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Abstract 

Virginia Mallow (Sida hermaphrodita) is a perennial herb of the Malvaceae family that is native 

to riparian habitats in northeastern North America. Throughout most of its geographical distribution 

however, it is considered threatened and only two populations are known from Canada. The biology and 

ecology of S. hermaphrodita are still poorly understood and although few studies have been performed to 

determine the factors that contribute to the species rarity, it is considered threatened potentially due to the 

loss of habitat caused by exotic European Common reed (Phragmites australis subsp. australis) invasion. 

Allelopathic and phytotoxic conditioning of soils to inhibit native species are mechanisms that have been 

proposed to explain the invasion success of P. australis. To quantify the interaction between the two 

species and assess the capacity for P. australis to inhibit S. hermaphrodita performance through 

belowground soil modifications, a series of field vegetation surveys were conducted at the Taquanyah 

Conservation Area during the growing seasons of 2016, 2017, and 2018. Field performance findings 

suggested that proximity to P. australis had no significant effect on S. hermaphrodita seedling mortality 

or seedling root arbuscular mycorrhizal colonization. A supplementary greenhouse study was also 

conducted to examine plant performance and mycorrhizal colonization of both species in soils that 

correspond to different soil-vegetation levels ranging between pure stands of S. hermaphrodita to pure 

stands of P. australis in order to determine the potential for P. australis to allelopathically modify soils 

making them inhospitable for native species. The results provided no evidence to support previous soil 

conditioning reports since performance and arbuscular mycorrhizal colonization of both species were 

inversely promoted in their competitor’s soil. Soil nutrient analysis coupled with the plant performance 

findings suggested that P. australis may not be as strictly competitive as previously believed since 

evidence of a belowground facilitative interaction between S. hermaphrodita and P. australis has been 

observed. Based on the results concluding that belowground conditions did not exclude native species, we 

believe aboveground competition for light is not only the main factor contributing to S. hermaphrodita’s 

limited distribution where it occurs with P. australis, but also key to the invasion success of P. australis. 
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Future research and management treatments focussed on disrupting P. australis’ competitive exclusion of 

light would be beneficial to the recovery of endangered species like S. hermaphrodita.     
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Chapter 1: General Introduction 

1.1 Biology, Ecology and Conservation Status of Sida hermaphrodita 

1.1.1 Name and taxonomic history 

Sida hermaphrodita, also commonly known as Virginia mallow, is classified as a member of the 

Malvaceae family. It was first described as a species of Napaea by Linnaeus in 1753.  Napaea 

hermaphrodita was originally described together with Napaea dioica, but they were distinguished from 

one another due to N. hermaphrodita’s hermaphroditic flowers (Linnaeus, 1753). Napaea hermaphrodita, 

however, was later transferred to the genus Sida by Henry Hurd Rusby in 1894 (Rusby, 1894). The genus 

Sida is considered one of the five largest genera of the Malvaceae family along with Abutilon, Hibiscus, 

Nototriche and Pavonia. Unfortunately, due to poorly defined distinguishing morphological 

characteristics, new species were uncritically placed within these genera posing significant problems for 

future classifications (Fryxell, 1997). Following their separation for example, Sida hermaphrodita and 

Napaea dioica have been misidentified in both herbarium specimen and botanical literature. The genus 

Sida includes a diverse assemblage of species and therefore has been further subdivided into subsections. 

Paul Fryxell placed Sida hermaphrodita alone within the Pseudo-napaea section due to its morphological 

distinctiveness (Fryxell 1978; Fryxell 1985; Fryxell and Fuertes, 1992; Fryxell 1997). Two more recent 

molecular phylogenetic studies corroborated this judgement of the distant relation between S. 

hermaphrodita and the core genus Sida and suggested that S. hermaphrodita along with the 

biogeographically separate Sida hookeriana Miguel, Sidasodes colombiana Fryx. & Fuertes, and 

Sidasodes jamesonii (E.G. Baker) Fryx. & Fuertes may form a sister clade to the “Plagianthus alliance" 

(Aguilar et al., 2003; Tate et al., 2005). Most recently however, due to S. hermaphrodita’s morphological 

and biogeographical uniqueness from all other members of the Sida core clade and other closely related 

genera including Sidasodes, Lawrencia, Plagianthus, Hoheria, Asterotrichion and Gynatrix, Weakley et 

al. (2017), proposed a transfer to classify S. hermaphrodita within a monotypic, isolated, North American 
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temperate genus called Ripariosida. Due to the recent nature of this proposed name change, however, to 

avoid confusion, the species will be referred to as Sida hermaphrodita throughout this document.   

1.1.2 Plant description 

Sida hermaphrodita is a tall perennial species native to North America that can reach heights of 

1-4 meters (COSEWIC, 2010). The seedling roots develop initially a vertical tap root; however, the lateral 

branches develop plagiotropically (horizontally spreading) (Stevens et al., unpublished). The root system 

within the mature stands of S. hermaphrodita consists of a horizontal network occupying the top 40 cm of 

the soil (Stevens et al., unpublished). Mucilage cells are abundant in the cortex parenchyma. Due to the 

large amount of secondary phloem produced by the vascular cambium, the roots can grow up to 2 cm in 

diameter during the first growing season. The ring-porous wood and seasonal activity of the vascular 

cambium make the annual rings very clear, facilitating the determination of root age (Stevens et al., 

unpublished). The adventitious bud primordia which are responsible for vegetative reproduction, develop 

on the entire length of the root but are found to be more abundant in the vicinity of the hypocotyl (Stevens 

et al., unpublished).  

The erect stems of S. hermaphrodita have a relatively common eudicot structure with extensive 

pith at the center. The medullary rays interrupt the cylindrical structure of the intra and inter-fascicular 

vascular cambium, and the inner layers of the cortex contain mucilage cells (Stevens et al., unpublished). 

The stems and leaves also have stellate trichomes with 4-5 branches giving the plant surface a shiny 

appearance and velvety texture. These trichomes, similarly to the stomata, are present on both the adaxial 

and abaxial leaf surfaces (Franzaring et al., 2014). The stipules are linear-lanceolate and approximately 3-

4 mm in length. The stipules are free from the petioles and can be up to 0.9 mm shorter than the petioles 

(eFlora, 2016). The leaves grow alternately on the stem and slightly resemble maple leaves due to their 

palmate venation and deep lobes (the only species in the genus with palmately lobed leaves) (Fryxell, 

1997; NatureServe, 2016a). The leaves range from 10-20 cm in length and have approximately 3-7 lobes 

that are irregularly serrate (Fryxell, 1997; NatureServe, 2016a; eFlora, 2016). 
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The axillary flowers of S. hermaphrodita are present on terminal corymbose panicles that are 

further sub-divided into umbelliform clusters of 2-10 flowers. The calyx is 5-lobed, 4-5 mm long, and 

velutinous due to the presence of hairs. The 5 petals are white, obovate and 6-10 mm long. The flowers 

are hermaphroditic with a monadelphous androecium and a gynoecium consisting of 6-10 carpels with 

capitate stigmas (Fryxell, 1997; NatureServe, 2016a; eFlora, 2016). These carpels produce a schizocarpic 

fruit that separates into 6-10 mericarps, each containing one seed (NatureServe, 2016a; eFlora, 2016). The 

seeds of S. hermaphrodita are red-brown with a hard, impermeable seed coat consisting of one palisade 

and one subpalisade cell layer. This seed coat has been observed in other Sida species and Malvaceae and 

is hypothesized to play a role in water impermeability and physical seed dormancy (Savchenko and 

Dimitrashko 1973; Egley and Paul 1982; Kurucz and Fári, 2013; Baskin and Baskin 2014).     

1.1.3 Geographical distribution in North America 

Sida hermaphrodita is native to the northeastern United States and southeastern ON. Its 

distribution is centered around the Great Lakes drainage basin, where is has been able to migrate 

throughout the Mississippi and Atlantic watersheds by way of downstream waterways. The species has 

been documented to occur in riverine habitats and floodplains east of the Mississippi river in the United 

States. Past reports state that its most extensive populations are located along the Kanawha and Ohio 

rivers in West Virginia (Spooner et al., 1985; NatureServe, 2016a), however, the native range of the 

species also includes Pennsylvania, Maryland, District of Columbia, Virginia, Indiana, Ohio, Michigan 

and Kentucky (Thomas, 1979; Spooner et al., 1985; Gleason and Cronquist, 1991; Bickerton, 2011; Voigt 

et al., 2012; NatureServe, 2016a; USDA, 2017).  

Sida hermaphrodita is also native to southern Ontario, Canada which is the northernmost part of 

its distribution in North America. In Canada, S. hermaphrodita has been documented only in two 

locations situated approximately 35 km apart. The smaller of the two populations is located on a 

privately-owned quarry and an adjacent hydro corridor in the Niagara region. The larger population is 
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located at the Taquanyah Conservation Area in Haldimand County, which is managed by the Grand River 

Conservation Authority (Bickerton, 2011; Environment Canada, 2015; NatureServe: 2016a).  

1.1.4 Geographical distribution outside North America 

Outside of North America, Sida hermaphrodita was introduced as a cultivated plant to areas of 

the former Soviet Union in the 1930s, and to Poland in the 1950s (Borkowska and Styk, 2006). Initially, 

S. hermaphrodita was used to produce textile fibers, as fodder and also as a melliferous plant due to its 

long flowering period and large nectar production (Oleszek et al., 2013; Packa et al., 2014; Jablonowski et 

al., 2017). Since it was introduced over 50 years ago, research on the species has increased in several 

European countries. In Austria, Hungary and Lithuania, the species is only cultivated on a few hectares, 

however, in Germany, S. hermaphrodita is grown on approximately 100-150 ha comprised of 

experimental field sites and seed production plantations (Nahm and Morhart, 2018). The largest 

plantation, where most of the research activities have been performed to date, is located in Poland where 

S. hermaphrodita occupies more than 750 ha of land (Igliński et al., 2011; Franzaring et al., 2015). Due to 

its high cellulose content S. hermaphrodita has been identified as advantageous to the pulp and paper 

industry (Czarnecki and Dukarska, 2010; Smolińskiet al., 2011; Packa et al., 2014). Additionally, this 

species has demonstrated an ability to accumulate toxic chemicals and heavy metals from polluted soils, 

indicating its suitability for use in phytoremediation of degraded habitats (Antonkiewicz and Jasiewicz, 

2002; Kocoń and Matyka, 2012; Werle et al., 2016). Furthermore, ongoing research is being conducted on 

S. hermaphrodita as a producer of bioenergy due to its wood-like, higher yield biomass in comparison to 

currently used energy plants such as corn (Borkowska et al., 2009; Oleszek et al., 2013; Barbosa et al., 

2014; Szyszlak-Bargłowicz et al., 2015; Jablonowski et al., 2017). Notwithstanding its utility with respect 

to several industrial applications, S. hermaphrodita is classified as an invasive species in the Czech 

Republic (DAISIE, 2015; Matthews et al., 2015; Catalogue of Life, 2017).     
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1.1.5 Conservation status in North America 

1.1.5.1 Canada 

Considering its limited distribution in Canada, the species is listed under the federal Species at 

Risk Act (SARA) and, the provincial Endangered Species Act (ESA) as “endangered”, meaning that S. 

hermaphrodita is facing imminent extirpation or extinction. Following the assessment by the Committee 

on the Status of Species at Risk in Ontario, in 2009, a recovery strategy was formulated for Virginia 

Mallow in the province (Bickerton, 2011). Resulting from this, an Ontario provincial government 

response statement was released acknowledging the information outlined in the strategy and declaring 

actions the government will take to help protect and recover Virginia Mallow. Some of the actions 

include educating other agencies and developing new protection regulations (Ontario Ministry of Natural 

Resources, 2011). Recently a federal recovery strategy was released for Virginia Mallow in order to 

improve conservation and recovery in Canada (Environment Canada, 2015). 

1.1.5.2 U.S.A. 

As previously mentioned, S. hermaphrodita’s distribution has been documented to extend West 

through Indiana, East to Maryland, South to Tennessee and its northernmost distribution is found in the 

Carolinian zone of Southwestern Ontario (Thomas 1979; Spooner et al. 1985; Gleason and Cronquist 

1991). According to NatureServe (2016a), S. hermaphrodita is rare throughout most of its native range 

and it is currently assessed as Vulnerable in Ohio, Imperiled in Kentucky, West Virginia, and 

Pennsylvania, Critically Imperiled in Indiana, Maryland, and Virginia, and Possibly Extinct in Tennessee 

and Washington D.C. 

1.1.5.3 Factors contributing to its rarity 

Several assessments of the species have been made to narrow down possible threats that may 

have contributed to the species’ rarity. To some degree, the species has been limited by its preference for 

riparian and floodplain habitats within the Carolinian zone of Canada and the U.S.A. Although the species 

has been described as thriving in riparian habitats with a degree of moderate human disturbance, human 
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activities such as development, methods of flood control and site maintenance have reduced the natural 

habitat throughout the plant’s range (Bickerton 2011; Environment Canada, 2015; NatureServe, 2016a). 

In previous reports, it was suggested that different biological factors could be responsible for the 

limited distribution of the species including specific soil requirements and low seed germination rates 

(Spooner et al., 1985; Kujawski et al. 1997; Bickerton, 2011). Recent studies however, have revealed that 

S. hermaphrodita has efficient vegetative and sexual propagation strategies (Packa et al., 2014; Stevens et 

al., unpublished) in addition to a capacity to tolerate low moisture as well as poor and moderately 

contaminated soils (Antonkiewicz and Jasiewicz, 2002; Kocoń and Matyka, 2012; Bickerton, 2011; 

Cetner et al., 2014).     

It has been suggested by the Ministry of Natural Resources (2011), that the largest threat to Sida 

hermaphrodita populations in Canada is due to the loss of habitat as a result of invasive species. The 

increasing abundance of the Common Reed (Phragmites australis (Cav.) Trin. Ex Steud.) has become a 

concern due to its rapid and aggressive spread throughout North America. At the larger Canadian 

population of S. hermaphrodita located at the Taquanyah Conservation Area, P. australis has increased 

its abundance surrounding S. hermaphrodita stands, suggesting that it may be competing with S. 

hermaphrodita for light, space and nutrients (Bickerton, 2011; Environment Canada, 2015). This thesis 

will further explore the interaction taking place between S. hermaphrodita and P. australis at Taquanyah 

Conservation Area.    

1.1.6 Habitat and vegetation 

Virginia mallow is generally found in floodplains, bottomlands and riparian areas that are 

subjected to periodic flooding. Although the species prefers open sunny areas, it also survives in partial 

shade (Bickerton, 2011; Environment Canada, 2015). As previously mentioned, although human 

development continues to limit S. hermaphrodita’s native habitat, this species is capable of surviving in 

disturbed habitats including railroad banks, roadside ditches and infrastructure corridors (Bickerton, 2011; 

Environment Canada, 2015; NatureServe, 2016a).   
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Sida hermaphrodita has been found to be capable of growing in a wide range of conditions. It can 

tolerate soil pH values between 5.4 and 7.5 and can grow in a variety of soil textures including silt loam, 

sandy clay loam, and clay loam (Bickerton, 2011). This species has the capacity to grow in poor soil 

conditions with low organic matter in addition to sewage sludge containing elements such as copper, iron 

and nickel (Spooner et al., 1985; Borkowska and Wardzinska, 2003; Bickerton, 2011). Additionally, it 

has been previously reported that both natural and cultivated populations require a significant amount of 

water for growth (Spooner et al., 1985), however, a recent study has determined that S. hermaphrodita 

can handle reduced moisture conditions when planted in poor soils (Cetner et al., 2014). 

The dominant vegetation present at both of the two populations of S. hermaphrodita in Ontario 

has also been documented. The location of the first population in the Niagara region, is a previously 

disturbed site where the vegetation grows on shallow soils over limestone. The dominant species present 

here are open meadow species including, Fuller’s Teasel (Dipsacus fullonum L.), Queen Anne’s Lace 

(Daucus carota L.), Gray Dogwood (Cornus racemosa Lam.), Staghorn Sumac (Rhus typhina L.) and 

goldenrods (Solidago spp.) (Bickerton, 2011). At the second of the two populations located in Haldimand 

County, most of the vegetation occurs within a Forb Mineral Meadow Marsh (MAM 2-10) and the 

dominant species include Broadleaf Cattail (Typha latifolia L.), Common Reed (Phragmites australis), 

Purple Loosestrife (Lythrum salicaria L.), Spotted Touch-me-not (Impatiens capensis Meerb.), Fuller’s 

Teasel (Dipsacus fullonum) Canadian Goldenrod (Solidago canadensis L.), Reed Canary Grass (Phalaris 

arundinacea L.), Black Walnut (Juglans nigra L.), Redosier Dogwood (Cornus sericea L.) and Staghorn 

Sumac (Rhus typhina) (Bickerton, 2011; Stevens et al., 2017).           

1.1.7 Growth and development 

As a perennial plant, S. hermaphrodita continues to grow every year and cultivated plants have 

been documented to live up to 20 years (Borkowska et al., 2009). S. hermaphrodita produces plagiotropic 

roots that persist underground through the winter to form buds that will develop into new shoots in the 

next year. Each spring, in late April or early May, new seedlings also emerge in the population from 
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Taquanyah (Stevens et al., 2017a). Plants growing from seeds only produce one stem in their first year of 

growth, however, stem density in consecutive years of growth has been observed to exceed more than 

twenty stems per plant (Borkowska et al., 2009). Due to the nature of the species’ root system, 

populations of S. hermaphrodita are clonal, which makes it very difficult to distinguish mature 

individuals without using molecular markers (Spooner et al., 1985; Bickerton, 2011; Stevens et al., 

unpublished manuscript).  

Shoots continue to grow throughout the summer reaching heights of up to 4 meters (Borkowska 

and Molas, 2012), however, it has been found that their growth begins to slow down in the autumn 

months during which time the leaves are shed (Franzaring et al., 2014). Several studies have determined 

that depending on the environmental ground and climate conditions, S. hermaphrodita has a higher dry 

matter yield ranging between 9-20 tonnes per hectare, when compared to various other plant species 

(Borkowska and Wardzinska, 2003; Borkowska et al., 2009; Slepetys et al., 2012; Borkowska and Molas, 

2013).  Sida hermaphrodita has also been observed to produce taller plants and increased stem densities 

during its 3rd and 4th year of production (Borkowska et al., 2009). Due to the allocation of biomass to the 

stems of S. hermaphrodita, this species accumulates a lower ash content and a higher fibre content when 

compared to other bioenergy plants (Franzaring et al., 2015). Flowering can occur during the first year 

and in North America, it begins in July and continues until the first frost occurs (Spooner et al., 1985; 

Bickerton, 2011). The production of fruits generally takes place during September and October and each 

plant is capable of producing several thousand seeds (Bickerton, 2011; NatureServe, 2016a). The seeds 

are released throughout the winter and are suspected to be dispersed by water during the following spring 

(Spooner et al., 1985; Krzaczek et al., 2006; Bickerton, 2011; NatureServe, 2016a).   

1.1.8 Mycorrhiza 

Another potential factor that could affect the growth, development and success of S. 

hermaphrodita is through an interaction with arbuscular mycorrhizal fungi (AMF). AMF are obligate 

biotrophs of the Glomeromycota group that are capable of forming symbiotic relationships with plants 
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(Wang and Qiu, 2006). This relationship is one of the most common symbiotic relationships on the 

planet, used by approximately 80% of vascular plant species (Remy et al., 1994; Schüƅler et al., 2001; 

Jeffries et al., 2003). In order to do so, the fungus hyphae penetrate the plant roots and differentiate into 

vesicles and arbuscules. The vesicles have been assumed to be involved in fungal nutrient storage 

whereas the arbuscules are the site of nutrient exchange between the plant and the fungus (Bonfante-

Fasolo, 1984; Strack et al., 2003; Pumplin and Harrison, 2009) (Figure 1.1). Outside of the plant root, the 

fungal hyphae branch within the soil to essentially extend the root system past the phosphorous depletion 

zone. By doing so, the fungus is able to facilitate plant acquisition of water, micronutrients and 

macronutrients with emphasis on phosphorous (Clark, Zeto, 2000; Harrison, 2005; Besserer et al., 2006; 

Allen and Shachar-Hill, 2009; Smith and Smith, 2011). In return, the plant provides the fungus with 

carbon in the form of photosynthates (Besserer et al., 2006; Chen et al., 2010; Bapaume and Reinhardt, 

2012).   

Several studies have shown that the presence of AMF can affect the relative abundance of plant 

species and plant species diversity, in turn, altering plant community structure. It has been suggested that 

the mechanisms by which the presence of AMF affect plant diversity include the transport of assimilates 

between plants through the hyphal network and also the plant’s mycorrhizal dependency (Grime et al., 

1987; Habte and Manjunath, 1991).  

Gerdmann (1975) defined mycorrhizal dependency as “the degree to which a plant is dependent 

on the mycorrhizal condition to produce its maximum growth or yield at a given level of soil fertility.” A 

wide range of mycorrhizal dependencies has been observed in plants. Some species have no mycorrhizal 

dependency due to the fact that they are not capable of forming this symbiotic relationship (Bayliss, 

1975). Others, however, have been observed to have mycorrhizal plants that are up to 13,000% larger 

than a non-mycorrhizal plant (Hall, 1975; Menge et al., 1978). Plants capable of forming mycorrhizal 

associations can be discriminated based on their requirement for this symbiotic interaction. Janos (1980) 

described both facultative and obligate mycotrophism in which facultative mycotrophic plant species can 
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be defined as “those that can attain reproductive maturity without mycorrhizae at least in the most fertile 

of their natural habitats.” Alternatively, obligate mycotrophic plant species were defined as “those that 

cannot grow or survive without mycorrhizae over the range of soil fertility that they naturally encounter” 

(Janos, 1980; Janos 2007). The growth response of a plant to AMF can be affected by a number of factors 

including the soil type, soil phosphorus levels, plant species and mycorrhizal fungal species (Azcon and 

Ocampo, 1981). Most natural ecosystems consist of several AMF species and since AMF are understood 

to have different degrees of host specificity, each plant within a community could potentially be colonized 

by several AMF species. However, the change in composition of the AMF community could alter the 

dynamics of the plant community (Bever, 2002). In addition, since AMF species vary in their ability to 

take up phosphorus and in their stimulation of plant growth, it is important to understand how much a 

plant species relies on this relationship to further quantify mycorrhizal community structure and how 

particular species of AMF may be affecting the plant community structure (Menge et al., 1978; Graham 

and Syvertsen, 1985; Habte and Manjunath, 1991; Van der Heijden et al., 1998). To date no studies have 

been performed on the mycorrhizal status of S. hermaphrodita.  

1.1.9 Physiology 

Very limited information is available on the life functions of S. hermaphrodita; however, recent 

work performed in Poland and Germany on the use of this species in energy production has given some 

insight into the species physiology. Due to the high density of stomata present on the leaf surfaces, S. 

hermaphrodita has been documented to have high photosynthetic rate and stomatal conductance 

(Franzaring et al., 2014). The presence of numerous trichomes on the stem and leaf surfaces may be an 

adaptation to reduce water loss through transpiration (Franzaring et al., 2014).    

1.1.10 Reproduction 

1.1.10.1 Floral biology 

As previously mentioned, the flowers of S. hermaphrodita are hermaphroditic and anthesis at 

Taquanyah takes place between July and August. No specific information is available about the 
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pollinators of this species (Spooner et al., 1985; Bickerton, 2011; Jablonowski et al., 2017) but we 

observed bees (Apoidea, Hymenoptera) cross-pollinating S. hermaphrodita plants at Taquanyah (Figure 

1.2). Based on data obtained on the Glade Mallow (Napaea dioica), however, it could be hypothesized 

that S. hermaphrodita is pollinated by the same insects in the Hymenoptera, Diptera, and Hemiptera 

orders (Iltis, 1963; Bickerton, 2011).    

1.1.10.2 Potential for vegetative reproduction 

Due to roots with adventitious buds, S. hermaphrodita is capable of vegetative reproduction. 

Adventitious bud primordia originate from within the roots at the periphery of the secondary vascular 

tissue, and their development can be stimulated by mechanical injury. These buds are capable of forming 

along the entire length of the root; however, they are more numerous closer to the hypocotyl (Stevens et 

al., Unpublished manuscript). These below ground buds act as a perennial bud bank similar to a seed bank 

but providing vegetative regeneration after seasonal or mechanical disturbances (Harper, 1977; 

Klimešová and Martínková, 2004; Klimešová and Klimeš, 2008; Stevens et al., unpublished).  

1.1.10.3 Seed dispersal 

From the schizocarpic fruits of S. hermaphrodita, several thousand seeds are released from each 

plant during the winter (Spooner et al., 1985; Stevens et al., unpublished). Due to the riparian and wetland 

habitats in which this species is found in, it is currently assumed that the seeds are dispersed by water 

(COSEWIC, 2010).  

1.1.10.4 Viability of seeds and germination 

Of the thousands of seeds released by each S. hermaphrodita plant, it is understood that almost all 

of them are viable and have the potential to germinate (COSEWIC, 2010). According to numerous 

studies, however, the germination capacity of recently harvested seeds is reduced to 10-15% for the first 

six months after harvest indicating that the seeds become dormant creating a seed bank underground 

(Packa et al., 2014; Baskin and Baskin, 2014). The seed dormancy in S. hermaphrodita has been 
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suggested to be both physical due to its impermeable seed coat consisting of one palisade and subpalisade 

cell layers (Baskin and Baskin, 2014; Packa et al., 2014; Stevens et al., unpublished), as well as 

physiological in which unknown chemical compounds within the seed delay germination (Packa et al., 

2014). Although the longevity of the seeds is currently unknown, it has been observed that the 

germination capacity of the seeds was highest from seeds stored for 2.5 years (Doliński et al., 2007; 

Doliński, 2009). Due to the physical dormancy imposed by the seed coat, chemical, physical or biological 

scarification to open or damage the palisade layer is required to stimulate germination (Packa et al., 2014; 

Stevens et al., unpublished). In nature, this can happen through the action of microorganisms, changes in 

temperature, freezing and thawing fluctuations, or digestive enzymes in animals that have ingested the 

seeds. In laboratory or commercial growth, the seeds coat can be damaged with sulphuric acid, alcohol, 

high pressure, boiling and scratching (Rolston, 1978; Argel, Paton, 1999; Packa et al., 2014). 

1.1.11 Population dynamics 

The Taquanyah Conservation area located in Haldimand County, Ontario is a 136 ha complex of 

woodland, wetland and floodplain habitats and is the location of the largest population of S. 

hermaphrodita in Canada. This habitat is found within the floodplain associated with a unique cold-water 

stream called Mill Creek. The creek was dammed in the 1960s to be used as a reservoir to produce carp, 

however, the introduction of the fish in the 1980s and the subsequent rise in temperatures decreased water 

quality and resulted in negative impacts to the downstream ecosystems. As a result, in 2005, the dam was 

decommissioned and the reservoir was allowed to be recolonized by native vegetation including S. 

hermaphrodita; however, it also allowed for the growth of invasive species including Phragmites 

australis. As of 2016, there were a total of 158 separate stands of S. hermaphrodita located at Taquanyah 

Conservation Area occupying an estimated area of approximately 2,616 m2. The average stem density 

within these stands was 9 stems/ m2 and the estimated number of stems present at Taquanyah was 29,245 

(Chapter 2). When comparing these numbers to the measurements taken in 2014, the estimated area 

occupied has increased from 2,109 m2 whereas the estimated stem count and density are slightly lower 
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than the estimated 29,833 stems and 14 stems/ m2 measured in 2014 (COSEWIC, 2010; Bickerton, 2011; 

Environment Canada, 2015; Stevens et al., 2017a). 

1.1.12 Responses to herbicides and other chemicals 

So far, there have been no studies completed on the effects of herbicides on S. hermaphrodita, 

however, some recent work has documented the impact of other chemicals such as fertilizers and heavy 

metals on cultivated plants. For example, it was determined that the level of nitrogen and carbon dioxide 

fertilization did not affect biomass yield, however, carbon dioxide fertilization slightly improved shoot 

regrowth after S. hermaphrodita was harvested (Borkowska et al., 2009; Franzaring et al., 2015). In 

contrast, phosphorus fertilization has been found to significantly increase the yield of S. hermaphrodita 

(Borkowska et al., 2009), which could be potentially significant for the work related to the mycorrhizal 

colonization of the species.  

Additionally, recent studies have examined the phytoextraction capacity of S. hermaphrodita in 

contaminated soils which has highlighted some information on the response of this species to different 

elements. It has been observed that S. hermaphrodita is tolerant to contamination of soil with different 

metals and it is capable of absorbing different levels of Cadmium, Copper, Zinc, Manganese, Nickel, 

Chromium and Lead (Wierzbowska et al., 2016; Kocoń and Matyka, 2012).  

1.1.13 Responses to herbivory and diseases 

Very limited information is available on the response of S. hermaphrodita to diseases and 

herbivory. The only pathogen that has been observed to affect S. hermaphrodita is the fungus, Sclerotinia 

sclerotiorum (Lib.) de Bary (Remlein-Starosta et al., 2016). Due to its ability to infect over 450 different 

host plants (Boland and Hall, 1994), S. sclerotiorum is considered a serious pathogen to crop species, 

capable of destroying between 5-40% of plantation shoots (Remlein-Starosta, 2008; Starzcha et al., 2004; 

Mrówczyński et al., 2009; Remlein-Starosta et al., 2016). White rot symptoms that are characteristic of S. 

sclerotiorum infection were first described on S. hermaphrodita in Poland in 1990 (Łacicowa and Kicana, 



14 

 

1991). The infection of the host plant is typically initiated by the appearance of dark, water-soaked lesions 

on the leaves or stems which will expand, developing into necrotic tissues. Patches of fluffy white 

mycelium will appear over the necrotic tissues and the sclerotia will spread throughout the plant leading 

to chlorosis and wilting (Bolton et al., 2006). In S. hermaphrodita, the first shoots with wilting symptoms 

appeared at the end of May in Poland when the plants had reached approximately 50 cm (Remlein-

Starosta and Nijak, 2007). Previous work done by Jajor et al. (2010), reported that the size of the 

infestation in crop plantations was related to higher temperature and humidity conditions. It has also been 

reported that disease incidence was significantly greater in S. hermaphrodita shoots that had been 

subjected to mechanical injuries (Remlein-Starosta, 2008). Additionally, a recent study has identified 

yeast-like fungal strains that are capable of inhibiting the growth of S. sclerotiorum, suggesting their use 

as a potential biocontrol on S. hermaphrodita plantations (Remlein-Starosta et al., 2016).         

Currently, no work has been performed on herbivory factors that could affect the plant growth, 

however, a couple studies have described information about the plant’s physiology that could suggest 

possible defence mechanisms that S. hermaphrodita may employ against herbivory. One study observed 

the presence of calcium oxalate crystals in the form of druses within the parenchymal tissues of S. 

hermaphrodita’s stems (Leszczuk et al., 2014). The production of calcium oxalate crystals in plants can 

be used to regulate calcium and also to add structural support. The presence of calcium oxalate crystals in 

the stems, although unlikely due to their shape, could also suggest that they are used as a defence against 

herbivory since some crystals are sharp fragments that herbivores find hard to eat (Leszczuk et al., 2014). 

Additionally, as previously mentioned, another study performed by Franzaring et al. (2014), has described 

the presence of numerous trichomes on the leaf and stem surfaces of S. hermaphrodita. These structures 

could also be used as a form of herbivory defence since they reduce palatability (Franzaring et al., 2014). 

Although these structures were hypothesized to protect against herbivory, a recent transplant study 

performed in 2016 at Taquanyah Conservation Area reported predation on young Sida hermaphrodita 

plants likely by Eastern Cottontail rabbits (Sylvilagus floridanus) (Stevens et al., 2017b).       
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1.2 Biology and Interactions of Phragmites australis   

1.2.1 Name and taxonomic history 

Phragmites australis also known as Common reed, is a perennial species that belongs to the 

Arundineae tribe in Poaceae consisting of four other species including P. karka, P. mauritianus and P. 

japonicus (Clevering and Lissner, 1999). Originally, Linnaeus had described Phragmites australis in 

1753 as Arundo phragmites. Subsequently, the genus Phragmites was determined to be distinct from 

Arundo and common reed was transferred to the former. This species has numerous common synonyms 

including P. communis, P. vulgaris and P. berlandieri, which are more recent than P. australis 

(Saltonstall and Huber, 2007; Hocking et al., 1983; Mal and Narine, 2004).   

1.2.2 Plant description 

Phragmites australis is a tall perennial emergent aquatic and wetland plant that can reach heights 

between 4-6 m (Mal and Narine, 2004; Lambert et al., 2010; Cross and Fleming, 1989). At Taquanyah, 

most commonly the stems reach between 3-4 m (Personal observation). The diameter of the stem ranges 

between 4 and 15 mm and contains long hollow internodes approximately 10-25 cm in length. (Mal and 

Narine, 2004; Clayton et al., 2006; Sturtevant et al., 2018). This species has four stem types including 

below-ground horizontal rhizomes, above-ground vertical rhizomes, erect aerial shoots and legehalme 

(Haslam, 1969). The wider horizontal rhizomes (1.5-2 cm diameter) are found up to 1 meter underground 

and are responsible for vegetative propagation and extending the clone size (Mal and Narine, 2004; 

Brisson et al., 2010). The thinner vertical rhizomes (1-1.5 cm diameter) are responsible for bearing the 

erect aerial shoots that photosynthesize and develop the inflorescences (Haslam, 1968; Mal and Narine, 

2004). Although they are not produced in all populations, P. australis can also develop legehalme (long 

runners or stolons) from the vertical rhizomes or fallen aerial shoots that bear small leaf blades (Haslam, 

1969; Mal and Narine, 2004; Brisson et al., 2010). The roots of P. australis are fleshy and develop from 

the rhizomes and submerged parts of the plant (Haslam, 1968; Mal and Narine, 2004; NatureServe, 

2016b). Depending on the habitat, two different root types can be produced by P. australis, including 
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short, narrow and very branched “water” roots that create dense fibrous mats in water-substrate interfaces 

only extending downwards approximately 10-30 cm. Or thicker and less branched “mud” roots are 

produced that extend downwards between 1-5 m into the substrate (Pallis. 1916; Haslam, 1972; Mal and 

Narine, 2004).      

The smooth, glabrous and narrow linear-lanceolate leaves are alternate and can reach 20-70 cm in 

length and 1-5 cm in width. The leaf bases form smooth overlapping sheaths around the stems and the 

ligule is membranous with hairs (Mal and Narine, 2004; NatureServe, 2016b).      

The inflorescence of P. australis is a feathery, terminal panicle, between 15 and 50 cm long. The 

inflorescence can vary in colour, with ascending branches bearing many spikelets. The rachillas of the 

spikelets are hairy, contributing the woolly appearance of the inflorescence. The numerous spikelets are 

approximately 1.0-1.7 cm, have two glumes at their base and include 2-8 florets each; the lower 1-2 

flowers are staminate, the distal 1-2 flowers are rudimentary, and the remaining flowers are bisexual. The 

glumes are unequal in size, lanceolate and persistent. Lemmas are 3-veined, glabrous, awnless. Male 

flowers have 1-3 stamens. The upper hermaphroditic flowers have three stamens and an ellipsoid ovary 

with a short style and two feathery stigmas. The resulting fruit is a caryopsis less than 2 mm long (Mal 

and Narine, 2004; NatureServe, 2016b;).          

1.2.2.1 Interspecific variation 

Phragmites australis demonstrates a high degree of phenotypic plasticity depending on the origin 

of plants and environmental conditions (Hocking et al., 1983; Mal and Narine, 2004). It is currently 

understood that North American P. australis populations are represented by three distinct infraspecific 

lineages: one native one; subsp. americanus, one of indeterminate origin; subsp. berlandieri, and one 

invasive, introduced from the Old World, subsp. australis. The high degree of morphological variation 

makes it difficult to distinguish native versus invasive lineages in North America without genetic testing 

(Mal and Narine, 2004). However, subtle morphological differences have been identified to differentiate 

native lineages from invasive lineages. The North American native lineage, subsp. americanus, typically 
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has smooth and shiny aerial shoots in addition to yellow-green leaves that easily detach from the shoots 

after senescence (Swearingen and Saltonstall, 2012; Sturtevant et al., 2016). The exposed shoots display a 

reddish colour at the nodes and internodes where they are exposed to UV. Black spots can also appear on 

the shoots due to the presence of an unidentified native fungus (Swearingen and Saltonstall, 2012; 

Sturtevant et al., 2016). The ligules of the native plants have been observed to be approximately 1-1.7 mm 

long. In comparison to the invasive lineage, the inflorescences of the native plants are sparse and appear 

brownish in colour. Additionally, the upper and lower glumes of the spikelets range in length from 5.5-11 

mm and 3-6.5 mm respectively (Saltonstall et al., 2004; Swearingen and Saltonstall, 2012; Sturtevant et 

al., 2016). 

In contrast to most native lineages, the invasive lineage, subsp. australis, has typically dull and 

slightly rigid aerial shoots. Red colouration of the invasive shoots is rare but can appear on the lower 

nodes. In addition, a black sooty-like mildew can be present on the shoots (Swearingen and Saltonstall, 

2012; Sturtevant et al., 2016). The leaves are blue-green in colour and tightly adhere to the shoots 

throughout the growing season. The ligules of the invasive plants have been observed to range between 

0.4-0.9 mm in length. The inflorescences of the invasive lineage are very “bushy” in appearance and are 

usually purple or golden in colour. Furthermore, the upper and lower glume lengths range between 4.5-

7.5 mm and 2.5-5 mm respectively (Saltonstall et al., 2004; Swearingen and Saltonstall, 2012; Sturtevant 

et al., 2016).  

The only lineage that cannot be differentiated from the invasive lineage using these 

characteristics is subsp. berlandieri, which shares the same morphological characteristics except for the 

dull and rigid aerial shoots (Saltonstall et al., 2004; Swearingen and Saltonstall, 2012).    

1.2.3 North American geographical distribution and habitat 

Phragmites australis is one of the most widely distributed plants as it can be found on every 

continent except Antarctica (Roland and Smith, 1969; Mal and Marine, 2003; Gucker, 2008). The species 

is most commonly found in freshwater, brackish and alkaline wetlands in the temperate zones of the 
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globe; however, it has also been identified in some tropical wetlands. In North America it has become 

increasingly widespread, typically growing in tidal and non-tidal wetlands, marshes, swamps, and fens. 

Additionally, it can also be found in disturbed sites such as roadside ditches, construction sites, near 

agricultural fields or along developed shorelines (Chambers et al., 1999; Mathieu-Giroux and de Blois, 

2007; Jodion et al., 2008; Lambert et al., 2010; Swearingen and Saltonstall, 2012). In North America, P. 

australis subsp. americanus is widespread throughout Canada and most of the U.S.A., while the ‘Gulf 

coast lineage’, P. australis subsp. berlandieri, is restricted to the southern American states (Saltonstall, 

2002; Saltonstall et al., 2010). Paleontological evidence together with recent genetic analyses have 

clarified the evolutionary and biogeographical history of the native P. australis and the effects of the 

invasion of subsp. australis in North America (Saltonstall, 2003). 

Fossil records of Phragmites australis and its rhizomes that date back ca. 4,000 years, have been 

found in southwestern US and north Atlantic tidal marshes (Kaplan, 1963; Neiring et al., 1977; Clark, 

1986; Kane and Gross, 1986; Orson et al., 1987). A P. australis Pleistocene fossil was also identified 

from between 11,000 to 40,000 years ago within Shasta ground sloth dung collected from caves in the 

Grand Canyon (Hansen, 1978), while the oldest fossil record suggests that P. australis was present in 

North America during the Cretaceous period (Lamotte, 1952). It is based on these records, that the species 

is considered a native plant to North America, however, due to the dramatic change in its abundance over 

the past 200 years, studies are being performed in order to assess genotypic differences in the P. australis 

populations present in North America (Clevering and Lissner, 1999; Mal and Narine, 2004; Swearingen 

and Saltonstall, 2012; NatureServe, 2016b).  

1.2.3.1 Native 

Phragmites australis subsp. americanus has the highest genetic diversity among all lineages 

(Saltonstall et al., 2010). Thirteen endemic haplotypes have been identified in North America by 5 

uniquely shared mutations that distinguish them from all other haplotypes worldwide (Saltonstall, 2002; 

Saltonstall et al., 2010). These haplotypes broadly cluster corresponding to 3 geographic regions 
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including the Atlantic Coast, the Midwest, and the West. Haplotypes E, F, Z, AA, AB, and AC have been 

found along the Atlantic Coast ranging from Cape Cod in the South to Georgia in the north. Haplotypes 

E, G, and S have been documented in the Midwestern area which includes the Great Lakes region and 

southern Canada. Lastly, haplotypes A, B, C, D, and K have been identified in the Pacific Northwest and 

Southwestern U.S. (Saltonstall, 2002; Saltonstall 2003a; Saltonstall et al., 2010). Of these haplotypes, 

haplotype E had the greatest distribution ranging from East to West coasts and North into all Canadian 

provinces and the Northwest Territories (Mal and Narine, 2004; Lambert et al., 2010). Due to its large 

distribution and its close relation to other haplotypes, it is hypothesized that haplotype E is the ancestor of 

all other native P. australis subsp. americanus lineages (Saltonstall, 2003).  

Comparing historic to modern samples, most of the 13 native North American haplotypes showed 

little change in their distributions (Saltonstall, 2002; Saltonstall et al., 2010). However, subsequent 

sampling of populations from the Atlantic coast region has shown a large reduction in genetic diversity. 

Most of the native haplotypes that were historically common in this region, were not identified in modern 

populations. Only haplotypes F and Z were found to persist at one site in Virginia and Maryland 

respectively (Saltonstall, 2003; Meadows and Saltonstall, 2007). All other Atlantic coast types have been 

suspected to be eliminated due to the rapid spread of the invasive lineage (Saltonstall, 2002).      

1.2.3.2 Gulf coast 

The second lineage, P. australis subsp. berlandieri has been identified to have the lowest genetic 

diversity (Saltonstall et al., 2010). Only a single type (haplotype I) has been recognized to dominate the 

Gulf coast region of the U.S. Its distribution, which has remained unchanged between historic and modern 

samples, extends west into the Gulf of California and south into Mexico and northern parts of South 

America (Saltonstall, 2003). This haplotype, which shares no mutations with the other 13 haplotypes 

native to North America, has been shown to be most closely related to Asian haplotypes (Saltonstall et al., 

2010). Due to its relation to haplotypes present in other parts of the world, it has been suggested that this 

haplotype is not native to North America and instead, it is synonymous with the Australian and Asian 
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species P. karka, however, it is not known when this species may have been introduced and genetic 

analysis has not been performed to confirm this hypothesis (Saltonstall, 2002; Ward, 2010).    

1.2.3.3 Invasive 

Lastly, the invasive lineage, P. australis subsp. australis has shown differing levels of genetic 

diversity depending on the source of DNA. Most populations have been suggested to belong to a single 

type, haplotype M (Saltonstall, 2003). More recently, other closely related haplotypes have also been 

identified in isolated populations, including haplotype L found in eastern Washington (Saltonstall, 2003) 

and L1 found in Quebec (Meyerson and Cronin, 2013). These may be the result of local mutations or 

secondary introductions of the haplotype M (Saltonstall et al., 2010). Haplotype M is the most common 

haplotype worldwide and is most closely related to haplotypes found across Europe and continental Asia 

(Saltonstall et al., 2010; Saltonstall, 2003). Its global distribution has been suspected to be indicative of its 

plasticity and ability to colonize new habitats, including those in North America (Saltonstall et al., 2010). 

Due to its high prevalence on the Atlantic Coast, it was hypothesized that haplotype M was first 

accidentally introduced there from the United Kingdom (Plut et al., 2011) in the ballast material of ships 

during the late 1700s or early 1800s (Saltonstall, 2002; Saltonstall, 2003). From there is has been able to 

spread throughout the Atlantic coast where is has displaced almost all the haplotypes native to this region. 

In the Midwest region, although all native haplotypes persist, haplotype M has become increasingly 

prevalent around the Great Lakes and St. Lawrence River. Lakeshores, rivers, and roadsides bordered by 

drainage ditches have been suggested to provide corridors to facilitate its dispersal further into the 

Midwest where the threat to native haplotypes is high (Saltonstall, 2003; Wilcox et al., 2003; Maheu-

Giroux and de Blois, 2007; Lelong et al., 2007; Jodoin et al., 2008). In the remaining regions, haplotype 

M is rare and only found in urban areas of the West and along the Mississippi River Delta in the Gulf 

coast (Saltonstall, 2003). Comparably to the Midwest region, although native haplotypes are dominant, 

the future dispersal of the invasive haplotype M into these regions is thought to be clearly possible 

(Saltonstall, 2003; Hauber et al., 2011).    
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1.2.4 Growth, development and reproduction 

Phragmites australis has an underground rhizome system that persists perennially. Considered 

the juvenile stem type that restores and maintains P. australis populations, the horizontal rhizomes 

produce the most growth during the late summer and early fall when their nutrient reserves are at their 

maximum (Haslam, 1968; Hocking et al., 1983). Extending horizontally underground at a rate of 0.5-4 m 

per year, the horizontal rhizomes turn upwards and terminate into vertical rhizomes in the spring after 

remaining dormant through the winter (Haslam, 1968; Mal and Narine, 2004). New horizontal rhizomes 

typically develop from vertical rhizomes before the end of summer (Mal and Narine, 2004). The vertical 

rhizomes grow most rapidly during the early spring and terminate into aerial shoots whenever they break 

the soil surface (Haslam, 1968). Lateral buds present on the vertical rhizomes also give rise to new aerial 

shoots. Bud formation on the rhizomes begins in the midsummer and continues gradually throughout the 

winter to prepare for shoot emergence in the early spring, which has been observed to occur over 1-3 

months (Haslam, 1969; Hocking et al., 1983). The aerial shoot growth has been documented to be at its 

highest during the summer months and then begins to slow in the autumn during which time the leaves 

will senesce (Hocking et al., 1983; Swearingen and Saltonstall, 2012). Legehalme may also be developed 

directly from vertical rhizome buds or from fallen aerial shoots.  Due to their non-rigid structure, the 

legehalme extend horizontally along the soil surface, with a growth rate documented to exceed 10 m per 

year (Haslam, 1968; Haslam, 1972; Brisson et al., 2010). Legehalme branches may turn upwards to 

develop into non-flowering aerial shoots or turn downwards to produce new horizontal rhizomes, thereby 

further propagating the P. australis stand (Haslam, 1968). In addition to the four different stem types, P. 

australis also produce fleshy roots from its rhizome system. Roots have been documented to be sparse 

when originating from horizontal rhizomes and are more densely branched when originating from the 

vertical rhizomes (Haslam, 1972). During the spring and summer months is when the roots proliferate the 

most (Hocking et al., 1983).  
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League et al. (2006), observed differences in growth between native and invasive P. australis. 

Field observations revealed that native P. australis subsp. americanus was typically characterized by a 

lower stem density and biomass, and exhibited less expansion (League et al., 2006), however, there may 

be variability within the native lineage causing denser stem growth comparable to the invasive lineage 

(Snyder, Personal Communication). The native plants have been observed to have a larger rhizome bud 

density than the invasive plants; however, the increased buds did not give rise to greater shoot production. 

In contrast to the longer bud stage of the native subsp. americanus, the buds of the exotic subsp. australis 

developed quickly, giving rise to a significantly greater density of newly emerging shoots (League et al., 

2006). The early shoot emergence, together with a later flowering period allow the invasive lineage to 

benefit from a longer growing season (Mal and Narine, 2004; League et al., 2006). It is suggested that this 

may contribute to the differences observed in shoot growth in which invasive shoots were on average 28 

cm taller and had up to five times the shoot biomass of the native P. australis (League et al., 2006). The 

observed shoot to root ratio was also greater, suggesting that the invasive subsp. australis has a more 

efficient root and rhizome system, through which it can allocate more resources aboveground (League et 

al., 2006).   

Vegetative reproduction has been documented to be the main means by which P. australis is 

capable of maintaining their populations and spreading into to new areas (Mal and Narine, 2004); 

however, this may be accurate only for the Gulf coast lineage (Pellegrin and Hauber, 1999; Saltonstall et 

al., 2010). Although rhizomes have been documented to typically live between 3-7 years (Haslam, 1972; 

Hocking et al., 1998), P. australis. populations can maintain themselves for over 100 years through 

vegetative propagation (Rudescu et al., 1965). Rhizome fragments as short as 20 cm can serve as 

propagules for colonization into new areas when dispersed by water, animals or human activities 

(Haslam, 1969; Small and Catling, 2001). The horizontal rhizomes are responsible for the gradual 

expansion of populations. Although growth and expansion are slow for the first couple years, P. australis 

populations are capable of expanding clonally at a rate of 4 m per year (Clevering and van der Toorn, 



23 

 

2000), likely facilitated by significantly greater elongation of rhizome internode lengths in the invasive 

lineage (League et al., 2006).  

Although range expansion has previously been solely attributed to vegetative reproduction, seed 

dispersal has recently been suggested to be important for the establishment of new stands of both native 

and invasive lineages (Brisson et al., 2008; Saltonstall et al., 2010). Plants have the capacity to flower 4 

months after germination. Flowering periods have been observed to vary between lineages, with the 

invasive lineage, P. australis subsp. australis flowering between July through September. Phragmites 

australis subsp. americanus has been noted to flower between June and October, while the Gulf coast 

lineage, subsp. berlandieri flowers later, between October and November (Saltonstall et al., 2010). Like 

other Poaceae, the florets are wind pollinated. Each individual plant is capable of producing thousands of 

caryopses/seeds each year which are dispersed by wind, water and animals during the winter months 

(Bittmann, 1953; Haslam, 1972; Hocking et al., 1983). The germination percentage of the seeds has been 

documented to be extremely variable between 2 and 100% (Haslam, 1973; Kraska et al., 1992), with the 

invasive lineage displaying the highest germination rate. (Meyerson et al., 2009; Saltonstall et al., 2010). 

Seedling mortality has been reported to be relatively high due to different habitat conditions; thus, 

sufficient seeds must be dispersed each year to overcome this challenge (Hocking et al., 1983; Mal and 

Narine, 2003; Swearingen and Saltonstall, 2012). Additionally, Brisson et al. (2008), observed that in 

eastern Canada, as long as the seedlings withstand the critical period of the first winter, they will be likely 

to form mature individuals facilitating the establishment of new populations (Brisson et al., 2008).   

1.2.4.1 Intraspecific hybridization 

Due to the overlapping geographical ranges and flowering periods of the three North American 

Phragmites australis lineages, it was expected that hybridization and gene flow between these lineages 

would have occurred in natural populations (Saltonstall et al., 2010). Until recently, phenological or 

physiological barriers were suggested to prevent the cross-pollination between native and invasive 

lineages (Saltonstall 2002; Saltonstall, 2003b; Meyerson et al., 2010). However, recent studies determined 
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that through manual cross-pollination, viable hybrid seedlings can be produced (Meyerson et al., 2010), 

and have also provided the first evidence of natural hybridization among native and invasive P. australis 

populations in Ontario (Paul et al., 2010). Although constraining mechanisms like limited pollen dispersal 

and flowering time have been suspected to impact the interbreeding between lineages, the continuous 

expansion of subsp. australis into the native P. australis habitats increases the potential for identifying 

new hybrids. Future examination and monitoring of hybrid individuals will be necessary since the fitness 

of these new hybrids as well as their potential to threaten native biodiversity is unknown (Meyerson et al., 

2010; Paul et al., 2010).  

1.2.5 Mycorrhiza 

Arbuscular mycorrhizal fungi have been observed to form symbiotic relationships with the 

majority of terrestrial plant biomass. However, since the soils in wetland habitats are often saturated and 

lack oxygen availability for aerobic soil microorganisms, the presence of AMF in wetland ecosystems 

was historically thought to be rare. As a result, although the effects of AMF on plants and soils in 

terrestrial habitats is well known, little attention has been given to these fungi in wetland habitats (Dolinar 

and Gaberščik, 2010; Wang et al., 2015). It is now recognized based on recent studies, that AMF are also 

prevalent in wetlands; however, the factors that affect AMF colonization and the relationships between 

plants and rhizospheric microorganism communities in wetland habitats are still poorly understood 

(Stevens et al., 2011; Wang et al., 2015).  

Due to P. australis’ tolerance for both terrestrial and aquatic environments, it has recently been 

examined for mycorrhizal colonization. AMF have been reported within the roots of P. australis, but it 

was dependent on the soil moisture content and the plant phenology (Cooke and Lefor, 1998; Oliveira et 

al., 2001), and in some instances, the colonization was not confirmed under flooded conditions (Wirsel, 

2004).  It is hypothesized that one of the reasons why P. australis supports mycorrhizal colonization is 

due to its ability to use pressurized through-flow of air to vent its below ground tissues (Brix et al., 1996). 

Although a mycorrhizal symbiosis has been identified, limited information is available and the objective 
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of the majority of these studies was to determine how colonization by AMF improved the 

phytoremediation ability of P. australis in contaminated habitats. Several studies have determined that the 

mycorrhizal symbiosis with P. australis had beneficial effects on the water quality and growth of the 

plants under cadmium and salinity stress conditions (Al-Garni, 2006; Huang et al., 2017). Furthermore, 

these studies have all taken place in areas of Europe and Asia including Germany, Slovenia, Portugal, 

Estonia and China (Oliveira et al., 2001; Al-Garni, 2006; Dolinar and Gaberščik, 2010; Huang et al., 

2017). Further examination of the relationship between P. australis and AMF in North American habitats 

would be beneficial.    

Although studies on the mycorrhizal colonization of P. australis have not taken place in North 

America, studies on the association with other fungi have been conducted in the United States. Diverse 

communities of fungal endophytes have been identified to colonize a variety of P. australis tissues 

including, roots, rhizomes, stems and leaves (Clay et al., 2016; Soares et al., 2016). Fungal endophytes 

have previously been identified to form symbiotic relationships with other plant species, mediating the 

host plant growth and improving their ability to adapt to new environments (Clay and Schardl, 2002; 

Rodrigues et al., 2009; Porras-Alfrano and Bayman, 2011). Recent work using endophytes recognized to 

associate with P. australis has supported these studies suggesting that P. australis endophytes may be 

capable of enhancing the host’s growth (Clay et al., 2016) and its tolerance to extreme habitats (Soares et 

al., 2016).  Although the capacity for P. australis to form symbiotic relationships with these fungi has 

been confirmed, the functional role of fungal endophytes is still not fully understood (Kowalski et al., 

2015; Clay et al., 2016).   

1.2.6 Potential invasion mechanisms 

Plant invasions by exotic species are often very detrimental to ecosystems as the invading plant 

species not only compete with the native species for resources, but they also often replace the native 

biodiversity resulting in devastating ecosystem and detrimental economic effects (Mack et al, 2000; 

DiTomaso, 2000; Zedler and Kercher, 2004). As previously mentioned, P. australis is currently 
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considered one of the most invasive species causing considerable negative effects on native biodiversity 

(Marris, 2005; Rudrappa et al., 2007). Typically, it is expected that due to the lack of predators in the new 

habitat, introduced species are more aggressive (Inderjit et al., 2006; Rudrappa et al., 2007). However, 

numerous recent studies have been performed to determine the specific mechanism that enhance the 

invasive capacity of P. australis. Increasing attention has been given to allelopathy as a major pathway 

for the invasive process of weeds including P. australis (Bais et al., 2003; Callaway and Ridenour, 2004; 

Pisula and Meiners, 2010). Allelopathy refers to a type of chemical warfare by which one organism is 

capable of either directly or indirectly inhibiting the growth of another organism through the release of 

chemical compounds into the environment (Rice, 1984; Bais et al., 2006; Hong et al., 2008). Although a 

considerable number of studies have been performed, allelopathic interactions are not fully understood 

and several hypotheses have been proposed about the mechanism by which P. australis allelopathically 

interacts with neighboring plants.    

Rudrappa et al. (2007) suggested that the invasive success of P. australis could be attributed to its 

release of exudates containing gallic acid (3,4,5-trihydroxybenzoic acid) from its root system (Root 

Allelopathy). Identified as the active phytotoxin, gallic acid was hypothesized to directly induce 

rhizotoxicity and inhibit the growth of native plant roots (Rudrappa et al., 2007). It was suggested that 

gallic acid phytotoxicity was due to the generation of toxic levels of reactive oxygen species which would 

trigger a cell death cascade by disrupting the microtubule assembly in native plant roots (Rudrappa and 

Bais, 2008). Additionally, it was reported that the gallic acid secreted by P. australis roots, could also 

undergo photo-degradation when exposed to ultraviolet light, resulting in mesoxalic acid (2-oxomalonic 

acid) which negatively affects neighboring plants similarly to its precursor (Rudrappa et al., 2009).      

In a subsequent study, Bains et al. (2009) suggested that P. australis allelopathically affects 

native plants indirectly through interactions with rhizospheric microorganisms. Through examination of 

the pathway for free gallic acid production, it was hypothesized that instead of directly excreting gallic 

acid, the exotic lineage of P. australis contains elevated levels of polymeric gallotanin within its roots. 
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These gallotanins were determined to be hydrolyzed by tannase enzymes produced in high amounts by 

acid-degrading microbes and native P. australis plants to release the phytotoxic compound gallic acid 

(Bains et al., 2009). Due to the observed community size of acid-degrading microbes associated with 

exotic rhizosphere samples, it was suggested that not only is exotic P. australis capable of root 

allelopathy through indirect inhibition of native plant growth, but it is also capable of altering the 

microbial community structure of the rhizosphere to enhance its invasive potential (Bains et al., 2009). 

Although gallic acid was reported to be responsible for the invasive success of P. australis, 

contradictory results were published disputing the role of this phytotoxin. After sampling soil, rhizomes 

and foliage of several P. australis populations, Weidenhamer et al. (2013) were unable to detect free 

gallic acid within the soils associated with P. australis and only detected trace amounts within the plants 

(Weidenhamer et al., 2013). Even though it was previously reported that gallic acid was highly toxic to 

neighboring plants (Rudrappa et al., 2007), other studies found that gallic acid was less active than other 

phenolic compounds and required at least a 10 mM concentration to have any inhibitory effects (Reigosa 

et al., 1999; Chung et al., 2002; Weidenhamer et al., 2013). Furthermore, it was discovered that due to the 

rapid degradation of gallic acid in non-sterile soil, the persistent high concentrations required for 

allelopathic interaction could not be maintained. Based on these results, it was suggested that the 

exudation of gallic acid could not be the primary explanation for P. australis’ allelopathic effect 

(Weidenhamer et al., 2013).          

Due to the contradictory results of gallic acid’s effects on plant growth and previous reports 

stating that phytotoxic effects typically result from a mixture of phytotoxins rather than a single 

compound (Reigosa et al., 1999; Inderjit and Duke, 2003), other studies have been performed to examine 

the effects of aqueous extracts released from various P. australis tissues through decomposition 

(Allelopathic Phytotoxicity) (Uddin et al., 2012; Uddin et al., 2014a; Uddin et al., 2014b; Uddin et al., 

2014c; Uddin et al., 2017). The presence of gallic acid was confirmed in various organ extracts of P. 

australis in combination with other unidentified phenolics, supporting the suggestion that a combined 
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effect of total phenolic compounds may better explain P. australis’ allelopathic effect (Uddin et al., 2012; 

Uddin et al., 2014a). It was observed that P. australis extracts from different organs have inhibitory 

effects on seed germination and establishment due to oxidative stress caused by the production of reactive 

oxygen species (Uddin et al., 2014a). These inhibitory effects of residue decomposition on native seedling 

growth and consequently native vegetation structure, were also observed to be significantly greater under 

anaerobic conditions (Uddin et al., 2012; Uddin et al., 2014c). When comparing the effects of tissue 

extracts, P. australis leaf extracts were reported to have the greatest inhibitory effects followed by the 

extracts from rhizomes, roots, stems and inflorescences (Uddin et al., 2012; Uddin et al., 2014a). Based 

on these results it was hypothesized that through the degradation of the large volumes of biomass 

produced by P. australis, especially leaf degradation, allelopathic phytotoxins are directly released into 

the surrounding soil consequently inhibiting the growth of native species (Uddin et al., 2014a). 

Additionally, it was also observed that P. australis infected soils had lower arbuscular mycorrhizal fungal 

inoculum potential suggesting that P. australis may have the potential to allelopathically effect 

neighboring species indirectly by interfering with belowground mutualisms (Uddin et al., 2017). 

Lastly, following what was mentioned previously, other studies have examined the mutualistic 

relationship between P. australis and endophytic microorganisms in order to determine if this symbiotic 

association plays a role in the invasive character of P. australis (Fischer and Rodriguez, 2013; Clay et al., 

2016). Diverse communities of endophytes were found to colonize the root, rhizome, stem and leaf tissues 

of P. australis (Li et al., 2010; Clay et al., 2016). Soares et al. (2016a) demonstrated that endophytic 

bacteria associated with the shoot meristems of P. australis were capable of enhancing the nutrient uptake 

of the host by scavenging for nitrogenous compounds present in the rhizosphere (Soares et al., 2016a). 

Subsequently, it was also established that fungal endophytes associated with P. australis roots could help 

the host adapt to high saline soils (Soares et al., 2016b). The functional roles of specific endophytes are 

not fully known but one fungal endophyte, genus Stagonospora, identified on root, stem, leaf and seed 

samples of P. australis has been suggested to enhance host growth (Ernst et al., 2003; Clay et al., 2016). 
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Subsequently, White et al. (2018) found supporting evidence that seed associated endophytes not only can 

improve nutrient availability for the host, but also inhibit soil fungal pathogens, supress diseases, and 

allow P. australis to inhibit competitor plants through the release of compounds by the associated 

endophytes (Endophytic Allelopathic Exclusion). Using a strain of Pseudomonas fluorescens, isolated 

from P. australis, it was observed that bacterial inoculation inhibited the growth of test species which was 

hypothesized to be due to the production of hydrogen cyanide (HCN) by the bacteria (White et al., 2018). 

More research is required to examine the effects of other associated endophytes however, based on this 

research it is possible that the invasive success of P. australis may be attributed to its association with 

microorganisms.           

Due to the different hypotheses regarding the allelopathic potential of P. australis it is difficult to 

understand the method by which P. australis affects different plants including endangered species like S. 

hermaphrodita. It is unknown whether the allelopathic chemicals detrimentally affect plants directly, 

through their interaction with rhizospheric and symbiotic microorganisms, or by negatively affecting the 

beneficial plant-fungus relationship with arbuscular mycorrhiza.  

Current ecology theory suggests that an invasive species has the capacity to modify the below 

ground environment which would increase its fitness while making the surrounding soil inhospitable for 

competing native species (Jordan et al., 2008). Phragmites australis has been suggested to affect 

neighboring plants through allelopathic effects such as modifying various aspects of the soil’s chemical 

and physical properties, including pH values, organic matter content, soil structure and altering 

microbiotic communities (Jordan et al., 2008). Research has shown that positive feedback between soils 

and invasive species contributes to the effect of plant invasion in which the invasive species can use the 

changes induced to improve its fitness by taking over new areas. (Corbin and D’Antonio 2004; Ehrenfeld 

2004; Wolfe and Klironomos 2005; Eppstein and Molofsky 2007). Nonetheless, research is uncertain 

whether these effects always benefit invasive species more than native species (Jordan et al., 2008). 
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1.3 Objectives and Hypotheses 

As previously indicated, the biology and ecology of S. hermaphrodita are poorly understood and 

the factors contributing to its rarity have only recently begun to be examined. Several different 

suggestions have been made about the potential allelopathic invasion mechanism of P. australis, the 

common mode of action has been through belowground processes. It is unknown if S. hermaphrodita is 

affected by P. australis but, it could be expected that any effects on plant growth would be through these 

belowground processes. This study shall examine the reciprocal interaction between the endangered S. 

hermaphrodita and the invasive P. australis in order to determine if each species impacts the performance 

of the other. Additionally, since to date there is limited information on the relationships that form between 

these two plants and AMF, this study shall also examine the mycorrhizal colonization of these plants 

grown in soils obtained from Taquanyah Conservation Area. The specific objectives of my M.Sc. thesis 

were to (1) determine how seedling performance and AMF root colonization of S. hermaphrodita in the 

field relates to the presence/absence of P. australis and (2) determine how chemical compounds and 

microorganisms present within the soils associated with S. hermaphrodita and P. australis affect the 

performance and mycorrhizal colonization of both plants. The former will be done by assessing the 

performance of S. hermaphrodita seedlings as well as the AMF colonization of S. hermaphrodita seedling 

roots at locations where P. australis plants are present or absent at Taquanyah Conservation Area. The 

latter will be accomplished by examining the performance of both species in soils obtained in different 

vegetation levels ranging from high density S. hermaphrodita to high density P. australis. For the first 

objective, based on the literature reports according to which P. australis is capable of negatively 

impacting the growth of neighboring species via direct or indirect allelopathic soil modification 

interactions (Rudrappa et al., 2007; Bains et al., 2009; Weidenhamer et al., 2013; Uddin et al., 2014a; 

White et al., 2018), I hypothesized that seedling mortality of S. hermaphrodita will increase in close 

proximity to P. australis. Additionally, I also hypothesized that due to the suggestion that P. australis 

may have an impact on arbuscular mycorrhizal fungal colonization potential of native plants (Uddin et al., 

2017), any AMF colonization observed in S. hermaphrodita seedlings would decrease in close proximity 



31 

 

to P. australis stands. For the second objective I hypothesized that the performance of S. hermaphrodita 

will increase in soils obtained from farther distances from P. australis, while based on the understanding 

of the highly invasive characteristics of P. australis (Mal and Narine, 2003; Marris, 2005), the 

performance of P. australis will remain consistent across all sites. Similarly, I also hypothesized that the 

arbuscular mycorrhizal colonization of S. hermaphrodita will increase in farther distances from P. 

australis, while P. australis will not be colonized since P. australis colonization has previously been 

limited (Cooke and Lefor, 1998; Oliveira et al., 2001; Wirsel, 2004).  



32 

 

1.4 Figures   

 

Figure 1.1: Root samples of P. australis that were cleared in a 10% KOH solution, and stained with a 5% 

ink in vinegar solution for the observation of AMF colonization. Depicted are segments of a non-

colonized root (A) with the Root Vascular Tissue (RVT) visibly running through the centre of the root, 

and a segment of root colonized with blue stained AMF structures (B). AMF structures include intra-

radicular hyphae (arrow) within the cortex of the root running parallel to the root vascular tissue which 

differentiate into vesicles (circle) used for nutrient storage, and arbuscules (asterisk) which are the site of 

nutrient exchange between the plant and the fungus.  
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Figure 1.2: Honeybees observed pollinating the hermaphroditic flowers of S. hermaphrodita stands at 

Taquanyah Conservation Area in July 2019 (A & B).   
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Chapter 2: Seedling performance of endangered Sida hermaphrodita does not support a 

putative detrimental soil conditioning by Phragmites australis 

 

In preparation for Conservation Biology 

Following the defense, this manuscript will be expanded to also incorporate aboveground competition 

results obtained by the Rooney lab.    
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2.1 Abstract 

Virginia Mallow (Sida hermaphrodita) is a perennial herb native to riparian habitats in 

northeastern North America. Throughout most of its geographical distribution, however, it is considered 

threatened potentially due to the loss of habitat caused by exotic European common reed (Phragmites 

australis) invasion. The biology and ecology of S. hermaphrodita are still poorly understood, and factors 

contributing to the species rarity are unknown. Allelopathic and phytotoxic conditioning of soil to inhibit 

native species are mechanisms that have been proposed to explain the invasion success of P. australis. 

Field vegetation surveys were conducted to quantify S. hermaphrodita seedling performance and 

arbuscular mycorrhizal colonization in areas ranging in regard to their proximity to P. australis stands to 

determine the potential of P. australis to allelopathically alter soils and inhibit native seedling growth. 

Results did not support previous allelopathic soil conditioning reports since field results suggested that 

the proximity to P. australis has no significant effect on S. hermaphrodita seedling mortality or seedling 

root AMF colonization. Interestingly, seedling emergence was highest in areas of intermediate proximity 

to P. australis stands. The S. hermaphrodita field performance findings coupled with the AMF results 

suggested that nutrient stress may be promoting the coexistence of both species and that S. hermaphrodita 

stands currently have the capacity to increase at Taquanyah Conservation Area. Our results also suggested 

that instead of belowground soil conditioning, the key to P. australis invasion may be through 

competition for light and that the effective control and management of this species (and thus conservation 

of S. hermaphrodita populations and other native plants) may be achieved through the disruption of its 

aboveground competition potential.  

2.2 Introduction 

Biological invasions by alien plant species are considered one of the greatest threats to natural 

communities, ecosystems and global biodiversity (Mack et al., 2000; Pimentel et al., 2000; Sala et al., 

2000; Alvarez and Cushman, 2002). The introduction of alien invasive species into new habitats is often 

the result of human actions, in which the alien species are either intentionally or inadvertently moved 
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outside of their native range where they can grow exponentially and become aggressive invaders 

(Vitousek et al., 1997; Mitchell and Power 2003; Sanon et al., 2009). The aggression by which alien 

species can negatively impact the new ecosystems and the native species that occupy them has been 

attributed to numerous factors including escape from natural predators (Mitchell and Powers 2003), 

higher productivity (Ruiz and Carlton 2003; Uddin and Robinson 2018), adaptability to environmental 

disturbance (Mitchell and Gopal, 1991), higher competitive ability (Thébaud and Simberloff, 2001), 

allelopathic potential (Bais et al., 2003; Callaway and Ridenour 2004; Pisula and Meiners 2010; Uddin et 

al., 2012) and the modification of soil microbiota including the disruption of symbioses with Arbuscular 

Mycorrhizal Fungi (AMF) (Roberts and Anderson, 2001; Levine et al., 2003; Mummey and Rillig, 2006; 

Stinson et al., 2006; Sanon et al., 2009; White et al., 2018). Through the use of such mechanisms, 

invasive alien species displace native species, leading to their endangerment and potential extinction 

(Vitousek et al., 1997; Wilcove et al., 1998; Simberloff, 2003). Alien species now dominate many marine, 

freshwater and terrestrial habitats throughout the world, and their rate of increase is frequently 

exponential (Ruiz and Carlton 2003). Consequentially, interest in understanding the mechanisms 

attributed to alien invasions and the impacts the invaders have on native plant communities, has grown in 

hopes of determining the best control measures suitable to conserving native species and their natural 

ecosystems (Rejmánek and Richardson 1996; Byers et al., 2002; Levine et al., 2003).   

Sida hermaphrodita (L.) Rusby (Virginia Mallow; Malvaceae) is a herbaceous perennial species 

native to floodplains and riparian habitats of Northeastern North America (Spooner et al., 1985; 

COSEWIC 2010). It is a large clonal species that can reach 1-4 m in height (COSEWIC 2010; Borkowska 

and Molas 2012), and reproduces both sexually through the release of seeds from its hermaphroditic 

flowers, and vegetatively through the budding of its robust plagiotrophic root system (Thomas 1980; 

Spooner et al., 1985; Bickerton 2011; Stevens et al., unpublished). Although information on the species’ 

physiology and ecology is limited, and its capacity to form AMF relationships has not been determined, 

the species is understood to tolerate a variety of soil conditions as well as a degree of moderate human 
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disturbance (Bickerton 2011; Kocoń and Matyka, 2012; Oleszek et al., 2013; Cetner et al., 2014). Despite 

S. hermaphrodita’s vigorous growth, good reproductive potential (Stevens et al., unpublished) and 

tolerance to various environmental conditions, the species is currently endangered throughout its native 

geographical distribution and has been designated Canadian national conservation and Global 

conservation statuses of Critically Imperiled (N1) and Vulnerable (G3) respectively (Spooner et al., 1985; 

Klimešová and Klimeš, 2008; COSEWIC 2010; Environment Canada, 2015; NatureServe 2019). 

Recently, the largest threat to the conservation of S. hermaphrodita was suggested to be the loss of habitat 

as a result of the increasing abundance of the invasive Phragmites australis (Cav.) Trin. ex Steud. 

(Common Reed; Poaceae) (Bickerton 2011).           

Invasive P. australis is a tall perennial aquatic and wetland grass that can reach heights between 

4-6 m (Mal and Narine, 2003; Lambert et al., 2010; Cross and Fleming, 1989). It makes use of optimal 

reproductive strategies whereby the combination of sexual reproduction through the release of seeds and 

vegetative reproduction through the growth of its extensive rhizome system, contribute to its dispersal and 

range expanse into new territories (Clevering and Lissner, 1999; Mal and Narine 2003; Lambert et al., 

2010; Belzile et al., 2010; McCormick et al., 2010; Kirk et al., 2011). Considered to be native to Eurasia, 

the invasive haplotype M can be currently found on every continent except Antarctica (Roland and Smith, 

1969; Gucker, 2008; Mal and Marine, 2003). Since its introduction into Eastern North America likely 

from the United Kingdom (Plut et al., 2011) in the 19th century, invasive P. australis has created large, 

rapidly expanding monospecific stands that have displaced entire communities of flora and fauna (Burk, 

1877; Saltonstall 2003; Mal and Narine 2003; Saltonstall et al., 2010).  

Globally considered one of the most aggressive invasive species (Fell et al., 1998; Marris 2005; 

Uddin et al., 2012), considerable efforts have been made to determine specific mechanisms to explain the 

competitive success of P. australis. Biological characteristics, such as high rates of sexual and vegetative 

propagation and the development of dense canopies, are thought to provide competitive advantages for its 

expansion into new ecosystems (Meyerson et al. 2000; Mozdzer and Zieman 2010). However, numerous 
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studies have also hypothesized that P. australis can enhance its invasion by directly or indirectly 

inhibiting the growth of neighbouring plants by allelopathically and phytotoxically conditioning soil 

properties (Rudrappa et al., 2007; Uddin et al., 2012; Uddin et al., 2014; Weidenhamer et al., 2013; 

Crocker et al., 2017), modifying soil microbial communities (Jordan et al., 2008; Song et al., 2015; 

Shearin et al., 2018), and disrupting belowground symbiotic relationships with AMF (Uddin et al., 2017). 

Unfortunately, the literature surrounding P. australis’ allelopathy and phytotoxicity is not robust enough 

to conclude that P. australis’ invasion relies on these mechanisms (Uddin et al., 2017), thus more work is 

needed to examine P. australis underground plant interactions to fully understand its threat to native 

species like S. hermaphrodita.   

The objective of this study was to observe underground interactions between P. australis and the 

endangered S. hermaphrodita in field settings to gain insight into how P. australis may pose a significant 

threat to S. hermaphrodita. Additionally, since it is currently unknown whether S. hermaphrodita can 

form symbioses with AMF, this study will also examine the AMF colonization of seedling roots. More 

specifically, this study seeks to address the putative detrimental soil conditioning effects of P. australis 

populations and determine how proximity to P. australis may affect S. hermaphrodita seedling survival 

and AMF root colonization levels. This objective was achieved by assessing the emergence and mortality 

of S. hermaphrodita seedlings over three consecutive growing seasons and the AMF colonization of S. 

hermaphrodita seedling roots at locations where P. australis plants were present and absent. A 

confirmation of the belowground competition mechanism may suggest that P. australis has similar 

interactions with other plants and would provide insight into potential targets for control of its threat to 

other native species.  

2.3 Materials and Methods 

2.3.1 Site description 

Taquanyah Conservation Area (TCA) is a 136 ha complex of woodland, grassland and wetland 

habitats within a floodplain associated with a cold water stream located in Haldimand County, Ontario 
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(42°57’17.0”N, 79°54’46.0”W). The conservation area is one of the only two locations where S. 

hermaphrodita remains in Canada (Bickerton, 2011). Based on morphological identification, the invasive, 

non-native Phragmites australis haplotype (Saltonstall et al., 2005) has become one of the most dominant 

species in this area, gradually displacing the native species (Bickerton, 2011).    

2.3.2 Field seedling vegetation survey 

A long-term monitoring program of S. hermaphrodita was initiated at TCA in 2014. Population 

boundaries were determined by walking each individual S. hermaphrodita stand with an SX Blue II GPS 

and the areas of each stand were subsequently mapped using ArcMap. Due to close ramet development, 

stands were considered separate if there was greater than one-meter distance between two adjacent groups 

of plants. To determine the stem density within the stands, all stems were counted when stands occupied 

less than 1 m2. In larger stands, a 1 m2 grid was superimposed using ArcMap and 1 m x 1 m quadrats 

were randomly placed throughout the stand. Stems were counted in these quadrats until the total area 

sampled was equivalent to 5% of the total stand area. For classification of all other vegetation observed 

within the quadrats used for density assessment, see Table S2.3. This population monitoring at TCA has 

been repeated every two years (2014, 2016 and 2018).  

To understand plant community dynamics at the boundaries of the S. hermaphrodita stands, 28 

permanent 1 m x 1 m quadrats were marked using 15.2 cm galvanized framing spikes (Paulin) in 2014 at 

various locations surrounding large existing S. hermaphrodita stands (with an area greater than ca. 5 m2) 

at TCA. Since Phragmites australis has been suggested to represent a significant threat to the S. 

hermaphrodita population, emphasis was placed on establishing quadrats in areas were the proximity of 

S. hermaphrodita stands to P. australis stands differed. The first proximity level included areas where S. 

hermaphrodita and P. australis stands overlapped. The second proximity level included areas where the 

species were close to one another (less than 5 m). The third proximity level included areas where the 

species were further away from one another (greater than 10 m) (Figure 2.1). Monitoring of these 

quadrats has taken place each year since 2014.  
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Vegetation surveys of the quadrats have been completed each year. Quadrats were divided into 

four 0.5 m x 0.5 m sub-quadrats using two 30.5 cm bungee cords (Home Essentials) and all the plant 

species were identified and noted for the vegetation composition (Figure 2.2). For classification of all 

vegetation observed within each quadrat used for vegetation surveys, see Table S2.1. Additionally, the 

seedling emergence of S. hermaphrodita was quantified. Seedlings can be distinguished from the new 

vegetative shoots produced from belowground roots by the presence of morphologically distinct 

cotyledons (Figure 2.3), which permits the seedlings to be tracked throughout the growing season 

(Stevens et al., 2017a). During the growing seasons of 2016, 2017 and 2018, two successive trips to TCA 

were made approximately 4 weeks apart from each other to repeat vegetation surveys. New S. 

hermaphrodita seedlings found within the 28 quadrats during each survey were counted and tagged with 

10.2 cm zip-ties (Commercial Electric) to determine the emergence of seedlings between vegetation 

surveys. The number of tagged surviving seedlings observed following the initial survey, were used to 

determine seedling mortality (Figure 2.4).  

2.3.3 Seedling collection  

In 2016 a preliminary AMF assessment of S. hermaphrodita seedling roots was completed in 

which approximately 5 seedlings were collected from the peripheral soil of the 28 quadrats previously 

described to confirm whether S. hermaphrodita can form AMF relationships (n = 140). Subsequently, in 

2018, during the two consecutive trips to TCA for field vegetation surveys, approximately 10 seedlings 

were collected from the peripheral soil of each quadrat (n = 560). To prevent damage to the seedling 

roots, soil samples surrounding seedlings were excavated (Figure 2.5) with Hori-Hori digging blades (Sun 

Joe) and sealed in 26.8 cm x 27.3 cm freezer bags (Ziploc) for transport from TCA. Seedlings were 

carefully removed from soil samples in-lab, rinsed of any soil and debris and placed in 10 mL Falcon 

tubes with 50% Ethanol (EtOH) to store until roots could be stained for AMF colonization. 
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2.3.4 AMF assessment 

Seedlings were removed from the 50% EtOH and thoroughly rinsed with deionized water. 

Seedling roots were separated from shoots and the clearing and staining followed a modified ink-vinegar 

staining technique protocol (Vierheilig et al., 1998; Vierheilig et al., 2005). For clearing, the roots were 

submerged in 10% Potassium hydroxide (KOH) and were heated at a temperature of 95°C in a vacuum 

oven (Thermo Scientific Lindberg Blue M) under 25 inches Hg pressure for approximately 20-25 

minutes. The roots were then rinsed twice with a 10% vinegar (C2H4O2) solution and then submerged in 

5% Sheaffer ink-vinegar solution to stain the AMF structures within the roots. The roots were heated for 

approximately 5-10 minutes under the same conditions as previously mentioned for the clearing step and 

subsequently checked under a Zeiss SteREO Discovery V8 dissecting microscope (Carl Zeiss Inc., 

Germany) for sufficient staining. Lastly, the roots were rinsed with 5% vinegar to de-stain and then stored 

in 50% glycerol (C3H8O3).  

All roots were mounted in 50% glycerol on frosted microscopic slides (Fisherbrand™). Prepared 

slides were viewed under a Zeiss Axioscope 5 microscope (Carl Zeiss Inc., Germany) under 200x 

magnification (objective 20x, ocular 10x) and images were taken with Zeiss Zen Axiocam imaging 

software (blue edition).    

Mycorrhizal colonization was assessed using the gridline intersect technique (McGonigle et al., 

1990). Using this technique, intra-radicular hyphae, arbuscules, and vesicles were counted to obtain an 

estimate of the proportion of roots in a plant that contained mycorrhizal structures. 

2.3.5 Statistical analyses 

Preliminary seedling root AM colonization in 2016 was analyzed using a one-way analysis of 

variance (ANOVA) in JMP (Statistical Analysis Software version 14) to determine if there was a 

relationship between the P. australis proximity level and the measurements of seedling root colonization. 

Seedling performance and 2018 seedling mycorrhizal colonization were analyzed using a two-way 
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ANOVA to determine if there was an interaction between the survey year or survey month and the P. 

australis proximity level and their effect on S. hermaphrodita seedling performance or seedling 

colonization respectively. To meet the assumptions of normality and homogeneity of variance, seedling 

emergence, seedling mortality, 2016 vesicular colonization and 2018 hyphal colonization were square-

root transformed. Since we were interested only in specific comparisons and not in all possible pair-wise 

comparisons, multiple comparisons were conducted using the LS means function in JMP with a non-

corrected student’s T specification. 

2.4 Results 

2.4.1 Seedling performance 

The interaction between the P. australis proximity level and the survey year did not have a 

significant effect on S. hermaphrodita seedling emergence (Table 2.1). The emergence of S. 

hermaphrodita seedlings significantly increased (p < 0.001) throughout the three years of sampling 

(Table 2.1). Average seedling emergence in 2018 (mean: 19.717 seedlings/m2 ± 0.385 seedlings/m2) was 

approximately 4.5 times greater than the average seedling emergence observed in 2016 (mean: 4.408 

seedlings/m2 ± 0.385 seedlings/m2) (Figure 2.6). The change in P. australis proximity level also had a 

significant effect (p < 0.05) on S. hermaphrodita seedling emergence (Table 2.1). Closer proximities to P. 

australis led to theoretically anomalous effects in which the average S. hermaphrodita seedling 

emergence in intermediate proximity to P. australis was significantly higher (17.181 seedlings/m2 ± 0.391 

seedlings/m2) than the average seedling emergence in close (9.223 seedlings/m2 ± 0.452 seedlings/m2) 

and far proximity (8.542 seedlings/m2 ± 0.296 seedlings/m2) to P. australis stands (Figure 2.6).   

Additionally, the interaction between the P. australis proximity level and the survey year did not 

have a significant effect on S. hermaphrodita seedling mortality (Table 2.1).The mortality of S. 

hermaphrodita seedlings differed significantly (p < 0.0001) among the three years of sampling (Table 

2.1). Average seedling mortality in 2018 (96.236% ± 2.251%) was more than double the average seedling 

mortality in 2016 (38.270% ± 2.164%) (Figure 2.7). The change in P. australis proximity level, however, 
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did not have a significant effect on S. hermaphrodita seedling mortality (Table 2.1) since average 

seedling mortality remained consistent across all proximity levels (close: 64.238% ± 2.599%; 

intermediate: 65.905% ± 2.272%; far: 62.012% ± 1.682%) (Figure 2.7).  

2.4.2 Seedling AMF colonization 

 Preliminary assessment of arbuscular mycorrhizal fungal colonization in 2016 indicated that AM 

fungi were able to colonize S. hermaphrodita seedlings and that colonized roots had both arbuscules and 

vesicles (Figure 2.10). Initial assessment suggested that the change in P. australis proximity level did not 

significantly affect S. hermaphrodita seedling root colonization since no significant differences were 

observed between P. australis proximity levels and the various measures of AM colonization (Table 2.2). 

Mean hyphal colonization of S. hermaphrodita seedling roots remained consistent across all proximity 

levels (close: 67.578% ± 5.574%; intermediate: 68.522% ± 4.827%; far: 65.261% ± 3.787%). Similar 

results were also obtained for mean arbuscular colonization (close: 42.101% ± 5.701%; intermediate: 

33.717% ± 4.937%; far: 31.189% ± 3.873%) and mean vesicular colonization (close: 3.178% ± 5.049%, 

intermediate: 3.612% ± 4.373%, far: 0.543% ± 3.430%) (Figure 2.8).  

 After evaluating the capacity for S. hermaphrodita to form AMF symbioses, additional 

assessments of AMF colonization in 2018 suggested that the interaction between P. australis proximity 

level and the survey month did not have a significant effect on S. hermaphrodita seedling AM 

colonization (Table 2.3). Our additional results confirmed that change in P. australis proximity level did 

not significantly affect S. hermaphrodita root colonization (Table 2.3). All metrics of seedling AM 

colonization were not significantly affected by P. australis proximity since mean hyphal colonization 

levels (close: 79.710% ± 6.810%; intermediate: 83.911% ± 5.898%; far: 87.633% ± 4.640%), mean 

arbuscular colonization levels (close: 44.743% ± 5.071%; intermediate: 36.902% ± 4.392%; far: 47.030% 

± 3.455%), and mean vesicular colonization levels (close: 21.530% ± 5.394%; intermediate: 25.414% ± 

4.671%; far: 31.657% ± 3.675%) remained consistent across the proximity levels (Figure 2.9). 

Additionally, mean measurements of AM colonization between the consecutive sampling periods 
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remained consistent for hyphal colonization (July: 83.458% ± 4.739%; August: 84.168% ± 4.816%), 

arbuscular colonization (July: 40.387% ± 3.528%; August: 45.397% ± 3.586%), and vesicular 

colonization (July: 27.901% ± 3.753%; August: 24.500% ± 3.814%), indicating that S. hermaphrodita 

seedling AM colonization did not differ significantly among the survey months (Table 2.3 & Figure 2.9).             

2.5 Discussion 

 Our assessment of S. hermaphrodita seedling performance and root arbuscular mycorrhizal 

colonization did not support the negative soil conditioning effect hypothesized for the exotic P. australis. 

The plant-soil feedback theory suggests that invasive plant species can alter soils to engineer a positive 

plant-soil feedback and create a competitive advantage over native plant species (Bever et al., 1997; 

Reinhart et al., 2003; Callaway et al., 2004; Reinhart and Callaway 2006; Van Grunsven et al., 2007; Van 

Der Putten et al., 2007; Crocker et al., 2017). Previous research has shown that P. australis is capable of 

conditioning soil to inhibit the germination and growth of native species through the active allelopathic 

release of inhibitory phenolic compounds (Rudrappa et al., 2007; Rudrappa et al., 2009; Bains et al., 

2009), the indirect release of phytotoxic tissue extracts resulting from litter decomposition (Uddin et al., 

2012; Uddin et al., 2014), and through the allelopathic disruption of AMF symbioses (Uddin et al., 2017). 

Globally, the number of documented occurrences of S. hermaphrodita are low and declining and 

the impacts of the increasingly abundant P. australis surrounding natural populations has been suspected 

to be responsible (Environment Canada, 2015; NatureServe, 2016). Interestingly, results of yearly field 

surveys indicated that S. hermaphrodita seedling emergence at TCA has significantly increased each year 

(Figure 2.6). Population density assessments have also indicated that S. hermaphrodita stands at TCA 

have grown since the area occupied by S. hermaphrodita and the estimated number of vegetative stems at 

TCA have increased between the survey periods in 2014 (total area occupied: 2,109 m2; total stem count: 

29,833 stems), 2016 (total area occupied: 2,616 m2; total stem count: 29,245 stems) and 2018 (total area 

occupied: 3,827 m2; total stem count: 65,911 stems) (Table S2.2 & Figure S2.1-Figure S2.3). The 
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observed increase in seedling emergence each year may be a result of an increase in seeds contributed to 

the seedbank each year.         

2.5.1 Seedling performance 

Soil conditioning by P. australis was hypothesized to inhibit S. hermaphrodita seedling 

emergence in close proximity. Seedling emergence results did vary significantly across the proximity 

levels; however, results did not support the initial hypothesis since S. hermaphrodita seedling emergence 

was generally lowest in quadrats farther from P. australis (Figure 2.6). The higher seedling emergence 

observed in areas of intermediate and close proximity may indicate that S. hermaphrodita seedlings are 

not negatively impacted by P. australis. Life stage has been considered a factor that could impact the 

outcome of interactions between plant species (Goldsmith, 1978; Keddy and Shipley, 1989; Callaway and 

Walker, 1997). Nurse plant syndrome has been used to explain associations in which adults of one species 

can ameliorate harsh environmental conditions by stabilizing soils and increasing soil organic matter, 

nutrients and moisture, thereby facilitating the establishment of another species’ seedlings (Niering et al., 

1963; Steenberg and Lowe, 1969; Arriaga et al., 1993; Walker, 1994; Callaway et al., 1996). Phragmites 

australis has been documented facilitating seedling emergence and establishment of other species by 

trapping seeds and reducing wind and erosion (Liu et al., 2012). Sida hermaphrodita, like other species in 

the Malvaceae family, have seeds protected by an impermeable seed coat which enforces physical 

dormancy and controls germination (Rolston, 1978; Kelly et al., 1992; Baskin et al., 2000; Packa et al., 

2014). Previous studies have identified that S. hermaphrodita germination is usually low without seed 

coat damage to disrupt the physical dormancy, and because optimal environmental conditions are rarely 

encountered (Kurucz and Fári, 2013; Packa et al., 2014; Stevens et al., Unpublished). Numerous 

dormancy breaking techniques have been recognized and Packa et al. (2014) found that only slight 

damage to the seed coat is necessary to enable imbibition and increase seed germination capacity (Packa 

et a., 2014). Although further examination is needed for confirmation, it is possible that established P. 

australis stands may create microclimates of altered humidity levels, soil hydrology, as well as air and 
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soil temperatures that could influence cycles of freezing and thawing, resulting in the disruption of S. 

hermaphrodita seed physical dormancy (Báldi, 1999; Isselstein et al,. 2002; Flores and Jurado, 2003; 

Cavieres et al., 2007; Drezner and Garrity, 2008). Furthermore, our results from additional examinations 

of interactions between both species, provided further support for altered soil hydrology, since levels of 

soil moisture were highest within P. australis stands (See Chapter 3). Through the potential alteration of 

soil hydrology, S. hermaphrodita seed germination may be impacted by improving the imbibition 

capacity of seeds where water availability is increased beneath P. australis stands. Due to the observed 

increase in seedling emergence in close and intermediate P. australis proximity levels, it is possible that 

established P. australis stands at TCA may create conditions necessary for S. hermaphrodita seedling 

germination and emergence through the promotion of imbibition and mitigation of environmental 

conditions in areas closer to P. australis stands.  

  In many cases of nurse plant facilitation, patterns of mortality have been observed in which the 

beneficiary seedlings become significant competitors as they mature and eventually supress the growth of 

the nurse species (McAuliffe, 1984; McAuliffe, 1986; Valiente-Banuet et al., 1991; Flores-Martinez et al., 

1994; Callaway and Walker, 1997). However, the results from our vegetation surveys indicate that P. 

australis nurse plant mortality did not occur. Instead, S. hermaphrodita seedling mortality increased 

significantly each year (Figure 2.7). We hypothesized that if P. australis was capable of conditioning soils 

to create a competitive advantage, then S. hermaphrodita seedling mortality would be highest in close 

proximity to P. australis, however, S. hermaphrodita seedling mortality remained consistently high 

across all proximity levels (Figure 2.7). Since S. hermaphrodita seedling mortality did not differ among 

the three P. australis proximity levels, it may be possible that although P. australis may create conditions 

that support S. hermaphrodita germination and emergence, environmental conditions at TCA including 

limited light availability, combined with the competitive effects generated by other species (see below), 

do not support further development of the seedlings.  
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2.5.2 Seedling AMF colonization 

Assessments of arbuscular mycorrhizal colonization of S. hermaphrodita seedlings provided the 

first empirical evidence that S. hermaphrodita is capable of forming relationships with arbuscular 

mycorrhizal fungi (Figure 2.10). Following the confirmation of AMF colonization, we expected that soil 

conditioning by P. australis would result in significant negative impacts on S. hermaphrodita seedlings 

by interfering with AMF symbioses. However, our results did not support previous AMF interference 

findings (Uddin and Robinson, 2017; Uddin et al., 2017) since all measurements of AMF colonization 

were consistently high during each assessment period and across the P. australis proximity levels 

(Figures 2.8 & 2.9). Owing to reports that in general, plant symbioses with AMF are formed to improve 

plant acquisition of water and nutrients, and AMF abundance commonly increases where plants are 

nutrient limited (Bolan, 1991; Koide, 1991; Read, 1991; Treseder, 2004), the consistently high levels of 

AMF colonization observed in S. hermaphrodita seedlings suggests that limited nutrient availability at 

TCA may be contributing to the low S. hermaphrodita seedling survival. However, our additional results 

indicate instead that S. hermaphrodita performance does not coincide with common AMF relationships 

and that soil nutrient availability may be facilitated between S. hermaphrodita and P. australis due to 

unknown abiotic stressors contributing to plant performance (See Chapter 3). 

2.5.3 Synthesis of detrimental interaction 

Light availability may be the major factor responsible for the observed S. hermaphrodita 

performance. Although this study was designed to examine the potential effect that P. australis proximity 

has on S. hermaphrodita seedlings, all the quadrats used for vegetation surveys contained a variety of 

other plant species. Not including P. australis, some of the most frequently encountered species during 

the field surveys included Phalaris arundinacea L., Solidago canadensis L., Dipsacus fullonum L., and 

Geum urbanum L., (Table S2.1), all of which are powerful competitors and have the capacity to impede 

access to light for S. hermaphrodita seedlings (Figure S2.4). Phalaris arundinacea (Reed Canary Grass; 

Poaceae) is another aggressive perennial rhizomatous grass with culms ranging in height between 60-150 
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cm (Hitchcock, 1950), and has been well documented to establish monocultures rapidly and pre-empt the 

establishment of native species by intercepting light (Apfelbaum and Sams, 1987; Galatowitsch et al., 

1999; Budelsky and Galatowitsch, 2000; Green and Galatowitsch, 2001; Perry and Galatowitsch, 2004). 

Solidago canadensis (Canada Goldenrod; Asteraceae) is a widespread rhizomatous perennial herb with 

stem height ranging from 25-200 cm (Werner et al., 1980), that clonally develops a dense aboveground 

canopy (Hartnett and Bazzaz, 1985). Due to its morphological and physiological plasticity, it can adapt to 

varying light intensity (Sun et al., 2008), by continuously producing leaves and branching its 

inflorescence to completely shade the undergrowth and increase its light interception (Abrahamson and 

Gadgil, 1973; Potvin and Werner, 1983; Dong et al., 2006). Dipsacus fullonum (Fuller’s Teasel; 

Dipsacaceae) is a large biennial herb that produces a robust flowering stem between 50-250 cm in height 

as well as a low rosette up to 60 cm in diameter of thick leaves capable of shading neighbouring species 

(Werner, 1975a; Werner, 1975b; Rector et al., 2006). Geum urbanum (Avens; Rosaceae) is a smaller 

rhizomatous perennial herb with branched stems reaching 70 cm tall and is considered a fast colonizing 

species that favours partially shaded areas (Waldren et al., 1988; Taylor, 1997; Baeten et al., 2009). This 

species also displays high physiological plasticity, allowing it to adapt to different levels of light 

availability and continuously grow both cauline and rosette leaves in high and low light conditions (Pons, 

1977; Endels et al., 2004; Baeten et al., 2010), contributing to the diverse botanical canopy above younger 

plants. Phragmites australis specifically, is characterized by tall dense canopies of standing live and dead 

shoots (litter) that shade the understory (Swearingen and Saltonstall, 2010; Holdredge and Bertness, 

2011). The high S. hermaphrodita seedling mortality observed throughout TCA may coincide with 

previous reports that light may be the key limiting resource affecting native plant growth, especially in 

areas invaded by P. australis that monopolizes light (MacDougall and Turkington, 2005; Minchinton et 

al., 2006; Holdredge and Bertness, 2011). Additional unpublished results from the Rooney lab also 

support this hypothesis since they suggest S. hermaphrodita’s photosynthetic rates are impacted within P. 

australis stands.  
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Given that S. hermaphrodita seedlings or AMF colonization were not excluded in close proximity 

to P. australis, our results did not provide evidence to support P. australis soil conditioning mechanisms. 

Instead, our results suggest that competitive exclusion of light may be the main biotic mechanism of P. 

australis through which it displaces S. hermaphrodita. Additionally, although further assessment of other 

environmental conditions and interactions with other species at TCA need to be examined, the high AMF 

colonization and additional soil fertility results (See Chapter 3) suggest that the limiting soil nutrients may 

differ between S. hermaphrodita and P. australis, which may explain the observed interaction between 

the two species. It has been demonstrated that soil nutrient enrichment promotes the spread of P. australis 

(Minchinton and Bertness, 2003), however, previous studies have suggested that under sub-optimal 

conditions (e.g., water table level, nutrient level, strong competition), P. australis may not become 

vigorous enough to displace other strong competitors and instead may co-exist with them (Haslam, 1971; 

Güsewell and Klötzli, 1998; Uddin and Robinson, 2017; Uddin and Robinson, 2018). The growing S. 

hermaphrodita stands at TCA indicate that light competition or an unknown abiotic stressor may be 

preventing P. australis from threatening S. hermaphrodita’s vegetative spread. Sida hermaphrodita 

seedling germination and emergence may be favoured near P. australis, however, P. australis’ ability to 

competitively exclude light, likely impedes S. hermaphrodita seedling survival. Our results suggest that S. 

hermaphrodita has the capacity to increase its abundance at TCA, however, conservation efforts focussed 

on cutting and removing or burning aboveground P. australis shoots and litter as well as other invasive 

plants to disrupt the canopy cover, would help restore native community structure and promote the 

vegetative and seedling expansion of S. hermaphrodita into areas of its native distribution previously 

taken over by P. australis and other invasive plants.      
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2.6 Tables and Figures 

Table 2.1: Output of two-way ANOVA used to assess differences between the three survey years, the 

three P. australis proximity levels (Proximity) in addition to the interaction between survey year and 

location and their effect on the measures of S. hermaphrodita seedling performance. Proximity levels 

included locations where S. hermaphrodita and P. australis stands overlapped (n = 6), locations where P. 

australis stands were less that 5 m away (n = 8), and locations where P. australis stands were greater than 

10 m away from S. hermaphrodita stands (n = 14). Square-root transformations were applied to the 

seedling performance response variables tested including seedling mortality and seedling emergence. 

Seedling performance was examined at each of the 28 locations during consecutive vegetation surveys 

completed during the growing seasons of 2016, 2017 and 2018. Significance level of p < 0.05 was used 

for all analyses and significant effects are indicated with an asterisk (*) 

 Year Proximity Year x Proximity 

Df F P Df F P Df F P 

Seedling 

Emergence 

2/83 9.439 0.0002* 2/83 3.316 0.042* 4/83 0.885 0.477 

Seedling 

Mortality 

2/70 67.395 <0.0001* 2/70 0.388 0.680 4/70 0.644 0.633 
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Table 2.2: Output of one-way ANOVA used to assess any preliminary relationships between measures of 

S. hermaphrodita seedling root AM colonization and the three P. australis proximity levels (Proximity). 

Proximity levels included locations where S. hermaphrodita and P. australis stands overlapped (n = 6), 

locations where P. australis stands were less that 5 m away (n = 8), and locations where P. australis 

stands were greater than 10 m away from S. hermaphrodita stands (n = 14). Response variables tested 

were hyphal colonization (HC), arbuscular colonization (AC), and vesicular colonization (VC). Square-

root transformation was only applied to the measurement of vesicular colonization to meet ANOVA 

assumptions. Five seedlings were collected from each of the 28 locations during the growing season in 

2016 and assessed for measures of root colonization using a modified magnified intersections method 

(McGonigle et al., 1990).  Significant effects were not observed. 

 Proximity 

Df F P 

HC (%) 2/26 0.156 0.857 

AC (%) 2/26 1.266 0.300 

VC (%) 2/26 2.747 0.084 
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Table 2.3: Output of two-way ANOVA used to assess differences between two survey months , the three 

P. australis proximity levels (Proximity), in addition to the interaction between survey month and 

location and their effect on the measures of S. hermaphrodita seedling AM root colonization. Proximity 

levels included locations where S. hermaphrodita and P. australis stands overlapped (n = 6), locations 

where P. australis stands were less that 5 m away (n = 8), and locations where P. australis stands were 

greater than 10 m away from S. hermaphrodita stands (n = 14).  Response variables tested were hyphal 

colonization (HC), arbuscular colonization (AC), and vesicular colonization (VC). Square-root 

transformation was only applied to the measurement of hyphal colonization to meet ANOVA 

assumptions. Ten seedlings were collected from each of the 28 locations during consecutive vegetation 

surveys completed in July and August 2018 and assessed for measures of root colonization using a 

modified magnified intersections method (McGonigle et al., 1990).  Significant effects were not observed. 

 Month Proximity Month x Proximity 

Df F P Df F P Df F P 

HC (%) 1/53 0.031 0.861 2/53 1.342 0.271 2/53 0.199 0.820 

AC (%) 1/53 0.992 0.324 2/53 1.681 0.197 2/53 0.028 0.972 

VC (%) 1/53 0.404 0.528 2/53 1.351 0.269 2/53 0.071 0.932 
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Figure 2.1: Experimental layout for each of the 28 1 m x 1 m quadrats placed at TCA in 2014, where field 

vegetation surveys were conducted each year. 28 quadrats were placed in locations where the proximity 

of S. hermaphrodita stands to P. australis stands differed. The proximity levels were characterized as 

locations where both S. hermaphrodita and P. australis stands overlapped (n = 6) (1), intermediate 

locations where the boundaries of both species were in close vicinity to one another (< 5 m; n = 8) (2) and 

locations where the species boundaries were farther from one another (> 10 m; n = 14) (3). Vegetation 

surveys have been completed each year in which all species present within the quadrats were identified 

and noted for vegetation composition and S. hermaphrodita seedling growth was monitored throughout 

the growing season.  
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Figure 2.2: Photographs taken at TCA of quadrats where field vegetation surveys were completed. 28 1 m 

x 1 m quadrats were placed in locations where the proximity of S. hermaphrodita stands to P. australis 

stands differed. The proximity levels were characterized as locations where both S. hermaphrodita and P. 

australis stands overlapped (1), intermediate locations where the boundaries of both species were in close 

vicinity to one another (< 5 m) (2) and locations where the species boundaries were farther from one 

another (> 10 m) (3). Vegetation surveys were completed each year in which all species present within 

the quadrats were identified and noted for vegetation composition and S. hermaphrodita seedling growth 

was monitored throughout the growing season.  
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Figure 2.3: Seedlings and small plants of S. hermaphrodita located at the periphery of established stands 

at TCA. Seedlings with 1-2 true leaves. Seedlings are identified by the presence of ovate cotyledons 

subtending the toothed true leaves (A). Young plants establishing from perennating organs were 

distinguishable from seedlings due to their more extensive development and absence of cotyledons (B).  

 

 

Figure 2.4: S. hermaphrodita seedlings were tagged with ties during each vegetation survey to monitor 

their performance throughout the growing season and to distinguish them from newly emerging seedlings. 

Seedlings that did not continue to grow and develop true leaves throughout the growing season 

subsequently lost their cotyledons (A) or wilted (B & C). Tagged seedlings with these appearances were 

used to determine seedling mortality in relation to proximity to P. australis.  
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Figure 2.5: In 2016 and 2018, S. hermaphrodita seedlings were collected from the peripheral soil of each 

of the 28 1 m x 1 m quadrats used for vegetation surveys. To prevent damage to seedling roots, soil 

samples surrounding the seedlings were excavated (A and B). The excavated seedlings were carefully 

separated from soil samples in lab and were later cleared and stained to assess the proportion of AMF 

colonization within seedling roots.   
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Figure 2.6: Seedling emergence of S. hermaphrodita seedlings surveyed in quadrats placed in locations 

where the proximity of S. hermaphrodita stands to P. australis stands differed. The proximity levels 

included locations where both S. hermaphrodita and P. australis stands overlapped (n = 6) (1), 

intermediate locations where the boundaries of both species were in close vicinity to one another (< 5 m; 

n = 8) (2) and locations where the species boundaries were farther from one another (> 10 m; n = 14) (3). 

The interaction between survey year and P. australis proximity level and their effect on S. hermaphrodita 

seedling emergence as a representative of seedling performance was assessed using a two-way analysis of 

variance (ANOVA). Square-root transformation was applied to meet ANOVA assumptions and 

differences in seedling emergence among years and across proximity levels were determined using 

Student’s T multiple comparisons. Bars represent means ± standard error and bars with the same letters 

are not significantly different (p < 0.05).  
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Figure 2.7: Seedling mortality of S. hermaphrodita seedlings surveyed in quadrats placed in locations 

where the proximity of S. hermaphrodita stands to P. australis stands differed. The proximity levels 

included locations where both S. hermaphrodita and P. australis stands overlapped (n = 6) (1), 

intermediate locations where the boundaries of both species were in close vicinity to one another (< 5 m; 

n = 8) (2) and locations where the species boundaries were farther from one another (> 10 m; n = 14) (3). 

The interaction between survey year and P. australis proximity level and their effect on S. hermaphrodita 

seedling mortality as a representative of seedling performance was assessed using a two-way analysis of 

variance (ANOVA). Square-root transformation was applied to meet ANOVA assumptions and 

differences in seedling mortality among years and across proximity levels were determined using 

Student’s T multiple comparisons. Bars represent means ± standard error and bars with the same letters 

are not significantly different (p < 0.05). 
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Figure 2.8: Preliminary seedling root AMF colonization of S. hermaphrodita seedlings collected in 2016 

from locations where the proximity of S. hermaphrodita stands to P. australis stands differed. The 

proximity levels included locations where both S. hermaphrodita and P. australis stands overlapped (n = 

6) (1), intermediate locations where the boundaries of both species were in close vicinity to one another 

(< 5 m; n = 8) (2) and locations where the species boundaries were farther from one another (> 10 m; n = 

14) (3). The relationship between the P. australis proximity level and the measurements of AMF 

colonization including hyphal colonization (left), arbuscular colonization (right) and vesicular 

colonization (bottom) were assessed using a one-way analysis of variance (ANOVA). Square-root 

transformation was only applied to the measurement of vesicular colonization to meet ANOVA 
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assumptions and differences between proximity levels were determined using a Student’s T comparison. 

Bars represent means ± standard error and bars with the same letters are not significantly different (p < 

0.05).  
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Figure 2.9: Seedling root AMF colonization of S. hermaphrodita seedlings collected in 2018 from 

locations where the proximity of S. hermaphrodita stands to P. australis stands differed. The proximity 

levels included locations where both S. hermaphrodita and P. australis stands overlapped (n = 6) (1), 

intermediate locations where the boundaries of both species were in close vicinity to one another (< 5 m; 

n = 8) (2) and locations where the species boundaries were farther from one another (> 10 m; n = 14) (3). 

The interaction between the survey month and the P. australis proximity level and their effect on hyphal 

colonization (left), arbuscular colonization (right), and vesicular colonization (bottom) as representatives 

of seedling root AMF colonization were assessed using a two-way analysis of variance (ANOVA). 

Square-root transformation was only applied to the measurement of hyphal colonization to meet ANOVA 
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assumptions and differences in seedling colonization among months and across proximity levels were 

determined using Student’s T multiple comparisons. Bars represent means ± standard error and bars with 

the same letters are not significantly different (p < 0.05).  
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Figure 2.10: Cleared and stained roots of S. hermaphrodita seedlings collected from locations where the 

proximity of S. hermaphrodita stands to P. australis stands differed. Root samples were cleared in a 10% 

KOH solution, stained with a 5% ink in vinegar solution and AMF colonization was quantified using a 

modified version of the magnified intersections method (McGonigle et al., 1990)  
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A: Un-colonized area of a S. hermaphrodita root with the Root Vascular Tissue (RVT) running through 

the centre of the root. B-F: Areas of S. hermaphrodita seedling roots colonized with blue stained AMF 

structures. B-C: Heavily colonized seedling root sections collected in during July and August 2018 

respectively. Both sections exhibit intra-radicular hyphae (arrow) within the cortex of the root and 

numerous arbuscules (asterisk) and vesicles (circle). D: Seedling root section collected in July 2018 

exhibiting intra-radicular hyphae (arrow) within the cortical tissue, running parallel to the root vascular 

tissue and numerous arbuscules (asterisk). E-F: Seedling root sections collected in July and August 2018 

respectively, exhibiting intra-radicular hyphae (arrow), arbuscules (asterisk) and numerous vesicles 

(circle).           
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2.7 Supplemental Information 

Table S2.1: Classification of all species identified within the quadrats set up at TCA where vegetation 

surveys were conducted in locations where the proximity of S. hermaphrodita stands to P. australis 

stands differed. Plants were identified using the species key by Dickinson et al. (2004). Status as 

introduced (I) or native (N), and physiognomy (Phys) was determined from the USDA PLANTS 

database. Each species frequency of occurrence within the 28 1 m x 1 m quadrats assessed twice (56) 

throughout the growing seasons of 2016, 2017, and 2018 is presented. Minimum (Min) and maximum 

(Max) density (/m2) of each species is also presented. Unidentified species are indicated by UN.  

Family Genus, 

Species 

Common 

Name 

I/N Phys Frequency, Min/Max 

2016 2017 2018 

Aceraceae Acer rubrum L. Red Maple N Tree 0/56, 0/0 0/56, 0/0 1/56, 1/1 

Anacardiaceae Rhus typhina 

L.  

Staghorn 

Sumac 

N Shrub/Tree 7/56, 1/1 1/56, 1/1 0/56, 0/0 

Apiaceae Daucus carota 

L.  

Queen 

Anne’s 

Lace 

I Forb/Herb 10/56, 

1/27 

12/56, 

1/105 

12/56, 1/82 

Asclepiadaceae Ascelpias 

syriaca L. 

Common 

Milkweed 

N Forb/Herb 6/56, 1/5 4/56, 1/2 3/56, 1/3 

Asteraceae 

 

Ambrosia 

artemisiifolia 

L. 

Annual 

Ragweed 

N Forb/Herb 0/56, 0/0 0/56, 0/0 3/56, 1/2 

Arctium minus 

Bernh. 

Lesser 

Burdock 

I Forb/Herb 0/56, 0/0 6/56, 1/12 4/56, 2/124 

Bidens 

frondosa L. 

Devil’s 

Beggartick 

I Forb/Herb 0/56, 0/0 0/56, 0/0 3/56, 2/7 

Cirsium 

arvense (L.) 

Scop. 

Creeping 

Thistle 

I Forb/Herb 6/56, 1/9 6/56, 1/6 8/56, 1/5 

Cirsium 

vulgare (Savi) 

Ten. 

Bull Thistle I Forb/Herb 0/56, 0/0 9/56, 1/10 11/56, 1/14 

Erigeron 

annuus (L.) 

Pers. 

Eastern 

Daisy 

Fleabane 

N Forb/Herb 2/56, 1/2 3/56, 1/4 1/56, 3/3 

Lactuca 

serriola L. 

Prickly 

Lettuce 

I Forb/Herb 2/56, 5/8 0/56, 0/0 1/56, 1/1 

Solidago 

canadensis L. 

Canada 

Goldenrod 

N Forb/Herb 53/56, 

1/135 

53/56, 

1/162 

55/56, 

1/131 

Sonchus 

arvensis L.  

Field Sow 

Thistle 

I Forb/Herb 7/56, 1/24 17/56, 1/33 11/56, 1/28 

Symphyotrichu

m laeve (L.) Á. 

Löve & D. 

Löve 

Smooth 

Blue Aster 

N Forb/Herb 0/56, 0/0 2/56, 29/40 2/56, 1/2 
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Symphyotrichu

m lanceolatum 

(Willd.) G.L. 

Nesom 

White 

Panicle 

Aster 

N Forb/Herb 3/56, 

5/105 

10/56, 1/20 4/56, 2/12 

Symphyotrichu

m novae-

angliae (L.) 

G.L. Nesom 

New 

England 

Aster 

N Forb/Herb 3/56, 1/54 13/56, 1/12 8/56, 1/8 

Taraxacum 

officinale F.H. 

Wigg. 

Common 

Dandelion 

I/N Forb/Herb 15/56, 1/8 4/56, 1/3 5/56, 1/4 

Tussilago 

farfara L. 

Coltsfoot I Forb/Herb 4/56, 1/48 4/56, 2/5 1/56, 4/4 

Balsaminaceae Impatiens 

capensis 

Meerb. 

Spotted 

Touch-Me-

Not 

N Forb/Herb 6/56, 1/7 2/56, 1/1 0/56, 0/0 

Brassicaceae Alliaria 

petiolata (M. 

Bieb.) Cavara 

& Grande 

Garlic 

Mustard 

I Forb/Herb 4/56, 1/15 6/56, 1/93 4/56, 8/44 

Chenopodiaceae Chenopodium 

album L. 

Lamb’s 

Quarters 

I/N Forb/Herb 2/56, 2/13 3/56, 2/5 0/56, 0/0 

Cornaceae Cornus sericea 

L. 

Redosier 

Dogwood 

N Shrub 3/56, 1/1 7/56, 1/8 6/56, 1/14 

Cyperaceae Carex sp. UN UN Graminoid 0/56, 0/0 0/56, 0/0 2/56, 7/13 

Dipsacaceae Dipsacus 

fullonum L.  

Fuller’s 

Teasel 

I Forb/Herb 18/56, 

1/165 

18/56, 2/83 22/56, 

1/162 

Fabaceae 

 

Medicago 

lupulina L.  

Black 

Medick 

I Forb/Herb 7/56, 

1/106 

0/56, 0/0 0/56, 0/0 

Melilotus albus 

Medik. 

White 

Sweet-

Clover 

I Forb/Herb 0/56, 0/0 1/56, 1/1 0/56, 0/0 

Melilotus 

officinalis (L.) 

Lam. 

Yellow 

Sweet-

Clover 

I Forb/Herb 5/56, 2/48 3/56, 2/84 6/56, 

60/107 

Trifolium 

repens L. 

White 

Clover 

I Forb/Herb 0/56, 0/0 6/56, 1/14 5/56, 2/15 

Juglandaceae Juglans nigra 

L. 

Black 

Walnut 

N Tree 0/56, 0/0 5/56, 1/1 4/56, 1/2 

Lamiaceae Prunella 

vulgaris L.  

Common 

Selfheal 

I/N Forb/Herb 0/56, 0/0 5/56, 1/9 4/56, 3/25 

Lythraceae Lythrum 

salicaria L. 

Purple 

Loosestrife 

I Forb/Herb 6/56, 2/95 10/56, 1/28 7/56, 2/104 

Malvaceae Sida 

hermaphrodita 

(L.) Rusby. 

Virginia 

Mallow 

N Forb/Herb 55/56, 

1/121 

52/56, 

3/163 

56/56, 

1/110 

Onagraceae Circaea 

canadensis (L.) 

Hill 

Enchanter’s 

Nightshade 

N Forb/Herb 0/56, 0/0 0/56, 0/0 2/56, 4/17 

Poaceae 

 

Phalaris 

arundinacea L.  

Reed 

Canary 

Grass 

N Graminoid 25/56, 

1/197 

31/56, 

1/229 

33/56, 

2/246 

Phragmites 

australis 

Common 

Reed 

I Graminoid 13/56, 

1/26 

11/56, 1/28 12/56, 1/24 
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(Cav.) Trin. Ex 

Steud. 

Poaceae sp. UN UN Graminoid 12/56, 

1/200 

14/56, 

10/200 

12/56, 

50/200 

Rosaceae 

 

Fragaria vesca 

L. 

Woodland 

Strawberry 

N Forb/Herb 0/56, 0/0 1/56, 1/1 0/56, 0/0 

Geum urbanum 

L. 

Avens I Forb/Herb 16/56, 

1/22 

22/56, 2/45 18/56, 1/23 

Rubus 

strigosus 

Michx. 

Wild Red 

Raspberry 

N Shrub 0/56, 0/0 1/56, 1/1 3/56, 1/3 

Salicaceae Salix sp. UN UN Tree 0/56, 0/0 1/56, 2/2 1/56, 1/1 

Solanaceae Solanum 

dulcamara L. 

Climbing 

Nightshade 

I Vine 2/56, 1/1 6/56, 1/4 5/56, 1/2 

Urticaceae Urtica dioica 

L. 

Stinging 

Nettle 

I/N Forb/Herb 4/56, 1/2 2/56, 2/2 2/56, 17/21 
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Table S2.2: Classification of S. hermaphrodita stands present at TCA in 2014, 2016, and 2018. All stands 

were mapped using SX Blue II GPS and each stands area was determined using ArcMap. Stands were 

separated into 10 classes distinguished by surface area (m2). The number of separate stands (NS), average 

area occupied by the stand of that size class (ASA), and the average estimated stem density of vegetative 

S. hermaphrodita stems (AESD) within stands of that size class are presented. The total number of 

separate stands, total surface area occupied by S. hermaphrodita stands and the estimated total number of 

S. hermaphrodita stems present at TCA during the year of monitoring are also presented at the bottom of 

the table. 

Size 

Class 

2014 2016 2018 

NS ASA AESD NS ASA AESD NS ASA AESD 

<1 m2 96 0.175m2 1.064 95 0.169m2 1.028 107 0.118m2 0.879 

 

>1 m2  

<5 m2 

34 2.188m2 37.649 19 2.825m2 63.676 7 2.352m2 43.185 

>5 m2  

<10 m2 

11 6.721m2 92.036 13 7.231m2 85.289 4 8.326m2 133.593 

>10 m2  

<20 m2 

15 14.211m2 240.766 5 15.842m2 93.342 5 14.911m2 229.322 

>20 m2  

<50 m2 

16 29.837m2 392.171 12 34.825m2 417.567 9 31.886m2 511.193 

>50 m2  

<100 m2 

4 75.817m2 1094.017 5 67.101m2 641.317 5 71.661m2 1216.347 

>100 m2  

<150 m2 

1 124.376m2 1190.459 5 124.122m2 1196.342 3 121.931m2 1902.820 

>150 m2  

<200 m2 

0 0 0 2 174.369m2 1570.947 1 187.319m2 2664.092 

>200 m2  

<250 m2 

2 227.477m2 3155.825 0 0 0 2 227.013m2 4055.760 

>250 m2 1 386.531m2 5745.582 2 325.323m2 4511.105 5 407.175m2 7324.820 

 

Total 180 2109.15m2 29833.44 158 2616.12m2 29245.10 148 3827.61m2 65911.16 
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Table S2.3: Classification of all species identified within the quadrats used for S. hermaphrodita 

population density assessment in 2018. 182 separate 1 m x 1 m quadrats were used to assess 5% of the 

total S. hermaphrodita stand area to estimate the number of S. hermaphrodita stems present at TCA 

during that growing season. All plants found associated with S. hermaphrodita within the quadrats used 

for density assessment were identified using the species key by Dickinson et al. (2004). Status as 

introduced (I) or native (N), and physiognomy (Phys) was determined from the USDA PLANTS 

database. Each species frequency of occurrence within the 182 quadrats is presented. Minimum (Min) and 

maximum (Max) percent vegetation cover (PVC) of each species is also presented. Unidentified species 

are indicated by UN. 

Family Genus, Species Common 

Name 

I/N Phys Frequency Min PVC Max PVC 

Asteraceae 

 

Ambrosia 

artemisiifolia L. 

Annual 

Ragweed 

N Forb/Herb 3/182 5% 5% 

Arctium minus 

Bernh. 

Lesser 

Burdock 

I Forb/Herb 13/182 5% 90% 

Cirsium arvense 

(L.) Scop. 

Creeping 

Thistle 

I Forb/Herb 15/182 5% 10% 

Solidago 

canadensis L. 

Canada 

Goldenrod 

N Forb/Herb 90/182 5% 60% 

Sonchus 

arvensis L.  

Field Sow 

Thistle 

I Forb/Herb 5/182 5% 10% 

Symphyotrichum 

novae-angliae 

(L.) G.L. Nesom 

New 

England 

Aster 

N Forb/Herb 9/182 5% 5% 

Taraxacum 

officinale F.H. 

Wigg. 

Common 

Dandelion 

I/N Forb/Herb 1/182 5% 5% 

Tussilago 

farfara L. 

Coltsfoot I Forb/Herb 6/182 5% 90% 

Balsaminaceae Impatiens 

capensis Meerb. 

Spotted 

Touch-Me-

Not 

N Forb/Herb 15/182 5% 80% 

Brassicaceae Alliaria 

petiolata (M. 

Bieb.) Cavara & 

Grande 

Garlic 

Mustard 

I Forb/Herb 31/182 5% 30% 

Cornaceae Cornus sericea 

L. 

Redosier 

Dogwood 

N Shrub 4/182 5% 20% 

Cyperaceae Carex sp. UN UN Graminoid 5/182 5% 20% 

Dipsacaceae Dipsacus 

fullonum L.  

Fuller’s 

Teasel 

I Forb/Herb 9/182 5% 40% 
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Fabaceae Melilotus 

officinalis (L.) 

Lam. 

Yellow 

Sweet-

Clover 

I Forb/Herb 1/182 60% 60% 

Juglandaceae Juglans nigra L. Black 

Walnut 

N Tree 4/182 5% 5% 

Lythraceae Lythrum 

salicaria L. 

Purple 

Loosestrife 

I Forb/Herb 1/182 10% 10% 

Malvaceae Sida 

hermaphrodita 

(L.) Rusby. 

Virginia 

Mallow 

N Forb/Herb 182/182 5% 40% 

Poaceae 

 

Phalaris 

arundinacea L.  

Reed 

Canary 

Grass 

N Graminoid 64/182 5% 90% 

Phragmites 

australis (Cav.) 

Trin. Ex Steud. 

Common 

Reed 

I Graminoid 34/182 5% 90% 

Poaceae sp. UN UN Graminoid 5/182 5% 90% 

Rosaceae 

 

Geum urbanum 

L. 

Avens I Forb/Herb 5/182 5% 10% 

Rubus strigosus 

Michx. 

Wild Red 

Raspberry 

N Shrub 9/182 5% 60% 

Salicaceae Salix sp. UN UN Tree 3/182 5% 20% 

Solanaceae Solanum 

dulcamara L. 

Climbing 

Nightshade 

I Vine 1/182 5% 5% 

Typhaceae Typha latifolia 

L. 

Broadleaf 

Cattail 

N Forb/Herb 3/182 5% 30% 

Urticaceae Urtica dioica L. Stinging 

Nettle 

I/N Forb/Herb 14/182 5% 30% 

Vitaceae Vitis riparia 

Michx. 

Riverbank 

Grape 

N Vine 1/182 10% 10% 
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Figure S2.1: Overview of the 180 separate S. hermaphrodita stands mapped at TCA using SX Blue II 

GPS in 2014. The stands are highlighted in yellow and depicted with (A) and without (B) orthoimagery 

included to depict more clearly where each stand is located throughout the conservation area.    
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Figure S2.2: Overview of the 158 separate S. hermaphrodita stands mapped at TCA using SX Blue II 

GPS in 2016. The stands are highlighted in blue and depicted with (A) and without (B) orthoimagery 

included to depict more clearly where each stand is located throughout the conservation area.    
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Figure S2.3: Overview of the 149 separate S. hermaphrodita stands mapped at TCA using SX Blue II 

GPS in 2018. The stands are highlighted in red and depicted with (A) and without (B) orthoimagery 

included to depict more clearly where each stand is located throughout the conservation area.   
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Figure S2.4: Photographs taken at TCA within quadrats where vegetation surveys were conducted. 28 1 m 

x 1 m quadrats were placed in locations where the proximity of S. hermaphrodita stands to P. australis 

stands differed. The proximity levels included locations where both S. hermaphrodita and P. australis 

stands overlapped (1), intermediate locations where the boundaries of both species were in close vicinity 

to one another (< 5 m) (2), and locations where the species boundaries were farther from one another (> 

10 m) (3). These figures are 180° hemispherical images of plant cover within each quadrat to depict the 

light availability for understory plants like S. hermaphrodita seedlings.    
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3.1 Abstract 

Virginia Mallow (Sida hermaphrodita) is a perennial herb native to riparian habitats in 

northeastern North America. Throughout most of its geographical distribution, however, it is considered 

threatened potentially due to the loss of habitat caused by exotic European Common reed (Phragmites 

australis) invasion. The biology and ecology of S. hermaphrodita are still poorly understood, and few 

studies have been performed to determine factors that contribute to the species’ rarity. Allelopathic and 

phytotoxic alterations of soil environments have been mechanisms proposed to explain the invasion 

success of P. australis. A greenhouse study was conducted to quantify seedling growth and arbuscular 

mycorrhizal fungal colonization of both species in soils obtained from different vegetation levels ranging 

from pure stands of S. hermaphrodita to pure stands of P. australis to determine the potential for P. 

australis to allelopathically alter soils making them inhospitable to native species. Results obtained did 

not support previous allelopathic exclusion reports and indicated that species performance and AMF 

colonization was best when plants were grown within the competitor’s soil. The soil nutrient analysis 

coupled with plant performance findings, suggest a potential belowground facilitative interaction between 

species however, in natural settings, light stress resulting from P. australis nutrient enriched growth may 

cause a competitive shift, explaining its success in interactions with native species like S. hermaphrodita. 

3.2 Introduction 

Invasive alien plant species are recognized as one of the greatest threats to natural ecosystems and 

global biological diversity (Sanon et al., 2009; Pimentel et al., 2000; Meiners, 2007). It is now well-

established that alien plant invasions cause habitat destruction and are capable of displacing native species 

(Vitousek et al., 1997; Simberloff, 2003). Alien invasive species are often introduced to new areas as a 

result of human actions, either deliberately or unintentionally (Vitousek et al., 1997). After the initial 

introduction, populations of alien plants can grow exponentially and become aggressive invaders (Sanon 

et al., 2009; Mitchell and Power 2003). Their aggression has been attributed to numerous factors 

including higher competitive ability than native species (Thébaud and Simberloff, 2001), lack of natural 
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predators (Mitchell and Power 2003), direct or indirect chemical inhibition of neighbouring species 

(allelopathy) (Callaway and Ridenour 2004; Pisula and Meiners 2010; Bais et al., 2003; Uddin et al., 

2012), and the modification of belowground soil microbiota including the disruption or alteration of 

symbiotic relationships with Arbuscular Mycorrhizal Fungi (AMF) (Sanon et al., 2009; Mummey and 

Rillig, 2006; Stinson et al., 2006). Utilizing such mechanisms, exotic invasive species can cause the 

endangerment and even the extinction of native species having significant consequences on global 

conservation and recovery efforts (Vitousek et al., 1997; Wilcove et al., 1998; Simberloff, 2003).  

Sida hermaphrodita (L.) Rusby (Virginia Mallow; Malvaceae) is native to riparian habitats of 

Northeastern North America (Spooner et al., 1985; COSEWIC, 2010). This herbaceous perennial can 

reach 1-4 m in height (Spooner et al., 1985; Oleszek et al., 2013; Borkowska, and Molas, 2012) and it 

develops a strong plagiotropic root system with buds which are responsible for its vegetative propagation 

and clonal growth (Stevens et al., unpublished).  The species can tolerate a variety of soil conditions as 

well as a degree of moderate human disturbance (Bickerton 2011; Kocoń and Matyka, 2012; Oleszek et 

al., 2013; Cetner et al., 2014).  

Information on the species physiology and ecology is limited; also to date, symbiotic 

relationships between S. hermaphrodita and AMF have not been clarified. Although S. hermaphrodita 

grows vigorously, it has good reproductive potential, both vegetative and sexual (Stevens et al., 

unpublished), and is tolerant of different environmental conditions, it is currently endangered throughout 

its native distribution area in the U.S.A. and Canada (Spooner et al., 1985; Klimešová and Klimeš, 2008; 

COSEWIC 2010; NatureServe 2019). Recently, the largest threat to the conservation of S. hermaphrodita 

in North America was suggested to be the loss of habitat as a result of the increasing abundance of the 

invasive Phragmites australis (Cav.) Trin. ex Steud. (Common Reed; Poaceae) (Bickerton 2011). 

Invasive P. australis is a perennial wetland grass that can reach up to 4-6 meters in height and 

forms extensive rhizome systems which allow the species to expand vegetatively into new territories 

(Cross and Fleming 1989; Clevering and Lissner, 1999; Mal and Narine 2003; Lambert et al., 2010). 
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Considered to be native to Eurasia, the invasive haplotype M has currently a nearly cosmopolitan 

distribution, being found on every continent except Antarctica (Roland and Smith, 1969; Gucker, 2008; 

Mal and Marine, 2003). Since its introduction to North America in the 19th century, it has spread rapidly 

displacing entire communities of native flora and fauna by creating large monospecific stands (Burk, 

1877; Saltonstall 2003; Mal and Narine 2003; Saltonstall et al., 2010).   

Considered one of the most aggressive plant invaders worldwide (Marris, 2005; Rudrappa et al., 

2007), substantial efforts have been made to explain the invasiveness of P. australis and determine 

specific mechanisms which allow this species to take over native plant communities. Biological 

characteristics, such as high rates of sexual and vegetative propagation and dense canopy development, 

are thought to facilitate its expansion into new ecosystems and provide competitive advantage (Meyerson 

et al. 2000; Mozdzer and Zieman 2010). However, many studies have also hypothesized that P. australis 

can enhance its invasion by directly or indirectly inhibiting the growth of neighbouring plant species 

through the allelopathic and phytotoxic alteration of soil properties (Rudrappa et al., 2007; Uddin et al., 

2012; Uddin et al., 2014a; Weidenhamer et al., 2013), the modification of microbial communities (Jordan 

et al., 2008; Song et al., 2015) and the interference of belowground mutualisms including symbioses with 

AMF (Uddin et al., 2017). Considering that S. hermaphrodita is similar to P. australis in many respects 

(e.g., high vigour and reproductive potential), the interaction of the two species offers an interesting case 

in which to study invasion.   

The main objective of this study was to determine the reciprocal below ground interaction 

between the endangered S. hermaphrodita and the invasive P. australis in order to determine if and how 

each species impacts the performance of the other. Additionally, since to date there is very limited 

information on the possible relationships between these two plants and AMF, this study also examined 

their mycorrhizal colonization. More specifically we addressed the question of how chemical compounds 

and microorganisms present within the soils associated with S. hermaphrodita and P. australis affect their 

performance and mycorrhizal colonization. This objective was achieved by examining the growth of both 
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species in soils that corresponded to different soil-vegetation levels ranging between pure stands of S. 

hermaphrodita to pure stands of P. australis. A confirmation of the hypothesized P. australis 

belowground mechanism of action would be important beyond the case S. hermaphrodita as it likely can 

be expanded to other endangered wetland plants.  

3.3 Materials and Methods 

3.3.1 Site description 

Taquanyah Conservation Area (TCA) is a 136 ha habitat comprised of woodland, grassland and 

wetland communities located in Haldimand County, Ontario (42°57’17.0” N, 79°54’46.0” W), and is one 

of the only two locations where S. hermaphrodita remains in Canada. The habitat of S. hermaphrodita is 

found within the floodplain associated with a cold-water stream (Bickerton 2011) and the local dominant 

plant species include Typha latifolia L., Impatiens capensis Meerb., Solidago canadensis L., and Phalaris 

arundinacea L. Based on morphological identification, the invasive, alien Phragmites australis haplotype 

(Saltonstall et al., 2005) has also become a dominant species in this area, by gradually displacing the 

native species (Bickerton, 2011).    

3.3.2 Soil collection and nutrient analyses 

In late August 2017, five transects running northeast of the stream were set up. Each transect 

included five 1 m x 1 m quadrats placed in locations of different vegetation categories between adjacent 

S. hermaphrodita and P. australis stands (Figure 3.1). The first soil core location was placed within a 

high-density stand of S. hermaphrodita (ca. 25 stems/m2) (Figure 3.2a), and the second was selected 

along the border of the same stand to obtain soil from a moderately dense S. hermaphrodita area (ca. 10 

stems/m2). The third quadrat was positioned in vegetation between the S. hermaphrodita stand and an 

adjacent P. australis stand (Figure 3.2b), whereas the last two quadrats were arranged on the border and 

within the P. australis stand similarly to the moderate and high-density locations of the S. hermaphrodita 

quadrats (ca. 25 and 60 P. australis stems/m2, respectively) (Figure 3.2c). The locations of quadrats one 

and five were selected to obtain soil from within pure S. hermaphrodita or P. australis vegetation. For 
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classification of all vegetation observed within each quadrat, see Table S3.1-Table S3.5. Two soil cores 

were obtained from the corners of each quadrat to ensure that 40 soil cores were collected from each 

transect, for a total of 200 soil cores. The soil cores were uniformly extracted using split-core sampler 

with an auger tip (AMS, American Falls, ID). Removable clear polyvinyl chloride (PVC) sleeves, 7.5 cm 

height by 7.5 cm in diameter enclosed within the sampler to contain intact, undisturbed soil cores that 

were sealed with vinyl end caps (Uline) and subsequently frozen until the greenhouse portion of the 

study.  

In addition to the soil cores taken for the plant interaction study, one soil core was obtained from 

the center of each quadrat to measure soil moisture, pH, available Phosphorus (P), sodium bicarbonate, 

Potassium (K), Magnesium (Mg), Zinc (Zn), and Manganese (Mn) content. Additional soil analyses were 

also conducted for total Phosphorus, total Nitrogen, Ammonium (NH4+) and Nitrate (NO3-) content. 

Fertility analyses were conducted at the University of Guelph Soil and Nutrient Laboratory. 

3.3.3 Soil core experimental design 

The intact soil core sleeves were individually wrapped in black polyethylene film (Uline) to 

prevent soil exposure to UV radiation while in the greenhouse. The individual cores were then set on 8.9 

cm diameter steel blue seed germination blotter (Anchorpaper) and placed in 9.4 cm diameter polystyrene 

dome lids (Polar Pak) to serve as a basin to keep the samples intact, separated from other soil samples, 

and to control water levels. 10 cores each were enclosed in propagation trays (54.6 cm x 28.4 cm x 6.4 

cm) (Mondi™) under mini greenhouse domes (54.6 cm x 27.9 x 19.1 cm) (Mondi™). Deionized water 

was added to each core basin every other day to ensure that every sample had available water levels as 

needed. For the first week, soil cores were allowed to acclimate to experimental conditions to ensure that 

all cores were brought to the same moisture level. Any plant species that emerged during this time were 

removed from the soil sample. Following acclimation, the cores were maintained under greenhouse 

conditions (16/8-hour day/night cycle and average day/night temperature of 26/19°C) for 12 weeks.  
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3.3.4 Seed germination, seedling planting and harvest 

Seeds of S. hermaphrodita and P. australis (collected during the summer of 2014 from TCA and 

stored dry at 4°C) were surface sterilized with 5-7% Sodium Hypochlorite (NaClO) (Fisher Scientific) 

and 70% ethanol (EtOH) (Fisher Scientific) using a modified method described by Schulz et al. (1993). 

Seeds were submerged into EtOH for 1 minute and then transferred to NaClO for 5 minutes, back into 

EtOH for 1 minute, and finally rinsed thoroughly with deionized water. To ensure uniform germination of 

S. hermaphrodita, the seed coats were scarified with a minutien pin (Spooner et al., 1985). The P. 

australis seeds were not scarified. Following surface sterilization and scarification, the seeds were 

germinated on 8.9 cm diameter steel blue seed germination blotter (Anchorpaper), kept moist with 

deionized water in 100 mm x 15 mm sterile polystyrene petri dishes (Fisher Scientific) that were sealed 

with Parafilm M™ wrapping film. The dishes were maintained under the previously specified greenhouse 

conditions. Radicle emergence indicated germination, at which time three seeds of each species were 

sown into each soil core. Since two cores were taken from each individual location at TCA, one core from 

each site was sown with P. australis seeds and the other was sown with S. hermaphrodita seeds (Figure 

3.3). 

Following twelve weeks of growth, the plants were carefully removed from the soil cores and 

rinsed to remove any soil and debris. Roots and shoots were separated immediately after harvest to obtain 

root and shoot fresh weights of each plant using a Mettler Toledo NewClassic MS analytical balance. The 

shoots were then individually scanned with an Epson Expression 10000 EL scanner and surface area 

measurements were determined using WinRhizo Arabidopsis 2012d software (Regent Instruments, 

Quebec, Canada). Roots were also scanned using the same WinRhizo software to obtain root length, 

surface area, and average diameter measurements. Following scanning, root segments were separated 

from the original sample, placed in 10 mL Falcon tubes with 50% EtOH to estimate the proportion of 

roots that are colonized by AMF. 
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3.3.5 AMF assessment 

Roots were removed from the 50% EtOH and thoroughly rinsed with deionized water. The 

clearing and staining of the roots followed a modified ink-vinegar staining technique protocol (Vierheilig 

et al., 1998; Vierheilig et al., 2005). For clearing, the roots were submerged in 10% Potassium hydroxide 

(KOH) and were heated at a temperature of 95°C in a vacuum oven (Thermo Scientific Lindberg Blue M) 

under 25 inches Hg pressure for approximately 50-60 minutes. The roots were then rinsed twice with a 

10% vinegar (C2H4O2) solution and then submerged in 5% Sheaffer ink-vinegar solution to stain the AMF 

structures within the roots. The roots were heated for approximately 10-15 minutes under the same 

conditions as previously mentioned for the clearing step and subsequently checked under a Zeiss SteREO 

Discovery V8 dissecting microscope (Carl Zeiss Inc., Germany) for sufficient staining. Lastly, the roots 

were rinsed with 5% vinegar to de-stain and then stored in 50% glycerol (C3H8O3).  

Roots were cut into approximately 3 cm long segments, 7 of which were randomly selected and 

mounted in 50% glycerol on frosted microscopic slides (Fisherbrand™). Prepared slides were viewed 

under a Zeiss Axioscope 5 microscope (Carl Zeiss Inc., Germany) under 200x magnification (objective 

20x, ocular 10x) and images were taken with Zeiss Zen Axiocam imaging software (blue edition).    

Mycorrhizal colonization was assessed using the gridline intersect technique (McGonigle et al., 

1990). Using this technique, intra-radicular hyphae, vesicles, and arbuscules were counted to obtain an 

estimate of the proportion of roots in a plant that contained mycorrhizal structures.  

3.3.6 Statistical analyses 

All plant growth responses and mycorrhizal colonization measurements were analysed using a 

two-way analysis of variance (ANOVA) in JMP (Statistical Analysis Software version 14). All analyses 

were performed to determine if there was an interaction between the plant species and the soil-vegetation 

level (location) and their effect on the measure of plant performance or AMF colonization. To address 

any variability that may be associated with the placement of transects, data was analysed as a randomized 
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complete block design with transect as the blocking factor. Two levels of species, five levels of location 

and five replicate blocks (transects) were included in the design. To meet assumptions of normality and 

homogeneity of variance, plant performance response variables, including measurements of shoot 

biomass, total biomass, shoot project area, root project area, root average diameter, and all measures of 

root AMF colonization were square-root transformed. The remaining plant performance response 

variables, including measurements of root biomass, root/shoot ratio, and root length were log 

transformed. Since we were interested only in specific comparisons and not in all possible pair-wise 

comparisons, multiple comparisons were conducted using the LS means function in JMP with a non-

corrected student’s T specification. The soil chemistry and plant performance and mycorrhizal analyses 

were used for principal component analyses (PCA) to identify patterns of soil nutrient, plant performance 

and fungal properties for each species. Multiple linear regressions were used to clarify the relationships 

between plant performance and colonization in addition to selected environmental variables. 

3.3 Results 

3.3.1 Sida hermaphrodita and Phragmites australis plant growth response 

The results show marked differences between the two species (Figure 3.4). Across all measures of 

plant growth, the performance of S. hermaphrodita was significantly different (p < 0.0001) than the 

performance of P. australis (Table 3.1). Measurements of shoot biomass and shoot surface areas of P. 

australis plants (mean: 0.737 g ± 0.036 g; mean: 33.589 cm2 ± 0.221 cm2) were approximately double 

those of S. hermaphrodita plants (mean: 0.316 g ± 0.038 g; mean: 14.629 cm2 ± 0.236 cm2) (Figures 3.4 

& 3.6). Whereas average measurements of P. australis root performance (root biomass, root surface area, 

root length) were between 6 and 8 times greater than the root performance of S. hermaphrodita (Figures 

3.4, 3.6, 3.7). Root average diameter was the only plant performance variable in which S. hermaphrodita 

(mean: 0.401 mm ± 0.006 mm) had greater performance than P. australis (mean: 0.315 mm ± 0.006 mm) 

(Figure 3.7). Interactions were observed between the plant species and the soil-vegetation level which had 

significant effects on several plant performance response variables, including total biomass (p < 0.05), 
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shoot biomass (p < 0.01), root biomass (p < 0.01), shoot surface area (p < 0.001), and root length (p < 

0.01) (Table 3.1). In each case, although the measurement of P. australis performance was significantly 

greater than the measurement of S. hermaphrodita performance, the magnitude of the difference between 

the two species depended on the location. Following harvest, the average total biomass of P. australis 

plants (2.137 g ± 0.059 g) was three times greater than the average total biomass of S. hermaphrodita 

plants (mean: 0.616 g ± 0.063 g) (Figure 3.5). However, the relative total biomass among both species 

differed across locations in which measurements of P. australis total biomass was significantly higher in 

pure S. hermaphrodita soils (3.136 g ± 0.149 g) than the measurements of total biomass in pure P. 

australis soils (1.525 g ± 0.126 g). The measurements of S. hermaphrodita total biomass had the inverse 

relationship, in which total biomass was lowest in pure S. hermaphrodita soils (0.466 g ± 0.151 g) and 

highest in pure P. australis soils (0.865 g ± 0.129 g) (Figure 3.5). Comparable interactions were also 

obtained for other response variables in which reductions in plant performance between pure S. 

hermaphrodita soils and pure P. australis soils were observed for P. australis plant performance 

parameters such as shoot biomass (39%), root biomass (61%), shoot surface area (44%) and root length 

(53%) (Figures 3.4, 3.6, 3.7). S. hermaphrodita performance had an inverse relationship in which 

increases in plant performance between pure S. hermaphrodita soils and pure P. australis soils were 

observed for the performance parameters of S. hermaphrodita plants, including shoot biomass (66%), root 

biomass (62%), shoot surface area (71%) and root length (57%) (Figures 3.4, 3.6, 3.7). Similar results 

were obtained for the root surface area (Figure 3.6), in which P. australis and S. hermaphrodita 

performance was highest in soils collected within dense stands of their competitor, however, no 

significant interaction was observed (Table 3.1).   

        Contrasting results were obtained for the remaining growth parameters including root 

average diameter and root-to-shoot ratio. No significant interactions were observed between the species 

and the soil-vegetation level on the growth parameters, however, the root average diameter of both S. 

hermaphrodita and P. australis were lowest in pure S. hermaphrodita soils (S. hermaphrodita mean: 
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0.396 mm ± 0.015 mm; P. australis mean: 0.293 mm ± 0.015 mm), and highest in pure P. australis soils 

(S. hermaphrodita mean: 0.417 mm ± 0.012 mm; P. australis mean: 0.346 mm ± 0.011 mm) (Figure 3.5). 

The root-to-shoot biomass ratio of P. australis was highest in pure S. hermaphrodita soils (2.152 ± 0.169) 

and lowest in pure P. australis soils (1.438 ± 0.142). Similarly, the root-to-shoot biomass ratio of S. 

hermaphrodita was highest in pure S. hermaphrodita soils (1.144 ± 0.171) but lowest in moderately dense 

S. hermaphrodita soils (0.687 ± 0.163) and pure P. australis soils (0.749 ± 0.146) (Figure 3.5). 

Additionally, the transect blocking factor had a significant effect (p < 0.05) on the root biomass 

of the investigated plants (Table 3.1). Specifically, there was a significant difference in root biomass 

among the five transects with the southernmost transect producing less root biomass (57%) in comparison 

to the other four transects. Plant performance was lower in the southernmost transect compared to the 

other four transects for all other response variables except root average diameter, however, significant 

effects were not observed (Table 3.1).   

3.3.2 AMF colonization 

Arbuscular mycorrhizal fungi were able to colonize both investigated plant species and colonized 

plants had both arbuscules and vesicles (Figures 3.9 & 3.10). However, average mycorrhizal colonization 

levels found within plant roots differed between species. Interactions were observed between the plant 

species and the soil-vegetation level which had significant effects on all AM colonization response 

variables (Table 3.2). Although the proportion of S. hermaphrodita AM root colonization was 

significantly greater (p < 0.0001) than the proportion of P. australis AM root colonization, the magnitude 

of the difference between the two species depended on the location. Mean hyphal colonization of S. 

hermaphrodita (60.373% ± 2.500%) was approximately 10 times higher than the mean hyphal 

colonization of P. australis roots (5.707% ± 2.369%). However, the relative hyphal colonization among 

both species differed across locations in which the proportion of S. hermaphrodita root hyphal 

colonization was significantly higher (p < 0.0001) in pure P. australis soils (89.731% ± 5.184%), than the 

proportion of S. hermaphrodita root hyphal colonization in pure S. hermaphrodita soils (41.409% ± 
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5.954%) (Figure 3.8). In P. australis roots, AM colonization was low overall, but root hyphal 

colonization was significantly lower in pure P. australis soils (1.553% ± 5.098%) compared to the 

proportion of P. australis root hyphal colonization in moderately dense S. hermaphrodita soils (9.858% ± 

5.175%) (Figure 3.8).  

Arbuscular colonization also differed among species and interactions were observed between the 

plant species and the soil-vegetation level which had significant effects (p < 0.0001) on the arbuscular 

colonization response variable (Table 3.2). Mean arbuscular colonization of S. hermaphrodita (39.391% ± 

2.585%) was approximately 35 times higher than the mean arbuscular colonization of P. australis roots 

(1.096% ± 2.426%). However, the relative arbuscular colonization among both species differed across 

locations in which the proportion of S. hermaphrodita root arbuscular colonization was significantly 

higher in pure P. australis soils (66.594% ± 5.283%), compared to the proportion of S. hermaphrodita 

root arbuscular colonization in pure S. hermaphrodita soils (20.738% ± 6.189%) (Figure 3.8). P. australis 

roots exhibited consistently low proportion of arbuscular colonization throughout all locations; however, 

arbuscular colonization was highest in pure S. hermaphrodita soils (1.539% ± 6.099%) and lowest in pure 

P. australis soils (0.353% ± 5.175%) (Figure 3.8). 

 Vesicular colonization differed among species and interactions were also observed between the 

plant species and the soil-vegetation level which had significant effects (p < 0.01) on the vesicular 

colonization response variable (Table 3.2). Although mean vesicular colonization of S. hermaphrodita 

roots (12.702% ± 1.863%) was significantly higher (p < 0.0001) than the mean vesicular colonization of 

P. australis roots (0.182% ± 1.726%), the magnitude of the difference between the two species depended 

on the location. The relative vesicular colonization among both species differed across locations, in which 

the proportion of S. hermaphrodita root vesicular colonization was significantly higher in soils obtained 

from within intermediate vegetation areas (22.310% ± 3.734%), compared to the proportion of S. 

hermaphrodita root vesicular colonization in pure S. hermaphrodita soils (6.479% ± 4.472%), and pure P. 

australis soils (9.707% ± 3.728%) (Figure 3.8). In P. australis roots, vesicular colonization was 
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consistently very low throughout all locations, however, the proportion of P. australis root vesicular 

colonization was highest in moderately dense S. hermaphrodita soils (0.565% ± 3.723%), and lowest in 

pure P. australis soils (0.018% ± 3.623%) (Figure 3.8). 

 Additionally, the transect blocking factor had a significant effect (p < 0.01) on all AM 

colonization response variables (Table 3.2). Specifically, there was a significant difference in AM 

colonization among the five transects with the southernmost transect producing less root colonization 

compared to the northernmost transect. Significant reductions in root colonization response variables 

including, hyphal colonization (47%), arbuscular colonization (68%), and vesicular colonization (78%) 

were observed between the northernmost transect and the southernmost transect. 

3.3.3 Soil nutrient composition correlations 

A principal component analysis (PCA) was performed to clarify the relationship between the soil 

nutrient variables, plant performance and fungal colonization for each species. The PCA resulted in three 

principal components cumulatively explaining 57.4% of the total variance. The amount of variation that 

each plant and environmental trait explains, was represented through loadings on the PCA. PC 1 

explained a gradient in soil characteristics in which soil pH and Ca content were negatively correlated to 

Mg, K, Mn, and total P content (Table 3.4). PC 2 explained a gradient in soil nutrient characteristics 

related to both S. hermaphrodita and P. australis performance and AM colonization. On this axis S. 

hermaphrodita total biomass and hyphal colonization as representatives of plant performance and AM 

colonization respectively, were positively correlated to soil moisture, NO3-, available P content, and 

negatively correlated to P. australis total biomass, hyphal colonization, soil NH4+ and total N content 

(Figure 3.11). PC 3 accounted for a gradient in the remaining soil nutrient characteristics in which soil Na 

was negatively correlated to Zn content (Figure 3.11) (Table 3.4).  

Multiple regression analyses indicated that root hyphal colonization of S. hermaphrodita was 

positively correlated to total biomass (R2 = 0.3087; p <0.01) (Figure S3.1), and soil moisture (R2 = 

0.2245; p < 0.05) (Figure S3.2) and negatively correlated to total N content (R2 = 0.2727; p < 0.01) 
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(Figure S3.3). Root hyphal colonization of P. australis was negatively correlated to soil moisture (R2 = 

0.1831; p < 0.05) (Figure S3.2), available P (R2 = 0.1578; p < 0.05) (Figure S3.4), and NO3- content (R2 = 

0.2293; p < 0.05) (Figure S3.5). No significant relationships were observed between S. hermaphrodita or 

P. australis total biomass or root colonization and other environmental variables (Table 3.3).  

3.4 Discussion 

In the present study, our examination of the interaction between the endangered S. hermaphrodita 

and the invasive P. australis provided no evidence to support the idea according to which the invasion 

success of P. australis can be attributed to allelopathic or phytotoxic alterations of soil chemistry and 

microbiotic properties. Previous research has shown that P. australis is capable of exhibiting allelopathic 

exclusion in many ways, including through the active release or indirect microbial release of inhibitory 

phenolic compounds such as gallic acid (Rudrappa et al., 2007; Rudrappa et al., 2009; Bains et al., 2009), 

the release of phytotoxic tissue extracts resulting from decomposition (Uddin et al., 2012; Uddin et al., 

2014a), and also through the release of compounds produced by P. australis associated endophytes 

(White et al., 2018). By releasing these compounds into the surrounding soil, P. australis demonstrated 

the capacity to directly or indirectly affect the rhizosphere and soil chemistry, in turn enhancing its 

invasive potential by inhibiting the germination and growth of native species (Bains et al., 2009; Uddin et 

al., 2012; Uddin et al., 2014a; Uddin et al., 2014b; Uddin et al., 2017; White et al., 2018).  

Since further identification of specific phytotoxic phenolic compounds released directly or 

indirectly by P. australis needs to be completed, little is known about what effect frozen storage may 

have on the microbial populations and possible phenolic compounds present within the soils collected for 

this study. Although previous studies indicated that gallic acid can be rapidly degraded in non-sterile soil 

(Weidenhamer and Romeo, 2004; Weidenhamer et al., 2013), other studies reported that some 

compounds are resistant to degradation (Sosa et al., 2010); may break down into more toxic compounds 

(Krogh et al., 2006), or may persist in the soil and remain phytotoxic after plant decomposition (Bains et 
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al., 2009; Uddin et al., 2012; Uddin et al., 2014b). It is based on this knowledge that we expected the 

inhibited performance of S. hermaphrodita plants grown in soils associated with P. australis.     

Interestingly, the performance of both species was lowest when grown in soils collected within 

their own stands and highest when grown in soils collected from within their competitor stands. Since it is 

widely accepted that invasive P. australis is highly adaptable and can rapidly colonize new areas 

(Saltonstall, 2002; Belzile et al., 2010; Kettenring and Mock, 2012; Soares et al., 2016), it is not 

surprising that P. australis performance would not be negatively affected by a new soil. However, the 

significantly increased performance of both species in the competitor’s soils suggest that both species 

may act to facilitate the other’s expansion into new locations. The overall positive impact that P. australis 

associated soils had on S. hermaphrodita plants was particularly interesting since we expected dense field 

grown stands of P. australis would significantly alter the soil biota and chemistry, making it inhospitable 

for the native S. hermaphrodita growth. Our findings are not compatible with previous reports that soil 

pH is lowered by the release of phenolics through root exudation or decomposition in P. australis invaded 

areas (Armstrong and Armstrong, 1999; Uddin et al., 2014b; Uddin and Robinson, 2018). Changes in soil 

pH at TCA were not correlated with plant performance. The soil pH and positive association results 

observed between the soil-vegetation level and S. hermaphrodita performance (Figure 3.4), suggest that 

P. australis is not allelopathically or phytotoxically altering the belowground environment to 

competitively inhibit the growth of S. hermaphrodita at TCA.  

In addition to plant performance, AMF colonization was also not (allelopathically) inhibited by P. 

australis. Limited information is available about the AMF colonization status of both investigated plant 

species, however, P. australis colonization levels supported well established knowledge of AMF - plant 

relationships. Comparable to previous reports of P. australis colonization (Oliveira et al., 2001; Dolinar 

and Gaberščik, 2010), overall colonization levels were low (Figure 3.8). Additionally, P. australis results 

in PC score 2 supported reports that AMF colonization is typically negatively correlated with soil 

moisture (Stevens and Peterson, 1996; Oliveira et al., 2001) (Figure 3.11) and available phosphorus levels 
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(Figure S3.2 & Figure S3.4 since the main benefit of AMF symbioses is to improve plant acquisition of 

water and nutrients with an emphasis on phosphorus (Khan, 1975; Harley and Smith, 1987; Bolan, 1991).  

Allelopathic exclusion of native species through interference of AMF colonization has been 

previously attributed to invasive species, including P. australis (Roberts and Anderson, 2001; Uddin et 

al., 2017). However, our results are not supportive of such findings because AMF colonization of S. 

hermaphrodita was significantly higher in P. australis dominated soils (Figure 3.8) suggesting that P. 

australis did not allelopathically alter the soil in such a way to interfere with S. hermaphrodita’s 

relationship with AMF. Surprisingly, S. hermaphrodita results in PC score 2 does not coincide with 

typical relationships between plants and AMF, since the colonization of S. hermaphrodita roots was 

positively correlated to soil moisture and available phosphorus levels (Figure 3.11). Due to the absence of 

a control treatment with sterile soil, it is impossible to determine the extent of the relationship between S. 

hermaphrodita and AMF. However, because of the overall high levels of colonization throughout the 

soil-vegetation locations and the positive correlation observed between AMF and total plant biomass 

(Figure S3.1), it is unlikely that AMF form a parasitic relationship with S. hermaphrodita, and our results 

may suggest that S. hermaphrodita is an obligate mycotroph that relies on symbioses with AMF to 

survive (Johnson et al., 1997; Koide, 2010).     

Our results are not in agreement with the previous work suggesting that P. australis 

allelopathically excludes native species like S. hermaphrodita during the invasion process. Instead, our 

findings support the potential for soil nutrient enrichment to influence the performance and invasion 

process of P. australis (Uddin and Robinson, 2018). The general decline in root – shoot ratios for each 

species between pure S. hermaphrodita soils and pure P. australis soils in addition to the results of the 

PCA provide insight into how the plants respond to their soil environments. The generally high root – 

shoot ratios observed in S. hermaphrodita dominated soils (Figure 3.5) suggests that these potentially 

nutrient poor soils are driving both species to allocate more resources to their roots (Tilman, 1985). 
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Conversely, the lower root – shoot ratios observed in the P. australis dominated soils suggests that 

necessary nutrients are high, and both species can allocate more resources to their shoots (Tilman, 1985).  

Although the average root – shoot ratio for P. australis plants indicates that self-dominated soils 

may promote its growth, the plant performance in these soils was significantly reduced, particularly for 

measures of root performance. Our results support previously documented findings that P. australis 

allocates relatively more to searching for soil resources than other plants (Uddin and Robinson, 2018) and 

that the relationship between P. australis root – shoot ratio and nutrient availability may not be linear. 

Sida hermaphrodita performance, however, did follow typical trends since performance was significantly 

increased in P. australis soils where root – shoot ratio was lower. The presence of several soil nutrients 

was examined during this study, however, the nutrients associated with plant performance and 

colonization were most applicable to the overall research goal. PC score 2 accounted for 17.5% of the 

overall variation with S. hermaphrodita total biomass, S. hermaphrodita hyphal colonization, soil 

moisture, NO3- and available phosphorus positively loaded and P. australis total biomass, P. australis 

hyphal colonization, total N and NH4+ negatively loaded. Given that wetland plants including P. australis 

are typically limited by either nitrogen or phosphorus supply (Koerselman and Meuleman, 1996; Romero 

et al., 1999), the observed relationships between nitrogen and phosphorus levels may be responsible for 

the investigated plant performance responses. The increased performance of P. australis in S. 

hermaphrodita dominated soils, where total N and NH4+ levels are high, agree with previous reports that 

P. australis growth is nitrogen limited (Romero et al., 1999; Rickey and Anderson, 2004). Additionally, 

P. australis has been observed to have high plasticity towards its N source (Tylova-Munzarova et al., 

2005; Munzarova et al., 2006) and although it’s capable of utilizing  NO3-, it has also been suggested to 

have a preference or affinity for NH4+ similarly to other wetland plants (Romero et al., 1999; Cedergreen 

and Madsen, 2003; Tylová et al., 2008). Conversely, limited information is available about S. 

hermaphrodita’s specific nutrient requirements, however, NPK fertilization has been documented to 

increase S. hermaphrodita agricultural yield (Nabel et al., 2016; Nabel et al., 2017). Furthermore, biomass 
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yield of cultivated S. hermaphrodita was documented to increase when treated with phosphorus in 

comparison to nitrogen (Borkowska et al., 2009). These results, in addition to the observed performance 

increase of S. hermaphrodita in P. australis soils where available P is high, may suggest that S. 

hermaphrodita performance is phosphorus limited. Further examination needs to be completed to 

determine the potential and extent of S. hermaphrodita’s phosphorus limitation in addition to its 

dependency for AMF colonization.  

Based on the nutrient limitations for both species, our results surprisingly suggest that the soils 

dominated by S. hermaphrodita or P. australis may promote the growth of their competitor. Numerous 

ecological factors, including negative frequency dependent selection, stabilizing niche differences, 

relative fitness differences, and competitive exclusion could lead to species coexistence or competition 

(Chesson, 2000; Suding et al., 2005; Adler et al., 2007; Suttle et al., 2007; Adler et al., 2010; 

HilleRisLambers et al., 2012; Yenni et al., 2017). Specifically, we wanted to assess the potential for P. 

australis to impact the performance of S. hermaphrodita through competitive belowground allelopathic or 

phytotoxic soil modifications. Interestingly, our results provided no evidence for a negative belowground 

interaction between the investigated plant species. Positive effects of soil nutrients on plant performance 

are not surprising since ecological theory states that plant invasion depends on resource availability 

(Davis et al., 2001). Resource availability however, in addition to other gradients in the abiotic 

environment, can impact the balance between competition and facilitation in species interactions 

(Callaway and Walker, 1997; Callaway, 1998; Maestre et al., 2009). In general, in conditions where there 

is low abiotic stress that permit the rapid acquisition of resources, competition between species increases. 

Alternatively, increased abiotic stress causes plant interactions to shift from competitive to facilitative, as 

the neighboring plants buffer one another from extremes in the environment (Bertness and Callaway, 

1994; Callaway and Walker 1997; He et al., 2013). Although we expected only competitive interactions 

to occur between the investigated species, the results observed in this study indicate instead that these 

species may be facilitating limited soil nutrients for one another potentially due to severe unknown 
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physical stressors present at TCA (e.g., water table level, temperature, salinity). Environmental conditions 

were not measured during this study which would define stress gradients that the species were subjected 

to at TCA, so further examination of physical conditions will need to be completed in order to confirm 

this facilitative interaction or determine if a different mechanism of coexistence may take place between 

the two species. Additionally, due to the observed increased shoot growth of P. australis in comparison to 

S. hermaphrodita during the experiment, we expect that light availability may be an additional factor that 

could impact the outcome of the interaction between both species. Plants were grown in individual soil 

cores during this study which prevented any above ground competition. Although S. hermaphrodita 

displayed increased performance in P. australis dominated soils, in natural settings, the presence of dense 

and fast-growing P. australis stands may reduce the extent of the facilitation interaction by increasing 

light stress for the slower growing S. hermaphrodita. The higher nitrogen availability in S. hermaphrodita 

soils may then enable further P. australis invasion and shift plant competition from belowground to 

aboveground to outcompete the S. hermaphrodita stands present (Minchinton and Bertness, 2003; 

Sillman and Bertness, 2004). Although further research is needed to define the interaction between these 

species and confirm whether shading by P. australis is the main competitive factor limiting S. 

hermaphrodita species success, our research provides new information that P. australis may not be as 

competitive as previously believed, and that physical factors may impact its ability to threaten native 

species.             
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3.6 Tables and Figures 

Table 3.1: Output of two-way ANOVA used to assess differences between the two plant species, five 

transects, and the five soil-vegetation levels (Location), in addition to the interaction between species and 

location and their effect on various measures of plant performance. Response variables tested were shoot 

biomass (SB), root biomass (RB), total biomass (TB), root-to-shoot biomass ratio (R/S), shoot project 

area (SPA), root project area (RPA), root average diameter (RAD), and root length (RL). To meet 

ANOVA assumptions, square-root transformations were applied to response variables, including shoot 

biomass, total biomass, shoot project area, root project area, and root average diameter. Log 

transformations were applied to remaining response variables, including root biomass, root/shoot biomass 

ratio and root length. Soil cores were given one week to acclimate to greenhouse conditions prior to when 

seedlings were planted. Plants were harvested and measured 12 weeks after planting. Significance level of 

p < 0.05 was used for all statistical tests and significant effects are indicated with an asterisk (*).    

 Species Transect Location Species x Location 

Df F P Df F P Df F P Df F P 

SB  

(g) 

1/149 42.27 <0.0001* 4/149 1.855 0.123 4/149 0.490 0.743 4/149 3.598 0.0082* 

RB 

(g) 

1/136 96.90 <0.0001* 4/136 2.851 0.027* 4/136 0.746 0.577 4/136 3.959 0.0046* 

TB 

(g) 

1/136 78.86 <0.0001* 4/136 1.361 0.251 4/136 0.588 0.677 4/136 3.137 0.0170* 

R/S  1/135 56.47 <0.0001* 4/135 0.949 0.438 4/135 1.646 0.217 4/135 0.959 0.4329 

SPA 

(cm2) 

1/137 42.46 <0.0001* 4/137 2.173 0.076 4/137 0.573 0.687 4/137 5.578 0.0004* 

RPA 

(cm2) 

1/136 124.81 <0.0001* 4/136 1.462 0.218 4/136 0.265 0.896 4/136 2.377 0.0555 

RAD 

(mm) 

1/136 55.46 <0.0001* 4/136 0.724 0.577 4/136 2.979 0.084 4/136 0.528 0.7151 

RL 

(cm) 

1/136 151.60 <0.0001* 4/136 1.209 0.310 4/136 0.340 0.847 4/136 3.864 0.0054* 
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Table 3.2: Output of two-way ANOVA used to assess differences between the two plant species, five 

transects, and the five soil-vegetation levels (Location), in addition to the interaction between species and 

location and their effect on various measures of root AM colonization. Response variables tested were 

hyphal colonization (HC), arbuscular colonization (AC), and vesicular colonization (VC). To meet 

ANOVA assumptions, square-root transformations were applied to all AM colonization response 

variables. Soil cores were given one week to acclimate to greenhouse conditions prior to when seedlings 

were planted. Plants were harvested and roots were stained and assessed for colonization 12 weeks after 

planting. Significance level of p < 0.05 was used for all statistical tests and significant effects are 

indicated with an asterisk (*).    

 Species Transect Location Species x Location 

Df F P Df F P Df F P Df F P 

HC 

(%) 

1/151 379.81 <0.0001* 4/151 4.023 0.004* 4/151 0.553 0.700 4/151 10.514 <0.0001* 

AC 

(%) 

1/151 281.73 <0.0001* 4/151 4.894 0.001* 4/151 1.663 0.214 4/151 7.139 <0.0001* 

VC 

(%) 

1/151 155.48 <0.0001* 4/151 3.860 0.005* 4/151 2.320 0.120 4/151 3.487 0.0095* 
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Table 3.3: Correlations matrix for soil characteristics, related to average plant performance, and AM 

colonization levels for both S. hermaphrodita and P. australis. Both S. hermaphrodita and P. australis 

plant performance and AM colonization levels are represented by total biomass (STB or PTB) and root 

hyphal colonization (SHC or PHC) respectively. Various soil characteristics consist of soil moisture 

(H2O), soil pH, and soil nutrients including Calcium (Ca), Sodium (Na), Magnesium (Mg), Potassium 

(K), Manganese (Mn), Zinc (Zn), available Phosphorus (P), total Phosphorus (TP), Ammonium (NH4+), 

Nitrate (NO3-), and total Nitrogen (TN). S. hermaphrodita and P. australis plants were harvested and 

assessed for AM colonization after 12 weeks of growth. Soil composition measurements were completed 

by the University of Guelph Soil and Nutrient Laboratory. A principal component analysis was used to 

determine trends between S. hermaphrodita and P. australis performance, fungal colonization and soil 

characteristics. Multiple linear regression analyses were used to determine if soil characteristics 

influenced plant performance and AM colonization. Significant correlations (p < 0.05) are indicated with 

an asterisk (*).       
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Table 3.4: Loadings of the principal component analysis used to clarify the relationship between the 

evaluated plant performance, fungal colonization and various soil nutrient variables for both S. 

hermaphrodita and P. australis. Principal components (PC) 1-3 cumulatively explained 57.4% of the total 

variance. PC 1 explained a gradient in soil characteristics: increasing Magnesium (Mg), Potassium (K), 

Manganese (Mn), total Phosphorus (TP), and decreasing soil pH and Calcium (Ca). PC 2 explained a 

gradient in soil nutrient characteristics related to plant performance and AM colonization: increasing S. 

hermaphrodita total biomass (STB), S. hermaphrodita root hyphal colonization (SHC), soil moisture 

(H2O), available Phosphorus (P), Nitrate (NO3-), and decreasing P. australis total biomass (PTB), P. 

australis hyphal colonization (PHC), Ammonium (NH4+), and total Nitrogen (TN). PC 3 explained a 

gradient in the remaining soil nutrient characteristics: increasing Sodium (Na) and decreasing Zinc (Zn).      

 PC 1 PC 2 PC 3 

Variation Explained (%) 26.6 17.5 13.3 

STB 0.2735 0.3902 0.1808 

SHC -0.0602 0.6561 0.3010 

PTB 0.1635 -0.2265 -0.1920 

PHC 0.0783 -0.4195 0.4046 

Ca -0.9319 -0.2024 -0.0254 

Na -0.0308 -0.1595 0.7092 

Mg 0.7658 -0.2424 0.4407 

K 0.8971 0.1955 -0.1188 

Mn 0.9067 0.0942 -0.1617 

Zn 0.3367 0.0145 -0.6743 

pH -0.5422 0.0781 0.4628 

H2O -0.1665 0.7035 0.2224 

P 0.3537 0.7524 -0.1127 

TP 0.7565 -0.1962 0.3006 

NH4+ 0.1710 -0.3235 0.0760 

NO3- -0.4012 0.6062 -0.3600 

TN -0.1053 -0.6483 -0.4861 
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Figure 3.1: Experimental layout of each of the five transects where soil cores were collected. Each 

transect included five 1 m x 1 m quadrats placed in locations of different vegetation categories between 

adjacent S. hermaphrodita and P. australis stands. The vegetation levels included locations of high-

density S. hermaphrodita (1), moderately dense S. hermaphrodita (2), an area of intermediate vegetation 

(3), a location of moderately dense P. australis (4), and a location of high-density P. australis (5). Two 

soil cores were obtained from the corners of each quadrat and one additional soil core was obtained from 

the centre of each quadrat to examine soil nutrient contents.  

1 

2 

3 

4 

5 

Sida hermaphrodita 

Phragmites australis 
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Figure 3.2: Photographs taken at TCA of quadrats placed within locations of different vegetation 

categories between adjacent S. hermaphrodita and P. australis stands. Five 1 m x 1 m quadrats were 

placed within locations of high-density S. hermaphrodita (A), moderately dense S. hermaphrodita, 

intermediate vegetation (B), moderately dense P. australis and high-density P. australis (C). Two soil 

cores were obtained using a split-core sampler from the corners of each quadrat to be subsequently sown 

with either S. hermaphrodita or P. australis seeds to assess the effects of potential soil alterations on plant 

performance. One additional soil core was obtained from the centre of each quadrat to examine soil 

nutrient contents.  
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Figure 3.3: Experimental soil core set up in the rooftop greenhouse at the Waterloo Centre for Cold 

Regions and Water Science. 200 Soil cores were obtained from different locations between adjacent S. 

hermaphrodita and P. australis stands at TCA. Each core was individually wrapped in black polyethylene 

film and placed in polystyrene dome lids to serve as water basins (A). The two soil cores obtained from 

each location were sown with either 3 pre-germinated P. australis seeds (B) or 3 pre-germinated S. 

hermaphrodita seeds (C) in order to examine how plant performance is affected by potential alterations in 

soil conditions resulting from P. australis interactions. Plants were removed from soils following 12 

weeks of growth and plant performance and AMF colonization measurements were taken.      
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Figure 3.4: Plant performance of S. hermaphrodita (Black) and P. australis (Grey) seedlings planted in 

soils collected from different vegetation levels between adjacent S. hermaphrodita and P. australis stands. 

The vegetation levels included locations within dense S. hermaphrodita stands (1), moderately dense S. 

hermaphrodita (2), intermediate vegetation (3), moderately dense P. australis (4) and within dense P. 

australis stands (5). The interaction between plant species and the soil-vegetation level (location) and 

their effect on shoot biomass (left) and root biomass (right) as representatives of plant performance were 

assessed using a two-way analysis of variance (ANOVA). To meet ANOVA assumptions, square-root or 

log transformations were applied to shoot biomass or root biomass response variables respectively and 

differences in plant performance among species and across location levels were determined using 

Student’s T multiple comparisons. Bars represent means ± standard error and bars with the same letters 

are not significantly different (p < 0.05).     
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Figure 3.5: Plant performance of S. hermaphrodita (Black) and P. australis (Grey) seedlings planted in 

soils collected from different vegetation levels between adjacent S. hermaphrodita and P. australis stands. 

The vegetation levels included locations within dense S. hermaphrodita stands (1), moderately dense S. 

hermaphrodita (2), intermediate vegetation (3), moderately dense P. australis (4) and within dense P. 

australis stands (5). The interaction between plant species and the soil-vegetation level (location) and 

their effect on total biomass (left) and root - shoot biomass ratio (right) as representatives of plant 

performance were assessed using a two-way analysis of variance (ANOVA). To meet ANOVA 

assumptions, square-root or log transformations were applied to total biomass or root - shoot biomass 

ratio response variables respectively and differences in plant performance among species and across 

location levels were determined using Student’s T multiple comparisons. Bars represent means ± standard 

error and bars with the same letters are not significantly different (p < 0.05).     
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Figure 3.6: Plant performance of S. hermaphrodita (Black) and P. australis (Grey) seedlings planted in 

soils collected from different vegetation levels between adjacent S. hermaphrodita and P. australis stands. 

The vegetation levels included locations within dense S. hermaphrodita stands (1), moderately dense S. 

hermaphrodita (2), intermediate vegetation (3), moderately dense P. australis (4) and within dense P. 

australis stands (5). The interaction between plant species and the soil-vegetation level (location) and 

their effect on shoot project area (left) and root project area (right) as representatives of plant performance 

were assessed using a two-way analysis of variance (ANOVA). To meet ANOVA assumptions, square-

root transformations were applied to response variables and differences in plant performance among 

species and across location levels were determined using Student’s T multiple comparisons. Bars 

represent means ± standard error and bars with the same letters are not significantly different (p < 0.05).     
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Figure 3.7: Plant performance of S. hermaphrodita (Black) and P. australis (Grey) seedlings planted in 

soils collected from different vegetation levels between adjacent S. hermaphrodita and P. australis stands. 

The vegetation levels included locations within dense S. hermaphrodita stands (1), moderately dense S. 

hermaphrodita (2), intermediate vegetation (3), moderately dense P. australis (4) and within dense P. 

australis stands (5). The interaction between plant species and the soil-vegetation level (location) and 

their effect on root average diameter (left) and root length (right) as representatives of plant performance 

were assessed using a two-way analysis of variance (ANOVA). To meet ANOVA assumptions, square-

root or log transformations were applied to root average diameter or root length response variables 

respectively and differences in plant performance among species and across location levels were 

determined using Student’s T multiple comparisons. Bars represent means ± standard error and bars with 

the same letters are not significantly different (p < 0.05).     
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Figure 3.8: Root AMF colonization of S. hermaphrodita (Black) and P. australis (Grey) seedlings planted 

in soils collected from different vegetation levels between adjacent S. hermaphrodita and P. australis 

stands. The vegetation levels included locations within dense S. hermaphrodita stands (1), moderately 

dense S. hermaphrodita (2), intermediate vegetation (3), moderately dense P. australis (4) and within 

dense P. australis stands (5). The interaction between plant species and soil-vegetation level (location) 

and their effect on hyphal colonization (left), arbuscular colonization (right), and vesicular 

colonization(bottom) as representatives of root AMF colonization were assessed using a two-way analysis 

of variance (ANOVA). To meet ANOVA assumptions, square-root transformations were applied to 

response variables and differences in plant performance among species and across location levels were 
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determined using Student’s T multiple comparisons. Vesicular colonization is presented on a log scale to 

better display low levels of root colonization in P. australis roots. Bars represent means ± standard error 

and bars with the same letters are not significantly different (p < 0.05).      
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Figure 3.9: Cleared and stained roots of S. hermaphrodita grown in soils collected from within different 

vegetation categories between adjacent S. hermaphrodita stands and P. australis stands. Root samples 

were cleared in a 10% KOH solution, stained with a 5% ink in vinegar solution and AMF colonization 

was quantified using a modified version of the magnified intersections method (McGonigle et al., 1990)  
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A: Un-colonized area of a S. hermaphrodita root with the Root Vascular Tissue (RVT) running through 

the centre of the root. B-F: Areas of S. hermaphrodita roots colonized with blue stained AMF structures. 

B: Heavily colonized root section exhibiting extra-radicular hyphae (arrowhead) surrounding the root and 

an area where the hypha entered the epidermal cells (star) and formed intra-radicular hyphae (arrow) 

within the cortex of the root and numerous arbuscules (asterisk). C-E: Root sections exhibiting intra-

radicular hyphae (arrow) within the cortical tissue, running parallel to the root vascular tissue and 

numerous arbuscules (asterisk). F: Root section exhibiting intra-radicular hyphae (arrow) and numerous 

vesicles (circle).           
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Figure 3.10: Cleared and stained roots of P. australis grown in soils collected from within different 

vegetation categories between adjacent S. hermaphrodita stands and P. australis stands. Root samples 

were cleared in a 10% KOH solution, stained with a 5% ink in vinegar solution and AMF colonization 

was quantified using a modified version of the magnified intersections method (McGonigle et al., 1990) 
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A: Un-colonized area of a P. australis root with the Root Vascular Tissue (RVT) running through the 

centre of the root. B-F: Areas of P. australis roots colonized with blue stained AMF structures. B: 

Heavily colonized root section exhibiting intra-radicular hyphae (arrow) within the cortex of the root and 

numerous arbuscules (asterisk). C: Root section exhibiting an area where the hypha entered the epidermal 

cells (star) and formed intra-radicular hyphae (arrow) within the cortex of the root and form numerous 

arbuscules (asterisk) and vesicles (circle). D-E: Magnified root sections exhibiting intra-radicular hyphae 

(arrow) within the cortical tissue, running parallel to the root vascular tissue and numerous arbuscules 

(asterisk). F: Root section exhibiting intra-radicular hyphae (arrow) and a vesicle (circle).               
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Figure 3.11: A: Bi-plot of principal component 1 against principal component 2 from PCA used to 

determine trends soil nutrient characteristics, average plant performance and AM root colonization of 

both S. hermaphrodita and P. australis plants. B: Bi-plot of principal component 1 against principal 

component 3. C: Bi-plot of principal component 2 against principal component 3. Amount of variation 

explained by each component is indicated on each axis. PC1 explained a gradient in soil characteristics: 

increasing Magnesium (Mg), Potassium (K), Manganese (Mn), total Phosphorus (TP), and decreasing soil 
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pH and Calcium (Ca). PC 2 explained a gradient in soil nutrient characteristics related to plant 

performance and AM colonization: increasing S. hermaphrodita total biomass (STB), S. hermaphrodita 

root hyphal colonization (SHC), soil moisture (H2O), available Phosphorus (P), Nitrate (NO3-), and 

decreasing P. australis total biomass (PTB), P. australis hyphal colonization (PHC), Ammonium (NH4+), 

and total Nitrogen (TN). PC 3 explained a gradient in the remaining soil nutrient characteristics: 

increasing Sodium (Na) and decreasing Zinc (Zn).   
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3.7 Supplemental Information 

Table S3.1: Classification of all species identified within the first quadrat of each of the five transects set 

up at TCA where soil was to be obtained within a high-density S. hermaphrodita stand. Plants were 

identified using the species key by Dickinson et al. (2004). Status as introduced (I) or native (N), and 

physiognomy (Phys) was determined from the USDA PLANTS database. Percent vegetation cover (PVC) 

of each species identified within the 1 m x 1 m quadrat is presented. 

Transect Family Genus, Species Common Name I/N Phys PVC 

1 

  

  

Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 20% 

Poaceae Phalaris arundinacea L. Reed Canary 

Grass 

N Graminoid 20% 

Brassicaceae Alliaria petiolata (M. Bieb.) 

Cavara & Grande 

Garlic Mustard I Forb/Herb 5% 

2 Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 15% 

Juglandaceae 

 

Juglans nigra L. Black Walnut 

 

N 

 

Tree 

 

<5% 

3 Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 20% 

Asteraceae 

 

Solidago canadensis L. 

 

Canadian 

Goldenrod 

N 

 

Forb/Herb  <5% 

4 Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 30% 

Asteraceae 

 

Cirsium arvense (L.) Scop. 

 

Creeping Thistle 

 

I 

 

Forb/Herb <5% 

5 Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 20% 

Asteraceae 

 

Solidago canadensis L. 

 

Canadian 

Goldenrod 

N 

 

Forb/Herb 10% 

Asteraceae 

 

Cirsium arvense (L.) Scop. 

 

Creeping Thistle I 

 

Forb/Herb <5% 
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Table S3.2: Classification of all species identified within the second quadrat of each of the five transects 

set up at TCA where soil was to be obtained within a moderate-density S. hermaphrodita stand. Plants 

were identified using the species key by Dickinson et al. (2004). Status as introduced (I) or native (N), 

and physiognomy (Phys) was determined from the USDA PLANTS database. Percent vegetation cover 

(PVC) of each species identified within the 1 m x 1 m quadrat is presented. Unidentified species are 

indicated by UN.  

Transect Family Genus, Species Common Name I/N Phys PVC 

1 

  

  

Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 5% 

Poaceae Phalaris arundinacea L. Reed Canary 

Grass 

N Graminoid 70% 

Brassicaceae Alliaria petiolata (M. Bieb.) 

Cavara & Grande 

Garlic Mustard I Forb/Herb <5% 

Asteraceae 

 

Solidago canadensis L. 

 

Canadian 

Goldenrod 

N 

 

Forb/Herb <5% 

Asteraceae Arctium minus Bernh. Lesser Burdock I Forb/Herb 10% 

Rosaceae Geum urbanum L. Avens I Forb/Herb 5% 

2 Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 10% 

Asteraceae 

 

Solidago canadensis L. 

 

Canadian 

Goldenrod 

N 

 

Forb/Herb  30% 

3 Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 5% 

Asteraceae 

 

Solidago canadensis L. 

 

Canadian 

Goldenrod 

N 

 

Forb/Herb  30% 

Asteraceae Sonchus arvensis L.  Field Sow Thistle I Forb/Herb <5% 

Asteraceae Tussilago farfara L. Coltsfoot I Forb/Herb 5% 

Juglandaceae Juglans nigra L. Black Walnut N Tree <5% 

4 Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 10% 

Poaceae Phalaris arundinacea L. Reed Canary 

Grass 

N Graminoid 20% 

Asteraceae Symphyotrichum lanceolatum 

(Willd.) G.L. Nesom 

White Panicle 

Aster 

N Forb/Herb <5% 

5 Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 10% 

Poaceae Phalaris arundinacea L. Reed Canary 

Grass 

N Graminoid 20% 
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Asteraceae 

 

Solidago canadensis L. 

 

Canadian 

Goldenrod 

N 

 

Forb/Herb 

 

30% 

Rosaceae Geum urbanum L. Avens I Forb/Herb 

 

5% 

Asteraceae Cirsium arvense (L.) Scop. Creeping Thistle I Forb/Herb 

 

<5% 

Dipsacaceae Dipsacus fullonum L. Fuller’s Teasel I Forb/Herb 

 

<5% 

Asteraceae Taraxacum officinale F.H. 

Wigg. 

Common 

Dandelion 

I/N Forb/Herb 

 

<5% 

Salicaceae Salix sp. UN UN Tree <5% 
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Table S3.3: Classification of all species identified within the third quadrat of each of the five transects set 

up at TCA where soil was to be obtained within an area of intermediate vegetation. Plants were identified 

using the species key by Dickinson et al. (2004). Status as introduced (I) or native (N), and physiognomy 

(Phys) was determined from the USDA PLANTS database. Percent vegetation cover (PVC) of each 

species identified within the 1 m x 1 m quadrat is presented.  Unidentified species are indicated by UN. 

Transect Family Genus, Species Common Name I/N Phys PVC 

1 

  

  

Malvaceae Sida hermaphrodita (L.) 

Rusby 

Virginia Mallow N Forb/Herb 

 

<5% 

Poaceae Phalaris arundinacea L. Reed Canary 

Grass 

N Graminoid 20% 

Asteraceae Arctium minus Bernh. Lesser Burdock I Forb/Herb <5% 

Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 60% 

Apiaceae Daucus carota L. Queen Anne's 

Lace 

I Forb/Herb <5% 

Asteraceae Tussilago farfara L. Coltsfoot I Forb/Herb 10% 

Asteraceae Sonchus arvensis L.  Field Sow Thistle I Forb/Herb <5% 

2 Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 70% 

3 Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 15% 

Apiaceae Daucus carota L. Queen Anne's 

Lace 

I Forb/Herb 15% 

Asteraceae Sonchus arvensis L.  Field Sow Thistle I Forb/Herb 5% 

Rosaceae Geum urbanum L. Avens I Forb/Herb 30% 

Asteraceae Symphyotrichum novae-

angliae (L.) G.L. Nesom 

New England 

Aster 

N Forb/Herb <5% 

Asteraceae Symphyotrichum lanceolatum 

(Willd.) G.L. Nesom 

White Panicle 

Aster 

N Forb/Herb <5% 

Poaceae Poaceae sp. UN UN Graminoid 70% 

4 Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 50% 

Brassicaceae Alliaria petiolata (M. Bieb.) 

Cavara & Grande 

Garlic Mustard I Forb/Herb 15% 

5 Poaceae Phalaris arundinacea L. Reed Canary 

Grass 

N Graminoid 5% 

Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 10% 

Asteraceae Symphyotrichum novae-

angliae (L.) G.L. Nesom 

New England 

Aster 

N Forb/Herb <5% 
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Poaceae Poaceae sp. UN UN  Graminoid 80% 

Salicaceae Salix sp. UN UN Tree 5% 
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Table S3.4: Classification of all species identified within the fourth quadrat of each of the five transects 

set up at TCA where soil was to be obtained within a moderate-density P. australis stand. Plants were 

identified using the species key by Dickinson et al. (2004). Status as introduced (I) or native (N), and 

physiognomy (Phys) was determined from the USDA PLANTS database. Percent vegetation cover (PVC) 

of each species identified within the 1 m x 1 m quadrat is presented.   

Transect Family Genus, Species Common Name I/N Phys PVC 

1 

  

  

Poaceae Phragmites australis (Cav.) 

Trin. Ex Steud. 

Common Reed I Graminoid 10% 

Poaceae Phalaris arundinacea L. Reed Canary 

Grass 

N Graminoid 10% 

Asteraceae Arctium minus Bernh. Lesser Burdock I Forb/Herb 40% 

Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 20% 

Asteraceae Tussilago farfara L. Coltsfoot I Forb/Herb 15% 

2 Poaceae Phragmites australis (Cav.) 

Trin. Ex Steud. 

Common Reed I Graminoid 10% 

Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 60% 

Brassicaceae Alliaria petiolata (M. Bieb.) 

Cavara & Grande 

Garlic Mustard I Forb/Herb 30% 

3 Poaceae Phragmites australis (Cav.) 

Trin. Ex Steud. 

Common Reed I Graminoid 30% 

Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 30% 

4 Poaceae Phragmites australis (Cav.) 

Trin. Ex Steud. 

Common Reed I Graminoid 10% 

Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 30% 

Asteraceae Symphyotrichum lanceolatum 

(Willd.) G.L. Nesom 

White Panicle 

Aster 

N Forb/Herb <5% 

5 Poaceae Phragmites australis (Cav.) 

Trin. Ex Steud. 

Common Reed I Graminoid 60% 

Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 10% 

Dipsacaceae Dipsacus fullonum L. Fuller’s Teasel I Forb/Herb 10% 
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Table S3.5: Classification of all species identified within the fifth quadrat of each of the five transects set 

up at TCA where soil was to be obtained within a high-density P. australis stand. Plants were identified 

using the species key by Dickinson et al. (2004). Status as introduced (I) or native (N), and physiognomy 

(Phys) was determined from the USDA PLANTS database. Percent vegetation cover (PVC) of each 

species identified within the 1 m x 1 m quadrat is presented.  

Transect Family Genus, Species Common Name I/N Phys PVC 

1 

  

  

Poaceae Phragmites australis (Cav.) 

Trin. Ex Steud. 

Common Reed I Graminoid 30% 

Asteraceae Arctium minus Bernh. Lesser Burdock I Forb/Herb <5% 

Asteraceae Solidago canadensis L. Canadian 

Goldenrod 

N Forb/Herb 20% 

2 Poaceae Phragmites australis (Cav.) 

Trin. Ex Steud. 

Common Reed I Graminoid 70% 

3 Poaceae Phragmites australis (Cav.) 

Trin. Ex Steud. 

Common Reed I Graminoid 80% 

Balsaminaceae Impatiens capensis Meerb. Spotted Touch-

Me-Not 

N Forb/Herb <5% 

4 Poaceae Phragmites australis (Cav.) 

Trin. Ex Steud. 

Common Reed I Graminoid 90% 

Brassicaceae Alliaria petiolata (M. Bieb.) 

Cavara & Grande 

Garlic Mustard I Forb/Herb 10% 

5 Poaceae Phragmites australis (Cav.) 

Trin. Ex Steud. 

Common Reed I Graminoid 90% 

Balsaminaceae Impatiens capensis Meerb. Spotted Touch-

Me-Not 

N Forb/Herb <5% 
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Figure S3.1: Linear regression to assess relationship between root hyphal colonization and total biomass 

of S. hermaphrodita (Species 1) and P. australis (Species 2) plants grown in soils collected within 

different vegetation categories between adjacent S. hermaphrodita and P. australis stands. Asterisk (*) 

indicate significant correlation (p < 0.01).    

 

Figure S3.2: Linear regression to assess relationship between soil moisture and root hyphal colonization 

of S. hermaphrodita (Species 1) and P. australis (Species 2) plants grown in soils collected within 

different vegetation categories between adjacent S. hermaphrodita and P. australis stands. Asterisk (*) 

indicate significant correlation (p < 0.05).     
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Figure S3.3: Linear regression to assess relationship between soil total nitrogen content and root hyphal 

colonization of S. hermaphrodita (Species 1) and P. australis (Species 2) plants grown in soils collected 

within different vegetation categories between adjacent S. hermaphrodita and P. australis stands. Asterisk 

(*) indicate significant correlation (p < 0.01).    

 

Figure S3.4: Linear regression to assess relationship between soil available phosphorus content and root 

hyphal colonization of S. hermaphrodita (Species 1) and P. australis (Species 2) plants grown in soils 

collected within different vegetation categories between adjacent S. hermaphrodita and P. australis 

stands. Asterisk (*) indicate significant correlation (p < 0.05).  
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Figure S3.5: Linear regression to assess relationship between soil nitrate content and root hyphal 

colonization of S. hermaphrodita (Species 1) and P. australis (Species 2) plants grown in soils collected 

within different vegetation categories between adjacent S. hermaphrodita and P. australis stands. Asterisk 

(*) indicate significant correlation (p < 0.05).     
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Chapter 4: General discussion 

4.1 Summary of main research findings 

The overarching goal of this study was to examine the reciprocal interaction between the 

endangered S. hermaphrodita and the invasive P. australis in order to determine how each species 

impacts the performance of the other. The specific objectives were to (1) determine how seedling 

performance and AMF root colonization of S. hermaphrodita in the field relates to the presence/absence 

of P. australis; (2) determine how putative chemical compounds and microorganisms present within the 

soils associated with S. hermaphrodita and P. australis affect the performance and mycorrhizal 

colonization of both plants. To complete this study, field surveys were performed during the growing 

seasons of 2016, 2017, and 2018 at the Taquanyah Conservation Area (TCA) in Haldimand County ON, 

and a greenhouse study was conducted in 2017-2018 at the Centre for Cold Regions and Water Science in 

Waterloo ON. The main findings were as follows: 

1) During field assessments, both S. hermaphrodita seedling emergence and mortality increased 

significantly (p < 0.001) throughout the three years of sampling. The change in P. australis 

proximity level had anomalous effects on S. hermaphrodita seedling performance, since average 

S. hermaphrodita seedling emergence in the intermediate P. australis proximity level was 

significantly higher (p < 0.05) than the average seedling emergence in the close and far 

proximity levels. However, change in P. australis proximity level did not have a significant 

effect on S. hermaphrodita seedling mortality. 

Symbioses between S. hermaphrodita and arbuscular mycorrhizal fungi was confirmed in 2016, 

however, P. australis proximity did not have any significant effects on the various measures of 

S. hermaphrodita seedling AMF colonization during the assessments completed in 2016 and 

2018.   

2) During the greenhouse study, both S. hermaphrodita’s and P. australis’ performance differed 

significantly (p < 0.0001), in which in general, P. australis significantly outperformed S. 
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hermaphrodita. However, the magnitude of the difference between species depended on the 

location. Significant reductions (p < 0.05) in in general plant performance between pure S. 

hermaphrodita soils and pure P. australis soils were observed for P. australis plants whereas 

general plant performance was improved for S. hermaphrodita plants.  

Symbioses between AMF and both species were observed, and levels of AM colonization were 

significantly higher (p < 0.0001) in S. hermaphrodita roots than in P. australis roots. Similarly, 

the magnitude of the difference between species depended on the location, in which the general 

proportion of AM colonization in S. hermaphrodita roots was significantly increased (p < 

0.0001) between pure S. hermaphrodita soils and pure P. australis soils, while the proportion of 

AM colonization in P. australis roots was reduced.  

Following soil nutrient analyses, positive correlations between S. hermaphrodita AM 

colonization, total biomass, and soil moisture were observed. Negative correlations between S. 

hermaphrodita AM colonization and total nitrogen content were also observed in addition to 

negative correlations between P. australis AM colonization, soil moisture, available phosphorus 

and soil nitrate content.     

4.2 Main conclusions 

Phragmites australis has been labelled a highly competitive species that is threatening 

ecosystems around the world, and its invasion has been attributed, among others, to its ability to 

allelopathically condition soils to interfere with neighbouring plant performance and their beneficial 

microbiotic symbioses (Rudrappa et al., 2007; Jordan et al., 2008; Uddin et al., 2012; Uddin et al., 2014; 

Uddin et al., 2017; Crocker et al., 2017). Through our results quantifying its interaction with the 

endangered Sida hermaphrodita, we found no evidence for P. australis’ allelopathic soil conditioning 

capacity, since S. hermaphrodita seedling germination and emergence was improved in closer proximities 

to P. australis stands. In fact, S. hermaphrodita plants were shown to grow better in soils extracted from 

pure P. australis stands than in soils retrieved from within their own stands.  
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Our research provided the first empirical evidence that S. hermaphrodita can form relationships 

with arbuscular mycorrhizal fungi and interestingly, S. hermaphrodita AMF root colonization was also 

promoted in pure P. australis soils. Additionally, our results contribute to the growing research 

confirming that P. australis can also form symbioses with AMF and that its mycorrhization is negatively 

correlated with moisture levels (Oliveira et al., 2001).  

Due to the observed inverse promotion of plant performance and AMF colonization of both 

species in their competitor’s soil, coupled with soil nutrient analyses, we believe P. australis is not as 

strictly competitive as previously suggested. Under competitive interactions, where there is low abiotic 

stress, both species would rapidly acquire any available resources to outcompete the other (Bertness and 

Callaway, 1994; Callaway and Walker 1997; He et al., 2013). The improved performance results of both 

species in our greenhouse study reflect instead traits associated with a belowground facilitative interaction 

between P. australis and S. hermaphrodita. During this study, both species appeared to facilitate limiting 

soil nutrient availability for each other and subsequently promote the growth of their opponent to 

potentially alleviate the pressures of an unknown abiotic stress present at TCA. We suspect it is because 

of this unknown stress, that there has been an increase in S. hermaphrodita population size and density 

over the past 6 years, since P. australis has not been vigorous enough to fully displace S. hermaphrodita, 

resulting in their co-existence at TCA.  

Although our results suggest S. hermaphrodita and P. australis are coexisting, and that 

belowground conditions are not excluding neighbouring species, we believe changes to aboveground 

conditions are primarily responsible for limiting S. hermaphrodita’s performance. Due to the observed 

high seedling mortality throughout TCA and the improved S. hermaphrodita performance in P. australis 

soils where aboveground competition was absent, we can infer that interception of light by other 

neighbouring species is the most detrimental factor impacting S. hermaphrodita seedling growth and the 

subsequent dispersal of this endangered species. Furthermore, we propose that this competitive exclusion 

of light is the key mechanism responsible for P. australis’ invasion success.    
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Through this research we contribute to an improved understanding of the biology and ecology 

related to both S. hermaphrodita and P. australis and provide valuable insight into factors impacting the 

outcome of interactions between species. Our research has proved that S. hermaphrodita has the capacity 

to increase its distribution, and by defining S. hermaphrodita’s aboveground threat, we can make 

suggestions for conservation efforts (see below) to mediate this threat and help promote the further 

vegetative and seedling expansion of S. hermaphrodita, in hopes of restoring its native distribution 

previously taken over by invasive species like P. australis.   

4.3 Integration and collaboration 

The field of ecology is inherently integrative as it overlaps with different fields of biology and 

draws on techniques from other branches of science to examine and explain life processes, the abundance, 

distribution and adaptations of different organisms as well as the interactions between different organisms 

and their biotic and abiotic environments. In doing so, ecologists seek to understand how all these 

interactions impact the dynamic functioning of ecosystems on a much larger scale. As an ecology study, 

this research required an integrative approach since it encompassed aspects of botany, mycology, 

microbiology, soil chemistry, and conservation biology. Through the combination of each field, the 

predominant goal of this research was to explain the interaction between two organisms; Sida 

hermaphrodita and Phragmites australis. Since S. hermaphrodita and P. australis are not the sole 

inhabitants of TCA, it was necessary that other factors and relationships were included within the scope 

of this project. Additional abiotic factors including light availability and soil characteristics as well as 

biotic factors including interactions with arbuscular mycorrhizal fungi and other plant species were taken 

into consideration in order to fully explain the reciprocal interaction between both species. The integrative 

approach of this ecological research has helped improve the understanding of the life processes of both 

species and define the key aboveground detrimental impacts responsible for the success of invasive 

species like P. australis. Furthermore, our findings provide us with direction that can be applied to 

conservation initiatives used to mitigate the negative impacts of invasive species and restore the native 
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biodiversity of natural ecosystems like TCA and other areas where native species like S. hermaphrodita 

are threatened by P. australis invasion.  

Throughout the completion of this project, this research has also incorporated information 

obtained by other researchers and has involved several valuable collaborations. This work has been part 

of an ongoing Species at Risk (SAR) research project for the Ministry of Natural Resources and Forestry 

(MNRF) involving monitoring, protecting and managing the S. hermaphrodita population at TCA. 

Dominic Smoluch, a previous researcher for Dr. Mihai Costea and Dr. Kevin Stevens in the biology 

department at Wilfrid Laurier University, was the first to begin examining plant community structure at 

TCA in 2014. Some of Dominic’s field work at TCA guided the sampling design of the field work in this 

project since in 2014, he established the 28 permanent 1 m x 1 m quadrats at various locations 

surrounding existing S. hermaphrodita stands, that were surveyed yearly during this study for vegetation 

cover and to examine S. hermaphrodita seedling performance in relation to P. australis proximity. 

Additionally, he also helped establish the GPS protocol for delimiting the boundaries of existing S. 

hermaphrodita stands and estimating the total stem density of S. hermaphrodita at TCA. We used his 

results from the 2014 boundary delimitation and stem density estimates to compare with our estimates 

collected in 2016 and 2018 to describe the S. hermaphrodita population growth at TCA (Chapter 2). 

  Through this SAR project, our research has involved the collaboration with Dr. Rebecca Rooney 

(Assistant Professor, Department of Biology, University of Waterloo) and a member of her wetland 

ecology lab, Courtney Robichaud (PhD. Candidate, Department of Biology, University of Waterloo). 

Through Dr. Rooney’s support of invasive species management and SAR protection, they examined the 

carbon assimilation and leaf nutrients of both S. hermaphrodita and P. australis to assess how both 

species may impact the photosynthetic capacity of one another. As previously mentioned, their results 

complement the light interference assumption from our research and will be later combined into a 

manuscript. 
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Throughout the duration of this SAR study, continuous collaboration has also been necessary 

between the Dr. Stevens and Dr. Costea labs and associates at the Grand River Conservation Authority 

(GRCA) including Anthony Zammit (Aquatic and Terrestrial Ecologist, GRCA) and Lindsay Campbell 

(Restoration Specialist, GRCA). Access to perform field assessments at TCA was made possible through 

them and they provided insight into any potential impacts on plant populations resulting from human 

disturbance (e.g. cutting, spraying, A.T.V. trampling) or animal disturbance (e.g. flooding ensuing from 

beaver dams). Our results from yearly monitoring of plant community structure and S. hermaphrodita 

population density have been shared to provide updates to changes in habitat characteristics and SAR 

abundance, and subsequently assist with determining any need for population management on the GRCA 

property. Additionally, reports have been submitted to the MNRF including data collected by GRCA 

collaborators and the results obtained from our research. Ongoing research in our labs has focussed on 

examining different SAR including S. hermaphrodita and Ammannia robusta Heer & Regel (Scarlet 

Ammannia; Lythraceae), and through collaboration with MNRF associates like Dr. Eric Snyder (Plant 

SAR Specialist, Ministry of Environment, Conservation and Parks), our research has addressed 

knowledge gaps surrounding these SAR and impacts from invasive species, and also contributed to 

meeting recovery actions outlined by Government Response Statements. 

4.4 Future directions and conservation implications 

 Chapter 1 addressed the need for expanding the knowledge surrounding the endangered S. 

hermaphrodita and the invasive P. australis in order to define the interaction between both species, so 

that appropriate management practices may be undertaken. Our research examined the belowground soil 

conditioning potential of P. australis in order to verify previous reports that it can allelopathically inhibit 

neighbouring species (Rudrappa et al., 2007; Bains et al., 2009; Uddin et al., 2014; Crocker et al., 2017). 

The results presented in both chapters 2 and 3 provided no evidence to corroborate our initial soil 

modification hypothesis; however, additional chemical analysis of soils collected at TCA would be 

valuable to further substantiate our results. Since previous studies have reported the presence of 
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allelopathic phenolic compounds within P. australis soils (Rudrappa et al., 2007; Rudrappa et al., 2009; 

Uddin et al., 2012; Uddin et al., 2014), it would be beneficial to perform further assessments of TCA soils 

recently extracted from P. australis stands as well as soils kept under frozen storage. By determining 

whether phenolic compounds are in fact absent, this analysis would help confirm our results that 

belowground allelopathic modification is not the principal mechanism responsible for P. australis 

invasion.  

 Also, through our assessments of relationships between both plant species and beneficial AMF, 

our results support the limited information regarding P. australis’ mycorrhizal status (Oliveira et al., 

2001). As for S. hermaphrodita however, the consistently high levels of AMF colonization observed in its 

roots provide incentive for further investigation. As discussed in chapter 3, our S. hermaphrodita 

colonization results do not coincide with other frequently observed AMF relationships (Khan, 1975; 

Harley and Smith, 1987; Bolan, 1991) since colonization levels were positively correlated with soil 

moisture and available phosphorous levels. Furthermore, because we observed positive correlations 

between AMF root colonization and S. hermaphrodita performance, we suspect that this AMF interaction 

is not parasitic. However, due to the complexity of AMF associations and the absence of a sterile control 

treatment from our study, we could not determine the stability of S. hermaphrodita’s AMF relationship. 

Further inspection into S. hermaphrodita’s performance with and without AMF colonization as well as 

the response to different levels of soil fertility, would be beneficial in expanding the knowledge on S. 

hermaphrodita’s AMF reliance and the conditions that best support its growth.    

 Additionally, based on the performance results observed throughout our study, we postulated that 

P. australis and S. hermaphrodita may engage in a belowground facilitative interaction whereby limiting 

nutrients are shared between both species to alleviate the pressures of an unknown abiotic stressor at 

TCA. Although our study provides support for the stress-gradient hypothesis which states that gradients 

in the abiotic environment can impact the balance between competition and facilitation in species 

interactions (Callaway and Walker, 1997; Callaway, 1998), unfortunately our study was not designed to 
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specifically test this hypothesis (Maestre et al., 2009). To validate our results, a re-evaluation of the 

interaction between S. hermaphrodita and P. australis would be beneficial in which all abiotic 

environmental conditions at TCA such as light intensity, water availability, salinity, soil temperature and 

air temperature are also accounted for. By incorporating additional abiotic stress gradients into the study, 

we would be able to further characterize the environmental conditions at TCA, identify the unknown 

source of severe abiotic stress and either confirm that this stressor is impacting the outcome of the 

belowground facilitative interaction observed between S. hermaphrodita and P. australis or determine 

whether coexistence through frequency dependent selection (Chesson 2000; HilleRisLambers et al., 2010) 

may be taking place between these two species at TCA.         

 Lastly, the main outcome of our research has emphasized a need for examining aboveground 

competition at TCA. Our research has outlined that P. australis’ ability to monopolize light is probably 

key to its invasion success and that competitive exclusion of light is likely the main factor impeding S. 

hermaphrodita’s performance. Based on our results, we recommend that additional examination into 

aboveground competition for light would be the most valuable in explaining the interactions between S. 

hermaphrodita and invasive species like P. australis as well as establishing appropriate management 

practices to combat these unfavourable interactions. Focussing on P. australis specifically, various 

control methods have been suggested including mowing, burning, drainage, and herbicide application 

(Mal and Narine, 2004). Derr (2008), identified that mowing and chemical application of the herbicide 

glyphosate (N-(Phosphonomethyl)glycine) was effective in reducing P. australis populations by 

approximately 90% one year after the application (Derr, 2008). In the fall of 2018, a similar management 

treatment of trampling and herbicide spraying was applied by GRCA land managers to P. australis stands 

surrounding S. hermaphrodita stands at TCA. Although vegetation surveys and population estimates have 

not been completed this year to confirm, the regrowth of P. australis stems this growing season was 

surprisingly limited (Figure 4.1). Through personal observation, it was apparent that areas surrounding 

the cold-water stream that were densely populated by P. australis monocultures last year, were now 
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occupied by other species including Solidago canadensis L., Impatiens capensis Meerb., and Cirsium 

arvense (L.) Scop. (Figure 4.2). Additionally, S. hermaphrodita growth was also evident by the 

appearance of new vegetative shoots and seedlings in areas previously occupied by P. australis (Figure 

4.3). This new growth outside of S. hermaphrodita stands appears very promising for the recovery of S. 

hermaphrodita populations and we believe the continued culling of P. australis stands would be 

beneficial in improving the distribution of this endangered species. By continuously applying these 

management techniques to areas occupied by invasive species like P. australis, in addition to removing 

the dead litter resulting from the treatments, the positive feedbacks exploited by monoculture-forming 

invasive species would be disrupted and light availability would be substantially improved for native 

species and their seedlings (Holdredge and Bertness, 2011). Furthermore, counteracting the aboveground 

effects of invaders like P. australis would be beneficial in the global recovery of endangered species like 

S. hermaphrodita and the restoration of native biodiversity into invaded ecosystems.    



163 

 

4.5 Figures 

 

Figure 4.1: Photographs taken at Taquanyah Conservation Area during consecutive growing seasons 

depicting changes in overall vegetation. In August 2018, large areas of TCA were occupied by dense and 

expanding monocultures of P. australis (A). Following management treatments applied in the fall of 2018 

by members of the GRCA, P. australis stands were no longer dominant in July 2019, and a variety of 

plant species were observed colonizing the previously invaded areas (B).      
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Figure 4.2: Photographs taken at TCA in July 2019 of areas where trampling and spraying treatments 

were applied to P. australis stands by GRCA land managers in the fall of 2018. All images (A-D) depict 

the remaining dead P. australis litter resulting from the 2018 treatment. Obvious reductions in P. 

australis stem regrowth was apparent in treatment areas (A) when compared to the regrowth at periphery 

areas where a barrier was maintained to protect S. hermaphrodita stands (B). Treatments appeared 

promising for habitat restoration of P. australis dominated areas due to the growth of new species 

including S. canadensis, I. capensis, and S. hermaphrodita where P. australis treatment was applied (C & 

D).            
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Figure 4.3: Photographs taken at TCA in July 2019 depicting S. hermaphrodita growth in areas where P. 

australis treatment was applied during the fall of 2018. Vegetative and reproductive expansion of S. 

hermaphrodita stands into areas previously occupied by P. australis was evident due to the growth of 

new S. hermaphrodita seedlings (C & D) as well as the growth of new vegetative shoots outside the S. 

hermaphrodita stands (A, B, E).   
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