
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2017 

Diversity and evolution of fruits in Cuscuta (dodders; Diversity and evolution of fruits in Cuscuta (dodders; 

Convolvulaceae) Convolvulaceae) 

Anna Ho 
Wilfrid Laurier University, hoxx2540@mylaurier.ca 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Biodiversity Commons, Botany Commons, Integrative Biology Commons, and the Weed 

Science Commons 

Recommended Citation Recommended Citation 
Ho, Anna, "Diversity and evolution of fruits in Cuscuta (dodders; Convolvulaceae)" (2017). Theses and 
Dissertations (Comprehensive). 1979. 
https://scholars.wlu.ca/etd/1979 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F1979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1127?utm_source=scholars.wlu.ca%2Fetd%2F1979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/104?utm_source=scholars.wlu.ca%2Fetd%2F1979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1302?utm_source=scholars.wlu.ca%2Fetd%2F1979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1267?utm_source=scholars.wlu.ca%2Fetd%2F1979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1267?utm_source=scholars.wlu.ca%2Fetd%2F1979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/1979?utm_source=scholars.wlu.ca%2Fetd%2F1979&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


 

DIVERSITY AND EVOLUTION OF FRUITS IN CUSCUTA (DODDERS; 

CONVOLVULACEAE) 

By 

Anna Ho 

(BSc Honours Biology, Wilfrid Laurier University, 2014) 

 

THESIS 

Submitted to the Department of Biology 

Faculty of Science 

in partial fulfillment of the requirements for the 

Master of Science in Integrative Biology 

Wilfrid Laurier University 

2017 

 

 

 

 

 

Anna Ho 2017© 



 i 

ABSTRACT 

Cuscuta (dodder) is a genus of roughly 200 species of obligate stem parasites with 

sub-cosmopolitan distribution. The fruit, generally regarded as a capsule, has a thin 

pericarp containing one to four seeds and opening at the base (circumscissile dehiscence; 

DE), or remaining closed (indehiscent; IN). IN has evolved multiple times in Cuscuta 

from DE, and is most common in the North American clades of subgenus Grammica. In 

addition, some species produce fruits that open irregularly. Characteristics pertaining to 

the fruits of Cuscuta are important as their seeds contribute most to their distribution and 

prevalence across the globe, and their reduced vegetative organs limit the morphological 

variation available for species’ identification. In this thesis, I examined the structural 

mechanism behind DE to elucidate fruit types and their evolution. I surveyed fruit 

morphological traits to determine their systematic significance and functional correlations 

with dehiscence/indehiscence. Finally, I explored the putative evolutionary advantage(s) 

of fruit indehiscence by examining distribution, floatability, germination, and 

infructescence architecture. Pericarp structure revealed three distinct fruit types: DE fruits 

with an abscission zone (AZ), IN fruits with a uniform pericarp, and fruits that dehisce 

irregularly via the thinning of endocarp cell walls (IrA). IN fruits that break open 

irregularly (IrB) may also be an evolutionary fruit trait and were considered as such. 

Most qualitative fruit traits were polymorphic and their evolution involved multiple 

transitions to each state. Differences in quantitative traits were not consistent among fruit 

types, however IrB fruit species generally have a large interstylar aperture and large fruits 

with more seeds. IrB fruit species have a larger geographical range and more northern 

latitudinal limit than DE fruit species, and their infructescences slightly more compact 
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than IN fruit species; which along with fruit traits may contribute to their irregular 

dehiscence. Capsules of C. gronovii were capable of floating for at least one week longer 

than their seeds. Seeds of C. gronovii exhibit a delayed germination when not removed 

from their IN fruits; a strategy known as bet-hedging. These results suggest that the 

evolution of IN in Cuscuta has provided certain species with heterodiaspory, and 

enhanced their dispersal and germination strategies.  
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1. INTRODUCTION 

1.1 THE GENUS CUSCUTA: OVERVIEW 

 Cuscuta, commonly known as dodders, is a parasitic genus that has evolved in the 

morning glory family, Convolvulaceae (Stefanović et al., 2002; Stefanović and Olmstead, 

2004). The genus is sub-cosmopolitan in distribution and comprises nearly 200 species 

(García et al., 2014; Costea et al., 2015) that depend entirely on their hosts for water and 

nutrients (Dawson et al., 1994). Cuscuta species are capable of parasitizing a wide variety 

of host plants from numerous habitats (Dawson et al., 1994; Costea and Tardif, 2006; 

Costea et al., 2015), though host specificity may range considerably (Engelmann, 1842; 

Gaertner, 1950) from “generalist” species, such as C. campestris and C. gronovii, to 

“specialists” such as C. jepsonii and C. warneri (Costea and Stefanović, 2009a). Parasitism 

by dodders involves specialized organs called haustoria capable of circumventing hosts’ 

defenses, penetrating their stems, and connecting to their vascular tissues to allow for the 

diversion of water and nutrients from host to parasite (Yuncker, 1932; Dawson et al., 

1994). The effect of dodders on their host varies considerably, but since the parasite acts as 

a powerful sink, in general, the growth and fitness of the host are negatively affected (e.g., 

Dawson et al., 1994). 

 As with typical members of Convolvulaceae, Cuscuta species are annual vines 

(though in some situations can “behave” as perennial; Muelebrouck et al., 2009) containing 

laticifers in all the organs (Riviere et al., 2013), and their flowers actinomorphic, 

hermaphroditic, and hypogynous (Stefanović et al., 2002; García et al., 2014). However, 

Cuscuta is the only parasitic genus within the morning glory family, and the species have a 

limited photosynthetic capacity (Stefanović et al., 2002; Stefanović and Olmstead, 2004; 
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García et al., 2014). Dodders are herbaceous, glabrous, with slender, twining, yellow, 

orange or purple-reddish stems and alternate leaves reduced to scales (Yuncker, 1932; 

Dawson et al., 1994). The embryo and seedling are devoid of cotyledons and the root is 

vestigial and ephemeral, disintegrating entirely at seedling stage prior to the host 

attachment (Yuncker, 1932; Dawson et al., 1994; Sherman et al., 2008; Behdarvandi et al., 

2015). Under optimal growing conditions, the stems of Cuscuta spp. intertwine and form 

large, dense masses that cover the hosts (Dawson et al., 1994). Stems of a single Cuscuta 

plant are capable of growing up to 750 m long in a vegetation season (Dean, 1942) and 

parasitize simultaneously multiple host species from different families (Costea and Tardif, 

2006). Though dodder stems are easily recognized from other plants, they lack 

characteristics for identification at the species level, thus researchers must rely on the 

flowers, inflorescences, and fruits (Yuncker, 1932; Kuijt, 1969; Dawson et al., 1994; 

Stefanović et al., 2007). 

 Since its proposal by Engelmann (1859), it has been universally accepted that 

Cuscuta must be divided into three subgenera based on style and stigma morphology: 

Monogynella, with one style and various stigma shapes; Cuscuta, with two styles and 

acute/clavate stigma; and Grammica, with two styles and globose/capitate stigma (Peter, 

1891; Mirande, 1900; Yuncker, 1921, 1932, 1965; Wright et al., 2011). More recent 

molecular studies have revealed that these subgenera are for the most part evolutionary 

lineages: Monogynella is the sister to the rest of the genus, and Cuscuta and Grammica are 

sister to each other (Stefanović et al., 2002; Stefanović and Olmstead, 2004). However, 

subgenus Cuscuta was found to be paraphyletic and the delimitation of a fourth 

infrageneric lineage containing only five species from South Africa, "Pachystigma", 
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emerged as a necessity (García and Martín, 2007; McNeal et al., 2007; Stefanović et al., 

2007; García et al., 2014). In the most recent phylogeny of Cuscuta, Pachystigma is sister 

to Grammica (García et al., 2014). A formal infrageneric classification of Cuscuta 

proposed by Costea et al. (2015) recognized Pachystigma as a fourth subgenus and sub-

divided the four subgenera into a total of 18 monophyletic sections of which 15 are well-

supported major clades within subg. Grammica (labeled informally A-O in Stefanović et 

al., 2007; Stefanović and Costea, 2008; García et al., 2014). Subgenus Grammica is the 

largest infrageneric group (includes over 75% of Cuscuta species diversity) and has 

evolved in the Americas (Stefanović et al., 2007; García et al., 2014; Costea et al., 2015). 

 

1.2. SIGNIFICANCE OF CUSCUTA 

Dodders are among the earliest referenced parasitic plants (Costea and Tardif, 

2004). Their peculiar appearance and parasitic nature, particularly on crop plants, sparked 

an interest in early botanists to study their taxonomy, physiology and anatomy (e.g., 

Choisy, 1841; Engelmann, 1842; 1859; Mirande, 1900). However, although a vast 

collection of literature has accumulated on Cuscuta, researchers continue to study the 

genus especially due to its ecological and economic impact (Kuijt, 1969; Nickrent and 

Musselman, 2004; Costea and Tardif, 2006). 

Similar to other parasitic plants, dodders are keystone species because they have 

the ability to alter plant community structures (Pennings and Callaway, 2002; Smith, 

2008; Spasojevic and Suding, 2011) and the abiotic environment (Press and Phoenix, 

2005; Ridenour et al., 2014) even when present in low abundances (Pennings and 

Callaway, 1996; Costea and Stefanović, 2009a). They can act as vectors for plant viruses 
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(Hosford, 1967 and references therein; Dawson et al., 1994; Dobson and Crawley, 1994) 

and they are capable of horizontal gene transfer through the haustorial connections 

(Mower et al., 2004). Their detrimental effect on host and associated ecological 

significance have inspired scientists to explore the use of Cuscuta advantageously as a 

biocontrol agent and remediation tool for native plant communities invaded by foreign 

species (Epstein and Hill, 1999; Yu et al., 2008; Li et al., 2012; 2015).  

The economic importance of Cuscuta is mostly detrimental as roughly 15-20 

dodder species attack numerous agricultural and horticultural crops worldwide, reducing 

their yield and/or lowering their commercial value (Dawson et al., 1994; Costea and 

Tardif, 2006). For example, C. campestris, perhaps the most widely distributed species 

worldwide and also the most damaging agricultural pest of the genus, was reported as a 

weed of 25 crops in 55 countries (Holm et al., 1997). Small-seeded forage legumes such 

as alfalfa (Medicago sativa) and clover (Trifolium spp.) are the crops that are most 

commonly infested by Cuscuta as they are favourable hosts to several species and their 

seeds are difficult to distinguish from dodder seeds once contaminated. Due to the 

difficulties of identifying species through seeds, the entire genus of Cuscuta is included 

on many governmental lists of noxious and/or invasive weeds and commercial seed 

shipments found to contain dodder seeds at the border are confiscated and destroyed 

(Dawson et al., 1994; Costea and Tardif, 2006).  

Some limited positive economic significance exists, as several species have been 

used in traditional Asian medicine (e.g., C. chinensis and C. reflexa). These species are 

currently investigated for their medicinal properties (Pal et al., 2006; Wong et al., 2006; 

Yen et al., 2007).  
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1.3. RESEARCH FOCUS 

This study explores the diversity and evolution of fruit in Cuscuta. More 

specifically, it focuses first on elucidating the structural mechanisms of different modes 

of fruit dehiscence/indehiscence. Second, it analyzes the morphological diversity, 

character evolution and systematic significance of fruit traits. Third, this research 

explores the evolutionary advantage(s) of fruit indehiscence, a trait that has evolved 

multiple times especially in subgenus Grammica. This section serves to: (a) introduce the 

problems arising from the current fruit categorization in Cuscuta; (b) explain why the 

fruit is potentially important for the systematics of the genus, and (c) introduce 

hypothetical selective advantage(s) of indehiscent fruits in Cuscuta. The following 

chapters will provide additional background, as well as the research objectives and 

hypotheses.  

(a) Clarifying fruit types in Cuscuta by determining the structural and 

ultrastructural basis of different modes of dehiscence/indehiscence  

Generally regarded as a capsule, the fruit of Cuscuta has a thin, membrane-like 

pericarp and contains one to four seeds. In some species, the capsules open at the base 

along a circular line (circumscissile dehiscence) while in others they remain closed 

(indehiscent). This characteristic was first noted by Engelmann (1842) and later used by 

Yuncker (1921; 1932) to classify the species within subgenus Grammica into two 

sections: Cleistogrammica, with indehiscent capsules, and Eugrammica, with dehiscent 

capsules. Yuncker (1932) also attempted to interpret the evolution of this trait, regarding 

dehiscence as derived from indehiscence. However, two recent large scale phylogenetic 
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studies indicated that dehiscence is the primitive trait, while indehiscence has evolved 

multiple times in subg. Grammica (Stefanović et al., 2007; Garcia et al., 2014).  

Unfortunately, circumscissile dehiscence and indehiscence are not always clear-

cut character states. A literature review revealed that some species were described as 

having capsules “circumscissile but sometimes irregularly bursting” (e.g., C. umbellata; 

Engelmann, 1859), others as simply “irregularly circumscissile” (e.g., C. kilimanjari, C. 

sacharrata; Yuncker, 1932) or “tardily/late and irregularly circumscissile” (e.g., C.  

gracillima, C. incurvata, C. hyalina; Yuncker, 1932). Additionally, in some species with 

normally indehiscent capsules, some fruits may break irregularly (described as 

“indehiscent or irregularly dehiscent"; e.g., C. gronovii, C. umbrosa, and C. indecora; 

Costea et al., 2006a; 2006b). It is clear that an “irregular” attribute is shared by all these 

examples, but the “irregular” dehiscence may not be morphologically and 

developmentally similar among species. In the absence of a carpological study, the fruits 

of species with irregular dehiscence were treated as either dehiscent or indehiscent in 

character evolution studies (Stefanovic et al., 2007; Garcia et al., 2014). For example, the 

latter three species (C. gronovii, C. umbrosa, and C. indecora) were considered as having 

indehiscent fruits, while those of the remaining species mentioned above, as dehiscent 

(Stefanovic et al., 2007; Garcia et al., 2014). In order to elucidate the fruit categories and 

their evolution in Cuscuta, it is critical to also examine the “irregularly dehiscent” forms 

to understand the ontogeny and structural/ultrastructural mechanisms of 

dehiscence/indehiscence. Such a carpological study will improve the delimitation of fruit 

types in Cuscuta, eliminating any categorization ambiguities and providing new character 
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states for the character evolution study, which will allow for a better understanding of 

how dehiscence/indehiscence modes evolved in the genus.  

(b) Morphological diversity of fruit traits and their taxonomic significance 

The fruit of Cuscuta has been a part of the species descriptions since Engelmann’s 

studies (1842; 1859) because, in addition to dehiscence/indehiscence, it provides other 

morphological characters that are useful for species delimitation. This is significant 

because similar to other obligate parasitic plants (reviewed by Kuijt, 1969; Heide-

Jorgensen, 2008), Cuscuta has fewer morphological characters available for 

systematics/taxonomy compared to green plants (Stefanovic et al., 2007; Costea et al., 

2015). Although subsequent authors have used fruit morphology to distinguish various 

dodder species (Yuncker, 1921; 1932; 1965; Costea et al., 2005; 2006a; 2006b; 2006c; 

2006d; 2008a; 2008b; 2009; 2011a; 2011b; 2012; 2013; Costea and Stefanovic, 2009a; 

2009b; 2010), no character evolution study has been conducted to examine the diversity 

and systematic significance of fruit traits.  

(c) Assessing the selective advantage(s) of indehiscent fruit in Cuscuta 

The convergent evolution scenario of fruit indehiscence in subg. Grammica in 

North America (García et al., 2014; Costea et al. 2015) raises questions about its 

evolutionary advantage(s). Fruit indehiscence, in general, is involved in seed protection 

and affects dispersal (Roth, 1977; Bazzaz et al., 2000; Baskin and Baskin 2014). To what 

extent protection and/or dispersal roles are selected for is often reflected in the 

morphology/structure of the fruit wall (pericarp) and seed coat (Roth, 1977). Since the 

pericarp in Cuscuta is essentially a thin membrane (Engelmann, 1856; Yuncker, 1932; 



 8 

Wright et al., 2011), it is unlikely the fruit plays a significant role in seed protection. 

Seeds of Cuscuta species with circumscissile fruit disperse individually, whereas the 

seeds within indehiscent fruits disperse as units with up to 4 seeds. When diaspores 

contain multiple seeds, indehiscence has usually been associated with reduced dispersal 

ability (e.g., Augspurger and Hogan, 1983; Snijman and Linder, 1996; Willis et al., 2014) 

However, in some cases, indehiscence may coevolve with dispersal-enhancing traits 

(Wilis et al., 2014) or as a trade-off with life-history traits that are not directly related to 

dispersal. For instance, in the latter case, indehiscence can influence dormancy and 

germination (e.g., Hu et al., 2009; Andrade et al., 2015; Lu et al., 2015). Whether the 

dehiscence/indehiscence modes, and therefore diaspore type, are reflected in the dispersal 

ability and geographical distribution of Cuscuta species, or if indehiscence affects other 

life history traits is unknown. 

Since dispersal capability plays a significant role in the size of geographical 

ranges (reviewed by Gaston et al., 2003; Lester et al., 2007), the distribution of subgenus 

Grammica species in North America will be used to determine whether a geographical 

pattern exists among species with different modes of dehiscence/indehiscence. Whether 

there is a potential ability for indehiscent capsules and seeds to disperse by water will be 

determined by comparing their floating capability. Lastly, the effect of fruit on 

germination will be studied as indehiscent fruits (pericarp present) may alter germination 

and therefore seedling establishment and population persistence.  

“Indehiscent or irregularly dehiscent" capsules are apparently present in species 

with dense, glomerulate infructescences (e.g., C. campestris, C. gronovii; Costea et al., 

2006a; 2006c). Because the pericarp is very thin, in such species the capsules which are 
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normally indehiscent may break open irregularly. Although irregular breaking occurs 

only in some of the capsules within each infructescence, its consequence is that some of 

the capsules will release their seeds, while others will remain closed. This allows the 

seeds of the same plant to disperse both independently as well as within capsules, which 

may be advantageous. Also, if seeds germinate differently when enclosed within the fruit 

versus when they are dispersed individually, indehiscent and irregularly dehiscent 

capsules may provide additional benefits, as in the case of certain Brassicaceae with 

heterodiaspory (plants produce two or more types of diaspores; reviewed by Baskin and 

Baskin, 2014; section 2.5). To reveal a possible relationship between the 

dehiscence/indehiscence modes and infructescence density, a comparative study of the 

evolution of different modes of dehiscence/indehiscence and the infructescence 

architecture in subgenus Grammica will be performed.  
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2. BACKGROUND 

2.1 DEHISCENCE/INDEHISCENCE IN DRY FRUITS  

 Dry fruits are defined as having a fruit wall (pericarp) that dries out at maturity 

(Spjut, 1994) and are classified as either dehiscent (e.g., various types of capsules) or 

indehiscent (e.g., the achene, caryopsis, etc.) depending on whether they open or remain 

closed (Spjut, 1994; Leins and Erbar, 2010). Dry indehiscent fruits have evolved from 

dehiscent fruits numerous times in various angiosperm families, both in mono- and 

polycarpellate families (Stone, 1973; Roth, 1977; Hoot, 1991; Cronquist, 1988). Among 

the best studied are Brassicaceae, in which certain genera containing dry dehiscent fruits 

(i.e., silicle and silique) have evolved indehiscent or partially dehiscent fruit forms 

(Mühlhausen et al., 2013). 

Circumscissile dehiscence — capsules opening along a basal circular dehiscence 

line — is not a unique trait to Cuscuta; it is present in other genera of Convolvulaceae 

(e.g. Operculina, Dichondra, and Merremia; Van Oostroom and Hoogland, 1953; 

Woodson et al., 1975; Rhui-Cheng and Staples, 1995; Austin, 1998; Felger et al., 2012), 

as well as in other angiosperm families. This type of capsule that opens through a lid is 

called a pyxidium and has evolved in at least 17 flowering plant families (Spjut, 1994). 

Well known examples include Portulaca (Portulaceae; Rethke, 1946; Subramanyam and 

Raju, 1953), Hyoscyamus (Solanaceae; Rethke, 1946), Plantago (Plantaginaceae; 

Subramanyam and Raju, 1953; Lamba and Gupta, 1981) and Amaranthus 

(Amaranthaceae; Costea et al., 2001).  
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Fruit dehiscence/indehiscence is typically a genus trait. Genera with both 

dehiscent and indehiscent versions of dry fruits (in different species) are extremely rare.  

For example, Lepidium (Brassicaceae) has species with either dehiscent or indehiscent 

silicles, and the latter have evolved from the former (Mummenhoff et al., 2009). Also, in 

Amaranthus (Amaranthaceae) some species possess circumscissile dehiscence while 

others have indehiscent fruits (Costea et al., 2001), but in this case, it is unknown which 

of the two character states is primitive. Certain cultivated plants such as Sesamum 

indicum (Pedaliaceae), Linum ussitatissium (Linaceae), Euphorbia lagascae 

(Euphorbiaceae), which normally have (dehiscent) valvicide capsules, also possess forms 

with indehiscent capsules, but these are the result of artificial selection (Fahn and 

Werker, 1972; Ashri, 1988; Muir and Westcott, 2003; Verdolini et al., 2004; Fu, 2011).  

The structural mechanism of dehiscence in other angiosperm genera with 

circumscissile dehiscence, such as Sesuvium (Aisoaceae); Allmania, Amaranthus, 

Celosia, Chamissoa (Amaranthaceae), Plantago (Plantaginaceae), Portulaca 

(Portulacaceae), and Hyoscyamus (Solanaceae) involves the controlled development of a 

circular “weakness zone” within the pericarp at the base of the fruit (Rethke, 1946; 

Subramanyam and Raju, 1953; Lamba and Gupta, 1981; Costea et al., 2001; Oyama et 

al., 2010). The weakness zone functions as an abscission zone (AZ), which is also present 

in other types of dry dehiscent fruits and abscised organs more generally (Sexton and 

Roberts, 1982; Roberts et al., 2000; 2002; Patterson, 2001; Leslie et al., 2007). The 

anatomical studies mentioned above reported that various lignified/sclerified tissues 

within the pericarp surrounding the AZ also contribute to the dehiscence of fruit. The 

enlarging seeds within the fruit, together with the shrinking of the pericarp as the fruit 
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dries at maturity will ultimately trigger the dehiscence along the circular weakness zone 

(Subramanyam and Raju, 1953; Costea et al., 2001; Wright et al., 2011).  

Cuscuta is one of the rare angiosperm genera in which species are characterized 

by different modes of dehiscence/indehiscence. Engelmann (1842) noted first that in 

some species capsules are circumscissile, while in others they remain indehiscent (which 

he called “baccate capsules”). More recently two large-scale phylogenetic studies have 

shown that species bearing indehiscent fruits have evolved 8 times from those with 

dehiscent fruits in subg. Grammica (Stefanovic et al., 2007; García et al., 2014). As 

previously indicated, this convergent evolution scenario of indehiscence is complicated 

by the apparent existence of species possessing “irregularly” dehiscent fruits. In some of 

these latter species, capsules were reported to open late through an “irregular” or 

“jagged” line at the base (e.g., Yuncker 1921; 1932; Costea and Stefanović, 2010), while 

in others the pericarp tears irregularly “by cracks that spread in different directions” 

(termed “foraminicidal” capsules by Spjut, 1994; Costea et al., 2006a). In the absence of 

a carpological study, the fruits of species with irregular dehiscence have been treated as 

either dehiscent or indehiscent (Engelmann 1859; Yuncker 1932; Stefanovic et al., 2007; 

García et al., 2014). In order to elucidate the fruit categories and their evolution in 

Cuscuta, it is critical to also include the irregularly dehiscent forms, and for all the fruit 

types, study the ontogeny and structural/ultrastructural mechanisms of 

dehiscence/indehiscence. 

 

2.2. FRUIT CHARACTERS AND SYSTEMATICS OF CUSCUTA 



 13 

 General fruit classifications were early elaborated (e.g., Linnaeus, 1751; Gaertner, 

1788–1792; de Candolle, 1813) and fruit morphology figured prominently in the first 

comprehensive classification systems of angiosperms (e.g., Linnaeus, 1753; de Candolle 

and de Candolle, 1864). The case of Cuscuta is particular because as a result of the 

evolution to obligate parasitism, the leaves which have been much used in the separation of 

flowering plants species have undergone drastic reductions (Kuijt, 1969; Stefanović et al., 

2007). As a consequence, the species level taxonomy of dodders has relied heavily on 

flower morphology (Choisy, 1841; Engelmann, 1859; Yuncker, 1932; reviewed by Costea 

et al. 2015). More recently, extensive character evolution studies of floral parts and their 

function have been conducted to reveal their phylogenetic/systematics significance (pollen, 

Welsh et al., 2010; gynoecium, Wright et al., 2011; perianth and pollen/ovule ratios, 

Wright et al., 2012; infrastaminal scales, Riviere et al., 2013; stomatiferous protuberances, 

Clayson et al., 2014).  

 In contrast, the fruit has received comparatively less attention in Cuscuta. Choisy 

(1841), the first monographer of the genus, used gynoecium characters but did not mention 

the fruit in species descriptions. Engelmann (1859) used the dehiscence/indehiscence of 

capsules to describe six of the nine sections within the three major infrageneric “groups” 

that are currently accepted as subgenera Monogynella, Cuscuta and Grammica (Costea et 

al. 2015). Yuncker (1921; 1932) also used the dehiscence/indehiscence to classify the 

largest subgenus, Grammica, into two sections: Cleistogrammica, with indehiscent 

capsules, and Eugrammica with dehiscent capsules. However, because of the repeated 

evolution of indehiscence in subg. Grammica, these two sections are not “natural” 

(monophyletic) lineages (García et al., 2014; Costea et al. 2015). The diversity and 
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evolution of other fruit characteristics besides dehiscence/indehiscence have not been 

studied despite being used in species description since Engelmann (Yuncker, 1921; 1932; 

1965; Costea et al., 2005; 2006a; 2006b; 2006c; 2006d; 2008a; 2008b; 2009; 2011a; 

2011b; 2012; 2013; Costea and Stefanović, 2009a; 2009b; 2010). Exploring the 

morphological diversity and reconstructing ancestral character states for the fruit traits 

would be useful for the systematics of the genus. 

 

2.3 DEHISCENCE/INDEHISCENCE MODES AND SPECIES DISTRIBUTION 

The morphology of the dispersal unit (diaspore) affects both population level 

processes such as adaptive divergence and geographic isolation (e.g., Levin et al., 2003; 

Cousens et al., 2008), as well as species level patterns of distribution and diversification 

(Howe and Smallwood, 1982; Fernández et al., 2002; Cousens et al., 2008). “Dispersal 

syndromes” have been defined to connect morphological attributes of diaspores with 

dispersal vectors, such as wind, water, gravity or animals (e.g., van der Pijl, 1982; 

Tiffney, 1984). Angiosperm diaspores consisting of dry indehiscent fruits often contain 

only one seed (e.g., the achene and caryopsis; Spjut, 1994; Leins and Erbar, 2010), which 

maximizes the dispersal potential. Indehiscent diaspores with multiple seeds have been 

associated with a loss of dispersal ability (e.g., Augspurger and Hogan, 1983; Willis et 

al., 2014). In this latter case, the evolution of indehiscence has been interpreted as a 

trade-off with other beneficial life-history strategies such as the retention within 

favourable maternal sites (Friedman and Stein, 1980), the protection of seeds against 

environmental factors (Ellner and Shmida, 1981) or the modulation of 

dormancy/germination (Zhou et al., 2015). However, one recent study in Brassicaceae 
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(Willis et al., 2014), in which indehiscence is also derived from dehiscence, has 

suggested that indehiscence evolved in association with compensatory traits that 

ultimately enhanced the dispersal ability, such as joint abscission, certain pericarp 

characteristics, and a reduction of the number of seeds per propagule.  

Whether the dehiscence/indehiscence modes, and therefore the diaspore type, are 

reflected in the dispersal ability and geographical distribution of Cuscuta species, or if 

indehiscence affects other life history traits is unknown. Diaspores of Cuscuta species 

with circumscissile capsules are the individual seeds, whereas diaspores of species with 

indehiscent capsules are the fruits containing one to four seeds. Indehiscent fruits can be 

dispersed individually or as fruit clusters (Costea et al. 2016).  

The artificial dispersal of weeds and invasive dodders species has been well 

documented; it has occurred through seed contamination of commercial seed crops, 

particularly of forage legumes (Knepper et al., 1990; Dawson et al., 1994; Costea and 

Tardif, 2006). In contrast, the natural means of dispersal are little known. Dispersal of 

Cuscuta seeds has been considered “unspecialized” (Kuijt, 1969; Costea and Tardif, 

2006) because dodders seeds do not possess morphological adaptations that match any of 

the known dispersal syndromes (Costea et al., 2016). Similar to other parasitic plants 

(Hughes, 1994), annual dodder diaspores (seeds or fruits) fall in the immediate vicinity of 

the mother plant and host(s), which may facilitate the establishment on the host in the 

next year. Natural vectors for Cuscuta seed dispersal are poorly known. Lyshede (1992) 

suggested wind as a possible dispersal agent of C. campestris and C. pedicellata because 

their seeds are very small (ca. 1 mm long) and their epidermis is finely alveolate (when 

seeds are dry). Subsequent authors, however, have indicated that the seed epidermis of 
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many Cuscuta species — alveolate when seeds are dry — and papillate when seeds are 

hydrated, is more likely connected with the seed imbibition and germination rather than 

with the dispersal (Costea and Tardif, 2006; Jayasuriya et al., 2008). Seeds sink in the 

water (Verdcourt, 1948) though in some species (e.g., C. gronovii) they were reported to 

float “at least for a while” (Costea and Tardif, 2006). According to Verdcourt (1948), 

capsules of C. cf. campestris containing the seeds can float for up to two days. Most 

recently, Costea et al. (2016) reported that waterfowl birds such as the northern pintail 

(Anas acuta) can disperse the seeds of C. campestris and C. pacifica along their 

migratory pathway in North America. The authors noted that both Cuscuta species 

retrieved from the digestive system of pintails had indehiscent capsules, and that the 

clusters of capsules fallen on the ground or water were compatible with the feeding habits 

of the pintails (Costea et al., 2016). Because dispersal questions are complex and require 

extensive testing of hypotheses in the field, for this thesis, only the ability of capsules and 

seeds to float under the lab conditions will be examined.  

The capacity of species to disperse is often positively correlated with the size of 

their distribution ranges (Hanski et al., 1993; Brown et al., 1996; Gaston, 1996; 2003; 

Birand et al., 2011). Assuming that dehiscence/indehiscence modes affect dispersal 

because they result in different types of diaspores, their influence on dispersal may be 

reflected in the geographical distribution of dodder species. Since indehiscence has 

evolved mostly in subgenus Grammica in North American clades (Stefanovic et al., 

2007; Garcia et al., 2014), it is best to compare the geographical ranges of species with 

different dehiscence/indehiscence modes on this continent. If indehiscence limits 

dispersal, this should be reflected in species’ ranges. A strongly supported 
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phylogeographical scenario is available for subgenus Grammica (Stefanovic et al., 2007; 

Garcia et al., 2014), and if range differences will be revealed among species with 

different modes of dehiscence, these patterns will be interpreted in a biogeographical 

context.  

 

2.4. INDEHISCENCE/DEHISCENCE AND SEED GERMINATION 

The pericarp of dry indehiscent fruits protects the seed(s) during dispersal and/or 

influences seed dormancy and germination. An obvious seed protection role is provided 

in the case of species with hard pericarp dispersed through endozoochory (e.g., Prosopis; 

Baes et al., 2002) or diszoochory (e.g., Corylus, Quercus, Fagus; van der Pijl, 1982; 

Vander Wall, 2001). Germination inhibition or delay have been documented, for 

example, in Atriplex spp. (Garvin and Meyer, 2003; Li et al., 2008), Hedysarum 

scoparium (Hu et al., 2009), Raphanus raphanistrum (e.g., Cousens et al., 2009), 

Rapistrum rugosum (e.g., Ohadi et al., 2011), and Isatis violascens (Zhou et al., 2015). 

Because the pericarp in Cuscuta is very thin, it cannot provide protection when 

indehiscent fruits are ingested by birds (Costea et al., 2016) or when low mechanical 

forces are applied (Costea et al., 2005). Therefore, it is possible that the pericarp of 

indehiscent fruits has an effect on Cuscuta germination, which will be preliminarily 

explored in this thesis.   

Newly produced seeds of Cuscuta are not dormant and can readily germinate 

(Gaertner, 1950). However, after a few days up to 95% of seeds become “hard” and 

dormant (Tingey and Allred, 1960; Allred and Tingey, 1964; Dawson, 1965; Hutchinson 

and Ashton, 1980; Lyshede, 1984). Dormancy of Cuscuta seeds is physical, imposed by 
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the seed coat, which becomes hard and impermeable as the seeds dry out. Impermeability 

and hardness are ensured by the two schlerenchymatic palisade cell layers of the seed 

coat (Hutchinson and Ashton, 1979; 1980; Lyshede, 1984; Jayasuriya et al., 2008). For 

example, in the seeds of C. campestris and C. pacifica ingested by northern pintails, 

protection was provided by the inner palisade layer, while the epidermis and external 

palisade layer (in addition to the pericarp) were completely or partially removed during 

the digestion process (Costea et al., 2016).   

Dodder seeds can remain viable up to 50 years in dry storage and at least 10 years 

under field conditions, which enables the formation of a persistent seed bank (Gaertner, 

1950; reviewed by Costea and Tardif, 2006). Under natural conditions, in temperate 

regions, physical dormancy of Cuscuta seeds is broken by the cold period during the 

winter (Hutchinson and Ashton, 1980; Benvenuti et al., 2005; Meulebrouck et al., 2008). 

Thus, Cuscuta species undergo a cyclical dormancy/dormancy-break pattern similar to 

other annual plants in temperate regions (Baskin and Baskin, 2004; reviewed by Baskin 

and Baskin, 2014). Dormancy of Cuscuta seeds can also be broken artificially through 

cold stratification, mechanical (e.g., abrasion) or chemical treatments (e.g., with sulfuric 

acid; reviewed by Costea and Tardif, 2006). The optimal temperature for the germination 

of most species is over 25C, which ensures that seedlings emerge later in the growing 

season once host plants have already established (Dawson et al., 1994; Costea and Tardif, 

2006). 

 Since Cuscuta species are annual, germination is of paramount importance for 

seedling establishment and population dynamics (e.g., Crawley et al., 1990; Fenner, 

2000). If seeds enclosed in indehiscent fruits differ in their germination behaviour from 
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those released individually, then fruit indehiscence may influence establishment in 

Cuscuta, possibly advantageously.  

 

2.5. INFRUCTESCENCE ARCHITECTURE AND ITS POTENTIAL CONNECTION 

TO DEHISCENCE/INDEHISCENCE MODES 

The inflorescence is an organized system of branches (axes) that bear flowers 

(Weberling, 1992; Prenner et al., 2009). The role(s) of the inflorescence gravitate(s) 

around reproductive biology; displaying flowers in the most favorable position for 

pollination, as well as ensuring a dynamic architecture that increases the chances of 

reproductive success (Weberling, 1992; Prusinkiewicz et al., 2007). The three-

dimensional patterns of various inflorescences have been correlated with pollination 

“syndromes” and specific pollinator behaviours (Harder et al., 2004; Harder and 

Prusinkiewicz, 2012). Inflorescences that persist at fructification are termed 

infructescences and in some plants, they act as diaspores (Hintze et al., 2013). 

Cuscuta flowers develop in inflorescences that are characteristic to each species 

(Yuncker, 1932; Costea et al., 2015). Dodder inflorescences are loose to dense 

monochazial cymes that are further grouped in more complex inflorescences: either 

thyrses (subg. Monogynella) or larger (compound) cymose inflorescences (subgenera 

Cuscuta, Pachystigma and Grammica) that are glomerulate, spiciform, racemiform, 

paniculiform, corymbiform, umbelliform or fasciculate (Yuncker, 1932; 1965; Costea et 

al., 2015). Dodder inflorescences persist at fructification and become infructescences 

which remain attached to the host (Clayson et al., 2014; Costea et al., 2016). In the case 

of dehiscent fruits, seeds are released and dispersed in a seed shadow in the vicinity of 
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the hosts. Infructescences of indehiscent species remain attached to the stems of the host 

and eventually they detach and fragment into clusters which also fall in the vicinity of the 

host during late fall-winter (Costea et al., 2016). 

A preliminary review of the genus monograph (Yuncker, 1921; 1932) and 

taxonomic revisions of clades within subg. Grammica (Costea et al., 2005; 2006; 2008; 

2011; 2013; Costea and Stefanovic, 2009; 2010), suggests that species with indehiscent 

fruits often have flowers/fruits growing in glomerulate inflorescences which are typically 

very dense, while species with dehiscent fruits possess more lax inflorescences. If this 

relationship is significant, then infructescence architecture may be connected to fruit 

dehiscence/indehiscence modes and possibly dispersal and/or germination. Costea et al. 

(2006) indicated that indehiscent capsules of species within the C. pentagona clade, one 

of the most recently derived clades within subg. Grammica (section Cleistogrammica; 

Garcia et al., 2014; Costea et al., 2015), may break irregularly because of the pressures 

generated by developing capsules within the same dense glomerulate inflorescences. 

Thus, some capsules release the seeds while others enclose them. If the fruit affects 

germination (see section 2.4), dispersing seeds both individually and within the fruit may 

result in a more diverse germination behaviour which may be advantageous for seedling 

establishment. In this case, such fruits could be regarded as functionally 

heterodiasporous; two types of diaspores produced by the same plant differing in seed 

biology and ecological function (reviewed by Baskin and Baskin, 2014). If a relationship 

exists between dehiscence/indehiscence modes and infructescence compactness, it may 

be that fruit type is influenced by infructescence architecture in Cuscuta.  
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3. OBJECTIVES AND HYPOTHESES: 

Structure and ultrastructure of Cuscuta fruit 

1) My first objective is to determine the structural and ultrastructural basis of 

dehiscence/indehiscence modes and to analyze the data in a phylogenetic context as a 

means to distinguish fruit “types” and their developmental and evolutionary relationships. 

My hypothesis is that the circumscissile dehiscence mechanism in Cuscuta is similar to 

that encountered in other pyxidium fruits, involving a “weakness zone” and specialized 

thickenings in the adjacent pericarp. I also predict that the irregular dehiscent fruit forms 

are not similar ontogenetically and morphologically.   

 

Systematic significance of Cuscuta fruit 

2) My second objective is to: (a) survey the morphological diversity and reconstruct 

ancestral character states for fruit traits in Cuscuta, (b) investigate possible relationships 

between dehiscence/indehiscence modes and other fruit traits, and (c) discuss the 

usefulness of capsule characters for the systematics and taxonomy of Cuscuta. This 

objective is not hypothesis-driven but I anticipate that at least some of the fruit characters 

(other than dehiscence/indehiscence modes) have a systematic significance. 

 

Evolutionary significance of indehiscence in Cuscuta 

3) My third objective is to (a) analyze the geographical distribution of North 

American Grammica species in relation to their fruit dehiscence/indehiscence modes and 

evolution, and (b) determine in the lab the floating ability of Cuscuta indehiscent fruits 

and seeds to see if water is a potential dispersal vector. For the first part of this objective, 
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I hypothesize that dehiscent and indehiscent species exhibit different distribution ranges, 

but cannot predict how they will differ [multi-seed diaspores are associated with loss of 

dispersal ability but some other traits may enhance their dispersal. For the second part of 

this objective, I hypothesize that capsules can float for longer periods of time than seeds. 

 

4) Preliminarily determine if seeds within indehiscent capsules have a different 

germination behaviour compared to seeds released from the capsules to determine if this 

can constitute a potential advantage. My hypothesis is that indehiscent capsules delay 

germination of enclosed seeds.   

 

5) Examine a possible relationship between the infructescence architecture and the 

dehiscence/indehiscence modes. The hypothesis is that such a relationship exists and that 

species with indehiscent fruits and with very dense inflorescences also produce a form of 

irregularly dehiscent capsules.  
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4. MATERIALS AND METHODS 

4.1 STRUCTURAL AND MORPHOLOGICAL DIVERSITY OF CAPSULES 

Structure and ultrastructure of fruit 

Pericarp structure was documented in 14 species selected (based on abundance 

and availability of material) to represent the four currently accepted subgenera of 

Cuscuta: C. monogyna, C. japonica (dehiscent; subg. Monogynella), C. planiflora, C. 

approximata (dehiscent; subg. Cuscuta), C. nitida, C. africana (dehiscent; subg. 

Pachystigma), C. campestris, C. gronovii (indehiscent to irregularly dehiscent; subg. 

Grammica), C. chilensis, C. costaricensis, C. cotijana, C. chapalana, C. purpurata 

(dehiscent; subg. Grammica) and C. umbellata (circumscissile but sometimes irregularly 

bursting; subg. Grammica). Developing and mature fruits of C. campestris, C. 

costaricensis, C. cotijana, C. chapalana, and C. gronovii were fixed directly in the field 

using 3% glutaraldehyde + 2% paraformaldehyde in 0.025M sodium phosphate buffer at 

pH 6.8. Cuscuta monogyna, C. purpurata, and C. chilensis were grown in a greenhouse 

from seeds collected in Israel and Chile. These species were examined both with light 

and transmission electron microscopy (TEM). Species for which fresh/fixed material was 

not available (C. umbellata, C. japonica, C. planiflora, C. approximata, C. nitida and C. 

africana) were obtained from herbarium specimens and their pericarp anatomy analyzed 

only with light microscopy using the protocol developed by Wright et al. (2011) for 

rehydration. Ten fruits were examined for each species. Samples were embedded using a 

modified Spurr's Resin protocol (Riviere et al., 2013). For light microscopy, Spurr blocks 

were sectioned at 2 µm with a Sorvall MT-1 ultra-microtome and stained with toluidine 

blue O (pH 4.4) for 2 minutes. Observation and imaging was conducted on Nikon Eclipse 
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50i brightfield and Nikon Eclipse E600 epifluorescence microscopes using a PaxCam 

digital arc camera and Pax-it 7.8 software. For transmission electron microscopy (TEM), 

blocks were cut with a diamond ultra-knife at 80–100 nm and mounted onto formvar and 

carbon-coated copper grids which were then post-stained with 5% uranyl acetate for 10 

min, and then stained with Reynolds lead citrate for 5 minutes. Observations and images 

were taken with a Gatan Ultrascan digital camera and 'Digital Micrograph' software on a 

JEOL 2011 Transmission Electron Microscope at 200 kv (Gatan Inc. 2007, Pleasanton, 

CA). All herbarium vouchers used can be found in Appendix A. 

Comparative morphological diversity of fruits 

The morphology of mature fruits was examined in 126 taxa (118 species and 8 

varieties) using ca. 400 herbarium specimens (Appendix A). Mature fruits were 

considered those that contained mature seeds. Dried fruits removed from herbarium 

specimens were placed in 50% ethanol, heated to boiling point and allowed to rehydrate 

for several minutes. When possible, ten fruits per specimen were examined with a Nikon 

SMZ1500 stereomicroscope and imaged with a PaxCam Arc digital camera equipped 

with Pax-it 7.8 software (MIS Inc., Villa Park, IL). Images were deposited in the Digital 

Atlas of Cuscuta (Costea, 2007-onwards). To determine whether endocarp cell walls are 

thickened, capsules were cut in longitudinal strips which were stained with toluidine blue 

O (pH 4.4) for 2 min and examined with light microscopy (endocarp cells facing up). 

For scanning electron microscopy (SEM), hexamethyldisilazane (HMDS) was 

used as an alternative for critical point drying (Wright et al., 2011). Rehydrated 

herbarium samples were dehydrated using a series of ethanol (70%, 80%, 95% and 

100%; each step one hour), immersed for 1 hour in 1:1 ethanol and HMDS, and passed 
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through an overnight change of 100% HMDS. Samples were air dried and coated with 30 

nanometers of gold using an Emitech K 550 sputter coater. Examination, measurements 

and pictures were taken at 10 kV using a Hitachi SU1510 variable pressure scanning 

electron microscope. 

Ancestral character state reconstruction and data analysis 

Fourteen characters were selected after a review of characters used in previous 

taxonomic studies of Cuscuta (Engelmann, 1859; Yuncker, 1932; Costea et al., 2005; 

2006a; 2006b; 2006c; 2006d; 2008a; 2008b; 2009; 2011a; 2011b; 2012; 2013; Costea and 

Stefanović, 2009a; 2009b; 2010). Measurements and character states can be found in 

Table 1. Arbitrary numbers were assigned to each character state, and the number of 

states for each character was determined by the number of distinguishable phenotypic 

classes. Character states were mapped onto the recent genus phylogeny based on rbcL 

and nrLSU sequences (García et al., 2014). Analysis of character polarity in Cuscuta 

using formal outgroup analysis is hindered by the unresolved position of Cuscuta in 

Convolvulaceae (Stefanović and Olmstead, 2004). Thus, to reconstruct ancestral 

character states in Cuscuta, the distribution of character states was analyzed in-group as 

with previous character evolution studies (i.e. Welsh et al., 2010; Wright et al., 2011; 

Riviere et al., 2013; Clayson et al., 2014). Adding putative outgroup Convolvulaceae and 

coding them with a different character state than the in-group Cuscuta (García et al., 

2014) produced similar results (not shown). Scenarios of character evolution were 

analyzed using the parsimony reconstruction method implemented in Mesquite 3.2  
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Table 1. Fruit characters and their representative codes and states used for surveying fruit 

morphology of 126 Cuscuta taxa.   

Character Character states 

Categorical characters  

1. Dehiscence/indehiscence 0 = capsules indehiscent; 1 = capsules regularly 

circumscissile; 2 = capsules irregularly dehiscent type 

A; 3 = irregularly dehiscent type B. See “Results” for 

explanation of character states. 

2. Fruit shape 1 = spherical (globose); 2 = depressed; 3 = ellipsoid;  

4 = ovoid; 5 = obovoid; 6 = thimble-shaped 

3. Position of persistent corolla            

on capsule 

1 = corolla topping the capsule; 2 = surrounding the 

capsule (3/4); 3 = at the base of capsule (1/3–1/4) 

4. Pericarp epidermis papillae 0 = absent; 1= present; see text (data not shown) 

5. Pericarp translucent 0 = absent; 1 = present 

6. Laticifers visible in the    

pericarp 

0 = not visible under the stereomicroscope; 1 = visible 

7. Interstylar aperture 0 = absent; 1 = interstylar aperture (IA) present but not 

thickened or raised; 2 = IA margins thickened but not 

raised; 3 = IA raised in a collar around the styles; 4 = 

IA with irregular distal protuberances (2–5); 5 = distal 

part of the ovary forms a rostrum under the styles  

8. Style morphology at fruit 

stage 

0 = styles remain ± cylindrical at fruit stage; 1 = styles 

become enlarged at the base, subulate (data not shown). 

Continuous characters  

9. Fruit length mm 

10. Fruit width  

11. Fruit Ratio L/W 

mm 

nr. 

12. Interstylar aperture length  mm 

13. Interstylar aperture width mm 

14. Average number of 

seeds/capsule 

nr. 
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(Maddison and Maddison, 2011). Markov k-state 1 parameter model (MK1) of evolution 

was used; in the parsimony reconstruction, character-state changes were treated as 

unordered. Four qualitative, non-polymorphic characters (pericarp translucence, visible 

laticifers, papillae, and style morphology; Table 1) were also analyzed with the likelihood 

reconstruction method provided by the same software.  

The analysis of possible relationships between the dehiscence/indehiscence modes 

and other fruit traits is complicated by the polymorphism and non-binary nature of most 

qualitative characters.  In order to visualize the similarity of all the characters examined 

(Table 1), a PCoA (Principal Coordinates Analysis) and an NMDS (non-metric 

multidimensional scaling) were conducted in two dimensions using Gower’s coefficient 

for mixed data (Gower, 1971) available from the statistical software PAST version 3.15 

(Øyvind Hammer, 2017). The matrix used for the character evolution was rearranged in 

such a way that characters become the Operational Taxonomic Units and polymorphic 

characters are reduced to only include the most frequently occurring trait—except for 

dehiscence/indehiscence modes where different combinations of fruit types are treated as 

fruit types. After revealing the similarity of characters, a Kruskal-Wallis rank sum test 

and a Dunn’s test for multiple comparisons (R package ‘dunn.test’; Dinno, 2016) was 

used to determine the relationship between quantitative fruit characters and 

dehiscence/indehiscence modes using the statistical program R version 3.3.3 (R Core 

Team, 2017).  

 

 

4.2. BIOGEOGRAPHY OF NORTH AMERICAN SPECIES OF SUBG. GRAMMICA 
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Sampling, data collection and mapping 

Sampling included 76 Cuscuta taxa of subgenus Grammica native to North 

America because this is the major infrageneric group and geographical area in which 

most of the indehiscent species have evolved. The geographical distribution was 

estimated using locality data from specimens obtained from the following herbaria after 

their taxonomic identity was verified/determined: AAU, ABH, ALTA, ARAN, ARIZ, 

ASU, B, BAB, BC, BCN, BM, BOL, BORD, BR, BRIT, CAL, CANB, CAS, CEN, 

CHR, CHSC, CIIDIR, CIMI, COI, CTES, DAO, E, F, FT, G, GH, H, HAM, HUFU, 

HUJ, IAC, IEB, IND, J, JACA, JE, JEPS, K, L, LAU, LD, LE, LL, LP, LPB, LPS, M, 

MA, MACB, MAF, MEL, MERL, MEXU, MGC, MICH, MO, MT, MTMG, MPU, 

MSTR, NAP, NBG, NFLD, NMC, NSPM, NY, OAC, OKLA, OSC, OXF, P, PACA, 

PRE, QCNE, QFA, QUE, RB, RBG, RNG, RSA, S, SALA, SAM, SASK, SD, SEV, 

SFS, SGO, SI, SPF, TEX, TRT, TRTE, UA, UB, UBC, UCR, UC, UCT, UNB, UNM, 

UPRRP, UPS, US, UWO, VAL, W, WAT, WIN, WIS, WTU and XAL. Additional 

specimens with verified identity were obtained from Cuscuta systematics papers (Costea 

et al., 2005; 2006a; 2006b; 2006c; 2006d; 2008b; 2009; 2011a; 2011b; 2012; 2013; 

Costea and Stefanović, 2009a; 2009b; 2010) to increase sample size and minimize 

omission errors (ca. 7000 herbarium records used). 

 Coordinates were taken directly from herbarium specimens or assigned post facto 

and mapped as point data onto a base map with a Web Mercator projection and World 

Geodetic System 1984 datum using ArcGIS 10.3.1 for Desktop (ESRI, Redlands, USA). 

Each species was mapped for their North American range size and their northern 

latitudinal limit. The size of a species range was defined by the area (km2) of its extent of 
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occurrence using a convex hull minimum bounding geometry tool available with the 

software. 

In addition, Mesquite Cartographer Package version 1.5 (Maddison and 

Maddison, 2017) was used to display the northernmost limit of each species together with 

the ancestral character reconstruction of fruit dehiscence/indehiscence modes. The fruit 

character tree was plotted onto a base map displayed in an Albers Conic Equal Area 

projection with the projection center at 36 North and 92 West. Calibration points were 

added manually to optimize map parameters.  

Statistical analyses 

 The range size (km2) and northernmost latitude of North American Grammica 

species were compared using fruit dehiscence/indehiscence modes as a covariate. Species 

with no range size, known from only one or two localities, were excluded from the range 

size analysis but were included in the latitudinal analysis. The statistical software used 

was R version 3.3.3 (R Core Team, 2017) and all annotations are available in Appendix 

D. Tests were performed using both the previous dehiscent/indehiscent fruit types 

retrieved from Garcia et al. (2014) and the new categorization proposed in chapter 5.1. 

Prior to determining whether there are differences between range size and northernmost 

latitudes for dehiscent and indehiscent species, a Shapiro-Wilk's test was performed to 

determine normality. Since the previous categorization has only two variables 

(dehiscent/indehiscent), a two-sample Wilcoxon test (Mann-Whitney) was used to 

determine whether there was a difference in range size, and a Student’s t-test was used to 

determine whether there was a difference in northernmost latitude between North 

American species with dehiscent fruits and those with indehiscent fruits. With the new 
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fruit categorization, the difference in species range size was analyzed using a Kruskal-

Wallis rank sum test, and a Dunn’s test as the post-hoc analysis (R package ‘dunn.test’; 

Dinno, 2016). Differences among the northernmost latitude of species were analyzed 

using an Analysis of Variance (ANOVA) and a Tukey Honest Significant Differences 

(TukeyHSD) as the post hoc analysis. Species or varieties that were not examined in 

section 4.1 and as a result do not have an updated dehiscence/ indehiscence mode 

character, were excluded from the analyses.  

Northernmost latitude values were also mapped into the phylogeny of subg. 

Grammica (Stefanović et al. 2007; García et al. 2014) and analyzed using the parsimony 

reconstruction method implemented in Mesquite 3.2 (Maddison and Maddison, 2011). 

Two bins were created, a southern bin including species distributed between 15 to 35N 

in North America and a northern bin for corresponding species occurring at latitudes over 

35N. The northernmost latitude tree was then mirrored with the parsimony ancestral 

reconstruction of the dehiscence/indehiscence modes to visualize possible relationships.  

 

4.3 FLOATABILITY OF CUSCUTA GRONOVII FRUITS AND SEEDS 

Mature fruits of C. gronovii (a species with typically indehiscent capsules) were 

collected from Long Point Provincial Park (42°35'43.34"N, 80°27'2.66"W) in October 

2014 and dry stored in a fridge before the experiment was carried out. Intact capsules 

were randomly selected and counted, their pericarp broken to release seeds for treatments 

that require it. Each treatment consisted of 300 intact capsules (IC), 300 dried seeds (DS), 

and 300 imbibed seeds (IS). To allow for imbibition, dry seeds were placed in sterile petri 
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dishes with No.1 Whatman filter paper saturated with deionized water for 24 hours. 

Seeds, imbibed seeds and intact capsules were each placed inside 600 ml beakers and 400 

ml of DI water was added to them. Beakers were placed on a Barnstead Lab-Line Max Q 

2000 E-Class platform shaker set to 65 rpm. Floatability trials were performed in the lab 

at ~23oC and the number of seeds or capsules that remained floating was recorded every 

12 hours, with 0 hours being the initial number of seeds or capsules that remained 

floating immediately after DI water was added.  A survival (or time-to-event) analysis 

was used to compare the differences in the time it took for seeds or capsules to sink (R 

package ‘survival’; Therneau, 2015).  

 

4.4 FRUIT EFFECT ON THE GERMINATION OF CUSCUTA GRONOVII  

Mature indehiscent fruits of C. gronovii, were collected from plants parasitizing 

Solidago canadensis from two Ontario populations in October 2014. The first population 

is located near Long Point Provincial Park (42°35'43.34"N, 80°27'2.66"W) and the 

second population is situated along the Grand River in Waterloo (Claude Dubrick Trail, 

43°30'12.02"N, 80°29'37.97"W). Collection was done by cutting the host’s stems in such 

a way that the attached infructescences of Cuscuta were obtained intact. Fruits were kept 

outdoors for one week before the start of the experiment. During this time, capsules that 

were not irregularly open or damaged by insects were carefully detached from their 

infructescence, counted, and placed in beakers for their eventual use.  

The main idea of this experiment was to generate an “artificial dehiscence” by 

removing the seeds from indehiscent capsules, and, under natural conditions, to compare 

their germination with that of seeds left inside the indehiscent fruits. Thus, fruits 



 32 

collected from each sampling site were subject to two separate treatments: seeds within 

capsules (W), and seeds without capsules (WO). Each of the experimental units contained 

either 10 capsules, or seeds removed from 10 capsules gently pressed onto the surface of 

potting soil mix inside a square pot (7 cm2). Each pot was placed in 1 of 4 transparent 

bins that were previously perforated at the base and half-filled with sand to ensure 

drainage. Each bin contained 30 pots (5 x 6 cm) with their positions randomized within 

the bins in order to reduce bias.  

The experiment was installed outdoors in Waterloo, Ontario in early November 

2014 to allow the seeds undergo their natural dormancy cycle. The area selected was 

uniformly shaded and exposed to the elements. Bins were covered with stainless steel 

mesh wire (mesh size 6.35 x 6.35 mm) to prevent predation by rodents or birds. Once the 

snow began to melt in the spring of the next year, the experiment was continuously 

monitored for signs of germination. The number of seeds that germinated was recorded 

and seedlings were removed from the pots every day. Pots and bins were randomized 

again in November 2015, allowed to pass through a second winter in identical conditions, 

and monitored again for germination in 2016.  

The numbers of seeds that germinated each year and by the end of the experiment 

were compared among treatments and sampling sites using the parametric Student’s t-

test, or the non-parametric Wilcoxon rank-sum test after checking for departure from 

normality and unequal variances. Although it is useful to know whether there is a 

difference in number of seeds germinated in each treatment, in this case it would be even 

more interesting to know how germination is affected over time, and whether there are 

differences in patterns of germination between the treatments (McNair et al., 2012). For 
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this reason, a survival analysis (or time-to-event analysis) was performed on the data 

using the ‘survival’ package from R (Therneau, 2015; see Appendix D for R codes).  

 

4.5 FRUIT DEHISCENCE AND INFRUCTESCENCE ARCHITECTURE 

Infructescence compactness indicator 

Inflorescence density/compactness is usually ascertained on living plants by 

determining the inflorescence volume and number of flowers per inflorescence 

(Shavrukov et al., 2003; Friedman and Harder, 2005). In other cases, inflorescence 

compactness is characterized qualitatively (Djè et al., 2004; Healy and Gillespie, 2004; 

Keshavarzi et al., 2008), or is estimated using inflorescence weight divided by its length 

(Pavan et al., 2009). For this study, only herbarium specimens were available and since 

pressed specimens do not retain their three-dimensional architecture, it was not feasible 

to accurately determine inflorescence volume. Therefore, a composite metric formula, a 

“compactness indicator” was formulated specifically for Cuscuta in order to quantify the 

architecture variables — the length of inflorescence axes and fruit diameters — which 

contribute to the infructescence compactness:  

    

 𝐼𝐶 = (
𝑙𝑡+𝑝

𝑁𝑜
) (

1

𝑑∗𝑁𝑎∗𝑀𝑎𝑥𝑁𝑎
) 

 

Where lt = total length of inflorescence measured continuously from the base of the first 

bract to the base of the last node; p = length of the longest pedicel measured from the 

base of a flower/ovary to its insertion point at the base of a node; No = highest number of 

orders (or nodes) in the inflorescence; d = average diameter of a capsule (capsule width) 
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retrieved from section 5.1; Na = number of axes at the base of the inflorescence (first 

node); and MaxNa = maximum number of axes present at a single node (Figure 1; see 

Appendix B for details on how the formula was derived).  

Data collection and analysis 

 The infructescence architecture was examined in 75 taxa of subgenus Grammica 

(71 species and 4 varieties). Initially I had envisioned an identical sampling to include all 

the Grammica species used in the fruit morphological diversity study (chapter 4.1). 

However, entire inflorescences were not available for some taxa. Although not all taxa 

were sampled, at least half the species present in each clade were sampled and were used 

as representatives of the clade. At least three inflorescences/infructescences were 

examined for each specimen, and at least three specimens were examined for each taxon 

(except for taxa with very little material). Inflorescences/infructescences removed from 

herbarium specimens were placed in 50% ethanol heated to boiling point and allowed to 

rehydrate for at least a few minutes. Rehydrated samples were disentangled and laid out 

in concave slides filled with 50% ethanol and examined under a Nikon SMZ1500 

stereomicroscope. Imaging was done with a PaxCam Arc digital camera equipped with 

Pax-it 7.8 software (MIS Inc., Villa Park, IL). Measurements were performed on the 

images taken, exported onto a spreadsheet, and entered into the compactness indicator 

formula for each sample. The average diameter of capsules was obtained from results in 

chapter 5.1.  

 Similar to previous sections, the results were analyzed with both the previous fruit 

categorization (dehiscence/indehiscence) as well as the new fruit types (chapter 5.1) as 

categorical covariates. Infructescence compactness based on dehiscence types were first 
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checked for deviations from a normal distribution and unequal variances before 

comparing their differences. A Wilcoxon rank sum test was used to test the differences 

between dehiscence modes from the previous fruit categorization, and a Kruskal-Wallis 

rank sum test was used for the new categorization with a Dunn’s test post hoc analysis (R 

package ‘dunn.test’; Dinno, 2016).  

 

 

Figure 1. Data collected for determining infructescence compactness in Cuscuta. 

Measurements are taken for p (length of longest pedicel; blue), and lt (total length of 

inflorescence; red). Count data are collected for Na (number of axes at the first node; 

magenta), MaxNa (maximum number of axes at a single node; green), and No (highest 

number of orders/nodes; yellow). Images were taken using PaxCam Arc digital camera 

equipped with Pax-it 7.8 software (MIS Inc., Villa Park, IL), and measurements were 

exported directly from the software. 
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5. RESULTS 

5.1 STRUCTURAL AND MORPHOLOGICAL DIVERSITY OF CAPSULES 

General morphology, structure and ultrastructure of fruit 

The fruit of Cuscuta develops from a 2-locular ovary with an incomplete septum 

(fused to the center of a single mass of placental tissue originating from the base of the 

ovary). Young fruits, after fertilization, are green but change in color to brown or become 

translucent as seeds mature. Based on the morphology, structure and ultrastructure of the 

dehiscence/indehiscence modes, three morphological/anatomical fruit types are 

distinguished: regularly dehiscent circumscissile (DE), indehiscent (IN), and irregularly 

dehiscent type A (IrA). In addition, a fourth “functional” type, the irregularly dehiscent 

type B (IrB), was observed (see below).  

Regular circumscissile dehiscence (DE) is one of the first morphological traits 

that become apparent during fruit development because the dehiscence line differentiates 

at the base of the ovary before fertilization takes place. Morphologically, the dehiscence 

“line” of mature fruits appears more as a distinct area or ring surrounding the base of the 

fruit above the nectary (Fig. 2 A-B). The dehiscence area is an abscission zone (AZ) 

consisting of 4--8 layers of more or less isodiametric cells in subg. Monogynella and the 

sections Subulatae and Lobostigmae of subg. Grammica, and 2--4 layers in species of 

subgenera Cuscuta, Pachystigma and the remaining sections of subg. Grammica. Above 

the dehiscence ring, the pericarp has a simple and relatively consistent structure 

throughout the genus (Fig. 3). The epicarp consists of a cuticularized epidermis, and 

papillae present in some species. The mesocarp consists of 5–8 layers of parenchymatic 

cells in species of subg. Monogynella (Fig. 3 E-F) and 2–5 cell layers in subgenera 
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Cuscuta, Pachystigma and Grammica (Fig. 3 J-K). Laticifers are present in the mesocarp 

of all the species (Fig. 3 K-L), most commonly isolated, and only rarely articulated, in 

groups of 2–3 cells. The mesocarp of the two Monogynella species examined is thicker 

than in the other subgenera, with an additional layer of rectangular, thin-walled cells that 

differentiate adjacent to the endocarp (Fig. 3F). Mesocarp cells of young fruits contain 

large amounts of chloroplasts which convert to amyloplasts as the fruits mature. The 

endocarp consists of a single layer of cells that exhibit a “horse-shoe” pattern of lignified 

cell walls in the subgenera Cuscuta, Pachystygma and Grammica (Fig. 3 I-L; Fig. 4 K-L), 

and with additional bands of lignin only in the external periclinal cell walls in subg. 

Monogynella (Fig. 3 F-G). Pericarp vasculature consists of two larger collateral vascular 

bundles that correspond to the carpel midveins which run through the pericarp and reach 

the base of the styles. Smaller branches consisting mostly of phloem diverge from them 

especially in the vicinity of the nectary. 

Cells of the AZ are smaller than the rest of pericarp cells; their cell walls are thin, 

cellulosic (Fig. 3 B-E; I-J; Fig. 4 A-J); one or two vacuoles are present and the cytoplasm 

is dense with plastids, mitochondria, and an endomembrane system, consisting of 

endoplasmic reticulum (ER) and Golgi apparatus (Fig. 4 A-J). Simple plasmodesmata are 

present in the cell walls between neighboring AZ cells (Fig. 4J). Early in the ontogeny of 

fruit, cells walls of neighboring cells begin to separate schizogenously at the middle 

lamella, forming intercellular spaces (Fig. 4 A-G). Subsequently, the degrading of the 

middle lamella accentuates, leading to more cells separations, which together with the 

breakdown of cell walls, cause the dehiscence of the fruit along the AZ and the shedding 

of the fruit part above it (Fig. 4, H-J).   
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Indehiscent capsules (IN) lack an AZ (Fig. 2, C-D; Fig. 3M;). Pericarp of 

indehiscent fruits has a uniform structure from the stylar area to the nectary ring, 

uninterrupted by a dehiscence area (Fig. 3 N-P). The anatomy of pericarp is similar to 

that of circumscissile capsules; however, the thickenings of endocarp cells are more 

localized, occurring mostly in the external periclinal walls (Fig. 3 N-P; Fig. 4 Q-S). In 

addition, the epidermis cell walls also become lignified. The thickened endocarp extends 

in the entire fruit, including at the base of the fruit, above the nectary where the AZ is 

present in DE fruits. Plastids of young fruit are preponderantly chloroplasts with 

thylakoids arranged in 2-3 “ministacks” with little or no separation between adjacent 

grana (Fig. 4 M-N). As seeds mature, plastids become amyloplasts with numerous starch 

grains.  

Capsules irregularly circumscissile dehiscent type A (IrA; Fig. 2E; Fig. 5) — lack 

an AZ, but their endocarp is not uniform in the mature fruit: its cells walls are more 

lignified distally and become thinner towards the base of the fruit where they are 

cellulosic (Fig. 2E; Fig. 5 B-D). Thus, even though an AZ does not differentiate, because 

the endocarp cell walls are thin at the base of the fruit a zone of relative weakness results 

in this area. Dehiscence takes place later than in regularly circumscissile capsules, along 

a basal jagged line (Fig. 2E).  

Capsules irregularly dehiscent type B (IrB; Fig. 2F)—Are developmentally, 

morphologically and structurally indistinguishable from indehiscent capsules. Such 

capsules have a uniform pericarp with thickened endocarp throughout the entire fruit and 

lack an AZ. This form of irregular dehiscence is not the consequence of intrinsic 

structural fruit traits, but rather the functional result of external factors such as the 
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mechanical pressures created among ripening fruits within dense infructescences. The 

pericarp may tear irregularly (but not at the base of the capsule) through longitudinal 

cracks that extend toward the interstylar aperture (Fig. 2F). In such species, the majority 

of fruits are indehiscent (IN) but a few capsules break irregularly (IrB). Based on field 

observations conducted on the two populations of C. gronovii (Long Point and Grand 

River), only 0.5 to 2% of capsules within infructescences of the same plant break 

irregularly. The relationship between the inflorescence architecture and IrB capsules will 

be explored in chapter 5.4. 

Comparative morphological diversity of fruits and character evolution 

 Immediately after fertilization, the immature fruit of Cuscuta are quite similar 

morphologically among species. Soon, however, the AZ becomes visible in species with 

DE capsules; fruits grow in size and acquire a particular shape, and the apical septum of 

the ovary enlarges into an interstylar aperture with variable morphology. In the end, the 

pericarp becomes translucent or remains opaque-brown. As a result of these changes, 

mature fruits exhibit a suite of subtle morphological characters (Table 1; Fig. 6; see 

Appendix C for data matrix).  

Indehiscence/dehiscence modes — The circumscissile dehiscent fruit (DE) is the 

ancestral character state for Cuscuta, with at least ten independent transitions to 

irregularly dehiscent type A (IrA) and indehiscent fruits (IN) occurring in subg. 

Grammica (Fig. 7). Reversals to dehiscence took place in sections Partitae and 

Racemosae. Although most species are characterized by either DE or IN capsules, some 

species may also have individuals/populations that exhibit IrA capsules. Species 

examples with IN + IrA capsules include C. cristata (sect. Subulatae), C. acuta (sect. 



 40 

Umbellatae), C. yucatana (sect. Grammica), C. longiloba, C. platyloba (sect. 

Racemosae), while DE + IrA capsules are found in C. colombiana (sect. Gracillimae), C. 

umbellata (sect. Umbellatae), and C. incurvata (sect. Racemosae). In the extreme case of 

two species in sect. Racemosae, C. xanthochorthos var. carinata and C. corniculata, in 

which specimens with DE, IN, or IrA capsules were documented. IrB appear to have 

evolved in four Grammica clades from strictly IN capsules. All species examined in clade 

B (sect. Cleistogrammica) have largely IN fruits and a small number of IrB fruits within 

the same infructescence. As previously indicated, IrB fruits are not developmentally or 

structurally different from IN capsules. 

Fruit shape (Fig. 6 A-I) is quite polymorphic in Cuscuta (see Appendix C for data 

matrix). The most common fruit shape is spherical (globose), followed by depressed; 

however, transitions between these two shapes are often present within the same species 

and on the same individual. Ovoid and ellipsoid shapes are less common, but also present 

together in the same species. “Thimble-shaped”, conical capsule shape is the ancestral 

character state and characterizes species of subg. Monogynella; however this shape also 

transitions within certain species into ellipsoid. Fruit shape is apparently not associated 

with the dehiscence mode but rather with the number of seeds it contains: globose and 

depressed capsules have 2--4 seeds, while ovoid and ellipsoid seeds contain 1--2 seeds. 

Irregular dehiscence type B (IrB) is more common in species with depressed-globose or 

obovoid capsule shape. 

 Persistent corolla (Fig. 6 J-N) capping the capsule is the ancestral state while 

corolla surrounding or localized at the bottom of the capsules are derived and have 

evolved multiple times (tree not shown). Although exceptions exist, corolla capping the 
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capsules is most commonly present in species with dehiscent fruits and likely contributes 

to the removal of the capsule lid after circumscissile dehiscence takes place.  

 Papillae (Fig 6O) have evolved as an epidermal feature of the ovary/fruit in 

species of four clades within subgenus Grammica (not included in data matrix): C. 

pacifica var. papillata, C. californica var. papillata, C. jepsonii (sect. Californicae); C. 

glabrior, C. runyonii (sect. Cleistogrammica); C. desmouliniana (sect. Umbellatae); C. 

argentinana, (sect. Subulatae). 

An opaque pericarp is reconstructed as the ancestral character state for the entire 

genus by the maximum likelihood reconstruction, but its polarity in relationship to a 

translucent pericarp is ambiguous in the parsimony analysis; either way, many transitions 

towards both states occurred throughout the genus. Most species with an opaque pericarp 

have visible laticifers. Although exceptions were noted (e.g., subg. Monogynella), DE 

capsules tend to be translucent, while IN or IrB capsules are opaque. 

Interstylar aperture has evolved in subgenera Cuscuta, Pachystigma and 

Grammica, but only in the latter infrageneric group has it become morphologically more 

diverse, with an apparent thickened ancestral state from which the “collar” and 

“protuberances” states are derived (Fig. 6 Q-V). All the species with indehiscent capsules 

have a form of thickened interstylar aperture. Among the clades with preponderantly 

dehiscent capsules, only sect. Umbellatae exhibits thickened interstylar apertures with 

protuberance. A distinct rostrum in the distal part of the fruit evolved only in C. rostrata 

(sect. Oxycarpae) and C. cotijana (sect. Lobostigmae). In the former subsection, C. 
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compacta, C. umbrosa, and C. gronovii, which normally have a “collar”, may exhibit 

morphological forms approaching C. rostrata. 

Styles distinctly enlarged at the base (subulate; Fig. 6W) have evolved only in 

some species from two clades of subg. Grammica (not included in data matrix): C. 

mitriformis, C. jalepensis, C. rugosiceps and C. woodsonii (sect. Lobostigmae), C. 

boldinghii, C. chapalana, C. erosa and C. strobilacea (sect. Ceratophorae).   

Of the two multidimensional scaling analyses conducted, both PCoA and NMDS 

resulted in similar groupings of fruit characters based on their similarity/dissimilarity. 

The dehiscence mode character was separated from all the other fruit traits. The 

characters that were grouped closest among themselves were the translucence of pericarp, 

laticifers, length/width of interstylar aperture and length to width ratio of fruits, and the 

characters most similar to dehiscence/indehiscence were the interstylar aperture 

morphology, and position of the persistent pericarp (see Appendix C for both 

graphs/analyses). 

 The size of capsules (length, width), though insignificant among most 

dehiscence/indehiscence modes, is significantly longer in IrB fruit species than DE fruit 

species (Dunn’s test, Z statistic = -1.78795, p-value = 0.03369) and wider in IrB fruit 

species than IN fruit species (Dunn’s test, Z statistic = -1.90098, p-value = 0.0287) but 

also wider in DE species than IN species (Dunn’s test, Z statistic = 1.8381, p-value = 

0.0330; see Table 2 for summary statistics). IrB fruit species are essentially IN species 

with large fruit. Results for fruit ratio indicate that DE species generally have more 

depressed capsules that are wider than long, whereas IN species have capsules that are 
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rounder and longer (Dunn’s test, Z statistic = -2.358, p-value = 0.0092).  

An interstylar aperture (ISA) evolved in subgenera Cuscuta, Pachystigma, and 

Grammica as a consequence of the evolution of two styles. Its size (length and width) 

increases in subg. Grammica and although exceptions exist, dehiscent fruit species have 

smaller interstylar apertures than most indehiscent fruit species. ISA is especially larger 

in IN fruit species than DE species (Dunn’s test, ISA length: z-statistic = -1.8018, p-value 

= 0.0358; ISA width: z-statistic = -2.905, p-value = 0.0018), and even larger lengthwise 

in IrB fruit species than strictly IN species (Dunn’s test, z-statistic = -3.201, p-value = 

0.0007, see Table 2). IrB fruit species have the largest interstylar aperture. 

One to four seeds develop within each capsule and although the number may vary 

somewhat from capsule to capsule even within the same infructescence, the average is 

relatively constant within each species/variety. Capsules with one seed evolved in seven 

Grammica clades and are more common in IN fruit species than DE. Capsules with more 

than one seed can be DE, IN, IrA or IrB, and species with IN and IrA or IrB fruits 

generally have a higher number of seeds than do DE fruit species or strictly IN fruit 

species (Dunn’s test; DE – IN+IrA: z-statistic = -2.2092, p-value = 0.0136; IN – IN+IrA: 

z-statistic = -2.3642, p-value = 0.0090; DE – IN+IrB: z-statistic = -1.8538, p-value = 

0.0319; IN – IN+IrB: z-statistic = -1.93286, p-value = 0.0266, see Table 2).   
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Figure 2. Scanning electron 

microscopy morphology of 

different types of capsules in 

Cuscuta. A–B. Circumscissile 

dehiscent capsules (C. chilensis); 

note the clearly differentiated 

AZ. C–D. Indehiscent capsule 

(C. gronovii); no AZ is present. 

E. Irregularly dehiscent capsule 

type A (C. xanthochorthos); no 

AZ develops but because the 

endocarp is thin and cellulosic at 

the base, capsules will break 

eventually in this region. F. 

Irregularly dehiscent capsule type B are structurally indehiscent but may break through 

longitudinal lines because of the pressures exercised by neighboring fruits in dense 

infructescences. AZ = abscission zone, N = nectary; S = nectary stomata.  Scale bars: A = 

0.5 mm; B = 150 m C–F = 1mm. 
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Figure 3. Anatomy of pericarp. A–G. Cuscuta monogynella (subg. Monogyna). A. 

Circumscissile capsule at dehiscence. B–C. Longitudinal sections through the capsule 

base showing the formation of the dehiscence zone. B. Pericarp begins to rupture along 

the abscission zone (AZ). C. Detail of the AZ. Note the AZ cells with thin cell walls and 

numerous amyloplasts. D–E. Cross-sections through the AZ right before dehiscence. D. 
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AZ cells losing cohesion. E. Overview of the AZ before the dehiscence. F. Transversal 

section through the pericarp above the dehiscence area. The mesocarp is thicker than in 

the other subgenera (see next), with an additional layer of rectangular, thin-walled cells 

under the endocarp (hypoderm). G. Perpendicular view of the endocarp cells with lignin 

bands in the external periclinal walls. H–L. Cuscuta purpurata. H. Circumscissile capsule 

before dehiscence. Nectary under the AZ is yellow-orange. I. Longitudinal section 

through the capsule base illustrating the structure of nectary, AZ and pericarp above the 

AZ. J. Transversal section through the AZ before dehiscence. Cell walls of epicarp, 

mesocarp and endocarp are thin; mesocarp cells have not begun to lose cohesion. K–L. 

Structure of pericarp above the dehiscence zone. K. Overview. L. Detail. Endocarp cells 

with “horse-shoe” pattern of lignified cell walls. Laticifers are present in the mesocarp. 

M–P. Cuscuta gronovii. M. Indehiscent capsule. N. Longitudinal section through the base 

of the capsule. No AZ develops; endocarp cells lignified to the base of the capsule. O. 

Transversal section through young capsule. P. Transversal section through mature 

capsule. AZ = abscission zone; Ep = epicarp; H= hypoderm; M = Mesocarp; En = 

Endocarp; N = Nectary; L = Laticifer; V = vascular bundle. Scale bars: A, H, M = 1 mm; 

B, I, N = 100 m; C–G, J, O, P = 50 m; K, L = 20 m. 
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Figure 4. Ultrastructure of pericarp dehiscence/indehiscence. A–L. Circumscissile 

capsule (Cuscuta purpurata).  A–E. Transversal sections through the abscission zone 

(AZ); incipient stages of cell walls separation and formation of intercellular spaces. F–J. 

More advanced stage in which cell walls continue to “unzip” schizogenously (F–H) and 
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break down (I–J). Cytoplasm of AZ cells is dense with numerous organelles. K–L. 

Transversal sections through the endocarp above the AZ; anticlinal and internal periclinal 

cell walls thickened with lignin (“horse-shoe” pattern). M–T. Indehiscent capsule 

(Cuscuta gronovii). M–P. Transversal sections practiced through the base of a young 

capsule (pericarp is still green). M–N. Detail of chloroplasts encountered in the 

mesocarp; thylakoids are arranged in 2-3 “ministacks” with little or no separation 

between adjacent grana. O. View of endocarp and adjacent mesocarp cells; endocarp cells 

are still relatively thin, cellulosic and contain starch. Q–T. Transversal sections practiced 

through the base of a mature capsule (pericarp is brown). Q. View of endocarp and 

adjacent mesocarp cells. Starch has disappeared. R–S. Thickenings of endocarp cells. R. 

External periclinal cell walls are more thickened than the anticlinal walls. S. Layers of 

lignin in the external periclinal wall. T. Vascular bundle in the mesocarp.  A = amyloplast 

with starch (S); En = endocarp; Ga = Golgi apparatus; m = mitochondria; M = mesocarp; 

N = nucleus; P= plasmodesma; RE = rough endoplasmic reticulum; t = thylakoids. 

Arrows indicate directions of cell wall separation; “*” point to disintegrating cells walls. 

Scale bar values included in the figures.  
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Figure 5. Irregularly dehiscent type A 

capsule (C. corniculata). A. AZ does not 

form, but the pericarp ruptures irregularly 

at the base of the capsule. B–D. 

Longitudinal strip of pericarp illustrating 

the unequal thickening of endocarp cells: 

thick and lignified throughout most of the 

fruit (C), but becoming thin and cellulosic 

at the base of the capsule (D). Since 

pericarp is very thin, the strip was placed 

on the slide with the endocarp up and 

optical images were acquired through 

transparency. En = endocarp; N = nectary. 

Scale bars: A, C = 1 mm; B, D = 100 m. 
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Figure 6. Morphology of capsules. A. Spherical (globose), C. campestris; B–C. 

Depressed, circumscissile dehiscent, C. umbellata: lateral view (B); view from the 

bottom (C). D. Ellipsoid, C. nevadensis. E. Ovoid, C. indecora. F–G. Obovoid; F. C. 

californica; G. C. australis. H–I. “Thimble-shaped”: H. C. monogyna; I. C. japonica. J–

K. Corolla topping the capsules: J. C. purpusii; K. C. cephalanthi. L–M. Corolla 
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surrounding the capsule: L. C. occidentalis; M. C. epithymum. N. Corolla at the base of 

the capsule, C. mitriformis. O. Papillae on capsule epicarp, C. glabrior. P. Laticifers 

visible in the pericarp, C. peruviana. Q–R. Interstylar aperture with thickened but not 

raised margins: Q. C. victoriana; R. C. umbellata form with irregular dehiscent type A 

capsule. S–T. Interstylar aperture raised in a collar around the styles: S. C. warneri; T. C. 

corniculata. U. Distal part of the ovary forms a rostrum under the styles, C. rostrata. V. 

Interstylar aperture with irregular distal protuberances, C. acuta. W. styles become 

enlarged at the base, subulate, C. rugosiceps. Scale bars = 1 mm; except O in which scale 

bar = 100 m. 
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Figure 7. Ancestral character state reconstruction of fruit dehiscence modes in 

Cuscuta mapped onto the recent genus phylogeny based on rbcL and nrLSU sequences 
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(García et al, 2014). Dehiscence modes are polymorphic; some species have multiple 

fruit types. Regular circumscissile dehiscence is the ancestral character state for Cuscuta, 

with at least ten independent transitions to irregularly dehiscent and indehiscent fruits 

occurring in subg. Grammica. Irregular type B capsules are structurally and 

developmentally identical to indehiscent capsules but appear to be derived from them.  
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Table 2. Summary statistics for quantitative fruit characters of Cuscuta species with 

dehiscent (DE), indehiscent (IN), or indehiscent fruits that break irregularly (IrB). 126 

taxa were surveyed and analyzed. Taxa with fruit type IrA were excluded from this table.  

Fruit 

Trait 

Fruit 

Type 

Mean Median Std. 

error 

95% CI Min Max n Shapiro 

(p-

value) 

Length 

(mm) 

DE 2.33 1.90 0.154 2.030, 2.631 0.90 6.28 71 1.47e-08 

IN 2.024 1.850 0.148 1.727, 2.320 1.23 3.09 17 0.1741 

IN+IrB 2.552 2.275 0.224 2.131, 2.979 1.01 5.22 28 0.00194 

Width 

(mm)  

DE 2.89 2.60 0.140 2.627, 3.143 0.90 6.10 71 0.00167 

IN 2.274 2.110 0.208 1.859, 2.690  0.90 3.71 17 0.3986 

IN+IrB 2.912 2.805 0.204 2.504, 3.321 1.12 5.41 28 0.4066 

Fruit 

L/W 

ratio 

DE 0.8157 0.7900 0.022 0.773, 0.859 0.30 1.44 71 0.0018 

IN 0.9856 0.8750 0.079 0.829, 1.143 0.46 1.51 17 0.213 

IN+IrB 0.8741 0.7950 0.049 0.778, 0.972 0.50 1.59 28 0.0066 

ISA 

length 

(mm) 

DE 0.3245 0.225 0.040 0.246, 0.402 0.06 1.89 71 2.56e-09 

IN 0.4524 0.530 0.064 0.325, 0.580 0.10 0.96 17 0.2156 

IN+IrB 0.8146 0.765 0.056 0.703, 0.926 0.40 1.39 28 0.2104 

ISA 

width 

(mm) 

DE 0.1881 0.120 0.027 0.138, 0.240 0.01 1.21 71 4.2e-12 

IN 0.3006 0.280 0.038 0.224, 0.377 0.10 0.60 17 0.2694 

IN+IrB 0.4307 0.455 0.034 0.363, 0.499 0.10 0.78 28 0.6714 

Nr. Of 

Seeds 

DE 2.527 2.400 0.073 2.386, 2.668 1.00 3.70 71 0.01803 

IN 2.253 2.300 0.241 1.787, 2.714 1.00 3.50 17 0.00798 

IN+IrB 2.722 3.100 0.159 2.424, 3.020 1.00 3.60 28 0.00041 
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5.2. DISTRIBUTION OF GRAMMICA SPECIES IN NORTH AMERICA 

The data collected for North American Grammica species' range size and northern 

limit are provided in Appendix C and summarized in tables 3 and 4, respectively. Range 

size distribution was determined to be non-normal for all fruit types regardless of fruit 

categorization data used (Table 3). Although indehiscent fruit species cover more area in 

North America than species with dehiscent fruits (1.11 x 107 km2 vs. 3.1 x 106 km2; Fig. 

8 A-B), there was no significant difference in the average range size between dehiscent 

and indehiscent fruit species (Wilcoxon rank sum test, W = 509, p-value = 0.06919) 

when using previous fruit categorization. With the updated fruit categories defined in 

chapter 5.1, differences in range size was observed between species of different fruit 

types (i.e., dehiscent [DE], indehiscent [IN], and indehiscent with type B irregular 

dehiscence [IN+IrB]; Kruskal-Wallis rank sum test, K-W chi-squared = 6.8836, df = 2, p-

value = 0.03201; Fig. 8C). Other fruit types (i.e. dehiscent with irregular dehiscence type 

A [DE+IrA], and indehiscent with irregular dehiscence type A [IN+IrA]), were excluded 

from the analysis because the sample size was insufficient (only two species in North 

America have the fruit types mentioned), though their populations were included in Fig. 

8D. Between DE, IN, and IN+IrB, a pairwise multiple comparisons test indicates that 

species with IN+IrB type capsules have a larger range size than species with regularly 

circumscissile capsules (DE; Dunn’s test, z test = -2.613893, p-value = 0.0045), but not 

when compared to species that are strictly indehiscent (IN; Dunn’s test, z test = -

0.714192, p-value = 0.2376). Between DE and IN species, the differences remained 

insignificant (Dunn’s test, z test = -0.974516, p-value = 0.1649, see Appendix D for R 

codes used).  



 56 

Data collected on the species northernmost limits based on previously categorized 

dehiscence/indehiscence modes strongly indicates that indehiscent fruit species have a 

higher latitudinal limit (Two Sample t-test, t = -9.1165, df = 75, p-value = 8.941e-14; 

Table 4; Fig. 9 A-B). When incorporating the new fruit types, similar results were 

obtained (Table 4 and Fig. 9 C-D). A Tukey multiple comparison of means shows that 

there is no significant difference in the northern limits between species with both 

indehiscent and irregularly dehiscent type B capsules (IN+IrB) and those with strictly 

indehiscent capsules (IN; diff = 2.346837, p-value = 0.6819874), though IN species still 

have a higher northern limit than do DE species (diff = 15.300374, p-value < 0.0001) and 

IN+IrB species have a higher northern limit than DE species (diff = 17.647211, p-value < 

0.0001; Fig. 9C-D). Both native IN and IN+IrB fruit species can be found as far north as 

Canada, whereas DE fruit species can only be found in southern U.S.A. and Mexico (Fig. 

9D).  Of the 42 species with IN fruits examined, only two are endemic to Mexico: C. 

vandevenderi (IN+IrB; Clade N, sect. Gracillimae), and C. yucatana (IN+IrA; Clade H, 

sect. Grammica). Of the 34 species with DE fruits examined, only 10 species (including 

DE+IrA fruit species: C. umbellata, Clade L, sect. Umbellatae) are present north of 

Mexico. Figure 10 displays the northernmost distribution of these species with their 

phylogeny and dehiscence character history. A parsimony reconstruction of the latitude 

values using phylogeny of North American Grammica species determined that species 

evolved an increase in latitudinal limit (tree shown in Appendix C).  
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Table 3. Summary statistics for the range size (km2) of 73 Grammica species in North 

America based on their fruit dehiscence/indehiscence modes using data from old fruit 

categorization retrieved from Garcia et al. (2014), and new fruit categorization from the 

results in section 5.1. Species with IrA fruit type were excluded from this table. Fruit 

types shown are dehiscent (DE), indehiscent (IN), and indehiscent fruits that may break 

irregularly (IN+IrB). 

Data 

Type 

Fruit 

Type 

Mean Median Standard 

error 

95% CI  Min Max n Shapiro 

(pvalue) 

Old  DE 956900 256600 356208.1 266668, 

1634534 

0 8776000 32 3.46e-09 

IN 2476000 554000 665599.5 1237884, 

3769184 

0 18750000 41 7.57e-09 

New  DE 741400 244900 276536.6 244428, 

1278715 

0 6647000 29 1.33e-08 

IN 2778000 652500 2036706 0, 

6402044 

1 14770000 7 0.00003 

IN+ 

IrB 

3255000 1437000 942790.4 1526227, 

5014368 

0 18750000 24 2.81e-05 
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Table 4. Summary statistics for the northernmost limit (decimal degrees) of 76 

Grammica species found in North America based on their fruit dehiscence/indehiscence 

modes using data from old fruit categorization retrieved from Garcia et al. (2014), and 

new fruit categorization from the results in section 5.1. Species with IrA fruit type were 

excluded from this table. Fruit types shown are dehiscent (DE), indehiscent (IN), and 

indehiscent fruits that may break irregularly (IN+IrB). 

 

Data 

Type 

Fruit 

Type 

Mean Median Standard 

error 

95% CI or 

BCI 

Min Max n  Normality 

(p-value) 

Old  DE 26.51 26.37 1.086969 24.33958, 

28.68746 

15.44 38.84 34 0.05805 

IN 41.34 41.50 1.163646 39.01005, 

43.66464 

20.69 53.54 42 0.2552 

New  DE 25.70 23.28 1.070519 23.55566, 

27.83773 

15.44 38.03 31 0.06833 

IN 41.22 38.97 2.891838 35.43395, 

47.0013 

31.87 51.40 7 0.4599 

IN+ 

IrB 

43.56 44.40 1.407892 40.74868, 

46.38025 

28.38 53.54 24 0.1447 
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Figure 8. Extent of occurrence (EOO) of Grammica species native to North America 

categorized by fruit dehiscence/indehiscence. Boxplots display the statistical distribution 

of the data; boxes represent the middle 50% of distributions, horizontal lines within boxes 

represent the median, circles represent outliers (values that are >1.5 times the 

interquartile range), and whiskers represent the min and max values that are not outliers. 

A. The distributions of EOO of dehiscent and indehiscent fruit species without 

considering IrB fruits a true fruit type. B. Map displaying geographical distribution of 
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data; each point represents a population of a Cuscuta species that either has indehiscent 

(IN; blue), or regularly circumscissile (DE; yellow) fruits. Species with IN fruits are 

distributed over a larger area although there is no difference in EOO between species of 

different fruit types. C. With IrB species included as a separate fruit type differences were 

observed between IrB and DE species but not with IN. D. Geographical distribution of 

data, including species with irregular dehiscence, DE+IrA species shown in orange, 

IN+IrA species shown in purple, and IN+IrB species shown in magenta.  
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Figure 9. Distributions of the northernmost latitudes of North American Cuscuta 

species based on fruit dehiscence modes. A-B. Without considering IrB fruits as an 

evolutionary trait. C-D. With IrB fruits considered as an evolutionary fruit trait. A, C. 

Boxes display the middle 50% of the northernmost latitude distributions for each type of 

fruit dehiscence, and the horizontal lines within the boxes represent the median. Circles 

represent the outliers (values that are >1.5 times the interquartile range), and the whiskers 

represent the min and max values that are not outliers. B, D. Each point on the maps 

represents the northernmost population of a Cuscuta species that either has indehiscent 

fruits (IN; blue), regularly circumscissile dehiscent fruits (DE; yellow), indehiscent and 
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irregularly dehiscent type B fruits (IN+IrB; magenta), dehiscent and irregularly dehiscent 

type A fruits (DE+IrA; orange), or indehiscent and irregularly dehiscent type A fruits 

(IN+IrA; purple). 

 

 

Figure 10. Geographical plotting of subgenus Grammica phylogeny in North 

America. Northernmost latitudes of species and history of fruit dehiscence/indehiscence 
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modes are traced. Ancestral nodes of the tree were plotted with Cartographer Mesquite 

(2017) which uses an algorithm that involves squared-change parsimony. Yellow dots = 

circumscissile dehiscent (DE) species; blue dots = indehiscent (IN) species; half magenta 

dots = species with IN and irregularly dehiscent type B (IrB) fruits, and half pink dots = 

species that also have populations with irregularly dehiscent type A (IrA) capsules. Note 

the southern latitudinal distribution of DE species. Only IN and IN + IrB species are 

found at the northernmost latitudes. 

 

5.3. FLOATABILITY OF CUSCUTA GRONOVII FRUITS AND SEEDS 

 Imbibed seeds did not float when deionized water was added to the beakers. 

Approximately 71% of dried seeds floated after water was added to the beakers, but after 

12 hours, the number of seeds that remained floating decreased to less than 20% (Fig. 

11). After 36 hours, all dried seeds (except for one) were at the bottom of the beaker. 

Capsules, however, were capable of floating for over 9 days. The first capsules to sink 

were observed at 36 hours, though they represent <1% of all capsules tested. By the 

experiment end date, 42% of capsules remained floating; though the water level had 

decreased drastically and as a result, the experiment was discontinued. It may be 

worthwhile to note that the seeds in this study imbibed and germinated readily compared 

to those floating inside their capsules. 
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Figure 11. Kaplan-Meier survival curves displaying the proportion of seeds or 

capsules that remained floating over time. The initial number of seeds that float after 

water was added to the experiment was recorded at time 0. Each step in the curves 

represent an event in which seed(s) sink. Dotted lines represent the upper and lower 95% 

confidence intervals. Imbibed seeds (red) did not float, whereas the majority of dried 

seeds (yellow) floated immediately. No seeds remained floating after 36 hours, whereas 

42% of capsules remained floating for over 9 days. 
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5.4 FRUIT EFFECTS ON THE GERMINATION OF CUSCUTA GRONOVII 

 In 2015, germination of C. gronovii seeds was first observed on May 5th and was 

recorded for a total of 98 days. In 2016, the experiment was monitored again starting 

from May 5th for 99 days. Table 5 provides summary statistics for the results obtained. In 

the first year, germination between treatments was significantly different (Two Sample t-

test: df = 118, p-value = 0.00034) with more seeds germinating on average without 

capsules (WO) than within capsules (W), and with no difference in germination between 

the populations (Wilcoxon rank sum test, W = 2060.5, p-value = 0.1708; Fig. 12A). In 

the second year alone, differences were observed between the populations (Wilcoxon 

rank sum test, W = 1288.5, p-value = 0.0062), but not between the treatments (Wilcoxon 

rank sum test, W = 1798, p-value = 0.9936; Fig. 12B). When comparing the total number 

of seeds that germinated by the end of the experiment, again, more seeds germinated 

when removed from their capsules than when capsules were left intact (Welch’s Two 

Sample t-test, df = 109.81, p -value = 0.0003), and there was no difference in germination 

between the two populations (Welch’s Two Sample t-test, df = 102.33, p-value = 0.6531; 

Fig. 12C).  

Not only did the total number of seeds that germinated by the end of the 

experiment differ between treatments, but the rate at which they germinated throughout 

the study was also different (log-rank test, chisq = 41.9, df = 1, p-value = 9.8e-11). The 

germination (survival) curves of the two treatments for each growing season are 

displayed in Figure 13. As this type of analysis requires the total number of seeds used, 

the average number of seeds from 10 capsules was determined to be 26 seeds for site LP, 

and 27 seeds for site GR. Seeds without capsules (WO) were the first to germinate each 
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year and generally germinated at a higher rate throughout the season except during the 

first 4 weeks of the experiment where the rate of germination was the same for both 

treatments. The majority of seeds germinated in the first year between weeks 4 to 6 for 

both treatments. By the end of the first growing season, 77% of W seeds remained, 

whereas 68% WO seeds remained. In the second year, most of the germination took place 

within the first 3 weeks, and by the end of the season, an additional 10% of W seeds 

(total = 33% germination), and 14% WO seeds (total = 46% germination) germinated 

(Fig. 13).   
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Table 5. Summary statistics of Cuscuta gronovii seed germination data collected over 

two growing seasons. Seeds and capsules were collected from two sampling sites (Grand 

River, GR, and Long Point, LP), and treatments for each site include seeds with their 

capsules intact (W), or seeds removed from their capsules (WO). Each treatment 

contained 30 replicates.  

Year Site or 

Treatment 

Mean Median Standard 

error 

95% CI or 

BCI 

Minimum Maximum Normality 

(p-value) 

2015 

 

W 7.767 8.000 0.56517 6.63633, 

8.89701 

0.000 21.000 0.285 

WO 11.05 10.50 0.68619 9.67761, 

12.4224 

0.00 28.00 0.3582 

GR 9.967 10.000 0.56896 8.82876, 

11.1046 

1.000 21.000 0.3993 

LP 8.85 9.50 0.73984 7.423, 

10.346 

0.00 28.00 0.01474 

2016 W 2.10 1.00 0.264362 1.583, 

2.619 

0.00 8.00 8.252e-06 

WO 2.483 1.000 0.376943 1.742, 

3.200 

0.000 12.000 1.735e-07 

GR 1.5 1.0 0.192369 1.128, 

1.874 

0.0 6.0 5.392e-06 

LP 3.083 2.000 0.393659 2.360, 

3.834 

0.000 12.000 1.169e-05 

Total W 9.867 9.000 0.590636 8.685394, 

11.04794 

1.000 23.000 0.5199 

WO 13.53 13.00 0.781664 11.97001, 

15.09666 

0.00 30.00 0.3345 

GR 11.47 11.00 0.571185 10.3243, 

12.60904 

2.00 23.00 0.7622 

LP 11.93 11.00 0.863532 10.20627, 

13.6604 

0.00 30.00 0.0662 
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Figure 12. C. gronovii seed germination distributions. Capsules collected from two 

sampling sites (Grand River, GR; Long Point, LP) were used to compare the germination 

of seeds within capsules (W) to those removed from their capsules (WO). A. In the first 

year, treatment WO had a higher germination count than treatment W and germination 

was not different between sampling sites. B. In the second year, no differences were 

observed between the treatments. C. Overall, the total number of seeds that germinated 

was higher in treatment WO than W and not between the sampling sites.  
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Figure 13. Kaplan-Meier survival curves displaying the proportion of seeds that 

remained in the study. A. Germination curves for the first growing season. B. 

Germination curves for the second growing season. Survival curves for the first ten days 

of each season is enhanced on the right. At the start of the experiment, all treatments have 

a survival rate of 1.0 or 100%. Steps indicate the time at which an event has occurred (in 

this case, germination). Dotted lines represent the upper and lower 95% confidence 

intervals for each curve. Throughout the study, seeds removed from their capsules (WO) 

germinated at a higher rate than seeds kept inside their capsules (W). Most germination 

occurred in the first season between days 30 and 45.  
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5.5 FRUIT DEHISCENCE AND INFRUCTESCENCE ARCHITECTURE 

 The data collected for measuring infructescence compactness indicates that within 

subgenus Grammica, although indehiscent fruit species generally have a more compact 

infructescence than dehiscent fruit species when using previous fruit categorization (Fig. 

14A), this difference is not consistent (Wilcoxon rank sum test, W = 725, p-value = 

0.4688). When using the new fruit categorization obtained from section 5.1 (Fig. 14B), 

significant differences were only observed between DE+IrA fruit species and IN+IrB 

fruit species (Dunn’s test for multiple comparisons, z-value = 1.8766, p-value = 0.0303), 

with DE+IrA fruit species having the least compact infructescences and IN+IrB fruit 

species having the most compact infructescences (Fig. 14B). Although not statistically 

significant, IN species that also contain IrB fruits tend to have more compact 

infructescences than strictly IN species, and strictly IN species have lax infructescences 

compared to DE fruit species, though IN+IrB fruit species tend to have more compact 

infructescences than DE fruit species. Table 6 provides the summary statistics for the 

calculated infructescence compactness of species based on their fruit type.  
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Figure 14. Distribution of infructescence compactness among 76 Grammica species 

of various dehiscence modes. A. Using the old fruit categorization retrieved from Garcia 

et al. 2014), indehiscent (IN) fruit species appear to have more compact infructescences 
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than dehiscent (DE) fruit species, although this difference is not statistically significant 

(Wilcoxon rank sum test, W = 725, p-value = 0.4688). B. Using the new fruit 

categorization proposed in section 5.1. IrB fruit species are included separately from 

strictly IN species. DE+IrA fruit species have the least compact infructescences, whereas 

species with IN+IrB capsules generally have the most compact infructescences. Among 

all fruit types, only DE+IrA and IN+IrB are statistically significant (Dunn’s test, z-value 

= 1.8766, p-value = 0.0303). Boxes display the middle 50% of the infructescence 

compactness distributions for each type of fruit dehiscence, and the horizontal lines 

within the boxes represent the median. Circles represent the outliers (values that are >1.5 

times the interquartile range), and the whiskers represent the min and max values that are 

not outliers. 
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Table 6. Summary statistics for infructescence compactness of 76 Grammica species 

based on compactness indicator formula created in section 4.6. Infructescence 

compactness was compared among species with different fruit dehiscence modes, and 

based off old fruit categorization retrieved from Garcia et al. (2014), as well as new fruit 

categorization from results in section 5.1. A smaller value represents a more compact 

infructescence. 

Data 

Type 

Fruit 

Type 

Mean Median Standard 

Error 

95% CI 

or BCI 

Min Max n Shapiro 

(p-value) 

Old DE 0.10930 0.07057 0.01626 0.0781, 

0.1408 

0.00906 0.47480 47 5e-08 

IN 0.07463 0.05753 0.01028 0.0559, 

0.0948 

0.02543 0.28560 28 2.7e-05 

New DE 0.10110 0.06938 0.01544 0.0706, 

0.1304 

0.00906 0.40350 42 1.6e-07 

DE+IrA 0.25660 0.23720 0.12077 0.0628, 

0.4499 

0.05781 0.47480 3 0.8462 

DE+IrA 

+IN 

0.06048 0.06048 0.02246 0.0292, 

0.0900 

0.03801 0.08294 2 N/A 

IN 0.10570 0.09636 0.03121 0.0454, 

0.1639 

0.02575 0.28560 8 0.1186 

IN+IrA 0.06687 0.05006 0.01314 0.0439, 

0.0896 

0.03950 0.10290 5 0.13 

IN+IrB 0.06063 0.05302 0.00721 0.0467, 

0.0746 

0.02543 0.12620 15 0.1236 
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6. DISCUSSION 

6.1 STRUCTURAL AND MORPHOLOGICAL DIVERSITY OF CAPSULES 

Structural and ultrastructural basis of different modes of dehiscence/indehiscence; types 

of fruits in Cuscuta and their evolution 

This study confirms previous results (Stefanović et al. 2007; García et al. 2014) 

suggesting that indehiscence is derived in Cuscuta. This research, however, revealed a 

more complex situation than the “to dehisce or to not dehisce” scenario used in the 

previous character evolution studies (García et al. 2014). In addition to regularly 

circumscissile dehiscent (DE) and indehiscent (IN) capsules, Cuscuta possess a third 

morphological type, the irregularly dehiscent type A (IrA), as well as a functionally 

irregularly dehiscent fruit (IrB). IrA fruits do not develop an AZ, but have a thin 

endocarp at the base, which in conjunction with the growing of seeds and drying pericarp 

will cause most of the fruits to dehisce (but later than DE capsules). IrB capsules occur 

always in species with IN fruits; they are developmentally and structurally 

indistinguishable from indehiscent ones but some may break irregularly due to external 

factors. Spjut (1994) defined Cuscuta capsules as foraminicidal (“opening by cracks that 

spread in different directions”). It seems that only the IrB capsules may loosely fit this 

description, but considering that these fruits are developmentally indehiscent, their 

characterization as foraminicidal is not appropriate. The results of this study support the 

hypothesis that irregular dehiscence forms in Cuscuta are not homologous. Although the 

structural and ultrastructural differences between the DE, IrA and IN consist mainly of 

different thickenings of endocarp cell walls, the loss of the AZ is not sufficient to 

acquiring indehiscence. From both an ontogenetic and evolutionary point of view, IrA 
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capsules can be regarded as an intermediary evolutionary stage between circumscissile 

dehiscence and indehiscence. Considering that indehiscence is ontogenetically gained 

through the loss of the AZ and special pericarp thickenings, and conversely, that the 

return to dehiscence requires a reversed sequence, the presence of IrA capsules in certain 

species indicates an incompletely acquired indehiscence or dehiscence, respectively.  

The structural mechanism of opening of circumscissile capsules in Cuscuta is 

similar to that reported in other angiosperm genera with a pyxidium fruit such as 

Sesuvium (Aisoaceae); Allmania, Amaranthus, Celosia, Chamissoa (Amaranthaceae), 

Plantago (Plantaginaceae), Portulaca (Portulacaceae), Hyoscyamus (Solanaceae), in 

which various lignified/sclerified tissues also contribute to the dehiscence of fruit in 

addition to the AZ (Rethke, 1946; Subramanyam and Raju, 1953; Lamba and Gupta, 

1981; Oyama et al., 2010). IrA capsules in Cuscuta, however, show that dehiscence is 

possible even if an AZ does not develop. The dehiscence mechanism in fruits with 

circumscissile dehiscence is mechanically less complex than in other types of dry 

dehiscent fruits where dehiscence requires the morphological formation of valves (e.g., 

Fahn and Werker, 1972; Addicott, 1982; Meakin and Roberts, 1990; Mummenhoff et al., 

2009).  

The ultrastructural characteristics of the AZ in Cuscuta revealed similarities with 

the dehiscence zone of the silique in Arabidopsis (Rajani and Sundaresan, 2001) and with 

abscised organs in general (Sexton and Roberts, 1982; Roberts et al., 2000; 2002; 

Patterson, 2001; Leslie et al., 2007). The cell separation in the AZ of Cuscuta is due to 

the dissolution of the middle lamella and the degradation of cell walls. The presence of 

DE or IN capsules together with IrA capsules in some of the Cuscuta species provides an 
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ideal natural system in which to study the developmental genetic mechanisms that control 

dehiscence/indehiscence. Such studies have been conducted in Brassicaceae (e.g., 

Lepidium, Mühlhausen et al., 2013; and Arabidopsis, Lenser and Theißen, 2013) or 

Fabaceae (soybeans; Dong et al., 2014) which have more complicated structural 

mechanisms of dehiscence. Cuscuta provides a simplified model for the evo-devo study 

of dehiscence/indehiscence modes. 

Taxonomic significance of fruit characters in Cuscuta  

As in the case of all the other morphological characters in Cuscuta — perianth 

features (Wright et al., 2012); shape, size and reduction of infrastaminal scales (Riviere et 

al., 2013), pollen morphology (Welsh et al., 2010), gynoecium characteristics (Wright et 

al., 2011; García et al., 2014), multicellular protuberances with stomata (Clayson et al., 

2014) — fruit traits are highly polymorphic and insufficient to reconstruct phylogenetic 

relationships among dodder clades (e.g., among the 15 major clades of subg. Grammica) 

because of extensive convergent evolution.  For example, Cuscuta yucatana of Sect. 

Grammica (“clade H”; Costea et al., 2011b) exhibits a similar fruit morphology as C. 

acuta from Sect. Umbellatae (“clade L”; Costea and Stefanović, 2010). Both species 

have IN or IrA capsules in clades with predominantly DE capsules.  

Nevertheless, taking into consideration the scarcity of morphological characters 

available for the systematics of Cuscuta, the diversity of fruit morphology is important 

for taxonomic revisions at species level within each clade. Although IN, IrA and IrB have 

evolved multiple times and have little bearing on the genus phylogeny and classification 

(see also Costea et al., 2015), they provide readily observable traits in clades that also 

have circumscissile species.  The value of fruit morphology increases when they are 
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added to gynoecium traits that have been studied elsewhere (Wright et al., 2011; García 

et al., 2014). For example, the styles/stigmas are persistent on the fruit and some of their 

characters, such as the number of styles and the shape of stigmas (Wright et al., 2011), 

provide important morphological characters for the current infrageneric classification of 

Cuscuta with four subgenera (Costea et al., 2015).  

Differences in quantitative traits were observed among the major fruit types 

which allow for some generalizations to be made. Capsules of IN+IrB fruit species are 

relatively large, with a large interstylar aperture, and a high number of seeds per capsule 

compared to other fruit types. Whether this means that the IrB fruit type is an 

evolutionary trait derived from IN is still undetermined. Since these results were obtained 

from herbarium specimens, it is possible that IN species with larger fruits may be prone 

to breakage from the handling and preparation of their specimens. Thus, it would be 

beneficial to examine these species in the field, to determine if this is truly a case of 

heterodiaspory. Capsules of IN fruit species are somewhat smaller than DE capsules but 

form a much larger interstylar aperture. DE capsules have a relatively small interstylar 

aperture, if any. Other than the presence of an abscission zone seen in DE fruits, no 

difference in qualitative fruit traits exist between IN+IrA fruit species and DE+IrA fruit 

species. 

 

6.2 DEHISCENCE/INDEHISCENCE MODES, THE GEOGRAPHICAL 

DISTRIBUTION OF NORTH AMERICAN SPECIES OF SUBGENUS GRAMMICA, 

AND THEIR DISPERSAL 
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No statistically significant differences in range size were observed between IN 

and DE North American Grammica species when using either the data of García et al. 

(2014) or the fruit categories generated in this study. However, the separation and 

inclusion in the analysis of species with both IN and IrB capsules resulted in significant 

differences of geographical range size (between IN + IrB and DE). Species with 

indehiscent fruit capsules (including IN+IrB) are distributed over a larger area in North 

America than species with DE fruits (1.11 x 107 km2 vs. 3.1 x 106 km2). Three species 

with IN or IN + IrB capsules have the largest ranges in N America: C. campestris, C. 

indecora and C. gronovii. Interestingly, a species with DE and irregular type A 

dehiscence (IrA, late dehiscence), C. umbellata, has the 4th largest range size.       

Dehiscence/indehiscence modes displayed a clear latitudinal pattern in North\ 

America, with most DE species being restricted to the southern part of the U.S.A. and 

Mexico (northern most latitude usually under 35N) and the IN + IrB species reaching 

the highest latitudes (53.5N). Although several IN and IN + IrB species have exclusively 

southern ranges (e.g., C. decipiens, C. warneri, C. vandevenderi, C. runyonii, C. glabrior, 

C. harperi), the southern distribution of the majority of IN or IN + IrB species is only a 

part of broader distribution ranges.  

 Bayesian Binary Method (BBM) and Statistical dispersal–vicariance analysis (S-

DIVA) (García et al., 2014) indicated that Mexico and the adjacent regions are the 

ancestral diversification area for Grammica clades A to K, with local radiations followed 

by independent dispersals both to North America and South America. Dispersal to North 

America was followed by the diversification of clades A-E (García et al., 2014), while a 
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long-distance dispersal event to South America was the ancestor of clade C (García et al., 

2014). This is significant because clades A-E are the North American groups in which IN 

or IN + IrB have evolved in most of the species. Thus, the latitudinal pattern of 

dehiscence/indehiscence modes follows the radiation of subg. Grammica species in North 

America: IN and IN + IrB evolved from south to north. Clade C in South America is also 

the group with most IN or IrA species (although indehiscence also evolved earlier in 

South America in clade O), but since no taxonomic revision has been conducted for this 

group yet (Costea et al., 2015), and geographical data is scarcer than for North American 

Grammica clades, a possible geographical pattern could not be examined.  

The tendency of species geographical ranges to increase with latitude is known as 

the “Rapoport's rule” (Stevens, 1989; Gaston et al., 1998). This much-debated hypothesis 

is currently considered to apply mainly to the higher latitudes of the Northern 

Hemisphere (Rohde, 1996; Gaston et al., 1998; Gaston, 2003; Ruggiero and Werenkraut, 

2007). As previously indicated, in North America, IN and IN + IrB species possess the 

largest distribution ranges with the northernmost limits, while most DE species are 

restricted to Mexico and the adjacent areas. Although the intention of this study was not 

to test a latitudinal increase of species ranges, Rapoport’s rule seems to describe 

adequately the situation of subgenus Grammica species in North America. 

The size of geographical ranges of subg. Grammica species in North America 

cannot be reconciled with the potential reduction in dispersal capacity posited for IN 

capsules. One-seeded capsules have evolved in seven Grammica clades and are prevalent 

in species with IN capsules, which could be regarded as a trend to increase their dispersal 

capability (e.g. Augspurger and Hogan, 1983; Willis et al., 2014). However, two species 
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with DE capsules, C. americana and C. potosina, also have one-seeded capsules and 

numerous species with IN or IN + IrB capsules possess two or more seeds per capsule.   

Two explanations can be formulated to account for the broad geographical ranges 

observed in species with IN and IN + IrB capsules: 1) the dispersal ability may not be the 

only factor modulating the size of geographical ranges in Cuscuta species; and 2) 

indehiscence may provide enhancing dispersal traits. 

Dispersal ability may not be the only factor modulating the size of geographical ranges 

in Cuscuta species 

 The dispersal capability plays a significant role in the size of geographical range 

of plants (e.g., Oakwood et al., 1993; Brown et al., 1996; Edwards and Westoby, 1996; 

Lloyd et al., 2003; Lowry and Lester, 2006) because it influences their ability to colonize 

new areas and affects speciation rate (reviewed by Gaston et al., 2003; Lester et al., 

2007). However, the positive relationship between dispersal distance and geographical 

extent is not universal (Lester et al., 2007; Gove et al., 2009; Slatyer et al., 2013). Niche 

breadth size — the totality of environments or resources that a species can inhabit or use 

(Gaston et al., 1997) — has also been shown to greatly influence the size of geographical 

ranges (e.g., Thompson et al., 1999; Broennimann et al., 2006; Slatyer et al. 2013). 

Species with broader tolerances to abiotic factors may be less affected by the local 

variation in availability of resources and environmental conditions because they can 

persist in multiple habitats, which is also reflected in their wider geographical 

distribution/ranges (Brown, 1984; Baltzer et al., 2007). In the case of Cuscuta, abiotic 

factors play a role only during the non-parasitic stage, at germination and prior to the 

attachment of seedlings to the host (Costea and Tardif, 2006; Dawson et al., 1994; 
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Behdarvandi et al., 2015). Once successfully attached to the host, this becomes the 

“niche”, providing everything the parasite needs to complete its life cycle (Costea and 

Tardif, 2006; Dawson et al., 1994). Thus, host specificity predefines the spatial limits 

across which a parasitic plant can occur and expand, both at the level of the ecosystem 

and at a geographical scale. Cuscuta species with large host ranges (“generalists”) have 

also large geographical ranges, while dodders with narrow host ranges (“specialists”) 

tend to have small ranges (Costea and Stefanović, 2009a). Not surprisingly, this apparent 

relationship between the host range and geographical range size is reflected in the rarity 

or commonness of various species, their extinction, or invasiveness (Costea and 

Stefanović, 2009a). In general, Cuscuta species with IN or IN + IrB fruits are more 

broadly distributed in North America than DE ones; those that are more localized 

geographically also have narrow host ranges. For example, the rarity of C. warneri 

(Costea et al., 2006b), C. decipiens, C. draconela (Costea and Stefanović, 2009b), C. 

jepsonii (Costea and Stefanović, 2009a), C. plattensis, and C. harperi (Costea et al., 

2006a) is likely not caused by the indehiscence of their fruits but by their host specificity.  

The evolution of indehiscence in North American plants has been commonly 

associated with deserts plants in which the more reduced dispersal capacity was 

hypothesized to be offset by reproductive advantages such as the protection of seeds 

against environmental factors (Ellner and Shmida, 1981), modulation of 

dormancy/germination (reviewed by Lu et al., 2015), and retention within favourable 

maternal sites (Friedman and Stein, 1980). This tendency is not apparent in Cuscuta 

because, a mixture of DE and IN species are found in arid and semi-arid habitats in North 

America, which shows that both strategies offer advantages. 
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Indehiscence may provide enhancing dispersal traits 

This study provided the first experimental data on the floatability of capsules and 

seeds of Cuscuta using C. gronovii, which is the third most widely distributed dodder 

species in North America (Costea and Tardif, 2006; Costea et al., 2006c). Capsules can 

float for over 9 days which is probably a sufficient time to allow long distance dispersal 

by water under certain conditions. In contrast, hydrated seeds do not float at all and dry 

seeds float only until imbibition has taken place. Certain Cuscuta sp. in North America 

(e.g., C. gronovii, C. obtusiflora, C. polygonorum, C. pacifica) occur preferentially in 

wetlands, and possessing IN or IN + IrB capsules, they are likely to be dispersed by 

water. Since a significant part of the geographical ranges of many IN or IN + IrB 

Grammica species is in the temperate areas of North America, dispersal by water may 

also play a significant role after melting of the snow or during the spring rains. Both 

seeds and capsules fall in the vicinity of mother plants; as seeds imbibe, they rapidly lose 

their floating capability, while capsules (or clusters of capsules) may float for extended 

periods of time. The floating capability of IN capsules may enhance the dispersal of 

species with IN or IN + IrB capsules, but this will have to be tested under field 

conditions. If this is correct, indehiscence may explain in part the tendency of Cuscuta 

species’ geographical ranges to increase with latitude.  

Recently, Costea et al. (2016) documented the first case of endozoochory in 

Cuscuta. Viable seeds of C. campestris and C. pacifica were found in the rectum of 

northern pintails (Anas acuta; dabbling ducks) at Suisun Marsh in California. These two 

dodder species have IN + IrB capsules and the authors suggested that fruits or 

infructescences are more suitable than seeds for the feeding of pintails (Costea et al., 
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2016). The authors also suggested that long distance dispersal by other migratory 

waterbirds may explain the transoceanic historical cases of long distance dispersal 

documented in the evolution of Cuscuta (reviewed by García et al., 2014). Cuscuta 

infructescences in species with DE + IrA, IN and IN + IrB capsules may also be 

dispersed by wind (chapter 5.4). In the last decade, it has become commonly accepted 

that most plant species are dispersed by more than one dispersal vector (Poschlod et al., 

2005; Hintze et al., 2013). Even if a plant exhibits traits specific to a particular dispersal 

mode, these traits may enable or be compatible with other dispersal modes (Hintze et al., 

2013). Possessing several dispersal modes and vectors will increase the chances of 

effective dispersal both in terms of distance and habitat suitability (Webb, 1998). Even if 

IN capsules in Cuscuta may result in a loss of dispersal capability when diaspores contain 

more than one seed, both the hydrochory and zoochory of capsules act as enhancers of 

dispersal and may create opportunities for long distance dispersal, which do not exist for 

the seeds alone. Traits that enhanced dispersal were also recently observed in the 

evolution of Brassicaceae with indehiscent fruits (Willis et al., 2014).  

Future studies will have to comparatively study in the field the dispersal of 

species with IN or DE species occurring in similar habitats and at the same latitudes. 

 

6.3 DEHISCENCE/INDEHISCENCE AND SEED GERMINATION 

This research has shown that although the pericarp has simple structure, it is able 

to significantly alter the germination behavior of seeds. The germination pattern of C. 

gronovii seeds enclosed within capsules (W) was different from those that were removed 

from the fruits (WO). Although both W and WO seeds germinated in largely coinciding 
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seasonal peaks, WO seeds germinated earlier and in greater abundance. The germination 

of seeds within indehiscent capsules (W) was delayed and their germination rate was 

lower compared to WO seeds. Thus, species with IN capsules employ a bet-hedging 

strategy: fewer seeds germinate in the peaks and overall, and the germination is delayed 

both during each vegetation season and throughout the years.  

Evolutionary bet-hedging (Slatkin, 1974) is the theory according to which 

evolution may unfold via forfeiting the average (or expected) fitness to reduce the 

variance in fitness of a life-history strategy or genotype (Seger and Brockmann, 1987; 

Philippi and Seger, 1989). Cohen’s (1966) classical model of (diversified) bet-hedging 

predicts that annual plants in deserts or highly disturbed environments (Cohen, 1968) can 

reduce their fitness variance by ensuring that only a portion of seeds germinate in a 

certain year. In other words, in highly variable environments, a portion of the seeds 

produced remains dormant as a hedge against the risk of total reproductive failure. Bet-

hedging via delayed germination in annual plants has been the subject of numerous 

theoretical (Kalisz and McPeek, 1993; Rees, 1994; Venable and Brown, 1988; Evans et 

al., 2007; Childs et al., 2010; Gremer and Venable, 2014; reviewed by Baskin and 

Baskin, 2014) and empirical studies (Thompson and Grime, 1979; Thompson et al., 1998; 

Venable, 2007; reviewed by Baskin and Baskin, 2014). Delayed germination can also 

function as a strategy to avoid sibling competition (reviewed by Baskin and Baskin, 

2014). 

To understand this finding in Cuscuta we must first consider the paramount 

significance of seedlings in the life cycle of dodder plants. In annual plants, in general, 

seedling establishment is crucial because it affects the persistence and dynamics of their 
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populations (Grubb, 1977; Harper, 1977). In Cuscuta, seedlings face similar abiotic and 

biotic challenges as the green plants (e.g., Maun, 1994; Maestre et al., 2003; Isselstein et 

al., 2002), however, unlike green plants, dodders also have to locate compatible hosts, 

circumvent their defenses, and successfully establish a haustorial connection with them 

(Dawson et al., 1994; Costea and Tardif, 2006). If seedlings cannot attach to a suitable 

host within a short window of time, mortality ensues (Dawson et al., 1994; Costea and 

Tardif, 2006; Behdarvandi et al., 2015). Thus, the seedling stage in Cuscuta represents a 

stronger ontogenetic filter than is the case in annual heterotrophic plants. 

The high temperature germination requirements of Cuscuta species (Hutchinson 

and Ashton, 1980; Benvenuti et al., 2005; Costea and Tardif, 2006) ensure that 

germination takes place when the seedlings or shoots of suitable hosts are already 

established or present (Dawson et al., 1994; Costea and Tardif, 2006). This is probably 

because unlike other holoparasitic plants (e.g., Orobanchaceae; Matusova et al., 2005; 

Fernández-Aparicio et al., 2009), Cuscuta seeds cannot sense host-derived strigolactones 

and trigger their germination when suitable hosts “appear” in their vicinity. Dodders 

possess sophisticated methods of host detection only after seedlings emerge (Dawson et 

al., 1994; Costea and Tardif, 2006; Runyon et al., 2006), but if no suitable host is located 

in the vicinity of seedlings, they cannot survive. Considering the uncertainties of host 

availability at the moment of germination, bet-hedging is advantageous because it spreads 

the risk among different individuals of the same genotype and increases the chances that 

eventually some seedlings will successfully attach to a compatible host. In the case of IN 

capsules, bet-hedging is also advantageous because it reduces potential sibling 

competition of seedlings originating from the same capsule for the same host plant.  
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Diaspores of species with IN + IrB fruits consist mostly of IN capsules, but a 

small percentage of seeds are also dispersed individually. This resembles the 

heterodiaspory condition, in which two or more different morphological types of 

diaspores differing also in ecological function are produced by the same plant (reviewed 

by Baskin and Baskin, 2014). Unlike other plants in which heterodiaspory is generated by 

intrinsic morphological and physiological characteristics of the diaspores (Roth, 1977; 

reviewed by Baskin and Baskin, 2014), in Cuscuta, heterodiaspory is apparently 

functional because the IrB capsules are indistinguishable from the IN capsules within the 

same inflorescence. Heterodiaspory results because a small percentage of capsules break 

irregularly and release their seeds, which have a different germination behaviour 

compared to those that remained enclosed in the capsules. In a species with IN + IrB 

fruits, germination will be more gradual compared to a species with exclusively IN fruits, 

thus potentially creating more opportunities for the seedlings to forage in the plant 

community (Kelly, 1990; Press and Phoenix, 2005). Overall, this maximizes the 

parasites’ chances of interaction with compatible hosts while maintaining a reserve of 

seeds as a potential safeguard. At the same time, the two types of diaspores, individual 

seeds and seeds within IN fruits, will likely have different dispersal ability. Capsules are 

morphologically adapted to be dispersed at potentially longer distances compared to the 

unspecialized seeds. 

The most important limitation of this germination study is that dehiscence was 

generated artificially in one single species (C. gronovii) with IN + IrB fruits. It is 

unknown how bet-hedging, which is common in annual desert plants (Gremer and 

Venable, 2014 and references cited therein), functions in Cuscuta. For this reason, future 
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studies will have to comparatively study not only the dispersal of species with IN or DE 

species at lower latitudes in North America (there are no native species with DE fruits in 

temperate North America), but their germination as well. 

 

6.4 FRUIT DEHISCENCE AND INFRUCTESCENCE ARCHITECTURE 

As indicated in the introduction, the inflorescence is most commonly associated 

with the reproductive biology of flowers (e.g., Weberling, 1992; Harder et al., 2004; 

Prusinkiewicz et al., 2007; Harder and Prusinkiewicz, 2012). In some cases, however, 

inflorescences persist at fructification (infructescences), and they also play a role in the 

dispersal (Hintze et al., 2013). Infructescence diaspores are often “wind-tumblers” or 

“rollers”, dispersal taking place through eolic drive or rolling on the ground 

(anemogeochory or chamaechory; van der Pijl, 1982; van Oudtshoorn and van Rooyen, 

1999). This dispersal mechanism has been more studied when the entire plant, not only 

the infructescence, participates in the dispersal as in the case of the “tumbleweeds” (e.g., 

many Chenopodiaceae; van der Pijl, 1982; Borger et al., 2007; Poaceae; Cheplick, 1998; 

see more examples in van der Pijl, 1982; van Oudtshoorn and van Rooyen, 1999). 

Although anemogeochory involving infructescences has been less studied, it has been 

reported in genera from Amaryllidaceae (Snijman and Linder, 1996), Campanulaceae 

(Maier et al., 1999), Poaceae (e.g., Carey and Watkinson, 1993), and it is likely to occur 

in many other plant families with infructescences (e.g., Lamiaceae, Asteraceae). Traits 

common to anemogeochory diaspores are their spherical shape and increased volume, 

which facilitate rolling on the ground (van der Pijl, 1982; Snijman and Linder, 1996). In 

Cuscuta, anemogeochory cannot play a role in the dispersal of species with dehiscent 
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capsules because their seeds are released before the breakup of the infructescences.  

However, anemogeochory is possible for species with IN, IrA and IrB fruits. The results 

of this study demonstrate that species with IN, IrA and IrB capsules possess globular-

glomerulate infructescences, which are consistent with the anemogeochory morphology 

(van der Pijl, 1982; Snijman and Linder, 1996; Maier et al., 1999). 

Interestingly, inflorescence compactness differences were not observed between 

DE and IN species, nor between IN and IN + IrB species as was predicted. Infructescence 

compactness may have been selected to generate the spatial conditions that cause 

irregular dehiscence in some capsules, however, this was not supported by the results in 

this study. Only slight differences were observed among all fruit types. The reason for 

these insignificant results may be due to the compactness indicator formula—the formula 

may be oversimplified, thus not compensating for true differences in compactness 

between each species. Another reason for the lack of differences observed may be 

because inflorescence/infructescence architecture in Cuscuta is associated with traits 

other than fruit dispersal.  
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SUMMARY 

 This fruit evolution study has revealed three structurally distinct fruit types in 

Cuscuta: (1) regularly circumscissile [DE] fruits that dehisce through an abscission zone 

containing small, cellulosic cells, (2) indehiscent [IN] fruits with a uniform pericarp 

uninterrupted by an abscission zone, and (3) irregularly dehiscent [IrA] fruits that, although 

do not have an abscission zone, will dehisce tardily and irregularly through a zone of 

weakness created by the thinning of the endocarp cell walls near the base of the fruit. 

Indehiscent capsules may also break irregularly [IrB] if enough pressure is applied on the 

fruit, and since this phenomenon was observed in some indehiscent fruit species but not all, 

it may be considered a functional trait that has evolved in the genus. DE fruits are 

ancestral, as determined in previous studies, and IN fruits, along with IrA and IrB fruits, 

are derived. Since the evolution from dehiscence to indehiscence is gained through the loss 

of an abscission zone, IrA capsules can be regarded as an intermediary evolutionary stage 

between DE and IN.  

 Fruit traits are highly polymorphic within Cuscuta and insufficient to reconstruct 

phylogenetic relationships among dodder clades. Nevertheless, the diversity of fruit 

morphology provides easily observable characters useful for species’ identification. Few 

characters are associated with fruit dehiscence modes, though in general, IN fruit species 

have a much larger interstylar aperture than DE fruit species, and species with IrB fruits 

have an even larger interstylar aperture. IrB fruit species also have larger fruits, and more 

seeds per capsule than DE or strictly IN fruit species. These fruit traits along with 

infructescence compactness contribute to the irregular dehiscence seen in IrB capsules; the 
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only type of dehiscence that can occur on a plant already producing IN capsules, thus 

allowing the plant to have multiple diaspores. 

 The evolutionary advantage of fruit indehiscence in Cuscuta was narrowed down to 

two possibilities: (1) it enhances the dispersal of a species, and (2) provides species with a 

bet-hedging strategy of seed germination. This study demonstrates that IN capsules 

containing multiple seeds is not associated with the reduction of dispersal ability as 

commonly understood. The range size of Cuscuta species with IN capsules is no different 

from that of DE fruit species in North America. As it happens, IN fruit species that also 

produce IrB fruits have an even larger range size than DE fruit species. IN capsules of C. 

gronovii are also capable of floating in water for much longer than their seeds which 

readily germinate and sink as soon as they become imbibed. The preliminary germination 

study of C. gronovii seeds with and without their capsules determined that seeds inside 

capsules experience a delayed germination. This ensures that seeds have time to disperse 

and reduces the risk of reproductive failure. Furthermore, IrB fruit species appear to have 

evolved from IN fruit species and their heterodiaspory could only enhance these attributes 

as it provides the species with both the dispersal and germination strategies of individual 

seeds and seeds within capsules.  
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INTEGRATIVE NATURE OF THIS THESIS 

 Although the topic of this thesis is on the evolutionary biology of Cuscuta fruits, it 

incorporates many branches and sub-disciplines of biology. The structure and 

ultrastructure study in this thesis integrates cell biology and anatomy as I examined cell 

structures and their functions in the dehiscing fruit. For the biodiversity study, I examined 

fruit morphology and their evolution, including phylogenetics and systematics. As I 

explored the evolutionary advantage of fruit indehiscence, I looked at species distributions, 

water dispersal potential, and seed germination, thus integrating biogeography, dispersal 

biology, and seed ecology in my work. This thesis also integrates disciplines related to 

biology such as microscopy and biostatistics as both were largely used throughout the 

study.   
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APPENDICES 

APPENDIX A: LIST OF HERBARIUM VOUCHERS 

A1. Fruit Anatomy/Morphology 

Cuscuta acuta Engelm.: ECUADOR, Galapagos. Anderson 1853 (S); Tower Island, 16 

Jun 1932, Howell 10140 (G). Manabí. Bahia de Caraquez, Hotel La Herradura, near sea 

shore, 15 Feb 1981, Benkt Sparre 19700 (S). C. africana Willd.: SOUTH AFRICA. 

Muir 156 (GRA); Oliver 11852 (NBG). C. americana L.: MEXICO, Alamos. Arroyo el 

Mentidero at El Chinal Rd, 11.3 km S of Álamos, 26o54'45"N, 108o55'05"W, 240 m, 15 

Mar 1994, Van Devender 94-176 (UCR). Guerrero. Acapulco and vicinity, Oct 1894, 

Mar 1895, Palmer 341 (GH). Jalisco. Mpio. La Huerta, near Chamela, 15 Apr 1982, Lott 

994 (MICH). Sonora. Mpio. Villa Pesqueira, southern foot of Sierra Pinta, about 33 

miles S Moctezuma, ca 29o35'N, 110o01'W, ca. 2400', 15 Sep 1996, Shortman 96-71 

(ARIZ). USA, Florida. Lower Matecumbe Key, 3 Jan 1925, Small et al. 11596 (NY); 

Pinelands, Buena Vista, Miami, Jan 1930, Mosier s.n (NY). C. angulata Engelm.: 

SOUTH AFRICA. Near Farm “Alwee,” on road from Swellendam to Infanta, norths 

slope of Pottberg in an area of sandy soil and shale chips, 24 Sep 1973, Carlquist 4691 

(RSA); Beyers 12-1985 (NBG); Williams 2690 (NBG).  C. approximata Bab.: 

CANADA, British Columbia. Cherry Creek, Kamloops Lake, 30 Jul 1993, Lomer 93-

204 (UBC); Spences Bridge, 27 Sep 1992, Lomer 92-306 (UBC). USA, California. 

Abrams 457 (CAS). Nevada. Hillman s.n (RSA). Utah. Salt Lake City, 24 Sep 1905, 
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4300ft, Jones s.n (RSA). C. argentinana Yuncker: ARGENTINA, Corrientes. 

Quebrada de Escoipe, ayo. Malcanto, 1940 m, Ruta 33, 10 Apr 1980, Krapovickas & 

Schinini 36049 (CTES). Salta. Chicoana, La Zanja, 10 km N de la Quebrada de Escoipe 

(Ruta 33), 2700 m, 10 Apr 1980, Krapovickas & Schinini 36757 (CTES). C. australis 

var. australis R. Br.: AUSTRALIA, New South Wales. Warrabah National Park, flood 

area for Namoi River, 30o34'S, 150o55'E, 425m, 13 Mar 1994, J. R. Hosking 938 

(CANB). Queensland. Maryborough, Wallum not far from sea, 23 Oct 1948, Clemens 

s.n (RSA). CHINA, Guangxi. Near Guilin, Yangshan, Guangxi Institute of Botany, 2 

Sep 1988, Sykes CH99 (CHR). NEW CALEDONIA. Nouméa, Feb 1907, Bonati 737 

(S). C. australis var. tinei (Insenga) Yunck.: HUNGARY. Tisza-Koff. Simonkai 2635 

(NY). C. azteca Costea & Stefanovic: MEXICO, Mexico City. Federal District, 

Pedrigal, Valley of Mexico, 8 Oct 1896, Pringle 6575 (S). Puebla. 18o10'48"N, 

97o27'00"W, 9 Jul 1908, Purpus 3554 (MO). Querétaro. 13.8 km SE MEX 120 on the 

road to Bucareli, Mpio. Piñal de Amóles, Ramírez-Amezcua et al. 1099 (IEB). San Luis 

Potosi. Charcas, Jul - Aug 1934, Lundell 5193 (S). C. boldinghii Urb.: HAITI. Massif de 

la Hotte, close to Dame Marie, on the beach, 1 Aug 1928, Ekman 10455 (S). MEXICO, 

Jalisco. 8 km E of Chamela, 30-50m, lowland forest, 8-10 Dec 1970, McVaugh 25140 

(MICH).  C. bonafortunae Costea & I. García: MEXICO, Guanajuato. Santiago de 

Maravatío, close to Ojo de Agua, 1900 m, 15 Oct 1989, Rzedowski 49127 (IEB). 

Michoacán. Zamora, same location as the type, 11 Sep 2010, García Ruiz & García 

8375 (CIMI, WLU); 16 Oct 2010, García Ruiz 8391 (CIMI, WLU). C. brachycalyx 

(Yunck.) Yunck.: USA, California. Butte County, west of Lunt Road, about 1/2 mile 

north-west of Highway 70, 1800 ft, 10 Aug 1988, Ahart 6170 (CAS); Kern County, 1.5 
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mi N of Kernville, 2670 ft, 28 Sep 1962, Howell 38877 (CAS); Santa Clara County, 

between Sunnyvale and Alviso, lower end of San Francisco Bay, 22 Aug 1933, Keck 

2473 (CAS). C. californica (Hook. & Arn.): USA, California. Colusa County, dry slopes 

along upper reaches of Dark Hollow Creek, Snow Mt., 6600 ft, 10 Sep 1974, Heckard 

3888 (JEPS); Los Angeles County, ridge south of Swartout Valley, 8200 ft, 31 Aug 1923, 

Munz 7689 (RSA); Coastal Sage Scrub, Wash outside RSABG, 9 Oct 1965, Massey 1005 

(SMU). C. campestris var campestris Yunck.: USA, California. San Bernardino County, 

near pond, North Verde Ranch, near the Mojave River east of Victorville, 2800 ft, 10 Sep 

1961, Raven 16637 (RSA); San Bernardino Mountains, Los Rios Rancho at Oak Glen 

Forest Falls, 4800 ft, 11 Nov 1999, Sanders 23249 (UCR). Florida. Dade County, 14000 

SW 8th Road, Miami, 12 Nov 1974, Corell 43759 (NY). Utah. Salt Lake County, 

Wasatch Range ca. 9 ½ mi. E of Salt Lake City, 5 mi. E of mouth of Emigration Canyon, 

5600 ft, 1 Sep 1975, Arnow 4694 (NY); Wayne County, Caineville, 4500 ft, 20 Jul 1894, 

Jones 5653 (RSA). C. campestris Yunck. var. gymnocarpa Engelm.: ECUADOR, 

Galapagos. Espanola, undated, Fagerlind & Wibom 3641 (S); Fagerlind & Wibom 3658 

(S); Isla Floreana, W side, along the trail from Black Beach towards the highland, 260 m, 

6 May 1967, Eliasson 2079 (S); Tortoise Country, about 8 mi. w. of Academy Bay, 

Indefatigable Is., 400 ft, 11 Apr 1930, Svenson 242 (F); James Bay, James Island, 4 Jun 

1932, Howell 9642 (KEW). C. cassytoides Nees ex Engelm.: SOUTH AFRICA, 

Zululand. Mtunzini, ‘Twinstreams’ Farm, Apr 1977, Garland s.n. (NU); Drege s.n. 

(MO). C. cephalanthi Engelm.: USA, Indiana. Newton County, Near the Kankakee 

River N of Lake Village, 22 Sep 1927, Deam 455 (NY); Sullivan County, Along a 

dredged ditch 6 mi southwest of Carlisle, 4 Oct 1931, Deam 51439 (IND). Michigan. 
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Wayne County, Oakwood, 15 Sep 1918, Farwell 5124 (NY). Minnesota. St. Louis 

County, Low shore ledges of Sand Point Lake at Harrison’s Narrows international 

boundary, 11 Sep 1952, Lakela 15846 (DAO). Utah. Salt Lake County, Salt Lake City, 

4300 ft., 22 Aug 1880, Jones s.n (RSA). C. chapalana Yunck.: MEXICO, Jalisco. 

Rancho “Las Papas de Arriba”, 4.5 km northeast of Guadalupe Victoria, 21°43′48″N, 

101°39′48″W, 2260 m, 14 Oct 2000, García & Harker 438 (IBUG); Mpio. Jocotepec: 

north face of Cerro Viejo, 2200 m, 17 January 1987, Chazaro et al. 4408 (IBUG, XAL); 

Barranca de Sayula, al SE de San Pedro Tesistan, Nov 1993, Machuca 7026 (MICH). C. 

chilensis Ker Gawl.: ARGENTINA, Mendoza(?). 1890-91, Smith 1749 (S). CHILE, 

Santiago. Barnechea in Las Condes, hills near Nido de Aquilas school, 550 m, 21 Jan 

1978, Landrum 3073 (ASU). Valparaíso. Uspallata-Pass der chilenischen 

Hochcordillere, Juncal, auf den Bergen, 16 Jan 1903, Buchtien s.n (UPS). ; C. chinensis 

var. applanata (Englm.) Costea and Stefanović: MEXICO, Chihuahua. Santa Eulalia, 

Buena Tierra Mine, ca. 28o37’N, 105o53’W, 6200 ft, 21 Aug 1948, Hewitt 323 (GH). 

Coahuila. Near tip of Sierra de San Marcos, Lewis s.n (NY); Western Coahuila near 

Rosario, a railroad station 45 km W of Cuatro Cienagas, ca. 1100 m, 3-4 Sep 1941, 

Johnston 8826 (GH); ca. 25 mi E of Americanos, 22 Aug 1937, Wynd 754 (NY). USA, 

New Mexico. Albuquerque, 28 Sep 1932, Casteller 7339 (UNM). C. chinensis Lam. var. 

chinensis: AUSTRALIA. Western Australia, at NE end of airstrip One Arm Point, N 

Dampier Peninsula, W Kimberley, 16o27’S, 123o04’E, 9 Apr 1993, Carter 628 (CANB, 

PERTH). CHINA, Shantung. Tsinanfu, 4 Sep 1930, Chiao 3033 (GH, NY). NORTH 

KOREA. Rikiho, Sep 1930, Dorsett & Morse 6336 (NY). C. cockerellii Yunck.: 

ARGENTINA. Vargas 2600 CUS); Vargas 19383 (CUS); Nunez 28 (USM).   C. 
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colombiana Yunck.: COLOMBIA, Magdalena. Near Riohacha, 30 m, 23 Dec 1944, 

Haught 4535 (KEW, S).  C. compacta Juss. ex Choisy: USA, Alabama. Dekalb County, 

Westfork Branch, De Soto State Park, Fort Payne, 850 ft, 13 Sep 1962, Demaree 46247 

(NY). Arkansas. Pulaski County, Des Moulins, 27 Sep 1931, Demaree 8260 (NY). 

Florida. Alachua County, Along Hawthorn Rd. in small swamp ca. 4 mi E of 

Gainesville, 20 Nov 1943, Rhoads & West s.n (NY). Indiana. Crawford County, on Pilot 

knob, about 4 mi S of Marengo, 2 Sep 1937, Deam 58335 (NY); Posey County, in a dried 

slough about ½ mi S of Half Moon Pond which is 10 mi SW of Mt. Vernon, 26 Sep 1920, 

Deam 33,043 (NY). Oklahoma. McCurtain County, along creek in woods, 3 mi N of 

Broken Bow, 13 Oct 1957, Waterfall 14770 (RSA). C. corniculata Engelm.: BRAZIL, 

Bahia. Piatá, Gerais da Inúbia, 22-26 km de Catolés, 1400 m, 10 Mar 1992, Stannard et 

al. H51861 (G). COLOMBIA. Intendencia Meta Villavicencio, 450 m, 26-31 Aug 1917, 

Pennell 1453 (GH).  C. coryli Engelm.: CANADA, Manitoba. District de Provencher 

entre Saint-Pierre et Otterburne, 27 Aug 1956, Bernard 5669 (DAO); District de Selkirk, 

Rivière Rouge, entre l’ile au Sucre et l’embouchure de la rivière qui Déboule, 23 Aug 

1960, Boivin & Champagne 13869 (DAO, UNB). Saskatchewan. Ravine S of 

Qu’Appelle Valley 4 m N of Stoney Beach, 20 m NE of Moose Jaw, Ledingham 3160 

(USAS). USA, Indiana. Perry County, top of wooded flood plain bank of the Ohio River 

just below Derby, 11 Oct 1931, Deam 51589 (IND). Missouri. Barry County, Eagle 

Rock, 28 Sep 1896, Bush 202 (MO, NY). New York. Tioga County, Long Island, sea 

cliff, 24 Sep 1928, Ferguson 7181 (NY). West Virginia. Ohio County, on bank of Ohio 

River just below Eight Street, Wheeling, 16 Sep 1951, Bartholomew 0-923 (NY).  C. 

corymbosa Ruiz & Pav. var. grandiflora Engelm.: MEXICO, Baja California Sur. 
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Gulf of California, isla Partita in steep rocky draw facing the ocean, 22 Apr 1921, 

Johnston 3222 (GH). Jalisco. Sierra de Manantlán Occidental W facing slopes of deep 

cool valley at headwaters of Arroyo Las Joyas, 19o35’15”-45”N, 104o15’30”-45”W, 1 

Jan 1984, Iltis & Guzman 29077 (MICH). Tamascaltepec. Cumbre-Cruz, Alnus woods, 

15 Mar 1936, Hinton et al. 8984 (GH). C. corymbosa Ruiz & Pav. var. stylosa Engelm.: 

MEXICO, Hidalgo. Mpio. San Salvador, km 135-137 on Laredo Hwy between Actopan 

and Ixmiquilpan, 8 Oct 1943, Gilly & Cany 5 (MICH). Mexico. Vertiente sur del Cerro 

Tlapacoya, mpio. Chalco, 7 Nov 1971, Rzedowski 28752 (MEXU). Veracruz. 

Zacualpan, Dec 1915, Purpus 7564 (GH). C. costaricensis Yuncker: MEXICO, 

Chihuahua. Las Gallinas, +/- 15 km west of Yepachi, 28o27’ N 108o31’W, 1500 m, 22 

Oct 1984, Levin 1440 (SD). Durango. El Saltito, Nombre de Dios, 13 Sep 1984, Jienez 

& Acevedo 35 (MEXU); San José de Parrilla, +/- 4 km al W. 23o43’99”N 104o8’99”W, 

2150 m, 25 Oct 1983, González & Acevedo 2758 (MEXU). Jalisco. Isla Alacranes 

(Chapala), Maleza, 1500 m, 17 Sep 1964, Cota 77 (MEXU). C. cotijana Costea & I. 

García: MEXICO, Michoachán. Cotija, Los Gallineros, ca. 1900 m, 19 Apr 1991, Ruiz 

& Olmos 3289 (UCR) isotype. C. cozumeliensis Yuncker: GUATEMALA. Kellerman 

6589 (F). MEXICO. Calzade & Nievea 9427 (XAL); Vazquez 176 (MEXU). C. cristata 

Engelm.: ARGENTINA, Buenos Aires. Baradero, Estancia “Los Alamos”, Fundación 

Figueroa Salas, Final de la Reserva, 27 Oct 2003, Robles 1511 (MO). Córdoba. Río 

Tereero, barranca, 10 Jan 1940, Burkart 10399 (MO); Lossen 314 (KEW). Rio III, entre 

Almafuerte y el Embalse del Rio III2, 27 Feb 1944, Hunziker 4927 (S). Corrientes. 

Esquiina, Isla frente a Esquina, 30 Nov 1974, Krapovickas et al. 26901 (G). La Rioja. 

Sañogasta, Villa Bustos, 10 Dec 1951, Pentzell 19170 (SI). C. cuspidata Engelm.: USA, 
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Indiana. Posey County, low fallow field along the Wabash River ca. 2 mi S of New 

Harmony, 24 Sep 1920, Deam 33011 (IND, NY). Kansas. Meade County, park, 2460 ft, 

18 Sep 1944, Horr E476 (BRIT, SMU). Missouri. St. Louis, 11 Aug 1891, Eggert s.n 

(CAS). New Mexico. Clayton, 24 Sep 1907, Evans s.n (NMC). Texas. Gray County, 15 

mi S of Lefors, Ste. 291, 28 Sep 1969, Correll 38056 (CAS, NY); Robertson County, SW 

¼ Round Prairie Quad., U.S.G.S. 1966, Tx. Hwy. 7 and the Navasota River, 9 Oct 1981, 

Starbuck 1198 (BRIT). C. decipiens Yunck.: MEXICO, Zacatecas. Ca. 92 air miles NE 

of Cd. Zacatecas, 89.6 road miles (144.5 km) NE of Hwy 45 along Hwy 54 to Saltillo, 

about 2 miles NW of highway opposite turnoff to Majoma, (25 miles S of San Tiburcio) 

then to the first gate in the fence (to right) into the flats near a small milpa, near 23o52’N, 

101o44’W, 1950 m, 19 Oct 2001, Henrickson 22781 (RSA). C. deltoidea Yunck.: 

MEXICO, Michoacan. Monte Leon, 11 Nov 1892, Pringle 5350 (NMC). C. denticulata 

Engelmann: USA, California. Inyo County, steep canyon leading into Saline Valley 

from the south, 36o34’N 117o35’W, about 5000-6000 feet, 16 Sep 1960, Thomas 8904 

(RSA); Riverside County, Morongo Wash at the San Bernardino County line, 2400 feet, 

11 Oct 1932, Wolf 4282 (BRIT); San Diego, Borego Valley, on Larres, 7 Apr 1940, 

Howe 991 (SD). C. desmouliniana Yunck.: MEXICO, Baja California. Chavez Ranch 

airstrip, about 5 mi. NW of Mulegé, 22 Oct 1962, Wiggins 18130 (MEXU). Sonora. Hills 

near Altar, 26 Aug 1884, Pringle s.n (NY); Low basaltic hills 15 mi S of La Palina, 

between Hermosillo & Guayanas, 2 Sep 1941, Wiggins & Rollins 232 (GH); Hwy W 

from Hermosillo to Bahía Kino, 12 mi W of the Hwy Jct. in Hermosillo, 800 ft, 29 Jan 

1963, Dunn et al. 14130 (NY); At coast on north side of headland about 10 mi. due S of 

Desemboque, 22 Mar 1978, Spellenberg 4943 (MEXU, NMC); Terrace above arroyo at 
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mouth of Nacopuli Canon, southeast end of Cerros Las perinolas, north of San Carlos, 

28o01’N lat., 111o03’W long, 26 Apr 1985, Burgess 6949 (MEXU). C. epilinum Weihe: 

CANADA, Quebec. Shefford, Saint-Alphonse, sur lin, ferme de M. Wilfrid Viau, 30 Jul 

1941, Cartier s.n (DAO, QFA); St. Alphonse, 30 Jul 1941, Barabe 16914 (BRIT, SMU); 

Sainte-Hélène, Kamouraska, 15 Aug 1942, Cayouette s.n (QUE). Lower Canada. Flax 

fields, 4 Aug 1880, Pringle 204788 (CAS). SWEDEN, Angermanland. Suecia, Paroecia 

Arnäs, Idbyn, 22 Aug 1937, Samuelsson 1317 (RSA). C. epithymum (L.) L.: CANADA, 

British Columbia. Kootenay Lake, Balfour Bay, 16 Aug 1947, Turner 5983 (ALTA). 

MEXICO, Mexico. Valley of Mexico, 7800 ft, 27 Jun 1901, Pringle 8514 (NMC). USA, 

Idaho. Custer County Challis, edge of alfalfa field, 5400 ft, 15 Jul 1916, Macbride & 

Payson 3219 (DS, RSA). C. erosa Yunck.: MEXICO, Sonora. Bank of water course 15 

mi SE of Magdalena on rd. to Cucurpe, 11 Sep 1934, Wiggins 7123 (NY); Agua Prieta, 

ca. 7.5 km (by air) southwest of Agua 31o15’34”N, 109o36’34”W, 1233 m, 3 Oct 2004, 

Van Devender et al. 2004-1199 (WLU). USA, Arizona. Pima County, Baboquivari 

Canyon, 3500-4500 ft., Kearney & Peebles 10377 (CAS, RSA); Kearney & Peebles 

10422 (CAS, RSA); Baboquivari Mts, 21 Aug 1932, Peebles 8998 (RSA); Baboquivari 

Mts, 19 Sep 1931, Jones 28731 (CAS). C. europaea L.: BELGIUM, Luxembourg. 

Chassepierre, bord de la Semois en amont du village, 30 Sep 1975, Duvigneaud & 

Lambinon 75B953 (QUE). DENMARK, Dyrehaven. Copenhagen, 6 Aug 1970, 

Svendsen 329 (NY). FINLAND, Kemiö. Stenhol, 60o05’N, 22o45’E, Cliff near the old 

limestone quarries, 16 Aug 1978, Alava et al. s.n (NY, RSA). GERMANY, Alsfeld. 

Kestrich, Sengesweg, 12 Aug 1972, Hupke s.n (USAS). Thüringen. 20 Aug 1900, 

Rudolph s.n (RSA). NETHERLANDS, Gelderland. Base of levee in the Ooypolder E of 
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Nijmegen, near Tiengeboden, 12 Sep 1959, Hekking 635 (NY). SWEDEN. Blekinge 

County, Sölvesborg, 23 Jul 1932, Holmgren 19784 (SD). C. exaltata Engelm.: USA, 

Texas. Aransas County, Goose Island State Park, 1 Oct 1975, Snyder 472 (SMU); Dallas, 

Sep 1885, Reverchon 663 (CAS); Hays County, Stagecoach Ranch subdivision off Ranch 

Road 3238, S of Hamilton Pool Preserve, 24 Sep 1992, Westlund s.n (CAS); Johnson 

County, 97o36’N 32o15’W, Cleburne State Park, about 12 mi (19 km) WSW of Cleburne, 

incised valley along West Fork of Camp Creek at end of Park Road 21.6 mi (10 km) SW 

of US Hw 67, 27 Oct 1997, Sanders 4270B (BRIT); San Patricio County, local, E edge of 

perimeter road on W side of installation, SW of jct. F. M. 2725 and F. M. 1069, Naval 

Station Ingleside, Port Ingleside Quadrangle, 25ft, 11 Sep 1992, Carr 12341 (BRIT); Val 

Verde County, Dry Devils River, E of crossing of road from “big house” N to mouth of 

Jane Hollow, Dolan Falls Ranch, Dolan Springs Quadrangle, 1530 ft, 30 Sep 1992, Carr 

12418 (SMU). C. foetida Hook. & Arn. var. foetida: ECUADOR, Azuay. Laguna 

Llaviuco (Surucuchu) W of Cuenca, 3150 m, 25 Feb 1993, Harling & Ståhl 26675 (S); 

Canar. Parroquia Bayas, Valley of rio Tabaca, ca. 15 mi NE Azugues, 8000 ft, 27 Sep 

1944, Prieto & Camp P-111 (S). Chimborazo. En el camio de Sibambe a Alausí, Reg. 

Interandina, 2500 m.s.m, 25 Aug 1943, Solís 5599 (F). C. foetida Kunth var. pycnantha 

Yuncker: ECUADOR, Cotopaxi. Cantón Sigchos, Triunfo Grande, entrada a la 

comunidad “El Valle”, 2765 m, 00o34’02”S 78o57’41”W, 31 Jul 2003, Ramos et al. 6775 

(MO). Pichincha. West of Nono, 2700 m, 12 Jun 1968, Harling et al. 10258 (US). 

PERU. Plowman et al. 14291 (F). C. friesii Yunck.: ARGENTINA, Tucumán. 

Infiernillo, 37 km de Tafí del Valle, 2650 s.m., 18 Mar 1972, Krapovickas & Maruñak 

21898 (CTES). C. glabrior (Engelm.) Yunck.: MEXICO, Coahuila. Parras de la Fuente, 
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Sierra de Parras, Rancho El Tunal 31.2 km (19.5 mi) al E de Parras por carretera, 4.8 km 

(3 mi) al S por terracería hasta la Puerta del sur del rancho, 1870 msnm, 21 Aug 1982, 

Cowan 3644 (MEXU); ca 35 (air) miles SSW of Cuatro Cienegas, in northern slope of 

limestone Sierra de Los Alamitos, ca 9.2 (rd) miles S of El Hundido, in Izotal, 26o30’N, 

102o17’W, 4650 ft,, 29 Sep 1973, Henrickson 13676c (RSA); Chojo Grande, 27 mi SE of 

Saltillo, State of Coahuila, 16 Jul 1905, Palmer 723 (GH, MO). USA, Texas. Deaf Smith 

County, 15 mi N & 15 mi W of Hereford, 23 Jul 1966, Waller 962 (TEX/LL). C. 

globiflora Engelm.: ARGENTINA, Catamarca. Andalgalá, El Condado, 25 Feb 1916, 

Jorgeusen 1613 (SMU). Jujuy.  Tumbaya, ruta hacia Tilcara, Barcena, a 1700 m s. n., 14 

Mar 1994, Múlgura et al. 1199 (MO). BOLIVIA. Andian reg, Cotaña am Llimain, 2450 

m, undated, Buchtien 133 (F). Cinti. Sucre, Puca Rhasa prope Tacaquira, 21-27 Mar 

1934, Hammarlund 341 (S). Murillo. La Paz, below Obrajes, ca 3300m, 27 Jan 1921, 

Asplund 2088 (S, UPS). C. globulosa Benth.: CUBA, Oriente. El Cobre in fructicetis 

communis, 6 Oct 1916, Ekman 7839 (S). PUERTO RICO, Culebra. Playa Flamenco, at 

end of road along beach, 1m, 15 Jul 1989, Axelrod 1154 (UPRRP). Guayama. Bo. 

Palmas, Rte 712, km 16.7, 1 km along farm track following ridge S of road, ca. 350-400 

m, 21 Jan 1991, Axelrod 1875 (UPRRP). C. glomerata Choisy: USA, Indiana. Lake 

County, marsh 2 mi N of Hobart, 17 Sep 1930, Deam 49868 (NY). Kansas. Riley 

County, Horse Pasture, NW ¼ sec. 13, T 11 S, R 7 E, 10 Sep 1979, Freemon 293 (NY). 

Nebraska.  Minden, Sep 1996, Hapeman 21141 (NMC). C. gracillima Engelm.: 

MEXICO, Mexico.  3km W of Ixtapan del Oro on rd. to Zitacuaro, Mich, 19o15’N, 

100o16’W, 1900m, 3 Dec 1983, Solheim et Benz 1073 (NY); Hinton 2497 (F). Sinaloa. 

Mazatlan, approx. 23o12’N, 106o25’W, 0-30m/0-100ft, 20 Nov 1926, Jones 22408 
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(UCR). C. grandiflora Kunth: ECUADOR, Carchi. Tulcan Canton, Colonia Huaqueña, 

Loma El Corazón, Bosque remanente, Suelos volcánicos, Bosque muy húmedo Montano, 

77o42’W 00o35’N, 3000 m, 8 Jul 1992, Tipax et al. 1563 (QCNE, MO); Ca. 2 km along 

the road El Angel-Tulcán, hedges along the road, 77o55’W, 0o38’N, alt. 3150-3300 m, 14 

May 1973, Holm-Nielsen et al. 5214 (AAU); Km 3 on old road El Angel-Tulcan, 

77o55’W 00o39’N, alt. 3200 m, 13 Aug 1985, Laegaard 54907A (QCA). PERU, Cuzco. 

Cuzco, Mar 1929, Herrera 2354a (F). Huerta. Conima, 3900 m, 6 Mar 1948, Aguilar 

s.n. (MO). Paucartambo. Cusco, along Río Paucartambo, S of Paucartambo, 13o18’S 

71o40’W, 3 Oct 1995, Croat 78149 (BRIT, MO). San Sebastián. Cusco, rocky slope of 

canyon, alt. 3300-3400 m, 25 Apr 1925, Pennell 13613 (F). C. gronovii var. gronovii 

Willd. ex Schultes: CANADA, Quebec. Cté de Chauveau, St-Augustin, face au 

Séminaire, 14 Aug 1975, Pérusse 75-391 (QFA); Comté de Lotbinière, Sainte-Croix-de-

Lotbinière, 2 km au sud-est de la Pointe au Platon, 46o39’10”N 71o49’30”W, 24 Oct 

1989, Garneau et Roy 89-626-M (QFA); Ottawa Distr. Near Gatineau Point, 2 mi N of 

Ottawa, 14 Sep 1952, Dore & Erskine 14109 (DAO). New Brunswick. Kent County, St. 

Louis Parish, 2.6 mi into Kouchibouguac National Park on Cap St. Louis Rd. along shore 

past gate, 9 Sep 1977, Munro & Cody 1786 (DAO). Ontario. near Long Point Provincial 

Park, 42°35'43.34"N, 80°27'2.66"W, 19 Oct 2014, Costea & Ho s.n. (WLU); Waterloo, 

Grand River, Claude Dubrick trail, 43°30'12.02"N, 80°29'37.97"W, 17 Oct 2014, Costea 

& Ho s.n. (WLU). C. gronovii var. latiflora Engelm.: USA, Indiana. Yatskievych 84-162 

(IND). Texas. Wood County, 5 mi NE of Crow, Border of mat, Lake Ellis, 2 Sep 1942, 

Lundell 11721 (SMU). C. harperi Small: USA, Alabama. Marion County, sandstone 

outcrop area by North Fork Creek S. of Hackleburg on US 43, 7 Sep 1968, Kral 32878 
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(SMU); undated, Damaree 46295 (NY). C. haughtii Yunck.: ECUADOR, Guayas. 

Salinas, La Puntilla, 6 Apr 1939, Asplund 5618 (G, KEW, S). Manabi. Manta, 6 Apr 

1955, Asplund 15974 (G, S, UPS). C. howelliana Rubtzoff: USA, California. True 6716 

(CAS); Shasta County, between Goose Valley and Burney Valley, ca. 3.5 mi NNW from 

Burney, 3200 ft, 8 Aug 1988, Taylor 10026 (CAS). C. hyalina Roth.: INDIA, Delhi. 

Delhi University ridge, 8 Aug 1954, Mkhanno 249 (ARIZ); Delhi University campus, 

690 ft, 12 Feb 1961, Pushpander s.n. (CANB). South West Africa. Mar 1931, Bosch 

25022 (BOLUS). C. iguanella Costea & I. García: MEXICO, Jalisco. Wooded hills near 

Guadalajara, 2 Sep 1893, Pringle 4529 (F, GH, MEXU, S). C. incurvata Progel: 

PARAGUAY, North Paraguay. In regione cursus superioris fluminis Apa, Dec 1901, 

Hassler 8178 (F); Zwischen Rio Apa und Aquidaban, 1908/1909, Fiebrig 5083 (K). 

Caaguazú. 4 km al N de Yhú en cerrado, suelo arenoso, 6 Feb 2003, López et al. 243 

(CTES). C. indecora Choisy: HONDURAS. Malfredi Lagoon, 100 ft, 1, May 1933, 

Schipp 1161 (S). USA, Arizona. Gila County, along roadside north of Winkelman, south 

of Globe, 5000 ft, 16 Aug 1973, Moldenke 27920 (AAU); Pinal County, near 

Peppersauce Campground on N side of Santa Catalina Mountains, ca. 15 miles SE of 

Oracle, 4700 ft, 30 Aug 1989, Austin 7599 (RSA). Nebraska. Arthur County, Arapaho 

Prairie, T18N R39W Sect 31, 32, ca. 1200 m, 27 Jul 1977, Vescio & Kruse 174 (NY). 

Nevada. Nye County, U.S. Atomic energy commission’s Nevada test site and vicinity, 

Abandoned field, Rt 52 near Rt 16 jnct., Cent. Pahrump, 2600 ft, 26 Sep 1970, Beatley 

s.n. (RSA). New Mexico. Spellenberg et al. 3427 (NY). Utah. Salt Lake City, 4200 ft, 25 

Aug 1879, Jones s.n. (RSA). C. jalapensis Schlechtendal: GUATEMALA, 

Totonicapán. Region of Chui-quisís, above Totonicapán on Rd. to Desconsuelo, 2500-



 132 

2800 m, 23 Jan 1948, Standley 84397 (NY). MEXICO, Chiapas.  Amatenango del 

Valle, 5800 ft, 26 Jul 1966, Breedlove 14669 (MICH); San Cristóbal de Las Casas, Santa 

Cruz in San Felipe, 15 Nov 1986, Ton & Lopez 9826 (GH); Tenejapa, Paraje Shohleh, 

2560 m, 12 Jan 1966, Ton 603 (NY). Hidalgo. El Chico, alrededores de Peña del Cuervo, 

5 km al SE de El Chico, 2800 m, 20 Jul 1986, Medina 3102 (MICH). Puebla. Near 

Huauchi-nango, 5000 ft, 27 Mar 1945, Sharp 45380 (NY). C. japonica Choisy: CHINA, 

Bizen. 7 Oct 1925, Masamune s.n. (NY). Guizhou. Songtaoi Xian, vicinity of Lengjiaba 

in the vicinity of the confluence of the Xiaohe and Dahe rivers, NE side of the Fanjing 

Shan mountain range, 820-1120 m, 5-9 Oct 1986, Bartholomew et al. 2309 (RSA). 

Shaanxi. Foping county, 500 m, 16 Oct 1998, Weiqing 619 (MO). JAPAN, Hondo. 17 

Oct 1952, Hashimoto 853 (NY). Honshu. Kyoto, Anshu, Yamashina-ku, Kyoto-shi, 70 

m, 25 Oct 1998, Tsugaru et al. 27202 (MO). C. killimanjari Oliv.: MALAWI. C. region, 

Lilongwe Nature Sanctuary, 1050 m, dry mixed woodland near river, 29 Jun 1987, 

LaCroix 4559 (MO). ZIMBABWE. Eyles 352 (J). C. legitima Costea & Stefanović: 

MEXICO, Baja California. On Amaranthus sp. Along arroyo 3 ½ mi S of La Paz, about 

24o09’N, 100o15’W, 3 Nov 1959, Wiggins 15294 (MEXU). Sonora. Cerro La Antena, 1 

km north of Microondas La Cabana; Sinaloan thornscrub, 27o27’45”N, 109o46’20”W, 

200 m, 19 Sep 1994, Van Devender 94-603 (ARIZ). USA, Arizona. Douglas, 11 Sep 

1948, Jones s.n. (RSA). C. lehmanniana Bunge: KAZAKHSTAN. Turkestan, 12 Feb 

1910, Fedtschenko 1 (NY). UZBEKISTAN. Samarkand, 30 Jul 1914, Knorring 104 

(NY); Syr-Darja, Tashkent, 1 Aug 1924, Vvedensky 153 (NY). C. leptantha Engelm.: 

MEXICO, Baja California. 10 miles inland from Bahia de Los Angeles near Agua 

Armaga, near 29o00’N 113o45’W, 22 May 1960, Lindsay 2928 (SD); On arid hills near 
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Club Aereo airport, Mulegé, 9 Apr 1963, Wiggins & Wiggins 18219 (K); Bahia de Los 

Angeles, southwest shore, near intersection of a road leading to the beach, along 

roadside, 14 Mar 1992, Fritsch & Fritsch 1337 (RSA). C. lindsayi Wiggins: MEXICO, 

Sinaloa. On talus slope 55.7 miles E of Villa Union, 6210 ft, 18 Mar 1955, Wiggins 

13185 (MO). C. longiloba Yunck.: BOLIVIA, Azero. Chuquisaca, Estsoión 

Experimental Zootecnica “El Salvador (27 km NW de Carandaytí, 63o13’W, 20o45’S, 

500 m, 800 m NE de la entrada a la Est. Exper., 13 Apr 1977, Krapovickas & Schinini 

31255 (CTES). PARAGUAY, Chaco. Parque Nacional Defensores del Chaco, a 30 km 

de Aguarrica en dirección a Lageren za, 21 Oct 1980, Casas & Molero s.n. (MO). C. 

lupuliformis Krock.: AUSTRIA. Ca. 1.2-1.25 km SE Baumgarten an der March, 14 Aug 

2004, Barta 2004-177 (NY); ca. 0.25 km ENE Sierndorf an der March, 28 Jul 2004, 

Barta 2004-302 (NY). HUNGARY. Prope Budam, 18 Aug 1898, Degen s.n. (RSA). C. 

macrocephala Schaffner: MEXICO, Baja California. Along road to El Valle Perdido 4 

mi. E of La Paz-Todos Santos road, about 23o43’N 110o10’W, 350 m, 6 Nov 1959, 

Wiggins 15323 (K). Sinaloa. Cosalá, 24°24'16"N 106°41'26"W, 4 Jan 2006, Van 

Devender 2006-15 (WLU); Van Devender 2006-16 (WLU). Sonora. Álamos, 

27°06'34"N 108°42'58"W, 5 Oct 2006, Van Devender 2006-1240 (WLU); Arivechi, 

28°49'15"N 109°10'24"W, 15 Sep 2006, Van Devender 2006-872 (WLU); San Javier, 

28°34'48"N 109°40'15"W, 31 Aug 2001, Van Devender 2001-758 (WLU); Yécora, 

28°25'48"N 109°11'31"W, 1 Sep 2001, Van Devender 2001-774 (WLU); 28°25'53"N 

109°09'34"W, 16 Sep 2006, Van Devender 2006-901 (WLU); 28°20'50"N 109°07'17"W, 

21 Sep 1998, Van Devender 98-1524 (WLU). C. macvaughii Yunck.: MEXICO, 

Michoacán. Churumuco, 18o37’09”N 101o36’48”W, 8 Sep 2007, Steinmann & Ramírez 
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5870 (IEB, WLU); Apatzingan, 19o01’40”N 102o17’43”W, 13 Mar 2010, García-Ruiz & 

Alvarez 8335 (CIMI, WLU). C. mexicana Yunck.: MEXICO, Jalisco. Autlan, 16 May 

1990, Cuevas & Núñez 3834 (IEB, ZEA). C. micrantha Choisy: CHILE, Atacama. 

Llano de Churque, S de Copiapó, 27o38’S 70o28’W, 7 Oct 1987, Teillier 894 (MO); 

Huasco, Isla Guacolda, 5-15 m, 26 Oct 1938, Worth & Morrison 16235 (MO). C. 

microstyla Engelm.: ARGENTINA. Boelcke et al. 10243 (CTES). C. mitriformis 

Engelm.: MEXICO, Chihuahua. Wooded canyons, Sierra Madre, 2 Oct 1887, Pringle 

1342 (MO). Coahuila. Ca 22 (air) miles WNW of Cuatro Cienegas, in upper portio of 

limestone Canyon de la Hacienda, below 1st lumber camp in Sierra de la Madera, 5000-

6000 ft, near 27o04’N 102o25’W, 28 Sep 1973, Henrickson 13638 (RSA). Michoacan. 

Mountains, near Lake Chapala, 18 Nov 1892, Pringle 4330 (S). Nuevo Leon. Hacienda 

Pablillo, Galeana, 8 Jan 1936, Taylor 38 (F). C. monogyna Vahl.: CANADA, Ontario. 

Mississauga, grown in greenhouse at U of T, 13 Jul 2015, Stefanovic s.n. (TRTE, WLU). 

UZBEKISTAN, Andijan. 25 Jul 1911, Knorring & Minkwitz 1590 (NY). C. natalensis 

Baker: BRAZIL, Rio Grande do Norte. Natal, Rudatis s.n. (NBG). C. nevadensis I. M. 

Johnston: USA, California. Inyo County, lower end of Westgaard Grade near Big Pine, 

5400 ft, 10 Jul 1938, Jaegar s.n. (RSA). Nevada. Rye County, sands W of Lathrop 

Wells, 2500 ft, Amargosa drainage basin, 19 Jun 1969, Beatley s.n. (RSA). C. nitida 

Meyer: SOUTH AFRICA. At memorial along contour trail to summit of 11:30 Peak, 

Clock Peaks, near Swellendam, 2000 ft, 11 Dec 1973, Carlquist 5082 (RSA). C. 

obtusiflora H.B.K. var. glandulosa Engelm.: MEXICO, Tamaulipas. At edge of lake, 

600 ft, 24 Jul 1939, Chase 7563 (MO). USA, Texas. Dallas, undated, Reverchan 2878 

(MO); Dallas County, bordering lake, Bachmans Dam, 24 Aug 1944, Lundell 11626 
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(SD); Rio Grande, unknown date 1848, Wright s.n. (MO); Bastrop County, Sep 1937, 

Tharp s.n. (MO); Austin, 14 Aug 1934, Tharp s.n. (UC1). C. obtusiflora var. obtusiflora 

Kunth: ARGENTINA, Corrientes. Concepción, 21 Dec 1977, Tressens & Sesa 12026 

(MO); near San Cosme, 29 Jan 1970, Pedersen 9628 (MO); Ituzaingó, Isla Apipé 

Grande, huerto San Antonio, 19 Nov 1976, Guaglianone et al. 138 (SI). USA, Delaware. 

Bank of creek, Middletown, 6 Aug 1911, Churchill 672 (MO). C. occidentalis 

Millspaugh: USA, California. Los Angeles County, San Clemente Island, Sand dunes of 

coastal terrace at West Cove, SW of the new landing field, 20 feet, 17 May 1991, Ross et 

al. 5087 (RSA); Marin County, Mt. Tamalpacs, 1200 ft, 8 May 1922, Munz 6445 (RSA); 

Siskiyou County, Siskiyou Mountains, Lily Pad Lake, 21 Aug 1958, Wheeler 7417 

(RSA). C. odontolepis Engelm.: MEXICO. Unknown locality, 1851-1852, Wright 1624 

(K). Sonora. Near a deserted Rancho on rocky hill sides, 15 Sep 1851, Wright 529 (MO). 

C. odorata Ruiz & Pavon: ECUADOR, Chimborazo. Cañon of the río Chanchan near 

Huigra, 4000 – 4500 ft, 7-14 May 1945, Camp 3027 (S). PERU, Huarochiri. Lima, San 

Mateo, 3200 m, 28 May 1940, Asplund 11177 (S); Lima, along Rio Chillón, above 

Obrajillo, Open rocky slopes, 2800 – 3200 m, 13-23 Jun 1925, Pennell 14382 (S). C. 

pacifica Costea & M. A. R. Wright: USA, California. Humboldt County, Humboldt Bay 

near Table Bluff, 28 Aug 1941, Harris 1175 (B); Santa Cruz, 30 Jun 1881, Jones 13467 

(MO); Thorne, 8 Aug 1965, Gveaelt 75280 (UC). C. paitana Yunck.: PERU, Paita. 

Piura, 150 m, 16-17 Mar 1927, Weberbauer 7762 (F); Pariñas Valley about 6 miles 

inland, growing on Cryptocarpus cordifolia (F-63), 26 Dec 1928, Haught F-100 (F).  C. 

parodiana Yuncker: ARGENTINA, de Salta. La Caldera, Yacones, Laderas de cerros al 

W del camino y rio, 1700 m, 29 Apr 1990, Novara & Bruno 9821 (S). Jujuy. Ledesma, 
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camino de Fraile pintado a El Aibal, 13 Nov 1992, Kiesling 8236 (MO); illegible locality, 

26 Feb 1901, Kurtz 11792 (S). C. partita Choisy: BRAZIL, Maranhão. Lorêto, Ilha de 

Balsas region, between the Balsas & Parnaíba Rivers, About 35 km S of Lorêto, 100 m 

NE of main house of Fazenda Morros, 7o23’S, 45o4’W, 300 m, 3 Apr 1962, Eiten & 

Eiten 3961 (US). Piaui. Corrente. BR-135, 500 m S da ponte sobre o rio Corrente, 

10o27’S, 45o9’W, 460 m, monte abierto, 3 Apr 1983, Krapovickas et al. 38723 (CTES). 

COLOMBIA. Forest, Rincon Hondo, Magdalena Valley, 5 Aug 1924, Allen 267 (F, 

MO). VENEZUELA, Lara. En hombrillo asfaltado y sustrado terrestre a orilla de la 

carretera Bobare-Aguada Grande 17 km antes del crusero a la ultima población, Edo. 

Lara, 29 Aug 1981, Ponce & Trujillo 342 (OAC).  C. parviflora Engelm. var. elongata 

Engelm.: BRAZIL, Goiás. Oliveira et al. 745 (US). C. pentagona Engelm.: USA, 

Florida. Levy County, border of salt marsh on Solidago stricta, Cedar Key, 10 May 

1958, Godfrey 56580 (NY). Indiana. Cass County, in a sandy fallow field about 1 ½ mi 

NW of Lake Cicott (P. O.), 1 Oct 1940, Deam 60219 (IND); Starke County, Abundant in 

a very sandy fallow field 2 ½ mi SE of North Judson, 18 Jul 1930, Deam 49139 (IND). 

Kansas. Trego County, 19 mi S and 2 mi W of Collier, 6 Aug 1952, David & Harr 4136 

(NY). Massachusetts. Tonset, 27 Aug 1901, Edmondson 2777 (NY). Michigan. 

Kalamazoo County, Fort Custer, 12 Aug 1945, Hanes 4541 (NY). Texas. Hunt County, 

7.4 mi E of Greenville, fine sandy clay roadside, 8 Jun 1953, Shinners 15030 (TEX/LL). 

Virginia. Beoford County, undated, Curtiss s.n (NY). C. planiflora Ten.: PALESTINA. 

Lentil field, lentils secondary host, near village of Kesan, near Tekoa, 31o35’N, 35o15’E, 

22 May 1987, Musselman 10461 (RSA). Unknown locality, undated, Priva 82 (S). C. 

plattensis A. Nelson: USA, Wyoming. Goshen County, T25N R60W Sec 31 S ½ SW ¼, 
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3 mi. NE of Torrington, 4200 ft, 15 Aug 1993, Dorn 5470 (MO); Platte Canon, 27 Aug 

1896, Nelson 2741 (MO). C. platyloba Progel: ARGENTINA, Misiones. San Ignacio, 

Balneario Teyú Cuaré, 27o16’S 55o35’W, 23 Nov 1995, Guaglianone et al. 3025 (K). 

BRAZIL, Rio Grande Do Sul. Osório, 3 m, 19 Jan 1951, Sehnem 5597 (B). 

COLOMBIA. Intendencia meta Villavicencio, grassy plains E of V, 450 m, 26-31 Aug 

1917, Pennell 1453 (MO). C. polyanthemos Schaffner ex Yunck.: MEXICO, Sonora. 

Monctezuma, 29o39’44”N 109o37’13”W, 14 Sep 2006, Van Devender 2006-809 (WLU); 

31 mi NW Queriego, 6 Mar 1933, Wiggins 6457 (US). C. potosina Schaffner: MEXICO, 

Estado de Mexico. Pedrigal (lava beds), Valley of Mexico, 7300 ft, 8 Oct 1896, Pringle 

6575 (MO). Guanajuato. Mpio. De San Diego de la Unión, 11 Sep 1997, Pérez et al. 

3707 (IEB). C. prismatica Pav. ex Choisy:  C. punana Costea & Stefanović: 

ECUADOR, Guayas. Isla Puná, Río Hondoto la Florida, 02o49’S, 80o01’W, 0 m a.s.l., 7 

Jun 1987, Madsen 63850 (AAU); El Placer, 0 – 5 km on path toward Río Hondo, 

02o48’S, 80o00’W, 8 Sep 1987, Madsen 63936 (AAU). C. rugosiceps Yunck.: 

GUATEMALA, Quiché. San Miguel Uspantan, Apr 1892, Heyde & Lux 2912 (GH). 

MEXICO, Oaxaca. Sierra Madre del Sur, 20 Jun 1962, Webster 11561 (GH). 

Queretaro. Jalpan, 21°28'11"N 99°09'02"W, 3 Sep 1005, Pérez-Calix 4603 (IEB, WLU). 

C. runyonii Yuncker: USA, Texas. Hidalgo County, off U.S. 83, 2 miles east of Sullivan 

City on gravelly hill, 31 Mar 1941, Lundell & Lundell 9827 (BRIT). C. salina Engelm.: 

CANADA, British Columbia. Vancouver Island, vicinity of Victoria, 24 Jul 1893, 

Macoun 695 (K). USA, Nevada. Caliente, Lower Temperate life zone, 27 Aug 1912, 

Jones s.n. (RSA). C. sidarum Liebm.: MEXICO, Yucatán. Chocholá, 4 km al E de la 

población de Chocholá, saliendo del libramiento del pueblo desde la caarretera Mérida-
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Campeche, a lo largo del camino de terracería Chocholá-Yaxcopoil, unos 25 km al SO de 

Mérida, approx. 20o44’30”N, 89o47’20”W, 20-50 m, 7 Nov 2001, Carnevali et al. 6425 

(CICY); unknown locality, 1841-1843, Liebmann 02359 (S). NICARAGUA, Managua. 

Near Parque de Las Madres; ca 12o08’N, 86o16’W, 80 m, 30 Nov 1981, Stevens 20950 

(RSA). C. squamata Engelm.: USA, New Mexico. Doña Ana Co., White Sands Missile 

Range, 3 mi E of Main Post, East Dry Lake Playa near Range Road 3 beweeen LC 33 and 

C Statio, 3900 ft, undated, Anderson & Brice 8057 (NMC); Collected on the Mesa west 

of the Organ Mountains, undated, Wooton s.n. (NMC). Texas. El Paso, 10 Sep 1883, 

Jones 4170 (RSA). C. strobilacea var. strobilacea Liebm.: MEXICO, Jalisco. Hillsides 

near Guadalajara, 10 Oct 1889, Pringle 2472 (K, MEXU). Morelos. Along Hwy 115 D 

(Autopista toll road) between Cuautla and Cuernavaca, NW of Cuautla, 3.9 miles SE of 

junction with Hwy 95 D (between Cuernavaca and Mexico City), 18o59’N, 99o06’W, 

1960 m, 24 Feb 1987, Croat & Hannon 65757 (MO). C. suaveolens Seringe: USA, 

California. Humboldt County, Myers Ranch, in alfalfa field, South Fork of Eel River 8 

miles above the mouth, 200 ft, 29 Sep 1918, Tracy 5113 (JEPS, UC1); Kern County, 

Rosedale, 30 Sep 1894, Abrams 458 (RSA). C. subinclusa Durand & Hilgard: USA, 

California. Kern County, Kernville, 2650 ft, 25 Sep 1970, Howell 47416 (NY); 

Riverside County, San Gorgonio wash at S. P. RR, San Gorgonio Pass, 2100 ft, 1 Dec 

1933, Wheeler 2284 (RSA); San Diego County, chaparral, 4 mi W of Hwy 94 on road to 

Otay Reservoir, N base of San Ysidro Mountains, 800 ft, 20 Aug 1952, Munz & Balls 

17942 (NY); San Luis Obispo County, Rinconada district, below Santa margarita and 

Pégo, 15 Sep 1946, Hoover 6401 (RSA). C. suksdorfii Yuncker: USA, California. 

Mariposa Co. Yosemite National Park, NAD27 Zone 11 280152E 4189262N, 8710 feet, 
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20 Jul 2004, Colwell AC 04-159 (UC1); Tuolumne County, Mineral spring near John 

Muir Trail in Lyell Canyon 1.4 km E of Rafferty Creek, Yosemite National Park UTM, 

Zone 11 297096E 4193313N, 2670 m, 8 Sep 2005, Colwell et al. AC05-233 (UC1); 

Siskiyou County, South side of Preston Peak, Rattlesnake Meadow, 25 Aug 1963, 

Wheeler 8269 (RSA). C. tasmanica Engelm.: AUSTRALIA, Victoria. Volcanic Plain, 

By Causeway between Lke Corangamite and Lake Martin, W of Berrybank- Cundare 

Road, 38o06’S, 142o33’E, Towards Lake Corangamite on N side of causeway, 29 Jan 

1991, Walsh 3045 (MEL). C. tinctoria var. aurea (Liebm.) Costea: MEXICO, San Luis 

Potosi. Unknown locality, 12-16 Sep 1902, Palmer 89 (S). C. tinctoria var. floribunda 

(Kunth) Costea: MEXICO, Veracruz. Maltrata, Jan 1883, Kerber s.n. (KEW). C. 

tinctoria var. tinctorial Martius: MEXICO, Hidalgo. 4 km al SE de Tolcayuca, 21 Nov 

1978, Ortega s.n. (MEXU). Mexico. 1 km al N de San Juan Citlatepec, mpio. De 

Zumpango, 2240 m, Rzedowski ME-22 (MEXU). Puebla. Cuapiaxtla, cerca de Tepeaca, 

2000 m, 6 Aug 1965, Rzedowski 20380 (MEXU); 1 km al SE de San Hipól.- to 

Xochiltenango, 11 Sep 1961, Sousa s.n. (MEXU). San Luis Potosi. Unknown locality, 

1877, Schaffner 781 (MEXU). C. tuberculata Brandegee: MEXICO, Baja California 

Sur. Hwy. 1, KP 20, 12 miles NE Villa Insurgentes El. 250’, 7 Sep 1983, Donahue 

73168 (RSA); Arroyo de Santa Agueda, southwest of Santa Rosalía on road to Santa 

Agueda, 27o15’N, 112o24’W, 3 Oct 1951, Carter & Kellogg 3085 (NY, RSA). Sonora. 

Bavispe, 3850 ft, 19 Oct 1890, Lumholtz 179 (GH). C. umbellata Kunth: GUIANA, 

Georgetown. Seacoast east of sea wall, 29 Oct 1919, Hitchcock 16564 (S). MEXICO, 

Guerrero. Coahuayutla de Guerrero, La Corva, 5.46 km al N, 18o32’8”N, 101o50’28”W, 

20 Oct 1999, Soto 17626 (MEXU). Jalisco. ca. 4.5 mi from Zacoalco on low moist areas 
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beside rd. to Acatlán, 1350-1375 m, Dieterle 3471 (MICH). Oaxaca. Cuicatlán, San Juan 

Bautista Cuitcatlan, 10.2 km al NW del Chilar, 17o47’21”N, 96o59’31”W, 665 m, 1 Oct 

2002, Soto 24009 (MEXU). Puebla. Calcareous hills near Tehuacan, 5500 ft, 24 Dec 

1895, Pringle 6297 (S); Tehuacán, 9 Aug 1938, Kenoyer A307 (F). USA, New Mexico. 

Doña Ana County, NW of Doña Ana Community College on ground next to corral, Las 

Cruces, 15 Oct 1990, Silversmith s.n. (NMC). C. umbrosa Beyr. ex Hook.: CANADA, 

Manitoba. Distr. De Saint-Boniface. Rivière Rouge, ecorre de la Rouge à La Fourche, 21 

Aug 1960, Boivin 13852 (DAO); Otterbourne, 4 Aug 1954, Bernard 54/349 (QFA); Sans 

Souci, sur la Salix dans la place sablouuense, 21 Jul 1956, Bernard 56/5473 (QFA); 

Winnepeg, sent to G. Knowles, Field Husbandry by M. R. Mackenzie 419 Kingston 

Crescent, 1950, Mackenzie s.n. (DAO); 13 Aug 1954, Bernard 497 (DAO). 

Saskatchewan. Little Manitou Lake on Mentha arvensis and Urtica dioica in damp 

wooded ravine bottom N side of the lake, 20 Aug 1992, Hudson 5082 (USAS). USA, 

Colorado. Dome Rock in Platte Canyon, 7000 ft, 8 Aug 1878, Jones 571 (RSA). C. 

vandevenderi Costea & Stefanović: MEXICO, Sonora. Álamos, El Palmarito, 

27°03'04"N 108°45'51"W, 1 Oct 2006, Van Devender 2006-983 (WLU); Yécora, 

28°22'40"N 109°09'W, 20 Sep 1998, Van Devender 98-1434 (WLU). C. victoriana 

Yuncker: AUSTRALIA, Northern Territory. 6 miles NW of Mt. Swan Station, ca. 

22o36’S 135o02’E, 11 Mar 1953, Perry 3329 (CANB). South Australia. Lake Eyre 

Region, between Hough’s Dam and Chapman’s Creek Tank, Dulkaninna Station 

alongside track from homestead to Chapman’s Creek, 29o04’23”S, 138o37’28”E, 9 Apr 

1997, Smyth 261 (CANB). Western Australia. Rear of Bullgarra cell, Karratha, Jul 

1987, Glennon 379 (CANB). C. volcanica Costea & I. García: MEXICO, Jalisco. 
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Tonila, Volcán Nevado de Colima, bosque de Abies religioda, 3100 m, Zamudio 4274 

(MICH). Puebla. Azumbilla, Puerto del Aire, carr. A Orizaba, 3 Jan 2002, Tenorio 21748 

(MEXU); Caltepec, El Ojo de Agua, al E de Caltepec, 18o4’N 97o25’W, 1250 m, 28 Dec 

2001, Tenorio & Kelly 21688 (MEXU). C. warnerii Yuncker: USA, New Mexico. Sierra 

County, Pedro Armendaris Grant, 15.6 miles north of Engle, east of Red Lake, 4800 feet, 

24 Sep 1998, Peterson 98-699 (NMC). Utah. Millard County, Vicinity of Flowell, 15 

miles west of Fillmore, 10 Sep 1957, Warner s.n. (UC1) isotype. C. werdermanii Hunz.: 

CHILE. Unknown locality, unknown date, Reiche s.n. (SGO). C. woodsonii Yuncker: 

MEXICO, Hidalgo. 3.5 km NW of Zimapan on road to La purism, hard limestone hills, 

1800 m, 20o46’N 99o25’W, 9 Oct 1985, Spellenberg 8334 (NMC); along Mexico 

Highway 85 between Tamazinchale and Zimapan, 90 km S of border with San Luis 

Potosi, 40 km N of Zimapan, 10 Oct 1985, Spellenberg et al. 8359 (NMC). PANAMA, 

Chiriqui. Lava field and slopes between Volcan de Chiriqui and Cerro Aquacate, 6500-

7200 ft, 16 Jan 1971, Wilbur et al. 13316 (MO); Road to top of El Baru from Boquete, 

east side of Baru, 7600-9000 ft, 17 Mar 1979, D’Arcy et al. 12622 (MO). C. 

xanthochortos Mart. ex Engelm. var. carinata (Yunck.) Yunck.: PARAGUAY, 

Cordillera. Cerrado forest, 25o07’S 57o19’W, 1 Jun 1993, Zardini & Guerrero 35961 

(MO, AS, WLU).  C. yucatana Yunck.: MEXICO, Unknown locality, unknown date, 

Rzedowski 25728 (G). Chiapas. Steep slope with Quercus, Drimys, and Magnolia near 

crest of ridge in the paraje of Banabil, Tenejapa, 9100 feet, 10 Oct 1965, Breedlove & 

Raven 12912 (F). Puebla. Laguna El Salado, along dirt road 3 km. W of hwy. Mex. 140, 

6 km N of Laguna de Alchichica, Tepeyahualco, 19o28’N 97o25’W, 20 Feb 1984, Nee & 

Taylor 29575 (MO).  
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A2. Infructescence Architecture 

Cuscuta acuta Engelm.: ECUADOR, Galapagos. Darwin Bay, Tower Island, 16 Jun 

1932, Howell 10140 (GH); Sulivan Bay, James Island, 13 Jun 1932, Howell 10048 (GH); 

Tower Island, Wm. 19 Apr 1923, Wheeler 21 (GH). PERU, Piura. Talará. 1926, Haught 

154a (GH). C. americana L.: MEXICO, Michoacan. Apatzingan, 19°02'29"N 

102°18'43"W, 21 Sep 2007, Carranza & Silva 7374 (IEB, WLU). Sinaloa. Concordia, El 

Capomito, 23°18'10"N 105°56'12"W, 7 Jan 2006, Reina & Van Devender 2006-117 

(WLU). Sonora. Álamos, Río Cuchujaqui, 27°02'56"N 108°44'00"W, 8 Oct 2006, Van 

Devender 2006-1303 (WLU); Soyopa, 28°34'33"N 109°33'02"W, 7 Jan 2001, Van 

Devender 2001-16 (WLU). C. argentinana Yunck.: ARGENTINA, Salta. Chicoana, La 

Zanja, 10 Apr 1980. Krapovickas y Schinini 36757 (CTES); Guachipas, Pampa Grande, 

29 Apr 1942, Hunziker 1775 (US); 27 Apr 1942, Hunziker 1729 ½ (US); Rosario de 

Lerma, 11 Jan 1929, Venturi 8556 (US). C. australis R. Br.: PAPUA NEW GUINEA, 

Morobe. Markham Valley, 12 Nov 1959, Brass 32508 (NY). C. azteca Costea & 

Stefanović: MEXICO, Aguascalientes. La Luz, El Llano, N 21.990081 W -101.994180, 

31 Aug 2012, Romero 3350*12P0050052 (WLU); San Antonio, Tepezala, N 22.22909 

W -102.23662, 04 Oct 2012, Romero 33530*12P0050047 (WLU). Queretaro. Ezequiel 

Montes, 8 Sep 1990, Rzedowski 49994 (IEB, WLU). C. boldinghii Urb.: BONAIRE. 
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North of OPEC, 27 Feb 1999, Proosdij 859 (AAH). HONDURAS. Cortés, San Pedro 

Sula, 3 Aug 1887, Thieme 5366 (US); Yoro, Near Progreso, 24 Jan 1928, Standley 55040 

(US). MEXICO, Sonora. Guiroba crossing of Rio Cuchujaqui, 26°56'15"N 108°53'W, 

28 Jan 1992, Van Devender 92-31 (ARIZ). Yucatán. X-Can, Lat: 20.86279 Long: -

87.66470, 20 Apr 2011, López 2011-00766 (WLU). C. brachycalyx Yunck.: Stefanović 

15-18 (WLU); Stefanović 13-41 (WLU); C. californica Hook. & Arn.: USA, California. 

San Bernardino County, Bristol Mountains, 19 Nov 2005, Andre 5631 (UCR); Cleghorn 

Canyon, 34°17'N 117°26'W, 21 Jul 1993, White 1771 (UCR). C. californica Hook. & 

Arn. var. papillosa Yuncker.: USA, California. Riverside County, Colorado Desert, 

Coachella Valley, 33°53'N 116°15'W, 20 Apr 1995, Sanders 16587 (UCR); Pushawalla 

Wash, 7 Dec 1946, Roos 3184 (UCR); San Bernardino County, Devil Canyon, 12 Jun 

1987, Sanders 7125 (UCR); Union Flat, 28 Aug 1978, Krantz s.n (UCR). C. campestris 

Yuncker.: CANADA, Ontario. Lat: 12.92793 Long: -78.92624, 15 Aug 2007, Oldham & 

Brinker 34876 (WLU). USA, California. Butte County, 39°21'51.0"N 121°29'21.0"W, 1 

Oct 2006, Ahart 13,388 (CHICO). Los Angeles County, Devels Gate Dam, Pasadena, 6 

Oct 1965, Wheeler s.n (UCR); SE of Alameda St. & San Diego (405) Fwy, E of 

Dominguez Flood Control Channel, 8 Jun 1973, Wheeler s.n (UCR); NE end of Santa 

Susana Mtns, 34°25'07"N 118°38'13"W, 6 Aug 2003, Sanders 27126 (UCR); San Gabriel 

Valley, 34°00'36"N 117°51'33"W, 5 Jun 1973, Clarke s.n (UCR); Yolo County, 

Sacramento Valley, 7mi W of Davis, 38°33.7'N 121°55'W, 29 Sep 1958, Crampton 5117 

(UCR). MEXICO, Tlaxcala. Tetlatlahuca, Santa Isabel, N 19.20423 W -98.28179, 10 

Oct 2011, Flores 2011-0131 (WLU). TÜRKMENISTAN. Ashgabat, 16 Jun 1975, 

Ivanov 45598 (CHICO). C. cephalanthi Engelm.: CANADA, Ontario. Rainy River 
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County, Seine River, Lat: 48.69902 Long: -92.60554, 23 Aug 2002, Oldham 28012 

(NHIC, WLU). C. chapalana Yuncker.: MEXICO, Jalisco. Jocotepec, 20°17'727 N 

103°29' 935 W, 8 Nov 2008, Ruiz 8169 (CIMI, WLU). Michoacan, Huiramba, 5 Sep 

1986, Escobedo 1223 (IEB, WLU). C. chilensis Ker Gawl.: CHILE. Copada, O’Higgins, 

25 Jan 1925, Pennell 12261 (US); Casilla, Valdivia, Valparaiso, 1895, Buchtien 4508 

(US); Uspallata Pass, Feb 1903, Buchtien 4507 (US); Valparaiso, Cerro Las Vizcaches, 

Ramayama Copper Mine, 8 Dec 1951, Hutchison 116 (US). C. chinensis Lam. var. 

chinensis: AUSTRALIA. 9.9km N of Long Spring, 14°48'20"S 128°39'0"E, 9 Mar 1989, 

Keighery 11100 (PERTH, WLU). C. chinensis var. apiculata (Engelm.) Costea & 

Stefanović: MEXICO, Durango. Mapimí, 25°47'N 103°46"W, 8 Sep 1983, Torrecillas 

237 (CIIDIR, WLU). Sonora. 2.5mi S of Llano, 15 Sep 1934, Wiggins 7221 (US); 

Onavas, Rancho La Mula, 28°28'50"N 109°22'W, 30 Aug 2000, Van Devender 2000-506 

(ARIZ). C. colombiana Yunck.: COLOMBIA. Magdalena, near Riohachsa, 23 Dec 

1944, Haught 4535 (US). C. corniculata Engelm.: COLOMBIA. Meta, Villavicencio, 

31 Aug 1917, Pennell 1453 (GH). C. corymbosa Ruiz & Pav. var. grandiflora Engelm.: 

MEXICO, Michoacan. Real de Otzumatlán, 20 Nov 1986, Rzedowski 41882 (IEB, 

WLU); Queréndaro, 26 Feb 1989, Rzedowski 48303 (IEB, WLU). C. corymbosa var. 

stylosa (Choisy) Engelm.: MEXICO, Chalco. Cerro Tlapacoya, 7 Nov 1971, Rzedowski 

28752 (UCR). Oaxaca. Nacaltepec, 21 Sep 1895, Smith 829 (GH). Queretaro. 10km S 

of Querétaro, 3 Jul 1992, Rzedowski 51448 (IEB, WLU). C. costaricensis Yunck.: 

MEXICO, Guanjuato. El Volcancito, Yuriria, 2 Oct 1986, Zamudio 4655 (IEB, WLU). 

Michoacan. Coeneo, 29 Nov 1985, Escobedo 730 (IEB, WLU). Sonora. Álamos, 

27°07'08"N 108°43'18"W, 2 Oct 2006, Reina 2006-1049 (WLU); Yécora, Río Yepachic, 
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28°27'10"N 108°32'15"W, 27 Sep 1998, Van Devender 98-1789 (WLU); 28°29'44"N 

108°41'37"W, 14 Sep 1999, Van Devender 99-563 (WLU); 28°21'48"N 108°55'56"W, 16 

Sep 2006, Van Devender 2006-888 (WLU). C. cotijana Costea & I. García:  MEXICO, 

Colima. Queseria, 14 Mar 2010, García 8338 (CIMI, WLU); García 8337 (CIMI, 

WLU). Jalisco. Quitupan, 9 Sep 2008, García Ruiz 8089 (CIMI, WLU); 19°42'42.1"N 

102°55'42.2"W, 10 Aug 2009, García Ruiz 8263 (CIMI, WLU). C. cristata Engelm.: 

ARGENTINA, Buenos Aires, Punta Lara, Feb 1942, Hunziker 2487 (US); Crovetto 46 

(CTES). Córdoba. San Esteban, 4 Jan 1938, Nicora 1575 (CTES). La Rioja. Sanagasta, 

18 Feb 1944, Hunziker 2487 (US). C. decipiens Yunck.: MEXICO, Coahuila. Filipinas, 

Oct 1910, Purpus 4973 (GH). C. deltoidea Yunck.: MEXICO, Michoacan. Monte Leon, 

11 Nov 1892, Pringle 5350 (US). C. denticulata Engelm.: USA, California. Inyo, Hwy 

178, 3mi E of Shoshone, 2013, Stefanović 13-28 (WLU); San Bernardino, Hwy 66, 3mi E 

of Amboy, 2013, Stefanović 13-22 (WLU); Hwy 95, 15mi W of Essex, 15mi E of 

Amboy, 2013, Stefanović 13-19 (WLU). C. erosa Yunck.: MEXICO, Sonora. 4mi E of 

Willard, 5 Sep 1941, Wiggins 288 (ARIZ); Cucurpe, 30°19'46"N 110°42'18"W, 22 Aug 

2001, Reina 2001-748 (WLU); Nogales, 31°11'49"N 111°05'46"W, 6 Sep 2005, Van 

Devender 2005-1226 (WLU); Opodepe, 30°03'14"N 110°03'31"W, 21 Aug 2001, Van 

Devender 2001-737 (WLU). C. foetida Kunth. var. foetida: ECUADOR, Pichincha. 

Cantón Mejía, 00°30'S 78°25'W, 23 May 1988, Zac 3700 (MO, WLU); El Pongo, 

00°15'S 78°40'W, 24 Jul 1987, Zac 2257 (MO, WLU). PERU. Amazonas, Luya, 06°25'S 

77°55'W, 9 Apr 2001, Van der Werff 16851 (MO, WLU). C. friesii Yunck.: 

ARGENTINA. Catamarca, Los Varela, Ambato, 28 Mar 1995, Toledo 12993 (CTES); 

Salta, Cachi, 19 Mar 1972, Krapovickas 21964 (CTES); Tucumán, Tafí, Infiernillo, 18 
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Mar 1972, Krapovickas 21898 (CTES). C. glabrior (Engelm.) Yunck.: MEXICO, 

Coahuila. 18mi NE Saltillo, 6 Aug 1957, Waterfall 13240 (US); Saltillo, 25°00'N 

101°05'W, 5 Jun 1990, Villarreal 5676 (ARIZ); Buenavista, El Bajío, 12 Oct 1981, 

Carranza 1396 (ARIZ). C. globiflora Engelm.: BOLIVIA, Murillo. La Paz, Valle de la 

Luna, 27 Feb 1975, Davis 5196 (GH); 16°32'S 68°05'W, 9 Jan 1982, Solomon 6681 (MO, 

WLU); 16°40'S 68°01'W, 28 Mar 1982; Solomon 7400 (MO). C. globulosa Benth.: 

CUBA, Santiago. El Cobre, 24 Feb 1902, Palmer 393 (GH). GRENADA. Lowthers 

Lane, 12 Jun 1908, illegible author 77 (GH). MONTSERRAT. Plymouth, 8 Sep 1935, 

Potter 5558 (GH). ST. VINCENT. Dorsetshire Hill, near Kingstown, 4 Apr 1947, 

Morton 4712 (GH). TRINIDAD. St. Augustine, 23 Mar 1920, Britton 947 (GH). US 

VIRGIN ISLANDS. Saint Croix, Feb 1955, Hunnewell 20,145 left specimen (GH). C. 

gracillima Engelm.: MEXICO, Sinaloa. Concordia, 23°19'54"N 105°56'29"W, 8 Jan 

2006, Van Devender 2006-182 (WLU); Van Devender 2006-166 (WLU); Río Panuco, 

23°19'16"N 105°57'45"W, 1 Mar 2007, Van Devender 2007-215 (WLU). C. grandiflora 

Kunth.: BOLIVIA, Murillo. La Paz, 16°32'S 68°03'W, 21 Mar 1982, Solomon 7217 

(MO, WLU). PERU, Cusco. Calca, Lares, Suyo, 12°28'S 72°00'W, 17 Jun 2005, 

Valenzuela 5713 (MO, WLU); Urubamba, Yucay, 13°18'S 72°04'W, 22 Jul 2003, 

Huamantupa 3668 (MO, WLU). C. gronovii Willd. ex Schult.: CANADA, Ontario. 

Waterloo, Grand River, 18 Sep 2014, Costea s.n (WLU). SANTO DOMINGO. 

Cordillera Central, La Vega, Constanza, 9 Nov 1929, Ekman 14062 (AAH). C. gronovii 

var. latiflora Engelm.: CANADA, Ontario. Peterborough, Otonabee, Lat: 44.23881 

Long: -78.15329, 5 Aug 2002, Oldham 27653 (NHIC, WLU). DOMINICAN 

REPUBLIC, Trujillo. Repressa Dam, Maná, 26 Nov 1947, Allard 17186 (US); Allard 
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17184 (US). C. haughtii Yunck.: ECUADOR, Guayas. Salinas, 2°13'S 81°W, 5 Mar 

1941, Svenson 11,281 (GH); 26 Mar 1941, Svenson 11074 (US). PERU, Piura. 

Huancabamba, 30 Apr 1949, Ferreyra 6030 (US); Talara, 11 Oct 1925, Johnston 3514 

(GH). C. incurvata Prog.: PARAGUAY. Caaguazú, 4km N of Yhú, 6 Feb 2003, López 

243 (CTES). C. indecora Choisy: MEXICO, Chihuahua. Jiménez, R. el Capricho, N 

27.36752 W -104.87734, 22 Jul 2011, Domínguez 2011-01261 (WLU). López, Salaices, 

N 27.02717 W -105.19731, 1 Aug 2011, Domínguez 2011-01256 (WLU). Querétaro. 

San Juan del Rio, Vistha, Lat: 20°45093 Long: -100°00113, 30 Jun 2011, Monrreal 

2011-00670 (WLU). Zacatecas. Loreto, El Tepetate, N 22.36323 W -102.08333, 26 Oct 

2011, Ibarra 23475-11P0038310 (WLU). C. jalapensis Schltdl.: MEXICO, Guaajuato. 

Arroyo Seco, 21 Nov 1995, Pérez 3261 (IEB, WLU). Michoacan. Indaparapeo, 30 Sep 

2006, Rzedowski 54246 (IEB, WLU). Queretaro. Landa, 16 Mar 1987, Rzedowski 42811 

(IEB, WLU); Pinal de Amoles, San Gaspar, 13 Sep 1989, Zamudio 7495 (IEB, WLU). C. 

legitima Costea & Stefanović: MEXICO, Sonora. Agua Prieta, 31°18'21"N 

109°34'55"W, 13 Sep 2006, Van Devender 2006-757 (WLU); Soyopa, 28°35'39"N 

109°35'33"W, 16 Aug 2006, Van Devender 2006-586 (WLU); Van Devender 2006-606 

(WLU); Van Devender, 2006-607 (WLU); Tónichi, 28°35'55"N 109°33'50"W, 17 Aug 

2006, Van Devender 2006-627 (WLU). USA, Arizona. Pima County, Tucson, 

32°17'25"N 110°57'35"W, 17 Nov 2005, Van Devender 2005-1661 (WLU). C. leptantha 

Engelm.: MEXICO, Baja California. Bahia de Los Angeles, 14 Mar 1992, Fritsch 1337 

(UCR); Between Santonio and Puerto de Bahia de los Muertos, 4 May 1931, Wiggins 

5625 (US). Sonora. Hermosillo, 28°52'28"N 112°01'20"W, 31 Dec 2000, Van Devender 

2000-933 (WLU). USA, New Mexico. Hidalgo County, Animas Valley, 32°15'06"N 
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108°52'45"W, 20 Aug 2004, Ballmer s.n (UCR). C. lindsayi Wiggins: MEXICO, 

Jalisco. Mazamitla, 17 Feb 2007, García Ruiz 7571 (CIMI, WLU); 19°51'33.6"N 

102°59'38.3"W, García Ruiz 7569 (CIMI, WLU); Quitupan, 12 Apr 2008, García Ruiz 

8076 (CIMI, WLU). C. longiloba Yunck.: BOLIVIA. Chuquisaca, 63°13'W 20°45'S, 13 

Apr 1977, Krapovickas 31255 (CTES). C. macrocephala W. Schaffn. ex Yunck.: 

MEXICO, Sinaloa. Cosalá, 24°24'16"N 106°41'26"W, 4 Jan 2006, Van Devender 2006-

15 (WLU); Van Devender 2006-16 (WLU). Sonora. Álamos, 27°06'34"N 108°42'58"W, 

5 Oct 2006, Van Devender 2006-1240 (WLU); Arivechi, 28°49'15"N 109°10'24"W, 15 

Sep 2006, Van Devender 2006-872 (WLU); San Javier, 28°34'48"N 109°40'15"W, 31 

Aug 2001, Van Devender 2001-758 (WLU); Yécora, 28°25'48"N 109°11'31"W, 1 Sep 

2001, Van Devender 2001-774 (WLU); 28°25'53"N 109°09'34"W, 16 Sep 2006, Van 

Devender 2006-901 (WLU); 28°20'50"N 109°07'17"W, 21 Sep 1998, Van Devender 98-

1524 (WLU). C. mcvaughii Yunck.: MEXICO, Michoacán. Apatzingan, 19°01'40"N 

102°17'43"W, 13 Mar 2010, García Ruiz 8335 (CIMI, WLU); Churumuco, 18°37'09"N 

101°36'48"W, 8 Sep 2007, Steinmann 5870 (IEB, WLU). C. mitriformis Engelm.: 

MEXICO, Coahuila. Cañón de San Lorenzo, 25°20'N 100°59'W, 17 Nov 1983, 

Villarreal 1991 (ARIZ). Durango. Durango, 23°36'53"N 105°9'24"W, 11 Sep 2001, 

Carrillo 356 (CIIDIR, WLU). Guanajuato. Atarjea, El Coporito, 4 Jun 1991, Ventura 

9215 (IEB, WLU). C. nevadensis I. M. Johnst.: USA, California. Inyo, Hwy 178, 1mi E 

of Shoshone, 2013, Stefanović 13-27B (WLU); Hwy 127, 5mi N of Death Valley Jct., 

2013, Stefanović 13-48 (WLU). Nevada. Nye, Hwy 373 intersection with road to Ash 

Meadows, 2013, Stefanović 13-47. C. obtusiflora Kunth.: COLOMBIA, Putumayo. 

Valle de Sibundoy, 29 Apr 1963, Bristol 892 (GH). JAMAICA. St. Catherine Parish, 
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Charlton, 1m W Ewarton, 5 Nov 1958, Proctor 18327 (AAH); Trelawny, Windsor estate, 

22 Aug 1955, Proctor 10531 (US).  C. obtusiflora var. glandulosa Engelm.: MEXICO, 

Jalisco. San Diego (Lázaro Cárdenas), 19°54'44.1"N 102°49'34.8"W, 8 Aug 2009, 

García Ruiz 8256 (CIMI, WLU); 19 Aug 2007, García Ruiz 7752 (CIMI, WLU); 18 Dec 

2007, García Ruiz 8054 (CIMI, WLU). Michoacan. Huaniqueo, 10 Sep 1990, Barriga 

6471 (IEB, WLU). C. occidentalis Millsp.: Stefanović 15-09 (WLU). C. odontolepis 

Engelm.: MEXICO, Sonora. Arivechi, 28°49'15"N 109°10'24"W, 15 Sep 2006, Van 

Devender 2006-869 (WLU); Fronteras, 30°42'41"N 109°35'15"W, 13 Aug 2006, Van 

Devender 2006-467 (WLU). C. odorata Ruiz & Pav.: PERU, Apurimac. Abancay, 

13°36'S 72°54'W, 16 Aug 2002, Valenzuela 291 (MO, WLU). Contumazá. Cajamarca, 1 

May 1981, Sagástegui 9769 (MO, HUT, WLU); 26 May 1981, Sagástegui 9936 (MO, 

HUT, WLU). C. pacifica Costea & Wright: Stefanović 15-03B; Stefanović 15-03A; 

Stefanović 15-24. C. paitana Yunck.: PERU, Paita. Piura, 30km SE of Talara, 4 Mar 

1939, Horton 11575 (GH); Pariñas Valley, 1925, Haught 11 (US). C. parodiana Yunck.: 

ARGEINTINA, Salta. Cuesta del Gallinato, Caldera, 29 May 1980, Pedersen 12841 

(CTES). Jujuy. Calilegua, 3 Jun 1943, Bartlett 20344 (US). Tucumán. Capital, 

Muñecas, 22 Mar 1922, Venturi 3880 (US); Siambon, 25 Apr 1925, Venturi 3880 (US). 

C. partita Choisy: BRAZIL, Ceará. Guaramiranga, 1938, Eugenio 1017 (GH). 

COLOMBIA, Magdalena. Riohacha, 11 Nov 1944, Haught 4435 (US, GH). C. 

platyloba Prog.: ARGENTINA, Misiones. Candelaria, Bonpland, 19 Jan 1910, 

Jorgensen-Hansen 31784 (CTES, BAB). BRAZIL, Paraná. Jaguariaíva, 23 Jun 1910, 

Dusén 10005 (GH). Rio de Janeiro. Gavea Pequena, 8 Mar 1931, Brade 10651 (GH). C. 

polyanthemos Schaffn. ex Yunck.: MEXICO, Sonora. 31 mi NW Queriego, 6 Mar 
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1933, Wiggins 6457 (US); Moctezuma, 29°39'44"N 109°37'13"W, 14 Sep 2006, Van 

Devender 2006-809 (WLU). C. prismatica Pav. ex Choisy: ECUADOR, Guayas. 

Guayaquil, 26 Jun 1923, Hitchcock 20141 (US, GH). C. purpurata Phil.: CANADA, 

Ontario. Mississauga, grown in greenhouse at U of T, 13 Jul 2015, Stefanović s.n (TRTE 

WLU). CHILE, Antofagasta. Near Paso Malo, N of Taltal, 28 Nov 1925, Johnston 5170 

(US). Copiapó. 26°54'S 70°47'W, 14 Oct 1965, Ricardi CONC47838 (CTES). C. 

purpusii Yunck.: MEXICO, Queretaro. Cadereyta, 20°54'27"N 99°58'57"W, 18 Sep 

2006, Zamudio & Alcalá, s.n (IEB, WLU). C. rugosiceps Yunck.: GUATEMALA, 

Quiché. San Miguel Uspantan, Apr 1892, Heyde & Lux 2912 (GH). MEXICO, Oaxaca. 

Sierra Madre del Sur, 20 Jun 1962, Webster 11561 (GH). Queretaro. Jalpan, 21°28'11"N 

99°09'02"W, 3 Sep 1005, Pérez-Calix 4603 (IEB, WLU). C. salina Engelm.: USA, 

California. Riverside County, 3mi NE Elsinore, 6 Aug 1969, Clarke s.n (UCR); San 

Bernardino County, Rabbit Springs, 1mi NW Lucerne Valley Town Ctr., 7 Jun 1978, 

Vasek s.n (UCR). Nevada. Churchill County Stillwater Range, 39°51.128'N 

118°13.968'W, 14 Jul 2015, Tiehm 17087 (UNLV, WLU). C. sidarum Liebm.: 

MEXICO, Michoacan. Arteaga, 18°27'55"N 101°58'40"W, 20 Nov 2003, Steinmann 

3883 (IEB, WLU); Lázaro Cárdenas, 4 Feb 2008, Carranza & Silva 7451 (IEB, WLU); 

18°01'23"N 103°21'19"W, Carranza & Silva 7458 (IEB ,WLU). C. squamata Engelm.: 

MEXICO, Chihuahua. Jiménez, N 27.18376 W -104.84068, 28 Jun 2011, Calderón 

Domínguez 2011-01255 (WLU); López, Salaices, N 27.03560 W -105.17870, 12 Aug 

2011, Calderón Domínguez 2011-01259 (WLU); Valley of the Rio Grande, Paso del 

Norte, 14 Sep 1886, Pringle 785 (US). C. strobilacea Liebm.: MEXICO, Durango. 

Sierra Tres Picos, 20 Dec 1939, Gentry 5291 (ARIZ). Morelos. 18°58'48"N 99°06'W, 24 
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Feb 1987, Croat 65757 (MO, WLU). Nayarit. Tepic, 21°35'31.1"N 104°51'35.8W, 12 

Aug 2009, García Ruiz 8274 (CIMI, WLU). C. suaveolens Ser.: ARGEINTINA, 

Medoza. Luján, 15 Apr 1945, Semper 591 (ARIZ). CHILE, Rancagua. May 1828, 

Bertero 20 (GH). C. subinclusa Durand & Hilg.: USA, California. Kern County, 3mi S 

of Havilah to Caliente, 24 Sep 1970, Thomas 47408 (UCR); San Bernardino County, 

Colton, 34°02'45"N 117°21'W, 2 Jul 2000, Provance 2263 (UCR); San Diego County, 

Blue Sky Ecological Reserve, 33°00'57"N 117°00'51"W, 5 Oct 2005, Sanders 31698 

(UCR); San Mateo Creek, 32°24'N 117°35'W, 7 Jun 1986, Prigge 7215 (UCR). C. 

tinctoria Mart. ex Engelm.: MEXICO, México. Temascaltepec, 29 Dec 2009, García 

Ruiz 8323 (CIMI, WLU); Temascalcingo, 3 Apr 2010, García Ruiz 8341 (CIMI, WLU). 

Michoacán. Briseñas, 20°15'41.1"N 102°33'03.9"W, 14 Aug 2009, García Ruiz 8279 

(CIMI, WLU); San Pedro (Venustiano Carranza), 20°06'44.4"N 102°39'32.7"W, 20 Feb 

2007, García Ruiz 7575 (CIMI, WLU). Oaxaca. 5-6km SSE carretera Ejutla-Miahuatlán, 

7 Apr 2010, García Ruiz 8344 (CII, WLU). Sonora. Magdalena de Kino, 30°37'N 

110°57'30"W, 29 Dec 1994, Van Devender 94-1008 (WLU), C. tuberculata Brandegee: 

MEXICO, Sonora. Moctezuma, 29°49'40"N 109°40'28"W, 13 Aug 2006, Van Devender 

2006-457 (WLU); 29°39'30"N 109°36'37"W, 14 Aug 2006, Van Devender 2006-514 

(WLU); Villa Pesqueira, 29°35'N 110°01'W, Shortman 96-51 (ARIZ). C. umbellata 

Kunth.: MEXICO, Guanajuato. León, 7 Jul 2001, Ocampo 1067 (IEB, WLU); Yuriria, 

15 Jun 2006, Carranza & Silva 7191 (IEB, WLU); Carranza & Silva 7190 (IEB, WLU). 

C. vandevenderi Costea & Stefanović: MEXICO, Sonora. Álamos, El Palmarito, 

27°03'04"N 108°45'51"W, 1 Oct 2006, Van Devender 2006-983 (WLU); Yécora, 

28°22'40"N 109°09'W, 20 Sep 1998, Van Devender 98-1434 (WLU). C. victoriana 
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Yunck.: AUSTRALIA. Coondiner Pool, ca. 71km N of Newman, 22°43'0"S 119°38'0"E, 

30 Mar 1984, Newbey 10073 (PERTH, WLU); ca. 10km E of Boolaloo Homestead, Mt. 

Stuart Station homestead, 22°34'36"S 115°53'10"E, 15 May 1997, Mitchell 4734 

(PERTH, WLU); East Island, Ashmore Reef, 12°15'34.90"S 123°5'53.5"E, 9 Sep 2004, 

Williams 8235 (PERTH, WLU). C. volcanica Costea & I. García: MEXICO, Jalisco. 

Mazamitla, 19°51'27.3"N 102°58'59.4"W, 17 Feb 2007, García Ruiz 7568 (CIMI, WLU); 

Quitupan, 19°52.778'N 102°57.328'W, 10 Aug 2009, García Ruiz 8262 (CIMI, WLU). 

Michoacán. Sirio, Patamban, 31 Mar 2009, García Ruiz 8072 Type (CIMI, WLU); 

Tancítaro, 19°21'53.4"N 102°15'27.8"W, 15 Dec 2007, García Ruiz 8029 (CIMI, WLU). 

C. xanthochortos var. carinata Yunck.: PARAGUAY, Caazapá. 26°16'26"S 

55°45'47"W, 14 Dec 1999, Zardini 52948 (MO, AS, WLU). Cordillera, Cerrado forest, 

25°07'S 57°19'W, 1 Jun 1993, Zardini 35961 (MO, AS, WLU). San Pedro, 24°42'07"S 

56°30'31"W, 24 Jun 2001, Zardini 56666 (MO, FACEN, WLU).  C. yucatana Yunck.: 

MEXICO, Chiapas. San Cristobal, 7 Aug 1967, Gittins 4202 (UCR).  
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APPENDIX B: INFRUCTESCENCE COMPACTNESS FORMULA 

 

𝐼𝐶 = (
𝑙𝑡 + 𝑝

𝑁𝑜
) (

1

𝑑 ∗ 𝑁𝑎 ∗ 𝑀𝑎𝑥𝑁𝑎
) 

 

The infructescence compactness formula included in the text is indicated above. 

As lt (total length of inflorescence) and p (pedicel length) increases, inflorescence 

decreases in compactness.  

As No (number of orders/nodes), d (fruit diameter), Na (number of axes at the first node), 

MaxNa (maximum number of axes present at a single node) increases, inflorescence 

increases in compactness. 

The first half of the equation considers the average length of nodes in an inflorescence. 

Therefore, as IC approaches 0, inflorescence compactness increases.  
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APPENDIX C: DATA MATRICES AND ADDITONAL RESULTS 

 

Table 1. Fruit evolution data matrix. For character states refer to Table 1 in the text. 1 = 

dehiscence, 2 = fruit shape, 3 = position of persistent pericarp, 4 = translucence, 5 = 

laticifers visible, 6 = interstylar aperture morphology, 7 = fruit length, 8 = fruit width, 9 = 

ratio L/W, 10 = interstylar aperture length, 11 = interstylar aperture width, 12 = number 

of seeds.  

Species 1 2 3 4 5 6 7 8 9 10 11 12 

C.brachycalyx 0&3 1&2&5 1 1 0 2 1.5 2.2 0.68 0.4 0.1 3.1 

C.occidentalis 0&3 1&2 2 1 0 2 1.73 2.41 0.71 0.67 0.26 3.5 

C.californica 0&3 1&2 2 1 0 2 2.5 2.84 0.88 0.84 0.44 3.52 

C.salina 0&3 3&4 1&2 1 1 2&3 1.7 1.3 1.3 0.51 0.15 1 

C.pacifica 0&3 3&4 2 0 1 2&3 2.25 1.52 1.48 0.65 0.45 1 

C.suksdorfii 0&3 1&4 3 0 1 2 1.82 2.09 0.87 0.56 0.26 2.3 

C.subinclusa 0&3 1&3&4 1 0 1 2&3 3.88 2.47 1.59 1.1 0.15 1 

C.howelliana 0&3 1&2 1 1 0 2 1.6 2.02 0.79 0.41 0.18 2 

C.decipiens 0 1&3&4 2 0 1 2&3 2.3 1.65 1.39 0.21 0.21 1 

C.obtusiflora_glandulosa 0&3 1&2 3 0 1 2 1.4 2.65 0.52 0.86 0.58 3.2 

C.obtusiflora_obtusiflora 0&3 1&2 3 0 1 2 1.81 2.34 0.5 0.81 0.51 3.4 

C.australis_tinei 0&3 1&2 3 0 1 2 2.2 2.98 0.73 1.1 0.53 3.4 

C.australis_australis 0&3 1&2 3 0 1 2 2.6 3.6 0.72 1.39 0.61 3.4 

C.campestris 0&3 1&2 3 0 1 2 2.43 3.44 0.77 1.26 0.56 3.5 

C. 

campestris_gymnocarpa 0&3 1&2 3 1 1 2 2.2 3.01 0.73 1.1 0.46 3.3 

C.pentagona 0&3 1&2 3 0 1 2 1.55 2 0.775 0.72 0.46 3.3 

C.harperi 0&3 1&2 3 1 1 2 1.01 1.12 0.9 0.42 0.23 1.2 

C.plattensis 0&3 1&2 2 0 1 2 2.8 3.62 0.77 0.96 0.46 2.8 

C.runyonii 0&3 1&2 2 0 1 2 2 2.6 0.76 0.58 0.32 2.1 

C.glabrior 0&3 1&2 2 0 1 2 2.3 2.8 0.82 0.67 0.36 2.2 

C.micrantha 0 3&4 2 1 1 2 1.54 1.54 1.2 0.16 0.1 1.7 

C.xanthochortos_carinata 0&1&2 1&4 2 1 1 3 2.07 2.36 0.87 0.62 0.48 3 

C.corniculata 0&1&2 1&4 2 1 1 3 2.1 2.44 0.86 0.77 0.62 3 

C.suaveolens 0 1 2 1 1 2 2.2 2.6 0.84 0.61 0.42 2.9 

C.werdermanii 0 1 2 1 1 2 2.46 2.7 0.91 0.62 0.28 3.2 

C.parviflora_elongata 0 1&4 2 1 1 2 1.85 2.19 0.82 0.62 0.6 2 
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C.racemosa_miniata 0 1 2 1 1 2 1.45 1.82 0.79 0.45 0.23 1.5 

C.platyloba 0&2 1&4&5 2 1 1 2&3 2.62 2.72 0.96 0.61 0.31 3 

C.incurvata 1&2 1&4&5 2 1 1 2&3 2.2 2.49 0.88 0.67 0.62 2.6 

C.cuspidata 0 1&2&3&4 1 1 1 3 2.18 3.26 0.66 0.59 0.47 3.5 

C.squamata 0 3&4 1 1 1 3 3.09 2.04 1.51 0.3 0.28 1.2 

C.compacta 0&3 1&3&4 1 0 1 3 4.95 4.56 1.03 0.51 0.48 2.5 

C.rostrata 0&3 1 2 0 1 5 4.92 4.07 1.2 0.7 0.64 2.5 

C.gronovii_gronovii 0&3 1&4&5 2 0 1 2&3 4.82 5.41 0.89 1.23 0.62 3.2 

C.gronovii_latiflora 0&3 1 3 0 1 2 2.64 2.98 0.8 0.9 0.41 3.3 

C.cephalanthi 0&3 1&2 1 0 1 2 2.67 3.5 0.91 0.93 0.44 3.1 

C.umbrosa 0&3 1&2&4&5 2 0 1 3 5.22 5.18 1 1.36 0.78 3.3 

C.glomerata 0&3 1 1 0 1 3&5 3.08 2.81 1.09 0.72 0.56 2.4 

C.denticulata 0 1&3&4 1 1 0 2 1.69 1.27 1.33 0.1 0.1 1 

C.nevadensis 0 3&4 1 1 0 2 1.53 1.23 1.24 0.1 0.1 1 

C.haughtii 0 1&2 3 0 1 2 1.41 2.11 0.66 0.53 0.36 3.4 

C.partita 1 1&2 2 0 1 2 1.56 2.45 0.62 0.7 0.36 3.3 

C.longiloba 0&2 1 2 0 1 2 1.75 2.14 0.82 0.68 0.38 3.1 

C.lindsayi 1 1 2 0 1 2 3.4 4.1 0.82 0.23 0.1 2.4 

C.tinctoria_tinctoria 1 1&2 1 1 0 2 2.46 2.8 0.67 0.11 0.11 2.6 

C.mitriformis 1 1&4 3 0 1 2 3.92 4.11 0.97 1.11 0.9 3.1 

C.jalapensis 1 1&4 2 0 1 2 4.6 4.7 0.97 1.32 1.21 2.33 

C.rugosiceps 1 1&2 2 0 1 2 3.9 4.2 0.92 0.86 0.82 3 

C.tinctoria_aurea 1 1 1 1 0 2 2.2 2.6 0.84 0.1 0.1 2.1 

C.tinctoria_floribunda 1 1 1 1 0 2 2.52 3.2 0.78 0.1 0.1 2.3 

C.woodsonii 1 1&4 3 0 0 2 4.22 5.8 0.72 1.89 0.44 2.4 

C.volcanica 1 1 1&2 0 0 2 4.33 5.5 0.78 0.9 0.78 2.3 

C.purpusii 1 1 1 1 0 2 2.72 3.02 0.9 0.1 0.1 1.4 

C.victoriana 0 1&2 3 1 0 2 1.74 3.71 0.46 0.96 0.26 3.2 

C.tasmanica 0 1&4 2 1 0 2 3.08 3.32 0.92 0.81 0.36 3.1 

C.cotijana 1 1&4 2 0 1 3 3.2 3.61 0.88 0.15 0.1 3.1 

C. iguanella 1 1&4 1 1 0 2 2.1 3.9 0.53 0.22 0.16 2.8 

C.potosina 1 4 1 1 0 2 1.3 0.9 1.44 0.07 0.05 1 

C.azteca 1 1&2 2 1 0 2 1.3 2.11 0.61 0.44 0.21 3.4 

C.yucatana 0&2 1&2 2 1 0 2 1.4 2.33 0.6 0.4 0.22 3.3 

C.chinensis_applanata 1 1&2 1&2 1 0 2 1.52 2.33 0.65 0.38 0.18 3.4 

C.chinensis_chinensis 1 1&2 1&2 1 0 2 1.44 2.22 0.64 0.41 0.2 3.4 

C.macrocephala 1 1&4 1 1 0 2 2.6 3.3 0.78 0.2 0.1 1.9 

C.cozumeliensis 1 1 1 0 0 2 1.48 1.83 0.8 0.2 0.1 1.7 

C.globulosa 1 1 1 0 1 2 1.62 2.52 0.64 0.22 0.1 2 
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C.americana 1 3&4 1 0 1 2 1.99 2.2 0.9 0.08 0.08 1 

C.corymbosa_stylosa 1 1&2 1 1 0 2 1.31 1.72 0.76 0.21 0.13 2 

C.prismatica 1 1 1 1 0 2 1.33 1.54 0.86 0.18 0.11 2 

C.corymbosa_grandiflora 1 1&2 1 1 0 2 1.51 1.88 0.8 0.15 0.12 2.2 

C.chapalana 1 1&2 1 1 0 2 1.55 1.76 0.87 0.1 0.09 3 

C.mexicana 1 3&4 1 0 1 2 1.5 3.36 1.04 0.13 0.06 1.2 

C.strobilacea_strobilacea 1 1&2 1 0 1 2&3 2.6 3.3 0.78 0.12 0.09 3.2 

C.erosa 1 1 1&2 0 0 2 1.85 2.5 0.74 0.15 0.07 3 

C.boldinghii 1 1&2 1 0 0 2 1.7 2.4 0.7 0.1 0.04 2.5 

C.costaricensis 1 1&2 1&2 1 0 2 2.1 3.2 0.65 0.16 0.06 3 

C. bonafortunae 1 1&2 2&3 1 0 2 1.8 2.3 0.78 0.43 0.03 2.3 

C.odontolepis 1 1&2 1&2 1 0 2&3 1.9 2.25 0.84 0.21 0.15 2.6 

C.legitima 1 1&2 1&2 1 0 2&4 1.65 2.3 1.04 0.35 0.21 2.6 

C.tuberculata 1 1 1 1 0 2&4 1.51 2.01 0.75 0.18 0.11 2 

C.umbellata 1&2 1&2 1&2 1 1 2&4 1.62 2.09 0.77 0.62 0.27 3.6 

C. desmouliniana 1 1&2 1 1 1 2&4 1.52 2.05 0.74 0.25 0.15 2.6 

C.hyalina 1 1&2 2 1 1 2&4 1.59 2.01 0.79 0.32 0.18 3.1 

C.acuta 0&2 1 2 1 1 2&4 2 2.5 0.8 0.72 0.4 3.8 

C.leptantha 1 1&2 1 1 1 2&4 1.5 1.8 0.83 0.24 0.12 2.1 

C.polyanthemos 1 1&2 1 1 1 2&4 1.2 2.25 0.88 0.35 0.23 2 

C.indecora 0 1&2 1&2 0 1 3 2.7 3.2 0.84 0.65 0.47 3.2 

C.coryli 0&3 1&2 1&2 0 1 2 2.77 4.23 0.65 0.99 0.75 3.1 

C.warnerii 0 1 1 0 1 3 2.65 3.3 0.8 0.56 0.52 2.3 

C.deltoidea 1 1 1 1 1 2 0.9 1.2 0.75 0.07 0.01 2.2 

C.vandevenderi 0&3 1&2&4 3 0 1 2 1.1 1.8 0.61 0.46 0.31 3.6 

C.sidarum 1 1&2 1 0 1 2 1.2 1.4 0.85 0.06 0.05 2.3 

C.colombiana 1&2 1&2 1 0 1 2&3 0.9 1.2 0.75 0.05 0.02 2.1 

C.gracillima 1 1&2 2 1 0 2 1.3 1.5 0.86 0.06 0.05 2.2 

C.punana 1 2 1 1 0 2 1.23 1.82 0.64 0.1 0.1 3.1 

C.macvaughii 1 1&2 1 1 0 2&3 1.23 1.63 0.75 0.11 0.06 2.2 

C.cockerellii 1 1&2 1&2 1 0 2 2.2 2.57 0.85 0.16 0.09 2.3 

C.chilensis 1 1 1&2 1 0 2 3.21 4.06 0.79 0.35 0.16 2.8 

C.odorata 1 1&2 1&2 1 0 2 2.1 2.87 0.73 0.34 0.15 2.3 

C.purpurata 1 1 1&2 1 0 2 1.52 2.57 0.59 0.36 0.18 3.2 

C.foetida_foetida 1 1 1&2 1 0 2 2 2.8 0.71 0.34 0.15 2.4 

C.paitana 1 1 1&2 1 0 2 1.8 2.6 0.69 0.21 0.14 2 

C.foetida_pycnantha 1 1&2 1&2 1 1 2 2.1 2.9 0.7 0.33 0.12 2.2 

C.globiflora 1 1&2 1&2 1 0 2 1.97 3.56 0.55 0.18 0.14 3.4 

C.grandiflora 1 1&2 1&2 1 0 2 1.1 3.6 0.3 0.54 0.42 3.3 
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C.parodiana 1 1&2 1&2 1 0 2 2.1 2.9 0.79 0.51 0.38 2.1 

C.kilimanjari 1 1&2 1&2 1 0 2 2.2 3.1 0.7 0.14 0.06 2.4 

C.cristata 0&2 1&2 1&2 0 0 2 2.11 3.11 0.67 0.85 0.71 3.1 

C.argentinana 1 1&2 1&2 0 0 2 2.12 3.27 0.64 0.38 0.21 2.2 

C.friesii 1 1 1&2 0 1 2 2.2 4.45 0.49 0.77 0.26 2.8 

C.microstyla 0 1&2 2&3 0 1 2 1.3 0.9 1.4 0.32 0.25 1 

C.natalensis 1 1&2 2 0 1 1 1.4 1.8 0.88 0.23 0.1 2.4 

C.nitida 1 1 3 0 0 1 1.3 1.7 0.9 0.21 0.1 2.2 

C.angulata 1 1&2 3 0 0 1 1.27 1.65 0.85 0.18 0.09 2.6 

C.africana 1 3&4 2 0 1 1 1.24 1.66 0.83 0.23 0.18 2 

C.europaea 1 1&2 1 1 0 1 2.2 2.79 0.78 0.26 0.15 3.6 

C.epilinum 1 1&2 1 1 0 1 2.3 2.85 0.8 0.36 0.13 3.6 

C.approximata 1 1 1 1 0 0 1.72 2.22 0.77 0.37 0.16 3.6 

C.epithymum 1 1 1 1 0 0 1.53 1.72 0.88 0.34 0.15 3.7 

C.planiflora 1 1 1 1 0 0 1.34 1.72 0.76 0.26 0.1 3.6 

C.exaltata 1 6 1 0 1 0 5.88 5.47 1.07 0 0 2.5 

C.lehmanniana 1 3&6 1 0 1 0 6 4.51 1.33 0 0 2.4 

C.monogyna 1 3&6 1 0 1 0 4.9 4.6 1.06 0 0 2.3 

C.japonica 1 3&6 1 0 1 0 5.14 4.45 1.17 0 0 2.6 

C.reflexa 1 3&6 1 0 1 0 6.28 5.17 1.24 0 0 3.1 

C.cassythoides 1 3&6 1 0 1 0 4.99 6.1 1.15 0 0 2.5 

C.lupuliformis 1 3&6 1 0 1 0 4.2 3.78 1.17 0 0 2.1 
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Table 2. Biogeography data matrix 

 

Species/variety Type1 Type2 Area (km2) Max Y Max X 

C. californica var. 

californica Hook. & Arn. 

IN IN+IrB 1516447.01 47.52525 -124.04628 

C. californica var. 

apiculata Engelm. 

IN IN 4985.35 35 -114.6504 

C. californica var. papillosa 

Yuncker 

IN IN 218793.15 41.55792 -120.57495 

C. occidentalis Millsp. IN IN+IrB 1052370.01 45.31972 -118.0879 

C. brachycalyx Yunck. IN IN+IrB 151766.82 42.28303 -121.94433 

C. subinclusa Durand & 

Hilg. 

IN IN+IrB 269373.01 40.5385 -122.174 

C. salina Engelm. IN IN+IrB 1508262.63 48.42161 -123.35919 

C. pacifica var. pacifica 

Costea & Wright 

IN IN+IrB 553965.92 49.06514 -122.99284 

C. pacifica var. papillata 

(Yunck.) Costea & Wright 

IN IN 138500.7 39.44639 -122.14944 

C. suksdorfii Yunck. IN IN+IrB 230878.31 46.25611 -122.14927 

C. howelliana Rubtzoff IN IN+IrB 65733.42 41.43912 -122.43115 

C. draconella Costea & 

Stefanović 

IN IN 3725.61 33.59061 -106.42084 

C. jepsonii Yunck. IN IN 357.17 40.24451 -123.00882 

C. decipiens Yunck. IN IN 58183.12 31.87483 -105.97844 

C. obtusiflora var. 

glandulosa Engelm. 

IN IN+IrB 7286798.29 39.30936 -121.88212 

C. pentagona Engelm. IN IN+IrB 5352161.32 49.00257 -96.98198 

C. harperi Small IN IN+IrB 16800.28 34.45278 -85.60288 

C. runyonii Yunck. IN IN+IrB 30346.91 28.48102 -98.67303 

C. glabrior (Engelm.) 

Yunck. 

IN IN+IrB 7481331.81 34.9601 -94.78473 

C. plattensis A. Nelson IN IN+IrB 0 43.47932 -104.20646 

C. campestris Yunck. IN IN+IrB 18754484.08 51.06808 -104.95837 

C. polygonorum Engelm. IN IN 1655871.03 49.75695 -94.47699 

C. rostrata Shuttlew. ex 

Engelm. 

IN IN+IrB 240147.99 39.04364 -79.3181 

C. gronovii Willd. ex Schult 

var. gronovii  

IN IN+IrB 11308257.5 53.44883 -103.93558 

C. gronovii var. latiflora 

Engelm. 

IN IN+IrB 1429684.63 43.28971 -77.14383 

C. gronovii var. calyptrate 

Engelm. 

IN IN 0 33.01022 -96.48279 

C. umbrosa Beyr. Ex Hook. IN IN+IrB 4559418.67 53.53937 -113.48878 

C. cephalanthi Engelm. IN IN+IrB 8728811.79 49.36611 -124.49833 

C. glomerata Choisy IN IN+IrB 1443970.54 46.44769 -97.68477 
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C. cuspidate Engelm. IN IN 2977803.05 48.33407 -100.39056 

C. squamata Engelm. IN IN 652504.26 33.65196 -101.72261 

C. compacta Juss. IN IN+IrB 2195210.46 42.51075 -71.68475 

C. denticulate Engelm. IN IN 916667.25 46.91738 -121.85494 

C. nevadensis I. M. Johnst. IN IN 74530.51 37.374 -118.2924 

C. veatchii Brandegee IN IN 72153.35 34.88297 -120.45891 

C. mitriformis Engelm. DE DE 1008963.49 31.9723 -109.0506 

C. tinctoria Mart. ex. 

Engelm.  

DE DE 591644.48 30.62084 -110.99073 

C. purpusii Yunck. DE DE 93565.41 25.79288 -100.03639 

C. woodsonii Yunck. DE DE 0 15.44376 -92.33125 

C. volcanica Costea & I. 

García 

DE DE 42047.35 20.83326 -103.95889 

C. cotijana Costea & I. 

García 

DE DE 805.31 19.73258 -102.69137 

C. jalapensis Schltdl. DE DE 506561.88 23.28211 -99.27656 

C. rugosiceps Yunck. DE DE 57963.56 21.21217 -99.46956 

C. lindsayi Wiggins DE DE 3895.88 23.19528 -105.63887 

C. iguanella Costea & I. 

García 

DE DE 1706.8 21.30003 -104.65071 

C. americana L. DE DE 6646790.15 28.95577 -112.40807 

C. macrocephala W. 

Schaffn. ex yunck. 

DE DE 783646.76 27.40115 -108.84166 

C. azteca Costea & 

Stefanović 

DE DE 884853.14 35.02615 -106.44652 

C. chinensis Lam var. 

applanata (Engelm.) Costea 

& Stefanović 

DE DE 1354494.11 35.7934 -106.27625 

C. dentatasquamata Yunck. DE DE 0.09 31.82585 -110.77478 

C. yucatana Yunck. IN IN+IrA 231861.81 20.68673 -88.20294 

C. potosina Schaffn. Ex. 

Yunck. 

DE DE 37094.8 22.14026 -100.97218 

C. erosa Yunck. DE DE 204936.66 31.78768 -111.58188 

C. boldinghii Urb. DE DE 5001285.31 26.93754 -108.88337 

C. strobilacea Liebm. DE DE 268309.12 19.99305 -102.70583 

C. chapalana Yunck. DE DE 28322.83 21.72996 -101.66149 

C. mexicana Yunck. DE DE 0 19.58776 -104.2478 

C. costaricensis Yunck. DE DE 682515.97 28.45266 -108.53686 

C. bonafortunae Costea & 

I. García 

DE DE 0.27 20.17315 -100.99198 

C. legitima Costea & 

Stefanović 

DE DE 1643466.02 38.02705 -102.01064 

C. odontolepis Engelm. DE DE 37199.89 31.81858 -110.78445 

C. tuberculata Brandegee DE DE 421539.71 34.18582 -112.72763 
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C. umbellata Kunth var. 

umbellata 

DE DE+IrA 8775886.53 38.83808 -105.17435 

C. leptantha Engelm. DE DE 564653.23 29.53172 -113.56779 

C. polyanthemos Schaffn. 

ex. Yunck. 

DE DE 23132.43 29.66634 -109.62659 

C. liliputana Costea & 

Stefanović 

DE DE 345434.51 34.1983 -104.43574 

C. indecora Choisy var. 

indecora 

IN IN 14768729.62 51.40304 -107.01234 

C. indecora var. 

longisepala Yunck. 

IN IN 1321669.65 34.17268 -96.41723 

C. indecora var. attenuata IN IN 294600.39 39.74889 -97.5943 

C. coryli Engelm. IN IN+IrB 3933418.79 47.92154 -104.02605 

C. warneri Yunck. IN IN 1.42 38.96811 -112.59258 

C. mcvaughii Yunck. DE DE 1669.79 19.19171 -102.84578 

C. sidarum Liebm. DE DE 360331.55 19.53512 -105.07224 

C. gracillima Engelm. DE DE 244942.71 22.96688 -105.85656 

C. deltoidea Yunck. DE DE 2920.37 20.31057 -102.2108 

C. vandevenderi Costea & 

Stefanović 

IN IN+IrB 9464.4 28.37778 -109.15001 
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Table 3. Infructescence compactness data matrix. 

Clade Type1 Type2 Species ep Final 

A IN IN decipiens 0.153081 

A IN IN+IrB brachycalyx 0.063195 

A IN IN+IrB california 0.062032 

A IN IN+IrB occidentalis 0.080131 

A IN IN+IrB pacifica 0.107062 

A IN IN+IrB salina 0.126204 

A IN IN+IrB subinclusa 0.052574 

B IN IN+IrB australis 0.033753 

B IN IN+IrB campestris 0.043105 

B IN IN+IrB glabrior 0.067022 

B IN IN+IrB obtusiflora 0.053023 

B IN IN+IrB obtusiflora var glandulosa 0.040857 

C DE DE+IrA incurvata 0.05781 

C IN IN suaveolens 0.029261 

C IN IN+IrA platyloba 0.050065 

C DE DE+IrA+IN corniculata 0.038014 

C DE DE+IrA+IN xanthocortos var. carinata 0.082941 

D IN IN squamata 0.025746 

D IN IN+IrB cephalanthi 0.039236 

D IN IN+IrB gronovii 0.025431 

D IN IN+IrB gronovii var. latiflora 0.038219 

E IN IN denticulata 0.070095 

E IN IN nevadensis 0.28558 

F DE DE partita 0.118526 

F IN IN haughtii  0.122627 

F IN IN+IrA longiloba 0.102906 

G DE DE cotijana 0.048198 

G DE DE jalapensis 0.021129 

G DE DE lindsayi 0.058671 

G DE DE mitriformis 0.031255 

G DE DE purpusii 0.254435 

G DE DE rugosiceps 0.025355 

G DE DE tinctoria 0.044374 

G DE DE volcanica 0.009056 

G IN IN victoriana 0.030633 

H DE DE azteca 0.053171 

H DE DE chinensis 0.246919 

H DE DE chinensis var. applanata 0.051321 

H IN IN+IrA yucatana 0.039498 

I DE DE americana 0.044912 
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I DE DE globulosa 0.068199 

I DE DE macrocephala 0.070569 

J DE DE corymbosa var. grandiflora 0.055525 

J DE DE corymbosa var. stylosa 0.086358 

J DE DE prismatica 0.123347 

K DE DE boldinghii 0.036289 

K DE DE chapalana  0.061664 

K DE DE costaricensis  0.034522 

K DE DE erosa 0.097334 

K DE DE strobilacea 0.032798 

L DE DE legitima 0.081259 

L DE DE leptantha 0.294304 

L DE DE odontolepis 0.025827 

L DE DE polyanthemos 0.403477 

L DE DE tuberculata 0.078763 

L DE DE+IrA umbellata 0.474826 

L IN IN+IrA acuta 0.094285 

M DE DE macvaughii 0.12059 

M IN IN indecora 0.128902 

N DE DE deltoidea 0.299626 

N DE DE gracillima  0.078063 

N DE DE sidarum 0.082431 

N DE DE+IrA colombiana 0.237181 

N IN IN+IrB vandevenderi 0.077618 

O DE DE argentinana 0.072461 

O DE DE chilensis 0.030744 

O DE DE foetida 0.040036 

O DE DE friesii 0.079792 

O DE DE globiflora 0.025325 

O DE DE grandiflora 0.244247 

O DE DE odorata 0.038507 

O DE DE paitana 0.397783 

O DE DE parodiana 0.091013 

O DE DE purpurata 0.089353 

O IN IN+IrA cristata 0.047578 
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Figure 1. NMDS scatter plot displaying similarity/dissimlarity for all fruit traits 

(excluding pericarp papillae and style morphology). B = dehiscence/indehiscence modes, 

C = fruit shape, D = position of corolla, E = translucence, F = laticifers, G = interstylar 

aperture, H = fruit length, I = fruit width, J = ratio L/W, K = ISA length, L = ISA width, 

M = number of seeds per capsule. Stress value = 0.09453. 
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Figure 2. PCoA plot displaying similarity/dissimilarity for all fruit traits (excluding 

pericarp papillae and style morphology). B = dehiscence/indehiscence modes, C = fruit 

shape, D = position of corolla, E = translucence, F = laticifers, G = interstylar aperture, H 

= fruit length, I = fruit width, J = ratio L/W, K = ISA length, L = ISA width, M = number 

of seeds per capsule.  
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Figure 3. Mirror tree displaying fruit dehiscence/indehiscence character history (left) and 

evolution of species latitudinal limits above and below 35oN. 
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APPENDIX D: R CODES WITH ANNOTATIONS 

 

 

Fruit morphology 

> data<-read.csv(“Fruit characters.csv”) 

> attach(data) 

> head(data) 

> #test for normality (only fruit length shown) 

> shapiro.test(Fruit.length[which(Dehiscence==”DE”)]) 

> shapiro.test(Fruit.length[which(Dehiscence==”IN”)]) 

> shapiro.test(Fruit.length[which(Dehiscence=="DE+IrA")]) 

> shapiro.test(Fruit.length[which(Dehiscence=="IN+DE+IrA")]) 

> shapiro.test(Fruit.length[which(Dehiscence=="IN+IrA")]) 

> shapiro.test(Fruit.length[which(Dehiscence=="IN+IrB")]) 

> leveneTest(Fruit.length~Dehiscence) 

> kruskal.test(Fruit.length, g=Dehiscence, var.equal=TRUE) 

> dunn.test(Fruit.length, g=Dehiscence, list=TRUE) 

> summary(Fruit.length[which(Dehiscence==”DE”)]) 

> length(Fruit.length[which(Dehiscence==”DE”)]) 

> # standard error of means 

sem=sqrt(var(Fruit.length[which(Dehiscence=="DE")])/length(Fruit.length[which(Dehisc

ence=="DE")])) 

> sem 

> #bootstrapped confidence intervals for non normal data 

> library(boot) 

> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(Fruit.length[which(Dehiscence=="DE")], mean.fun, R=1000, 

sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> summary(Fruit.length[which(Dehiscence==”IN”)]) 

> length(Fruit.length[which(Dehiscence==”IN”)]) 

> 

sem=sqrt(var(Fruit.length[which(Dehiscence=="IN")])/length(Fruit.length[which(Dehisc

ence=="IN")])) 

> sem 

> leftCI<-mean(Fruit.length[which(Dehiscence=="IN")])-(2*sem) 

> rightCI<-mean(Fruit.length[which(Dehiscence=="IN")])+(2*sem) 

> leftCI 

> rightCI 

 

> 

sem=sqrt(var(Fruit.length[which(Dehiscence=="IN+IrB")])/length(Fruit.length[which(D

ehiscence=="IN+IrB")])) 

> sem 
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> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(Fruit.length[which(Dehiscence=="IN+IrB")], mean.fun, R=1000, 

sim="ordinary") 

> boot.ci(boot.out, type="norm") 

 

> 

sem=sqrt(var(Fruit.width[which(Dehiscence=="DE")])/length(Fruit.width[which(Dehisce

nce=="DE")])) 

> sem 

> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(Fruit.width[which(Dehiscence=="DE")], mean.fun, R=1000, 

sim="ordinary") 

> boot.ci(boot.out, type="norm") 

 

> 

sem=sqrt(var(Fruit.width[which(Dehiscence=="IN")])/length(Fruit.width[which(Dehisce

nce=="IN")])) 

> sem 

> leftCI<-mean(Fruit.width[which(Dehiscence=="IN")])-(2*sem) 

> rightCI<-mean(Fruit.width[which(Dehiscence=="IN")])+(2*sem) 

> leftCI 

> rightCI 

> 

sem=sqrt(var(Fruit.width[which(Dehiscence=="IN+IrB")])/length(Fruit.width[which(De

hiscence=="IN+IrB")])) 

> sem 

> leftCI<-mean(Fruit.width[which(Dehiscence=="IN+IrB")])-(2*sem) 

> rightCI<-mean(Fruit.width[which(Dehiscence=="IN+IrB")])+(2*sem) 

> leftCI 

> rightCI 

 

> #cannot use same sem codes for standard errors with missing values, must remove 

> library(FSA) 

> se(ISA.length[which(Dehiscence=="DE")], na.rm=TRUE) 

> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(ISA.length[which(Dehiscence=="DE")], mean.fun, R=1000, 

sim="ordinary") 

> boot.ci(boot.out, type="norm") 

 

> sem=se(ISA.length[which(Dehiscence=="IN")], na.rm=TRUE) 

> sem 

> leftCI<-mean(ISA.length[which(Dehiscence=="IN")])-(2*sem) 

> rightCI<-mean(ISA.length[which(Dehiscence=="IN")])+(2*sem) 
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> leftCI 

> rightCI 

> sem=se(ISA.length[which(Dehiscence=="IN+IrB")], na.rm=TRUE) 

> sem 

> leftCI<-mean(ISA.length[which(Dehiscence=="IN+IrB")])-(2*sem) 

> rightCI<-mean(ISA.length[which(Dehiscence=="IN+IrB")])+(2*sem) 

> leftCI 

> rightCI 

> sem=se(ISA.width[which(Dehiscence=="DE")], na.rm=TRUE) 

> sem 

> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(ISA.width[which(Dehiscence=="DE")], mean.fun, R=1000, 

sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> sem=se(ISA.width[which(Dehiscence=="IN")], na.rm=TRUE) 

> sem 

> leftCI<-mean(ISA.width[which(Dehiscence=="IN")])-(2*sem) 

> rightCI<-mean(ISA.width[which(Dehiscence=="IN")])+(2*sem) 

> leftCI 

> rightCI 

> sem=se(ISA.width[which(Dehiscence=="IN+IrB")], na.rm=TRUE) 

> sem 

> leftCI<-mean(ISA.width[which(Dehiscence=="IN+IrB")])-(2*sem) 

> rightCI<-mean(ISA.width[which(Dehiscence=="IN+IrB")])+(2*sem) 

> leftCI 

> rightCI 

> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(Nr.of.seeds.per.capsule[which(Dehiscence=="DE")], mean.fun, 

R=1000, sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> boot.out<-boot(Nr.of.seeds.per.capsule[which(Dehiscence=="IN")], mean.fun, 

R=1000, sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> boot.out<-boot(Nr.of.seeds.per.capsule[which(Dehiscence=="IN+IrB")], mean.fun, 

R=1000, sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> sem=se(Nr.of.seeds.per.capsule[which(Dehiscence=="IN+IrA")], na.rm=TRUE) 

> sem 

> leftCI<-mean(Nr.of.seeds.per.capsule[which(Dehiscence=="IN+IrA")])-(2*sem) 

> rightCI<-mean(Nr.of.seeds.per.capsule[which(Dehiscence=="IN+IrA")])+(2*sem) 

> leftCI 

> rightCI 
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 Biogeography 

> #Range size (previous categorization, excludes populations with 0 area) 

> data<-read.csv("AreaIN.csv") 

> attach(data) 

> shapiro.test(Area[which(Dehiscence=="DE")]) 

> sqrt<-sqrt(Area[which(Dehiscence=="DE")]) 

> shapiro.test(sqrt) 

> log<-log(Area[which(Dehiscence=="DE")]) 

> shapiro.test(log) 

> #data not normal, can’t transform to normal 

> library(car) 

> leveneTest(Area~Dehiscence) 

> #p-value = 0.065, variance the same between two groups 

> wilcox.test(Area~Dehiscence, var.equal=TRUE) 

> #no difference between indehiscent and dehiscent species (range size), p-value = 

0.07798 

> boxplot(Area~Dehiscence,xlab="Fruit Dehiscence",ylab="Range Size 

(km^2)",las=0,col=c("yellow", "blue"), cex.lab=1.5, cex.axis=1.5, lwd=1.5) 

> 

 

> #summarize data 

> library(boot) 

> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(Area[which(Dehiscence=="Dehiscent")], mean.fun, R=1000, 

sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> #summary  

> summary(Area[which(Dehiscence=="DEt")]) 

> #sample size 

> length(Area[which(Dehiscence=="DE")]) 

> #standard error  

> 

sem=sqrt(var(Area[which(Dehiscence=="DEt")])/length(Area[which(Dehiscence=="DE"

)])) 

> sem 

 

> #codes for indehiscent species are the same except Dehiscence==”IN” 

 

> #Range size (new categorization) 

> detach(data) 

> data<-read.csv(“AreaEXinadea.csv”) 

> attach(data) 

> shapiro.test(Area[which(Dehiscence2=="DE")]) 

> sqrt<-sqrt(Area[which(Dehiscence2=="DE")]) 

> shapiro.test(sqrt) 
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> log<-log(Area[which(Dehiscence2=="DE")]) 

> shapiro.test(log) 

> #not normal, can’t be transformed 

> kruskal.test(Area~Dehiscence2) 

> #p-value = 0.03643, difference in range size between species with different fruit types 

> library(dunn.test) 

> dunn.test(Area, g=Dehiscence2) 

> dunn.test(Area, g=Dehiscence2) 

  Kruskal-Wallis rank sum test 

 

data: Area and Dehiscence2 

Kruskal-Wallis chi-squared = 6.6246, df = 2, p-value = 0.04 

 

 

                       Comparison of Area by Dehiscence2                        

                                (No adjustment)                                 

Col Mean-| 

Row Mean |         DE         IN 

---------+---------------------- 

      IN |  -0.969883 

         |     0.1661 

         | 

     INB |  -2.564525  -0.696641 

         |     0.0052     0.2430 

 

> boxplot(Area~Dehiscence2,xlab="Fruit Dehiscence",ylab="Range Size 

(km^2)",las=0,col=c("yellow", "blue", "magenta"), cex.lab=1.5, cex.axis=1.5, lwd=1.5) 

> 

> #summary of range data 

> #range data not normal 

> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(Area[which(Dehiscence2=="DE")], mean.fun, R=1000, 

sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> length(Area[which(Dehiscence2=="DE")]) 

> 

sem=sqrt(var(Area[which(Dehiscence2=="DE")])/length(Area[which(Dehiscence2=="D

E")])) 

> sem 

> summary(Area[which(Dehiscence2=="DE")]) 

> #codes for IN and INB summaries are essentially the same 

 

 

 

> #Max Latitude (previous categorization) 
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> detach(data) 

> data<-read.csv("MaxIN.csv") 

> attach(data) 

> shapiro.test(Max.X[which(Dehiscence=="Dehiscent")]) 

> shapiro.test(Max.X[which(Dehiscence=="Indehiscent")]) 

> #normal 

> var.test(Max.X~Dehiscence) 

> #p-value = 0.3063, variances equal 

> t.test(Max.X~Dehiscence, var.equal=TRUE) 

> p-value = 9.051e-14, significantly different 

> boxplot(Max.X~Dehiscence, las=1, ylab="Northernmost Latitude 

(dd)",xlab="Dehiscence", col=(c("yellow","blue"))) 

> 

> #summary statistics northernmost distribution 

> summary(Max.X[which(Dehiscence=="Dehiscent")]) 

> 

sem=sqrt(var(Max.X[which(Dehiscence=="Dehiscent")])/length(Max.X[which(Dehiscen

ce=="Dehiscent")])) 

> sem 

> leftCI<-mean(Max.X[which(Dehiscence=="Dehiscent")])-(2*sem) 

> rightCI<-mean(Max.X[which(Dehiscence=="Dehiscent")])+(2*sem) 

> leftCI 

> rightCI 

 

> summary(Max.X[which(Dehiscence=="Indehiscent")]) 

> 

sem=sqrt(var(Max.X[which(Dehiscence=="Indehiscent")])/length(Max.X[which(Dehisce

nce=="Indehiscent")])) 

> sem 

> leftCI<-mean(Max.X[which(Dehiscence=="Indehiscent")])-(2*sem) 

> rightCI<-mean(Max.X[which(Dehiscence=="Indehiscent")])+(2*sem) 

> leftCI 

> rightCI 

> length(Max.X[which(Dehiscence=="Indehiscent")]) 

 

> #Max Latitude (new categorization without INA and DEA because sample size too 

small) 

> detach(data) 

> data<-read.csv("MaxEXinadea.csv") 

> attach(data) 

> shapiro.test(Max.X[which(Dehiscence2=="DE")]) 

> shapiro.test(Max.X[which(Dehiscence2=="IN")]) 

> shapiro.test(Max.X[which(Dehiscence2=="INB")]) 

> #all normal 

> bartlett.test(Max.X, g=Dehiscence2) 

> # p-value = 0.633, variances equal, parametric: ANOVA 
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> aov=aov(Max.X~Dehiscence2) 

> summary(aov) 

> #pvalue = 3.2e-14, test for effect size 

> TukeyHSD(aov) 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Max.X ~ Dehiscence2) 

 

$Dehiscence2 

            diff       lwr       upr     p adj 

IN-DE  15.520932  8.957158 22.084706 0.0000013 

INB-DE 17.867769 13.603088 22.132450 0.0000000 

INB-IN  2.346837 -4.390960  9.084633 0.6814385 

 

> #difference between IN-DE and INB-DE but not between INB-IN 

> boxplot(Max.X~Dehiscence2, las=1, ylab="Northernmost Latitude 

(dd)",xlab="Dehiscence", col=(c("yellow","blue", "magenta"))) 

> 

 

> #code for summary statistics essentially the same as old categorization northernmost 

limit codes (normally distributed) 

 

 

 

 

Floatability 

> data<-read.csv("dispersal survival.csv") 

> attach(data) 

> head(data) 

> km.fit1<-survfit(Surv(Time, Status)~Treat, data=data, type="kaplan-meier") 

> plot(km.fit, col=c("orange","blue","red"), xlab="Time (days)", ylab="Survival", 

conf.int=TRUE, cex.axis=1.5, cex.lab=1.5, lwd=2, las=1) 

> legend("center", legend=c("Dried Seeds", "Imbibed Capsules", "Imbibed Seeds"), 

fill=c("orange","blue","red"), bty="n", pt.cex=1, cex=1.5) 

> 

> float<-survdiff(Surv(Time, Status)~Treat) 

> float 

> #pvalue= 0, difference in survival curves 

> coxph1<-coxph(Surv(Time, Status)~Treat) 

> summary(coxph1) 

> #p-values extremely low between all treatments 

 

> summary(km.fit) 

Call: survfit(formula = Surv(Time, Status) ~ Treat, data = data, type = "kaplan-meier") 
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                Treat=DS  

 time n.risk n.event survival std.err lower 95% CI upper 95% CI 

  0.0    300      86  0.71333 0.02611     0.663955       0.7664 

  0.5    214     159  0.18333 0.02234     0.144384       0.2328 

  1.5     55      54  0.00333 0.00333     0.000471       0.0236 

 

                Treat=IC  

 time n.risk n.event survival std.err lower 95% CI upper 95% CI 

  1.5    300       2    0.993 0.00470        0.984        1.000 

  2.5    298       3    0.983 0.00739        0.969        0.998 

  3.0    295       1    0.980 0.00808        0.964        0.996 

  3.5    294       2    0.973 0.00930        0.955        0.992 

  4.5    292       1    0.970 0.00985        0.951        0.989 

  5.0    291       4    0.957 0.01176        0.934        0.980 

  5.5    287       8    0.930 0.01473        0.902        0.959 

  6.0    279      19    0.867 0.01963        0.829        0.906 

  6.5    260      18    0.807 0.02280        0.763        0.853 

  7.0    242      12    0.767 0.02442        0.720        0.816 

  7.5    230      20    0.700 0.02646        0.650        0.754 

  8.0    210      27    0.610 0.02816        0.557        0.668 

  8.5    183      26    0.523 0.02884        0.470        0.583 

  9.0    157      31    0.420 0.02850        0.368        0.480 

 

                Treat=IS  

        time       n.risk      n.event     survival      std.err lower 95% CI  

           0          300          300            0          NaN           NA  

upper 95% CI  

          NA  

 

> 

 

 

Germination 

> #Comparison of number of seeds germinated (30 reps of 10 capsules/10-40 seeds) 

> data<-read.csv("germfinalanova.csv") 

> attach(data) 

> #test distribution 2015 

> shapiro.test(Total15[which(Treat=="W")]) 

> #normal (p-value=0.285) 

> shapiro.test(Total15[which(Treat=="WO")]) 

> #p-value = 0.3582, normal 

> shapiro.test(Total15[which(Site=="GR")]) 

> #p-value = 0.3993, normal 

> shapiro.test(Total15[which(Site=="LP”)]) 

> #p-value = 0.01474, not normal 

> var.test(Total15~Treat) 
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> #variances equal p-value=0.139 

> t.test(Total15~Treat, var.equal=TRUE) 

> #differences between treatments p-value=0.0003367 

> levene.test(Total15~Site) 

> #variances equal, p-value = 0.1428 

> wilcox.test(Total15~Site, var.equal=TRUE) 

> #no difference between sites, p-value = 0.1708 

> summary(Total15[which(Treat=="W")]) 

> summary(Total15[which(Treat=="WO")]) 

> summary(Total15[which(Site=="GR")]) 

> summary(Total15[which(Site=="LP")]) 

> semW=sqrt(var(Total15[which(Treat=="W")])/length(Total15[which(Treat=="W")])) 

> semW 

> leftCI 

> rightCI 

> 

semWO=sqrt(var(Total15[which(Treat=="WO")])/length(Total15[which(Treat=="WO")]

)) 

> semWO 

> semGR=sqrt(var(Total15[which(Site=="GR")])/length(Total15[which(Site=="GR")])) 

> semGR 

> semLP=sqrt(var(Total15[which(Site=="LP")])/length(Total15[which(Site=="LP")])) 

> semLP 

> leftCI<-mean(Total15[which(Treat=="W")])-(2*semW) 

> rightCI<-mean(Total15[which(Treat=="W")])+(2*semW) 

> leftCI 

> rightCI 

> leftCI<-mean(Total15[which(Treat=="WO")])-(2*semWO) 

> rightCI<-mean(Total15[which(Treat=="WO")])+(2*semWO) 

> leftCI 

> rightCI 

> leftCI<-mean(Total15[which(Site=="GR")])-(2*semGR) 

> rightCI<-mean(Total15[which(Site=="GR")])+(2*semGR) 

> leftCI 

> rightCI 

> #bootstrap LP for normalized confidence intervals 

> library(boot) 

> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(Total15[which(Site==”LP”)], mean.fun, R=1000, sim="ordinary") 

> boot.ci(boot.out, type="norm") 

 BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

Based on 1000 bootstrap replicates 

 

CALL :  

boot.ci(boot.out = boot.out, type = "norm") 
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Intervals :  

Level      Normal         

95%   ( 7.423, 10.346 )   

Calculations and Intervals on Original Scale 

> #differences in 2016: 

 

> shapiro.test(Total16[which(Treat=="W")]) 

> shapiro.test(Total16[which(Treat=="WO")]) 

> shapiro.test(Total16[which(Site=="GR")]) 

> shapiro.test(Total16[which(Site=="LP")]) 

> #all NON normal 

 

> levene.test(Total16~Treat) 

> #variances equal, p-value = 0.2556 

> levene.test(Total16~Site) 

> #variances unequal, p-value = 0.0001538 

> wilcox.test(Total16~Treat, var.equal=TRUE) 

> #no difference between treatments, p-value = 0.9936 

> wilcox.test(Total16~Site, var.equal=FALSE) 

> #difference between sites, p-value = 0.006167 

 

> summary(Total16[which(Treat=="W")]) 

> summary(Total16[which(Treat=="WO")]) 

> summary(Total16[which(Site=="GR")]) 

> summary(Total16[which(Site=="LP")]) 

 

> semW=sqrt(var(Total16[which(Treat=="W")])/length(Total16[which(Treat=="W")])) 

> semW 

> 

semWO=sqrt(var(Total16[which(Treat=="WO")])/length(Total16[which(Treat=="WO")]

)) 

> semWO 

> semGR=sqrt(var(Total16[which(Site=="GR")])/length(Total16[which(Site=="GR")])) 

> semGR 

> semLP=sqrt(var(Total16[which(Site=="LP")])/length(Total16[which(Site=="LP")])) 

> semLP 

> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(Total16[which(Treat=="W")], mean.fun, R=1000, sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> boot.out<-boot(Total16[which(Treat=="WO")], mean.fun, R=1000, sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> boot.out<-boot(Total16[which(Site=="GR")], mean.fun, R=1000, sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> boot.out<-boot(Total16[which(Site=="LP")], mean.fun, R=1000, sim="ordinary") 
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> boot.ci(boot.out, type="norm") 

 

> #comparing total number of seeds germinated 

> shapiro.test(Total[which(Treat=="W")]) 

> shapiro.test(Total[which(Treat=="WO")]) 

> shapiro.test(Total[which(Site=="GR")]) 

> shapiro.test(Total[which(Site=="LP")]) 

> #all normal 

> var.test(Total~Treat) 

> #variances unequal, pvalue = 0.0332 

> var.test(Total~Site) 

> #variances unequal, p-value = 0.00182 

> t.test(Total~Treat, var.equal=FALSE) 

> #difference between treatments, p-value = 0.0002916 

> t.test(Total~Site, var.equal=FALSE) 

> #no difference between populations, pvalue = 0.6531 

 

> summary(Total[which(Treat=="W")]) 

> summary(Total[which(Treat=="WO")]) 

> summary(Total[which(Site=="GR")]) 

> summary(Total[which(Site=="LP")]) 

> semW=sqrt(var(Total[which(Treat=="W")])/length(Total[which(Treat=="W")])) 

> semW 

> semWO=sqrt(var(Total[which(Treat=="WO")])/length(Total[which(Treat=="WO")])) 

> semWO 

> semGR=sqrt(var(Total[which(Site=="GR")])/length(Total[which(Site=="GR")])) 

> semGR 

> semLP=sqrt(var(Total[which(Site=="LP")])/length(Total[which(Site=="LP")])) 

> semLP 

> leftCI<-mean(Total[which(Treat=="W")])-(2*semW) 

> rightCI<-mean(Total[which(Treat=="W")])+(2*semW) 

> leftCI 

> rightCI 

> leftCI<-mean(Total[which(Treat=="WO")])-(2*semWO) 

> rightCI<-mean(Total[which(Treat=="WO")])+(2*semWO) 

> leftCI 

> rightCI 

> leftCI<-mean(Total[which(Site=="GR")])-(2*semGR) 

> rightCI<-mean(Total[which(Site=="GR")])+(2*semGR) 

> leftCI 

> rightCI 

> leftCI<-mean(Total[which(Site=="LP")])-(2*semLP) 

> rightCI<-mean(Total[which(Site=="LP")])+(2*semLP) 

> leftCI 

> rightCI 
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> #Survival Analysis 

> library(survival) 

> data<-read.csv("germ2015surv.csv") 

> attach(data) 

> head(data) 

  Bin Pos Site Treat Rep Pot Days Status 

1 iii  D5   LP     W   1   1    7      1 

2 iii  D5   LP     W   1   1    8      1 

3 iii  D5   LP     W   1   1   31      1 

4 iii  D5   LP     W   1   1   32      1 

5 iii  D5   LP     W   1   1   42      1 

6 iii  D5   LP     W   1   1   45      1 

> 

> #fit a survival curve 

> km15<-survfit(Surv(Days, Status)~Treat, data=data, type="kaplan-meier") 

> #check for differences between treatments 

> first<-survdiff(Surv(Days,Status)~Treat) 

> first 

Call: 

survdiff(formula = Surv(Days, Status) ~ Treat) 

 

            N Observed Expected (O-E)^2/E (O-E)^2/V 

Treat=W  1590      363      449      16.5      35.4 

Treat=WO 1590      501      415      17.8      35.4 

 

 Chisq= 35.4  on 1 degrees of freedom, p= 2.69e-09  

> 

> #difference in survival between treatments, plot curves 

 

> plot(km15, col=c("blue","orange"), xlab="Time (days)", ylab="Survival", 

ylim=c(0.6,1), conf.int=TRUE, cex.axis=1.5, cex.lab=1.5, lwd=2, las=1) 

> axis(side=1, at=c(10,20,30,40,50,60,70,80,90,100), cex.axis=1.5, cex.lab=1.5) 

> legend("topright", bty="n", legend=c("W","WO"), fill=c("blue","orange"), cex=1.75) 

> 

> plot(km15, col=c("blue","orange"), xlab="Time (days)", ylab="Survival", 

ylim=c(0.9,1), xlim=c(0,10), conf.int=TRUE, cex.axis=1.5, cex.lab=1.5, lwd=2, las=1, 

yaxt="n") 

> axis(side=2, at=c(0.9,1.0), cex.axis=1.5, cex.lab=1.5, las=1) 

> library(Hmisc) 

> minor.tick(ny=4) 

 

> detach(data) 

> data<-read.csv("germ2016surv.csv") 

> attach(data) 

> km16<-survfit(Surv(Days1, Status)~Treat, data=data, type="kaplan-meier") 
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> second<-survdiff(Surv(Days1, Status)~Treat) 

> second 

Call: 

survdiff(formula = Surv(Days1, Status) ~ Treat) 

 

            N Observed Expected (O-E)^2/E (O-E)^2/V 

Treat=W  1228      125      147      3.18      6.93 

Treat=WO 1089      148      126      3.69      6.93 

 

 Chisq= 6.9  on 1 degrees of freedom, p= 0.00848  

> 

>  plot(km16, col=c("blue","orange"), xlab="Time (days)", ylab="Survival", 

ylim=c(0.8,1), conf.int=TRUE, cex.axis=1.5, cex.lab=1.5, lwd=2, las=1, yaxt="n") 

> axis(side=2, at=c(0.8, 0.9,1.0), cex.axis=1.5, cex.lab=1.5, las=1) 

> axis(side=1, at=c(10,20,30,40,50,60,70,80,90,100), cex.axis=1.5, cex.lab=1.5) 

> legend("topright", bty="n", legend=c("W","WO"), fill=c("blue","orange"), cex=1.75) 

> 

> plot(km16, col=c("blue","orange"), xlab="Time (days)", ylab="Survival", 

ylim=c(0.9,1), xlim=c(0,10), conf.int=TRUE, cex.axis=1.5, cex.lab=1.5, lwd=2, las=1, 

yaxt="n") 

> axis(side=2, at=c(0.9,1.0), cex.axis=1.5, cex.lab=1.5, las=1) 

> minor.tick(ny=4) 

> 

 

 

D5. Infructescence compactness 

> #Infructescence Architecture (previous categorization) 

> data<-read.csv("infl stats.csv") 

> attach(data) 

> shapiro.test(final[which(Type=="IN")]) 

> #p-value = 2.2e-16 

> sqrtin=sqrt(final[which(Type=="IN")]) 

> shapiro.test(sqrtin) 

> login=log(final[which(Type=="IN”)]) 

> shapiro.test(login) 

>#indehiscence cannot be transformed to normality, NON PARAMETRIC 

> leveneTest(final~Type) 

> #p-value = 3.171e-05 ***, variances unequal 

> wilcox.test(final~Type, var.equal=FALSE) 

> # p-value = 0.02777, within Grammica, there is a significant difference in 

infructescence architecture between dehiscent and indehiscent species 

> plot(final~Type, las=1, ylab="Infructescence Compactness", xlab="Fruit Dehiscence", 

col=(c("yellow", "blue"))) 

> 

#summary statistics inflorescence architecture old categorization 

> summary(final[which(Type=="DE")]) 
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> shapiro.test(final[which(Type=="DE")]) 

> #data not normal, bootstrap for confidence intervals 

> sem<-sqrt(var(final[which(Type=="DE")])/length(final[which(Type=="DE")])) 

> sem 

> mean.fun<-function(dat,idx)mean(dat[idx],na.rm=TRUE) 

> stderr<-function(x)sd(x)/sqrt(length(x)) 

> boot.out<-boot(final[which(Type=="DE")], mean.fun, R=1000, sim="ordinary") 

> boot.ci(boot.out, type="norm") 

> #sample size 

> length(final[which(Type=”DE”)]) 

> #indehiscence cannot be transformed, same R codes used except Type==”IN” 

 

 

 

 

> #Infructescence Architecture (new categorization) 

> data<-read.csv("infl stats.csv") 

> attach(data) 

> shapiro.test(final[which(Type2==”DE”)]) 

> fligner.test(final~Type2) 

> kruskal.test(final~Type2) 

> dunn.test(final, g=Type2,  list=TRUE) 

> plot(final~Type, las=1,ylab="Infructescence Compactness", xlab="Fruit Dehiscence", 

col=(c("yellow", "blue")), cex.axis=1.25, cex.lab=1.25, lwd=1.25, ylim=c(0,1)) 

> 

 

 

 
 
 
 


