpm. Gels were 

then transferred to a Bio-Rad
TM 

GelDoc
TM

 XR for imaging using Quantity One® 1-D analysis 

software (Bio-Rad Laboratories Inc., Hercules, California USA). 

 

2.3 Functional Community Characterization: Community-Level Physiological Profiling 

The Biolog
TM

 EcoPlate consists of 31 different carbon sources which have demonstrated 

relevance to the study of microbial communities from natural environments (Insam, 1997). The 

EcoPlate
 
contains each carbon source and an empty well (blank) in triplicate within a 96 well 

plate. These plates are an important culture-based tool for the characterization and differentiation 

of microbial communities under various environmental conditions (e.g.  Garland, 1997; Guckert 

et al.,1996). Biolog
TM

 EcoPlates are preferred over other methods used to monitor changes in 
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microbial communities across a wide degree of environmental conditions (e.g. phospholipid 

fatty-acid analysis) due to their highly sensitive nature (Firestone et al., 1998).   

The Biolog
TM

 EcoPlate
 
protocol used for this experiment was adapted from Weber and 

Legge (2010).  Water and rhizoplane samples were prepared as previously described under the 

sample collection heading. Soil samples underwent further preparation before inoculation with 

the addition of 1 g of soil into a sterile flask containing 99 mL of sodium-free phosphate buffer 

which was shaken at 250 rpm for 30 min in a New Brunswick
TM

 Scientific C76 water bath 

shaker (Edison, New Jersey USA) held at room temperature (21±2 °C) (Aguirre de Cárcer et al., 

2007; Mula-Michel and Williams, 2013).  A multichannel pipette was used to inoculate 150 µL 

of sample into each of the Biolog
TM

 EcoPlate
 
wells. The plates were read at 590 nm using an 

xMark
TM

 Microplate Absorbance Spectrophotometer (Bio-Rad Laboratories Inc., Hercules, 

California USA) before being stored in the dark at room temperature. Subsequent readings were 

taken at 24, 48, 72 and 96 hours.  

2.4 Water Chemistry  

Water chemistry was determined for both inflow and outflow water samples using a 

DR/890 HACH® Spectrophotometer and a DR3900 HACH® VIS Spectrophotometer  (London, 

Ontario CA). Concentrations of ammonia, nitrate, nitrite and total reactive phosphorus were 

obtained using HACH® methods 8155, 8171, 8507 and 10209 respectively. Ammonia analysis 

was performed using the HACH® Permachem® reagents ammonia salicylate (cat. 2395266) and 

ammonia cyanurate (cat. 2653199). Nitrate and nitrite quantification was performed using the 

HACH® Permachem® reagents NitraVer®5 (cat. 2106169) and Nitriver®3 (cat. 2107169), 

respectively. Total reactive phosphorus concentrations were determined using HACH® 

Phosphorus TNTplus® vials (TNT843) for reactive and total phosphorus quantification by the 
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ascorbic acid method. Sample readings were obtained in triplicate and 1 mg/L standard solutions 

of each of the compounds previously mentioned were run through the spectrophotometers after 

every 3
rd

 sampling event to verify equipment accuracy. 

2.5 Culture-Based Enumeration of Fecal Coliforms and Heterotrophic Microorganisms  

Water samples were subjected to the membrane filtration fecal coliform method (m-FC) 

which is the standard indicator of fecal contamination in water and is used as a water-quality 

standard (Hufham, 1974; Jamieson et al., 2002; Harwood et al., 2005). The method used in this 

experiment was taken from Standard Methods for the Examination of Water and Wastewater 

(1998). Water samples in volumes of 10 µL, 100 µL, 1 mL, 10 mL and 100 mL were aseptically 

filtered through 0.45 µM celluloses filters (Millipore
TM

, Bedford, Massachusetts USA) and 

transferred onto BD Difco
TM

 membrane fecal coliform agar(Franklin Lakes, New Jersey USA). 

The culture media was prepared without the addition of rosalic acid as fungal growth was not an 

issue with our samples, and thus was not required. Plates were incubated at 44.5 °C for 48 hours 

before being counted. Samples obtained from field studies only were also plated onto R2A Agar 

(BD Difco
TM

 Franklin Lakes, New Jersey USA) to establish heterotrophic plate counts, and were 

incubated at room temperature for 120 hours. 

2.6 Molecular Methods for Detection of Pathogenic Microorganisms Associated with Fecal 

Contamination 

The absence of microbial growth on solid media is not necessarily indicative of whether 

an organism is ecologically present and metabolically active (McMahon et al., 2007).  Real-time 

quantitative PCR (qPCR) was used to enumerate the copy number of specific genes associated 

with key pathogenic microorganisms of interest within field-collected and mesocosm-collected 
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samples (Chapters 3,4 and 5). The following enteric organisms were chosen for quantification 

from water, rhizosphere and rhizoplane samples: Escherichia coli, Enterococcus spp. and 

Salmonella spp. These organisms were selected for quantification due to the fact that they are 

indicators of fecal contamination and thus indicators of water-quality, and are among the most 

significant human pathogens originating from fecal contamination in freshwater systems (Cabral, 

2010). 

 DNA extracted from mesocosm samples were subjected to qPCR performed with a Bio-

Rad
TM 

i-cycler iQ Real-Time PCR System (Bio-Rad Laboratories Inc., Hercules, California 

USA). SsoAdvanced
TM

 Universal Inhibitor-Tolerant SYBR® Green Supermix (Bio-Rad 

Laboratories Inc., Hercules, California USA) was used for these reactions. Enumeration of E. 

coli was performed using primers for uidA as stated in Table 2.1. The reaction was run in 25 μL 

volumes with 12.5 μL of Supermix, 0.5 μL of each primer, 7.5 μL of milli-Q H2O and 4 μL of 

DNA template per reaction, with running conditions as follows: 98°C for 3 min (1x), 98 °C for 

15 s followed by 60°C for 1 min (x40). Enumeration of Enterococcus spp. was performed using 

primers developed by Matsuda et al. (2009) for 16S ribosomal DNA as stated in Table 2.1. The 

reaction was run in 30 μL volumes with 15 μL of Supermix, 1.8 μL of each primer, 14 μL of 

Milli-Q H2O and 10 μL of DNA template per reaction, with running conditions as follows: 98°C 

for 3 min (1x), 98 °C for 15 s, 55°C for 30s and 60°C for 30s (x40). Enumeration of Salmonella 

spp. was performed using primers for invA as stated in Table 2.1. The reaction was run in 25 μL 

volumes with 13 μL of Supermix, 1 μL of each primer and 10 μL of DNA template per reaction, 

with running conditions as follows: 98°C for 3 min (1x), 98 °C for 15 s, 60°C for 1 min (x50) 

and 60°C for 10 min (x1). 
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Table 2.1 Primers used for Real-Time Quantitative PCR Detection of Enteric Pathogens. 

Microorganism Primer Sequence (5' to 3') 

Target 

Gene 

Function Reference 

Escherichia coli 

Eco-F 

Eco-R 

GTCCAAAGCGGCGATTTG 

CAGGCCAGAAGTTCTTTTTCCA 

uidA Glucuronidase 

Shannon et al., 

2007 

Enterococcus 

spp. 

g-Encoc-F 

g-Encoc-R 

ATCAGAGGGGGATAACACTT 

ACTCTCATCCTTGTTCTTCTC 

16S 

rDNA 

16S rDNA 

Matsuda et al., 

2009 

Salmonella spp. 

Sal-F 

Sal-R 

CGTTTCCTGCGGTACTGTTAATT 

AGACGGCTGGTACTGATCGATAA 

invA 

Invasion 

protein 

Shannon et al., 

2007 

 

2.7 Statistical Analyses and Data Manipulations 

2.7.1 Structural Community Analysis  

 GelComparII: Gel Electrophoresis software (Applied Maths, Austin, Texas USA) was 

used to perform cluster analyses on DGGE-based banding patterns generated from each sample. 

The cluster analysis was performed using the un-weighted pair-group method with arithmetic 

mean (UPGMA) based on the Pearson correlation which considers the intensity of DGGE bands 

as well as the presence of a band at a given position (Brons and van Elsas, 2008). Banding 

patterns were also used to calculate community structural diversity under some circumstances 

(Chapter 6) using the Shannon Diversity index (H'; Shannon, 1948) (e.g. Gafan et al., 2005). 

2.7.2 Analysis of Community-Level Physiological Profiles 

 Absorbance measurements obtained from Biolog
TM

 EcoPlates
 
at 96h after inoculation 

were used to determine several functional diversity indices proposed by Zak et al. (1994) (e.g. 

Weber et al., 2008). Average well color development (AWCD) was determined by averaging the 
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net absorbance values of all carbon source containing wells after 96h. AWCD is used as an 

overall estimate of metabolic rate of the microbial community in question (Garland, 1997).  The 

Shannon Diversity index (H'; Shannon, 1948) was used to determine the diversity of carbon 

sources used by each community (metabolic diversity) which was calculated using the equation 

H'= -∑piln(pi) where pi is the ratio of the absorbance of a given carbon source divided by the 

sum of the absorbance values for all 31 carbon sources. A ratio of the absorbance for each carbon 

source divided by AWCD was also calculated for each Biolog
TM

 EcoPlate and used to perform a 

Principal Components Analysis (e.g. Choi and Dobbs, 1999) using XLSTAT Statistical Analysis 

Software (Addinsoft, Paris, France). Additionally, in chapters 5 and 6, absorbance values for 

each carbon source classified as either polymers, carbohydrates carboxylic/acetic acids or 

nitrogen containing compounds were added together and divided by the total absorbance within 

the entire Biolog
TM

 EcoPlate at 96h after incubation to determine the percent usage of different 

carbon source types for microbial communities (modified from Zak et al., 1994). This 

assessment was used to further characterize changes occurring in microbial community carbon 

source utilization profiles during mesocosm treatments. 
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Chapter 3 

A Comparison of Microbial Communities Associated with Phalaris 

arundinacea along a Water Quality Gradient in the Grand River, Ontario 

 

3.1 Introduction 

Anthropogenic activities are increasingly impacting our freshwater ecosystems 

(Mekonnen and Hoekstra, 2015). Water quality in aquatic freshwater systems is a serious 

concern as eutrophication resulting from human activities has already been attributed to losses in 

biodiversity around the world (Tilman et al., 2001; Hautier et al., 2009; Hooper et al., 2012). 

Wetlands represent a unique ecosystem that can help to ameliorate the effects of water pollution 

and eutrophication within freshwater ecosystems (Coveney et al. 2002). Water passing through 

natural or constructed wetland systems is subjected to filtration and a variety of biological and 

chemical processes which have been shown to remediate some of the effects of anthropogenic 

activity, such as inorganic nutrient pollution (Sheoran and Sheoran, 2006). Many of the 

beneficial ecosystem services provided by wetlands are the result of microbiological activity in 

association with wetland plants (e.g. Stottmeister et al., 2003). The unique and diverse 

microhabitats created by the physiological processes occurring in plant roots create microhabitats 

suited to many different bacteria and microbial processes allowing for the rapid cycling of 

nutrients, thereby increasing the effectiveness of the remediation process naturally occurring in 

wetlands (Brix, 1997; Stottmeister et al., 2003; Vymazal, 2007). As such, it is important to 

understand how microbial communities may be affected by changes in water quality within 

wetlands to better understand how increasing anthropogenic impacts may affect the ecosystem 

services they provide. Some of the methods we can use to assess changes in microbial 
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communities are by looking at changes to community composition (structure), which involves 

changes to the relative abundance of different groups of microorganisms, and by assessing 

changes to community function. Community function can be assessed by a variety of different 

methods, such as assessment of microbial enzyme activity and the degradation of various 

relevant substrates (e.g. Zak et al., 1994; Kourtev et al., 2002). Biolog
TM

 EcoPlates present a 

unique method of assessing community functional shifts by looking at the utilization of 31 

different carbon sources by whole microbial communities (Garland and Mills, 1991; Zak et al., 

1994). They have been employed to assess functional community changes within a variety of 

different habitat types over a wide range of different environmental conditions (e.g. Insam, 1997; 

Weber et al., 2008; Floch et al., 2011). Very few studies, to the best of our knowledge, have 

investigated how water quality, particularly, inorganic nutrient pollution, affect microbial 

communities within wetland ecosystems (e.g. Ravit et al., 2003; Mentzer  et al., 2006; Ahn et al., 

2007; Cao et al., 2008). Of these studies, only a handful examine this question within natural 

wetland systems (e.g. Ravit et al., 2003; Cao et al., 2008). The findings from these studies have 

been mixed, with some studies indicating that nutrient pollution does impact microbial 

community structure and/or function (Ravit et al., 2003; Mentzer  et al., 2006; Ahn et al., 2007), 

while others have found no noticeable difference between impacted and unimpacted 

communities (e.g. Cao et al., 2008). Clearly, more investigation is needed into this matter to 

better understand how increasing anthropogenic impacts are affecting the microbial communities 

in natural wetland systems.  

 In order to test the hypothesis that differences in water quality, particularly inorganic 

nutrient pollution, affect wetland microbial communities (both structurally and functionally), we 

examined microbial communities from the rhizosphere and rhizoplane of Phalaris arundinacea 
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located in riparian zones along the Grand River, Ontario (Canada). P. arundinacea is also known 

as reed canary grass and is considered to be native to North America (Apfelbaum and Sams 

1987). P. arduninacea is abundant along the Grand River and throughout the Grand River 

Watershed and also has applications within constructed wetlands (e.g. Bernard and Lauve, 1995; 

Edwards et al., 2006). We chose six different sites with classifications of high, moderate and 

poor water quality by the Grand River Conservation Authority based on a nutrient quality index 

(Loomer and Cooke, 2011). Microbial communities associated with water and P. arduninacea 

roots were sampled at each different site, multiple times throughout the year, to assess how 

differences in nutrient pollution affected community structure and function, using PCR-

denaturing gradient gel electrophoresis (PCR-DGGE) and Biolog
TM

 EcoPlates. We also took a 

more in depth look specifically into the microbial community fraction associated with fecal 

contamination and potential human pathogenesis as microorganisms associated with fecal matter 

are directly related to water quality (Cabral, 2010). Some of the most significant human 

pathogens originating from fecal contamination found in freshwater systems include Vibrio spp., 

Shigella spp., Salmonella spp., Enterococcus spp. and Eschericia coli (Cabral, 2010). We chose 

to examine both total fecal coliform numbers, as well as a more specific look at Salmonella spp., 

Enterococcus spp. and E. coli. These microorganisms were specifically chosen due to their 

relevance in human health and because of existing information available about their presence and 

ecology within the Grand River Watershed (Thomas 2011; Morrison 2014).  

3.2 Materials and Methods 

3.2.1 Experimental Design and Field Sampling Protocol 

Reed Canary Grass (Phalaris arundinacea) was selected as our study organism due to its 

abundance in the Grand River Water Shed. It was the only wetland plant that was located 
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directly adjacent to the river at all sampling sites, thus being significantly impacted by the water 

quality in the river. We selected six sampling locations along the main Grand River based on the 

GRCA nutrient quality index from the 2011 Water Quality Report for the Grand River Water 

Shed (Loomer and Cooke, 2011). Our sites were selected to reflect a gradient in water quality 

characteristics from good to poor, and were also chosen in conjunction with Provincial Water 

Quality Monitoring Network (PWQMN) sampling locations which provided us with additional 

historical sampling data for the sites. The two high water quality sites chosen were Shand Dam 

and West Montrose (Figure 3.1). Shand Dam (43.724658, -80.343832) was the northern most 

site located in Center Wellington, Ontario approximately 1 km downstream from the Bellwood 

Lake Reservoir Dam and was primarily surrounded by agricultural land. This site also had a 

weeping bed belonging to a residential building directly adjacent and slightly upstream of the 

sampling site. West Montrose (43.588219, -80.470979) was the second northern most site, 

located approximately 20 km downstream from Shand Dam. West Montrose was primarily 

impacted by agricultural land with a stream carrying agricultural effluent entering the main river 

about 50 m upstream and a residential trailer park located about 100 m downstream from the 

sampling location. The two intermediate water quality sites selected were Conestogo River and 

Bridge and Lancaster. The Conestogo River (43.530117, -80.543724) site is about 10 km south 

of West Montrose and impacted by both runoff from adjacent agricultural land and effluent from 

the St. Jacobs municipal waste water treatment plant (WWTP). The site at Bridge and Lancaster 

(43.481737, -80.481135) is approximately 10 km south of the site at Conestogo River, on the 

border between Kitchener and Waterloo, Ontario. It is within a heavily urbanized area and 

adjacent/slightly upstream of a municipal WWTP. The two poor water quality sites selected were 

Doon and Glen Morris. The Doon site (43.386393, -80.387462) is located in southeastern 
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Kitchener on the edge of Cambridge approximately 30 km downstream from Bridge and 

Lancaster. The land between these two locations is heavily urbanized. Effluent from the Doon 

WWTP enters the Grand River directly upstream from the sampling location. The sampling 

location at Glen Morris (43.277990, -80.343149) is located just outside of Cambridge, Ontario 

approximately 20 km downstream of the Doon site, and was our southernmost sampling location. 

The Glen Morris site is surrounded by agricultural land, but effluent from two municipal WWTP 

enters the Grand River between after the Doon sampling site before it reaches Glen Morris. At 

each site we chose four rectangular quadrats (50 x 120 cm) dominated by the study species. In 

the center of each quadrat we placed a piezometer (30 cm x 8 cm) which allowed for the 

sampling of porewater at each site. Each quadrat was further subdivided into 8 smaller quadrats 

(50 x 15 cm) to allow for destructive sampling at each sampling event. We chose 3 or the 4 

quadrats to sample from and the corresponding subquadrats during event sampling event using a 

random number generator. Full plants were removed from sampling locations to ensure that we 

were sampling from the correct plant species. Entire root systems with attached soil were 

removed from the quadrats and placed in sterile Whirl-paks
® 

(The Aristotle Corporation, 

Stamford, Connecticut USA) for transport to the lab. Samples of river water were collected from 

midstream approximately 30 cm below the water using pre-sterilized glass bottles. For water 

quality assessment, we collected water from the river as well as from the piezometers and stored 

it in Nalgene
® 

bottles (Nalge Nunc International Corporation, Rochester, New York USA) to 

take back to the lab. We also made some water quality assessments at the site using a YSI 

Professional Plus Multiparameter Instrument (YSI 1700/1725, YSI a Xylem  Brand, Yellow 

Springs, Ohio USA) and a Pro Plus Quatro Field Cable (YSI a Xylem  Brand, Yellow Springs, 
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Ohio USA) for measuring water temperature, dissolved oxygen, conductivity, 

oxidation/reduction potential (ORP), pH and total suspended solids.  

 We attempted to collect samples at an interval of approximately once every six weeks 

from May 20, 2015 to November 11 2015, to capture variability during the seasons. Freezing of 

the ground and the river during the mid and later winter precluded sampling events at this time. 

During each sampling event we sampled all six sites over two days, due to the high volume of 

samples collected at each location and time constraints with processing samples. Each of the two 

days were never separated by more than 5 to 10 days and on each day we made sure to sample 

one site from each water quality classification.  
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 Figure 3.1 A map of the Grand River Watershed. Field sampling locations are indicated with 

arrows and correspond to provincial water quality monitoring sites. Each site has been given a 

water quality designation established by the Grand River Conservation Authority. High water 

quality sites (low impact) are indicated with green, intermediate water quality sites (medium 

impact) are indicated with yellow and poor water quality sites (high impact) are indicated with 

red. 
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3.3 Results 

3.3.1 Structural Profiles of Microbial Communities Associated with P. arundinacea across a 

Water Quality Gradient 

 Structural similarity among all samples was only 3.1 % during the May 2015 sampling 

event (Figure 3.2). Structural profiles clustered into four primary groupings related to sample 

type. The highest degree of structural similarity (38%) was between the rhizosphere community 

structural profiles which exhibited three sub-clusters related to the Glen Morris, Doon (poor 

water quality) and West Montrose (high water quality) sites (77.7%). Another sub-cluster 

included community structural profiles from the Shand Dam site (74.8%). The third sub-cluster 

contained the rhizosphere structural profiles from both intermediate water quality sites, Bridge 

and Lancaster and Conestogo River (87%). The rhizoplane structural profiles clustered into two 

distinct groups which had only 17.3% similarity. The first group contained the rhizoplane 

structural profiles from Bridge and Lancaster and Conestogo River (48.7%), while the second 

clustered rhizoplane community profiles from the other four sites (Doon, Glen Morris, Shand 

Dam and West Montrose, 61%). The community structural profiles from river water at the six 

sites showed 35% similarity among the profiles from four of the sites, Bridge and Lancaster, 

Doon, West Montrose and Conestogo River. The river water community profiles from Shand 

Dam and Glen Morris were distantly related to the other four communities with only 3% 

similarity (38% similarity to each other), and showed more similarity to rhizosphere or 

rhizoplane community profiles. 
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Figure 3.2 Hierarchical cluster analysis results of DGGE profiles obtained from microbial DNA 

extracted during sampling events in May 2015 (M 15) demonstrated graphically as a UPGMA 

dendrogram. High water quality sites included Shand Dam (SH) and West Montrose (WM). 

Intermediate water quality sites included Conestogo River (CR) and Bridge and Lancaster (BL). 

Low water quality sites included Doon (D) and Glen Morris (GM). Different sample types are 

indicated as H2O (water), RS (rhizosphere) and rhizoplane (RP). Samples from different quadrats 

within a site are indicated with Q1-3. Numbers indicate percent similarity among clusters.  
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Structural community profiles from all sampling types at each of the six sampling locations 

showed much greater similarity among one another compared to the previous sampling event 

(48%) (Fig 3.3). As in the previous sampling event, community structural profiles clustered 

primarily by sampling type, with rhizosphere structural profiles exhibiting the highest degree of 

within group similarity (83%). Within this grouping, structural profiles grouped according to the 

three water quality designations. The Doon and Glen Morris (poor water quality) sites exhibited 

the highest similarity (94%). The intermediate quality sites (Bridge and Lancaster and Conestogo 

River) exhibited 91% similarity, although one of the Bridge and Lancaster profiles was an outlier 

and clustered with the poor water quality sites. The high water quality sites (Shand Dam and 

West Montrose) exhibited 87% similarity. The river water microbial communities exhibited the 

second highest amount of similarity among samples of the same type (75%), and the Bridge and 

Lancaster/Conestogo River communities were the most similar (97%). Rhizoplane communities 

exhibited 61% structural similarity (74% without outlier). Sub-groupings within the rhizoplane 

cluster did not correlate to water quality designations, although samples from the same sites (Q1-

Q3) did tend to cluster together.  
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Figure 3.3. Hierarchical cluster analysis results of all of the DGGE profiles obtained from 

microbial DNA extracted during sampling events in July 2015 (J 15) demonstrated graphically as 

a UPGMA dendrogram. High water quality sites included Shand Dam (SH) and West Montrose 

(WM). Intermediate water quality sites included Conestogo River (CR) and Bridge and 

Lancaster (BL). Low water quality sites included Doon (D) and Glen Morris (GM). Different 

sample types are indicated as H2O (water), RS (rhizosphere) and rhizoplane (RP). Samples from 

different quadrats within a site are indicated with Q1-3. Samples from different quadrats within a 

site are indicated with Q1-3. Numbers indicate percent similarity among clusters.  
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The August 2015 sampling event exhibited more variability among samples in terms of structural 

profiles than in July 2015 (1.9% similarity) (Fig 3.4). There was significant clustering 

corresponding to samples of the same community type, from different sampling locations, 

however, these associations were not as strong as those observed during previous sampling 

events. All six water community structural profiles clustered together with 35% similarity, 

although this cluster also contained some rhizoplane structural profiles from Bridge and 

Lancaster. The two high water quality sites (West Montrose and Shand Dam) were the most 

similar (76%), while the two poor water quality sites (Doon and Glen Morris) also formed a sub-

grouping with 70% similarity. Rhizoplane structural profiles exhibited 25% structural similarity 

(33% without outliers). Samples from the same site tended to cluster together with the highest 

similarity being among rhizoplane communities from the Shand Dam site (86% similarity). 

Rhizosphere community profiles formed three sub-groupings, which were only related by 2% 

similarity. The most distantly related group contained the rhizosphere community profiles from 

Conestogo River (16% similarity). The second sub-grouping contained structural profiles from 

West Montrose and Bridge and Lancaster (40% similarity). The third subgroup was distantly 

related to the other two and contained rhizosphere structural profiles from Shand Dam, Doon and 

Glen Morris (14% similarity).  
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Figure 3.4 Hierarchical cluster analysis results of all of the DGGE profiles obtained from 

microbial DNA extracted during sampling events in August 2015 (A 15) demonstrated 

graphically as a UPGMA dendrogram. High water quality sites included Shand Dam (SH) and 

West Montrose (WM). Intermediate water quality sites included Conestogo River (CR) and 

Bridge and Lancaster (BL). Low water quality sites included Doon (D) and Glen Morris (GM). 

Different sample types are indicated as H2O (water), RS (rhizosphere) and rhizoplane (RP). 

Samples from different quadrats within a site are indicated with Q1-3. Numbers indicate percent 

similarity among clusters. 
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Community structural profiles from all sample types at each of the six sites only shared 

9% similarity during sampling in October 2015 (Fig 3.5). Rhizoplane community profiles 

exhibited the highest degree of within sample type similarity (41% excluding outliers). Within 

the rhizoplane cluster, samples from the same site tended to cluster together. There were two 

main sub-clusters, which contained rhizoplane community profiles from Bridge and Lancaster 

and Doon (48% similarity), or Glen Morris/Shand Dam/Conestogo River (46% similarity). There 

were several outliers, primarily from the West Montrose and Glen Morris sites, which were only 

distantly related to the other rhizoplane community structural profiles. Rhizosphere structural 

community profiles only exhibited 9% similarity among all of the six sites. There were four 

distinct groupings within the larger cluster relating to the different sites. These sub-groupings 

contained community profiles from Conestogo River (90% similarity), Bridge and Lancaster 

(83% similarity), West Montrose/Shand Dam (43% similarity) and Doon/Glen Morris (65% 

similarity). Unlike in the previous sampling events the structural profiles from river water 

communities did not cluster together strongly. One cluster contained structural profiles from 

Conestogo River, West Montrose and Doon (40% similarity), but the other three sites were 

structurally dissimilar and grouped with either rhizoplane or rhizosphere communities.  
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Figure 3.5 Hierarchical cluster analysis results of all of the DGGE profiles obtained from 

microbial DNA extracted during sampling events in October 2015 (O 15) demonstrated 

graphically as a UPGMA dendrogram. High water quality sites included Shand Dam (SH) and 

West Montrose (WM). Intermediate water quality sites included Conestogo River (CR) and 

Bridge and Lancaster (BL). Low water quality sites included Doon (D) and Glen Morris (GM). 

Numbers indicate percent similarity among clusters. 
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From the sampling event in November 2015, samples from each of the different sampling 

sites including each of the three different community types (water, rhizosphere and rhizoplane) 

shared 16% structural similarity (Fig 3.6). The structural profiles primarily clustered into the 

three different sample types with rhizosphere samples sharing 24% structural similarity, 

rhizoplane samples sharing 16% similarity (37% without outliers) and water samples sharing 

50% similarity.  Within the rhizosphere, structural community profiles exhibited a clustering 

pattern with two distinct groupings, the first shared 44% structural similarity and contained 

structural community profiles from both of the intermediate water quality sites (Conestogo River 

and Bridge and Lancaster) and Shand Dam (High water quality). The second cluster shared 32% 

structural similarity and had one sub-grouping containing structural profiles from the lower water 

quality sites (Glen Morris and Doon, 57% similarity) and another sub-grouping containing 

structural profiles from West Montrose (42% similarity). The rhizoplane structural community 

profiles were clustered in with the water structural profiles and formed two primary sub-

groupings, the first contained structural profiles from Bridge and Lancaster, Conestogo River, 

Glen Morris, Doon and Shand Dam, the second contained structural profiles from Shand Dam, 

West Montrose and Doon. The second sub-grouping of rhizoplane community profiles contained 

all six of the water community profiles as well. Not all of the structural profiles from rhizoplane 

samples clustered together with other rhizoplane samples from the same sampling site, a trend 

that we had been observing at previous sampling events. Structural profiles from water microbial 

community fell into two groupings, the first contained the profiles from West Montrose, 

Conestogo River, Glen Morris and Bridge and Lancaster (78% similarity) while the second 

grouping contained the structural profiles from Shand Dam and Doon (68% similarity). 
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Figure 3.6 Hierarchical cluster analysis results of all of the DGGE profiles obtained from 

microbial DNA extracted during sampling events in November 2015 (N 15) demonstrated 

graphically as a UPGMA dendrogram. High water quality sites included Shand Dam (SH) and 

West Montrose (WM). Intermediate water quality sites included Conestogo River (CR) and 

Bridge and Lancaster (BL). Low water quality sites included Doon (D) and Glen Morris (GM). 

Different sample types are indicated as H2O (water), RS (rhizosphere) and rhizoplane (RP). 

Samples from different quadrats within a site are indicated with Q1-3. Numbers indicate percent 

similarity among clusters. 
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Over the duration of the sampling season, structural similarity among rhizosphere 

microbial communities exhibited the greatest amount of variability between sampling events 

(Table 3.1). Similarity among rhizosphere microbial communities from different sampling 

locations was relatively high during the sampling events in May and July but very low in August 

and October. The rhizosphere exhibited the highest within-sample type structural similarity 

compared to the other sample types during May and July, but became much more variable 

throughout the rest of the year. Rhizoplane-associated microbial communities exhibited the least 

amount of variation in structural similarity and within sample type clustering between sampling 

events. Furthermore, there was a large increase in within sample type structural similarity for all 

community types during the sampling event in July.  

 

Table 3.1 Summary of Within Sample Type Percent Similarity for Microbial Community 

Structural Profiles Associated with P. arundinacea in the Grand River, ON as determined by 

PCR-DGGE-Based Hierarchical Cluster Analysis  

 May July August October November 

Rhizoplane 17.3%*(2) 73.5%*(2) 32.5%*(2) 40.8%*(4) 37.4% 

Rhizosphere 38%*(1) 82.9% 1.9% 8.7% 23.9% 

Water 34.8%(2) 75% 34.7% 8.7% 37.4% 

*Percent similarity value excludes outliers and the numbers of outliers excluded are indicated in 

the brackets 
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3.3.2 Functional Profiles of Microbial Communities Associated with P. arundinacea across 

a Water Quality Gradient 

3.3.2.1 Rhizoplane Communities 

Principal component analysis of carbon source utilization profiles obtained from 

rhizoplane microbial communities associated with P. arundinacea at our six sampling sites along 

the Grand River did not reveal any consistent trends correlating with sampling site water quality 

classifications (Fig. 3.7). Correlations between carbon source utilization profiles from 

communities associated with different sampling sites varied depending on sampling date. For 

example, during the sampling event in May 2015, rhizosphere communities from West Montrose 

and Conestogo River were very similar (Fig. 3.7 A), however in each of the other sampling 

events, carbon source utilization profiles established by communities obtained at these two sites 

were very distinct (Fig. 3.7 B,C,D and E). Carbon source utilization profiles from rhizoplane 

communities at Shand Dam, Glen Morris and Bridge and Lancaster were similar during most 

sampling events (Fig. 3.7 B,C and E) despite being spatially very distinct, representing the 

extremes of the sampling sites, with Shand Dam representing most northern site and Glen Morris 

the most southern. The sampling event in October 2015 (Fig. 3.7 D) revealed the most distinct 

carbon source utilization profiles for rhizoplane communities at the six different sampling sites. 

During this time point, carbon source utilization profiles at Doon and Glen Morris were closely 

related as were Shand Dam and Bridge and Lancaster. Doon, Glen Morris and West Montrose 

were separated from Conestogo, Shand Dam and Bridge and Lancaster along the PC1 axis. 

Conestogo River and West Montrose were distinct from the other four sites along the PC2 axis. 

The West Montrose rhizoplane community was distinct from the communities at other sites due 

to strong usage L-serine and 2-hydroxybenzoic acid (Table A1). The Conestogo River 

community was distinct due to the usage of Tween 40 and pyruvic acid methy ester. 
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Communities from Doon/Glen Morris were distinguished by usage of itaconic acid, N-acetyl-D-

glucosamine and L-serine while those from Shand Dam and Bridge and Lancaster were 

associated with usage of Tween 80, D,L-α-glycerol phosphate and L-threonine. All other 

sampling time points yielded very high overlap among the different sites.  

Figure 3.7 PC1 vs. PC2 plot of Biolog
TM 

carbon source utilization by microorganisms present in 

rhizoplane samples from Phalaris arundinacea obtained in May (A), July (B), August (C), 

October (D) and November (E) of 2015. High water quality sites included Shand Dam and West 

Montrose. Intermediate water quality sites included Conestogo River and Bridge and Lancaster. 

Low water quality sites included Doon and Glen Morris. Each data point represents an average 

PC1 and PC2 score from three experimental replicates and three technical replicates. Error bars 

represent standard error from experimental replicates only.  
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3.3.2.2 Rhizosphere Communities  

 Principal component analysis of carbon source utilization profiles obtained from 

rhizosphere microbial communities associated with P. arundinacea at our six sampling sites 

along the Grand River did not exhibit trends related to site water quality designations (Fig. 3.8). 

Carbon source utilization profiles from rhizosphere communities obtained at different locations 

along the Grand River tended to be similar, with a high degree of overlap among sites during the 

sampling events in August and November 2015 (Fig. 3.8 C and E). However, distinct carbon 

source utilization profiles were associated with most sampling locations during sampling events 

in May, July and October of 2015 (Fig. 3.8 A, B and D). Despite having distinct carbon source 

utilization profiles associated with most sampling sites, during these times, different carbon 

sources are associated with distinguishing each site during different sampling events (Table A2). 

Furthermore,   the relationship among the different communities represented on the PC1 vs. PC2 

plot also changes depending on the sampling date. For example, during sampling in May 2015 

(Fig. 3.8 A) Bridge and Lancaster and Glen Morris (most negative PC1 scores) are separated 

from Conestogo River and Doon (neutral PC1 scores), as well as Shand Dam and West Montrose 

(positive PC1 scores) along the PC1 axis. However, in July 2015, this relationship changes and 

Bridge and Lancaster and Doon (negative PC1 scores) are separated from West Montrose 

(neutral PC1 scores), as well as Conestogo River, Glen Morris and Shand Dam (positive PC1 

scores along the PC1 axis. This indicates that the carbon source utilization profiles associated 

with the rhizosphere communities at these sites are dynamic (not static) and influenced by more 

factors than just those that relation to water quality and geographic location. 
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Figure 3.8 PC1 vs. PC2 plot of Biolog
TM 

carbon source utilization by microorganisms present in 

rhizosphere samples from Phalaris arundinacea obtained in May (A), July (B), August (C), 

October (D) and November (E) of 2015. High water quality sites included Shand Dam and West 

Montrose. Intermediate water quality sites included Conestogo River and Bridge and Lancaster. 

Low water quality sites included Doon and Glen Morris. Each data point represents an average 

PC1 and PC2 score from three experimental replicates and three technical replicates. Error bars 

represent standard error from experimental replicates only.  
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3.3.2.3 River Water Communities  

 Principal component analysis of carbon source utilization profiles established by river 

water microbial communities collected from six sampling sites along the Grand River, between 

May and November of 2015, did not show trends related to the water quality designations 

assigned to the different sites (Fig. 3.9). The relationships among the carbon source utilization 

profiles established by river water communities at each site changed among sampling events. 

Sites which exhibited very similar PC1 and PC2 scores during one sampling event did not 

necessarily exhibit equally similar carbon source utilization profiles (and PC1 and 2 scores) 

during another sampling event. Furthermore, carbon sources used to distinguish water 

communities from one another also changed from sampling event to sampling event (Table A3).  
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Figure 3.9 PC1 vs. PC2 plot of Biolog
TM 

carbon source utilization by microorganisms present in 

water column samples obtained in May (A), July (B), August (C), October (D) and November 

(E) of 2015. High water quality sites included Shand Dam and West Montrose. Intermediate 

water quality sites included Conestogo River and Bridge and Lancaster. Low water quality sites 

included Doon and Glen Morris. Each data point represents an average PC1 and PC2 score from 

three technical replicates.  
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3.3.2.4 Combined Community Types (Rhizoplane, Rhizosphere and Water) 

 When carbon source utilization profiles from all sample types were included within the 

same principal component analysis a consistent trend emerged during all sampling events (Fig. 

3.10). Separation of carbon source utilization profiles by sample type (rhizosphere, rhizoplane 

and water) was consistent across sampling dates. Water communities were consistently 

associated with positive PC1 scores, while rhizosphere and rhizoplane samples were associated 

with negative PC1 scores. Carbon source utilization profiles associated with rhizoplane or 

rhizosphere communities were separated along the PC2 axis. Several carbon sources distinguish 

microbial communities of the three different sample types consistently across all sampling events 

(Table A4). River water microbial communities were consistently associated with pyruvic acid 

methyl ester, Tween 40, glycogen, β-methyl-D-glucoside and D,L-α-glycerol phosphate. These 

carbon sources fall into the Biolog
TM

 EcoPlate classification of polymers and carbohydrates 

primarily. Alternatively, rhizosphere communities were commonly associated with D-

galacturonic acid, D-glucosaminic acid, 2-hydroxybenzoic acid, 4-hydroxybenzoic acid, L-

argnine, L-serine, phenyl ethylamine and putrescine. These carbon sources primarily fell into the 

categories of phenolic compounds, carboxylic acids, amines and amino acids. Rhizoplane 

microbial communities were associated with a smaller subset of the same carbon sources that 

were correlated with rhizosphere communities including, 2-hydroxybenzoic acid, L-serine, 

phenyl ethylamine and putrescine (phenolic compounds, amino acids and amines).  
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Figure 3.10 PC1 vs. PC2 plot of Biolog
TM 

carbon source utilization by microorganisms present 

in rhizoplane (red square), rhizosphere (green triangle) and water column samples (blue circle), 

obtained in May (A), July (B), August (C), October (D) and November (E) of 2015. High water 

quality sites included Shand Dam (SH) and West Montrose (WM). Intermediate water quality 

sites included Conestogo River (CR) and Bridge and Lancaster (BL). Low water quality sites 

included Doon (D) and Glen Morris (GM). Each data point represents an average of PC1 and 

PC2 scores from 3 technical replicates. Samples collected from the same site and a different 

quadrat are indicated with Q1-3.  
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3.3.2.5 Metabolic Diversity  

The metabolic diversity of the microbial communities at each site was calculated using 

the Shannon Diversity index (H`) applied to Biolog
TM

 EcoPlate data from the three different 

community types at each different water quality site. Differences were observed between the 

metabolic diversity of the microbial communities associated with river water, P. arundinacea 

rhizosphere or rhizoplane, with diversity in the rhizoplane being the highest followed by the 

rhizosphere and then the water communities (Fig. 3.11). There were no consistent differences in 

metabolic diversity among the six different sites for any of the community types (Fig 3.11 A, B, 

C). Some seasonal differences in metabolic diversity were observed with seasonal variations 

being the most pronounced in the rhizosphere and rhizoplane. In the rhizosphere, community 

metabolic diversity tended to be highest in August and November and lowest in October. 

Alternatively, in the rhizoplane, metabolic diversity tended to be highest in July and November, 

and lowest in October.  
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Figure 3.11 Metabolic diversity of microbial communities in river water (A), the rhizosphere (B) 

and the rhizoplane (C) as determined by Biolog
TM

 plate carbon source usage following 96h of 

incubation. Error bars are representative of standard error for 3 experimental replicates. Each bar 

is the average of 3 technical replicates (A) and 3 experimental replicates (B and C only) for each 

treatment. 
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3.3.3 Water Chemisty 

When a PCA was performed to assess trends in water chemistry related to water quality 

parameters among the six water quality sites over the entire sampling period (Fig 3.12), the 

closest correlation was between the two high water quality sites, Shand Dam and West Montrose, 

which were both associated with negative PC1 and negative PC2 scores. Intermediate water 

quality sites, Conestogo River and Bridge and Lancaster, also were closely related in terms of 

water quality measurements, and both had positive PC2 scores. However, Conestogo River water 

chemistry had a PC1 score close to zero (but negative), while Bridge and Lancaster had a 

positive PC1. The two designated poor water quality sites did not share similar water chemistry, 

with regards to water quality parameters, and Glen Morris was actually more similar to the 

intermediate water quality sites than to Doon, the other poor water quality site. Glen Morris was 

associated with negative PC1 and positive PC2 scores, while Doon was associated with positive 

PC1 and negative PC2 scores. Water quality parameters that were correlated with positive PC1 

scores included pH, dissolved oxygen and high inorganic nutrient concentrations for nitrite, 

ammonium and phosphorus (Table 3.2). Positive PC2 scores were associated with pH, oxidation 

reduction potential, and nitrate concentration. Negative PC2 values were associated with total 

dissolved solids and ammonium concentration.   
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Figure 3.12 PC1 vs. PC2 plot of the physicochemical properties of pore-water averaged over the 

experimental sampling period (May to November) for all of the Grand River sampling sites. 

High water quality sites (as defined by the Grand River Conservation Authority) included Shand 

Dam and West Montrose (circled with short dashed lines). Intermediate water quality sites 

included Conestogo River and Bridge and Lancaster (circled with a soil line). Low water quality 

sites included Doon and Glen Morris (circled with large dashed lines). 

Table 3.2 Factor Loadings and Eigenvalues for the First Two Principal Components of the PCA 

of Physicochemical Properties of Pore-Water Averaged Over the Experimental Sampling Period 

(May to November) for all of the Grand River Sampling Sites. 

 
F1 F2 

pH 0.717 0.540 

Dissolved Oxygen 0.917 -0.129 

Total Dissolved Solids 0.317 -0.541 

Oxidation Reduction Potential 0.371 0.787 

Nitrite 0.905 -0.318 

Nitrate 0.441 0.772 

Ammonium 0.747 -0.582 

Phosphorus 0.921 -0.008 

Eigen Values 
4.014 2.256 

*Factors contributing significantly to positive principal component scores are bolded while 

factors contributing to negative principal component scores are underlined 
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Measurements of inorganic nutrient concentrations from pore water at each of the six 

water quality sites exhibited seasonal trends and trends associated with GRCA water quality 

designations. Nitrate concentrations tended to be lowest at the two high water quality sites 

(Shand Dam and West Montrose) and highest at Conestogo River (intermediate water quality) 

and Glen Morris (poor water quality) (Fig 3.13A). Nitrate concentrations were intermediate at 

Bridge and Lancaster (intermediate water quality) and Doon (poor water quality). For the 

majority of sampling sites, nitrate concentrations were highest in October or August and lowest 

in July. Nitrite concentrations exhibited distinct trends compared to nitrate. Season differences in 

nitrite concentrations were less dramatic at most sites (Fig 3.13B). As well, nitrite concentrations 

were comparable across the six water quality sites at most time points, although Bridge and 

Lancaster and Doon showed trends towards higher values at most sampling events. Ammonia 

concentrations were much higher at the Doon site compared to the other five sampling sites 

during all sampling events other than in August (Fig 3.13C). Ammonia concentrations were 

comparable between the other sites and seasonal trends were not consistent among sites. Total 

reactive phosphorus measurements tended to be lowest at Shand Dam and West Montrose during 

most sampling events, and highest at Doon (Fig 3.13D). Seasonal trends were not consistent 

between sites. Overall, inorganic nutrient loads tended to be highest at the Doon site, while 

Shand Dam and West Montrose tended to have the lowest values. Interestingly, despite being 

classified as a poor water quality site, Glen Morris tended to have low or intermediate inorganic 

nutrient levels for most compounds evaluated, aside from nitrate. 
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Figure 3.13 Average pore-water concentrations of inorganic nutrients including nitrate (A), 

nitrite (B), ammonia (C) and total reactive phosphorus (D). Bars are the average of four 

measurements taken from four different quadrats at each site. Error bars represent standard error 

from the four measurements.  
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3.3.4 Microbiological Indicators of Water Quality 

3.3.4.1 Culture-Based Methods 

Heterotrophic plate counts (HPC) conducted on R2A media revealed that per mL or gram 

of relevant material; culturable bacterial concentrations were significantly higher in the 

rhizosphere and rhizoplane than in the water. Heterotrophic plate counts from water were 

significantly lower at Shand Dam compared to the other sampling sites (Fig 3.14A). Consistent 

reliable seasonal trends across sampling sites in heterotrophic plate counts were not observed for 

any of the sample types, although there was some evidence for higher HPCs in the rhizosphere 

during the November sampling event (Fig 3.14 15B). Site specific differences related to water 

quality were not observed among the different sampling events (Fig 3.14). 

A similar number of fecal coliforms were cultured from all sample types at each of the 

six different sites (Fig 3.15). There was a lot of variability in the quantity of fecal coliforms 

detected in river water between sampling events, however, no seasonal trends were consistently 

identified at all of the sites (Fig 3.15A). Fecal coliform detection tended to be highest in July at 

most sites for rhizosphere and rhizoplane samples, and lowest in either October or November 

(Fig 3.15 B and C).  

 

 

 



 

89 
 

Figure 3.14 Colony Forming units per mL or gram of material obtained from river water (A), P. 

arundinacea rhizosphere soil (B) or roots (C) grown on R2A media at room temperature for 120 

hours. Bars represent the average of three technical replicates (A only) and three experimental 

replicates from three quadrats within a site (B and C only). Error bars represent standard error 

from technical replicates (A only) or experimental replicates (B and C). 
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Figure 3.15 Fecal Coliforms per 100 mL or gram of material obtained from river water (A), P. 

arundinacea rhizosphere soil (B) or roots (C) grown on m-FC media. Bars represent the average 

of three experimental replicates from three quadrats within a site (B and C only). Error bars 

represent standard error from experimental replicates (B and C). 
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3.3.4.2 Molecular-Based Methods 

Molecular detection of fecal indicator organisms in river water at each of the six different 

water quality sites identified several trends related to seasonality. Although the quantity of 

Salmonella genetic material did not differ significantly among sites, each site exhibited the same 

seasonal trends in organism abundance, with lowest levels being observed in May and August, 

and increases occurring in July, October and November. Salmonella detection was highest in 

November across all sites (Fig 3.16A). Similarly, E. coli abundance was not significantly 

different across the sites, but each site exhibited the same seasonal trends in detection with 

highest abundance occurring in August and October. Similar quantities of E. coli were detected 

in May, July and November at most sites, which were approximately 5-6 orders of magnitude 

lower than peak abundance (Fig 3.16D). The detection of Enterococcus in the river water 

communities was less consistent than with the other two organisms. Enterococcus was most 

commonly detected at the Shand Dam and Doon sites (all sampling events), and least likely to be 

detected at Bridge and Lancaster, being observed at only 3 of the 5 sampling events (Fig 3.16G). 

Enterococcus was not present or present in levels below detection limits in 75% of the sampling 

sites in October, and tended to be present in higher quantities during July and November.  

Molecular detection of Salmonella genetic material in the rhizosphere of P. arundinacea 

indicated trends towards highest abundance at the Bridge and Lancaster site as compared to the 

other sampling locations, which exhibited comparable quantities (Fig 3.16B). Similar to 

observations made from the water communities, Salmonella tended to be detected in higher 

abundances in November. Lowest detection levels were observed in May and October. E. coli 

abundances were similar across all sampling sites, with seasonal trends in abundance observed 

across all locations (Fig 3.16E). E. coli was consistently detected in higher amounts during 
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sampling in August and October, while November exhibited the lowest abundance in the 

rhizosphere of P. arundinacea. Enterococcus was present in the rhizosphere more frequently 

than it was detected in the water (Fig 3.16H). Detection was most consistent at the Conestogo 

River site, and least frequent at Doon, which is perplexing as Enterococcus was consistently 

found in the water at the Doon site during all sampling events (Fig 3.16H). Abundance was 

lowest during August and October and comparable at the May, July and November sampling 

events. 

Salmonella was consistently detected in the rhizoplane microbial community of P. 

arundinacea (Fig 3.16C). Similar quantities of Salmonella were detected at each of the six 

sampling locations. Seasonal variation in abundance was similar among the sampling sites and 

was similar to observations in the rhizosphere, with higher quantities of Salmonella genetic 

material in November and lower quantities in May and October. Trends in E. coli abundance 

were similar across the six sampling sites and seasonal trends were reflective of those from water 

and rhizosphere communities (Fig 3.16F). E. coli abundance was highest in August and October 

and lowest in November. Enterococcus was detected more consistently in the rhizoplane than in 

either of the other 2 community types (Fig 3.16I). There were no significant differences among 

the six sampling locations in terms of Enterococcus and seasonal variations were inconsistent.  

Across all three community types, Salmonella was detected in the lowest quantities, 

compared to either E. coli, which was the most abundance, or Enterococcus. Enterococcus was 

typically present in higher quantities than Salmonella when detected, but was far less 

consistently present in the samples. Comparable quantities of all three indicator organisms were 

detected in the rhizosphere and rhizoplane, while water samples exhibited moderately reduced 

loads. 
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Figure 3.16 Average relative abundance (target gene copies/mL) of bacterial pathogens 

(Salmonella (A-C), E. coli (D-F) and Enterococcus (G-I)) obtained from samples associated with 

Grand River water (A, D, G), and P. arundinacea rhizosphere (B, E, H) and rhizoplane (C, F, I) 

material obtained at sampling sites during the 2015 sampling period. Bars are the average of 

three samples obtained from each site (except for water samples where n=1). Error bars represent 

standard error of three samples. 
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3.4 Discussion 

 We hypothesized that water quality would influence the structure and function of 

microbial communities associated with wetland plants (specifically P. arundinacea) growing 

along a water quality gradient. If our hypothesis was correct we would have expected to see 

microbial communities from comparable water quality sites exhibiting similar structural 

community profiles and similar carbon source utilization patterns as measured by Biolog
TM

 

EcoPlates. We did not observe this effect to the same extent that we had expected. Instead we 

found that the primary driver of community structure and function was sample type. Structural 

and functional community profiles were consistently grouped according to whether the 

community was from the river water, rhizosphere or rhizoplane. Water quality, and/or site 

specific effects were observed within the structural profiles of the rhizosphere during some 

sampling events, but these patterns were mostly absent from the carbon source utilization 

profiles. Furthermore, pathogen presence in these communities was not influenced by water 

quality, with communities from all six sites exhibiting similar quantities and seasonal trends. 

Thus we can conclude that community habitat type and rhizo-compartment, is a stronger driver 

of community structure and function than water quality in the case of P. arundinacea. 

Furthermore, water quality may be a lesser factor influencing community structure under some 

circumstances.  

 Structural analysis of microbial communities from the water, rhizosphere and 

rhizoplane of P. arundinacea at each of the six different water quality sites along the Grand 

River, indicated that community habitat type was the most important influence driving 

community structure. These findings agree with the limited other studies that have compared 

microbial community structures across rhizo-compartments under various environmental 
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conditions (Edwards et al., 2014; Santos-Medellín et al., 2017; Wang et al., 2017; Xiao et al., 

2017; Wu et al., 2018). Microbial community structure also appeared to be influenced by site 

location and water quality, to a lesser extent, among some communities. Structural similarity 

among samples obtained from sites of similar water qualities was most predominant in the 

rhizosphere, and least in the water and rhizoplane communities. In the rhizosphere, samples 

taken from the same site typically clustered together exhibiting similar community structural 

profiles. These clusters sometimes correlated with water quality classifications, especially during 

the sampling events in July, October and November.  Rhizoplane communities exhibited a fair 

degree of variability and did not always cluster together by site, and never by water quality 

classification. Similarly, water community structures did not exhibit similarity by water quality 

designation, despite the fact that sites sharing similar water quality designations were directly up 

or downstream from each-other and closest in proximity.   

 It is possible that we observed a water quality dependent effect on the microbial 

community structure in the rhizosphere but not in the rhizoplane of P. arundinacea, because the 

community in the rhizoplane was being primarily shaped by the plant. The rhizoplane microbial 

community is directly attached to the plant root via biofilm and should be more strongly 

influenced by plant processes than rhizosphere communities in the adjacent soil as plant specific 

effects occur in a gradient starting at the plant root surface and emanating outwards (Vymazal et 

al., 2007; Hartmann et al., 2009).  Thus, if the physiology of the plant is not being affected by 

the site specific characteristics (including water quality), the rhizoplane microbial community 

structure may be unaffected by the water conditions at the site. Unfortunately, it is impossible to 

say if the difference in microbial community response by rhizo-compartment is common among 

other study types and for other environmental influences, due to the fact that most studies focus 
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solely on the rhizosphere community. Many studies have found site specific influences in the 

rhizosphere community of different plant species. These differences have been attributed to soil 

type (Marschner et al., 2001, Berg and Smalla, 2009; Edwards et al., 2015), soil cultivation 

practices (Edwards et al., 2015; Wu et al., 2018) and degree of disturbance and anthropogenic 

impact (Ravit et al., 2003).   

 The similarity between microbial community structures from P. arundinacea 

rhizosphere samples at different water quality sites was dependent on the sampling date. The 

correlation between site water quality designation and rhizosphere community structure was the 

strongest in July and October. We believe that this is because of the specific water chemistry at 

those sites during these sampling times. During the sampling events in July and October, our 

water chemistry measurements exhibited a strong linear gradient in several water quality 

parameters from high to low water quality sites, that was not as pronounced (or absent) during 

other sampling events. In July, water temperature, pH, dissolved oxygen, total dissolved solids 

and conductivity showed an increasing trend from Glen Morris to Shand Dam (Glen 

Morris/Doon>Bridge and Lancaster/Conestogo River>West Montrose/Shand Dam) (Table A5 

and A6). Similarly, this water chemistry gradient was also strong during the sampling event in 

October for dissolved oxygen, total dissolved solids, conductivity and nitrate/nitrite 

concentrations.  The water quality characteristics used to designate these sites as either high, 

moderate or low water quality were based on average water quality measurements over a period 

of years, thus, variability in measurements within a site on a monthly basis would not be 

uncommon (Loomer and Cooke, 2011). Since we observed a correlation between the strength of 

the water chemistry differences between the sites and the degree of water quality influence on 

rhizosphere community structure, water quality does in fact influence community structure 
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within the rhizosphere. However, due to fluctuating conditions over time, which are typical of 

any natural system, these influences may or may not be apparent at any given time depending on 

the magnitude of differences in chemical parameters among the study sites.  Interestingly, 

although site water quality classifications were based on the level of inorganic nutrient impact, 

the concentrations of nitrate, nitrite, ammonia and phosphate did not often exhibit the same 

gradient as the other chemical parameters that we measured.  For example, ammonia 

concentrations were significantly elevated at Doon (poor water quality), but comparable among 

the other sites. Nitrate levels tended to be highest at the intermediate water quality sites and Glen 

Morris. Nitrite concentrations were comparable among most of the sites, but elevated at Bridge 

and Lancaster and Doon, and phosphate concentrations tended to follow the established water 

quality gradient from Shand Dam to Doon, but concentrations at Glen Morris were more 

comparable to the good water quality sites. As such, it is likely that the other water chemistry 

parameters we measured such as pH, dissolved oxygen and conductivity played a larger role in 

structuring the rhizosphere community profiles we observed than the nutrient quality at the sites. 

pH has been established as a significant driver of microbial community structure within various 

habitat types including river sediments (Xiong et al., 2012; Liu et al., 2015), soil (Lauber et al., 

2009; Rousk et al., 2010) and freshwater lakes (Lindström et al., 2005). Dissolved oxygen has 

been identified as a factor influencing microbial community structure in sequence batch reactors 

(Guo et al., 2009). Additionally, dissolved oxygen has been established as a driving factor in the 

structure of denitrifying microbial communities (Desnues et al. 2007; Knapp et al. 2009; Graham 

et al. 2010). Furthermore, in a study by Hollister et al., (2010) the concentration of dissolved 

oxygen in the lake soils and sediments was found to be significantly correlated with microbial 

community structure. The role of electrical conductivity in influencing microbial community 
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structure has not been established in the literature; however, there is some evidence that 

electrical conductivity may influence Archaea community characteristics within soil and 

sediment environments (Hollister et al., 2010).  

 Community functional characteristics were established based on sole carbon 

source utilization patterns for the three different community types at each of the six water quality 

sites. There was a strong association between microbial community habitat type and carbon 

source utilization profiles. As with community structural profiles, habitat type seems to be the 

dominant driver of community function, independent of water quality characteristics or seasonal 

variations. We found distinct differences in the types of carbon sources preferred by each of the 

different community types. Specifically, water microbial communities exhibited a preference for 

polymers and carbohydrates, while rhizosphere communities predominantly preferred phenolic 

compounds, amines, amino acids and carboxylic acids and rhizoplane communities exhibited a 

preference for phenolic compounds, amines and amino acids (a less diverse subset of the 

preferred substrates from the rhizosphere community). Carboxylic acids and amino acids were 

also identified as the preferred carbon substrates for microbial communities associated with 

subsurface soil environments while groundwater and surface soil microbial communities 

exhibited a preference for carbohydrates in a study carried out by Lehman et al. (1995). 

Carboxylic acids and carbohydrates were also identified as important carbon sources during sole 

carbon source utilization analysis of microbial communities from grassland soils (Zak et al., 

1994). Guanghua et al. (2008) found that soil microbial communities preferred amino acids and 

carboxylic acids, while the addition of chemical fertilizers to the community caused a shift to 

preference for carboxylic acids, carbohydrates and polymers.  Alternatively, Rutgers et al. (2016) 

found a correlation between sole carbon substrate utilization preferences of microbial 
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communities of different soil types and land use patterns. Amino acid usage was positively 

correlated with the sand content of the soil, and arable land was associated with the usage of 

carboxylic acids. Rhizosphere microbial communities from a constructed wetland containing 

combinations of up to sixteen different species of wetland plants were associated with strong 

usage of polymers, amines, carbohydrates and amino acids when compared to microbial 

communities in unplanted controls (Zhang et al., 2010). Furthermore, in a study by Osem et al. 

(2007) which looked at rhizoplane (Typha domingensis and Cyperus alopcuroides) microbial 

community carbon source utilization profiles within a wastewater treatment reactor, they found 

that rhizoplane communities exhibited a preference for utilization of 4-hydroxybenzoic acid, D-

malic acid, L-asparagine and phenylethyl amine compared to microbial biofilm communities 

formed on particulate support medium. Interestingly, our rhizoplane communities of P. 

arduninacea also exhibited a consistent preference towards phenolic compounds, amino acids 

and amines (2-hydroxybenzoic acid, L-serine and phenylethyl amine), so the association with 

plant roots may be driving some of these community preferences in carbon source utilization 

profiles. Plant root exudates, which serve as a significant carbon source for microorganisms 

living in association with plant roots, typically consist of simple sugars in combination with 

organic acids, amino acids and phenolics (Walker et al., 2003).; as such, it makes sense that we 

would see increased usage of these types of carbon sources by plant associated microbial 

communities. Thus soil characteristics, inorganic nutrient loading, and association with plants 

appear to influence microbial carbon source utilization profiles, and amino acids and carboxylic 

acids seem to be commonly used substrates among most microbial communities in association 

with either plant roots or soil. In reference to aquatic based microbial communities, in a study by 

Choi and Dobbs (1999) carbon source utilization patterns using Biolog
TM

 EcoPlates were 
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examined for water-based microbial communities and it was shown that differential use of 

polymers, carbohydrates and carboxylic acids distinguished among freshwater, groundwater and 

saltwater communities. Similarly, Lyons and Dobbs (2012) examined carbon source utilization 

profiles for heterotrophic bacterial communities associated with river water and found that these 

communities were primarily associated with usage of carbohydrates and polymers, specifically 

Tween 40 and pyruvic acid methyl ester. Interestingly, when these communities were compared 

to those of organic aggregate-associated heterotrophic microbial communities they found that the 

primary difference among these two groups was usage of nitrogen containing carbon sources, 

which were utilized by the aggregate associated communities to a significantly higher extent than 

the water associated communities. The water associated bacterial communities from our study 

share these common carbon source utilization profile characteristics, with a preference for usage 

of carbohydrates and polymers as carbon sources over nitrogen containing compounds, 

suggesting that these community characteristics may be common among  various water 

associated microbial communities. The findings from Lyons and Dobbs (2012) suggest that these 

characteristics may be in part, related to the lifestyle of these microorganisms, compared to those 

in the soil, sediment and root communities which form complex attached biofilms associated 

with organic matter.  

 Despite some evidence for site specific and water quality associated effects on 

microbial community structure, especially during specific sampling events, such effects were not 

present in the functional community profiles during the same time period. Although the 

relationship between microbial structure, structural diversity and community function are 

currently poorly understood, microbial community functional characteristics are generally 

thought to reflect community structure (Torsvik and Øvreås, 2002). Some examples of structural 
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community characteristics being reflected in community function include a study by Yu et al., 

(2015) which examined the effects of long term fertilizer application on the structural and 

functional diversity of microbial communities in the rhizosphere of mulberry (Morus spp.). They 

found that soil microbial communities associated with fertilizer treatment consisting of organic 

and inorganic nutrient additions differed significantly from non-fertilized microbial communities 

in bacterial abundance and structural diversity measurements. Furthermore, the microbial 

community associated with the fertilizer treatment exhibited unique carbon source utilization 

profile characteristics including a greater utilization of carbohydrates and carboxylic acids than 

the soil community without fertilizer addition. Metabolic diversity calculated from carbon source 

utilization data obtained from Biolog
TM

 analysis indicated that the soil community receiving the 

fertilizer treatment also had higher metabolic diversity. However, this is not always the case, as 

seen in a study by Marschner et al., (2003), which examined the effects of long term organic and 

inorganic nutrient enrichment on microbial soil communities, and found that community 

structural characteristics were distinct between the various types of nutrient additions as reflected 

by DGGE analysis. However, these structural changes were not accompanied by discernible 

functional community changes as measured by altered microbial enzyme activities (arylsulfatase, 

protease and phosphatase).  In another example, O’Donnell et al., (2001) explored the 

relationship between soil microbial community structural and functional characteristics in 

response to the addition of fertilizers and found that differences in structural profiles from soil 

communities receiving various inorganic nutrient amendments were not reflected in the Biolog
TM

 

EcoPlate carbon source utilization profiles observed from the same communities. So as you can 

see, the literature is full of conflicting examples of how well observed trends in structural 

community characteristics are mirrored in functional community measurements. Part of this 
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disagreement can likely be attributed to how well genetic studies can actually predict ecosystem 

functions. The presence and abundance of particular organisms or operational taxonomic units 

(OTUs) within a microbial community may not be a reliable indicator of community functional 

traits (Fuhrman, 2009). Many genes are only expressed by a particular organism under a specific 

set of circumstances which may or may not be present in the environment of interest (Zehr and 

Ward, 2002). As well, a closely related group of organisms can have extremely different 

genomes (Cohan, 2002). Furthermore, different methodologies can yield extremely different 

results which influence how we interpret community level characteristics. For example, in one of 

the studies cited above, Marschner et al. (2003), the influence of fertilizer addition on soil 

community structural changes were assessed using both DGGE and phospholipid fatty acid 

(PLFA) profile analysis. Both techniques are commonly used to assess changes in microbial 

community structures; while DGGE examines community fingerprints by sorting microbial 

genetic material by the guanine-cytosine content of a PCR amplified fragment of DNA, PLFA 

profiles look at the relative abundance of different fatty acid methyl-esters via chromatography, 

as different groups of microorganisms have different fatty acid signatures (Tunlid and White, 

1992). Marschner et al. (2003) found significant differences among soil microbial community 

structural profiles receiving different fertilizer treatments when community structure was 

assessed using DGGE, but not with PLFA analysis. Additionally, the Biolog
TM

 method of 

measuring functional characteristics of microbial communities has been criticized for having the 

same limitations that all culturing techniques do, in that it only reflects the activity of fast 

growing eutrophic microorganisms while the organisms with slow growth and more complex 

nutritional and environmental growth requirements will not be reflected (Konopka et al., 1998). 

As such, only a fraction of the total microbial community will be represent in the results, making 
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it easy to overlook potential changes in functional community characteristics carried out by the 

uncultured portion of the microbial community that would be represented in the structural profile 

but missed by Biolog
TM 

analysis.   

 A common indicator of water quality is the presence of potentially harmful human 

pathogenic microorganisms, or indicator microorganisms, which signify fecal contamination 

(Maybeck et al., 1989; Jamieson et al., 2004; Harwood et al., 2005). Surprisingly, despite 

differences in the degree (and type) of anthropogenic impact at each of the different study sites, 

we did not identify any differences among the sites in terms of the quantity of fecal coliform 

bacteria detected through m-FC culturing methods or the molecular detection of indicator 

microorganisms (Salmonella, E. coli, Enterococcus). There were no consistent differences 

among the sites across all seasons, and seasonal trends in detection or abundance of relevant 

organisms followed similar trends at all sites. This is perplexing as theoretically the poor water 

quality sites, impacted by effluent from multiple waste water treatment plants, should exhibit 

elevated quantities of these microorganisms. However, it is important to also consider alternate 

sources of fecal contamination, such as agricultural sources and wildlife (e.g. birds) (e.g. Edge 

and Hill, 2005).  Surprisingly, multiple incidences reported in the literature suggest that the 

correlation between quantities of fecal indicator bacteria in environmental samples and actual 

fecal contamination may not be as strong as we had previously assumed. In a study by Litton et 

al. (2010) markers of fecal contamination were evaluated at multiple distances (up to 550 m) 

from the discharge site of a WWTP (domestic and industrial waste water) into a river in southern 

California which receives no other runoff or discharge during dry weather. The study found that 

concentrations of fecal indicator bacteria, using culture dependent and independent methods, 

actually increased in water column and river sediment samples as distance from the discharge 
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site increased. Litton et al. (2010) concluded that the source of the microorganisms was actually 

from in situ growth in streambed sediments and not from wastewater effluent. Similarly, in an 

experiment by Drummond et al. (2014) where synthetic effluent containing E. coli was injected 

into a freshwater stream simulating point source contamination, they found that the majority of 

the E. coli injected into the stream was retained over long term sampling (several months) within 

the top 3 cm of the streambed sediment and among submerged macrophytes stands. They also 

noted that there was a reservoir for E. coli within the streambed where E. coli was retained and 

re-suspended into the water column continually, causing E. coli to be detected in quantities 

higher than those present at the site of effluent injection. There have been several additional 

studies that have noted the persistence and re-establishment of microorganisms associated with 

fecal contamination in soil (Van Donsel et al., 1967) and sediment (Howell et al., 1996) 

ecosystems.  As such, the detection of fecal coliforms and indicator microorganisms in soil and 

water ecosystems may not always be associated with recent fecal contamination. There is an 

increased need to understand the nature of fecal indicator bacteria from natural sources 

(Jamieson et al., 2004), as fecal bacteria have been detected in quantities as high as 2x10
3
 CFU/g 

of soil and 5x10
2
 CFU/mL of runoff water collected from sites not receiving any known source 

of fecal contamination (Entry et al., 2000a, Entry et al., 2000b).   

 Several interesting trends were noted throughout the sampling period, across the different 

sites, with regards to seasonal abundance of the different pathogenic indicator bacteria. Similar 

seasonal variations in organism abundance were noted among the different sampling sites along 

the Grand River. In particular, the molecular detection of Salmonella indicated significantly 

higher quantities in the water column, rhizosphere and rhizoplane during November sampling 

events. The increased prevalence of an organism typically associated with optimal growth 
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temperatures between 35 and 36 °C, and a thermal niche of 28-40 °C, during the colder season’s 

sounds abnormal, however, several studies have duplicated this seasonal trend when isolating 

Salmonella from natural environments (Bronikowski et al., 2001). Thomas (2011) isolated 

Salmonella from surface water environments using culturing techniques and found that detection 

rates were highest in November, December and July. The serotypes which were most commonly 

detected during the colder seasons included Typhimurium, Infantis and Agona during the fall 

(September to November) and Montevideo and Hadar during the winter (December to February). 

In a study by Rhodes and Kator (1988) that examined the survival of Salmonella under 

environmental conditions related to different seasons found that the survival of Salmonella was 

negatively influenced by predation and antagonistic interactions with the resident 

microorganisms at warmer temperatures.  In contrast, E. coli abundance was greatest at all sites 

and in all sample types between August and October. Ishii et al. (2007) found a similar pattern in 

the seasonal abundance of E. coli, with the quantity of E.coli being detected in samples of sand 

and sediment from Lake Superior increasing during the summer and early fall seasons. 

Compared to Salmonella, E. coli has a poor tolerance for lower temperatures despite having a 

similar optimal growth temperature (35-36°C) and thermal niche (29-41 °C) (Bronikowski et al., 

2001). Rhodes and Kator (1988) found that the recovery of E. coli from river water was 

significantly reduced at temperatures below 10°C, with less than 6% of the inoculated E. coli 

being recovered after 1 week in these conditions, compared to 83-100% for Salmonella. This 

would explain why we observed the lowest quantities of E. coli in our samples during the months 

that correlated with the coolest water temperatures (May and November).  Alternatively, 

Enterococcus did not exhibit the same type of consistent seasonal trends among sampling sites 

and sample types as the other two microorganisms. Unlike Salmonella and E. coli, Enterococcus 
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was not detected during all sampling events or at all sites during an individual sampling event. 

Detection was most consistent and typically in higher quantities during sampling events in July 

and November, and within the rhizoplane. Various studies of Enterococcus under freshwater 

conditions have indicated that warm temperatures may lead to quicker die-off of these 

microorganisms (Sinton et al., 2002; Noble et al., 2004; Jenkins et al., 2011). Wajugi and 

Harwood (2012) found that the persistence of Enterococcus was negatively impacted by 

competition and predation from the natural microbiota present in freshwater and sediment 

environments at room temperature. Enterococcus has been shown to grow at temperatures 

ranging from 5 to 45 °C, thus decreased survival at higher temperatures may be an effect of 

increased competition and predation (Zanoni et al., 1993; Byappanahalli et al. 2012). We found 

that Enterococci were most common in the rhizoplane, which could suggest that they compete 

better in this environment compared to either the soil (rhizosphere) or the water column. 

Enterococcus has been isolated from the surface of plant structures belonging to over 47 

different taxa (Mundt, 1963). Furthermore, Enterococcus was identified as composing a 

significant portion of the rhizoplane microbiome of another species of grass (Para grass, 

Urochloa mutica) (Mukhtar et al., 2016). Thus, the rhizoplane may act as an environmental 

reservoir for Enterococcus spp., but further study including a greater diversity of plant species 

would be needed to confirm this.  

 It is also worthy of note that all fecal coliforms, on both m-FC media and Salmonella and 

E. coli with molecular detection methods, were present in greater numbers within the rhizosphere 

and rhizoplane compared to the water column. Culturable fecal coliforms isolated on m-FC 

media were more abundant within the rhizosphere and the rhizoplane by approximately two 

orders of magnitude. Comparatively, quantitative detection of E. coli and Salmonella, showed an 
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increase in abundance within the rhizosphere and rhizoplane by an average of three orders of 

magnitude and four orders of magnitude respectively. As previously mentioned, it has been 

established in the literature that fecal coliforms are capable of persistence and growth within soil 

and sediment environments (e.g. Litton et al., 2010; Drummond et al., 2014). However, 

association with plants presents another set of environmental conditions that may provide a 

favorable environment for these microorganisms. Salmonella have been found occurring 

naturally (i.e. not through accidental contamination or experimental introduction) within the 

rhizosphere of several different plant species including strawberry (Berg et al., 2002), oilseed 

rape (Berg et al., 2002), wheat (Germida and Siciliano, 2001) and common bean (Maougal et al., 

2014). Furthermore, E. coli isolated from various natural soil environments have actually been 

shown to alter rhizosphere microbial community characteristics in maize and show plant-growth 

promoting properties (Nautiyal et al., 2010). Thus, the view of these organisms as primarily 

limited to reproduction within animal host environments is changing, and natural environments 

represent more than just vehicles for dissemination of these microorganisms. 

3.5 Conclusions  

Structural and functional community profiles of microorganisms associated with water, 

rhizosphere and rhizoplane environments from P. arundinacea were strongly influenced by 

habitat type and not significantly influenced by water quality at our six sites along the Grand 

River. Site dependent effects associated with GRCA site water quality classifications influenced 

microbial structural community profiles to a limited extent but only in the rhizosphere during 

certain sampling time points. This may be the result of other gradients in water chemistry across 

the sampling sites and not due to water quality related factors.  We did not identify an obvious 

and consistent difference among our water quality sites in terms of indicators of fecal 
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contamination. We found a consistently higher number of fecal coliforms within the rhizosphere 

and rhizoplane of P. arundinacea compared to water column measurements. We believe that this 

may be due to naturalization of these microorganisms within the plant root-soil environment. 

3.6 References  

Ahn C, Gillevet PM, Sikaroodi M. 2007. Molecular characterization of microbial communities in 

treatment microcosm wetlands as influenced by macrophytes and phosphorus loading. 

Ecological Indicators. 7: 852-863. 

Apfelbaum SI, Sams CE . 1987. Ecology and control of Reed canary grass. Natural Areas 

Journal. 7:69–74. 

Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K. 2002. Plant-dependent genotypic and 

phenotypic siversity of antagonistic rhizobacteria isolated from different Verticillum host plants. 

Applied and Environmental Microbiology. 68(7): 3328-3338. 

Berg G, Smalla K. 2009, Plant species and soil type cooperatively shape the structure and 

function of microbial communities in the rhizosphere. FEMS Microbiology Ecology. 68(1): 1-

13. 

Bernard JM, Lauve TE. 1995. A comparison of growth and nutrient uptake in Phalaris 

arundinacea L. growing in a wetland and a constructed bed receiving landfill leachate. Wetlands. 

15: 176-182. 

Bronikowski AM, Bennett AF, Lenski RE. 2001. Evolutionary adaptation to temperature VIII 

effects of temperature on growth rate in natural isolates of Escherichia coli and Salmonella 

enterica from different thermal environments. Evolution. 55(1): 33-40. 

Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ. 2012. Enterococci in the 

environment. Microbiology and Molecular Biology Reviews. 76(4): 685-706. 

Cabral JPS. 2010. Water microbiology. Bacterial pathogens and water. International Journal of 

Environmental  Research and Public Health. 7(10):3657-3703.  

Cao Y, Green PG, Holden PA. 2008. Microbial community composition and denitrifying enzyme 

activities in salt marsh sediments. Applied and Environmental Microbiology. 74(24): 7585-7595. 

Choi K-H, Dobbs FC. 1999. Comparison of two kinds of Biolog microplates (GN and ECO) in 

their ability to distinguish among aquatic microbial communities. Journal of Microbiological 

Methods. 36: 203-213.  

Cohan  FM. 2002. What are bacterial species? Annual Reviews in Microbiology. 56: 457–487. 



 

109 
 

Coveney MF, Stites DL, Lowe EF, Battoe LE, Conrow R. 2002. Nutrient removal from 

eutrophic lake water by wetland filtration. Ecological Engineering. 19(2): 141-159. 

Desnues C, Michotey VD, Wieland A, Zhizang C, Fourcans A, Duran R, Bonin PC. 2007. 

Seasonal and diel distributions of denitrifying and bacterial communities in a hypersaline 

microbial mat (Camargue, France). Water Research. 41: 3407-3419. 

Drummond JD, Davies-Colley RJ, Stott R, Sukias JP, Nagels JW, Sharp A, Packman AI. 2014. 

Retention and remobilization dynamics of fine particles and microorganisms in pastoral streams. 

Water Research. 66(1): 459-472. 

Edge TA, Hill S. 2005. Occurrence of antibiotic resistance in Escherichia coli from surface 

waters and fecal pollution sources near Hamilton, Ontario. Canadian Journal of Microbiology. 

51: 501-505. 

Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, 

Sundaresan V. 2015. Structure, variation, and assembly of the root-associated microbiome of 

rice. PNAS. www.pnas.org/cgi/doi/10.1073/pnas.1414592112.  

Edwards KR, Čižková H, Zemanová K, Šantrůčková H. 2006. Plant growth and microbial 

processes in a constructed wetland planted with Phalaris arundinacea. Ecology Engineering. 

27(2): 153-165. 

Entry JA, Hubbard RK, Theis, Fuhrmann JJ. 2000a. The influence of vegetation in riparian 

filterstrips on coliform bacteria: I. Movement and survival in water. Journal of Environmental 

Quality. 29:1206-1214.  

Entry JA, Hubbard RK, Theis, Fuhrmann JJ. 2000b. The influence of vegetation in riparian 

filterstrips on coliform bacteria: II. Survival in soils. Journal of Environmental Quality. 29:1215-

1224. 

Frąc M, Oszust K, Lipiec J. 2012. Community level physiological profiles (CLPP), 

characterization and microbial activity of soil amended dairy sewage sludge. Sensors. 12(3): 

3253-3268. 

Floch C, Chevremont A-C, Joanico K, Capowiez Y, Criquet S. 2011. Indicators of pesticide 

contamination: soil enzyme compared to functional diversity of bacterial communities via 

Biolog® EcoPlates. European Journal of Soil Biology. 47(4): 256-263. 

Fuhrman JA. 2009. Microbial community structure and its functional implications. Nature. 459: 

193-199. 

Garland JL, Mills AL. 1991. Classification and characterization of heterotrophic microbial 

communities on the basis of patterns of community-level sole-carbon-source utilization. Applied 

and Environmental Microbiology. 57: 2351-2359. 

Germida JJ, Siciliano SD. 2001. Taxonomic diversity of bacteria associated with the roots of 

modern, recent and ancient wheat cultivars. Biology and Fertility of Soils. 33(5): 410-415. 



 

110 
 

Graham DW, Trippett C, Dobbs WK, O’Brien JM, Banner BK, Head IM, Smith MS, Yang RK, 

Knapp CW. 2010. Correlations between in situ denitrification activity and nir-gene abundances 

in pristine and impacted prairie streams. Environmental Pollution. 158: 3225-3229. 

Guanghaua L, Junjie J, Xiaoning Q, Jian J, Yang W, Xiaobing L. 2008. Effects of fertilization on 

bacterial community strcture and function in a black soil of Dehui region estimated by Biolog 

and PCR-DGGE methods. Acta Ecologica Sinica. 28(1): 220-226. 

Guo J, Peng YZ, Wang S, Zheng Y, Huang H, Wang ZW. 2009. Long-term effect of dissolved 

oxygen on partial nitrification performance and microbial community structure. Bioresource 

Technology. 100(11): 2796-2802. 

 

Hartmann A, Schmid M, van Tuinen D, Berg G. 2009. Plant-driven selection of microbes. Plant 

and Soil. 321(1-2):235-257.  

Harwood VJ, Levine AD, Scott TM, Chivukula V, Lukasik J, Farrah SR, Rose JB. 2005. 

Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and 

public health protection. Applied and Environmental Microbiology. 71(6):3163-3170. 

Hautier Y, Niklaus PA, Hector A. 2009. Competition for light causes plant biodiversity loss after 

eutrophication. Science. 324(5927): 636-638. 

Hollister EB, Engledow AS, Hammett AJM, Provin TL, Wilkinson HH, Gentry TJ. 2010. Shifts 

in microbial community strcture along an ecological gradient of hypersaline soils and sediments. 

ISME Journal. 4: 829-838. 

Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy 

JE, Gemfeldt L, O’Connor AI. 2012. A global synthesis reveals biodiversity loss as a major 

driver of ecosystem change. Nature. 486: 105-108. 

Howell, J.M., M.S. Coyne and P.L. Cornelius 1996. Effect of sediment particle size and 

temperature on fecal bacteria mortality rates and the fecal coliform/fecal streptococci ratio. 

Journal Environmental Quality. 25:1216-1220. 

Insam H. 1997. A new set of substrates proposed for community characterization in 

environmental samples. In: Microbial Communities. Functional versus structural approaches. 

Insam H, Rangger A, eds. Springer. Berlin, Germany: 260-261.  

Ishii S, Hansen DL, Hicks RE, Sadowsky MJ. 2007. Beach sand and sediments are temporal 

sinks and sources of Escherichia coli in Lake Superior. Environmental Science and Technology. 

41(7): 2203-2209.  

Jamieson RC, Gordon RJ, Sharples KE, Stratton GW, Madani A. 2002. Movement and 

persistence of fecal bacteria in agricultural soils and subsurface drainage water: A review. 

Canadian Biosystems Engineering. 44:1.1-1.9. 



 

111 
 

Jenkins MB, Fisher DS, Endale DM, Adams P. 2011. Comparative die-off of Escherichia coli 

O157:H7 and fecal indicator bacteria in pond water. Environmental Science and Technology. 

45:1853–1858. 

Knapp CW, Dodds WK, Wilson KC, O’Brien JM, Graham DW. 2009. Spatial heterogeneity of 

denitrification genes in a highly homogenous urban stream. Environmental Science and 

Technology. 43: 4273-4279. 

Konopka A, Oliver L, Turco RF. 1998. The use of carbon substrate utilization patterns in 

environmental and ecological microbiology. Microbiology Ecology. 35 (2): 103-115. 

 

Kourtev PS, Ehrenfeld JG, Hӓggblom M. 2002. Exotic plant species alter the microbial 

community structure and function in the soil. Ecology. 83(11): 3152-3166. 

Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH 

as a predictor of soil bacterial community structure at the continental scale. Applied and 

Environmental Microbiology. 75(15): 5111-5120. 

 

Lehman RM, Colwell FS, Ringelberg DB, White DC.1995. Combined microbial community-

level analyses for quality assurance of terrestrial subsurface cores. Journal of  Microbiology 

Methods. 22: 263–281. 

 

Lindström ES, Kamst-Van Agterveld MP, Zwart G. 2005. Distribution of typical freshwater 

bacterial groups in association with pH, temperature and water retention time. Applied and 

Environmental Microbiology. 84(7): 8201-8206. 

Litton RM, Ahn JH, Sercu B, Holden PA, Sedlak DL, Grant SB. 2010. Evaluation of chemical, 

molecular, and traditional markers of fecal contamination in an effluent dominated urban stream. 

Environmental Science and Technology. 44: 7369-7375. 

Liu S, Ren H, Shen L, Lou L, Tian G, Zheng P, Hu B. 2015. pH levels drive bacterial 

community structure in sediments of the Qiantang River as determined by 454 pyrosequencing. 

Frontiers in Microbiology. 6:285. doi: 10.3389/fmicb.2015.00285 

Loomer HA, Cooke SE. 2011. Water quality in the Grand River Watershed: Current conditions 

and trends. Grand River Conservation Authority. 1-194. 

Lyons MM, Dobbs FC. 2012. Differential utilization of carbon substrates by aggregate-

associated and water-associated heterotrophic bacterial communities. Hydrobiologia. 686: 181-

193. 

Maougal RT, Brauman A, Plassard C, Abadie J, Djekoun A, Drevon JJ. 2014. Bacterial 

capacities to mineralize phytate increase in the rhizosphere of nodulated common bean 

(Phaseolus vulgaris) under P deficiency. European Journal of Soil Biology. 62: 8-14. 



 

112 
 

Marschner P, Crowley D, Lieberei R. 2001. Arbuscular mycorrhizal infection cçhanges the 

bacterial 16 S rDNA community composition in the rhizosphere of maize. Mycorrhiza. 

11(6):297-302. 

Marschner P, Kandeler E, Marschner B. 2003. Structure and function of the soil microbial 

community in a long-term fertilizer experiment. Soil Biology and Biochemistry. 35(3): 453-461. 

Maybeck M, Chapman D, Helmer R, eds. 1989. Global freshwater quality: A first assessment. 

Blackwell Reference. Oxford, UK: 306. 

 

Mekonnen MM, Hoekstra AY. 2015. Global gray water footprint and water pollution levels 

related to anthropogenic nitrogen loads to fresh water. Environmental science and Technology. 

49: 12860-12868. 

Mentzer JL, Goodman RM, Balser TC. 2006. Microbial response over time to hydrologic and 

fertilization treatments in simulated wet prairie. Plant and Soil. 284: 85-100. 

Morrison RL. 2014. Investigating the persistence and "naturalization" potential of Salmonella in 

non-host environments using culture-based and molecular-based fingerprinting 

techniques. Theses and Dissertations (Comprehensive). 1635. http://scholars.wlu.ca/etd/1635 

Mukhtar S, Mirza MS. Awan HA, Maqbool A, Mehnaz, Malik KA. 2016. Microbial diversity 

and metagenomic analysis of the rhizosphere of para grass (Urochloa mutica) growing under 

saline conditions. Pakistan Journal of Botany. 48(2): 779-791. 

Mundt JO. 1963. Occurrence of enterococci on plants in a wild environment. Journal of Applied 

Microbiology. 11:141-144. 

Nautiyal CS, Rehman A, Chauhan PS. 2010. Environmental Escherichia coli occur as natural 

plant growth-promoting soil bacterium. Archives of Microbiology. 192(3): 185-193. 

 Noble RT, Lee IM, Schiff KC. 2004. Inactivation of indicator microorganisms from various 

sources of faecal contamination in seawater and freshwater. Journal of Applied Microbiology. 

96:464 – 472. 

O’Donnell AG, Seasman M, Macrae A, Waite I, Davies JT. 2001. Plants and fertilizers as drivers 

of change in microbial community structure and function in soils. Plant and Soil. 232: 135-145.  

Osem Y, Chen Y, Levinsonc Y, Hadar Y. 2007. The effects of plant roots on microbial 

community structure in aerated wastewater-treatment reactors. Ecological Engineering. 29: 133-

142. 

 

Ravit B, Ehrenfeld JG. Haggblom MM. 2003. A comparison of sediment microbial communities 

associated with Phragmites australis and Spartina alterniflora in two brackish wetlands in New 

Jersey. Estuaries. 26(2B): 465-475. 

Rhodes MW, Kator H. 1988. Survival of Escherichia coli and Salmonella spp. in estuarine 

environments. Applied and Environmental Microbiology. 54(12): 2902-2907. 



 

113 
 

Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. 2010. 

Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal. 4: 

1340-1351. 

Rutgers M, Wouterse M, Drost SM, Breure AM, Mulder C, Stone D, Creamer RE, Winding A, 

Bloem J. 2016. Monitoring soil bacteria with community-level physiological profiles using 

Biolog
TM

 ECO-plates in the Netherlands and Europe. Applied Soil Ecology. 97: 23-35. 

Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. 2017. Drought stress results 

in a compartment-specific restricting of the rice root-associated microbiomes. mBio. 8: e00764-

17 https://doi.org/10.1128/mBio.00764-17. 

 

Sinton LW, Hall CH, Lynch PA, Davies-Colley RJ. 2002. Sunlight inactivation of fecal indicator 

bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. 

Applied and Environmental Microbiology. 68:1122–1131. 

Thomas J. 2011. Distribution, diversity and antimicrobial resistance of Salmonella  enterica 

isolated from urban and rural streams. UWSpace: http://hdl.handle.net/10012/6071. 

Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger 

WH, Simberloff D, Swackhamer D. 2001. Forecasting agriculturally driven global environmental 

change. Science. 292 (5515): 281−284. 

Torsvik V, Øvreås L. 2002. Microbial diversity and function in soil: from genes to ecosystems. 

Current Opinions in Microbiology. 5: 240-245.  

Tunlid A, White DC. 1992. Biochemical analysis of biomass, community structure, nutritional 

status and metabolic activity of microbial communities in soil. Stotzky G, Bollag JM (eds). Soil 

Biochemistry. Marcel Dekker. New York, NY: 229-262. 

Van Donsel DJ, Geldreich EE, Clarke NA. 1967. Seasonal variations in survival of indicator 

bacteria in soil and their contribution to storm-water pollution. Applied Microbiology 15:1362-

1370. 

Vymazal J. 2007. Removal of nutrients in various types of constructed wetlands. Science of the 

Total Environment. 380(1-3):48-65.  

Walker TS, Bais HP, Grotewold E, Vivanco JM. 2003. Root exudation and rhizosphere biology. 

Plant Physiology. 132: 44-51. 

 

Wang P, Marsh EL, Ainsworth EA, Leakey ADB, Sheflin AM, Schachtman DP. 2017. Shifts 

in microbial communities in soil, rhizosphere and roots of two major crop systems under 

elevated CO2 and O3. Scientific Reports. 7:15019. 

Wanjugi P, Harwood VJ. 2012. The influence of predation and competition on the survival of 

commensal and pathogenic fecal bacteria in aquatic habitats. Environmental Microbiology. 

15(2): 517-526. 



 

114 
 

Weber KP, Gehder M, Legge RL. 2008. Assessment of the changes in the microbial community 

in response to acid mine drainage exposure. Water Research. 42: 180-188. 

Wu L, Chen J, Xiao Z, Zhu X, Wang J, Wu H, Wu Y, Zhang Z, Lin W. 2018. Barcode 

pyrosequencing reveals a shift in the bacterial community in the rhizosphere and rhizoplane of 

Rehmannia glutinosa under consequetive monoculture. International Journal of Molecular 

Sciences. 19: doi:10.3390/ijms19030850. 

Xioa X, Chen W, Zong L, Yang J, Jiao S, Lin Y, Wang E, Wei G. 2017. Two cultivated 

legume plants reveal the enrichment process of the microbiome in the rhizocompartments. 

Molecular Ecology. 26: 1641-1651. 

Xiong J, Liu Y, Huayong Z, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H. 2012. Geographic 

distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. 

Environmental Microbiology. 14(9): 2457-2466. 

Yu C, Hu XM, Deng W, Li Y, Xiong C, Ye CH, Han GM, Li X. 2015. Changes in soil microbial 

community strcture and functional diversity in the rhizosphere surrounding mulberry subjected 

to long-term fertilization. Applied Soil Ecology. 86: 30-40. 

Zak JC, Willig MR, Moorhead DL, Wildman HG. 1994. Functional diversity of microbial 

communities: a quantitative approach. Soil Biology and Biochemistry. 26(9): 1101-1108. 

Zanoni B, Garzaroli C, Anselmi S, Rondinini G. 1993. Modeling the growth of Enterococcus 

faecium in bologna sausage. Applied and Environmental Microbiology. 59(10): 3411-3417. 

Zehr J P, Ward BB. 2002. Nitrogen cycling in the ocean: new perspectives on processes and 

paradigms. Applied and Environmental Microbiology. 68: 1015–1024. 

Zhang C-B, Wang J, Liu W-L, Zhu S-X, Ge H-L, Chang SX, Chang J, Ge Y. 2010. Effects of 

plant diversity on microbial biomass and community metabolic profiles in a full-scale 

constructed wetland. Ecological Engineering. 36(1): 62-68. 

 

 

 

 

 

 



 

115 
 

Chapter 4 

Site-Specific Differences in Microbial Community Structure and Function 

within the Rhizoplane and Rhizosphere of Wetland Plants is Plant Species-

Dependent  
 

4.1 Introduction  

 

Increasing urbanization and pollution related to anthropogenic activities pose a serious 

threat to the health of our freshwater ecosystems (Tilman et al., 2001; Hautier et al., 2009; 

Hooper et al., 2012; Mekonnen and Hoekstra, 2015). Wetlands play an integral role in 

preventing the degradation of freshwater ecosystem health (Coveney et al., 2002). A 

combination of biological, chemical and physical processes occurring within wetlands facilitates 

their remedial functions (Sheoran and Sheoran, 2006). Wetland plants play a vital role in the 

ability of natural and constructed wetland systems to improve water quality. Experimentation 

with constructed wetland systems has underlined the importance of plants in improving wetland 

efficiency, despite the fact that the majority of contaminant removal is attributed to microbial 

activity and physical/chemical processes occurring within the wetland substrate (Tanner et al., 

1995; Brix, 1997; Stottmeister et al., 2003; Vymazal, 2007; Read et al., 2008; Brisson and 

Chazarenc, 2009). In addition to providing physical stability of wetland substrates, insulation 

during winter frosts and reduction in water current velocities, plant root systems increase the 

efficiency of wetlands by providing unique microhabitats for soil microflora (Brix, 1997; 

Stottmeister et al., 2003; Brisson and Chazarenc, 2009). These microhabitats associated with the 

biological processes occurring within plant root systems provide niche environments suited to 

many different groups of microorganisms facilitating the rapid cycling of nutrients (Brix, 1997; 

Stottmeister et al., 2003; Vymazal, 2007). The area of soil surrounding plant root systems that is 
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actively influenced by the physiological processes occurring within the plant is called the 

rhizosphere. Plant roots also provide surfaces for attachment of microbial biofilms, forming a 

community called the rhizoplane. Rhizosphere and rhizoplane communities are shaped by plant-

mediated changes in environmental conditions such as gradients in oxygen, pH, carbon/nitrogen 

and water availability (e.g. Philippot et al., 2013).  

The biggest risk to human health associated with water quality is the presence of disease 

causing microorganisms (Chapman, 1996). Some of the most significant human pathogens 

originating from fecal contamination in freshwater systems include Vibrio spp., Shigella spp., 

Salmonella spp., Enterococcus spp. and Escherichia coli (Cabral, 2010). In addition to providing 

a means to improve the chemical composition of water (e.g. removal of inorganic nitrogen, 

phosphorus and heavy metals) wetlands have also been implicated in reducing the pathogen load 

of contaminated water. Studies that have observed the efficiency of fecal indicator 

microorganism reduction through wetland treatment ranges from 90 to 99% reduction which is 

comparable to traditional treatment methods used to remediate pathogen contaminated 

wastewater (Miescier and Cabelli, 1982; Wolverton, 1989; Watson et al., 1990). 

A great deal of interest has arisen with respect to the selection of different plant species 

for use in constructed wetlands in order to optimize efficiency (Brisson and Chazarenc, 2009). 

Structural and functional differences in rhizosphere and rhizoplane microbial communities 

among different plant species has been established in the literature (Garland, 1996; Grayston et 

al., 1998; Marschner et al., 2001; Wieland et al., 2001 Marschner et al., 2004). Thus it is not 

surprising that differences in contaminant removal processes have been observed when 

comparing constructed wetlands planted with different species (Coleman et al., 2001; Stein et 

al., 2006; Inamori et al., 2007; Read et al., 2008; Brisson and Chazarenc, 2009; Bissegger et al., 
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2014). For example two to four-fold differences among plant species were observed with respect 

to the ability of the associated wetland to reduce total suspended solids, total nitrogen, 

phosphorus and copper from storm water (Read et al., 2008). Plant species differences in 

reductions of nitrous and nitric oxide, ammonia, manganese, lead and iron concentrations from 

wastewater effluents were 20-fold or more (Read et al., 2008).  

Understanding how wetland plants and root-associated microbial communities interact 

with water quality associated factors will lead to a greater understanding of the biological 

dynamics occurring within wetlands, how to optimize natural wetland restoration and how to 

increase constructed wetland efficiency. With these goals in mind, we tested the following 

hypotheses:  

1) Natural wetland systems highly impacted by anthropogenic activities will differ from less 

affected systems in both microbial community composition and functional characteristics.  

2) The microbial community composition associated with wetland plants will differ among 

species. Different plant species will harbour unique microbial communities with 

contrasting community compositions, functionality and responses to perturbations in 

water quality. 

In order to test these hypotheses, we chose two sites with contrasting water quality 

characteristics and three wetland plant species occurring at both sites. We used PCR-denaturing 

gel gradient electrophoresis (DGGE) to look at structural differences between the rhizosphere 

and rhizoplane microbial communities associated with each plant species across the two sites. 

We established carbon source utilization profiles using Biolog
TM

 EcoPlates for each community 

type (rhizosphere, rhizoplane and water) associated with the different plant species at the two 



 

118 
 

sites to establish functional differences among microbial communities. A combination of culture 

and molecular based-methods were also employed to assess plant species and site-specific effects 

on fecal indictor bacteria and potentially pathogenic microorganisms associated with fecal 

contamination.   

4.2 Materials and Methods  

 

4.2.1 Sampling Design 

 

Two sites were chosen along the Grand River to represent contrasting water quality. 

These included West Montrose (43.588219, -80.470979) and a site on the Rare Charitable 

Research Reserve (43.384513, -80.385331). From historical data provided by the Provincial 

Water Quality Monitoring Network (PWQMN - www.ontario.ca/data/provincial-stream-water-

quality-monitoring-network), as well as water samples obtained during the field sampling season 

in spring and summer of 2015, we classified West Montrose as a high water quality site and Rare 

as a poor water quality site. These classifications were based primarily on level of anthropogenic 

impact and measured concentrations of inorganic nutrients (nitrogen, phosphorus). West 

Montrose was primarily impacted by agricultural land with a stream carrying agricultural runoff 

entering the main river about 50 m upstream and a residential trailer park located about 100 m 

downstream from the sampling location. The sampling site at Rare was located approximately 40 

km downstream from the West Montrose site, passing through highly urbanized areas in 

Waterloo and Kitchener, ON. Between West Montrose and the Rare sampling site, the Grand 

River receives input from five municipal waste water treatment plants (WWTPs), with the 

discharge from the Kitchener WWTP entering the Grand River approximately 4 km upstream 

from the sampling location.  
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 Three different wetland plant species occurring at both sampling locations were selected 

for this study, which included Potamogeton natans, Veronica spicata and Iris versicolor.   P. 

natans is a perennial aquatic plant species belonging to the family Potamogetonaceae and is 

commonly found in calm freshwater habitats (plants.usda.gov). These plants produces both 

floating and submerged leaves attached to roots anchored in the sediment by long petioles. V. 

spicata belongs to the family Scrophulariaceae and is a perennial flowering herbaceous plant 

which is introduced to this region and not native (plants.usda.gov). I. versicolor is a perennial 

herbaceous wetland plant belonging to the family Iridaceae and native to this area 

(plants.usda.gov).  

Samples of Grand River water, rhizosphere soil and plant roots were collected from both 

sites over two separate sampling events on October 23, 2015 and November 11, 2015. Samples 

were obtained from three separate quadrats at each site, using the same selection method as 

previously described in Chapter 3 Materials and Methods. This provided a total of three different 

samples from each plant species at each site, with one or two of each collected per sampling 

event.   All samples were processed for microbiological culture-based (heterotrophic plate counts 

and m-FC), molecular-based (PCR-DGGE, qPCR) and functional (Biolog
TM

 EcoPlate) 

community assessments as previously described in Chapter 2. River water was also analyzed for 

water chemistry parameters using a YSI Professional Plus Multiparameter Instrument (YSI 

1700/1725, YSI a Xylem  Brand, Yellow Springs, Ohio USA) and a Pro Plus Quatro Field Cable 

(YSI a Xylem  Brand, Yellow Springs, Ohio USA) for measuring water temperature, dissolved 

oxygen, conductivity, oxidation/reduction potential (ORP) and  pH. As well, water samples were 

taken back to the lab to perform further assessment of inorganic nutrient concentrations using 

https://plants.usda.gov/java/ClassificationServlet?source=profile&symbol=Scrophulariaceae&display=31
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HACH
® 

reagents (nitrite, nitrate, ammonia and total reactive phosphorus). Complete 

methodology is described in Chapter 2. 

4.3 Results 

4.3.1 Structural Profiles of Microbial Communities Associated with I. versicolor, P. natans 

and V. spicata at a High and Low Water Quality Site 

PCR-DGGE derived community structural profiles of microbial communities from water, 

rhizoplane and rhizosphere samples at West Montrose and Rare from Potamogeton natans, 

Veronica spicata and Iris versicolor shared 13% similarity among all sample types (Fig 4.1). 

Structural similarity between the water communities from West Montrose and Rare was 22%. 

Structural profiles did not cluster together based on plant species or sample type. Cluster analysis 

revealed several smaller sub-groupings of structural profiles which contained generally a mixture 

of microbial communities from different sample types and different plant species, but from the 

same sampling location (e.g. either West Montrose or Rare). Microbial communities from the 

Rare site formed three different sub-groupings, the first with the highest degree of structural 

similarity (88%) contained rhizosphere and rhizoplane communities from I. versicolor and P. 

natans. The second cluster shared 59% similarity and contained three community profiles from 

rhizosphere and rhizoplane communities associated with V. spicata. The third cluster only shared 

36% structural similarity and contained rhizosphere and rhizoplane samples from all three plant 

species. The structural community profiles from West Montrose clustered into six smaller 

groups. The first had 78% similarity and contained microbial community structural profiles 

associated with I. versicolor rhizosphere and P. natans rhizoplane material. The second, third 

and fourth groupings with 71, 67 and 52% structural similarity, respectively, contained microbial 

community structural profiles associated with samples from P. natans rhizosphere and 



 

121 
 

rhizoplane, P. natans rhizoplane and V. spicata rhizoplane, respectively. The final two groupings 

had 48 and 61% similarity and contained I. versicolor rhizoplane and V. spicata rhizosphere 

microbial community profiles, respectively. 

Figure 4.1 Hierarchical cluster analysis results of all DGGE profiles obtained from microbial 

DNA extracted from Iris versicolor, Potamogeton natans and Veronica spicata at two sites with 

contrasting water quality demonstrated graphically as a UPGMA dendrogram. West Montrose 

(WM) was the higher water quality site while Rare (RA) was the poor water quality site. 

Different sample types are indicated as H2O (water), RS (rhizosphere) and rhizoplane (RP). 

Samples from different quadrats within a site are indicated with Q1-3. Numbers indicate percent 

similarity. 
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Cluster analysis of PCR-DGGE derived structural community profiles obtained from 

water microbial communities and rhizosphere and rhizoplane microbial communities associated 

with I. versicolor exhibited the greatest degree of structural similarity by sample location and 

sample type (Fig 4.2 A). All of the samples obtained from Rare shared 33% structural similarity 

and occurred within the same sub-grouping. West Montrose community profiles fell into two 

different clusters based on sample type (e.g. rhizosphere or rhizoplane community), which 

shared only 8% structural similarity. Rare rhizosphere microbial community profiles shared 33% 

similarity, while West Montrose rhizosphere community profiles shared 94% similarity. 

Rhizoplane communities from Rare exhibited 94% structural similarity, while rhizoplane 

communities from West Montrose shared 48% similarity.   

Cluster analysis of PCR-DGGE derived structural community profiles obtained from 

water microbial communities and rhizosphere and rhizoplane microbial communities associated 

with P. natans from West Montrose and Rare formed clusters based on sample type and sample 

location (Fig 4.2 B). Rhizoplane samples from Rare exhibited the highest degree of structural 

similarity (90%). West Montrose rhizoplane microbial communities shared only 52% structural 

similarity. Rhizosphere microbial communities from West Montrose exhibited 72% similarity, 

while rhizosphere communities from Rare only exhibited 11% similarity. Rhizoplane microbial 

communities from Rare and rhizosphere microbial communities from West Montrose clustered 

together with 52% similarity, while rhizoplane communities from West Montrose and 

rhizosphere communities from Rare formed another cluster with 29% similarity.  

 Cluster analysis of PCR-DGGE derived structural community profiles obtained from 

water microbial communities and rhizosphere and rhizoplane microbial communities associated 

with V. spicata from West Montrose and Rare revealed clustering patterns based on sample type 
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as well as sample location (Fig 4.2 C).  West Montrose rhizosphere samples shared 61% 

similarity and clustered with the West Montrose and Rare water microbial communities (35% 

and 22% similarity respectively). A second smaller cluster (24% similarity) contained three 

branches with structural community profiles from Rare rhizoplane and rhizosphere communities 

(33% similarity), West Montrose rhizoplane communities (52% similarity) and Rare rhizosphere and 

rhizoplane communities (59% similarity).  

 Within the West Montrose site, all rhizosphere and rhizoplane samples from I. versicolor, 

P. natans and V. spicata exhibited 8, 19 and 16% similarity respectively. Within the Rare site, all 

rhizosphere and rhizoplane samples from I. versicolor, P. natans and V. spicata exhibited 33, 11 

and 23% similarity respectively. Similarity among samples obtained from the same site tended to 

be higher at Rare. Alternatively, the similarity among all microbial communities associated with 

V. spicata (16 %) was higher than for the other two plant species (P. natans 11%, I. versicolor 

8%). 
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Figure 4.2 Hierarchical cluster analysis results for DGGE profiles obtained from microbial DNA 

extracted from (A) Iris versicolor, (B) Potamogeton natans and C) Veronica spicata at two sites 

with contrasting water quality demonstrated graphically as a UPGMA dendrogram. West 

Montrose (WM) was the higher water quality site while Rare (RA) was the poor water quality 

site. Different sample types are indicated as H2O (water), RS (rhizosphere) and rhizoplane (RP). 

Samples from different quadrats within a site are indicated with Q1-3. Numbers indicate percent 

similarity. 
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4.3.2 Functional Community Profiles Associated with I. versicolor, P. natans and V. spicata 

at Two Sites with Contrasting Water Quality  

4.3.2.1 Principal Component Analysis of Carbon Source Utilization by Rhizoplane, 

Rhizosphere and Water-Associated Microbial Communities from West Montrose and Rare 

 

A PCA was performed on carbon source utilization profiles of microbial communities 

from water, rhizoplane and rhizosphere samples at West Montrose and Rare from Potamogeton 

natans, Veronica spicata and Iris versicolor (Fig 4.3). Carbon source utilization profiles for 

water samples from both sites were similar, each with negative PC1 and negative PC2 scores. 

Rhizoplane and rhizosphere samples from both sites and all plant species were separated from 

the water samples along the PC1 axis, primarily exhibiting positive PC1 scores. There was no 

visible distinction among the different plant species or between carbon source utilization profiles 

from the rhizosphere when compared to the rhizoplane. However, carbon source utilization 

profiles from West Montrose exhibited primarily positive PC2 scores, while microbial 

communities from Rare primarily exhibited negative PC2 scores. The top five carbon sources 

associated with positive PC1 scores included D-cellobiose, 4-hydroxybenzoic acid, L-asparagine, 

L-serine and putrescine (Table A7). The only carbon source exhibiting a negative factor loading 

for PC1 was Tween 40. Carbon sources contributing strongly to positive PC2 scores included 

Tween 40, Tween 80, D-mannitol, glucose-1-phosphate and L-threonine. Negative PC2 scores 

were associated with the carbon sources i-erythritol, 2-hydroxybenzoic acid, 4-hydroxybenzoic 

acid, itaconic acid and phenylethyl-amine. 
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Figure 4.3 PC1 vs. PC2 plot of Biolog
TM 

carbon source utilization by microorganisms present in 

all sample types obtained from Iris versicolor, Potamogeton natans and Veronica spicata. 

Samples were obtained from either West Montrose (WM) or Rare Charitable Research Reserve 

(RARE) during October and November, 2015. Samples from different quadrats within a site are 

indicated with Q1-3. 
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The PCA of microbial carbon source utilization profiles obtained from water, rhizosphere 

and rhizoplane microbial communities associated with I. versicolor exhibited the highest degree 

of differentiation between the two water quality sites (Fig 4.4 A). All sample types obtained from 

West Montrose exhibited positive PC2 scores while all sample types obtained from Rare 

exhibited negative PC2 scores. As in previous analyses, both water samples exhibited strong 

negative PC1 scores. Rhizoplane and rhizosphere microbial communities were separated from 

the water microbial communities along the PC1 axis, with these community types exhibiting PC1 

scores, which were either negative or close to zero. I. versicolor microbial communities 

exhibited the least amount of differentiation between rhizosphere and rhizoplane communities of 

the plant species investigated, with no clear distinction between the carbon utilization profiles 

from the two different sample types (rhizo-compartments).  

The PCA of microbial carbon source utilization profiles obtained from water, rhizosphere 

and rhizoplane microbial communities associated with P. natans at West Montrose and Rare 

exhibit distinct profiles both by sample type and by sample location (Fig 4.4 B). Carbon source 

utilization profiles from water communities at Rare and West Montrose were very similar, 

exhibiting negative PC1 and PC2 scores. Rhizosphere and rhizoplane community profiles from 

the two different water quality sites were primarily separated along the PC2 axis, with 

communities from West Montrose exhibiting primarily positive PC2 scores and communities 

from Rare exhibiting primarily negative PC2 scores. Rhizosphere microbial communities 

exhibited more differentiation between the two sampling locations than the rhizoplane microbial 

communities. Rhizoplane microbial communities from both sites were primarily associated with 

positive PC1 scores, while rhizosphere microbial communities had negative PC1 scores 

exclusively.  
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The PCA of microbial carbon source utilization profiles obtained from water, rhizosphere 

and rhizoplane microbial communities associated with V. spicata did distinguish between 

microbial communities obtained from the two different water quality locations but did exhibit 

differentiation by sample type (Fig 4.4 C). Water communities from West Montrose and Rare 

exhibited similar carbon source utilization profiles which were associated with negative PC1 and 

positive PC2 scores. Rhizosphere and rhizoplane microbial communities were primarily 

separated from water communities along the PC2 axis. Microbial communities established by 

West Montrose rhizoplane samples exhibited variable PC1 scores and negative PC2 scores. 

Rhizosphere communities from West Montrose were associated with positive PC1 and positive 

PC2 scores. Rare microbial communities isolated from rhizoplane samples had highly variable 

carbon source utilization profiles with either positive or negative PC1 and PC2 scores. 

Alternatively, Rare-associated microbial communities from the rhizosphere exhibited positive 

PC1 scores and either positive or negative PC2 scores. In general, rhizosphere communities 

tended to exhibit positive PC2 scores, while rhizoplane microbial communities exhibited 

primarily negative PC2 scores.  

The water microbial communities were distinguished from the other community types 

primarily through their usage of the carbon source Tween 40 (Table A7). Furthermore, across the 

different plant species, rhizosphere and rhizoplane communities from West Montrose were 

consistently differentiated by usage of the carbon sources glucose-1-phsophate and Tween 40, 

while itaconic acid was consistently associated with microbial communities from the Rare 

sampling location.  
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Figure 4.4 PC1 vs. PC2 plots of Biolog
TM

 carbon source utilization by microbial communities 

from river water, rhizosphere or rhizoplane samples associated with A) Iris versicolor, B) 

Potamogeton natans and C) Veronica spicata at West Montrose (WM) and Rare Charitable 

Research Reserve (Rare). Each data point represents an individual quadrat containing that plant 

species within the sampling site and is an average of three sets of PC scores from triplicate 

technical replicates. 
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4.3.2.2 Average Well Color Development and Metabolic Diversity 

 

Average well color development (AWCD), the average absorbance measured from a 

microbial community across all 31 carbon sources, showed much higher values for rhizosphere 

and rhizoplane communities as compared to water communities across all plant species 

examined (Fig 4.5 A). AWCD was similar between community types (rhizosphere and 

rhizoplane) and between the two sampling locations for I. versicolor. At both sites, AWCD was 

higher in the rhizoplane of P. natans compared to the rhizosphere. AWCD was higher in the 

rhizoplane at Rare compared to the rhizosphere for V, spicata. Within the same community type 

(rhizosphere or rhizoplane), AWCD values were similar between Rare and West Montrose for 

the most part. 

 Metabolic diversity was consistently higher among rhizosphere and rhizoplane 

communities compared to water microbial communities (Fig 4.5 B). Metabolic diversity 

measurements for communities associated with I. versicolor were similar at both sampling 

locations and within the rhizosphere and rhizoplane. Conversely, P. natans exhibited higher 

metabolic diversity at the Rare sampling location compared to West Montrose, within both the 

rhizosphere and rhizoplane microbial community. Metabolic diversity for V. spicata associated 

microbial communities was similar between sampling locations within the same sample type. 

However, at the Rare site only, metabolic diversity was higher in the rhizoplane compared to the 

rhizosphere.     
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Figure 4.5 (A) Average well color development (AWCD), defined as the average absorbance of 

all 31 Biolog
TM

 EcoPlate carbon sources at 590 nm after 96 hours of incubation at room 

temperature and (B) metabolic diversity of microbial communities associated with the water, 

rhizosphere and rhizoplane of I. versicolor, P. natans and V. spicata calculated from Biolog 
TM

 

carbon source utilization using Shannon Diversity (H’). Each bar represents the average of three 

technical replicates for water samples, and three experimental replicates and three technical 

replicates for rhizoplane and rhizosphere samples. Error bars are representative of standard error 

only.  
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4.3.3 Water Chemistry at West Montrose and Rare During Sampling Events 

Water chemistry was assessed at both the Rare and West Montrose water sampling 

locations during sampling in October and November 2015 (Table 4.1). Rare, the poor water 

quality site, exhibited higher concentrations of all inorganic forms of nitrogen (nitrite, ammonia, 

nitrate), however total reactive phosphorus was measured in similar concentrations at both sites. 

Measurements of pH and dissolved oxygen were not significantly different between the two 

sites. However, conductivity was much higher at Rare than at West Montrose.  

 

Table 4.1 Water Chemistry Data Obtained from River Water at Rare Charitable Research 

Reserve and West Montrose during Sampling in October and November of 2015. 

 Rare West Montrose 

pH 8.34±0.025 8.42 ± 0.075 

Nitrite (mg/L) 0.071 ± 0.0025  0.007 ± 0  

Nitrate (mg/L) 3.045 ± 0.89  1.355 ± 0.766  

Ammonia (mg/L) 0.178 ± 0.112  0.031 ±0.006  

Total Reactive Phosphorus (mg/L) 0.006 ± 0.001  0.005 ± 0.001  

Dissolved Oxygen (mg/L) 12.78 ± 2.26  14.77 ± 2.26  

Conductivity (Cus/cm) 937 ± 46  490 ± 60 

* Values are averages from the two sampling events ± standard error.  
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4.3.4 Microbiological Indicators of Water Quality 

4.3.4.1 Culture-Based Methods 

Culture-based microbiological measurements associated with water quality, including 

heterotrophic plate counts and membrane fecal coliform measurements, exhibited some species-

specific and site-specific differences. Total heterotrophic plate counts (HPCs) from river water 

were higher at the Rare site than at West Montrose (Fig 4.6 A). I. versicolor was the only plant 

species to exhibit differences in HPCs between the two sites, where total bacterial counts on R2A 

media were higher in the Rare site for both the rhizosphere and the rhizoplane, as compared to 

counts at West Montrose. For P. natans and V. spicata, HPCs were similar between the 

rhizosphere and the rhizoplane and between Rare and West Montrose.  Fecal coliform counts 

were higher in river water from West Montrose, compared to Rare (Fig 3.6 B). However, within 

most plant species and most sample types (rhizosphere and rhizoplane), fecal coliforms tended to 

be higher at Rare. For I. versicolor, fecal coliform abundance in the rhizoplane was similar 

between the two sites, however within the rhizosphere, higher numbers of fecal coliforms were 

detected at Rare. P. natans exhibited greater numbers of fecal coliforms at Rare within 

rhizoplane samples, but measurements within the rhizosphere were similar between the two 

sampling locations. V. spicata exhibited a greater number of fecal coliforms at the Rare site, 

within both rhizosphere and rhizoplane samples.  
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Figure 4.6 Heterotrophic plate counts (A) and membrane fecal coliform counts (B) in Grand 

River water and plant rhizoplane or rhizosphere material from West Montrose or Rare. (A) 

Colony forming units are per mL of river water or per gram of rhizosphere or rhizoplane material 

associated with I. versicolor, P. natans and V. spicata at West Montrose (WM) or Rare (RA) 

grown on R2A media at room temperature for 120 hours. Bars represent averages from two 

technical replicates (water only) and three experimental replicates (rhizosphere and rhizoplane). 

(B) Fecal coliform counts determined using the m-FC method after incubation at 44.5°C for 48 

hours for 100 mL of river water or 100 g of rhizosphere or rhizoplane material from I. versicolor, 

P. natans and V. spicata at West Montrose and Rare. Bars represent averages from two technical 

replicates (water only) and three experimental replicates (rhizosphere and rhizoplane). Error bars 

represent standard error from experimental replicates only.  
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4.3.4.2 Molecular-Based Methods 

Quantification of DNA from pathogenic microorganisms associated with fecal 

contamination revealed several distinct trends related to site, sample type and plant species (Fig 

4.7). Salmonella quantities were greater in West Montrose water compared to Rare (Fig 4.7 A). 

Quantities of Salmonella detected in rhizosphere and rhizoplane samples from different plant 

species at the two sites were similar in most cases. The only exception was I. versicolor which 

had greater Salmonella quantities present in the rhizosphere at West Montrose compared to the 

rhizosphere community at Rare.  

The results of qPCR based quantification of E. coli DNA showed that the abundance of 

this microorganism was similar at the two different sites (Fig 4.7 B). Similar quantities of E. coli 

DNA were isolated from the rhizosphere and rhizoplane at Rare and West Montrose for all plant 

species sampled with the exception of V. spicata, where E. coli was detected in greater quantities 

at the Rare site within the rhizosphere compared to the rhizosphere at West Montrose. 

Enterococcus genetic material was detected in greater quantities in the river water at the 

West Montrose sampling location compared to Rare (Fig 4.7 C). Within sample type 

comparisons between the two sampling locations did not reveal differences for any plant species 

except V. spicata, where greater Enterococcus numbers were present in Rare rhizoplane samples 

compared to West Montrose rhizoplane samples. Furthermore, Enterococcus was completely 

absent from the rhizosphere microbial community associated with P. natans at both sites.    
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Figure 4.7 Average relative abundance (target gene copies/mL) of bacterial pathogens 

(Salmonella spp. (A), E. coli (B) and Enterococcus spp. (C)) obtained from water samples, 

rhizoplane and rhizosphere material from I. versicolor, P. natans and V. spicata at West 

Montrose (WM) and Rare (RA).  Bars represent averages from three experimental replicates and 

two technical replicates. Error bars represent standard error of experimental replicates only.  
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4.4 Discussion 

Structural profiles associated with river water, rhizoplane and rhizosphere samples tended 

to form clusters within the same sampling location, plant species and sample type (e.g. samples 

from Q1-3).  Beyond that, larger clusters tended to form between different plant species and 

community types, within the same sampling location. This indicates that sampling location was a 

significant driver of community structure during our sampling period. The exception to this trend 

was the microbial communities associated with V. spicata. Rhizoplane communities from Rare 

associated with V. spicata clustered with rhizosphere communities from West Montrose. Rare 

rhizoplane communities associated with V. spicata clustered with other Rare sample types from 

different plant species, however rhizosphere communities associated with V. spicata from the 

West Montrose sampling location exhibited structural similarity with water-associated 

communities (Fig 4.1). The structure of microbial communities associated with I. versicolor 

exhibited the greatest dissimilarity between sampling locations, with V. spicata exhibiting the 

least.  

The literature has established that microbial structural profiles associated with the 

rhizosphere of different plant species tend to be unique (e.g. Grayston et al., 1998; Marschner et 

al., 2001, Marschner et al., 2004). This is also true of microbial rhizoplane communities, 

although considerably fewer studies have examined this community type (e.g. Wieland et al., 

2001; Nunan et al., 2005; Ofek-Lalzar et al., 2014). Of the studies that have been performed 

comparing community structures between the two different rhizo-compartments, findings have 

indicated that communities are selected by the plant, from the bulk soil, in a stepwise manner, 

first in the rhizosphere and then in the rhizoplane in such a way that each community type selects 

for enrichment of certain groups or species while depleting others (Bulgarelli et al., 2012; Ofek-
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Lalzar et al., 2014; Edwards et al., 2015; Zhang et al., 2017). Thus, as the rhizosphere and 

rhizoplane microbial community are a function of both the selection process by the plant, and the 

available microorganisms for selection in the bulk soil at each site, it makes sense that we would 

see community structural profiles clustering by plant species, community type and location. This, 

of course, assumes that the bulk soil microbial community is different at both locations, but I 

think we can assume this to be true as this is a wetland environment, the water-associated 

microbial communities at each site were dissimilar, and we saw differences among communities 

of the same type at the two sites (Fig 4.1 and 4.2). We were not able to obtain structural profiles 

for bulk soil communities at either location as there was no soil unimpacted by plant roots 

available. Furthermore, other studies have found that microbial community structure in bulk soil 

is variable by location within the same environment type (e.g. Horner-Devine et al., 2004).   

Varying degrees of similarity exist between communities of the same rhizo-compartment 

between sampling locations, depending on the associated plant species. V. spicata exhibited the 

greatest amount of structural similarity between rhizosphere (16%) and rhizoplane (24%) 

microbial communities at West Montrose versus Rare. P. natans exhibited the second greatest 

amount of similarity (11% in the rhizosphere, 19% in the rhizoplane) while microbial 

communities associated with I. versicolor were the most dissimilar by site (8% in the 

rhizosphere, 8% in the rhizoplane). This suggests that plant species differ in their ability to 

recruit root-associated microorganisms, and may be affected differently by variability in 

environmental conditions, such as differences in water quality and water chemistry. It should 

also be noted that the rhizoplane microbial community seems to exhibit less variability than the 

rhizosphere between sites, which could be a function of the degree of plant-specific influence. 

Hypothetically physical proximity to the plant root promotes a degree of consistency across 
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different environmental conditions external to the immediate plant root environment. This may 

lend itself to a more consistent microbial community within the rhizoplane. To the best of our 

knowledge, no other studies have examined the effects of water quality and plant species on 

microbial community structure in wetland microbial communities. However, several studies have 

observed how differences in soil type can affect rhizosphere microbial communities in 

association with different plant species. For example, Marscher et al., (2001) examined 

rhizosphere microbial community structures associated with chickpea (Cicer arietinum), 

canola/rapeseed (Brassica napus) and Sudan grass (Sorghum bicolour) grown in sandy, loam and 

clay soils. They found that Sudan grass exhibited the most variability in rhizosphere microbial 

community structure by soil type. Chickpea rhizosphere microbial communities grown in sandy 

soil were distinct from loam and clay-based communities, while rapeseed rhizosphere microbial 

communities grown in clay were distinct from sand and loam-based communities. The three 

different soil types exhibited differences in the concentrations of inorganic nutrients and organic 

matter. Similarly, Marschner et al., (2004) examined differences in rhizosphere microbial 

communities of barley (Hordeum vulgare) and cucumber (Cucumis sativus) under conditions of 

nitrogen and phosphorus deficiency, and showed that cucumber rhizosphere communities 

exhibited greater variability in rhizosphere community structures between the nutrient 

availability treatment types. Furthermore, when they examined rhizosphere microbial 

communities associated with chickpea, Sudan grass and canola (Brassica sp.) under conditions 

of deficient soil phosphorus and phosphorus enrichment (organic and inorganic) they found that 

rhizosphere communities associated with chickpea and canola varied by fertilization treatment 

while those associated with Sudan grass were relatively unaffected. These studies indicate that 

soil microbial communities may be affected by differences in nutrient availability, which is 
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similar to differences in wetland-associated microbial communities experiencing different water 

quality conditions (specifically inorganic nutrient loads). Furthermore, these studies also 

mirrored our results in that microbial community changes in response to altered environmental 

conditions is partly determined by the plant species the community is associated with. Further 

research will be required to understand which plant species-specific characteristics contribute to 

root-associated microbial community stability across changing environmental conditions. 

Functional community characteristics assessed using carbon source utilization profiles of 

rhizosphere and rhizoplane communities were separate from water communities for all three 

plant species. Carbon utilization profiles only differed between the rhizoplane and the 

rhizosphere microbial communities for V. spicata and P. natans (Fig 4.4). Site specific 

differences in carbon source utilization profiles between microbial communities were only 

present for I. versicolor and P. natans.  

Garland (1996) was the first study to illustrate that rhizosphere microbial communities 

associated with different plant species exhibited distinct carbon source utilization profiles. When 

Biolog
TM

 carbon source utilization profiles from rhizosphere microbial communities associated 

with white potato, soybean, wheat and sweet potato were analyzed using detrended 

correspondence analysis (DCA) distinct profiles were observed among the different microbial 

communities associated with each plant species. Grayston et al., (1998) also demonstrated 

differences in carbon source utilization profiles among rhizosphere microbial communities 

associated with different plant species. Biolog
TM 

 
 
carbon source utilization profiles for 

rhizosphere microbial communities in association with ryegrass (Lolium perenne), bentgrass 

(Agrostis
 
capillaries), wheat (Triticum aestivum) and clover (Trifolium repens) were compared to 

those of non-rhizosphere microbial communities from un-amended soil and soil supplemented 
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with additional carbon as sucrose using canonical variate analysis (CVA). Differences among 

these microbial communities were established for the rate of carbon utilization, as well as for the 

types of carbon sources preferred by each community. In contrast, our findings did not identify 

clear plant species-specific carbon source utilization profiles among the rhizosphere or 

rhizoplane microbial communities from I. versicolor, P. natans and V. spicata when analyzed 

together with all community types from the two different sampling locations (Fig 4.3). However, 

when analyzed individually by rhizo-compartment within the same sampling location, the 

differences in carbon source utilization profiles emerged for all plant species and rhizo-

compartment associated microbial communities (data not shown). This indicates that the 

differences in carbon source utilization profiles between sites and rhizo-compartments was a 

greater source of variation than the differences in carbon source utilization by the microbial 

communities associated with the different plant species. The previously mentioned studies used 

different methods of statistical analysis (CVA and DCA vs. PCA), different Biolog
TM

 plates (GN 

vs. EcoPlate) with different carbon sources, and conducted their studies under controlled 

laboratory conditions instead of under field conditions, all of which is likely to contribute to the 

differences between our findings.  

Very few studies published in the literature have compared carbon source utilization 

profiles of microbial communities between the rhizosphere and the rhizoplane. We observed that 

some plant species possess root-associated microbial communities with unique carbon source 

utilization profiles for each rhizo-compartment (V. spicata and P. natans), while others may not 

display distinct functional profiles between the rhizosphere and the rhizoplane (I. versicolor). 

Grayston (2000) found that carbon source utilization profiles produced by rhizoplane microbial 

communities associated with three species of trees (Larch, Spruce and Sycamore) were distinct 
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from those of the associated rhizosphere microbial communities for all three species. Similarly, 

when Baudoin et al. (2001) compared carbon source utilization profiles between bulk soil, 

rhizosphere and rhizoplane communities using Biolog
TM

 plates, they found that the biggest 

difference in substrate utilization was between the bulk soil community and the rhizoplane 

community. The rhizosphere microbial community used carbon sources that were intermediate 

between the two community types. Substrate utilization by rhizosphere and rhizoplane microbial 

communities were similar in many respects, and primarily differed in the relative usage of amino 

acids and amines-amides (Table A7). Rhizodeposits, which commonly contain nitrogenous 

carbon sources including amino acids, amines and amides, represent the most readily available 

source of organic nitrogen in root impacted soil, which would be seen by rhizoplane microbial 

communities before reaching the rhizosphere, thus exposing the rhizoplane microbial community 

to these compounds more frequently and in greater concentrations compared to the rhizosphere 

(e.g. Richardson et al., 2009). Thus, it appears that the distinction between metabolic profiles of 

microbial communities in the rhizoplane compared to the rhizosphere may be the result of 

exposure to varying concentrations of rhizodeposits as a function of distance from the root 

surface. To the best of our knowledge, these are the only two additional studies in the literature 

(Grayston, 2000; Baudoin et al., 2001) that have looked at the relationship between the 

rhizosphere and the rhizoplane with respect to carbon source utilization profiles. However, 

concluding from the evidence currently available, distinct metabolic profiles among rhizo-

compartments may be commonplace. Thus, I. versicolor which lacks the distinction among root-

associated microbial community types is an exception to what has been typically observed. In I. 

versicolor the structural community profiles established by PCR-DGGE revealed differences 

between the rhizoplane and rhizosphere microbial communities (Fig 4.2). However, this was not 
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reflected in the functional profiles of these different community types. This disagreement could 

be the result of the unique root exudation and rhizodeposit profile associated with I. versicolor. 

Alternatively, the lack of distinction between these two community types could also be the result 

of a seasonal change in plant rhizodeposition, as the literature has shown that the quantity and 

composition of plant root exudates can vary seasonally (Edwards et al., 2018). Another 

explanation is that functional differences in carbon source utilization profiles between the two 

rhizo-compartments existed, but could not be detected using Biolog
TM

 plates. This could be the 

case depending on the nature of the structural differences between the communities, as Biolog
TM

 

plates only detect the activity of a portion of the total microbial community present in the initial 

inoculum (Smalla et al., 2001).  

 Our findings indicated that metabolic profiles of microbial communities associated with 

the rhizosphere and the rhizoplane of I. versicolor, P. natans and V. spicata responded to the 

distinct environmental pressures associated with two sampling locations with contrasting water 

quality differently by plant species. I. versicolor exhibited the greatest site specific-effect on 

carbon source utilization profiles, while V. spicata exhibited no clear differences in metabolic 

capabilities between communities at the two sites. To the best of our knowledge, this is the first 

time carbon source utilization profiles have been used to compare functional community 

characteristics between wetland-associated microbial communities under contrasting water 

quality conditions.  We have established that plants play a role in structuring their root-

associated microbial communities, and as such these communities are species- specific (e.g. 

Grayston et al., 1998; Marschner et al., 2001, Marschner et al., 2004). Due to the unique nature 

of these microbial communities, it makes sense that their stability (structural and functional) 

across changing environmental conditions may also vary by plant species. Stability of the 
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functional community profile associated with V. spicata rhizosphere and rhizoplane microbial 

communities across variable environmental conditions may make it a good candidate for use in 

constructed wetlands, however, more work would need to be done to support this. Evidence from 

the literature suggests that root-associated microbial communities can contribute to the 

successful establishment of invasive plant species beyond their native range (e.g. Reinhart et al., 

2003; Callaway et al., 2004; Reinhart and Callaway 2004). V. spicata is an introduced plant 

species throughout central and eastern Canada (Brouillet et al., 2010). The ability to form a 

functionally stable root-associated microbial community under dynamic physico-chemical 

conditions may be a contributing factor in its success at colonizing and becoming established in 

new environments.  

 By integrating structural and functional microbial community data, we were able to 

establish agreement between the two different measures of microbial community change. The 

structural community data, obtained through PCR-DGGE-based microbial community 

fingerprinting, revealed that V. spicata showed the greatest amount of structural similarity 

between the West Montrose and Rare sites (Fig 4.2). This agreed well with the functional 

community data, which did not indicate clear differences in carbon source utilization profiles 

between microbial communities at the different sites (Fig 4.4). The root-associated microbial 

communities of P. natans had intermediate levels of structural similarity between the two sites, 

among the plant species tested. Similarly, these microbial communities exhibited intermediate 

levels of differentiation in functional community data between the two sites. Furthermore, the 

rhizosphere microbial community associated with P. natans exhibited more structural 

differentiation between sites, as compared to the rhizoplane. This agrees with the functional 

community data, with the clearest functional differences being noted between the rhizosphere 
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microbial communities at Rare and West Montrose. I. versicolor exhibited the least structural 

similarity between rhizosphere and rhizoplane communities at the two sites, and also exhibited 

distinct functional community profiles associated with West Montrose and Rare microbial 

communities. The ability of functional community data obtained using carbon source utilization 

profiles to reflect differences in community structure seems to be dependent on the nature of the 

genetic community level changes being detected. Biolog
TM

 analyses have all of the biases 

inherent in culture-based methods, ultimately reflecting the activity of a small subset of the 

microbial community. Smalla et al. (1998) confirmed that the microbial populations contributing 

to carbon source utilization profiles measured using Biolog
TM 

plates were structurally distinct 

from those present in the initial inoculum and were skewed towards non-fastidious 

microorganisms from the subclass γ-Proteobacteria. Thus, if shifts in community structure are 

related to this group of microorganisms we can expect to also see changes in Biolog
TM

 carbon 

source utilization profiles. Findings by Buyer et al. (2002) support this; they observed structural 

and functional community changes occurring within the rhizosphere of corn and soybean 

(compared to the bulk soil community) and found that functional community data reflected 

structural community changes, and that the heterotrophic microorganisms capable of rapid 

growth under aerobic conditions being detected with Biolog
TM

 substrate utilization assays were 

the same types of microorganisms being enriched in the rhizosphere. As such, the agreement 

between our structural and functional community data is likely a reflection of changes occurring 

in these types of microbial populations from the rhizosphere and rhizoplane communities of our 

study plants. Furthermore, differences in nutrient conditions between the two water quality sites 

may have contributed further to the ability of Biolog
TM

 analysis to detect changes in community 

functional profiles. Smalla et al., (2001) found that microbial communities from different 
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environments (activated sludge fed with glucose and peptone versus potato rhizosphere) 

experienced different community level effects upon inoculation into the Biolog
TM

 plates. All 

dominant members of the microbial community in the activated sludge were represented in at 

least one of the Biolog
TM

 plate wells, while many of the dominant populations from the potato 

rhizosphere were absent from the wells. The authors suggest that this is due to differences 

between the two environments in terms of substrate variety and concentration.  

Culturable fecal coliforms measured by growth on m-FC media, revealed a trend between 

the two water quality sites. All plant species exhibited an increase in the number of fecal 

coliforms cultured from the rhizosphere, rhizoplane or both community types, at the Rare study 

site (Fig 4.6). Due to the noted proximity of the Rare sampling location to a WWTP discharge 

this should be the obvious explanation for the observed trend. However, we cultured a greater 

number of fecal coliforms from the river water at West Montrose, as compared to the river water 

at Rare (Fig 4.6). This was also true for molecular measurements of Salmonella and 

Enterococcus DNA obtained via qPCR, which were also higher at West Montrose (Fig 4.7). 

Thus, at least during these sampling events, there does not seem to be a greater number of fecal 

coliforms being introduced into the Rare site (at least not from the water in the river). Therefore, 

an alternative explanation as to why fecal coliform numbers are more abundant in some root –

associated microbial communities at the low water quality site must exist. One possibility is that 

they persisted from a previous introduction at the Rare site, from the river water or otherwise. 

Another possibility is that the environmental conditions present at Rare are more conducive to 

fecal coliform establishment in the rhizosphere and/or rhizoplane. We have only limited water 

chemistry data from the two sites, but the biggest differences we observed were related to higher 

inorganic nitrogen concentrations, lower dissolved oxygen and higher conductivity at Rare as 
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compared to West Montrose.  Indirect effects via site-specific conditions on plant growth and 

root exudation profiles may be a factor in the greater prevalence of fecal coliforms at the Rare 

site.  

One of the most interesting findings resulting from this study was the complete absence 

of the genus Enterococcus from the rhizosphere of P. natans (Fig 4.7). This was true for all three 

quadrats sampled for this species at both study sites. Several different mechanisms have been 

suggested to explain why certain microorganisms (specifically fecal indicator microorganismss) 

may be reduced within the rhizosphere and these include: 1) increased oxygenation in the 

rhizosphere (Vymazal, 2005), 2) competition with resident microflora (Cooley et al., 2003; 

Cooley et al., 2006), and 3) secretion of antimicrobial compounds in the rhizosphere of plant or 

microbial origin (Gopal and Goel, 1993; Neori et al., 2000; Axelrood et al., 2006; Fett, 2006). 

The first mechanism of elimination, as well as secretion of plant derived antimicrobial 

substances, can be dismissed as probable explanations. The reason being that despite being 

absent from the rhizosphere, Enterococcus was detected in the rhizoplane of P. natans in 

significant quantities. Thus, it is likely that the failure of Enterococcus to persist in the P. natans 

rhizosphere was due to competition with the rhizosphere microbial community and/or the 

presence of antimicrobial compounds of microbial origin being produced in the rhizosphere of P. 

natans. Competition with resident microorganisms was shown to reduce loads of fecal indicator 

microorganisms (specifically Salmonella enterica and E. coli O157:H7) in the rhizosphere of 

Arabidopsis thaliana and lettuce (Wausteria paucula) (Cooley et al., 2003; Cooley et al., 2006). 

Additionally, plant-associated strains of Pseudomonas have been shown to produce antimicrobial 

compounds inhibiting the growth of multiple serovars of Salmonella enterica (Fett, 2006). 

Furthermore, a strain of Bacillus subtilis (SK.DU.4) isolated from rhizosphere soil was shown to 
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produce antimicrobial peptides with activity specific to Gram positive bacteria including 

Staphylococcus aureus , Streptococcus mutans, Micrococcus luteus  and Listeria monocytogenes  

(Baindara et al., 2013).  

4.5 Conclusions 

We hypothesized that microbial communities associated with the roots of wetland plants 

would be affected by water quality and that these effects would be different based on the 

associated plant species. Site-specific differences at the two contrasting water quality sites 

affected the structure and function of rhizosphere and rhizoplane microbial communities 

differently depending on which wetland plant they were associated with. Microbial communities 

associated with V. spicata were more structurally and functionally similar between the two 

sampling locations, while those associated with I. versicolor exhibited the greatest site-specific 

differences. Site-specific differences in community structure and function also varied depending 

on the community type. Rhizoplane microbial communities tended to be more 

structurally/functionally similar between sites than rhizosphere communities. Differences 

between the two contrasting water quality sites with respect to fecal coliform presence was also 

observed, with fecal coliform abundance being greater in most plant-associated microbial 

communities at the poor water quality site (Rare). Furthermore, plant species-specific effects on 

fecal indictor microorganisms were observed. Specifically, Enterococcus was completely 

excluded from the rhizosphere of P. natans. It should be noted that although we selected 

quadrats with the same soil type and plant community composition at both sites, to the best of 

our ability, this was still a field study. As such, the influence of other factors aside from those 

related to water quality occurring at each site may have also impacted microbial community 

structure and function and thus, cannot be ruled out as factors affecting our results.    
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Chapter 5 

 

Structural and Functional Changes to Plant Root-Associated Wetland 

Bacterial Communities Exposed to Different Water Qualities in  

Lab-Scale Constructed Mesocosms  

 

5.1 Introduction  

 

The human population is placing an increasing demand on available supplies of potable 

water, which are being negatively impacted by pollutants originating from industrial, agricultural 

and anthropogenic activities. In addition to potentially harmful contaminants of anthropogenic 

origin, such as personal care pharmaceutical products, pesticides, heavy metals, petroleum and 

volatile phenolics, the addition of high levels of inorganic nutrients to aquatic ecosystems 

originating from human activities poses a serious threat to the health of aquatic ecosystems 

(Vymazal, 2007; Wang et al., 2007). Inorganic forms of nitrogen and phosphorus are among the 

most common inorganic nutrients entering aquatic ecosystems in excess and can have 

detrimental effects on ecosystem dynamics and the health of aquatic plants and animals (Lamers 

et al., 2002; Wang et al., 2007; Faulwetter et al., 2009). Anthropogenic and agricultural effluents 

are also associated with the presence of disease-causing microorganisms originating from human 

and animal fecal matter. Some of the most significant human pathogens originating from fecal 

contamination found in freshwater systems include Salmonella spp., Enterococcus spp. and 

Escherichia coli (Cabral, 2010). Natural wetlands have long been recognized for their ability to 

remove contaminants from polluted waters before they enter receiving water systems (Johnston, 

1991). The removal of most pollutants in wetlands has been attributed primarily to bacterial 
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processes and thus gaining a better understanding of how microbial communities respond to 

changes in water quality is of the utmost importance (Faulwetter et al., 2009).  

Bacteria do not and cannot exist in isolation and are heavily influenced by interactions 

with plants (Stottmeister et al., 2003; Bonfante and Anca, 2009). Within the wetland ecosystem, 

microbial communities can be considered individually by habitat type. Water-associated 

microbial communities can be isolated from either surface water or discharge effluent in a 

wetland system lacking aboveground standing water. Additionally, plant-associated microbial 

communities can be subdivided based on rhizo-compartment: 1) rhizosphere, 2) rhizoplane and 

3) endosphere. The rhizosphere and rhizoplane communities are the most relevant to the 

microbial ecology influencing wetland remediation capabilities (e.g. Muratova et al., 2003). The 

rhizosphere can be defined as the narrow region of soil surrounding plant roots that is influenced 

by the growth, respiration and root secretions of the plant (Berendsen et al., 2012). The 

rhizosphere microbial community is more diverse and more concentrated than that of the 

surrounding bulk soil due largely to organic deposits made by plant roots which act as a nutrient 

source (Baudoin et al., 2003; Philippot et al., 2013). The rhizoplane differs from the rhizosphere 

in that these microorganisms are attached directly to the roots of the plant via microbial biofilms 

(Edwards et al., 2015). Microbial root-associated communities are actively determined by the 

plant (Haichar et al., 2008; Hartmann et al., 2009; Berendsen et al, 2012; Philippot et al., 2013). 

For this reason, these communities have a species-specific composition that is distinct from the 

surrounding bulk soil (Costa et al., 2006). 

Information available on the effects of water quality on plant-associated wetland 

microbial communities is very lacking. Both natural and constructed wetlands rely on these 

communities for the effective remediation of contaminated wastewaters (e.g. Zhuang et al., 
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2007). To design the most effective and robust constructed wetlands possible, a better 

understanding of the effects of anthropogenic activities on wetland-associated microbial 

communities is needed. Information available from the literature on this subject is limited. What 

has currently been established is primarily confined to analyses of rhizosphere or sediment 

microbial community compositions using molecular techniques, or the measurement of microbial 

community functional changes as assessed by carbon source utilization profiles or changes in 

quantities of functional genes associated with the bacterial metabolism of specific contaminants 

(e.g. Ahn et al., 2007, Zhao et al., 2010, Bowen et al., 2011). None of the studies published to 

date, to the best of our knowledge, have looked at these two measurements of community change 

together to attain a more complete picture of the structure and function of microbial communities 

in the face of changing water quality parameters. Furthermore, most studies have explored this 

subject matter by singling out individual parameters associated with water quality (e.g. elevated 

C, N, P or pathogenic bacteria). Although this approach does reduce the number of variables in 

an experimental design, microbial communities in natural and constructed wetland systems will 

rarely ever experience conditions such as this, with elevation of only a single element of water 

quality. To gain a better understanding of how microbial communities will react to changes in 

water quality, treatments need to be designed to better reflect the realistic chemical and 

biological composition of wastewater and contaminated source waters. In addition, changes to 

the remedial capabilities of the microbial communities in the face of different water quality 

conditions must also be examined in order to fully understand how changing water quality could 

impact the ecosystem services provided by wetland communities.  
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 To further our understanding of how changes to water quality can affect plant-bacteria 

community dynamics and their capacity to remediate contaminated water, we will be examining 

the following hypotheses: 

1) Natural and constructed wetland systems highly impacted by anthropogenic activities will 

differ from less affected systems in both community composition, function and 

remediation capabilities (ability to remove contaminants and pollutants from water). 

2) The microbial community composition of wetland plants will differ among species. 

Different plant species will harbour unique microbial communities that differ in their 

associated microbial community compositions, functionality and remediation capabilities. 

In order to test these hypotheses we will determine the differences in structure, function and 

contaminant removal ability among wetland-associated microbial communities (water, 

rhizosphere, rhizoplane) for two different wetland plant species (Phalaris arundinacea and 

Veronica anagallis-aquatica) in lab-scale mesocosm systems subjected to water affected by 

contrasting degrees of anthropogenic impact. 

5.2 Materials and Methods  

 

5.2.1 Mesocosm Design and Set-up 

 

Twelve wetland mesocosms were constructed, assembled and planted on September 19, 

2016 using 20 gallon glass aquariums (Marineland
®
, Blacksburg, Virginia USA) to mimic the 

design of a subsurface flow wetland. Treatment water was stored in 5 gallon food application 

approved buckets (Home Depot®, Atlanta, Georgia USA) and distributed through a peristaltic 

pump system (Masterflex 12 channel peristaltic pump and with 2.76 mm santoprene tubing, Cole 

Parmer®, Montreal, Quebec CA) using ¼ inch black plastic drip irrigation tubing  (Indoor 
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Farmer, Kitchener, Ontario CA).  The bottom 10 inches of each tank were filled with 3/8 inch 

pea gravel (KING
®
, Burlington, Ontario CA) on top of which a 75:25 (v:v) mixture of silica sand 

(#20 grade high purity filter sand, Fairmount Minerals®, Wedron, Illinois USA) and Grand 

River sediment collected from the West Montrose sampling location (West Montrose, ON N0B 

2S0 43.588219, -80.470979) on September 18, 2016 (Fig 5.1). River sediment was collected 

using sterile bags and stored at 4°C until use. The back 2 inches of each tank was filled from 

bottom to a depth of 14 inches with ¾ inch drainage gravel (KING
®
, Burlington, Ontario CA). 

Drainage from the mesocosms was facilitated by drilling holes at the bottom of each aquarium 

and inserting a 10 inch length of ¾ inch PVC pipe which was held in place using aquarium grade 

non-toxic silicone sealant (Marineland
®
, Blacksburg, Virginia USA). Multiple 1-2 mm wide slits 

were cut along the length of a larger piece of PVC pipe in 1 inch intervals (2 inch diameter, 14 

inch height, Home Depot®, Atlanta, Georgia USA) which was then placed around the 3/4 inch 

outflow pipe and attached to the base of the aquarium using the aquarium sealant to prevent the 

outflow pipe from getting plugged with solid matter.  

Once the mesocosms were assembled they were filled to capacity (8.42-8.67 L) with 

water obtained from the West Montrose sampling site along the Grand River. Each mesocosm 

was then planted with seeds from either Phalaris arundinacea (collected from the Grand River in 

2015) or Veronica spicata (collected from the Grand River in 2016). Seedlings were germinated 

in the dark at room temperature (21±2°C) under sterile conditions on filter paper saturated with 

DI water for 96 hours before planting. A total of 32 seedlings were transferred to each tank in a 

roughly even distribution.  
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Figure 5.1 Horizontal subsurface flow constructed wetland based lab-scale mesocosm design. 

Water flow is indicated from the back to the front of the mesocosm. 
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5.2.2 Operating Conditions  

 The mesocosms were maintained under greenhouse conditions with a relative 

humidity and temperature of 40-60% and 24-28°C, respectively. All mesocosms were exposed to 

artificial illumination (100 W/m
2
) with a 16 hour photoperiod. From the time of setup until 

October 26, 2016 water from West Montrose (collected from the river on a weekly basis) was 

added to the back of each tank manually (0.5 L/day) due to issues with the peristaltic pump 

operation. From this time onward all tanks were fed using the peristaltic pump system with a 

constant inflow rate of approximately 1.11-1.32 mL/min. Hydraulic retention time (HRT) for the 

mesocosms varied throughout the experiment due to changes in evapotranspiration volumes over 

the lifespan of the plants, however during the experimental time-period HRT was approximately 

6 days. On October 28, 2016, two tanks were damaged and could not be repaired. The broken 

mesocosms were replaced by constructing replacement mesocosms from new materials and 

emptying and refilling all 12 mesocosm in the manner described previously. Seedlings were also 

replanted at this time. Due to poor growth of V. spicata seedlings up to this time point, the 

mixture of silica sand and West Montrose sediment was adjusted to a 50:50 (v:v) mixture, and 

additional Grand River sediment was added that had been collected on October 26, 2016. On 

December 12, 2016 another tank broke (Veronica #6) and a new tank was constructed at this 

time. Contents from the old tank, including established seedlings were transferred to the new 

tank. By December 20, 2016 seedlings in the mesocosms were established enough that it became 

apparent that plants growing in the 6 Veronica mesocosms were in fact not the seedlings that had 

been planted and instead were plants that had become established from the natural seed bank in 

the sediment used to build the mesocosms. By May 8, 2016 the Veronica treatments were 

dominated by Veronica anagallis-aquatica (70-95% cover). A small number of other plant 

species were also present in the tanks (representing no more than 5% cover total) including 
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Epilobium spp (WM Veronica #2 (2% cover), D Veronica #3 (5% cover)), Verbena hastata (D 

Veronica #1 (≤1% cover)), Eupatorium altissimum (D Veronica #1 (≤1% cover), D Veronica #2 

(≤1% cover)), Lythrum salicaria (WM Veronica #2 (2% cover), WM Veronica #3 (3% cover)) 

and one unknown species belonging to the family Solanaceae (D Veronica #2 (2%cover)). On 

May 8, 2017 half of the Phalaris arundinacea mesocosms (3 of 6 total) and half of the Veronica 

anagallis-aquatica mesocosms were randomly chosen to receive water from our poor water 

quality site (Doon, Kitchener, ON 43.386376, -80.387547) (Fig 5.2 and 5.3). This site was 

determined previously to have had the poorest water quality of all the sites sampled and is 

classified as a poor water quality site by the Grand River Conservation Authority (Loomer and 

Cooke, 2011). 
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Figure 5.2 Mesocosms on May 8, 2017 (0DAE) planted with Phalaris arundinacea. Mesocosms 

A-C started receiving water from Doon (D) on this date and were subsequently referred to as D 

Phalaris #1 (A), #2 (B), and #3 (C). Mesocosms D-F continued to receive water from West 

Montrose (WM) throughout the rest of the experiment and were subsequently referred to as WM 

Phalaris #1 (D), #2 (E), and #3 (F).  
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Figure 5.3 Mesocosms on May 8, 2017 (0DAE) containing predominantly Veronica anagallis-

aquatica. Mesocosms B, C and F started receiving water from Doon (D) on this date and were 

subsequently referred to as D Veronica #1 (B), #2 (C), and #3 (F). Mesocosms A, D and E 

continued to receive water from West Montrose (WM) throughout the rest of the experiment and 

were subsequently referred to as WM Veronica #1 (A), #2 (D), and #3 (E).  
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5.2.3 Sample Collection  

Bacterial communities were assessed from interstitial water, inflow water from both the 

West Montrose and Doon sites as well as P. arundinacea and V. anagallis-aquatica rhizosphere 

and rhizoplane material as described in Chapter 2. Interstitial water samples were collected by 

placing a sterile glass bottle beneath the outflow port of each mesocosm and collecting the water 

as it drained from the tank. The surface of each mesocosm was divided into nine equal sized 

quadrants and rhizosphere and rhizoplane samples were collected from a different quadrant 

during each sampling event which was chosen randomly using a random number generator. 

Samples of water (inflow and outflow) and rhizosphere material were collected from the 

mesocosms monthly from December 2016 to May 2017 (experimental start-up) to monitor 

mesocosm development and bacterial community establishment so that the experiment could 

commence once the bacterial community in the mesocosms became stable. Following 

experimental start-up on May 8, 2017 when half of the wetland mesocosms began to receive 

Doon water, samples were obtained on 0, 14, 28, 49, 70 and 91 days after exposure (DAE). 

Rhizoplane samples were obtained on 0, 49 and 91 DAE only due to the invasive nature of 

removing large parts of the plant root systems. All samples were fully processed within 24 hours 

of collection and stored at 4 °C when not in use. 
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5.3 Results  

5.3.1 Structural Profiles of Water, Rhizosphere and Rhizoplane-Associated Microbial 

Communities from Mesocosms Receiving High and Low Water Quality Treatments 

At 0 DAE cluster analysis of microbial community structural profiles obtained from 

bacterial DNA isolated from inflow and outflow (interstitial) water, as well as rhizosphere and 

rhizoplane material, showed distinct structural profiles based on sample type. Rhizosphere 

microbial community structural profiles exhibited the highest degree of similarity among 

samples (82.7% similarity) (Fig 5.4). Rhizoplane microbial communities likewise showed a high 

degree of similarity among experimental replicates and treatments (78.9% similarity). Interstitial 

water samples exhibited 63.5 % similarity among experimental replicates and treatments, while 

inflow water communities showed only 48.6 % structural similarities to the rest of the microbial 

community sample types. Rhizoplane and water microbial communities were more closely 

related to each other (63.5% similarity) than to rhizosphere microbial communities (55.6% 

similarity). At 0 DAE all experimental replicates were receiving water from West Montrose 

(high water quality site). Experimental replicates marked to receive water from Doon (poor water 

quality site) did not exhibit structural similarity among each other within the rhizosphere and 

interstitial water microbial communities (as observed by clustering). Some clustering among the 

West Montrose and Doon treatment replicates was observed for the rhizoplane microbial 

community samples (clusters of 4 West Montrose and 4 Doon replicates) exhibiting 89.8% and 

91.8% structural similarly, respectively. Overall, microbial community structural similarity 

within a sample type, by plant species, was not observed.  
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Figure 5.4 Hierarchical cluster analysis results of all DGGE profiles obtained from microbial 

DNA extracted at 0 DAE (all treatments receiving West Montrose water) demonstrated 

graphically as a UPGMA dendrogram. Mesocosms receiving high water quality inflow are 

indicated with a WM (West Montrose) and mesocosms marked to be receiving low water quality 

inflow are indicated with a D (Doon). Mesocosm replicates per treatment type are indicated with 

numbers 1-3. Percent similarity values are represented by the numbers above cluster branches.  
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Designated mesocosms had been exposed to Doon water (poor water quality site) for 14 

days. West Montrose and Doon inflow water showed highly similar microbial community 

structural profiles (86.3% similarity) by 14 DAE. Microbial community structures from inflow 

water samples were very different from that of either the interstitial or rhizosphere microbial 

communities (26.3 % similarity) (Fig 5.5). The interstitial water microbial community structures 

were more similar to that of the rhizosphere microbial community than to the inflow water 

microbial community. All rhizosphere and interstitial water microbial communities exhibited 

82.6 % and 65.4% structural similarity to each other, respectively. These similarity values are 

comparable to those observed at 0 DAE. Clustering based on water quality treatments was 

observed for some experimental replicates within the rhizosphere and interstitial water 

communities (approximately 3-4 replicates of 6). Structural similarity among communities 

associated with the same plant species was not observed.  

 At 28 DAE, inflow water from Doon and West Montrose was associated with microbial 

communities exhibiting similar structural profiles (91.1 % similarity) (Fig 5.6). This was 

consistent with previous observations at 0 and 14 DAE. Rhizosphere and interstitial water 

microbial community structural profiles exhibited 85.3% and 41.1% similarity, respectively. 

Unlike observations made at 14 DAE, inflow microbial communities were more structurally 

similar to rhizosphere communities than to interstitial water communities, with 71.1% similarity 

and 41.4% similarity, respectively. Relationships among structural community profiles receiving 

the same water quality treatment were strong and showed a high degree of similarity within each 

community type (interstitial water and rhizosphere). West Montrose water treated communities 

exhibited more structural similarity among experimental replicates than communities receiving 

Doon water. Interstitial water microbial communities receiving West Montrose water exhibited 
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81.5 % structural similarity compared to Doon treated microbial communities which only 

exhibited 41.1 % similarity. Comparatively, rhizosphere communities receiving West Montrose 

water exhibited 89.6% structural similarity compared to 85.3% structural similarity among 

communities receiving Doon water.  

 

 Figure 5.5 Hierarchical cluster analysis results of all DGGE profiles obtained from microbial 

DNA extracted at 14 DAE demonstrated graphically as a UPGMA dendrogram. Mesocosms 

receiving high water quality inflow are indicated with a WM (West Montrose) and mesocosms 

marked to be receiving low water quality inflow are indicated with a D (Doon). Mesocosm 

replicates per treatment type are indicated with numbers 1-3. Percent similarity values are 

represented by the numbers above cluster branches. 
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Figure 5.6 Hierarchical cluster analysis results of all DGGE profiles obtained from microbial 

DNA extracted at 28 DAE demonstrated graphically as a UPGMA dendrogram. Mesocosms 

receiving high water quality inflow are indicated with a WM (West Montrose) and mesocosms 

marked to be receiving low water quality inflow are indicated with a D (Doon). Mesocosm 

replicates per treatment type are indicated with numbers 1-3. Percent similarity values are 

represented by the numbers above cluster branches. 
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 At 49 DAE West Montrose and Doon inflow water exhibited less structural similarity 

than observed at previous time points (76.4% similarity) (Fig 5.7). Rhizosphere and interstitial 

water microbial community structural profiles exhibited the highest degree of similarity by 

sample type, with 88.2% and 88% similarity, respectively. Rhizoplane microbial communities 

exhibited less similarity by sample type with 86.6% structural similarity. Inflow water samples 

exhibited the greatest degree of structural similarity with the microbial rhizosphere community 

(83.5 % similarity) as observed previously, while similarity was only 68.9% and 52.5% between 

rhizoplane and interstitial water communities, respectively. Within each community type, 

clustering based on water quality treatment was observed. Rhizoplane and rhizosphere microbial 

communities exhibited the highest degree of clustering among replicates receiving the same 

water quality treatment. Similar to observations made at 28 DAE, greater structural similarity 

was observed among communities receiving West Montrose water compared to Doon water for 

both rhizosphere and rhizoplane communities. Treatments receiving West Montrose water 

exhibited 90.2 and 90.7% structural similarity, respectively for rhizosphere and rhizoplane 

communities. Rhizosphere and rhizoplane communities receiving Doon water exhibited 88.2 and 

86.6% structural similarity, respectively. The opposite was true for interstitial water 

communities, which exhibited 52.5 and 66% structural similarity for treatments receiving West 

Montrose and Doon inflow water, respectively. 
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Figure 5.7 Hierarchical cluster analysis results of all DGGE profiles obtained from microbial 

DNA extracted at 49 DAE demonstrated graphically as a UPGMA dendrogram. Mesocosms 

receiving high water quality inflow are indicated with a WM (West Montrose) and mesocosms 

marked to be receiving low water quality inflow are indicated with a D (Doon). Mesocosm 

replicates per treatment type are indicated with numbers 1-3. Percent similarity values are 

represented by the numbers above cluster branches. 
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At 72 DAE the structure of West Montrose and Doon inflow communities were markedly 

different (32.6% similarity) and did not cluster together. The Doon inflow microbial community 

was most similar to rhizosphere community structural profiles, while the West Montrose inflow 

community was most similar to interstitial water microbial community structural profiles (Fig 

5.8). A high degree of structural similarity was observed within the rhizosphere microbial 

community (86%) while only 32.6% was observed among interstitial water microbial 

communities. However, a single outlier that was also observed at 49 DAE (D Phalaris water #2) 

increases community structure similarity to 66.9% among interstitial water community profiles 

when excluded. Similar to observations at previous time points, clustering of structural 

community profiles was observed within water quality treatments but not within plant species 

treatments. West Montrose treatments exhibited more similarity within a sample type as 

compared to samples taken from mesocosms receiving Doon water. Rhizosphere communities 

receiving either West Montrose or Doon water exhibited 88.1% and 86 % similarity, 

respectively. Interstitial water microbial communities receiving West Montrose or Doon water 

exhibited 74.5 and 66.9% similarity, respectively (excluding outlier).  
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Figure 5.8 Hierarchical cluster analysis results of all DGGE profiles obtained from microbial 

DNA extracted at 72 DAE demonstrated graphically as a UPGMA dendrogram. Mesocosms 

receiving high water quality inflow are indicated with a WM (West Montrose) and mesocosms 

marked to be receiving low water quality inflow are indicated with a D (Doon). Mesocosm 

replicates per treatment type are indicated with numbers 1-3. Percent similarity values between 

clusters are indicated by the numbersabove branches.  
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By 91 DAE the structural community profiles of each community type showed increased 

variability compared to previous sampling time points (Fig 5.9). Several outliers were present in 

both the rhizoplane and interstitial water microbial community groupings (3 each). There was 

also more total variation among the samples of all community types when compared to other 

time points. Similar to earlier sampling time points, microbial community structures of inflow 

water communities in West Montrose and Doon water exhibited the strongest similarity 

compared to other sample types (69% similarity). Inflow water community structures were also 

most similar to rhizoplane community structures (47% structural similarity, excluding outliers). 

Rhizosphere community profiles exhibited the highest degree of similarity among replicates 

within the same sample type (84.1%), followed by rhizoplane (74.2% similarity excluding 

outliers, 26% including outliers) and interstitial water community profiles (46.5% similarity 

excluding outliers, 43.1 % including outliers). Clustering of structural community profiles within 

sample types by water quality treatment was observed at 91 DAE; however, this was to a lesser 

extent than observed previously (28-70 DAE). Within the rhizosphere community both water 

quality treatment groups exhibited 84.1% similarity, although treatments receiving Doon water 

showed a trend towards higher structural similarity than the West Montrose treated community; 

5 of the 6 Doon treatments were contained within a cluster (89.4% similarity) compared to only 

4 of 6 of the West Montrose treatments (92.2% similarity). Within the rhizoplane community, 

West Montrose water-treated microbial communities exhibited a higher degree of structural 

similarity (74.2% similarity among 5 of 6 treatments) than Doon water-treated microbial 

communities (only 2 replicates exhibited greater than 78% similarity). Interstitial water microbial 

communities exhibited the highest degree of variability and only exhibited limited structural 

similarity among samples from the same water quality treatment. Interestingly, for the first time 
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during the experimental period, the influence of plant species the associated microbial 

community structural profiles became apparent. Evidence for this included one cluster of P. 

arundinacea rhizoplane structural profiles (78.7% structural similarity) and one cluster of V. 

anagallis-aquatica microbial community profiles (67.3% similarity), which included both water 

and rhizoplane microbial communities.  
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Figure 5.9 Hierarchical cluster analysis results of all DGGE profiles obtained from microbial 

DNA extracted at 91 DAE demonstrated graphically as a UPGMA dendrogram. Mesocosms 

receiving high water quality inflow are indicated with a WM (West Montrose) and mesocosms 

marked to be receiving low water quality inflow are indicated with a D (Doon). Mesocosm 

replicates per treatment type are indicated with numbers 1-3. Percent similarity values between 

clusters are indicated by the numbersabove branches.  
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For the majority of the sampling events, within treatment and sample type community 

structural similarity was highest in the rhizosphere and the rhizoplane and lowest in the 

interstitial water microbial communities (Table 5.1).Within the same sample type and treatment, 

structural community similarity seemed to steadily increase within the Doon treated communities 

until sampling at 72 DAE when structural similarity among interstitial water communities began 

to decline. Sampling at 91 DAE exhibited a large decrease in structural similarity within the 

rhizoplane and water-associated microbial communities.   

Table 5.1 Summary of Within Group Percent Similarity for Microbial Community Structural 

Profiles as Determined by PCR-DGGE-Based Hierarchical Cluster Analysis 

*Percent similarity value excludes outliers and the numbers of outliers excluded are indicated in 

the brackets 

** Percent similarity between inflow water communities represents the percent of structural 

similarity between the river water microbial communities collected from West Montrose and 

Doon  

 

 

 

  0 DAE 
14 

DAE 

28 

DAE 
49 DAE 72 DAE 91 DAE 

Rhizoplane 

West 

Montrose 
89.8% N/A N/A 90.7% N/A 74.2%*(1) 

Doon 85.1% N/A N/A 86.6% N/A 26% 

Rhizosphere 

West 

Montrose 
82.7% 82.6% 90.9% 90.2% 88.1% 84.1% 

Doon 88.1% 82.6% 85.3% 88.2% 86% 89.4%*(1) 

Water 

Inflow 

West 

Montrose N/A** 

 

86.3% 91.1% 76.4% 32.6% 69% 

Doon 

Interstitial 

(outflow) 

West 

Montrose 
63.5% 65.4% 81.5% 88%*(1) 74.5% 46.5%*(2) 

Doon 74.1% 65.4% 66.4% 88.9%*(1) 66.9%*(1) 62.6%(1) 
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5.3.2 Functional Carbon Source Utilization Profiles Associated with Microbial 

Communities from Mesocosms Receiving High and Low Water Quality Treatments  

5.3.2.1Principal Component Analysis of Carbon Source Utilization by Rhizoplane, 

Rhizosphere and Water-Associated Microbial Communities from Mesocosms  

Principal component analysis (PCA) was performed on Biolog
TM

 EcoPlate OD590 

readings for all samples after 96 hrs of incubation. PC1 vs. PC2 plots from all mesocosm 

samples at 0 DAE (Fig 5.10 A-C) shows that all three sample types (rhizoplane, rhizosphere, and 

water) exhibited no clear differences by water quality treatment, prior to the addition of the poor 

water quality treatment (Doon). Within the rhizoplane, by 49 DAE (Fig 5.10 D), carbon source 

utilization profiles for both plant species were unique among the high (West Montrose) and poor 

(Doon) water quality treatments. Doon V. anagallis-aquatica and West Montrose V. anagallis-

aquatica treatments were primarily separated along the PC1 axis (28.43% variance), while West 

Montrose P. arundinacea and Doon P. arundinacea functional community profiles were 

separated along the PC2 axis (19.00% variance) (Fig 5.10 D). These differences became more 

exaggerated by 91 DAE (Fig 5.10 G), exhibiting greater differentiation among water quality 

treatments for both plant species. V. anagallis-aquatica treatments continued to be separated 

along the PC1 axis (28.27% variance) while P. arundinacea water quality treatments were 

separated by the PC2 axis (15.56% variance) (Fig 5.10 G). Rhizoplane communities associated 

with P. arundinacea at 49 DAE were differentiated by the usage of carbon sources containing 

nitrogen (amino acids and amines) as well as polymeric compounds (Tween 80) and several 

carboxylic acids (ketobutyric acid) in the poor water quality treatment, while the high water 

quarter treatment was associated primarily with the usage of carbohydrates and carboxylic acids 

(itaconic acid and γ-hydroxybutyric acid). By 91 DAE the water quality treatments were still 



 

179 
 

differentiated by the use of nitrogen containing carbon sources (poor water quality treatment) 

and several carboxylic acids, while the high water quality treatment was discriminated by the use  

Figure 5.10 PC1 vs. PC2 plots of Biolog
TM 

carbon source utilization profiles generated from 

microbial communities in the rhizoplane (A, D, G), rhizosphere (B, E, D) and interstitial/inflow 

water (C, F, I) at 0 (A-C), 49 (D-F) and 91 (G-I) DAE. Mesocosms receiving high water quality 

inflow are indicated with a WM (West Montrose) and mesocosms receiving low water quality 

inflow are indicated with a D (Doon). Values are means of 3 experimental replicates and three 

technical replicates plus standard error for each treatment. Values for in flow water represent the 

average of a single experimental replicate with triplicate technical replicates only.  
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of simple carbohydrates only. Microbial rhizoplane communities from the poor water quality 

treatment associated with V. anagallis-aquatica were discriminated from the high water quality 

treatment primarily through differential usage of several polymers, carbohydrates and carboxylic 

acids at both time points (e.g. cyclodextrine, lactose, glucosaminic acid) while the high water 

quality treatment was differentiated by the use of several polymers, carbohydrates, carboxylic 

acids and amino acids (e.g. Tween 40, 4-hydroxybenzoic acid, arginine, serine, putrescine) 

(Table A8). 

Within the rhizosphere (Fig 5.10 E) no clear differentiation between carbon source 

utilization profiles associated with V. anagallis-aquatica water quality treatments were observed 

by 49 DAE. However, carbon source utilization profiles associated with P. arundinacea 

receiving high and low water quality treatments were distinct and primarily separated along the 

PC2 axis (17.83% variance). By 91 DAE differences among water quality treatments increased 

(Fig 5.10 H). The carbon source utilization profiles associated with V. anagallis-aquatica 

became apparent at this time and were separated along the PC1 axis (57.80% variance). Carbon 

source utilization profiles associated with P. arundinacea rhizosphere communities remained 

distinct between water quality treatments and were separated primarily along the PC2 axis 

(12.68% variance). Differentiation between high and low water quality treatments in the 

rhizosphere of P. arundinacea at 49 DAE was due to differential use of multiple carbon sources. 

The poor water quality treatment was differentiated by usage of a polymer, carbohydrate and 

amine while the high water quality treatment was differentiated by usage of a carbohydrate and 

several carboxylic acids (Table A9). By 91 DAE the compounds resulting in differences between 

water quality treatments changed and the poor water quality treatment was differentiated by 

usage of carbohydrates and carboxylic acids while the high water quality treatment was using 
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differentiated by usage of a polymer and amino acid. In the rhizosphere of V. anagallis-aquatica 

the high and low water quality treatments were differentiated by usage of many different 

compounds from all different carbon source types with no clear patterns emerging.  

Interstitial and inflow water communities were initially somewhat differentiated between 

plant species before treatment began and inflow carbon source utilization profiles were indistinct 

from interstitial communities (Fig 5.10 C). After the start of water quality treatments, by 49 DAE 

(Fig. 4F), V. anagallis-aquatica water quality treatments did not exhibit distinct carbon source 

utilization profiles. P. arundinacea associated communities were distinct primarily along the 

PC2 axis (18.24% variance) (Fig 5.10 F). Differences among treatments increased by 91 DAE, 

however interstitial water communities from V. anagallis-aquatica treatments remained 

undifferentiated. P. arundinacea associated interstitial water communities exhibited further 

differentiation along the PC2 axis (18.04% variance) (Fig 5.10 I).  At 49 DAE the poor water 

quality treatment associated with P. arundinacea was differentiated by the usage of several 

carboxylic acids and the amino acid threonine, while the high water quality treatment was 

differentiated by usage of a polymer, a carbohydrate and several carboxylic and amino acids. The 

differentiating compounds change by 91 DAE, and the poor water quality treatment was 

associated with the usage of several polymers and amino acids as well as the carboxylic acid γ-

hydroxybutyric acid (Table A10). The high water quality treatment was largely differentiated by 

usage of pyruvic acid methyl ester and D-galacturonic acid. 
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5.3.2.2 Percent Utilization of Different Biolog
TM 

Carbon Source Types by Rhizoplane, 

Rhizosphere and Water-Associated Microbial Communities from Mesocosms  

Within the rhizoplane the relative usage of the four different classes of carbon sources 

present in Biolog
TM

 EcoPlates (polymers, carbohydrates, carboxylic and acetic acids and 

nitrogenous compounds) was similar among the four treatment groups (Fig 5.11A). For all 

treatments, relative usage of carbohydrates (10 of 31 carbon sources) was highest having 

between 28 and 31% of total usage, followed by nitrogen containing carbon sources (8 of 31 

carbon sources) at 26-29% of total usage, then carboxylic and acetic acids (9 of 31 carbon 

sources) with between 23 and 25% of total usage, and finally polymers (4 of 31 carbon sources) 

which represented 19-21% of total carbon source utilization. More variability between treatments 

was present within the rhizosphere (Fig 5.11B). Rhizosphere communities associated with high 

water quality treated P. arundinacea mesocosms exhibited more usage of carbohydrate based 

carbon sources, while the poor water quality treatment used a greater percentage of nitrogenous 

carbon sources. The rhizosphere community associated with V. anagallis-aquatica receiving the 

high water quality treatment used a higher percentage of carboxylic/acetic acids and nitrogenous 

carbon sources compared to the poor water quality treatment which exhibited stronger utilization 

of carbohydrates. Both rhizosphere and rhizoplane communities exhibited a relatively high 

preference for polymers (19-21% total usage) considering these carbon sources represented only 

13% of the carbon sources available on the Biolog
TM

 EcoPlate. Interstitial and inflow water 

communities exhibited the greatest amount of variability in relative carbon source usage both 

among treatments and among time periods (Fig 5.11C). P. arundinacea associated communities 

receiving high water quality inflow had a higher relative usage of carboxylic and acetic acids, 

while the poor water quality treatment showed a preference for carbohydrates. Communities 

associated with V. anagallis-aquatica receiving high water quality inflow had the highest usage  
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 Figure 5.11 Percentage of total utilization for different carbon source types by microbial 

communities in the rhizoplane (A), rhizosphere (B) and interstitial/inflow water (C) calculated 

from Biolog
TM

 EcoPlate absorbance readings after 96h of incubation. Communities exposed to 

high water quality are indicated with a WM (West Montrose) and with a D (Doon) for poor 

water quality.  Each bar represents average values for 3 experimental replicates and 3 technical 

replicates, or 1 experimental replicate and 3 technical replicates for inflow communities.  
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of carbohydrates while the poor water quality treatment showed a preference for polymers. 

Compared to P. arundinacea associated communities, V. anagallis-aquatica communities had 

higher usage of carbohydrates and a much lower usage of nitrogenous compounds. Inflow water 

communities had a more balanced distribution of carbon source usage among the groups and the 

primary difference between the two inflow source water communities was higher usage of 

carbohydrates in the poor water quality source and a greater usage of nitrogen containing 

compounds in the high water quality source, especially during the later sampling events.  

5.3.2.3 Metabolic Diversity  

Differences in metabolic diversity or metabolic potential, as measured using the Shannon 

Diversity Index on carbon source utilization readings revealed differences among treatments and 

community types. Within the rhizoplane (Fig 5.12 A) metabolic diversity was consistently higher 

in the P. arundinacea high water quality treatment compared to V. anagallis-aquatica. The 

rhizosphere did not exhibit any consistent differences in metabolic diversity among treatments 

(Fig 5.12 B). Interstitial water communities exhibited reoccurring differences between the poor 

water quality treatments, with P. arundinacea exhibiting greater diversity compared to V. 

anagallis-aquatica (Fig. 5.12C). The poor water quality inflow community tended to have higher 

metabolic diversity compared to the high water quality source at most sampling events. 
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Figure 5.12 Metabolic diversity of microbial communities in mesocosm rhizoplane (A), 

rhizosphere (B) and interstitial/inflow water (C) as determined by Biolog
TM

 EcoPlate carbon 

source usage following 96h of incubation. Communities exposed to high water quality are 

indicated with a WM (West Montrose) and with a D (Doon) for poor water quality.  Values 

represent the average of 3 experimental replicates and 3 technical replicates with the exception of 

inflow samples which represent the average of 3 technical replicates. Error bars represent 

standard error from experimental replicates only.  
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5.3.3 Water Chemistry and Water Quality Variables Associated with Mesocosms Receiving 

either High or Low Water Quality Treatments  

5.3.3.1 Differences in Water Chemistry between West Montrose and Doon Grand River 

Locations 

Average unionized ammonia concentrations differed by almost two-fold between the two 

sites across sampling events (0.13 ± 0.05 mg/L in West Montrose and 0.24 ± 0.04  mg/L in 

Doon, P=0.14, Student’s T-test) and both sites consistently exhibited concentrations of unionized 

ammonia above the recommendations for surface waters provided by the provincial water quality 

objectives (PWQO) (0.0165 mg/L, Loomer and Cooke). Similarly, average nitrite concentrations 

measured in water from the Doon site (0.12 ± 0.03 mg/L)  were greater than double those 

measured from West Montrose water (0.05 ± 0.01 mg/L, P=0.09). Only the Doon site typically 

exhibited nitrite concentrations above PWQO (0.06 mg/L, Loomer and Cooke, 2011). Average 

nitrate concentrations were also higher in Doon water (10.9 ± 0.76 mg/L) compared to West 

Montrose water (7.9 ± 1.5 mg/L, P=0.14), however, the difference between sites was relatively 

small. Nitrate concentrations at both sites were above the target value set by PWQO (2.93 mg/L, 

Loomer and Cooke, 2011) during most sampling events. Sites-specific differences were least 

significant for total reactive phosphorus concentrations. Doon exhibited slightly higher 

concentrations of TRP (0.15 ± 0.04 mg/L) compared to West Montrose (0.1 ± 0.03 mg/L, 

P=0.37), which were both considerably higher than the PWQO (0.03 mg/L, Loomer and Cooke, 

2011). There was significant variability in fecal coliform bacteria recovered from the different 

water quality sites among sampling events, but on average more fecal coliforms were recovered 

from the poor water quality site (Doon)  ( 4 x10
5 

± 3.4 x 10
5
 CFU/mL) than from high water 

quality site (West Montrose) (7 x10
3 

± 5 x 10
3
 CFU/mL) (P=0.24). 
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5.3.3.2 Nitrate 

Quantities of nitrate detected in outflow water showed an increasing trend over the course 

of the experiment for all treatments (Fig 5.13). Additionally, levels of nitrate in outflow water 

were similar between Doon and West Montrose-treated mesocosms, as well as between 

mesocosms planted with P. arundinacea and V. anagallis-aquatica. Both outflow and inflow 

water nitrate concentrations were typically above the provincial water quality objectives for 

nitrate in surface water sources, especially beyond 49 DAE (Loomer and Cooke, 2011). The 

mesocosms removed nitrate from the system during most of the sampling time points, however, 

there was a large degree of variability in the amount of nitrate detected in the outflow as a 

percentage of the inflow concentration (between 17 and 109%). The average removal efficiency 

for nitrate over all sampling events ranged from 65% to 34% (35% and 66% of inflow detected 

in outflow) among treatments. Overall, the V. anagallis-aquatica mesocosms receiving Doon 

water had a higher nitrate removal efficiency than the V. anagallis-aquatica mesocosm receiving 

West Montrose water. Similarly, the P. arundinacea mesocosms receiving Doon water also had 

higher average nitrate removal efficiency than the P. arundinacea mesocosms receiving West 

Montrose water. Nitrate removal efficiencies between plant species treatments within a water 

quality treatment were not different.  
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Figure 5.13 Nitrate quantification (mg/L) in mesocosm outflow water and inflow water (West 

Montrose (WM) and Doon (D)) using HACH
® 

water test kits. The Ontario provincial water 

quality objective (PWQO) for nitrate in surface water sources is indicated in red. Inflow water is 

designated with a dashed line while outflow water is indicated with a solid line. Each data point 

is the average of three experimental replicates for outflow water samples and one experimental 

replicate for inflow samples. Error bars are representative of standard error. 
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5.3.3.3 Nitrite  

Nitrite concentrations showed similar trends to that of nitrate, with inflow water 

concentrations tending to be higher than outflow water concentrations (Fig 5.14). As well, nitrite 

concentrations in Doon water were higher than in West Montrose water across all sampling 

events. Differences in outflow water nitrite concentrations were not observed among treatments 

and outflow values for nitrite were consistently below that of the provincial water quality 

standard for nitrite in surface water sources. The percentage of nitrite detected in the inflow 

water that was measured in the outflow water of mesocosms was not consistent throughout the 

experimental timeline, with between 0 and 97 percent of the nitrite entering the system being 

detected in the collected outflow water. The average amount of nitrite being removed by the 

mesocosms over the course of the experiment was between 64 and 73% (36 and 27% of inflow 

detected in outflow). No significant differences were observed among treatments. 
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Figure 5.14 Nitrite quantification (mg/L) in mesocosm outflow water and inflow water (West 

Montrose (WM) and Doon (D)) using HACH
® 

water test kits. The Ontario provincial water 

quality objective (PWQO) for nitrite in surface water sources is indicated in red. Inflow water is 

designated with a dashed line while outflow water is indicated with a solid line. Each data point 

is the average of three experimental replicates for outflow water samples and one experimental 

replicate for inflow samples. Error bars are representative of standard error. 
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5.3.3.4 Ammonia  

Unionized ammonia concentrations were similar between inflow and out flow water 

samples (Fig 5.15). Doon water tended to contain higher levels of unionized ammonia compared 

to West Montrose water on most sampling events. Differences in outflow water ammonia 

concentrations were not observed between the different treatment types and both inflow and 

outflow ammonia concentrations exceeded the provincial water quality guidelines for unionized 

ammonia in source waters for most sampling time points. The percentage of ammonia in the 

inflow water that was present in the outflow water of mesocosms (removal efficiency) was 

variable across time points and between treatments. The average ammonia removal efficiency 

during the experiment was considerably lower for West Montrose treatments compared to the 

Doon treatments. Mesocosms receiving Doon water removed an average of approximately four 

times more ammonia throughout the course of the experiment than mesocosms being fed with 

West Montrose water. Within water quality treatments, V. anagallis-aquatica and P. 

arundinacea ammonia removal efficiencies were comparable.  
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Figure 5.15 Unionized ammonia quantification (mg/L) in mesocosm outflow water and inflow 

water (West Montrose (WM) and Doon (D)) using HACH
® 

water test kits. The Ontario 

provincial water quality objectives (PWQO) for nitrite in surface water sources is indicated in 

red. Inflow water is designated with a dashed line while outflow water is indicated with a solid 

line. Each data point is the average of three experimental replicates for outflow water samples 

and one experimental replicate for inflow samples. Error bars are representative of standard 

error. 
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5.3.3.5 Total Reactive Phosphorus  

The concentration of total reactive phosphorus in Doon and West Montrose inflow water 

were similar to each other throughout the sampling period and were both either equivalent to or 

less than the concentration of total reactive phosphorus present in outflow water across sampling 

events (Fig 5.16). The concentration of total reactive phosphorus in mesocosm outflow water 

was highly variable across sampling time points. Additionally, there were large fluctuations in 

outflow total reactive phosphorus concentrations between mesocosm treatments at most time 

points, particularly at 14 and72 DAE. These variations coincide with time points when inflow 

concentrations of total reactive phosphorus in the West Montrose and Doon source waters were 

significantly lower than that of what was measured in the outflow water. Total reactive 

phosphorus concentrations measured from P. arundinacea mesocosms treated with Doon water 

showed an increasing trend over the course of the experiment, however, all other treatments did 

not exhibit this trend and fluctuated from one sampling time point to another. By observing the 

concentration of total reactive phosphorus in mesocosm outflow water as a percentage of the 

inflow concentration it is apparent that the amount of reactive phosphorus entering the 

mesocosms was consistently lower than the outflow concentrations for the majority of sampling 

time points. The average amount of reactive phosphorus leaving the system ranged from two to 

four times the concentration of total reactive phosphorus measured in the inflow water. The 

percentage of TRP measured in inflow water, present in mesocosm outflow water was not 

significantly different between treatment types. 
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Figure 5.16 Total reactive phosphorus quantification (mg/L) in mesocosm outflow water and 

inflow water (West Montrose (WM) and Doon (D)) using HACH
® 

water test kits. The Ontario 

provincial water quality objective (PWQO) for total reactive phosphorus in surface water sources 

is indicated in red. Inflow water is designated with a dashed line while outflow water is indicated 

with a solid line. Each data point is the average of three experimental replicates for outflow 

water samples and one experimental replicate for inflow samples. Error bars are representative of 

standard error.  
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5.3.3.6 Fecal Coliforms (Culture-Based) 

Doon inflow water consistently exhibited higher numbers of fecal coliforms than West 

Montrose inflow water as measured by the membrane fecal coliform method (Fig 5.17). 

Mesocosm outflow water from the different treatments did not exhibit significant differences in 

fecal coliform presence over most of the sampling period. However, at 49 DAE outflow water 

from West Montrose-treated P. arundinacea mesocosms contained fewer fecal coliforms than 

outflow water from West Montrose-treated V. anagallis-aquatica mesocosms. Alternatively by 

91 DAE the opposite trend was observed where outflow water from West Montrose treated V. 

anagallis-aquatica contained higher numbers of fecal coliforms than outflow water from West 

Montrose treated P. arundinacea mesocosms. As well, V. anagallis-aquatica mesocosms 

receiving water from Doon had a higher fecal coliform load in outflow water compared to V. 

anagallis-aquatica mesocosms receiving West Montrose inflow water. If we observe mesocosm 

outflow water fecal coliform concentrations in relation to inflow concentration, it is apparent that 

the mesocosms (both V. anagallis-aquatica and P. arundinacea) receiving Doon water removed 

significantly more fecal coliforms than the mesocosms receiving West Montrose water 

throughout the sampling period. There were no differences in removal efficiencies observed 

between plant species treatments within a water quality treatment. Additionally, removal 

efficiencies for fecal coliforms varied greatly among sampling time points and tended to increase 

over time. The amount of fecal coliforms detected in the outflow water of mesocosms ranged 

from below detection limits to several orders of magnitude above concentrations measured from 

the inflow water.  
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Figure 5.17 Fecal coliforms (CFU/100 mL) present in mesocosm outflow water and inflow 

water (West Montrose (WM) and Doon (D)) as determined by the membrane fecal coliform 

method (m-FC). The Canadian recreational water quality guideline for fecal coliforms in surface 

water sources is 200 CFU/100 mL. Inflow water is designated with a dashed line while outflow 

water is indicated with a solid line. Each data point is the average of three experimental 

replicates for outflow water samples and one experimental replicate for inflow samples. Error 

bars are representative of standard error. 
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5.3.4 Molecular Quantification of Bacterial Pathogens in Mesocosm Communities 

The molecular detection of pathogenic microorganisms indicated that there were 

differences among treatments and among community types. Of the three organisms investigated, 

E. coli was consistently the most abundant within the rhizoplane (Fig 5.18 A). Within both the P. 

arundinacea and V. anagallis-aquatica rhizoplane communities, E. coli was more abundant 

within the poor water quality treatments. Enterococcus and Salmonella were present in equal 

quantities among all treatments (Fig 5.18 D and G).  Within the rhizosphere, E. coli showed a 

strong trend in P. arundinacea treatments, with numbers dramatically declining in the poor water 

quality treatment over the course of the experiment and remaining stable in the high water 

quality treatment (Fig 5.18 B). V. anagallis-aquatica retained similar quantities of E. coli within 

the rhizosphere of both water quality treatments. Similar to observations from the rhizoplane, 

numbers of Enterococcus and Salmonella did not differ consistently between the treatments (Fig 

5.18 E and H). The numbers of E. coli within interstitial water communities was greater in the 

high water quality treatments for both plant species despite higher incoming quantities within the 

poor water quality treatment during most time points (Fig 5.18 C). Differences were not detected 

among the treatments for Enterococcus or Salmonella (Fig 5.18 F and I).  
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Figure 5.18 Average abundance of fecal associated pathogenic microorganisms (Eschericia coli 

A-C, Enterococcus D-F and Salmonella G-I) detected in the rhizoplane (A, D, G), rhizosphere 

(B, E, D) and interstitial/in flow water (C, F, I) at 0, 49 and 91 DAE. Mesocosms receiving high 

water quality inflow are indicated with a WM (West Montrose) and mesocosms receiving low 

water quality inflow are indicated with a D (Doon). Values are means of 3 replicate samples plus 

standard error for each treatment. Values for inflow water represent a single sample.  
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5.4 Discussion  

The two hypotheses being tested by this experiment were that 1) constructed wetland 

systems impacted by anthropogenic activities (e.g. receiving poor water quality effluent from 

highly impacted sites) would have a unique microbial community structure and function which 

would be reflected by differences in capacity for remediation and 2) microbial communities 

associated with different plant species would be unique in structure, function and remediation 

capabilities. To test these hypotheses two field sites were chosen with contrasting water qualities 

(West Montrose and Doon) as determined by designations from the Grand River Conservation 

Authority (GRCA) and previous water quality testing done in the field. These contrasting water 

quality sources were exposed to mesocosms planted with either P. arundinacea or V. anagallis-

aquatica for 13 weeks in order to determine whether contrasting water quality exposures resulted 

in changes to microbial community structures, functional community profiles, inorganic nutrient 

removal capacities or microbial pathogen removal efficiency.  

 In order to answer the question if water quality affected the structure of wetland plant 

associated microbial communities, structural profiles were examined for rhizosphere, rhizoplane, 

outflow water and inflow water microbial communities using DGGE and cluster analysis (Fig 

5.4 to 5.9). Structural community profiles consistently clustered based on community type during 

all time points, indicating that the greatest indicator of microbial community structural similarity 

is where the community was taken from in relation to the wetland. It is difficult to place this 

finding in the context of the literature surrounding wetland microbial communities as the 

majority of published studies focus on a single community type within the wetland and do not 

compare community structures among different plant species for multiple community types. 

Smalla et al., (2001) is one of the few studies to address this topic, by examining microbial 
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community structural similarity between bulk soil and rhizosphere soil associated with three 

different plant species. It is worthy of note that this study used both soil adhering to roots and 

root material itself to define the rhizosphere microbial community, which we would have defined 

in this study as three distinct communities: rhizosphere (adhering soil), rhizoplane (root attached 

biofilm) and endosphere (microbial community housed within the root epidermis).Despite this 

difference in experimental design, Smalla et al. (2001) found that regardless of which plant 

species the rhizosphere community was associated with, microbial community structure was 

more similar among rhizosphere communities than between rhizosphere samples and bulk soil 

within a treatment. Similarly, Edwards et al. (2015) examined the structure of microbial 

communities associated with the bulk soil, rhizosphere, rhizoplane and endosphere of six 

cultivated rice varieties (Oryza spp.). They found that community structures were separable by 

rhizo-compartment, despite genotypic differences in rice varieties and differences in soil type 

across three different rice fields. Structural differences by community type included variations in 

the abundance of different phyla, species diversity and richness. These findings reflect the trends 

observed, with rhizo-compartment being the greatest factor influencing community structure, and 

differences in water quality treatment and plant species being secondary or tertiary factors 

influencing structural similarity. This indicates that the spatial relationship to plant roots changes 

microbial communities from their non-plant impacted initial state (bulk soil) in similar ways 

regardless of plant species in these instances. This is interesting to note, as there can be large 

differences among plant species in terms of root exudation profiles, root structure, mycorrhizal 

status etc. However, it appears that the overall association with plant roots has a greater degree of 

similar environmental pressures (despite plant species specific physiological differences) driving 

changes in bulk soil community structure during plant root development. If the differences 
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among plant species were more significant than their similarities, microbial community 

structures should resemble more closely that of the parent bulk soil microbial community 

structure than the rhizosphere community structure of a different species of plant.  

 Within a microbial community type, we observed a clear effect of water quality treatment 

for both P. arundinacea and V. anagallis-aquatica as early as 28 DAE to the different water 

quality types (Fig 5.6). Originally, the similarity among plant associated communities receiving 

West Montrose water was greater than among those communities receiving Doon water, which 

can be explained by the fact that all mesocosms had been receiving West Montrose water for 8 

months prior to the start of the experiment (Table 5.1). As well, by 91 DAE the similarity among 

Doon treated communities had become more similar than those of West Montrose treated 

communities, indicating that the influence of the water quality treatment likely increased with the 

duration of exposure (Fig 5.9). As the water quality treatments used for each mesocosm exposure 

were routinely collected from the source and not sterilized prior to treatment, the simplest 

explanation for the differences observed between West Montrose and Doon treated mesocosm 

community structures is that each mesocosm was continuously being re-colonized by the bacteria 

present in the incoming source water, so obviously if the incoming communities were different, 

this would lead to differences in the wetland communities of each treatment. However, we found 

that at almost every sampling time point, the highest degree of similarity within a microbial 

community type occurred between the incoming water communities from West Montrose and 

Doon which clustered together at 60% of the sampling events exhibiting 62-91% similarity in 

community structure (Table 5.1). This is not completely surprising as both treatments are part of 

the Grand River and share a common upstream source. Thus, the most likely explanation is that 

differences in microbial community structure by water quality treatment are more so a result of 
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differences in the physicochemical characteristics of the different water quality types interacting 

with the conditions in each mesocosm, rather than a difference in introduced inoculums. In a 

study by Kirchman et al. (2004) where bacterial activity and community structure were 

compared for six sites within the Hudson River system in New York, significant differences 

were observed in structure and function of microbial communities from different sites with 

unique chemical compositions, particularly in terms of measurements of dissolved organic 

matter. In order to determine the cause of these differences, sterile water from different sites was 

inoculated with the microbial communities of another site. They found that water source was 

more important than bacterial inoculum characteristics in determining microbial community 

structure and ectoenzyme activity. Similarly, Van der Gucht et al. (2007) examined the structure 

of microbial communities across several water systems including lakes and interconnected ponds 

and they found that local environmental factors including water depth, pH, nitrogen 

concentration, bacterial density, vegetation presence and the densities or biomass of Bosmina 

(water fleas), heterotrophic nanoflagellates and ciliates were more important in determining 

community structure than spatial factors (e.g. sharing an inoculum source due to being very close 

together in interconnected bodies of water).  

 The effect of plant species on microbial community structure was not clearly 

demonstrated in our experiment. The literature has many examples of plant species dependent 

effects on the structure of rhizosphere and rhizoplane microbial communities (e.g.  Marschner 

2001; Smalla et al., 2001; Wieland et al., 2001; Costa et al., 2006; Berg and Smalla, 2009). Our 

study did not identify a clear consistent distinction among community structural profiles 

associated with each plant species, within root-associated microbial communities. However, by 

91 DAE some clustering between microbial community structural profiles of the same plant 
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species was observed, although this was restricted to the rhizoplane (Fig 5.9).   One possible 

explanation for the lack of a clear plant species specific effect on microbial community structure 

is the length of the study. Plants in this study were grown from seeds and developed within the 

mesocosms over an 11 month period with the experimental period occurring from month 9-11. 

Smalla et al., (2001) found that the effect of plant species on rhizosphere community 

differentiation from bulk soil was only minimal at the one year sampling point, while species 

specific differences were much more significant after two years of plant growth and microbial 

community development. Alternatively, Wieland et al. (2001) found that plant development 

(age) was a significant factor in determining microbial community structure between 2 and 6 

weeks in clover, bean and alfalfa, after which soil type and plant species became more 

significant in determining microbial community structure in the rhizosphere and rhizoplane. 

Plant species was more important than soil type in determining community structure for the 

rhizoplane, while in the rhizosphere soil type was more important than plant species in 

determining community composition. We can infer that due to the rhizoplane being directly 

attached to the plant root, it would experience the greatest degree of plant influence, which 

explains why our findings and the findings of Wieland et al. (2001) found a greater influence of 

plant species on microbial community structure in the rhizoplane. Additionally, the lack of a 

plant species effect observed for the other microbial community types could be explained by the 

fact that water treatment was a more significant driver of community structure than plant species 

in rhizosphere and outflow water communities, just as Wieland et al. (2001) found that soil type 

was the most prominent driver of community structure in the rhizosphere and bulk soil (our 

experimental design controlled for soil type). Thus the influence of the plant species on these 

community structures was overridden by the impacts of water composition in these cases.  
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To determine if water quality affected the function of wetland plant associated microbial 

communities, community level physiological profiles were examined for rhizoplane, rhizosphere, 

outflow water and inflow water microbial communities using Biolog
TM

 EcoPlates to examine the 

use of various carbon sources over the experiment by each community type (Fig 5.10). Early 

analyses of the data (data not shown) lead us to assess each community type separately to better 

observe treatment specific patterns in carbon utilization profiles, as analysis of all samples 

together yielded community type specific clustering (as observed in the structural community 

profiles) making more in depth analysis of treatment specific trends difficult to decipher. Within 

the water communities, treatment specific differences in carbon source utilization profiles 

appeard by sampling at 49 DAE in P. arundinacea but did not appear at all for the V. anagallis-

aquatica associated communities. A plant species effect in carbon source utilization profiles 

between the two species is discernible by 91 DAE in water-associated microbial communities. 

The rhizoplane exhibited the most distinct carbon source utilization profiles associated with the 

different water quality treatments, which were established in both plant species associated 

communities by 49 DAE. Interestingly, there is no clear trend observed by plant species at any 

time point within the CLPP data. Finally, rhizosphere microbial communities associated with P. 

arundinacea were distinct between high and low water quality treatments by 49 DAE, however 

those associated with V. anagallis-aquatica were not different by this time (Fig 5.10). By 91 

DAE the rhizosphere communities associated with V. anagallis-aquatica only started to show 

some differentiation by water quality treatment. Carbon source utilization profiles associated 

with rhizosphere microbial communities did not cluster by plant species at any time point. 

Using carbon source utilization profiles from Biolog
TM

 EcoPlate absorbance 

measurements, we determined the metabolic diversity of each microbial community by treatment 
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(Fig 5.12). These measurements helped to explain some of the differences in CLPP trends 

observed by principal component analysis. Outflow water microbial communities showed 

differences in metabolic diversity among the different plant species and water quality treatments. 

While diversity measurements remained similar for V. anagallis-aquatica-associated 

communities between water quality treatments, metabolic diversity measurements were higher in 

P. arundinacea communities receiving Doon water compared to those receiving West Montrose 

water. Rhizoplane communities also showed a water quality dependent effect, with Doon treated 

V. anagallis-aquatica communities having higher values for metabolic diversity compared to 

those receiving West Montrose water. As we also observed in the PCA of Biolog
TM 

Ecoplate 

carbon source utilization for this plant species, rhizosphere communities did not exhibit 

differences in metabolic diversity by water quality or plant species treatment. These results 

indicate that the effect of water quality and plant species on microbial community function 

measured by CLPP are different depending on the microbial community type and also depending 

on plant species the community is associated with. The rhizosphere was less affected by water 

quality treatment compared with rhizoplane or outflow water microbial communities. 

Theoretically, proximity to the plant roots should increase plant species related effects of carbon 

usage on microbial community function (possibly subsequently decreasing any water quality 

effects), but the rhizoplane community exhibited a water quality effect while the rhizosphere did 

not. As such, there must be an additional factor influencing carbon source utilization patterns for 

microbial communities in the rhizosphere beyond that of water treatment and plant species. 

Unsurprisingly, there is significant evidence from the literature to suggest that the microbial 

functional profile of a rhizosphere or rhizoplane community is affected by the plant species it is 

associated with (e.g. Stephan et al., 2000, Lupwayi et al., 2004, Li et al., 2011). Compared to the 
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rhizosphere, rhizoplane communities of both P. arundinacea and V. anagallis-aquatica exhibited 

greater overall carbon metabolism measurements (AWCD) (data not shown) and higher 

metabolic diversity, a trend which was also reported for microbial rhizoplane communities 

associated with barley (Hordeum vulgare), wheat (Triticum aestivum) and canola (Brassica 

rapa) (Lupwayi et al., 2004). It is possible that greater proximity to plant roots, or some other 

factor associated to microbial lifestyle changes associated with rhizoplane attachment causes 

increased metabolic diversity and total carbon metabolism, resulting in the community 

experiencing greater functional changes in response to altered abiotic conditions associated with 

different water quality treatments. Additionally, the differences in how these communities 

respond metabolically to changes in water quality may also be related to where the community is 

obtaining the majority of its carbon. The composition and concentration of dissolved organic 

matter can vary greatly among aquatic systems (Cotner et al. 1997, Mulholland et al. 2001, Cole 

et al. 2002) and these differences have been shown to influence microbial enzyme activities at 

the community level (Kirchman et al., 2004). It follows that outflow water microbial 

communities should experience changes in functional diversity related to different water quality 

exposures. Soil organic carbon quantity and quality have been shown to affect microbial 

metabolism and carbon source utilization patterns (Bossio and Scow, 1995, Wang et al., 2003, 

Grayston et al., 2001). As such, it is possible that rhizosphere microbial communities are 

obtaining carbon primarily from the soil as well as from the plant which is why we see limited 

effects from changes in water quality on community metabolic characteristics.  

Differences in functional community changes occurring in response to the different water 

quality treatments were observed between the microbial communities associated different plant 

species (P. arundinacea and V. anagallis-aquatica). Carbon source utilization profiles 
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established by microbial communities associated with P. arundinacea were affected to a much 

greater extent by changes in water quality than V. anagallis-aquatica associated communities 

(specifically in rhizosphere and outflow water communities) (Fig 5.10). Previous studies have 

found that plant species can differ in the amount and types of carbon that they allocate to 

microbial biomass (Grayston et al. 1998; Bardgett et al., 1999; Berg and Smalla, 2009, Ladygina 

and Hedlund, 2010) and differ in how changes in environmental factors may influence carbon 

allocation characteristics (Grayston et al., 1996). These differences in plant species specific 

carbon allocation patterns have been hypothesized to influence microbial community functional 

characteristics (Grayston et al., 1996). One possibility is that P. arundinacea is more 

physiologically affected by the water quality treatments than V. anagallis-aquatica, resulting in 

the changes observed in root-associated microbial communities. Differences among plant species 

in associated microbial community responses to water quality may have implications for 

constructed wetland design if these functional community shifts also affect microbial community 

metabolic capabilities related to constructed wetland remediation potential.  

 

 Metabolic characteristics of a microbial community will be influenced by the structure of 

that community, as not all microorganisms possess the same metabolic capabilities, thus 

community composition will influence metabolic potential. Several studies have found that 

changes in microbial community structure are also mirrored by changes in microbial community 

function, as measured by carbon source utilization profiles using Biolog
TM 

plates or by changes 

in activity levels for certain microbial enzymes or processes (e.g. Ravit et al., 2003, Mentzer et 

al., 2006, Ahn et al., 2007) however this trend is not absolute (e.g. Hadwin et al., 2006). In both 

the structural and functional microbial community profiles, community changes associated with 
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the different water quality treatments emerged between 14 and 28 DAE (Fig 5.5, 5.6 and 5.10). 

Carbon utilization profiles also exhibited trends related to association with different plant species 

beginning around the same time point. Plant species specific effects on microbial community 

structure did not appear until 91 DAE, at which time the association was still much weaker than 

what was observed in the functional profiles.  This discrepancy may be attributed to the 

methodology used to capture the structural and functional microbial community profiles. 

Structural differences in microbial communities were assessed using microbial DNA, which is 

not necessarily associated with living, metabolically active microorganisms. DNA can remain in 

the environment after cell death for a considerable amount of time (several days to 3 weeks) 

(Josephson et al., 1993, Masters et al., 1994, Griffiths et al., 2000). Additionally, the Biolog
TM 

method requires metabolically active organisms in the plate inoculum under incubation 

conditions, which are appreciably different from the environment they were obtained from. As 

such, the metabolic capabilities measured under these conditions will ultimately not completely 

reflect the community’s capabilities in its original environment. Changes in microbial 

metabolism may also occur without structural community changes as has been noted previously 

in the literature (e.g. Truu et al., 2009). Consequentially, capturing community characteristics 

from both a structural and functional perspective is important in obtaining a complete and 

detailed picture of how microbial communities respond to changes in environmental conditions.  

 The poor water quality treatment from Doon exhibited higher average levels of all 

inorganic nutrients measured (nitrate, nitrite, ammonia and total reactive phosphorus) compared 

to West Montrose water over the six sampling events (Fig 5.13-5.16). However, each site 

demonstrated considerable temporal variability in inorganic nutrient concentrations, leading to 

large fluctuations in measurements from one sampling event to the next. Overall, the differences 
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between the sites were not statistically significant, likely due to the high level of variability and 

small sample size. Statistically significant differences between water quality parameters at these 

sites have been reported previously by the Grand River Conservation Authority (Loomer and 

Cooke, 2011). In the report released by the GRCA in 2011 (Loomer and Cooke) analyzing water 

quality parameters in the Grand River from 2003 to 2008, the Doon site exhibited significantly 

higher levels of all water quality parameters in relation to the West Montrose site. This lends 

credence to the notion that the differences between sites may have been statistically significant 

with a greater number of samples. However, while the relationship between the sites were similar 

to what was previously reported by Loomer and Cooke (2011), our actual measurements of 

inorganic nutrient concentrations were considerably higher than those reported by the GRCA 

from 2003 to 2008. Our measurements for unionized ammonia, total nitrates (nitrate and nitrite) 

and total reactive phosphorus were on average three times higher than the median values 

reported by Loomer and Cooke (2011) for the West Montrose site. For the Doon site, there was 

more variation in how much each water quality parameter changed between studies, but the 

increase in levels of inorganic nitrogen was much higher than the increase for phosphorus. Some 

of the differences between reported values could be due to differences in methodology, however, 

most of our measurements were taken during the spring and summer months which are also 

correlated with higher inorganic nutrient concentrations due to nonpoint source impacts 

associated with rain events (Carpenter et al., 1998). Rapid urbanization and rising populations 

have most likely resulted in increased inorganic nutrient loads entering the Grand River 

Watershed leading to the higher recorded values for water quality indicators reported in this 

study (Sato et al., 2013, Morris 2015). West Montrose may be experiencing this change to a 

greater extent due to urban expansion and population growth, which is occurring in this once 
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sparsely populated area, to a greater extent than in the already highly developed city center 

where our Doon site is located (Morris 2015). Thus, the difference between these two sites in 

terms of water quality is likely diminished now from what was observed historically.   

Outflow values of the inorganic nutrients measured in this study did not differ 

significantly among the treatment types at any time point and also showed a large amount of 

variability from one sampling event to the next (Fig 5.13-5.16). The only treatment specific 

differences noted were observed in the removal efficiency of unionized ammonia between the 

West Montrose and Doon treatments (Fig 5.15). The percentage of ammonia from the inflow 

water detected in the outflow water was lower on average in P. arundinacea and V. anagallis-

aquatica containing mesocosms receiving Doon influent than in mesocosms receiving West 

Montrose water. This is indicative that despite differences in incoming nutrient loads between 

water quality treatments, the mesocosm systems were able to moderate the amount of nutrients 

leaving the system. In some cases this resulted in an increase in the amount of inorganic nutrients 

present in the outflow compared to the inflow water, typically when inflow concentrations 

dropped. While under conditions of increased nutrient loading we tended to observe lower 

outflow concentrations compared to the inflow. While inorganic nitrogen levels were normally 

reduced from inflow to outflow water, phosphorus levels showed a trend towards higher outflow 

levels compared to inflow levels (Fig 5.16). This is possibly due to the fact that the amount of 

total reactive phosphorus entering the system was not sufficient to meet the needs of the plant 

and microbial community in the mesocosm resulting in an increase in microbial, fungal and plant 

mediated processes to generate higher levels of phosphorus available to meet metabolic needs. 

Although total reactive phosphorus concentrations from mesocosm influents were high compared 

to the PWQO, other studies have shown that these concentrations are actually about one order of 
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magnitude lower than what is typical for constructed wetland influents (Ahn and Mitsch, 2002). 

Ahn et al. (2007) found that when microcosms were exposed to effluents with either 0.5 mg/L 

(low P) or 2.4 mg/L (high P), the low phosphorus treatment actually resulted in a release of 

phosphorus from the system for microcosms containing Schoenoplectus tabernaemontai. 

Outflow concentrations of phosphorus were not significantly different between the high and low 

P treatments and despite a 5-fold increase in incoming phosphorus, phosphorus bound to 

microcosm soil only increase by 2-fold between treatments, indicating that the biotic community 

was responsible for the majority of phosphorus removal. Under conditions of limiting 

phosphorus availability some bacteria are known to produce extracellular phosphatases and other 

exoenzymes used to degrade phosphorus containing compounds (Harder and Dijkhuizen 1983). 

Similarly, mycorrhizal fungi are well known for their ability to mobilize phosphorus under 

conditions of low availability with exoenzyme production (Read and Perez-Moreno 2003). 

Similar findings have been reported for conditions of limiting inorganic nitrogen (Harder and 

Dijkhuizen 1983, Read and Perez-Moreno 2003). 

Despite evidence of unique microbial community structures and metabolic functions 

associated with the different water quality treatments, we failed to observe significant differences 

between the communities in terms of their ability to ameliorate inorganic nutrient loads. This 

could be due to the fact that the inorganic nutrient loads present in the water quality treatments 

were not sufficiently different to stimulate these types of physiological changes in the associated 

microbial communities. Alternatively, differences in remediation capabilities among treatments 

may be absent due to the types of water quality indicators being monitored. While inorganic 

forms of phosphorus and nitrogen can be extremely damaging to aquatic ecosystems when 

present in excess, these compounds can be limiting nutrients in microbial communities and are 
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required by all microorganisms for survival (Harder and Dijkhuizen, 1983; Schimel and 

Weintraub 2003. In other related studies that found changes in the remediation ability of 

microbial communities exposed to different effluent levels, the remediation ability of the 

community was being monitored with respect to a compound that was not widely used or 

degraded by the general population and/or was selectively toxic to a significant portion of the 

resident microorganisms (Atlas and Bartha, 1992; MacNaughton et al., 1999; Nyman, 1999; 

Bachoon et al., 2001; Logan et al. 2005; Yergeau et al., 2012; Bartlett 2016). Thus, these 

exposure treatments placed a stronger selective pressure on the community to be able to handle 

the contaminant load, compared to the pressures associated with our study.     

  Similar to the observed trends with inorganic nutrient loads, Doon site water consistently 

exhibited higher numbers of culturable fecal coliforms compared to the West Montrose site, by 

approximately two orders of magnitude (Fig 5.17). Molecular detection of E. coli and 

Enterococcus did not differ between sites; however, detection of Salmonella spp. was also 

consistently higher at Doon (Fig 5.18). With all treatment types, culturable levels of fecal 

coliforms were greater in outflow water compared to inflow water during the majority of 

sampling events and this occurred to a greater extent in the West Montrose site (high water 

quality). Thus, it appears that these organisms were being retained within the mesocosms and 

increasing in numbers which were then being shed through the mesocosm effluent over time. 

Our molecular data supports this, as we observed a substantial increase in the quantity of genetic 

material detected from Salmonella spp. (rhizoplane and rhizosphere) and E. coli (rhizoplane 

only) of P. arundinacea and V anagallis-aquatica over the course of the experiment. The 

traditional view of these organisms is that they are unable to proliferate under non-host 

environmental conditions and are thus reliable indicators of fecal contamination and public 
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health risk (U.S. Environmental Protection Agency 2000). However, it is becoming increasingly 

apparent that many of these organisms are capable of not only persisting under non-host 

conditions, but of actively replicating  as well which has been referred to as “naturalization” (e.g. 

Winfield and Groisman, 2003; Anderson et al., 2005; Ishii and Sadowsky, 2008). The 

rhizosphere specifically has been identified as a potential reservoir for opportunistic human 

pathogens (Berg et al., 2005). Salmonella and E. coli specifically have been found to persist in 

association with plants under various environmental conditions (Warriner and Namvar, 2010). 

Ibekwe et al., (2004) found that the presence of rye and alfalfa roots in soil allowed E. coli 

0157:H7 to persist for longer periods of time and reach higher densities than in unplanted plots. 

Similarly, in a study by Ongeng et al. (2011), persistence of E. coli O157:H7 and Salmonella 

enterica was enhanced within the rhizosphere of cabbage plants (Brassica oleracea) compared to 

the bulk soil. Klerks et al. (2007) found that known virulence genes were up regulated in S. 

enterica exposed to root exudates from lettuce cultivars which were associated with host cell 

attachment and colonization. As such, Holden et al., (2009) postulated that many of the same 

physiological traits that allow these organisms to colonize the gastro-intestinal tract of host 

organisms are also involved in making them successful colonizers of the rhizosphere.   

The detection of fecal coliforms and bacterial pathogens in wetland associated bacterial 

communities exhibited the greatest distinction between mesocosm treatments compared to other 

methods of examining community remediation ability (Fig 5.17 and 5.18). In particular, V. 

anagallis-aquatica was observed to harbor different loads of E. coli within the outflow water 

community treated with West Montrose water. Similarly, E. coli and Enterococcus spp. were 

completely absent from the rhizosphere of V. anagallis-aquatica plants receiving Doon effluent, 

while both were still detectable within the West Montrose treatments. Treatment specific 
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differences associated with P. arundinacea were limited to the detection of Enterococcus spp., 

which were more prevalent in the rhizosphere of the West Montrose treatment compared to the 

Doon treatment. However, this trend was reversed in the rhizoplane, where higher quantities of 

genetic material were detected in the Doon treatment compared to the West Montrose treatment. 

The general trend seems to be that these organisms are better able to survive in the West 

Montrose treatment, despite similar or higher incoming inocula from the Doon treatment inflow 

water and that this trend is observed to a greater extent in communities associated with V. 

anagallis-aquatica.  V. anagallis-aquatica also exhibited a more profound change in functional 

community measurements in response to altered water quality, which may indicate that this plant 

species is more sensitive to changes in environmental conditions, leading to altered microbial 

community-associated characteristics. The literature has established that the plant microbiome 

can change in response to abiotic stressors such as salinity, temperature, pH and toxicity 

(Mendes et al., 2013). This is likely the result of a combination of factors, such as physiological 

changes occurring in the plant in response to environmental circumstances (e.g. changes in root 

exudation profiles and carbon allocation) and adaptation to ambient environmental conditions 

(e.g. Badri and Vivanco, 2009). How a plant responds to environmental stress will differ among 

individual plant species and cultivars (e.g. Chapin III et al.,1993). As to why these organisms 

tended to do better when exposed to high water quality effluent under these circumstances, it is 

possible that they are better competitors under conditions of more limiting nutrient availability. 

All the mesocosms were originally being exposed to West Montrose water and were seeded with 

soil from West Montrose. Thus, the communities were adapted to these conditions before being 

exposed to the Doon water so the change of water treatment may have acted as a stressor and 

altered microbial community dynamics making these organisms poor competitors under the 
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altered water quality conditions in conjunction with the V. anagallis-aquatica root environment.   

Furthermore, while we observed the complete elimination of E. coli and Enterococcus spp. from 

the rhizosphere of some V. anagallis-aquatica mesocosms by 91 DAE, they were still detectable 

within the rhizoplane community. Proximity to the root or attachment to root surfaces (instead of 

soil surfaces) may be an important factor in the survival and proliferation of these organisms 

within plant root-associated wetland environments.  

5.5 Conclusions  

Water quality treatments were shown to affect the structure and function of microbial 

communities associated with P. arundinacea and V. anagallis-aquatica. However, P. 

arundinacea associated communities were affected to a greater extent. Different community 

types varied in how they responded to changes in water quality. For example, community level 

changes were detected to a greater extent within the rhizoplane than in the rhizosphere. All three 

types of microbial pathogens were detected in all community types however, only Salmonella 

and E. coli exhibited signs of naturalization within the wetland plant-associated microbial 

communities. E. coli quantities in rhizoplane, rhizosphere and mesocosm outflow water were 

influenced by the different water quality treatments. These findings indicate that wetland-

associated microbial communities will differ in their response to changes in environmental 

conditions depending on the community type and the associated plant species. As such, we 

cannot assume that changes, or lack thereof, occurring in one microbial community type will be 

reflective of the microbial communities within the wetland, as a whole. In order to determine 

potential impacts of environmental factors on wetland-associated microbial communities, as 

many community types, associated with a variety of different plant species, should be studied. 
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Chapter 6 

Microbial Community Changes Associated with Short Term Phosphorus 

Loading in Lab-Scale Wetland Mesocosms  

6.1 Introduction 

 The health of aquatic ecosystems can be severely compromised by the presence of excess 

phosphorus. Available inorganic phosphorus concentrations as low as 5 µg/L have been 

associated with cyanobacterial algae blooms and eutrophication in some aquatic ecosystems. 

However, eutrophication is typically associated with levels of inorganic phosphorus between 

0.05 and 0.1 mg/L (Smith, 2003; Shaw et al., 2009). Wetlands (natural, restored or constructed) 

can provide a means of natural protection for downstream aquatic systems from nutrient 

pollution, including elevated phosphorus concentrations. Sources of phosphorus entering natural 

environments can be described as either point source, mostly encompassing waste water 

treatment plant (WWTP) effluents, and non-point source, which is dominated by surface 

agricultural runoff. Point source pollution from WWTP effluent may contribute on average 50% 

of the total phosphorus entering aquatic ecosystems, while agricultural sources can account for 

approximately 40%, depending on the aquatic system (Mainstone and Parr, 2002).  

 The primary mechanisms by which wetlands can remediate source waters contaminated 

with high levels of inorganic phosphorus involves physical, chemical and biological processes. 

Microorganisms are typically responsible for removing between 60 and 91% of total phosphorus 

from aquatic ecosystems, including streams and wetlands (Elwood et al., 1981; Newbold et al., 

1983; Lee et al., 1975; Sloey et al., 1978).  Microbially-mediated phosphorus retention occurs 

through assimilation. Microorganisms require only minimal amounts of phosphorus for survival 
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but can store phosphorus extensively under conditions of surplus environmental phosphorus 

(Gächter and Meyer, 1993; Kulaev et al., 2005). Although this mechanism of phosphorus 

removal may seem transitory, as the phosphorus will be released back into the environment when 

the microorganisms die and decompose, most of what is released back into the environment is 

refractory organic compounds biologically unavailable for processes involved in eutrophication 

(Gächter and Mares, 1985; Gächter et al., 1988). Plants can also assimilate phosphorus, which is 

converted into plant biomass, although there is an upper limit to the amount of phosphorus that 

can be stored by specific plants (Stottmeister et al., 2003; Vymazal, 2007). The average amount 

of phosphorus contained within the biomass of a large number of different plant species was 

calculated to be about 0.15 to 1.05% of the total plant mass, which only equates to approximately 

5% of the average phosphorus load in WWTP effluent (McJannet et al., 1995).  However, plants 

have another important role which involves their ability to support and foster the growth of 

microbial communities in association with their root systems. Plant roots create important niche 

environments that cultivate unique microbial communities. This facilitates several bacterial 

processes, including the rapid cycling of nutrients, which increases the effectiveness of water 

remediation processes (Stottmeister et al., 2003; Vymazal, 2007). The area of soil influenced by 

plant roots can be sub-divided into two unique microbial communities: the rhizosphere and the 

rhizoplane. The rhizosphere is the area of soil surrounding plant roots that is actively influenced 

by plant growth, respiration and secretions, while the rhizoplane is the microbial biofilm attached 

directly to plant roots (Berendsen et al., 2012).  

 There is little information presently available in the literature with regards to how 

phosphorus loading affects the structure and function of the microbial communities present in 

wetlands. We wanted to address this question and investigate how previous microbial 
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community adaptation to varying water qualities (and degrees of anthropogenic impact) affected 

the response of microbial communities to phosphorus loading. Some other studies in the 

literature have found that previous exposure to different types of effluent may enhance the 

remediation capabilities of certain types of microbial wetland-associated communities (e.g. 

Hallberg and Johnson, 2005; Logan et al. 2005; Huijie et al., 2011).Water quality can be defined 

by a diverse list of characteristics including inorganic nutrient concentrations, microbial 

pathogen presence, heavy metal contamination and micropollutant contamination (e.g. 

pesticides, petroleum hydrocarbons etc.) (Meybeck et al., 1989). We chose to focus our water 

quality definitions on nutrient pollution (inorganic nitrogen and phosphorus) and the presence of 

pathogenic microorganisms associated with fecal contamination, which are the two biggest water 

quality concerns in the Grand River (ON, Canada). Our research question was addressed using 

lab-scale wetland mesocosms which had been exposed previously to water from either a high 

water quality site (West Montrose, ON N0B 2S0 43.588219, -80.470979) or a poor water quality 

site (Doon, Kitchener, ON 43.386376, -80.387547) for 13 weeks prior to the start of the 

experiment, which were planted with either Phalaris arundinacea or Veronica anagallis-

aquatica, two species of wetland plants abundant in the Grand River Watershed. Phosphorus 

loading was simulated by adding 5 mg/L of inorganic phosphorus as P2O5, the form of inorganic 

phosphorus most commonly found in fertilizers. We hypothesized that the poor water quality-

adapted mesocosms would be more resistant to perturbations, related to structural and functional 

community changes, caused by the phosphorus loading and perform better at removing inorganic 

phosphorus from the incoming water. 
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6.2 Materials and Methods  

6.2.1 Phosphorus Exposure and Sample Collection 

Mesocosm construction, design and operating conditions were carried out as described in 

section 5.2. Mesocosms were held under conditions described in the previous section for 91 days 

before being exposed to the phosphorus loading phase, which consisted of 5 mg/L of P2O5 

(Sigma Aldrich, Oakville, ON, CA). The phosphorus was added to the buckets of either West 

Montrose or Doon water (depending on which water quality treatment was being used) and 

mixed by stirring continuously. The water was then added to each mesocosm over a 2 h period at 

a volume of 8.5 L per mesocosm (average approximate mesocosm capacity, mesocosm retention 

time is approximately 6 days as stated in section 5.2). Once the phosphorus exposure was 

completed, previous operating conditions described earlier were resumed. Mesocosm 

rhizosphere material was sampled at 0, 7, 21, 35 and 49 days after exposure (DAE). Rhizoplane 

material was sampled less frequently on 0, 21 and 49 DAE due to the invasive nature of 

removing portions of the plant root system which potentially impacts hydrologic flow regimes 

and disrupts the establishment of microbial communities within the mesocosm. Outflow 

(interstitial) and Inflow water was sampled on 0, 3, 7, 21, 35 and 49 DAE. Microbial community 

structural analysis was performed using methods described previously for denaturing gel 

gradient electrophoresis of extracted microbial community DNA subjected to PCR using primers 

to target the V3 region of the 16S ribosomal DNA in Bacteria. Functional community profiles of 

microbial communities were established using the Biolog
TM

 EcoPlate protocol for analysing 

carbon substrate utilization as previously described. Water quality of source water and 

mesocosm outflow water was determined using HACH® reagents to determine water 

concentrations of inorganic nitrogen (nitrate, nitrite and ammonia) and phosphorus and the 
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membrane fecal coliform method to estimate fecal contamination and potential human pathogen 

presence as previously described (Chapter 2). 

6.3 Results   

6.3.1 Structural Profiles of Rhizoplane, Rhizosphere and Water-Associated Microbial 

Communities Before and After Short-Term Phosphorus Loading 

6.3.1.1 Cluster Analysis of Microbial Community Structural Profiles  

Pre-treatment (0 DAE) the structural community profiles of water, rhizosphere and 

rhizoplane microbial communities showed some variability by sample type, but with most 

structural profiles of the same sample type clustering together (Fig 6.1). Several outliers were 

present in both the rhizoplane and interstitial (outflow) water microbial community structural 

profile groupings (3 each). Microbial community structures of inflow water communities 

associated with West Montrose and Doon water exhibited strong similarity to each other, 

compared to other sample types (69% similarity). As well, inflow water microbial communities 

were more structurally similar to rhizoplane communities compared to other community types 

(47% structural similarity, excluding outliers). Inflow water community structural profiles were 

more distantly related to the community structure of rhizosphere-associated microbial 

communities (26% similarity). Rhizosphere community profiles exhibited the highest degree of 

similarity among replicates (84.1%), followed by the rhizoplane community (74.2% similarity 

excluding outliers, 26% including outliers) and the interstitial water community (46.5% 

similarity excluding outliers, 43.1 % including outliers). Clustering of structural community 

profiles within community types by water quality treatment was observed. Within the 

rhizosphere community both water quality treatment groups exhibited 84.1% similarity, although 

treatments receiving Doon water showed a trend towards higher structural similarity than West 



 

229 
 

Montrose-treated communities; 5 of the 6 Doon treatments were contained within a cluster 

(89.4% similarity) compared to only 4 of 6 of the West Montrose treatments (92.2% similarity). 

Within the rhizoplane, West Montrose-treated microbial communities exhibited a higher degree 

of structural similarity (74.2% similarity among 5 of 6 treatments) compared to Doon-treated 

microbial communities (only 2 replicates exhibited greater than 78% similarity). Interstitial water 

microbial communities exhibited the highest degree of variability and only demonstrated 

minimal structural similarity by water quality treatment. Some evidence for the influence of plant 

species on microbial community structural profiles was apparent during this sampling event. One 

cluster of P. arundinacea rhizoplane structural profiles (78.7% structural similarity) and one 

cluster of V. anagallis-aquatica microbial community profiles (67.3% similarity), including both 

water and rhizoplane microbial communities, suggested some plant species-specific effects on 

microbial community structures among the different community types.  
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Figure 6.1 Hierarchical cluster analysis results of all DGGE profiles obtained from microbial 

DNA extracted at 0 DAE to 5 mg/L of phosphorus at P2O5 demonstrated graphically as a 

UPGMA dendrogram. Mesocosms receiving high water quality inflow are indicated with a WM 

(West Montrose) and mesocosms marked to be receiving low water quality inflow are indicated 

with a D (Doon). Mesocosm replicates per treatment type are indicated with numbers 1-3. Inflow 

water samples are designated by the water source name followed by the identifier “in flow”. 

Percent similarity between clusters is indicated by the number above branches. 
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Structural similarity among the different community types (rhizoplane, rhizosphere, 

water) increased dramatically by 7 DAE compared to those from the pre-treatment sampling 

event. The highest degree of structural similarity within sample types was between inflow water 

communities, with Doon and West Montrose inflow water communities sharing 84% structural 

similarity (Fig 6.2). Inflow water microbial communities were the most structurally similar to 

microbial interstitial water communities (78% similarity) and shared 65% similarity to 

rhizosphere microbial communities (rhizoplane microbial communities were not sampled during 

this sampling event). Rhizosphere microbial community structures exhibited 74% structural 

similarity, which was a decrease in similarity compared to the previous sampling event (84% 

similarity). Structural profiles were grouped into two separate clusters; the first one with 85% 

structural similarity contained five of the West Montrose treatments and one of the Doon 

treatments, while the second cluster exhibited 90% structural similarity and contained five of the 

Doon treatments and one of the West Montrose treatments. An increase in structural similarity 

among rhizosphere communities receiving either West Montrose or Doon inflow water was 

observed compared to sampling at 0DAE. Inflow water samples were more structurally similar to 

each other than at the previous sampling event (78% similarity vs. 43% similarity). Outflow 

water communities receiving Doon water exhibited 78% structural similarity as did communities 

receiving West Montrose water. Interstitial water communities clustered into four smaller sub-

groupings each containing a mixture of both West Montrose and Doon P. arundinacea and V. 

anagallis-aquatica interstitial water community structural profiles. This pattern of community 

structure clustering was unique from the previous time point which generated cluster patterns 

indicating structural similarity based on the associated plant species.  
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Figure 6.2 Hierarchical cluster analysis results of all DGGE profiles obtained from microbial 

DNA extracted at 7 DAE to 5 mg/L of phosphorus at P2O5 demonstrated graphically as a 

UPGMA dendrogram. Mesocosms receiving high water quality inflow are indicated with a WM 

(West Montrose) and mesocosms marked to be receiving low water quality inflow are indicated 

with a D (Doon). Mesocosm replicates per treatment type are indicated with numbers 1-3. Inflow 

water samples are designated by the water source name followed by the identifier “inflow”. 

Percent similarity between clusters is indicated by the number above branches. 
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At 21 DAE to 5 mg/L of added phosphorus as P2O5, structural similarity within and 

among sample types decreased substantially compared to those obtained on 7 DAE. By 21 DAE 

structural similarities among and between sample types decreased to values comparable with 

those obtained on 0 DAE. Inflow water samples from West Montrose and Doon only shared 2% 

structural similarity, which was much lower than the similarity between these source water 

communities measured on previous sampling events (Fig 6.3). The West Montrose inflow water 

community structure was most similar to other water microbial communities from West 

Montrose interstitial water samples, while the Doon inflow water sample was more structurally 

related to rhizosphere microbial community structures. Interstitial water community structures 

shared 35% structural similarity with rhizoplane community structures, and both community 

types shared 2% structural similarity with rhizosphere-associated microbial communities. 

Rhizosphere microbial communities had the greatest amount of within sample type structural 

similarity (60% similarity). Community structural profiles clustered into two main sub-

groupings, the first with 64 % similarity, contained the profiles of primarily West Montrose-

treated microbial communities (4 West Montrose, 1 Doon), while the second cluster contained 

primarily Doon-treated structural profiles (5 Doon, 2 West Montrose). Interstitial water 

microbial community structures clustered intermittently with rhizoplane community structures 

and shared only 35% structural similarity. Structural profiles from interstitial water communities 

were grouped into five smaller clusters. One of these clusters contained structural profiles from 

West Montrose V. anagallis-aquatica-associated microbial communities. Another of these 

clusters containing all P. arundinacea-associated communities from both Doon and West 

Montrose- treated mesocosms. The remaining interstitial water microbial community structural 

profiles clustered separately and formed sub-groupings consisting of a mixture of structural 
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community profiles associated with all treatment types. Rhizoplane microbial community 

structures also showed only 35% structural similarity with samples of the same community type. 

Structural community profiles associated with the rhizosphere clustered into three larger 

groupings. The first subgroup of rhizoplane community profiles was composed of five V. 

anagallis-aquatica associated rhizoplane communities and one P. arundinacea associated 

rhizoplane community from both West Montrose and Doon treatments (63% similarity). Within 

the larger cluster there were pairs grouped together by water quality treatment. The second 

cluster contained four P. arundinacea associated communities (3 Doon and 1 West Montrose, 

with 67% similarity). The remaining rhizoplane-associated structural community profiles 

clustered as a pair with 68% similarity and consisted of structural profiles from different water 

quality and plant species treatment types. Structural similarity among rhizoplane-associated 

communities from the same plant species treatment showed an increase compared to 

observations made at 0 DAE, showing a shift towards plant species exerting a greater influence 

over community structure than water quality treatment type, which was observed previously.  
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Figure 6.3 Hierarchical cluster analysis results of all DGGE profiles obtained from microbial 

DNA extracted at 21 DAE to 5 mg/L of phosphorus at P2O5 demonstrated graphically as a 

UPGMA dendrogram. Mesocosms receiving high water quality inflow are indicated with a WM 

(West Montrose) and mesocosms marked to be receiving low water quality inflow are indicated 

with a D (Doon). Mesocosm replicates per treatment type are indicated with numbers 1-3. Inflow 

water samples are designated by the water source name followed by the identifier “in flow”. 

Percent similarity between clusters is indicated by the number above branches. 
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At 35 DAE structural similarity values within and between microbial communities of 

different community types was similar to observations made at 21 DAE. The highest degree of 

within-community type structural similarity was observed for inflow microbial communities with 

West Montrose and Doon microbial inflow communities sharing 68% structural similarity (Fig 6. 

4). Inflow water communities shared the highest degree of structural similarity with interstitial 

water microbial communities (13% similarity, 28% similarity excluding outliers). Interstitial 

water and inflow water microbial communities only shared 13 % similarity (19% excluding 

outliers) with microbial rhizosphere communities. Rhizosphere-associated microbial community 

structural profiles shared the second highest amount of within community type structural 

similarity (44%). Microbial rhizosphere-associated communities receiving Doon water exhibited 

higher structural similarity (82%) than West Montrose-treated microbial communities (44% 

similarity). This trend was also observed at 0 DAE but not during any of the previous sampling 

events (7, 21 DAE). Rhizosphere structural community profiles formed clusters consisting of one 

large grouping containing 10 of the 12 structural profiles and formed secondary groupings 

related to water quality treatments. This community type had two outliers that did not cluster 

with the rest of the rhizosphere-associated microbial community structural profiles, which 

consisted of one replicate from the Doon P. arundinacea treatment and one from the West 

Montrose V. anagallis- aquatica treatment. Interstitial water microbial communities only shared 

31% structural similarity (28% excluding outliers), and formed two primary clusters, one with 

41% similarity containing primarily Doon-treated interstitial water communities, while the 

second grouping shared 44% structural similarity and contained primarily West Montrose-treated 

water communities.  
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Figure 6.4 Hierarchical cluster analysis results of all of the DGGE profiles obtained from 

microbial DNA extracted at 35 DAE to 5 mg/L of phosphorus at P2O5 demonstrated graphically 

as a UPGMA dendrogram. Mesocosms receiving high water quality inflow are indicated with a 

WM (West Montrose) and mesocosms marked to be receiving low water quality inflow are 

indicated with a D (Doon). Mesocosm replicates per treatment type are indicated with numbers 

1-3. Inflow water samples are designated by the water source name followed by the identifier “in 

flow”. Percent similarity between clusters is indicated by the number above branches. 
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At 49 DAE strong clustering was observed among structural profiles of the same sample 

type. Rhizosphere-associated microbial communities exhibited the highest degree of within 

sample type similarity (58%), followed by the inflow water communities (55%), interstitial water 

communities (55%) and then the rhizoplane microbial communities (49%) (Fig  6.5). Interstitial 

and inflow water microbial communities clustered together and were the most similar to 

rhizoplane-associated microbial community structural profiles (38% similarity). Water-

associated microbial communities shared 24% structural similarity with rhizosphere microbial 

communities. Within the rhizosphere-associated microbial community structural profiles, similar 

to observations made at 0 and 35 DAE, Doon microbial community structures showed a higher 

degree of similarity compared to West Montrose-treated communities. Structural profiles of 

rhizosphere microbial communities formed two secondary clusters, one with 81% structural 

similarity (3 West Montrose communities, 1 Doon community) and a second with 82% structural 

similarity (5 Doon communities, 3 West Montrose communities). Interstitial water microbial 

communities exhibited clustering patterns related to water quality treatment type. Similar to 

previous observations made at other time points, rhizoplane community structures showed 

clustering based on both plant species treatment as well as water quality treatment. Structural 

community profiles from rhizoplane-associated microbial communities were clustered into two 

sub-groupings. The first larger grouping (75% similarity) contained eight structural profiles that 

clustered into smaller tertiary groupings based on the associated plant species and then water 

quality treatment (more loosely). Within these groupings, V. anagallis-aquatica-associated 

microbial communities were more closely related structurally than P. arundinacea- associated 

communities. The second smaller sub-grouping (64% similarity) contained primarily West 
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Montrose-treated rhizoplane-associated microbial communities and a mix of plant species 

treatments.  

Figure 6.5 Hierarchical cluster analysis results of all of the DGGE profiles obtained from 

microbial DNA extracted at 49 DAE to 5 mg/L of phosphorus at P2O5 demonstrated graphically 

as a UPGMA dendrogram. Mesocosms receiving high water quality inflow are indicated with a 

WM (West Montrose) and mesocosms marked to be receiving low water quality inflow are 

indicated with a D (Doon). Mesocosm replicates per treatment type are indicated with numbers 

1-3. Inflow water samples are designated by the water source name followed by the identifier “in 

flow”. Percent similarity between clusters is indicated by the number above branches. 
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An increase in structural similarity among mesocosm interstitial water microbial 

communities was observed one week after phosphorous loading (Table 6.1). This increase was 

followed by a decline in within-group similarity for both water quality treatments. Within the 

rhizosphere, structural similarity among microbial communities showed a fairly steady decline 

for the West Montrose treatment group, while the Doon treatment group remained more stable 

with fairly small fluctuations in within-treatment structural similarity between sampling events. 

Interestingly, structural similarity trends in rhizoplane microbial communities differed by water 

quality treatment. Rhizoplane-associated microbial communities receiving West Montrose water 

showed a trend of decreasing within- group similarity after phosphorus exposure, while the 

Doon-treated rhizoplane communities increased in similarity.  
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Table 6.1 Summary of Within Group Percent Similarity for Microbial Community Structural 

Profiles as Determined by PCR-DGGE-Based Hierarchical Cluster Analysis after Mesocosm 

Phosphorus Loading 

 

 

*Percent similarity value excludes outliers and the numbers of outliers excluded are indicated in 

the brackets 

 

 

 

 

 

 

 

 

 

 

  0 DAE 7 DAE 21 DAE 35 DAE 49 DAE 

Rhizoplane 

West 

Montrose 
74.2%*(1) N/A 63.2%*(2) N/A 49.1% 

Doon 26% N/A 45.4%*(2) N/A 63.2% 

Rhizosphere 

West 

Montrose 
84.1% 74.2% 60.4% 44.4% 58.2% 

Doon 89.4%*(1) 89.9%*(1) 72.7%(1) 81.7% 82.2%*(1) 

Water 

Inflow 

West 

Montrose 69% 83.7% 1.7% 68.3% 54.7% 

Doon 

Interstitial 

(outflow) 

West 

Montrose 
46.5%*(2) 77.9% 43.9% 28.1%(1) 56.8% 

Doon 62.6%(1) 77.9% 34.8% 46.9%*(2) 56.8% 
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6.3.1.2 Structural Diversity  

At 0 DAE rhizoplane communities showed similar levels of structural diversity, which 

did not change significantly by 21 DAE to 5 mg/L of added phosphorus (Fig 6.6 A). All 

treatment groups exhibited a large decrease in structural diversity by 49 DAE, as compared to 

pre-treatment values. Most treatment groups showed a steady decreasing trend over the course of 

the experiment with reductions in diversity at both 21 and 49 DAE.   

Within-rhizosphere microbial communities at 0 DAE, structural diversity among 

treatment groups differed between the West Montrose P. arundinacea and the Doon P. 

arundinacea treatments. Doon-treated rhizosphere microbial communities exhibited higher 

values for structural diversity (Fig 6.6 B). All other treatment groups had similar structural 

diversity values at 0 DAE. Microbial communities associated with the West Montrose P. 

arundinacea treatment exhibited an increase in structural diversity at 7DAE, while all other 

groups maintained similar diversity values. By 21 DAE both Doon treatment groups showed a 

decrease in structural diversity which was not observed in the West Montrose-treated microbial 

communities. All treatment groups showed a decrease in structural diversity by 49 DAE. 

The structural diversity of microbial communities associated with water 

(interstitial/outflow and inflow) exhibited changes over the course of the experiment (Fig 6.6 C). 

At 0 DAE there was no difference among treatment types in community structural diversity for 

interstitial microbial communities and these values were similar to those measured from inflow 

water microbial communities. At 7 DAE to 5 mg/L of added phosphorus both Doon-treated 

microbial communities showed increased structural diversity which was maintained through 21 

DAE and then decreased back to pre-treatment levels by 35 and 49 DAE. This increase was not 
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observed among the West Montrose-treated microbial communities, where structural diversity 

levels were similar to pre-treatment values throughout the experiment. 

 
Figure 6.6 Structural diversity of microbial communities in mesocosm (A)rhizoplane samples, 

(B) rhizosphere samples and (C) water samples (calculated from DGGE-analysis using 

GelCompar®II software). Error bars are representative of standard error for 3 experimental 

replicates (n=3). Inflow water samples do not have experimental replicates (n=1). 
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6.3.2 Functional Carbon Source Utilization Profiles Associated with Microbial 

Communities from Mesocosms Receiving High and Low Water Quality Treatments Before 

and After Short Term Phosphorus Loading  

6.3.2.1 1Principal Component Analysis of Carbon Source Utilization by Rhizoplane, 

Rhizosphere and Water-Associated Microbial Communities from Mesocosms Before and 

After Phosphorus Loading  

 Functional profiles of microbial rhizoplane communities determined by carbon source 

utilization on Biolog
TM

 EcoPlates exhibited distinct profiles for each different treatment type 

before phosphorus loading (Fig 6.7 A). By 21 DAE to phosphorus, carbon source utilization 

profiles of rhizoplane communities had shifted dramatically (Fig 6.7 D). At this time, only the 

Doon P. arundinacea treatment-associated microbial communities remained distinct, while the 

carbon source utilization profiles associated with the rhizoplane in each of the other treatments 

clustered together. By 49 DAE unique carbon source utilization profiles for each treatment 

community were re-established, however, at this point the relationship between the different 

treatment types had changed (Fig 6.7G). Prior to exposure, carbon source utilization profiles for 

the different water quality treatments (West Montrose vs. Doon) were separated along the PC2 

axis, while at 49 DAE, the water quality treatments became separated along the PC1 axis. This 

indicates that water quality treatment represented a greater component of the variability among 

community carbon source utilization profiles post-treatment compared to pre-treatment (56.64% 

variability vs. 15.56% variability) (Table A11). 
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Figure 6.7 PC1 vs. PC2 plots of Biolog
TM 

carbon source utilization profiles generated from 

microbial communities in the rhizoplane (A, D, G), rhizosphere (B, E, D) and interstitial/in flow 

water (C, F, I) at 0 (A-C), 49 (D-F) and 91 (G-I) DAE. Mesocosms receiving high water quality 

inflow are indicated with a WM (West Montrose) and mesocosms receiving low water quality 

inflow are indicated with a D (Doon). Values are means of 3 experimental replicates and three 

technical replicates plus standard error for each treatment. Values for inflow water represent the 

average of a single experimental replicate with triplicate technical replicates only.  
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 Changes observed in the carbon source utilization profiles associated with rhizosphere 

communities after short-term phosphorus loading were similar to what we observed in 

rhizoplane-associated microbial communities. Pre-exposure, unique carbon source utilization 

profiles were associated with each treatment-specific rhizosphere community (Fig 6.7 B). By 21 

DAE the only communities that retained unique carbon source utilization profiles were the 

rhizosphere communities associated with the Doon P. arundinacea treatment (Fig 6.7 E).By 49 

DAE the V. anagallis-aquatica treatments remained undifferentiated (although they were slightly 

more distinct than observations made at 21 DAE) (Fig 6.7 H). Microbial communities associated 

with the West Montrose P. arundinacea treatment also started to differentiate from the other V. 

anagallis-aquatica treatments by 49 DAE. However, the carbon source utilization profiles 

associated with these microbial communities still retained similarities with the V. anagallis-

aquatica-associated microbial communities, especially with those communities receiving West 

Montrose water (Table A12).  

 Water associated microbial communities exhibited carbon source utilization profiles that 

were distinct by water quality treatment in P. arundinacea planted mesocosms pre-exposure to 

added phosphorus (Fig 6.7 C). However, differences between the West Montrose and Doon 

treated mesocosms planted with V. anagallis-aquatica were not observed at this time. Plant 

species-specific differences were observed in carbon source utilization profiles and were 

separated along the PC1 axis. By 21 DAE, carbon source utilization profiles from interstitial 

water microbial communities showed a loss of differentiation among the P. arundinacea 

associated water quality treatments (Fig 6.7 F). By 49 DAE, further loss of differentiation 

between the communities associated with the different treatment types occurred, with a large 
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degree of overlap occurring among all four treatment-associated microbial communities (Fig. 6.7 

I) (Table A13). 

6.3.2.2 Percent Utilization of Different Biolog
TM 

Carbon Source Types by Rhizoplane, 

Rhizosphere and Water-Associated Microbial Communities from Mesocosms Before and 

After Phosphorus Loading  

 Some of the differences observed in the principal component analyses of carbon source 

utilization profiles pre-and post-exposure to phosphorus can be explained by changes in the 

relative usage of different carbon sources types (Fig 6.8). Biolog
TM

 EcoPlate carbon sources can 

be subdivided into the following classifications: polymers (n=4), carbohydrates (n=10), 

carboxylic and acetic acids (n=9) and nitrogenous carbon sources such as amino acids, amines 

and amides (n=8). Rhizoplane microbial communities exhibited the most dramatic shift in the 

relative usage of the different carbon source types post-exposure (Fig 6.8 A,D,G,J). Polymer and 

carbohydrate usage decreased after phosphorus exposure in all rhizoplane microbial communities 

with the exception of the Doon P. arundinacea associated community (Fig 6.8 A and D). 

Alternatively, all treatments exhibited an increase in usage of carboxylic and acetic acids post-

exposure, again with the exception of the Doon P. arundinacea rhizoplane community (Fig 6.8 

G). Note that in the principal component analyses, the Doon P. arundinacea treatment-associated 

microbial communities were the only ones that did not show a loss of differentiation after 

receiving the phosphorus treatment, while all the other treatments clustered together (Fig 6.7 D). 

There was no change in percent usage of nitrogen containing carbon sources by any community 

type following phosphorus loading (Fig 6.8 J).  

 In the rhizosphere, changes to carbon source usage were less consistent across treatments 

(Fig 6.8 B, E, H and K). Polymer usage showed a small decrease in Doon V. anagallis-aquatica-

associated treatments post-exposure; while the Doon P. arundinacea-associated rhizoplane 
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communities exhibited a small increase (Fig 6.8 B). Carbohydrate usage did not change 

consistently across any of the treatments, while carboxylic and acetic acid usage decreased but 

only in the Doon P. arundinacea-associated microbial communities (Fig 6.8 E and H). Both 

West Montrose-associated rhizosphere communities exhibited an increase in nitrogenous carbon 

source usage, but not until 49 DAE, which likely means that this increase was the result of 

something else occurring in the mesocosms or inflow water treatments instead of the phosphorus 

exposure (Fig 6.8 K). Inflow water microbial community profiles also show an increase in the 

usage of nitrogenous carbon sources at 49 DAE which is probably the explanation for this 

observation in the rhizosphere. 

   Water-associated microbial communities responded with more variability to the 

phosphorus treatment than the other community types. Polymer usage decreased 7 DAE in the 

Doon V. anagallis-aquatica-associated interstitial water communities, but not in any other 

treatment type (Fig 6.8 C). Relative usage of carbohydrates and carboxylic and acetic acids did 

not change post-exposure, again with the exception of the Doon V. anagallis-aquatica-associated 

treatment which exhibited an increase in carbohydrate usage at 21 DAE and an increasing trend 

in carboxylic and acetic acid usage throughout the experimental period (Fig 6.8 F and I). With 

respect to the usage of nitrogenous carbon sources, trends differed by plant species. Both P. 

arundinacea-associated water communities showed a decrease in usage post-exposure, which 

returned to baseline by the end of the experiment. Conversely, both V. anagallis-aquatica 

treatments showed an increase in the usage of nitrogenous carbon sources post-exposure (Fig 6.8 

L). The usage of nitrogenous carbon sources decreased again by 21 DAE in the Doon V. 

anagallis-aquatica-associated interstitial water communities, but elevated by 49 DAE in the 

West Montrose V. anagallis-aquatica associated treatment (Fig 6.8 L).  
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Figure 6.8 Percent usage of Biolog
TM 

EcoPlate carbon sources belonging to the following 

groupings: polymers (A-C), carbohydrates (D-F), carboxylic and acetic acids (G-I) and 

nitrogenous carbon sources (J-L). Rhizoplane microbial communities are represented in graphs 

A, D, G and J, rhizosphere microbial communities are represented in graphs B, E, H and K, and 

inflow and interstitial water communities are represented in graphs C, F, I and L. Mesocosms 

receiving high water quality inflow are indicated with a WM (West Montrose) and mesocosms 

receiving low water quality inflow are indicated with a D (Doon). Bars represent averages of 

three experimental replicates and three technical replicates for rhizoplane, rhizosphere and 

interstitial water communities, inflow water communities are averages from technical replicates 

only. Error bars represent standard error from experimental replicates only.  
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6.3.2.3 Average Well Color Development and Metabolic Diversity 

Average well color development, the average usage of all 31 different Biolog
TM

 carbon 

sources measured as an absorbance at 590 nm, differed significantly for some treatment types 

over the experimental timeline within rhizoplane communities. AWCD for V. anagallis-aquatica 

treatments did not change over the course of the experiment, and measurements for West 

Montrose and Doon treatments were not significantly different from each other (Fig 6.9 A). 

Alternatively, both West Montrose and Doon-treated P. arundinacea rhizoplane-associated 

microbial communities showed a decrease in AWCD at 21 DAE followed by an increase in 

AWCD close to values measured at 0 DAE, by 49 DAE. The effect of additional phosphorus on 

the metabolic diversity of carbon substrates used by rhizoplane microbial communities was 

similar among treatment groups (Fig 6.9 B). A decrease in metabolic diversity was observed in 

all communities at 21 DAE. In the V. anagallis-aquatica treatments metabolic diversity 

continued to decreased by 49 DAE. Both P. arundinacea treatments increased in metabolic 

diversity by 49 DAE compared to 21 DAE, although diversity values for both these microbial 

communities was still much lower than values observed at 0 DAE at this time. 

AWCD in rhizosphere-associated communities did not change significantly from pre-

treatment measurements after the addition of phosphorus (Fig 6.9C). Metabolic diversity was 

reduced in rhizosphere communities receiving the Doon (poor water quality) treatment by 7 

DAE, while West Montrose-associated communities did not change significantly (Fig 6.9 D). 

The reduction in metabolic diversity observed post-treatment in the Doon mesocosms increased 

slightly by 21 DAE but decreased again by 35 DAE, and increased again by 49 DAE to values 

comparable with pre-exposure measurements.   
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AWCD for water-associated microbial communities did not change significantly after 

addition of 5 mg/L of  P2O5 to the experimental mesocosms (Fig 6.9 E).  However, metabolic 

diversity of the interstitial water communities associated with both V. anagallis-aquatica 

treatments exhibited an increase at 7 DAE, while the P. arundinacea-associated communities did 

not change significantly (Fig 6.9 F). While the West Montrose-treated V. anagallis-aquatica-

associated mesocosms returned to metabolic diversity values similar to pre-treatment 

measurements by 21 DAE, the Doon-treated communities continued to exhibit elevated 

metabolic diversity until 49 DAE. 
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Figure 6.9 Average well color development (AWCD) (A,C,E) and metabolic diversity (B,D,F) 

of microbial communities from the rhizoplane (A-B), rhizosphere (C-D) and interstitial/inflow 

water communities (E-F) after exposure to 5 mg/L of P2O5. Mesocosms receiving high water 

quality inflow are indicated with a WM (West Montrose) and mesocosms receiving low water 

quality inflow are indicated with a D (Doon). Bars represent averages of 3 technical replicates 

and 3 experimental replicates. Error bars are representative of standard error for experimental 

replicates. Inflow water samples do not have experimental replicates (n=1). 
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6.3.3 Water chemistry and Water Quality Variables Associated with Mesocosms Receiving 

either High or Low Water Quality Treatments Post-Phosphorus Loading 

6.3.3.1 Total Reactive Phosphorus  

 Prior to the addition of inorganic phosphorus into the mesocosms the 

concentrations of total reactive phosphorus in Doon and West Montrose inflow water were 

similar to each other and were both either equivalent to or less than the concentration of total 

reactive phosphorus present in outflow water across sampling events (Fig 6.10). Upon the 

addition of inorganic phosphorus to the mesocosm inflow water, measured levels of total reactive 

phosphorus increased significantly in both the Doon and West Montrose inflow water samples, 

although the increase in the West Montrose water was much higher than in the Doon water, 

despite the addition of the same amount of P2O2 to each water type. The amount of total reactive 

phosphorus measured in outflow water following phosphorus addition decreased considerably 

compared both to the previous time point and to inflow values across all treatment types, except 

the Doon V. anagallis-aquatica treatment. From 3 DAE to 49 DAE, total reactive phosphorus 

concentrations measured in West Montrose and Doon inflow water were similar. Outflow 

concentrations of total reactive phosphorus steadily increased over the experimental sampling 

time points until outflow levels resembled those prior to the addition of phosphorus at 49 DAE. 

At this time, once again, levels of total reactive phosphorus in outflow water were similar to that 

measured in the inflow water for all treatments. The percentage of total reactive phosphorus 

present in outflow water was similar among all four treatments.  
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Figure 6.10 Total reactive phosphorus quantification (mg/L) in mesocosm outflow water and 

inflow water (West Montrose (WM) and Doon (D)) using HACH
® 

water test kits at 21 days 

before exposure (DBE) to 5 mg/L of phosphorus as P2O5 up to 49 days after exposure (DAE). 

The Ontario provincial water quality objective (PWQO) for total reactive phosphorus in surface 

water sources is indicated in red. Error bars are representative of standard error (outflow water 

n=3, inflow water n=3). 
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6.3.3.2 Nitrate   

The amount of nitrate measured in mesocosm inflow water was not different between the 

West Montrose and Doon sites (Fig 6.11). Both source waters experienced a large increase in 

nitrate levels at 3 DAE which was likely attributable to an influx of inorganic nitrogen from 

runoff due to a rain event during water collection at that time. Aside from this sampling point, 

measurements of nitrate in the inflow water showed some variability across the experimental 

timeline and ranged between 2 and 9 mg/L. Increases in influent levels of nitrate typically 

coincided with a decrease in nitrate present in outflow water for all treatment types (e.g. 3 and 21 

DAE) while comparably low levels of nitrate present in inflow water coincided with higher 

levels in outflow water. The concentration of nitrate in outflow water was similar among 

treatment groups, although the P. arundinacea and V. anagallis-aquatica treatments receiving 

Doon inflow water showed a trend towards higher nitrate removal rates compared to West 

Montrose treatments. The amount of nitrate measured in outflow mesocosm samples showed an 

overall decreasing trend over the sampling period, which also was observed in the inflow water 

nitrate concentrations. 
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Figure 6.11 Nitrate quantification (mg/L) in mesocosm outflow water and inflow water (West 

Montrose (WM) and Doon (D)) using HACH
® 

water test kits. The Ontario provincial water 

quality objective (PWQO) for nitrate in surface water sources is indicated in red. Error bars are 

representative of standard error (outflow water n=3, inflow water n=3). 
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6.3.3.3 Nitrite  

Nitrite concentrations detected in West Montrose and Doon inflow water were different 

from each other across the experimental sampling events, however, neither site had consistently 

higher nitrite concentrations than the other and both sites had large variations in measured 

concentrations between sampling events (Fig 6.12). Levels of nitrite measured in inflow water 

were consistently below the provincial water quality objectives for source waters at all time- 

points other than 3 DAE for the Doon site (Loomer and Cooke, 2011). Levels of nitrite measured 

in outflow water were typically lower than inflow measurements for both of the Doon treatment 

groups (P. arundinacea and V. anagallis-aquatica). Alternatively, the West Montrose treatment 

groups showed more variability depending on the inflow levels. Higher inflow concentrations of 

nitrite were associated with higher removal rates and lower concentrations of nitrite in the inflow 

water correlated with poorer removal percentages. Differences among treatments for nitrite 

removal were present to some extent, with better removal being associated with the Doon 

treatments compared to the West Montrose treatments. This comparison was the strongest for the 

V. anagallis-aquatica-planted mesocosms which had much higher removal percentages for the 

Doon-treated mesocosms compared to the West Montrose-treated mesocosms.  
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Figure 6.12 Nitrite quantification (mg/L) in mesocosm outflow water and inflow water (West 

Montrose (WM) and Doon (D)) using HACH
® 

water test kits. The Ontario provincial water 

quality objective (PWQO) for nitrite in surface water sources is indicated in red. Error bars are 

representative of standard error (outflow water n=3, inflow water n=3). 
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6.3.3.4 Ammonia  

Unionized ammonia concentrations measured in mesocosm inflow water were similar 

between West Montrose and Doon source waters during all sampling events (Fig 6.13). Similar 

to observations from nitrate and nitrite concentrations, there was a spike in unionized ammonia 

concentrations observed at 3 DAE associated with a rain event. Levels of unionized ammonia 

measured in inflow water were consistently higher than recommendations in the provincial water 

quality objectives for surface waters (Loomer and Cooke, 2011). Consistent differences in 

unionized ammonia concentrations from outflow water among the different treatments were not 

observed. Similarly, the removal efficiency for unionized ammonia in mesocosm outflow water 

did not differ significantly among experimental treatments, and on average concentrations in 

outflow water were higher than inflow water concentrations.  
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Figure 6.13 Unionized ammonia quantification (mg/L) in mesocosm outflow water and inflow 

water (West Montrose (WM) and Doon (D)) using HACH
® 

water test kits. The Ontario 

provincial water quality objectives (PWQO) for ammonia in surface water sources is indicated in 

red. Error bars are representative of standard error (outflow water n=3, inflow water n=3). 
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6.3.3.5 Fecal Coliforms (Culture-Based) 

Fecal coliforms measured in West Montrose and Doon inflow water both showed a 

decreasing trend over the sampling time period which was not reflected in the measured values 

for fecal coliforms present in outflow samples (Fig 6.14). Post-exposure to additional 

phosphorus, all treatments showed an increase in fecal coliform presence in mesocosm outflow 

water, however, this increase was greater in the West Montrose P. arundinacea and Doon V. 

anagallis-aquatica mesocosms. In the West Montrose P. arundinacea treatment fecal coliforms 

increased after phosphorus exposure and remained relatively constant across the rest of the 

sampling events. In the West Montrose V. anagallis-aquatica treatment fecal coliform numbers 

showed an increasing trend across the sampling events. The Doon P. arundinacea treatment 

showed the smallest increase in fecal coliforms directly after phosphorus exposure (7 DAE) 

however this increase became greater at 21 DAE and fluctuated at the remaining sampling 

points. The Doon V. anagallis-aquatica treatment had a large increase in fecal coliforms detected 

in outflow water, however, from 7 to 49 DAE these values decreased steadily to values close to 

those at 0 DAE by 49 DAE. There was a high degree of variability in the fecal coliform removal 

rate for mesocosm treatments among sampling events. However, removal rates tended to 

decrease over the course of the experiment in all treatment groups. The removal efficiency for 

fecal coliforms was similar among all treatments aside from the V. anagallis-aquatica treatments 

where removal efficiencies were much better for the Doon treatment than the West Montrose 

treatment.  
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Figure 6.14 Fecal Coliforms (CFU/100 mL) present in mesocosm outflow water and inflow 

water (West Montrose (WM) and Doon (D)) as determined by the membrane fecal coliform 

method (m-FC). The Canadian recreational water quality guideline for fecal coliforms in surface 

water sources is 200 CFU/100 mL. Error bars are representative of standard error among 

experimental replicates (outflow water n=3, inflow water n=1). 
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6.4 Discussion 

The hypothesis that microbial communities associated with wetland plants adapted to 

either high or low water quality conditions would respond to environmental perturbations 

(nutrient addition of 5 mg/L of phosphorus as P2O2) differently was examined with this 

experiment. Measurements of structural community change among the root-associated microbial 

communities in response to phosphorus addition did not support this hypothesis (Fig 6.1-6.5). 

Theoretically, the poor water quality effluent treatment would be more adapted to nutrient pulses 

and potentially respond differently than a higher water quality-adapted community under such 

conditions. However, similar structural community changes were observed in both of the water 

quality treatments. At 7 DAE to the phosphorus pulse, there was a large increase in structural 

similarity among the outflow water microbial communities, while the rhizosphere structural 

community profiles remained similar, and similar treatment-based groupings by water quality 

treatment were observed (Fig 6.2). At 21 DAE the increase in structural similarity that occurred 

directly after the phosphorus pulse had dissipated (Fig 6.3). There was an increase in structural 

similarity between the outflow and rhizoplane structural community profiles, where they became 

interchangeable and clustered in groupings containing both community types. There was also a 

large increase in clustering based on the associated plant species within the interstitial 

water/rhizoplane microbial community structural profiles. Some plant species-specific clustering 

was observed at 0 DAE within the rhizoplane (Fig 6.1), which correlated to one cluster of 

rhizoplane P. arundinacea associated communities (74% similarity, 4 samples) and one of V. 

anagallis-aquatica  water/rhizoplane communities (67.3 % similarity, 5 samples). This plant 

species-specific correlation was expanded at 21 DAE to include almost all of the replicates 

within two larger clusters, one with V. anagallis-aquatica water/rhizoplane communities (49% 
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similarity, 9 samples) and one with P. arundinacea rhizoplane/water samples (45% similarity, 6 

samples). Although the P. arundinacea cluster had a higher similarity, the V. anagallis-aquatica 

cluster contained more structural profiles, 9 of 12 versus 6 of 12 in the P. arundinacea cluster. 

Although we did observe clustering by water quality treatment, this seemed to be secondary to 

plant species-associated effects on community structure in this instance. By 35 and 49 DAE the 

plant species-specific effects appeared to diminish (although are retained to some extent 

exclusively in the rhizoplane) and water quality treatment and community type appear to drive 

structural similarity, as they did before the phosphorus pulse (Fig 6.4 and 6.5).  

The clearest structural change to microbial communities observed in response to 

phosphorus addition is an increase in the influence of plant species on the structure of microbial 

wetland communities. Before the addition of the phosphorus, the influence of plant species on 

community structure was minimal and limited to the rhizoplane microbial community. The 

increased similarity between the rhizoplane and interstitial/outflow water communities following 

phosphorus treatment could be the result of an increase in sloughed off rhizoplane biofilm being 

shed in the outflow water. Other studies using lab-scale mesocosms to assess wetland-associated 

microbial communities have found that interstitial water communities are representative of the 

outermost attached biofilms retained within the mesocosm (Weber et al., 2011, Helt et al., 2012). 

Increased phosphorus availability has been shown to induce root elongation and root density in 

some plant species (e.g. Borch et al., 1999, Ma et al., 2003), which could result in an increase in 

biofilm sloughing from root surfaces. Plant species differ in their phosphorus uptake efficiency 

(e.g. Föhse et al., 1988). They may also differ in their physiological responses to increased 

phosphorus availability. Hetrick et al. (1991) found that cool season grasses (Bromus inermis, 

Elymus cinereus, Festuca arundinacea, Koeleria pyranidata and Lolium perenne) responded 
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differently to phosphorus addition than warm season grasses (Andropogon gerardii, 

Schizachyrium scopariumm Panicum virgatum, Bouteloua curtipendula, Sorghastrum nutans), 

with warm season grasses exhibiting root architectural changes that were absent in the cool 

season grasses. Similarly, Chapin III and Shaver (1985) found that patterns of growth response to 

nutrient additions (including phosphorus) in Tundra plant species were highly variable by plant 

species. As such, differences in plant growth response between our experimental plant species 

could explain why there is an increased effect of plant species on microbial community structure 

in the rhizoplane resulting from phosphorus loading.  Root-associated microbial communities are 

known to be affected by root elongation and changes in root architecture (e.g. DeAngelis et al., 

2009). Changes in root exudation profiles have also been shown to result from phosphorus 

addition in some plant species, which is an important driver of plant-associated microbial 

community structure (e.g. Lipton et al., 1987). Alternatively, an increase in phosphorus 

availability could also result in changes to the mycorrhizal status of these plants, further resulting 

in changes to the plant-associated microbial communities which are affected by the presence of 

mycorrhizas (e.g. Marschner et al., 2001, Hartman et al., 2009). Both of the plant species studied 

were mycorrhizal and exhibited mycorrhizal colonization during the experiment (data not 

shown). Mycorrhizas play a substantial role in plant phosphorus acquisition (Smith et al., 2011) 

and mycorrhizal colonization of plant roots can be dramatically altered by phosphorus 

availability, decreasing mycorrhizal presence and root colonization in some cases (e.g. Menge et 

al., 1978, Asimi and Gianinazzi, 1980). Marshall (2013) found that when six species of wetland 

plants (P. arundinacea, Echinochloa crus-galli, Solidago Canadensis, Eupatorium perforliatum 

and Verbena hastate) were exposed to phosphorus concentrations ranging from 0.01 to 7 mg/L, 

there was a large degree of species-specific variability in changes to mycorrhizal status as a 
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result of phosphorus exposure. Marshall (2013) found that P. arundinacea exhibited inconsistent 

and minimal reductions in mycorrhizal colonization in response to phosphorus addition, which 

was not the common trend among the other plant species examined in this study. Thus, if P. 

arundinacea did not experienced a change in mycorrhizal colonization in response to phosphorus 

loading and V. anagallis-aquatica did, this could explain some of the changes to plant-species 

specific influence on community structure following the phosphorus addition.     

Although cluster analyses did not identify water quality treatment-specific differences in 

community structural responses to the phosphorus pulse in most cases, we did observe a greater 

increase in the structural diversity of the outflow-based Doon water quality treatments at 7 and 

21 DAE, compared to the West Montrose treatment (Fig 6.6). Within the rhizosphere and 

rhizoplane communities we did not see treatment specific differences in structural diversity, with 

all treatment types responding similarity to the phosphorus loading over the course of the 

experiment. It is interesting that the Doon treatment would experience a greater increase in 

structural diversity within the interstitial water communities, as although the same amount of 

P2O5 was added to the inflow water of both water quality treatments, the concentration of total 

reactive phosphorus present in Doon inflow water was lower than that of West Montrose water. 

As such, the resident microbial communities associated with the Doon treatment would have 

been exposed to less TRP but still exhibited a greater shift in structural community diversity. 

Beauregard et al. (2010) reported that microbial community structural diversity (measured for 

bacteria, fungi or arbuscular mycorrhizas) in soil associated with alfalfa receiving P2O5 

fertilization was unaffected by the phosphorus addition over an 8 year long study. These findings 

agree with our observations for our P. arundinacea and V. anagallis-aquatica-associated 

microbial communities from the rhizosphere. However, Ahn et al. (2007) found that when 
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phosphorus was added in low (0.5 mg/L) and high (2.4 mg/L) quantities to lab-scale wetland 

mesocosms, bacterial community structural diversity in the mesocosm interstitial water was 

higher in the treatment with lower total reactive phosphorus. They speculated that the addition of 

phosphorus acted as a stressor reducing microbial diversity in the treatment with higher 

phosphorus availability. This finding would agree with our observations, in that the treatment 

with the higher measurable TRP load (West Montrose) exhibited the lower structural diversity 

value. However, it does not agree with our observation that upon phosphorus addition (which 

exhibited a significant increase in TRP from 0 to 7 DAE) species diversity actually increased 

compared to the previous sampling event in Doon-treated mesocosms for interstitial water 

communities. We suspect that the microbial communities associated with the Doon water 

treatments may be more adapted to nutrient pulses than the West Montrose-associated 

communities, as Doon is located immediately downstream from several WWTPs. Under the pre-

phosphorus loading conditions, phosphorus would have likely been a limiting nutrient, only 

supporting abundant growth from organisms that were efficient at scavenging phosphorus. The 

nutrient pulse allowed other bacterial species, which were not as efficient at scavenging 

phosphorus (yet were still present in the community, below the detection limits of DGGE), to 

increase in abundance, resulting in enhanced structural community diversity. Souza et al. (2008) 

has suggested that low phosphorus availability reduces the intensity of horizontal gene transfer 

and reduces microbial diversity. Additionally, Allers et al. (2007) found that structural diversity 

within Rhodobacteriaceae was enhanced by phosphorus addition in marine water mesocosms. 

Additional research is required in order to understand how nutrient pulses may impact the 

structural of microbial communities associated with different types of environments. Our 

findings in conjunction with reports from the literature indicate that different community types 
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and bacterial groups respond differently to phosphorus loading, and their behavior is the result of 

multiple factors which are not currently well understood. 

  Of the changes that were observed to the structural community profiles in response to 

phosphorus addition, the least observable differences occurred within the rhizosphere. 

Rhizosphere microbial community structures appeared to remain relatively stable throughout the 

experiment. Rhizosphere community structures were largely influenced by water quality 

treatment throughout the experiment and clustering trends among experimental replicates 

remained relatively similar across sampling events (Fig 6.1 to 6.5). Edwards et al. (2014) 

reported that among microbial communities established in the bulk soil, rhizosphere and 

endosphere of rice (Oryza spp.), the structure of rhizosphere and bulk soil microbial 

communities were least impacted by changes in soil type. These results seem to indicate that the 

rhizosphere could be more structurally stable than other habitat/community types. Reports 

indicate that the rhizosphere has higher microbial diversity than other rhizo-compartments 

(Bulgarelli et al. 2012, Lundberg et al. 2012, Schlaeppi et al., 2014, Edwards et al. 2014). This 

higher structural diversity could result in increased community stability under fluctuating 

environmental conditions. Increased diversity within the rhizosphere is assumed to be the result 

of distinctive environmental conditions which encompasses gradients of physicochemical 

conditions associated with distance from the plant root. These include gradients of oxygenation, 

carbon availability and pH, among others (Hartmann et al., 2009). 

 The addition of phosphorus to the wetland mesocosms resulted in several different 

functional community shifts as measured by Biolog
TM

 EcoPlate carbon source usage. Similar to 

what we observed in the structural community changes, altered community function in response 

to the phosphorus pulse was different among community types (rhizosphere, rhizoplane, 
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interstitial water) (Fig 6.7). The rhizoplane-associated microbial communities exhibited the most 

dramatic shift in carbon source utilization profiles in response to phosphorus loading, followed 

closely by the interstitial water communities. Rhizosphere-associated microbial communities 

remained the most stable over the experimental time period. Interstitial water-associated 

microbial communities from mesocosms planted with V. anagallis-aquatica showed an increase 

in metabolic diversity 7 days following exposure (Fig 6.9). Pre-treatment carbon source 

utilization profiles were well separated by both water quality treatment and plant species 

treatment for principal component analyses of microbial rhizoplane communities (Fig 6.7). 

However, after the phosphorus exposure, the distinction between water quality treatments 

dramatically decreased, while plant species-specific differentiation was retained. Although V. 

anagallis-aquatica-associated communities regained some of the functional differentiation 

between water quality treatments, P. arundinacea-associated communities retained the changes 

observed at 7 DAE until the final sampling event at 49 DAE.   

 As previously stated, rhizoplane-associated microbial communities exhibited the most 

dramatic functional community shift as a result of the phosphorus pulse (Fig 6.7 and 6.9). The 

metabolic diversity in microbial communities associated with all treatments decreased 

dramatically at 21 DAE. It appeared that by 49 DAE, metabolic diversity started to increase 

again in each of the P. arundinacea treatments, however V. anagallis-aquatica diversity 

measurements continued to decline. These trends were mirrored in measurements for average 

well color development, a calculation of total community consumption of the Biolog
TM

 EcoPlate 

carbon sources (Fig 6.9).  As in the interstitial water-associated microbial community functional 

profiles, pre-exposure communities exhibited clear groupings by water quality and plant species 

treatments when analyzed with PCA (Fig 6.7). However, post-exposure these distinctions were 
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lost, although mostly recovered by 49 DAE. Furthermore, post-exposure there was a reduction in 

variability among the mesocosm replicates receiving Doon water which did not occur in West 

Montrose treated mesocosms (Fig 6.7). 

 Unlike with the other two community types the rhizosphere did not exhibit plant species- 

specific or water quality-specific functional differentiation pre-exposure. Some shifts in 

functional community profiles were observed at 7 DAE, however this only applied to the 

microbial communities associated with the Doon P. arundinacea treatment. The grouping 

patterns for the other treatments remained the same throughout the experiment. However, 

differentiation of the Doon P. arundinacea-associated microbial community was visible again at 

49 DAE. The metabolic diversity of both P. arundinacea and V. anagallis-aquatica Doon-treated 

rhizosphere communities decreased 7 days following the phosphorus pulse, while West 

Montrose treated communities did not exhibit any significant change (but showed a trend 

towards increasing metabolic diversity). While diversity measurements remained relatively 

constant in the West Montrose-treatment microbial communities, Doon-treatment communities 

fluctuated between sampling events, showing an initial decrease in metabolic diversity 7 DAE 

followed by an increase at 21 DAE to pre-treatment levels, then another decrease and increase at 

49 DAE. Due to the fact that changes in the Doon treatments seemed to fluctuate over multiple 

time points, not just immediately after the addition of inorganic phosphorus. As such, the 

functional shifts observed at 7 and 49 DAE are likely the result of something else specific to the 

Doon treatment water besides the inorganic nutrient loads measured in the experiment. 

Unfortunately, this is one of the drawbacks associated with using experimental conditions that 

more closely mirror those of natural environments. By using water taken from natural sources 

instead of composing our own synthetic freshwater, we introduced more variables into the 
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experiment. As we were not able to complete a full analysis of biotic (e.g. quantification of 

viruses and grazers) and abiotic (e.g. heavy metals, dissolved organic carbon, inorganic 

micropollutants) parameters for all water we collected, we cannot comment on additional factors 

that may have contributed to the trends we observed in our dataset.  

 With regards to microbial community stability by rhizo-compartment, our functional 

community data closely resembled observations made from structural community profiles. The 

functional community characteristic of the rhizoplane changed the most following phosphorus 

addition. As well, the rhizosphere exhibited the least measureable functional shift following 

phosphorus exposure among the community types sampled. There are few studies available in 

the literature that assess the functional characteristics of more than one type of microbial 

community in association with the plant root. As such, it is difficult to contextualize these 

findings in a broader sense. As previously stated, the structural stability that has been observed 

for rhizosphere microbial communities may be a result of increased structural diversity within 

this rhizo-compartment (Bulgarelli et al., 2012; Lundberg et al., 2012; Schlaeppi et al., 2014; 

Edwards et al., 2014). It is possible that this may also explain why the rhizosphere appears to be 

more functionally stable as well.  Ecosystem diversity has been shown to be correlated positively 

with ecosystem stability (MacArthur, 1955; May, 1973). One possibility as to why we observe 

this correlation is due to functional redundancy with increased structural diversity (Briones and 

Raskin, 2003). Degens et al. (2001) found that functionally diverse soil microbial communities 

were more resistant (functionally) to perturbation from disturbance (dropping pH, increasing 

salinity, heavy metal contamination) than microbial communities which had less inherent 

functional diversity. Furthermore, Griffiths et al. (2000) found a positive correlation between 

high microbial diversity and community functional resilience. Community diversity in soil 
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samples were reduced artificially by fumigation with chloroform so that communities with 

varying levels of structural diversity were obtained. Communities with higher structural diversity 

were associated with increased denitrification, nitrification and methane oxidation. Furthermore, 

the more structurally diverse microbial communities were more resistant to perturbations by 

transient temperature increases (40°C) and CuSO4 addition, and demonstrated greater resiliency. 

Stability was determined by measuring community decomposition rates for grass residues before 

and several times after imposed stress.  

 Despite receiving the same water treatment and residing within the same mesocosm, the 

microbial community subtypes within this experiment responded very differently to the 

phosphorus addition (Fig 6.9). Metabolic diversity in water-associated microbial communities 

from V. anagallis-aquatica treatments increased, while those communities from P. arundinacea 

planted mesocosms exhibited no change. Rhizosphere and rhizoplane associated microbial 

communities exhibited a decrease in metabolic diversity following the phosphorus treatment. 

Although, in the rhizosphere this decrease was only associated with the Doon treatments and was 

smaller than the decrease observed within the rhizoplane microbial communities. We expected to 

see a similar change in functional measurements across all community types in response to 

phosphorus loading, or simply a lack of change in those communities which were more resistant 

to perturbation. The presence of opposite tendencies in different communities is perplexing. Due 

to the different physical, chemical and biological characteristics of each community type and the 

nature of the disturbance the phosphorus addition may have affected each community type 

differently. For example, the interstitial water communities exhibited significantly lower pre-

treatment total carbon source usage and metabolic diversity than the other community types 

(rhizosphere and rhizoplane). Microbial communities in water also typically experience lower 
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total microbial abundance and structural diversity than plant-associated communities (although 

we did not find this to be true in our measurements) (Wetzel, 1975; Wassel and Mills, 1983). 

Low metabolic activity and diversity associated with relatively high structural diversity in water 

associated communities could indicate metabolic suppression due to limited nutrient availability 

in water habitats. Aquatic environments are typically nutrient-poor and favour the growth of 

fastidious organisms that can grow slowly under nutrient-limiting conditions, such as oligotrophs 

(Roszak and Colwell, 1987). This is in contrast to organisms that can only grow at higher 

nutrient concentrations but can survive nutrient limitation by various physiological adaptations, 

which are termed eutrophs (Roszak and Colwell, 1987). The addition of phosphorus may have 

stimulated activity in the eutrophic portion of the water-associated microbial community 

resulting in an increase in metabolic diversity that we did not observe for the other community 

types. In contrast, the plant-associated microbial communities, which are not as nutrient-limited, 

would experience the phosphorus addition differently and thus respond accordingly. 

Furthermore, each community sub-types was structurally unique and there is some evidence that 

different groups of microorganisms may respond to changes in nutrient availability differently 

(Horner-Devine et al., 2003). The most important lesson from this data is that we cannot make 

generalizations about how a microbial community will react to something based on the response 

of other community types. Many studies observe microbial communities from strictly a 

functional or structural perspective and focus on a single community type. This only provides a 

small amount of insight into the complete system, as we have shown here that water quality, 

plant species and phosphorus loading impacts microbial communities differently depending on 

whether they are in the rhizosphere, rhizoplane or water phase of the wetland. Furthermore, 
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structural changes may not always reflect functional changes and a multifaceted approach to 

studying microbial communities increases our understanding of the complete system.  

 Adding phosphorus to the inflow water of the mesocosms reduced the concentration of 

reactive phosphorus present in the outflow water (Fig 6.10). Outflow TRP concentrations and 

removal percentages did not differ significantly among treatments. Pre-exposure outflow 

concentrations of TRP exceeded the inflow concentrations. This seems counterintuitive as we 

would expect that by increasing the amount of phosphorus entering the system we would also 

increase in the amount of phosphorus exiting the system. The most likely explanation for this is 

that the mesocosms were phosphorus-limited before the loading phase so microorganisms were 

actively trying to release phosphorus from organic molecules via mineralization or through 

solubilisation of bound inorganic phosphorus in soil  (Harder and Dijkhuizen 1983, Mohammadi, 

2012). These processes increased the inorganic phosphorus (TRP) in the system so that it would 

be available for the microbial community, but as a result, also increased the concentration of 

reactive phosphorus in outflow water. Once phosphorus was present in a readily acquirable form 

through the addition of inorganic phosphate in the inflow water, the microorganism and plants 

removed it from the system and the microorganisms stopped releasing additional phosphorus 

from the soil and organic phosphorus stores. This pattern of response to phosphorus loading was 

also observed in an experiment by Ahn et al. (2007) where either 2.4 mg/L or 0.5 mg/L of 

phosphorus was added to mesocosms planted with Schoenoplectus tabernaemontani. The 

phosphorus removal percentage was significantly higher in high phosphorus treatments (79% vs. 

-14%) while the amount of free phosphorus in the systems was comparable between treatments 

(0.89 mg/L of phosphorus in the high phosphorus treatment and 0.39 mg/L of phosphorus in the 

low phosphorus treatment). This experiment also used unplanted controls, and phosphorus 
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removal efficiencies were comparable between planted and unplanted systems. This indicates 

that the majority of the phosphorus removal was being carried out by the microorganisms in the 

system (combined with equivalent amounts of removal from soil binding in both planted and 

unplanted controls). Similarly, the contribution of total phosphorus retention in natural stream 

systems attributed to microbial uptake has been reported to be as high as 80 to 91%, with the 

remainder being attributed to abiotic processes (Elwood et al., 1981; Newbold et al., 1983).  

As stated previously, despite equivalent additions of P2O5 to both source waters, lower 

TRP concentrations were recorded in the Doon water treatment (Fig 6.10). The addition of 5 

mg/L of phosphorus as P2O5 resulted in lower measurements than the 5 mg/L in both source 

waters. However, the TRP concentration in West Montrose water was more than double that of 

what was measured in Doon water. Phosphate has a high affinity for binding to iron and 

aluminum under acidic conditions and calcium under basic conditions. The pH of both water 

treatments were slightly basic (pH 8.2-8.4) which indicates that chemical processes removing 

phosphorus as precipitate would be largely attributed to Ca
2+

 ions (Reddy et al., 1999). It is 

likely that the Doon site had higher water column concentrations of these dissolved ions, 

resulting in more inorganic phosphorus being removed from the system and lower resulting TRP 

concentrations being measured in this water quality treatment. This is an interesting observation 

as the poor water quality site actually exhibited a higher capacity to buffer against perturbations 

in water quality compared to the more pristine site.  

Although we did not intentionally add a pulse of inorganic nitrogen, we observed a spike 

in nitrate and unionized ammonia in water from both water quality sites three days after the 

phosphorus spike (Fig 6.11-6.13). We attributed this spike to rain events that occurred during 

that time which would have increased the amount of runoff into the Grand River. Despite not 
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having planned this spike, it provided valuable information that we were able to learn from. 

Unlike with the phosphorus addition, concentrations of nitrate and ammonia were higher in Doon 

water compared to West Montrose water, likely due to higher inputs at Doon compared to West 

Montrose (more remote, less populated, lower land use). Despite the difference in inorganic 

nitrogen as nitrate entering the mesocosms between water quality treatments, no differences were 

observed in mesocosm outflow levels of nitrate between the West Montrose and Doon-treated 

mesocosms. This indicates that both treatment systems were equally capable of handing the 

increased nitrate load. When the systems received inorganic nitrogen as nitrate, outflow levels 

dropped compared to previous time points where inflow nitrate levels were fairly low (7-10 

mg/L compared to 30-40 mg/L) (Fig 6.11). Similarly, removal percentages improved 

dramatically with nitrate loading in all mesocosms. This is a similar pattern to that observed with 

the phosphorus loading, indicating that when nitrate levels in the incoming water were low, more 

phosphorus was being released from the system, but when availability increased the nitrate was 

instead retained. Microbial populations are the primary drivers of nitrogen transformations in soil 

and are well equipped to release previously unavailable forms of nitrogen under limiting 

conditions (e.g. Kuypers et al., 2018).  A similar response was also observed with the increased 

unionized ammonia concentrations in mesocosm inflow water (Fig 6.13). However, the decrease 

in outflow water unionized ammonia concentrations following the increase in inflow 

concentrations was observed to a lesser extent in the West Montrose mesocosms compared to the 

Doon-treated mesocosms (especially the West Montrose P. arundinacea treatment).  This could 

be the result of differences in nitrogen-cycling microbial populations between the two different 

treatments with regard to ammonia transformations (nitrification), although more advanced 

methods of microbial community structural analysis would be required to confirm this 
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hypothesis. Furthermore, nitrification requires oxygen input, while nitrate removal does not 

(Jaimeson et al., 2003). Any differences in dissolved oxygen levels, or plant root-associated 

oxygenation between Doon and West Montrose could also lead to differences in ammonia 

removal efficiencies between the two treatments (Jaimeson et al., 2003). Plants also have 

different affinities for inorganic nitrogen assimilation as either nitrate or ammonia (Haynes and 

Goh, 1978).  Plant uptake and preference for nitrate and ammonia is species-specific and can be 

influenced by environmental factors such as temperature and pH, as well as by plant age (Haynes 

and Goh, 1978). Thus, differences in how the systems responded to the inorganic nitrogen influx 

as either nitrate or ammonia could also be influenced by assimilation of these compounds by 

plants. 

Unlike observations of nitrate and ammonia concentrations, at 3 DAE we only measured 

a spike in nitrite concentration in Doon-associated inflow water (Fig 6.12). Nitrite concentrations 

at West Montrose remained similar to previously recorded values. Historical measurements from 

the Doon site over our 2-year study period have consistently measured relatively high nitrite 

concentrations at Doon compared to other sites along the Grand River. This has been confirmed 

in provincial water quality monitoring network data (data not shown, provincial water quality 

network, 2012).  The differences between these two sites is likely a result of the nature of the 

inputs received by each site, with Doon receiving significant amounts of WWTP effluent which 

has been shown to contain elevated levels of nitrite (Allerman, 1985). The Doon-treated 

mesocosms tended to have better removal percentages for nitrite than the West Montrose-treated 

mesocosms during most sampling events. We suspect that this is the result of microbial 

communities associated with the Doon treatment being accustomed to the higher nitrite levels 

characteristic of that sampling location.  



 

278 
 

Fecal coliform concentrations in outflow water generally increased in all mesocosms 

regardless of treatment type following phosphorus loading (Fig 6.14). Fecal bacteria, like any 

other microorganism, require nutrients for growth. It appears that their proliferation within the 

mesocosms was stimulated by inorganic phosphorus addition. Similar findings were reported by 

Chudoba et al. (2013) who found that phosphorus addition as either inorganic or organic 

compounds stimulated fecal coliform growth circumstantially in constructed treatment wetlands 

of costal North Carolina. Interestingly, nitrogen addition did not result in the same effects. 

Similarly, Toothman et al. (2009) found that phosphorus loading in aquatic sediments, where 

phosphorus was previously limiting, was positively correlated with fecal coliform and fecal 

Enterococcus abundance within tidal creeks. While the mesocosms were capable of efficiently 

removing inorganic nutrient loads from inflow waters, the opposite response was observed for 

fecal coliform presence in outflow water. In constructed wetland systems receiving influent loads 

where high phosphorus levels are a concern, additional considerations may need to be made 

regarding the control of potential human pathogenic bacteria which may have previously not 

been a concern in the influent load.  

6.5 Conclusions 

We hypothesized that microbial communities associated with mesocosms adapted to 

either high or low water quality treatments from sites along the Grand River, ON would respond 

differently to phosphorous loading. Specifically, we predicted that the microbial communities 

associated with the water quality site experiencing greater anthropogenic impacts (Doon) would 

be more resistant to the effects of the phosphorus loading and potentially also have greater 

phosphorus removal capacities. However, evidence to support this hypothesis was not found. 

Structural and functional community shifts were observed in wetland plant-associated microbial 
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communities in response to phosphorus loading. However, the quantity and quality of these 

changes were dependent on the type of microbial community (not the water quality treatment), 

with rhizoplane and water- associated communities responding more dramatically than 

rhizosphere-associated communities. Furthermore, previous exposure to either high or low water 

quality or the presence of either P. arundinacea or V. anagallis-aquatica did not influence the 

ability of the wetland mesocosms to remove phosphorus from the system. All treatments 

performed equally well. Differences in removal capacities for nitrate and ammonia also did not 

differ between treatments. Nitrite removal efficiency was higher in the low water quality-treated 

mesocosms which experienced historically high nitrite levels. Phosphorus loading had a negative 

influence on fecal coliform abundance in wetland mesocosm outflow water, indicating the 

potential for phosphate influxes into naturally phosphorus-limited systems to stimulate coliform 

abundance in natural wetlands.  
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Chapter 7 

Summary and Reccomendations 

7.1 Research Hypotheses and Objectives 

The relevant hypotheses and objectives that were under investigation throughout this thesis 

research are as follows: 

3) Natural and constructed wetland systems highly impacted by anthropogenic activities will 

differ from less affected systems in community composition, function, remediation 

capabilities (ability to remove contaminants and pollutants from water) and response to 

environmental changes. 

a. Use an in situ field-based approach to examine similarities and differences among 

the microbial communities associated with a wetland plant (P. arundinacea) at 

sampling locations with contrasting water quality characteristics from a structural 

and functional perspective (Chapter 3). 

b. Use an ex situ mesocosm-based approach to look at structural and functional 

differences between  microbial communities associated with wetland plants 

treated with water from a low water quality sampling location and from a high 

water quality sampling location using lab-scale constructed wetland mesocosms 

(Chapter 5). The mesocosm-based approach will reduce some of the variability 

associated with field-based research and allow us to test the ability of the different 

wetland communities to remove contaminants. 

c. Use an ex situ mesocosm-based approach to examine how wetland-associated 

communities adapted to either high or low water quality conditions will respond 

to environmental perturbations by simulating a rain event with associated run-off . 
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This will be achieved by loading inorganic phosphorus into the mesocosms. 

Changes to community structure, function and remedial capabilities will be 

monitored after the phosphorus loading event (Chapter 6).  

4) The microbial community composition of wetland plants will differ among species. 

Different plant species will harbour unique microbial communities that vary in their 

community compositions, functionality, remediation capabilities and in their response to 

perturbations in water quality. 

a. Use an in situ field-based approach to compare community structural and 

functional characteristics between different plant species (I. versicolor, P. natans, 

V. spicata) at field locations with contrasting water quality characteristics 

(Chapter 4). 

b. Use an ex situ lab-based approach to compare the community structure, function 

and remediation capabilities of wetland-associated microbial communities in 

mesocosms planted with different plant species (P. arundinacea and V. anagallis-

aquatica) receiving contrasting water quality treatments (Chapter 5). 

c.  Compare the ability of high and low water quality-treated microbial communities 

associated with either P. arundinacea or V. anagallis-aquatica to resist 

perturbations in water quality by loading mesocosms with phosphorus (Chapter 

6). 

 

 

 



 

287 
 

7.2 Summary of Major Findings 

Summarized below are the major conclusions and trends which have resulted from this research. 

I have presented them as they correspond to the major research hypotheses and objectives stated 

above. 

1a. Research objective 1a was addressed in Chapter 3, where rhizoplane and rhizosphere 

communities associated with P. arundinacea and river water-associated microbial communities 

from the Grand River were examined at 6 different sampling locations. These sampling locations 

had been given water quality designations of high, moderate or poor by the Grand River 

Conservation Authority based on their inorganic nutrient pollution levels from historical data. 

Community type (e.g. rhizoplane, rhizosphere or water) was the primary determinant of 

microbial community structural and functional characteristics. Structural community profiles and 

functional carbon source utilization profiles clustered together with other samples from the same 

community type during all sampling events. Microbial community structural profiles from all 

sample types exhibited some sampling location-specific secondary clustering patterns, however 

these did not relate to site water quality designations. The only exception to this trend was during 

the sampling event in July 2015, where rhizosphere samples exhibited secondary sub-groupings 

related to site water quality designations. However, further investigation into the data revealed 

that the relationship among the rhizosphere microbial community structural profiles in July was 

probably the result of physicochemical gradients along the Grand River (e.g. pH, dissolved 

oxygen and conductivity) and not due to the inorganic nutrient loads at each site. Inorganic 

nitrogen and phosphorus concentrations did not follow expected trends among sites with regard 

to water quality designations. Sample location and water quality designations did not clearly 
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influence carbon source utilization profiles from any sample type during any of the sampling 

events. 

1b. Research objective 1b was met in Chapter 5 whereby lab-scale wetland mesocosms were 

planted with P. arundinacea and V. anagallis-aquatica and exposed to water from a high water 

quality site or a low water quality site for 91 days. The results from this phase of the research 

revealed a clear effect of water quality treatment on the structural characteristics of rhizoplane, 

rhizosphere and interstitial water-associated microbial communities. The influence of water 

quality treatment on the structure of these microbial communities was apparent as early as 14 

DAE. The influence of water quality treatment on community functional characteristics was 

observed to the greatest extent in the rhizoplane and to a lesser extent in the rhizosphere and 

interstitial water microbial communities. The effects of water quality treatments on functional 

carbon source utilization profiles associated with microbial communities were greater in P. 

arundinacea-associated communities compared to V. anagallis-aquatica-associated 

communities.  Different water quality treated mesocosms did not differ in their abilities to 

remove inorganic nutrients or total fecal coliforms from incoming water. However, the amount 

of E. coli-specific genetic material detected in the rhizoplane, rhizosphere and interstitial water 

of wetland mesocosms differed by water quality treatment. Higher loads of E. coli were 

measured in the high water quality treatment-associated samples for interstitial water and 

rhizosphere soil (only associated with P. arundinacea). However, concentrations of E. coli 

detected in the rhizoplane of V. anagallis-aquatica were higher in the poor water quality 

treatment.  

1c. Objective 1c was addressed in Chapter 6 where lab-scale wetland mesocosms adapted to 

either high or low water quality conditions were exposed to 5mg/L of inorganic phosphorus and 
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the associated microbial communities were monitored for 49 DAE. The removal of phosphorus 

from incoming water did not differ between the water quality treatments, both of which 

responded to the increased phosphorus concentration in the incoming water by increasing the 

efficiency of phosphorus removal for the system. Structural and functional community shifts 

occurred in response to phosphorus loading within both water quality treatments. Structural and 

metabolic diversity within the rhizoplane was reduced following phosphorus exposure. Within 

the rhizosphere, structural diversity was unaffected. However, metabolic diversity was reduced, 

but only in those communities receiving the poor water quality treatment. There was no 

difference between the water quality treatments in the ability of mesocosms to remove fecal 

coliforms. However, all mesocosms experienced an increase in these microorganisms in response 

to phosphorus loading.  

2a. Objective 2a was addressed in Chapter 4 where three species of wetland plants (I. versicolor, 

P. natans and V. spicata) were selected at two sampling locations with contrasting water quality 

characteristics. Structural community data revealed a strong influence of sampling location on 

the structural community profiles from all sample types and all plant species. However, the 

degree of structural similarity between microbial communities from the two different sampling 

locations differed by plant species. Structural similarity between sampling locations was highest 

for V. spicata and lowest for I. versicolor, while P. natans was intermediate. Similarily, the 

influence of sampling location on functional community characteristics was plant species-

specific. V. spicata did not exhibit differences in carbon source utilization by sampling location. 

I. versicolor exhibited distinct carbon source utilization profiles for rhizosphere and rhizoplane 

communities by sampling location. Alternatively, P. natans only exhibit sampling location-

specific effects on carbon source utilization profiles within the rhizoplane. The presence of 
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potentially pathogenic microorganisms associated with fecal contamination differed between the 

plant species. Specifically, Enterococcus species genetic material was completely absent from 

the rhizosphere of P. natans at both sampling locations.  

2b. Research objective 2b was addressed in Chapter 5 where P. arundinacea and V. anagallis-

aquatica were exposed to water from a high and low water quality site in lab-scale wetland 

mesocosms. Microbial community structural profiles were primarily determined by community 

type and secondarily by water quality treatment. Evidence for plant species-specific influences 

on microbial community structure were not apparent until 91 DAE and at that time, only in 

rhizoplane and interstitial water microbial communities. Functional community profiles were 

distinct between the two plant species for rhizoplane-associated microbial communities. P. 

arundinacea exhibited distinct carbon source utilization profiles by water quality treatment in 

rhizosphere and interstitial water-associated microbial communities as well, while V. anagallis-

aquatica did not.  

2c. Research objective 2c was addressed in Chapter 6 where lab-scale wetland mesocosms 

planted with P. arundinacea and V. anagallis-aquatica adapted to either high or low water 

quality conditions were exposed to 5 mg/L of inorganic phosphorus. Structural community 

changes as a result of the short term phosphorus loading were similar for both plant species-

associated microbial communities. However, functional community shifts in carbon source 

utilization following phosphorus exposure differed by plant species. Specifically, the microbial 

communities associated with the P. arundinacea treatment receiving poor water quality inflow 

water seemed to resist changes especially within the rhizosphere and rhizoplane. Furthermore, V. 

anagallis-aquatica-associated microbial communities in interstitial water exhibited an increase 

in the usage of nitrogenous carbon sources, while P. arundinacea-associated communities 
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exhibited a decrease, following phosphorus loading. Furthermore, metabolic diversity in P. 

arundinacea-associated rhizoplane microbial communities showed an increase at 49 DAE 

following the initial decreased seen in all rhizoplane microbial communities at 21 DAE. This 

rebound observed in the P. arundinacea-associated rhizoplane microbial communities was 

absent from those associated with V. anagallis-aquatica. Furthermore, metabolic diversity in V. 

anagallis-aquatica-associated mesocosm interstitial water increased following phosphorus 

loading, while P. arundinacea-associated communities did not exhibit any change.  

7.3 Significance of the Research 

The research presented in this thesis represents the first studies to assess the effects of 

water quality associated with anthropogenic impact, from a combined structural and functional 

microbial community perspective, on multiple microbial community types within wetland-

associated habitats. The limited research currently available in the literature addressing this topic 

only considers a single microbial community type, typically rhizosphere or interstitial water 

communities, in isolation. We have shown that it is important to monitor the impact of an 

environmental stressor on all applicable microbial community types as they respond in an 

individualistic manner to the same condition. 

Our findings have shown that the microbial communities in association with different 

species of wetland plants respond to environmental stressors (in the form of changes to water 

quality or sampling location with different anthropogenic impacts) in a plant species-dependent 

manner. More specifically, the degree of structural and functional changes experienced by the 

associated microbial communities in response to the external stimulus will differ depending on 

the associated plant species. The research presented in this thesis is the first time that this has 
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been demonstrated in the literature for plants and microbial communities within a wetland 

environment. 

Significant quantities of DNA from Salmonella spp., E. coli and Enterococcus spp. were 

associated with the rhizosphere (except for P. natans and Enterococcus) and rhizoplane 

microbial communities of our study species. This included evidence from mesocosm studies 

and/or field studies for the following wetland plant species: I. versicolor, P. arundinacea, P. 

natans, V. anagallis-aquatica and V. spicata.  There have been only a few reports in the literature 

indicating that Salmonella and Enterococcus occur naturally (i.e. without experimental 

introduction) within the rhizosphere and/or rhizoplane of some species of plants (Germida and 

Sicilano, 2001; Berg et al., 2002; Maougal et al., 2014; Mukhtar et al., 2016). We have provided 

the first evidence for this among wetland plant species, and for Salmonella and E. coli, within the 

rhizoplane biofilm specifically. Furthermore, to the best of our knowledge, this is the first time 

the exclusion of an entire genus of bacteria (Enterococcus) from the rhizosphere of a specific 

plant species (P. natans) has been reported.  

7.4 Recommendations for Future Research 

1. One of the major themes throughout the different experiments conducted was that 

structural and functional characteristics of microbial communities from wetlands are 

determined by the community type. Water quality, sampling location or plant species 

may also influence structural and functional community characteristics under different 

circumstances. As such, we recommend that when investigations are being made into the 

effects of a particular set of environmental circumstances (e.g. contaminant loading, 

temperature, physical disturbance etc.) on the structure and function of wetland-
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associated microbial communities (natural or constructed), the investigators should 

examine all associated community types separately, as they seem to respond differently 

to the same environmental changes. Furthermore, if resources do not permit this then the 

rhizoplane microbial community seems to be the most sensitive to environmental change 

from our data. If investigators are only interested in seeing whether or not a specific set 

of conditions causes an effect in microbial community structure and function the 

rhizoplane may be most applicable as a conservative indicator.  

2. Plant species were shown to be differentially affected by the water quality treatments and 

by short term phosphorus loading. As such, when investigating the effects of 

environmental change on natural or constructed wetland-associated microbial 

communities, it is important to sample communities from more than one plant species as 

we have shown that rhizoplane and rhizosphere microbial community structure and 

function will respond to environmental changes differently depending on the associated 

plant species.  

3. Our experiment with short term phosphorus loading in wetland mesocosms showed that 

the addition of inorganic phosphorus to wetland systems can result in an increase in the 

concentration of fecal coliforms exiting the system. Special attention should be paid to 

natural or constructed wetland systems typically limited in reactive phosphorus, when 

experiencing an event temporarily increasing the amount of phosphorus available in that 

system. Although the wetland may be capable of removing the additional phosphorus 

load, a corresponding increase in fecal coliforms entering receiving water bodies may 

present a public health concern.   
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7.5 Future Directions 

1. Differences in the removal of inorganic nutrients among wetland mesocosms containing 

different plant species or receiving different water quality treatments were not observed. 

This could be due to the relatively small differences in inorganic nutrient concentrations 

occurring between the two water quality treatments used in this study. It is possible that 

with a more significant difference between the inorganic nutrient concentrations of the 

different water quality treatments, a difference in removal capabilities between the water 

quality treatments may be observed. Future research should use wetland mesocosms 

planted with P. arundinacea and V. anagallis-aquatica receiving either synthetic high 

and low water quality treatments with greater differences in inorganic nutrient 

concentrations or use secondary treated WWTP effluent of different strengths (e.g. full 

strength vs. 1/10) to better observe potential differences among treatments.  

2. One of the most interesting findings that came out of this research was that the 

rhizosphere of P. natans does not contain Enterococcus. Future research should 

investigate the cause of this absence. The most likely causes are competitive exclusion or 

the production of an antimicrobial compound by an organism specific to this rhizosphere 

community. Future research should focus on determining why Enterococcus is absent 

from this rhizosphere community and whether or not this mechanism may have an 

application in constructed wetland technology or public health. 
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Appendix A: Supplementary Tables 

Table A1. Factor Loadings and Eigenvalues for the first two principal components of PCAs of 

Biolog
TM

 Carbon Source Utilization Profiles of Microbial Communities in the Rhizosphere of P. 

arundinacea.  
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Table A2. Factor Loadings and Eigenvalues for the first two principal components of PCAs of 

Biolog
TM

 Carbon Source Utilization Profiles of Microbial Communities in the Rhizosphere of P. 

arundinacea.  
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Table A3. Factor Loadings and Eigenvalues for the first two principal components of PCAs of 

Biolog
TM

 Carbon Source Utilization Profiles of Microbial Communities in Grand River Water. 
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Table A4. Factor Loadings and Eigenvalues for the first two principal components of PCAs of 

Biolog
TM

 Carbon Source Utilization Profiles of Microbial Communities in all Sample Types 

obtained from the Grand River Water.  
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Table A5. Physicochemical Characteristics of the Water Column During Sampling Events at Six 

Study Sites in the Grand River Watershed. 
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Table A6. Physicochemical Characteristics of Pore-Water during Sampling Events at Six Study 

Sites in the Grand River Watershed. 
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Table A7. Factor Loadings and Eigenvalues for the First Two Principal Components of the PCA for 

Biolog
TM 

Carbon Source Utilization by Microorganisms Present in all Sample Types and those Associated 

with P. natans, V. spicata and I. veriscolor Individually from Sampling in October and November 2015.  
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Table A8. Factor Loadings and Eigenvalues for the First Two Principal Components of the PCA 

for Biolog
TM 

Carbon Source Utilization by Microorganisms Present in Mesocosm Rhizoplane 

Samples at 0, 49 and 91 DAE to Different Water Quality Sources. 

 

* Carbon sources contributing significantly to positive PC scores along an axis are underlined. Carbon sources 
contributing significantly to negative PC scores are in bold. 
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Table A9. Factor Loadings and Eigenvalues for the First Two Principal Components of the PCA 

for Biolog
TM 

Carbon Source Utilization by Microorganisms Present in Mesocosm Rhizosphere 

Samples at 0, 49 and 91 DAE to Different Water Quality Sources.  

* Carbon sources contributing significantly to positive PC scores along an axis are underlined. Carbon sources 
contributing significantly to negative PC scores are in bold. 
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Table A10. Factor Loadings and Eigenvalues for the First Two Principal Components of the 

PCA for Biolog
TM 

Carbon Source Utilization by Microorganisms Present in Mesocosm Water 

Samples Including Interstitial and Inflow Water at 0, 49 and 91 DAE to Different Water Quality 

Sources.  

* Carbon sources contributing significantly to positive PC scores along an axis are underlined. Carbon sources 
contributing significantly to negative PC scores are in bold. 
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Table A11. Factor Loadings and Eigenvalues for the First Two Principal Components of the 

PCA for Biolog
TM 

Carbon Source Utilization by Rhizoplane Microorganisms Associated with P. 

arundinaceae and V. anagallis-aquatica at 0, 49 and 91 DAE to 5 mg/L of Phosphorus. 
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Table A12. Factor Loadings and Eigenvalues for the First Two Principal Components of the 

PCA for Biolog
TM 

Carbon Source Utilization by Rhizosphere Microorganisms Associated with 

P. arundinaceae and V. anagallis-aquatica at 0, 49 and 91 DAE to 5 mg/L of Phosphorus. 
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Table A13. Factor Loadings and Eigenvalues for the First Two Principal Components of the 

PCA for Biolog
TM 

Carbon Source Utilization by Interstitial and Inflow Water Microorganisms 

Associated with P. arundinaceae and V. anagallis-aquatica at 0, 49 and 91 DAE to 5 mg/L of 

Phosphorus. 

 


