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Abstract 

 Chloroplasts are organelles that are unique to plant and algal cells and are 

the site of photosynthesis.  Though chloroplasts contain their own genome, an 

estimated 95% of chloroplast proteins are encoded in the nucleus, and therefore 

rely on post-translational targeting to the organelle. The majority of known 

chloroplast proteins are targeted to the chloroplast interior by cleavable signals at 

the N-terminal end of preproteins known as transit peptides.  The translocon at the 

outer envelope membrane of chloroplasts (Toc) is a multimeric complex that 

recognizes and binds N-terminal transit peptides at the cytosolic surface of 

chloroplasts.  Though transit peptides are necessary and sufficient for guiding 

nuclear-encoded preproteins into the chloroplast interior, the nature of sequence 

information of transit peptides is not fully understood due to their high divergence 

in length and composition.  Over the last nine years, the number of proteins known 

or predicted to reside in the chloroplast outer envelope membrane of Arabidopsis 

has tripled to one hundred and seventeen.  Although the functions for some of these 

outer envelope proteins (OEPs) have been characterized, the precise mechanism of 

their targeting to the chloroplast outer membrane has not been fully elucidated.  

Besides Toc75, the targeting mechanisms used by OEPs that have been 

characterized do not involve an N-terminal transit peptide.  The bioinformatics tool 

ChloroP can be used to predict if amino acid sequences contain an N-terminal transit 

peptide.  Recently, ChloroP analysis and protoplast transient expression assays were 

used to identify a novel chloroplast targeting signal in the C-terminus of the 

chloroplast preprotein receptor Toc159 in Bienertia sinuspersici (Lung and Chuong, 
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2012).  Toc159 was also shown to lack a canonical transmembrane domain typically 

present in OEPs.  While the unique C-terminal targeting sequence has been partially 

characterized in Toc159 (Lung et al., 2014), it left open the question of whether this 

type of signal is unique to Toc159, or if it is used by other OEPs as well.  In the 

current study, to determine if other OEPs use this novel targeting pathway, ChloroP 

analysis identified eight potential candidates possessing the putative C-terminal 

targeting signal in Arabidopsis.  Transient protoplast expression assays have been 

performed on OEP18, the protein predicted with the highest ChloroP score, to 

determine its subcellular localization and the sequences required for its targeting to 

chloroplasts.  The primary purpose of the current study was to establish whether 

chloroplast outer membrane proteins other than Toc159 use a similar C-terminal 

targeting signal.  Overall, the data in this thesis suggest that some OEPs other than 

Toc159, such as OEP18, may use this novel targeting pathway.  
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1. Introduction 

1.1 Plastids  

Plastids are organelles surrounded by a double membrane envelope that play 

crucial roles in signaling and metabolic processes that are necessary for plant 

development and survival (Lopez-Juez and Pyke, 2005).  It is currently accepted that 

plastids, regardless of the host in which they reside, evolved about 1.5 billion years 

ago from free-living cyanobacteria through the process of endosymbiosis (Lopez-

Juez, 2007).  Plastids have the unique ability to differentiate into several variants 

from an undifferentiated proplastid (Lopez-Juez, 2007) (Figure 1.1).  These plastid 

types are inter-convertible during plant development and in response to different 

environmental conditions (Wise, 2006). 

 

1.2 Chloroplasts structure and function 

 Chloroplasts develop from undifferentiated proplastids and are functionally 

unique from other types of plastids in that they are the site of photosynthesis.  The 

differentiation of proplastids into chloroplasts occurs in tissues, such as leaves and 

stems, and is triggered by light-dependent pathways (Jarvis, 2008).  The 

maintenance of chloroplast structure is also light-dependent, as prolonged exposure 

to darkness or inadequate illumination can cause redifferentiation to etioplasts in 

some cases (Thomas et al., 2009; Taiz and Zeiger, 2010) (Figure 1.1).  Chloroplasts 

are composed of three independent membrane systems (inner and outer envelope 

membranes and thylakoid membranes) and three internal soluble 

subcompartments (stroma, thylakoid lumen, and envelope  
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Figure 1.1. All plastid types are derived from proplastids.  Many plastid types 

redifferentiate and interconvert from one type to another in a network of 

developmental transitions due to environmental changes and the tissues in which 

they reside. 
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intermembrane space) (Paila et al., 2015) (Figure 1.2).  The outer and inner 

envelope membranes and thylakoid membranes are made up of a lipid bilayer with 

phospholipids and a high concentration of galactosyl diacylglycerides (Block et al., 

1983; Poincelot, 1976).  The outer envelope membrane contains a few β-barrel 

proteins that are similar to bacterial porins, and are used to translocate specific 

substrates across the outer envelope (Patel et al., 2008).  Due to the permeability of 

the outer envelope membrane, the inner envelope membrane acts as the primary 

selectively-permeable barrier between the cytosol and the chloroplast interior 

(Figure 1.2).  The intermembrane space has a buffering capability that is controlled 

by the permeability of the outer membrane, which is regulated in response to 

changes in metabolic needs of the organelle (Bölter and Soll, 2001).  The thylakoid 

membranes are the site of the light-dependent reactions of oxygenic photosynthesis 

(Jarvis, 2008).  The vast majority (~95%) of chloroplast proteins are encoded in the 

nucleus (Jarvis, 2008).  Therefore, chloroplast biogenesis and maintenance is 

dependent on selective targeting and post-translational import of nuclear-encoded 

precursor proteins (preproteins) that are produced on cytosolic ribosomes (Cline 

and Henry, 1996).  

 

1.3 Intracellular protein targeting 

 In a typical plant cell, a series of sophisticated intracellular protein trafficking 

pathways ensure that several thousand polypeptides are transported to the 

appropriate organelles and suborganellar compartments.  Intracellular targeting of 
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Figure 1.2. Chloroplasts contain a double-envelope membrane with outer and inner 

layers, between which is the intermembrane space.  The thylakoid membrane, 

which is the site of photosynthesis, is extensively folded and characterized by the 

presence of thylakoids.  Protons are pumped across the thylakoid membrane into 

the lumen during the light-dependent reaction of photosynthesis.  The stroma 

surrounds the thylakoids and contains the chloroplast genome.  Exterior to the 

outer membrane is the cytosol. 
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organellar proteins is a fundamental cellular process in eukaryotic cells.  

Intracellular proteins are delivered to their target organelle either by direct 

targeting from the cytoplasm or by vesicular trafficking from a donor to a receptor 

compartment (Lee et al., 2013).  Peroxisomes, endoplasmic reticulum (ER), 

mitochondria, and chloroplasts are organelles that receive their proteins via direct 

targeting (Lee et al., 2013).  Intracellular pathways are aided by targeting 

information embedded in amino acid sequences of the polypeptides being 

transported (Bruce, 2000).  The names given to these sequences depend on what 

organelle the polypeptide is targeted to: “peroxisome targeting signals (PTS)” for 

the peroxisome, “signal peptides” for the endoplasmic reticulum, “nuclear 

localization signal (NLS)” for the nucleus, “presequences” for the mitochondria, and 

“transit peptides” for the chloroplasts (Bruce, 2000).  In order for an amino acid 

sequence to be considered a targeting motif it must function in a specific position in 

the protein, confer residency in a specific organelle, and be disrupted through 

mutation (Teasdale and Jackson, 1996). 

 

1.3.1 Protein targeting to peroxisomes 

 Peroxisomes are organelles found in most eukaryotic cells and are involved 

in various metabolic processes depending on cell type and environment (Johnson 

and Olsen, 2001).  Many plant peroxisome types are involved in the reduction of 

reactive oxygen species (Corpas et al., 2001).  Peroxisomes do not contain their own 

genome and therefore rely on post-translational import of proteins synthesized on 

cytosolic ribosomes (Olsen, 1998).  Protein import into peroxisomes is necessary for 
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the regulation of peroxisomal responses to changes in environmental conditions 

(Goto-Yamada et al., 2015).  Targeting sequences can exist on the N- or C-terminus 

of proteins destined for the peroxisome (Lee et al., 2013).  Peroxisome targeting 

signal 1 (PTS1) is a C-terminal tripeptide sequence that is recognized by the 

cytosolic import receptor PEX5 and targeted to peroxisomes (Lee et al., 2013).  PTS1 

sequences comprise a family of sequences that generally conform to a similar 

pattern of amino acids: small side chain amino acid–basic amino acid–hydrophobic 

amino acid (Baker et al., 2016).  Peroxisome targeting signal 2 (PTS2) is an N-

terminal sequence that targets proteins to peroxisomes through recognition by the 

cytosolic import receptor PEX7 (Lee et al., 2013).  In comparison to PTS1, a smaller 

group of peroxisome-destined proteins use the PTS2 sequence (Lanyon-Hogg et al., 

2010).  The PTS2 signal sequence is a conserved nonapeptide (Rachubinski and 

Subramani, 1995).   

  

1.3.2 Protein targeting to the ER 

  Many eukaryotic proteins are synthesized by ribosomes studded on the 

cytosolic face of the endoplasmic reticulum (ER) membrane (Hebert and Molinari, 

2007).  The structure of the ER consists of a number of membrane-enclosed sacs 

called cisternae.  Cisternae are formed by a single envelope membrane, which 

creates an inner lumen separated from the cytosol (Kim and Hwang, 2013).  

Resident proteins of the ER lumen, proteins of other compartments of the 

endomembrane system (e.g. Golgi), and proteins destined to be secreted, contain an 

N-terminal signal sequence known as a signal peptide.  Signal peptides are typically 
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7-30 amino acids in length and divided into three regions: a positively charged N-

terminus, a central hydrophobic domain, and a cleavable C-terminus (Kim and 

Hwang, 2013).  Signal peptides are able to adopt an α-helical conformation to 

function as a signal sequence (McKnight et al., 1989).  Protein translocation into the 

ER can occur either co- or post-translationally (Fewell and Brodsky, 2000).  

Cotranslational import is mediated by a molecular chaperone, a signal recognition 

particle (SRP), which recognizes and binds the signal sequence that emerges from a 

cytosolic ribosome (Keenan et al., 2001).  The SRP guides the nascent polypeptide 

chain to the ER membrane.  Upon arriving at the ER membrane, the SRP binds to an 

SRP receptor to dock the ribosome at the ER membrane, which allows the nascent 

polypeptide to be inserted into the ER membrane cotranslationally (Pool et al., 

2002). 

 

1.3.3 Protein targeting to mitochondria 

 Mitochondria are double-membrane organelles that play a crucial role in the 

metabolism of amino acids, cellular energy conversion, and regulation of apoptosis 

(Bolender et al., 2008).  Though mitochondria contain their own genome, the 

majority of the over 1,000 resident proteins of mitochondria are nuclear-encoded 

and imported as precursor proteins from the cytosol (Murcha et al., 2014).  

Mitochondrial presequences are typically N-terminal signal sequences that target 

proteins from the cytosol to mitochondria (Mossmann et al., 2012).  It was originally 

believed that the majority of proteins targeted to mitochondria had cleavable 

presequences (Glaser et al., 1998).  The majority of mitochondrial proteins that 



 8 

were first identified were located in the mitochondrial matrix.  However, as more 

mitochondrial proteins in the outer membrane and inner membrane space have 

been identified, it is currently believed that possibly up to 50% of mitochondrial 

proteins do not contain cleavable presequences (Murcha et al., 2014).  The majority 

of presequences of mitochondrial proteins in Arabidopsis range from 20–70 amino 

acids in length and no conserved targeting motifs have been characterized (Zhang 

and Glaser, 2002).  The amino acid composition of presequences is similar to that of 

chloroplast transit peptides in that they both typically have an overrepresentation 

of serine and threonine residues (Zhang and Glaser, 2002).  However, there are 

biochemical differences between presequences and transit peptides.  About 84% of 

mitochondrial presequences in Arabidopsis are predicted to form an α-helix within 

the first 10 amino acids compared to about 30% of chloroplast transit peptides 

(Huang et al., 2009).  Also, the first 10 amino acids of presequences are generally 

more hydrophilic than those of transit peptides (Huang et al., 2009).  

 

1.3.4 Transit peptides  

Chloroplast transit peptides (cTPs) are N-terminal sequences that target 

nuclear-encoded preproteins to chloroplasts with high specificity (von Heijne and 

Nishikawa, 1991).  Some chloroplast proteins such as RbcS, OE23, and OE33 possess 

conserved transit peptide motifs for interaction with cytosolic factors thought to 

facilitate protein targeting to chloroplasts (Lee et al., 2013).  However, the functions 

of these cytosolic factors have not been clearly demonstrated in vivo (Lee et al., 

2013).  Currently, no clear consensus sequence has been identified since cTPs are 
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highly divergent in length, composition, and organization (Bruce, 2000).  Therefore, 

what precisely defines cTPs still remains to be fully understood.  Though these N-

terminal transit peptides are required for preprotein targeting to chloroplasts, some 

preproteins also require targeting information located in their C-terminal domains, 

which in some cases have been shown to influence the function of transit peptides 

(Ko and Ko, 1991).  The length of transit peptides can range from 13 to 146 

residues, while the majority are 30–80 amino acid residues, which are generally 

longer than plant mitochondrial presequences (Zhang and Glaser, 2002).  Transit 

peptides are, however, similar to plant mitochondrial presequences in terms of 

amino acid content.  They are both rich in hydrophobic, hydroxylated, and positively 

charged amino acid residues, and generally lack acidic amino acids (Zhang and 

Glaser, 2002).  The most conserved residue in cTPs is an alanine immediately 

downstream of the N-terminal methionine (Emanuelsson et al., 2007).  A limited 

number of investigations explains the relative paucity of information available 

concerning structural aspects of transit peptides.  However, this remains an 

important aspect of cTPs to understand as part of their characterization.  One of the 

few studies on cTP structure indicates that transit peptides are largely unstructured 

in aqueous environments (Bruce, 1998).  This is in agreement with an earlier 

proposal by von Heijne and Nishikawa (1991) that cTPs are devoid of any regular 

secondary or tertiary structures and have evolved to form perfect random coils.  

However, when transit peptides are placed in membrane-mimicking environments 

such as 2,2,2-trifluoroethanol (TFE) and detergent micelles, analysis by circular 

dichroism spectrometry reveal that one or more regions of the transit peptide 
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become α-helical (Wienk et al., 1999).  Interestingly, these properties are 

characteristic of intrinsically disordered proteins (IDPs) (Dyson and Wright, 2005).  

These data also provide evidence that the chloroplast envelope membrane may play 

a role in preprotein targeting (Bruce, 2000).  Based on the galactosyl diacylglyceride 

content of the chloroplast envelope membrane, it has been proposed that two 

possible molecular interactions form the basis of the initial association between 

transit peptides and the chloroplast surface: an ionic interaction between the basic 

amino acids of the transit peptide and the anionic phospholipids, and hydrogen 

bonding between the hydroxylated amino acids of the transit peptide and the 

galactose headgroups of the glycolipids, particularly the chloroplast-specific 

monogalactosyldiacyglycerol (MGDG) (Pinnaduwage and Bruce, 1996; Bruce, 2000).  

However, Aronsson et al. (2008) demonstrated that Arabidopsis mutants with 

reduced levels of MGDG showed no significant decrease in protein targeting to 

chloroplasts and import efficiency of cTPs.  Therefore, the type of interaction that 

constitutes the initial association between cTPs and the chloroplast surface may 

involve other lipid constituents or some unknown factors.      

Upon entry into the chloroplast stroma, transit peptides are removed via 

proteolytic cleavage by the stromal processing peptidase (SPP) (Richter and 

Lamppa, 1998).  The SPP has a broad range of specificity, which reflects the highly 

divergent nature of transit peptides (Richter and Lamppa, 1998).  However, as the 

database of transit peptides has continued to increase over the past 30 years, so has 

the efficiency of motif-finding algorithms.  These algorithms have led to the 

identification of a loosely conserved motif (VRAAAVXX, where the arrow head 
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indicates the cleavage site), which led to the development of the neural network-

based predictor ChloroP, which is designed to discriminate N-terminal cTPs from 

other N-terminal sequences (Emanuelsson et al., 1999).  ChloroP also predicts the 

SPP cleavage sites of a given amino acid sequence with 60% accuracy by using a 

scoring matrix generated by an automatic motif-finding algorithm (Emanuelsson et 

al., 1999). 

 

1.4 Protein subcellular localization prediction programs 

In order to understand the function of a protein, an important first step is to 

determine its subcellular localization.  Besides ChloroP (Emanuelsson et al., 1999), 

other computational programs have been developed to predict the subcellular 

localization of proteins including iPSORT (Nakai and Horton, 1999), TargetP 

(Emanuelsson et al., 2000), TMHMM (Krogh et al., 2001), SignalP (Bendtsen et al., 

2004), and Predotar (Small et al., 2004).  In parallel, high-throughput experimental 

approaches have been developed in recent years to determine the subcellular 

localization of proteins in vivo (Emanuelsson et al., 2007).  However, it is inevitable 

that these experiments produce some false-positives and false-negatives.  Therefore, 

computational prediction tools can be used as starting points for identification of 

organelle-specific proteins and improve the quality of high-throughput data.  

Despite the accuracy of these computational tools, the results they produce should 

be taken as suggestions for further experimental analysis for they do have 

limitations.  For example, ChloroP cannot always effectively discriminate between: 

1) cTPs and mitochondrial targeting sequences due to the similarity of sorting 
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signals and 2) those proteins that exhibit dual-targeting to chloroplasts and 

mitochondria (Emanuelsson et al., 1999).  Also, these tools do not provide insight 

into how transit peptides function in a common import pathway. 

 

1.5 Chloroplast protein import pathway 

The highly uncharged N-terminus of transit peptides plays a crucial role in 

plastid protein import (Lee et al., 2002).  About 77% of transit peptides contain a 

heat shock protein 70 (Hsp70) binding site (H70BS) in the N-terminal region 

(Chotewutmontri and Bruce, 2015).  Hsp70 and Hsp93 are two chaperones that act 

as plastid translocation motors (Su and Li, 2010).  When the expression of Hsp93 is 

knocked down, plastids can still import preproteins at 40-60% of the wild type level 

(Kovacheva et al., 2007).  This suggests that Hsp70, or potentially another 

chaperone, functions as the translocation motor for the imported preprotein.  Those 

transit peptides that lack H70BS (Chotewutmontri and Bruce, 2015) or have 

mutated H70BS (Rial et al., 2003) are still capable of being imported into plastids.  

Therefore, a dual involvement of Hsp93 and Hsp70 likely exists to bind transit 

peptides sequentially, simultaneously, or independently, and initiate the import 

process into chloroplasts (Chotewutmontri and Bruce, 2015).  Transit peptides 

continue to mediate translocation across the chloroplast envelope once preproteins 

arrive at the chloroplast surface. 
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1.6 Toc complex 

The translocon at the outer envelope membrane of chloroplasts (Toc) is a 

multimeric complex that recognizes and binds N-terminal transit peptides of 

cytoplasmic preproteins (Chang et al., 2012).  The Toc complex works in 

coordination with the translocon at the inner envelope membrane of chloroplasts 

(Tic) to transport preproteins from the cytosol to the stroma (Li and Chiu, 2010). 

The core complex of the Toc complex is made up of two GTP-dependent 

preprotein receptors, Toc34 and Toc159, and a membrane channel Toc75 (Figure 

1.3) (Richardson et al., 2014).  These core Toc components are integral membrane 

proteins (Schleiff et al., 2003).  Toc34 and Toc159 each have a GTPase (G-) domain  

that is capable of binding the transit peptides of newly synthesized preproteins at 

the chloroplast surface (Richardson et al., 2014).  Once bound to the G-domain, 

preproteins are transferred to Toc75 and translocated across the outer envelope 

membrane of the chloroplast through sophisticated intermolecular events (Kessler 

and Schnell, 2002).  Toc34 and Toc159 are encoded by multi-gene families, such that 

different family members assemble in combination with Toc75 to form distinct core 

Toc complexes with different preprotein selectivities (Kessler and Schnell, 2009).  In 

Arabidopsis, the Toc159 family is comprised of atToc159, atToc132, atToc120, and 

atToc90, while the Toc34 family contains atToc33 and atToc34 (Smith et al., 2004).   

It has been hypothesized that the receptors expressed in any given cell type 

depends on the metabolic needs of the organelle.  For example, atToc159 would be 

expressed if the import of photosynthetic preproteins were required, since 

atToc159 has a high affinity for a subset of essential photosynthetic proteins.  
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Figure 1.3. GTPase receptors Toc159 and Toc34 assemble with the β-barrel protein 

channel Toc75 to make up the Toc complex in the chloroplast outer membrane 

(Richardson et al., 2014). 
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atToc132, atToc120, and atToc90, on the other hand, have higher affinities for 

different subsets of proteins, which may include non-photosynthetic proteins (Smith 

et al., 2004; Dutta et al., 2014). 

 

1.6.1 Models for studying the Toc complex 

The majority of Toc components that mediate preprotein import were 

originally identified and characterized in pea (Smith, 2006) but have been most 

extensively studied in Arabidopsis (Kubis et al., 2004).  More recently, with the 

completion of the tomato genome sequencing project, Yan et al. (2014) analyzed and 

cloned Toc GTPase cDNAs from tomato and identified four Toc159 homologues and 

two Toc34 homologues with high sequence similarity to those of Arabidopsis.  This 

indicates that the tomato is a valid model for further study of preprotein import into 

chloroplasts (and potentially other plastid types), and furthermore suggests that 

investigation of the import apparatus may be sufficient, but does not need to be 

limited to Arabidopsis and pea.  Investigation of the import apparatus may also be 

achieved using the Bienertia system of the Chenopodiaceae family due to its unique 

dimorphic chloroplasts within a single cell (Lung and Chuong, 2012).  The single-cell 

C4 species use a unique intracellular compartmentalization of two biochemically and 

morphologically distinct chloroplasts to accomplish the functions of the Kranz-type 

C4 system (Edwards et al., 2004), The differentiation of the dimorphic chloroplasts 

must involve selective expression and/or accumulation of nuclear encoded proteins 

(Lung et al., 2012; Erhlinghaeuser et al., 2016). Finding multiple valid models for 

studying plastid preprotein import is significant, for different systems contain 
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varying levels of plastid-types.  Therefore, new insights are gained on the expression 

patterns of chloroplast import components, leading towards a more thorough 

understanding of the chloroplast protein import apparatus functions.     

 

1.6.2 N-terminus of Toc159 

Although Toc159 and Toc34 contain homologous GTPase domains, Toc159 is 

a much larger protein than Toc34 due in part to its large N-terminal acidic (A-) 

domain.  The physicochemical properties of the A-domain are characteristic of 

intrinsically disordered proteins (IDPs) (Richardson et al., 2009).  The 

demonstration that the A-domain is an IDP led to the suggestion that this domain 

has a role in preprotein recognition.  This proposal was supported by Dutta et al. 

(2014) who used a yeast two-hybrid approach to identify more preprotein 

substrates for the Toc159 receptor family.  Results from this series of screens 

demonstrated how the A-domain may have a role in conferring specificity for 

preprotein subclasses, which interact with the G-domain of Toc159 through their 

cTPs (Dutta et al., 2014).    

 

1.7 Outer Envelope Protein Targeting Pathways   

Outer envelope proteins (OEPs) are a subset of chloroplast proteins that are 

nuclear-encoded and reside in the chloroplast outer membrane.  OEPs are unique 

from other chloroplast proteins because, aside from Toc75 (Tranel et al., 1995), they 

do not target to chloroplasts using a transit peptide (Hofmann and Theg, 2005).  The 

mechanisms of targeting for the vast majority of the one hundred and seventeen  
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Figure 1.4. Though the mechanisms for the targeting of most OEPs to the 

chloroplast outer membrane have not been defined, illustrated here are five distinct 

chloroplast outer membrane targeting mechanisms.  OEP21 is an example of a β-

barrel that appears to self-insert into the chloroplast outer membrane.  Toc34 and 

OEP7 are representative proteins of types of targeting used by other known OEPs; 

Toc34 is a tail-anchored protein and OEP7 is a representative of signal-anchored 

proteins.  Toc75 is the only known OEP that uses an N-terminal transit peptide for 

targeting (Tranel et al., 1995).  Toc159 was recently shown to contain targeting 

information in its C-terminus, but is different from the tail-anchored proteins 

because it lacks the canonical -helical transmembrane domain (TMD) (Lung et al., 

2014).
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known or predicted OEPs of Arabidopsis (Inoue, 2015) have not been fully 

elucidated.  However, multiple OEP targeting pathways have been characterized 

based on the location of the membrane-spanning domains in the amino acid 

sequence that, in many cases, constitute the protein sorting information (Figure 1.4) 

(Hofmann and Theg, 2005).  Of the few OEPs whose targeting mechanisms have 

been studied, the majority contain a single -helix that targets and anchors the 

protein to the hydrophobic chloroplast outer membrane (Bölter and Soll, 2011).  

OEP targeting pathways are broadly classified based on whether this single -helical 

transmembrane domain (TMD) is located at the N- or C- terminus of the OEP, 

termed “signal-anchored” and “tail-anchored,” respectively (Bölter and Soll, 2011).  

For example, Toc34 is a tail-anchored protein since it anchors to the chloroplast 

outer membrane using a short TMD located near its C-terminus whereas OEP7 is a 

signal-anchored protein which utilizes the N-terminal TMD to targets itself (Oreb, 

2008).  Toc75 is the only known OEP that uses a canonical N-terminal cleavable 

transit peptide for targeting (Tranel and Keegstra, 1996).  A few integral β-barrel 

proteins, such as OEP21, appear to self-insert into the chloroplast outer membrane 

(Pohlmeyer et al., 1998).  The cytosolic receptor AKR2A has been demonstrated to 

mediate targeting of select OEPs to the chloroplast outer membrane (Bae et al., 

2008).  AKR2A distinguishes OEPs from other substrates by the positively charged 

region of their transmembrane domains (Lee et al., 2011).  The C-terminal domain 

of AKR2A mediates targeting to the chloroplast outer membrane (Bae et al., 2008) 

and the nature of the membrane association was recently shown to be between 
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AKR2A and the chloroplast outer membrane lipids MGDG and phosphatidylglycerol 

(PG) (Kim et al., 2014).  

 

1.7.1 Toc159 targeting and anchoring to the chloroplast outer membrane 

Toc159 contains a C-terminal membrane (M-) domain that anchors the 

receptor to the outer membrane of chloroplasts.  Toc159 also depends on its G-

domain to regulate targeting of Toc159 from the cytosol to the chloroplast outer 

membrane (Bauer et al., 2002).  Specifically, targeting of Toc159 to chloroplasts is 

mediated by interaction between the homologous G-domains of Toc159 and Toc33 

(Smith et al., 2002).  The specific mechanism of membrane association/anchoring 

remains unknown due to lack of known homologues and the lack of a predicted 

transmembrane domain (Lung and Chuong, 2012).  The 52-kDa C-terminal domain 

of Toc159 was given the name “membrane domain” due to its resistance to 

proteolysis in intact chloroplasts, which indicates it is protected from proteolysis by 

the membrane (Chen et al., 2000).  However, it remains possible that the majority of 

the protein resides in the hydrophilic intermembrane space, or is  

resistant to proteolysis due to a poorly understood mechanism of association with 

the membrane.  Bioinformatics tools have predicted the C-terminus of Bienertia 

sinuspersici Toc159 (BsToc159) to contain a cTP-like targeting signal, which also 

possesses similar physicochemical and structural properties to those of cTPs (Lung 

and Chuong, 2012).  Structural prediction data also suggests that the C-terminus of 

BsToc159 forms amphipathic structures analogous to those of transit peptides 

(Lung and Chuong, 2012).  Recently, a membrane association region was identified 
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within the 60-100 amino acid residues upstream from the end of the C-terminus of 

BsToc159 (Lung et al., 2014).  The chloroplast outer membrane targeting signal for 

BsToc159 was shown to be within the final 56 residues of the C-terminus.  

Therefore, unlike other OEPs, the chloroplast outer membrane targeting sequence 

for BsToc159 did not constitute the membrane association region.  Furthermore, the 

membrane association region was demonstrated to not contain the canonical 

transmembrane domain used by other OEPs.  The membrane association region was 

predicted through bioinformatic analyses and sequence analyses to anchor via a non 

α-helical and non β-barrel dependent manner (Lung et al., 2014).  It is speculated 

that the BsToc159 C-terminus might adopt a lipophilic β-helix for associating with 

the chloroplast outer membrane based on high sequence homology with the lipid-

binding domain of LpxD, a left-handed β-helical protein (Lung et al., 2014).  

Therefore, the C-terminus of BsToc159 is an unconventional membrane anchor and 

may represent a new class of sorting signals to the chloroplast outer membrane.  

Due to the unconventional nature of BsToc159 targeting and similarities in 

characteristics with cTPs, it is possible this unique class of sorting signals is shared 

with other OEPs. 

 

1.8 Overall Objectives and Hypothesis 

 The mechanism by which the vast majority of OEPs target to the chloroplast 

outer membrane is largely unknown.  A few broadly classified families of OEP 

targeting pathways have been identified.  However, the OEP Toc159 of Bienertia 

sinuspersici was recently demonstrated to target to the chloroplast outer membrane 
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using a novel transit peptide-like targeting signal in its C-terminal domain.  The 

overall objective of this current study was to further characterize the novel 

chloroplast outer membrane targeting signal identified in BsToc159.  To accomplish 

this objective, the goal was to find other OEPs that use this novel targeting 

mechanism.  It was hypothesized that using a similar bioinformatic approach that 

Lung and Chuong (2012) used on BsToc159 would result in identifying other OEPs 

that use the unique C-terminal targeting signal.  In the current study, all known and 

predicted OEPs of Arabidopsis chloroplasts were analyzed using a bioinformatic 

approach to first identify OEPs predicted to contain the putative C-terminal transit 

peptide-like targeting signal.  The cDNA of the OEP with highest probability to 

contain the novel targeting signal was used to design EGFP fusion constructs.  These 

constructs were expressed in onion epidermal cells and Arabidopsis protoplasts to 

determine the subcellular location of the protein.  Furthermore, truncation mutants 

were designed by removing segments of the OEP and fusing them to EGFP to 

determine the sequence.  
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2. Materials and Methods 

2.1 Chemicals and supplies 

All chemicals were of analytical grade and purchased from Sigma-Aldrich 

(Oakville, ON, Canada), BioShop Canada Inc. (Burlington, ON, Canada) or Fisher 

Scientific (Ottawa, ON, Canada), unless otherwise specified. All equipment and 

supplies for agarose and polyacrylamide gel electrophoresis and transblotting were 

purchased from Bio-Rad (Mississauga, ON, Canada). Molecular weight standards for 

electrophoresis included Quick-Load 100 bp DNA Ladder (New England Biolabs, 

Pickering, ON, Canada), 1 kb DNA Ladder RTU (GeneDireX, Toronto, ON, Canada), 

and Precision Plus Protein Standards (Bio-Rad, Mississauga, ON, Canada). All 

restriction enzymes, T4 DNA ligase and other modifying enzymes were purchased 

from New England Biolabs (Pickering, ON, Canada). PCR reactions for the 

production of fluorescent fusion constructs were performed using the Phusion High-

Fidelity DNA Polymerase (New England Biolabs, Pickering, ON, Canada; cat. no. F-

530S), whereas colony PCR were performed using Taq DNA Polymerase (New 

England Biolabs, Pickering, ON, Canada; cat. no. M0267S). DNA sequencing service 

was provided by the Sanger Sequencing Facility at The Centre for Applied Genomics 

(The Hospital for Sick Children, Toronto, ON, Canada). Custom DNA oligonucleotides 

were synthesized by Eurofins Scientific (Huntsville, AL, USA). Purification of plasmid 

DNA was performed using the EZ-10 Spin Column Plasmid DNA Minipreps or 

Maxipreps Kits (Biobasic Inc., Markham, ON, Canada). 
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2.2 Bioinformatic Analysis 

 Amino acid sequences of the one hundred and seventeen known and 

predicted Arabidopsis chloroplast OEPs (Inoue, 2015) were analyzed using the 

ChloroP prediction program v1.1 (Emanuelsson et al., 1999; 

http://www.cbs.dtu.dk/services/ChloroP) in the forward and reverse orientation 

for the purpose of predicting the presence of a chloroplast Transit Peptide (cTP).  

Any score over 0.5 is considered an indication that the sequence likely contains a 

canonical N-terminal cTP.  The same cut-off was used for the purpose of identifying 

which OEPs might contain a cTP-like sequence at their C-terminal end. 

   Further bioinformatic analysis was completed on the proteins predicted by 

ChloroP to have a putative transit peptide at their C-terminus.  This was done to rule 

out the possibility of these proteins potentially containing a canonical tail-anchor or 

signal-anchor sequence to mediate targeting to the chloroplast outer membrane.  

The TMHMM v2.0 prediction program (Krogh et al., 2001; 

http://www.cbs.dtu.dk/services/TMHMM/) was used to predict the presence of 

transmembrane helices in the protein sequences predicted to contain C-terminal 

transit peptides.  

 The candidate proteins were further ruled out to follow a canonical OEP 

targeting pathway by cross referencing them to the known and predicted 

Arabidopsis tail-anchor proteins outlined in a recent publication by Marty et al. 

(2014). 
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 The secondary structure of the OEP selected as the protein of study was 

predicted using the PSIPRED protein structure prediction server v3.0 (Jones, 1999; 

http://bioinf.cs.ucl.ac.uk/psipred/).     

 

2.3 Construction of fluorescent protein fusion constructs 

 In the ChloroP analysis, OEP18 received the highest score for potentially 

containing a C-terminal transit peptide, and was chosen as the protein for further 

experiments.  The full-length OEP18 cDNA was ordered from the Arabidopsis 

Biological Resource Centre (ABRC, OSU, Columbus, OH, USA). The construction of 

the EGFP fusion constructs for transient expression studies were produced by 

subcloning specific DNA fragments of interest at the 5’-end of EGFP sequence using 

pSAT6-35S:EGFP-N1 vector or the 3’-end of EGFP sequence using pSAT6-35S:EGFP-

C1 vector (Appendix I), as described previously by Chung et al. (2005). The details of 

primers for the generation of each EGFP fusion construct can be found in Table 2.1. 

To generate the OEP-EGFP fusion construct, the entire OEP18-encoding sequence 

was PCR-amplified using a primer set with restriction enzyme site introduced in the 

forward primer in frame with the N-terminus of EGFP. Similarly, the EGFP-OEP18 

fusion construct was generated by PCR-amplifying the entire OEP18-encoding 

sequence using a primer set with the restriction enzyme site incorporated in the 

reverse primer in frame with the C-terminus of EGFP. For the generation of the 

deletion OEP-EGFP fusion constructs, the selected region of OEP18 coding sequence 

was PCR-amplified using a primer set with restriction enzyme site incorporated in 

the reverse primer in frame with the N-terminus of EGFP. Primer recognition sites 



 25 

such as 5 ‘-CTCGAG-3’ inserted in the forward primer and 5 ‘-GGATCC-3’ in the 

reverse primer sequences, were recognized by restriction endonucleases XhoI and 

BamHI, respectively.  

Fifty μL restriction digest reactions for purified OEP18 PCR products and 

pSAT6-N1 and pSAT6-C1 vectors were prepared by adding NEBuffer 3 [1 x] (New 

England BioLabs category # B70003S), BSA [0.1 mg/mL], purified plasmid DNA [2 

μg], BamHI [25 U], and ddH2O.  Initial digests were carried out in a water bath 

overnight at 37°C.  Reaction tubes containing the initial digestion were then 

incubated at 65°C for 20 min to heat-inactivate BamHI.  XhoI [25 U] was then added 

to the reaction tubes and placed in a water bath for 3- to 4-h at 37°C.  The tubes 

were then incubated at 65°C for 20 min to heat-inactivate XhoI. The OEP18 inserts 

were ligated with the respected pSAT6 vectors with T4 DNA Ligase (New England 

BioLabs category # M0202S) using a 4:1 insert to vector ratio at 4°C, incubated 

overnight.  Ligated plasmids were mixed with chemically-competent E. coli (XL-10 

Gold) and incubated on ice for 20 min.  Transformation of E. coli was achieved using 

the heat-shock method.  Transformed cells were selected by growth on LB agar 

plates containing ampicillin (50 μg/mL).        
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Table 2.1  List of oligonucleotides used for the construction of the EGFP fusion constructs      
 
Fusion protein Vector   Oligonucleotide           
     Name   Sequence (5’ to 3’)      Orientation  
 
EGFP-OEP18FL  C1  OEP18F1  CGCctcgagCTATGGCGAATTCCATTTCATCA   Sense   
  
                                                    OEP18R1   CGCggatccTCACTTGTTTGAACTTTTGCT   Anti-sense  
 
OEP18FL-EGFP N1  OEP18F2   CGCctcgagCATGGCGAATTCCATTTCATCA   Sense   
 
                                                 OEP18R2  CGCggatccCCTTGTTTGAACTTTTGCTAGA   Anti-sense  
 
OEPC -EGFP N1  OEP18F2   CGCctcgagCATGGCGAATTCCATTTCATCA   Sense   
 
             OEP18R3  CGCggatccTCAAGTCACCACGACCAAATGCAA  Anti-sense  
 
OEP18CT-EGFP N1  OEP18F4   CGCctcgagCTCTAAATCCTCCACTTCTGTA   Sense   
 
      OEP18R2  CGCggatcCCTTGTTTGAACTTTTGCTAGA   Anti-sense  
 
OEP18NT-EGFP N1  OEP18F3  CGCctcgagCTGCGTGTGGGAAAGAAGAGAAAGA  Sense   
 
                                                 OEP18R2  CGCggatccCCTTGTTTGAACTTTTGCTAGA   Anti-sense  
 
OEP18NT-EGFP N1  OEP18F1  CGCctcgagCTATGGCGAATTCCATTTCATCA   Sense   
 
      OEP18R4  CGCggatccCTCTGCAACCACTGAAAGT   Anti-sense 
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2.4 Plant Propagation and Growth Conditions 

Wild-type Arabidopsis thaliana (ecotype Columbia) seeds were incubated and 

stratified for at least 24 h in the dark at 4°C in 0.5% (w/v) agar solution.  The cold-

stratified seeds were then sown in 18x13x6 cm cell packs containing a 1:1 soil 

mixture of Sunshine LC1 mix and Sunshine LG3 germination mix (SunGro 

Horticulture Inc., Bellevue, WA, USA).  Plants were grown at 22°C under a 16 h:8 h, 

light : dark cycle in an environment-controlled growth chamber (Conviron Ltd., 

Winnipeg, MB, Canada) with a light intensity of approximately 150 μmol m-2 s-1.   

Seeds were covered with a plastic dome during germination for the first week in the 

growth chamber.  The seedlings were watered and fertilized regularly with 20:20:20 

(N:P:K) fertilizer (Plant Products Co. Ltd., Brampton, ON, Canada). Leaves from 3- to 

4-week-old plants were used for protoplast preparation.  

 

2.5 Isolation of mesophyll protoplasts from A. thaliana 

The procedures for isolation and transfection of mesophyll protoplasts from 

Arabidopsis were modified from Yoo et al. (2007), and Lung et al. (2014).  Briefly, 50 

healthy leaves from 3- to 4- week old plants were harvested and cut into 0.5- to 1-

mm strips using a sharp double-edge stainless steel razor blade (Electron 

Microscopy Sciences, Hatfield, PA, USA; cat. no. 72000) on a glass plate.  Each razor 

blade was replaced after cutting approximately 10 leaves to ensure leaf cuttings 

were made as clean as possible, without tissue tearing or crushing.  Leaf strips were 

immediately transferred using flat-tip forceps into a Petri plate containing 10 mL of 

enzyme solution (Figure 2.2).  Enzyme solution was freshly prepared by heating: CS-
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mannitol buffer [0.4 M mannitol, 20 mM MES-KOH (pH 5.7), 20 mM KCl] to 70°C for 

10 min and then cooling it to 55°C, and adding cellulase R-10 and macerozyme R-10 

(Yakult Pharmaceutical, Tokyo, Japan) to final concentrations of 1.5% (w/v) and 

0.4% (w/v), respectively.  The enzyme solution was then cooled to room 

temperature, followed by the addition of BSA (Sigma-Aldrich, Oakville, ON, Canada) 

and CaCl2 to final concentrations of 0.1% (w/v) and 10 mM, respectively.  Leaf strips 

in the enzyme solution (Figure 2.1A) were vacuum infiltrated for 15 min in the dark 

using a desiccator.  Leaf strips were then incubated in the enzyme solution for 3.5 h 

in the dark at room temperature without shaking until the cell wall digestion was 

completed as indicated by the green color of the solution (Figure 2.1B) and the 

observation of round-shaped protoplasts under light microscopy.  Cell wall 

digestion and protoplasts release was monitored by visualizing under a light 

microscope.  Release of healthy protoplasts is indicated by the presence of spherical 

cells that are not clumped together.   

The solution containing the released protoplasts was transferred using a 

Pasteur pipette from the Petri dish onto a piece of 75 μm nylon mesh (Sefar America 

Inc., Kansas City, MO, USA) to filter the protoplasts into a 15 mL falcon tube.  The 

remaining digested leaf strips in the Petri dish were rinsed with 2 mL of W5 solution 

[2 mM MES (pH 5.7), 154 mM NaCl, 125 mM CaCl2, 5 mM KCl].  The 2 mL W5 

solution rinse containing any remaining released protoplasts was transferred using 

a Pasteur pipette from the Petri dish onto the same piece of 75 μm nylon mesh to 

filter the released protoplasts into the same 15 mL falcon tube.  The 15 mL falcon 
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Figure 2.1. Isolation of mesophyll protoplasts from Arabidopsis.  

(A) Leaf strips from 3-week old Arabidopsis plants in enzyme solution at the 

beginning of digestion. (B) Leaf sections after 3.5 h of digestion showed protoplasts 

released into the solution. (C) Healthy protoplasts floated to the top in the CS-

Sucrose buffer after a 2.5 min centrifugation in the Silencer H-20 swinging bucket 

rotor.  The pellet and internatant comprised unhealthy protoplasts and cell debris 

that were carefully removed using a Pasteur pipette.   
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tube was centrifuged at 100 g for 2 min in a swinging-bucket rotor (Silencer H-20) 

to pellet the protoplasts.  The supernatant was carefully removed and discarded 

using a Pasteur pipette.  The protoplast pellet containing healthy, unhealthy, and 

broken protoplasts was resuspended in 2 mL of CS-sucrose buffer [0.4 M sucrose, 20 

mM MES-KOH (pH 5.7), 20 mM KCl] and centrifuged at 100 g for 2.5 min in the 

swinging-bucket rotor (Silencer H-20) to float the healthy protoplasts (Figure 2.1C).  

The internatant and pellet containing unhealthy and broken protoplasts were 

carefully removed without disturbing the floating layer using a Pasteur pipette.  The 

green floating layer of healthy protoplasts was then diluted in 1 mL of W5 solution 

using a gentle swirling motion.  Ten μL of solution was placed on a haemocytometer 

to estimate the number of isolated healthy protoplasts.  The resuspended healthy 

protoplasts were incubated on ice for at least 30 min, during which the protoplasts 

settled to the bottom of the 15 mL tube. 

 The supernatant was removed, and settled protoplasts were resuspended in 

a volume of Mg-Man buffer [0.4 M mannitol, 4 mM MES (pH 5.7), 15 mM MgCl2] to a 

final concentration of 200,000 protoplasts per mL.  The protoplast viability was 

performed by incubating 100 µL of isolated protoplasts in CS-sucrose buffer with 4 

µL of 0.2% (w/v) fluorescein diacetate (Sigma-Aldrich, Oakville, ON, Canada; cat. no. 

F5502) in acetone for 15 min at room temperature, washed twice by centrifugation 

at 100 g for 2 min and resuspension in 100 µL of CS-sucrose buffer.  The stained 

protoplasts were examined under a Zeiss AxioImager D1 epifluorescence 

microscope (Carl Zeiss Canada Inc., Toronto, ON, Canada). 
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2.6 Transfection of mesophyll protoplasts from A. thaliana 

In each standard reaction of PEG-mediated transfection, approximately 

20,000 protoplasts were mixed with 5-10 µg of plasmid DNA and 110 µL of PEG 

solution containing 40% (w/v) PEG4000 (Sigma-Aldrich, Oakville, ON, Canada; cat. 

no. 81240), 0.4 M sucrose and 100 mM CaCl2. The tube was mixed gently by 

inverting it 4-6 times and then was incubated in the dark at room temperature for 

15 min.  The transfected protoplasts were mixed with 440 µL of W5 solution to stop 

the reaction and centrifuged at 100 g for 2 min. The protoplast pellet was 

resuspended in 1 mL of WI solution containing 0.5 M mannitol, 4 mM MES-KOH (pH 

6.5) and 20 mM KCl and transferred to a 35 mm petri plate and incubated in a 

growth chamber (Environmental Growth Chambers, OH, USA) at 23 oC with a 

photon flux density of approximately 30 µmol m-2 s-1 overnight. To allow sufficient 

protoplasts for subsequent Western blot analysis, the standard procedures were 

scaled up by transfecting 80,000-100,000 protoplasts with 40-50 µg of plasmid 

DNA, and the transfected protoplasts were cultured overnight in a 50 mm petri plate 

with 2 mL of WI solution.  

 

2.7 Biolistic Bombardment of Onion Epidermal Cells 

Tungsten microcarriers were coated with plasmid DNA of the various fusion 

constructs essentially as previously described (Sanford et al., 1993).  Briefly, 30 mg 

of tungsten M-17 particles (~1.1 µm in diameter; Bio-Rad, Mississauga, ON, Canada) 

were washed in 70% (v/v) ethanol by vortexing vigorously for 3 min, and then 

soaked for 15 min.  After a brief centrifugation, the particles were rinsed three times 
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by vortexing in sterile distilled water.  The washed tungsten particles were pelleted 

by centrifugation, resuspended in 500 µL of 50% (v/v) glycerol and stored at -20 oC.  

One milligram of tungsten particles was coated with 5 µg of plasmid DNA in a 

suspension containing 16 mM spermidine and 0.1 M CaCl2 by vortexing vigorously 

for 2 min followed by a 5-min incubation step.  The DNA-coated tungsten 

microcarriers were collected by a brief centrifugation step, washed in 70% (v/v) 

and 100% (v/v) ethanol, and loaded onto the macrocarrier discs (Bio-Rad, 

Mississauga, ON, Canada).  The dried DNA-coated tungsten particles were 

bombarded into the adaxial epidermis of three 1.5 x 2.5 cm sections of onion bulb 

from a distance of 10 cm at a helium pressure of 1,350 p.s.i using the Biolistic PDS-

1000/He particle-delivery system (Bio-Rad, Mississauga, ON, Canada) according to 

the manufacturer’s instructions.  The bombarded samples were incubated on moist 

filter paper in petri plates at room temperature in the dark for 12-16 h and observed 

under a Zeiss AxioImager D1 epifluorescence microscope (Carl Zeiss Canada Inc., 

Toronto, ON, Canada). 

 

2.8 Total Protein Collected from Transfected Protoplasts 

After an overnight incubation, transfected protoplasts were visualized using 

an epifluorescence microscope to determine the rate of transfection.  Total protein 

was extracted if the estimated transfection rate was over 80%.  Total proteins from 

transfected protoplasts were extracted as follows: transfected protoplasts were 

pelleted at 200 g for 2 min and the supernatant was discarded. The protoplast pellet 

was vortexed vigorously in 100 L of lysis buffer [25 mM Tris-HCl (pH 6.8), 1% 
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(v/v) Triton X-100, 1 mM DTT) for 3 min and centrifuged at 14,000 rpm for 5 min at 

4 oC. The protein extracts from total protoplasts were quantified by the Bradford 

assays (Bradford, 1976) using the Protein Assay Dye Reagent Concentrate (Bio-Rad, 

Mississauga, ON, Canada), according to the manufacturer’s instructions. The protein 

concentrations were estimated against standard solutions of BSA from 0.5 to 10 mg 

mL-1.  Protein samples were then concentrated by precipitating the extract in five 

volumes of acetone at -20 oC for 1 h. Proteins were collected by centrifugation at 

14,000 rpm at 4 oC for 20 min.  The supernatant was discarded and the pellet was 

air dried for 15 min. 

 

2.9 SDS-PAGE 

The total protein fractions isolated from transfected protoplast were 

resolved by SDS-polyacrylamide gel electrophoresis (PAGE) using a Mini-Protean 

Electrophoresis Cell (Bio-Rad, Mississauga, ON, Canada).  Briefly, the acetone-

precipitated protein pellets were resuspended in 20 L of 6x SDS-PAGE sample 

buffer [72 mM Tris-HCl (pH 6.8), 30% (v/v) glycerol, 2% (w/v) SDS, 0.12% (w/v) 

bromophenol blue, and 6% (v/v) -mercaptoethanol], boiled at 95 oC for 5 min and 

resolved by 12% polyacrylamide gel electrophoresis (PAGE) using the Mini-

PROTEAN® III Electrophoresis Cell (Bio-Rad, Mississauga, ON, Canada).  A 12% 

(w/v) resolving gel was prepared comprised of the following: 2.4 mL of 30% (w/v) 

acrylamide/bisacrylamide, 2.25 mL of 1 M Tris-HCl (pH 8.8), 1.26 mL of distilled 

water, 60 L of 10% (w/v) SDS, 30 L of 10% (w/v) APS, and 3 L of TEMED.  A 

4.8% (w/v) stacking gel was prepared comprised of the following: 400 L of 30% 
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(w/v) acrylamide/bisacrylamide (37.5:1), 312 L of 1 M Tris-HCl (pH 6.8), 1.75 mL 

of distilled water, 25 L of 10% (w/v) SDS, 12.5 L of 10% (w/v) APS, and 2.5 L of 

TEMED.  The commercial molecular weight ladder Precision Plus Protein Standards 

All Blue (Bio-Rad, Mississauga, ON, Canada) was used.  Gel electrophoresis was run 

at 75 V until samples entered the stacking gel in running buffer [24.8 mM Tris, 0.192 

M glycine, and 0.1% (w/v) SDS] and then at 120 V until the dye ran off the gel.  

 

2.10 Western Blot 

  Resolved proteins from SDS-PAGE were transferred onto a polyvinylidene 

difluoride membrane (PVDF) (Bio-Rad, Mississauga, ON, Canada) at 15 V for 45 min 

in transfer buffer [48 mM Tris, 39 mM glycine, 20% (v/v) methanol, and 0.0375% 

(w/v) SDS] at room temperature using the Trans-Blot SD Semi-Dry Electrophoretic 

Transfer Cell (Bio-Rad, Mississauga, ON, Canada).  Briefly, SDS PAGE gel and the 

methanol-prewetted PVDF membrane were washed in transfer buffer for 15 min 

before placing in the Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell.  To 

visualize the transferred proteins, the PVDF membrane was placed in 0.1% (w/v) 

Ponceau stain in 5% (v/v) acetic acid for 15 min.  The membrane was then rinsed in 

distilled water until protein bands became visible.  The membrane was incubated in 

blocking solution containing 5% (w/v) skim milk powder in TBS-T buffer [25 mM 

Tris-HCl (pH 7.4), 137 mM NaCl, 2.7 mM KCl, and 0.05% (v/v) Tween-20] for 1 h at 

room temperature, with gentle shaking.  The membrane was then incubated again in 

blocking solution with a primary polyclonal antibody raised in rabbit against 

enhanced green fluorescent protein (EGFP; 1:4,000) overnight at 4 °C, with shaking.  
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The membrane was then washed 3 times for 10 min each in TBS-T containing 2% 

(w/v) skim milk and then incubated in blocking solution with an anti-rabbit 

secondary antibody conjugated to horseradish peroxidase (1:100,000) (Sigma-

Aldrich, Oakville, ON, Canada) at room temperature for 2 h with shaking.  The same 

3 x 10 min wash was repeated on the membrane.  The membrane was then 

incubated in a 1:1 mix of solution A and solution B from Amersham ECL-Advance 

Solution (GE Healthcare, Baie d’Urfe, QC, Canada) in the dark for 5 min to enable 

detection of chemiluminescent signals.  Excess ECL mix was removed from the 

membrane by tilting.  Imaging was achieved using a BioRad ChemiDoc MP Imaging 

System.  The signal accumulation mode was set to capture 15 images between 5- 

and 155- seconds of exposure.  The best image out of the multiple exposure times 

was selected and saved on the computer.  The membrane was imaged for a second 

time under the setting “colourmetric” with an exposure time set to 0.5 seconds to 

visualize the Precision Plus All Blue ladder.  The colourmetric image representing 

the ladder was merged with the chemi blot displaying the protein bands.  Captured 

images were processed using Adobe Photoshop CS (Adobe System Inc., Seatle, WA, 

USA). 

 

2.11 Epifluorescence Microscopy  

 The bombarded adaxial epidermis of the onion scales were peeled and 

mounted in water onto a glass slide prior to microscopic observation.  Stained or 

transfected protoplasts were examined in flat-bottom chamber slides made of nail 

polish-premounted coverslips.  Epifluorescence and bright field micrographs were 
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acquired using a Zeiss AxioImager epifluorescence microscope equipped with the 

AxioVision Imaging software (Carl Zeiss Canada Inc., Toronto, ON, Canada).  

Fluorescein diacetate and EGFP signals were detected using the EGFP/FITC filter set 

(turret #2) under UV illumination whereas the DsRed signal was detected using the 

DsRed/rhodamine filter set (turret #5).  All images were processed using Adobe 

Photoshop CS (Adobe Systems Inc., Seattle, WA, USA).  Representative images were 

presented after similar results were obtained from at least 3 independent 

experiments.  Colocalization of the EGFP and DsRed signals were obtained from 

scatterplots and Pearson’s coefficients generated from the Fiji colocalization 

threshold plug-in of ImageJ (National Institutes of Health, USA).  

 

2.12 Confocal Microscopy 

 The subcellular localization of OEP18 fusion constructs in Arabidopsis 

protoplasts were also visualized using an Olympus FV1000 confocal laser-scanning 

microscope.  Transfected protoplasts were transferred to 8-chamber Lab-Tek II 

(Nalgene Nunc, Denmark) cover glass slides.  Samples were first scanned under the 

bright field setting.  Two excitation wavelengths, 488 nm and 594 nm, were used to 

detect EGFP and chlorophyll autofluorescence, respectively.  Serial Z-stack images 

were taken at 1 m intervals using a 40x objective at 1024x1024 pixel resolution. 

All images were further processed using Adobe Photoshop CS (Adobe System Inc., 

Seattle, WA, USA).  Multiple independent experiments were performed for each 

construct with similar results.  
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3. Results – Bioinformatic Analyses 

3.1 ChloroP Analysis of the One-Hundred and Seventeen Chloroplast Outer 

Membrane Proteins of Arabidopsis 

 The recently published paper by Inoue (2015) outlines the one hundred and 

seventeen proteins identified or predicted to be in the chloroplast outer membrane 

(COM) in Arabidopsis.  The functions of these proteins involve solute and ion 

transport, preprotein import, protein turnover, lipid and carbohydrate metabolism, 

and intracellular communication (Inoue, 2015).  Each of the proteins was analyzed 

using ChloroP to identify potential TP-like targeting information in their sequences 

(Table 3.1).  Specifically, the amino acid sequences of each protein were input in the 

forward, as well as the reverse orientation, as an alternative approach to potentially 

identify additional OEPs that might contain similar targeting information as that 

present at the C-terminus of BsToc159 (Table 3.1).  The idea of running sequences 

through in the reverse orientation was inspired by the research performed by Lung 

and Chuong (2012) on the C-terminus (CT) of Toc159 in Bienertia sinuspersici, 

which demonstrated how the CT targets and anchors the receptor to the chloroplast 

outer membrane through an unconventional targeting sequence that resembles 

transit peptides.   

The ChloroP analysis identified 8 proteins with scores that suggested they 

could potentially contain transit peptides in the reverse orientation at their C-

terminus: OEP16-2, Toc132, E-Tu, pBRP, MIRO2, DUF869, putative GTPase, and 

At5g42070, with predicted transit peptide lengths of 33, 34, 25, 38, 59, 82, 44, and 

23 amino acids, respectively.  Out of the 8 candidate proteins, ChloroP predicted  
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Table 3.1. The amino acid sequences of one-hundred and seventeen known or 

predicted chloroplast outer membrane proteins of Arabidopsis were analyzed using 

the bioinformatics tool ChloroP in the forward and reverse orientation to identify 

putative transit peptides and cleavage sites.  Proteins with predicted transit 

peptides at the C-terminus in the reverse orientation are highlighted in yellow.  



 39 

AGI	# Name
A.A	

Length
Function Envelope

ChloroP	

Score	

(Forward)

cTP	

Length	

(Forward)

ChloroP	

Score	

(Reverse)

cTP	

Length	

(Reverse)

At1g20816 OEP21-1 167 Solute/Ion	Transport Yes 0.446 0.432

At1g45170 OEP24-1 213 Solute/Ion	Transport 0.538 31 0.44

At1g76405 OEP21-2 167 Solute/Ion	Transport Yes 0.448 0.431

At2g01320 WBC7 728 Solute/Ion	Transport Yes 0.451 0.426

At2g17695 OEP23/DUF1990 205 Solute/Ion	Transport Yes 0.449 0.449

At2g28900 OEP16-1 148 Solute/Ion	Transport Yes 0.491 0.45
At2g43950 OEP37 343 Solute/Ion	Transport Yes 0.576 73 0.438

At3g51870 PAPST1	homolog 381 Solute/Ion	Transport Yes 0.51 26 0.447

At3g62880 OEP16-4 136 Solute/Ion	Transport 0.456 0.489

At4g16160 OEP16-2 178 Solute/Ion	Transport 0.433 0.516 33
At5g42960 OEP24-2 213 Solute/Ion	Transport Yes 0.477 0.463

At1g02280 Toc33 297

Protein	Import	Components	

and	their	homologs Yes 0.477 0.431

At2g16640 Toc132 1206
Protein	Import	Components	
and	their	homologs Yes 0.428 0.514 34

At2g17390 AKR2B 344

Protein	Import	Components	

and	their	homologs 0.446 0.433

At3g16620 Toc120 1089

Protein	Import	Components	

and	their	homologs 0.427 0.491

At3g17970 Toc64-III 589

Protein	Import	Components	

and	their	homologs Yes 0.443 0.435

At3g44160 p39/OEP80tr1 362
Protein	Import	Components	
and	their	homologs 0.478 0.492

At3g46740 Toc75-III 818
Protein	Import	Components	
and	their	homologs Yes 0.585 79 0.447

At3g48620 p36/OEP80tr2 321

Protein	Import	Components	

and	their	homologs 0.481 0.479
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AGI	# Name
A.A	

Length
Function Envelope

ChloroP	

Score	

(Forward)

cTP	

Length	

(Forward)

ChloroP	

Score	

(Reverse)

cTP	

Length	

(Reverse)

At4g02510 Toc159 1503

Protein	Import	Components	

and	their	homologs Yes 0.488 0.478

At4g09080 Toc75-IV 396

Protein	Import	Components	

and	their	homologs 0.423 0.44

At5g05000 Toc34 313

Protein	Import	Components	

and	their	homologs Yes 0.439 0.443

At5g19620 OEP80/Toc75-V 732

Protein	Import	Components	

and	their	homologs Yes 0.535 93 0.442

At5g20300 Toc90 793

Protein	Import	Components	

and	their	homologs 0.471 0.434
At1g02560 ClpP5	(proteolysis) 298 Protein	Turnover Yes 0.568 62 0.427

At1g07930		 E-Tu	(protein	synthesis) 449 Protein	Turnover 0.432 0.516 25

At1g09340

HIP1.3/RAP38/CSP41B	

(protein	synthesis) 378 Protein	Turnover Yes 0.495 0.432
At1g63900 SP1	(proteolysis) 347 Protein	Turnover 0.451 0.442

At1g67690 M3	protease 710 Protein	Turnover 0.458 0.451

At3g46780 pTAC16	(transcription) 510 Protein	Turnover Yes 0.512 19 0.469

At4g05050 UBQ11	(proteolysis) 229 Protein	Turnover 0.428 0.431

At4g32250 Tyrosine	Kinase 611 Protein	Turnover Yes 0.427 0.453

At4g36650 pBRP	(transcription) 503 Protein	Turnover 0.465 0.515 38

At5g16870

PTH2	family	(protein	

synthesis) 169 Protein	Turnover 0.444 0.433
At5g35210 PTM	(transcription) 1706 Protein	Turnover Yes 0.442 0.465

At5g56730 Peptidase	M16	family 956 Protein	Turnover Yes 0.439 0.466

At1g77590 LACS9 691 Lipid	Metabolism Yes 0.45 0.432

At2g11810 MGD3 465 Lipid	Metabolism 0.445 0.432

At2g27490 ATCOAE 232 Lipid	Metabolism Yes 0.475 0.445
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AGI	# Name
A.A	

Length
Function Envelope

ChloroP	

Score	

(Forward)

cTP	

Length	

(Forward)

ChloroP	

Score	

(Reverse)

cTP	

Length	

(Reverse)

At2g38670 PECT1 421 Lipid	Metabolism 0.439 0.433

At3g06510 SFR2/GGGT 656 Lipid	Metabolism Yes 0.491 0.44

At3g06960 TGD4 479 Lipid	Metabolism Yes 0.439 0.435

At3g11670 DGD1 808 Lipid	Metabolism 0.559 58 0.453

At3g26070 PAP/FBN3a 242 Lipid	Metabolism Yes 0.57 50 0.431

At3g63170 FAP1 279 Lipid	Metabolism Yes 0.577 73 0.427
At4g00550 DGD2 473 Lipid	Metabolism 0.452 0.447

At4g15440 HPL	homolog 384 Lipid	Metabolism Yes 0.436 0.463

At5g20410 MGD2 468 Lipid	Metabolism 0.434 0.441

At1g12230 Transaldolase 427
Carbohydrate	Metabolism	
and	Regulation Yes 0.586 47 0.437

At1g13900 PAP2 656

Carbohydrate	Metabolism	

and	Regulation 0.513 19 0.487

At2g19860 HXK2 502
Carbohydrate	Metabolism	
and	Regulation 0.472 0.426

At4g29130 HXK1 496

Carbohydrate	Metabolism	

and	Regulation Yes 0.495 0.436

At1g34430 PDC	E2 465

Other	Metabolism	and	

Regulation Yes 0.539 48 0.46

At1g44170 ALDH3H1 484

Other	Metabolism	and	

Regulation 0.437 0.461

At2g34590 PDC	E1beta 406
Other	Metabolism	and	
Regulation Yes 0.586 0.434

At2g47770 TSPO 196

Other	Metabolism	and	

Regulation 0.44 0.472

At3g01500 beta	CA1 347

Other	Metabolism	and	

Regulation Yes 0.597 47 0.438
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AGI	# Name
A.A	

Length
Function Envelope

ChloroP	

Score	

(Forward)

cTP	

Length	

(Forward)

ChloroP	

Score	

(Reverse)

cTP	

Length	

(Reverse)

At3g16950 PDC	E3 623

Other	Metabolism	and	

Regulation Yes 0.589 70 0.446

At3g25860 PDC	E2 480

Other	Metabolism	and	

Regulation Yes 0.592 47 0.462

At3g27820 MDAR4 488

Other	Metabolism	and	

Regulation Yes 0.436 0.463

At5g17770 CBR 281

Other	Metabolism	and	

Regulation 0.455 0.44

At5g23190 CYP86B1 559

Other	Metabolism	and	

Regulation 0.504 17 0.426

At5g25900 KO1/GA3 509

Other	Metabolism	and	

Regulation 0.545 28 0.435

At2g16070 PDV2	(division) 307 Intracellular	Communication Yes 0.427 0.438

At2g20890

THF1/PSB29	(plasma	

membrane) 300 Intracellular	Communication Yes 0.579 67 0.433

At3g25690

CHUP1	(actin-dependent	

movement) 1004 Intracellular	Communication Yes 0.466 0.44

At5g53280 PDV1	(division) 272 Intracellular	Communication 0.429 0.431

At5g58140

PHOT2	(actin-dependent	

movement) 915 Intracellular	Communication Yes 0.455 0.422

At1g27390 TOM20-2	(mito) 210

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM 0.428 0.453

At3g01280 VDAC1	(mito) 276

Functions/locations	defined	
in	compartments	other	than	

the	chloroplast	OM Yes 0.467 0.462
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AGI	# Name
A.A	

Length
Function Envelope

ChloroP	

Score	

(Forward)

cTP	

Length	

(Forward)

ChloroP	

Score	

(Reverse)

cTP	

Length	

(Reverse)

At3g12580 Hsc70-4	(cytosol) 650

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM 0.43 0.432

At3g21865 PEX22	(peroxisome) 283

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM 0.462 0.452

At3g46030 Histone	H2B	(nucleus) 145

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM 0.424 0.457

At3g63150 MIRO2	(mito) 643

Functions/locations	defined	
in	compartments	other	than	

the	chloroplast	OM 0.495 0.549 59

At4g14430
inoyl-CoA	isomerase	
(peroxisome) 240

Functions/locations	defined	

in	compartments	other	than	
the	chloroplast	OM 0.436 0.432

At4g16450 Complex	I	subunit	(mito) 106

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM 0.463 0.463

At4g31780 MGD1	(IEM) 533

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM Yes 0.575 33 0.437

At4g35000 APX3	(peroxisome) 287

Functions/locations	defined	
in	compartments	other	than	

the	chloroplast	OM Yes 0.431 0.453

At4g38920		 Vacuolar	ATPase	sub 164

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM 0.523 25 0.432
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AGI	# Name
A.A	

Length
Function Envelope

ChloroP	

Score	

(Forward)

cTP	

Length	

(Forward)

ChloroP	

Score	

(Reverse)

cTP	

Length	

(Reverse)

At5g02500 HSC70-1	(cytosol/nucleus) 651

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM Yes 0.43 0.428

At5g06290 Prx	B	(stroma) 273

Functions/locations	defined	
in	compartments	other	than	

the	chloroplast	OM Yes 0.598 90 0.431

At5g15090 VDAC3	(mito) 274

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM Yes 0.485 0.465

At5g27540 EMB2473/MIRO1	(mito) 648

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM 0.477 0.465

At5g35360 CAC2/BC	(IEM) 555

Functions/locations	defined	

in	compartments	other	than	

the	chloroplast	OM Yes 0.571 70 0.428

At1g09920 192 Function	unknown/unclear 0.426 0.49

At1g16000 OEP9 86 Function	unknown/unclear 0.433 0.443

At1g27300 200 Function	unknown/unclear 0.427 0.462

At1g64850 162 Function	unknown/unclear Yes 0.438 0.482

At1g68680 75 Function	unknown/unclear Yes 0.46 0.441
At1g70480 DUF220 338 Function	unknown/unclear 0.486 0.434

At1g80890 OEP9.2 80 Function	unknown/unclear 0.432 0.436

At2g06010 188 Function	unknown/unclear 0.429 0.432

At2g24440 183 Function	unknown/unclear 0.465 0.428
At2g32240 DUF869 1333 Function	unknown/unclear 0.427 0.549 82

At2g32650 PTAC18	like 139 Function	unknown/unclear 0.53 32 0.428
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AGI	# Name
A.A	

Length
Function Envelope

ChloroP	

Score	

(Forward)

cTP	

Length	

(Forward)

ChloroP	

Score	

(Reverse)

cTP	

Length	

(Reverse)

At2g44640 451 Function	unknown/unclear Yes 0.487 0.425

At3g26740 CCL 141 Function	unknown/unclear 0.58 41 0.416

At3g49350 539 Function	unknown/unclear 0.596 55 0.43

At3g52230 OMP24	homolog 145 Function	unknown/unclear Yes 0.473 0.426

At3g52420 OEP7 64 Function	unknown/unclear 0.442 0.445
At3g53560 TPR	protein 340 Function	unknown/unclear Yes 0.575 75 0.429

At3g63160 OEP6 69 Function	unknown/unclear Yes 0.442 0.493

At4g02482 Putative	GTPase 134 Function	unknown/unclear 0.473 0.548 44

At4g15810 NTPase 918 Function	unknown/unclear 0.471 0.461

At4g17170 RAB2 211 Function	unknown/unclear Yes 0.434 0.434

At4g27680 NTPase 398 Function	unknown/unclear 0.433 0.44

At4g27990 YGGT-B	protein 218 Function	unknown/unclear Yes 0.566 83 0.439

At5g11560 982 Function	unknown/unclear 0.442 0.434

At5g20520 WAV2 308 Function	unknown/unclear 0.443 0.434

At5g21920 YGGT-2 251 Function	unknown/unclear 0.559 51 0.496

At5g21990 OEP61-TPR 554 Function	unknown/unclear 0.457 0.439

At5g27330 628 Function	unknown/unclear 0.524 27 0.474
At5g42070 164 Function	unknown/unclear Yes 0.568 72 0.571 23

At5g43070 WPP1 155 Function	unknown/unclear 0.45 0.434
At5g51020 CRL 269 Function	unknown/unclear Yes 0.497 0.443
At5g59840 RAB8A-like 216 Function	unknown/unclear 0.438 0.449

At5g64816 130 Function	unknown/unclear Yes 0.429 0.454
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At5g42070 as having the highest probability of containing a transit peptide at its C-

terminus in the reverse orientation.  At5g42070 was the only protein out of the 8 

candidates predicted by ChloroP to contain a transit peptide at its N-terminus as 

well.  For simplicity, “At5g42070” was referred to as “OEP18” here, since the protein 

is confirmed to be an outer envelope protein of Arabidopsis chloroplasts (Inoue, 

2015) and its open reading frame encodes a protein product of 17.7 kDa in size. 

 

3.2 Further Bioinformatic Analysis on the 8 Candidate Proteins 

 Further bioinformatic analysis was performed on the 8 proteins predicted by 

ChloroP to have a transit peptide at the C-terminus (Table 3.2).  This was done to 

rule out the possibility of these proteins potentially containing a canonical tail-

anchored or signal-anchored sequence that could mediate targeting to the 

chloroplast outer membrane.  Since signal-anchored and tail-anchored proteins are 

anchored to the chloroplast outer membrane by a single transmembrane domain 

(Inoue, 2015), the 8 candidate amino acid sequences were input into the 

bioinformatics program TMHMM2.0 which predicts the presence of transmembrane 

domains.  Of the 8 candidate proteins, MIRO2 and DUF869 were predicted by 

TMHMM2.0 to have a transmembrane domain, thereby making them unlikely to 

target to the chloroplast outer membrane using the unique, non-canonical transit 

peptide-like signal.   

 The 8 candidate proteins were also compared to the known and predicted 

Arabidopsis tail-anchored proteins published by Marty et al. (2014) to further rule 

out the proteins that follow the canonical tail-anchored mediated targeting pathway 



 47 

(Table 3.2).  Of the 8 proteins, MIRO2 and DUF869 were known and predicted, 

respectively, to belong to the subset of tail-anchored proteins.  This evidence 

strengthened the likelihood that MIRO2 and DUF869 do not target to the chloroplast 

outer membrane using the unique, non-canonical transit peptide-like signal.  

 

3.3. OEP18 Nucleotide Sequence 

 The nucleotide sequence for the OEP18 cDNA was obtained through the 

National Centre for Biotechnology Information (NCBI) database.  The nucleotide 

sequence of the full-length At5g42070 cDNA clone (707 nucleotides) revealed 565 

nucleotides in the entire mRNA coding region, 76 nucleotides in the 5’ untranslated 

region, 111 nucleotides in the 3’ untranslated region and a poly(A) tail of 20 

nucleotides.  The open reading frame (ORF) encodes a putative polypeptide of 164 

amino acids with a calculated molecular weight of 17.7 kDa (Figure 3.1). 

 

3.4. Predicted transit peptide properties of the OEP18 carboxyl terminus (CT) 

 In an attempt to determine the chloroplast envelope-targeting signal 

predicted by ChloroP, the amino acid sequences of OEP18 CT and NT were analyzed. 

It was observed that the CT of OEP18 exhibits characteristics similar to those of 

cTPs (Table 3.3). For example, the hydroxylated residues (i.e. serine and threonine) 

are overrepresented in both termini with 27.8% in the NT and 53.8% in the CT and 

acidic residues (i.e. aspartic acid and glutamic acid) are underrepresented with 

similar scores: 8.3% in the NT and 7.1% in the CT. However, the calculated 

isoelectric point of the NT is intermediate whereas that of the CT is basic (pI =10). 
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These properties are in agreement with the characteristic features of cTPs (von 

Heijne et al., 1989; Patron and Waller, 2007; Lung, 2012).    

 

3.5. Secondary Structure Prediction for OEP18  

 The bioinformatic tool PSIPRED was used to predict the secondary structure 

of OEP18 (Figure 3.2).  PSIPRED predicted the presence of a putative β-strand 

within the N-terminus of OEP18.  The protein was also predicted to contain a 

putative -helix within the C-terminus of OEP18.  Three short β-strands and three 

-helices were predicted to be in the middle of the protein. 
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Table 3.2. Further bioinformatic analysis on the 8 proteins predicted to contain targeting information at the C-terminus in the 

reverse orientation.  Amino acid sequences were analyzed using the online tool TMHMM2.0 to predict the presence and length 

of transmembrane helices.  Known or predicted tail-anchor proteins of Arabidopsis outlined in Marty et al. (2014) was also 

used to see if any of the 8 candidate proteins follow the canonical tail-anchor mediated pathway to the chloroplast outer 

membrane.  OEP7 was used as a control to test the efficiency of TMHMM2.0, as it is known to insert into the chloroplast outer 

membrane using a transmembrane helix.  

 

AGI	# Name

Amino	

Acid		

Length

Function Envelope

ChloroP	

Score	

(Forward)

cTP	

Length	

(Forward)

ChloroP	

Score	

(Reverse)

cTP	

Length	

(Reverse)

Known	or	

Predicted	to	

possess	TA	

orientation

Number	of	

predicted	

transmembrane	

helices

Expected	

number	

of	amino	

acids	in	

TMH

At4g16160 OEP16-2 178 Solute/Ion	Transport 0.433 0.516 33 No 0 0

At2g16640 Toc132
1206

Protein	Import	Components	
and	their	homologs Yes 0.428 0.514 34 No 0 0

At1g07930		
E-Tu	(protein	

synthesis) 449
Protein	Turnover

0.432 0.516 25 No 0 0

At4g36650
pBRP	

(transcription) 503
Protein	Turnover

0.465 0.515 38 No 0 0

At3g63150 MIRO2	(mito)
643

Functions/locations	defined	
in	compartments	other	than	
the	chloroplast	OM 0.495 0.549 59 Yes	(Known) 1 22

At2g32240 DUF869 1333 Function	unknown/unclear 0.427 0.549 82 Yes	(Predicted) 1 21
At4g02482 Putative	GTPase 134 Function	unknown/unclear 0.473 0.548 44 No 0 0
At5g42070 OEP18 164 Function	unknown/unclear Yes 0.568 72 0.571 23 No 0 0

Known	transmembrane	helice	containing	protein	:
At3g52420 OEP7 64 Function	unknown/unclear 0.442 0.445 No 1 21
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Figure 3.1. The primary sequence of OEP18 mRNA and the deduced amino 

acids derived from the mRNA  

The full-length nucleotide sequence (At5g42070) coding for the translational 

product of Arabidopsis OEP18. 
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Table 3.3 Physiochemical properties of OEP18 amino- and carboxyl-termini 

 

Peptide Terminus Residues Occurrence (%) 

D+E1 

Occurrence (%) 

S+T2 

Calculated  

pI 

OEP18 Amino 72 8.3 27.8 6.89 

OEP18 Carboxyl 28 7.1 53.6 10.00 

RbcS Amino 80 0.3 25.0 9.36 

Fd Amino 52 0 28.8 12.60 

BsToc1593 Carboxyl 69 1.4 20.3 10.21 

 

1 The occurrence of acidic residues including aspartic (D) and glutamic (E) acids. 

2 The occurrence of hydroxylated residues including serine (S) and threonine (T). 

3 The values were previously reported by Lung (2012). 
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Figure 3.2. Secondary structure prediction of OEP18 using the bioinformatics tool PSIPRED (Jones, 1999).   

The height of the blue bars represents the confidence level of the prediction for each residue.  The purple cylinders represent 

putative α-helices.  The yellow arrows represent putative β-strands.      
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4. Results – Construct Design and Cellular Expression 

4.1 Construction of the OEP18 Full Length Fusion Constructs  

 To examine the subcellular localizations of OEP18, two transient expression 

fusion constructs were made by fusing the entire coding sequence for OEP18 to 

either the amino or carboxy terminus of EGFP forming OEP18FL-EGFP or EGFP-

OEP18FL, respectively (Figure 4.1).  The OEP18FL fusion constructs were used to 

transfect onion epidermal cells. 

 

4.2 Onion Epidermal Cells Bombarded with the Full-Length OEP18 Fusion 

Constructs            

 Onion epidermal cells were bombarded with the two full-length OEP18 

EGFP-fusion constructs to examine their expression before transfecting them into 

Arabidopsis protoplasts (Figure 4.2).  Information on the subcellular localization of 

the constructs can be readily acquired from the bombarded onion epidermal cells.  

The EGFP null construct was used as a control.  In the absence of OEP18, the EGFP 

control construct showed mostly nuclear and cytosolic localization (Figure 4.2A).  In 

cells that were transfected with OEP18 fused to the C-terminus of EGFP (EGFP–

OEP18FL), the EGFP signal was mostly detected in the nucleus and cytoplasm 

(Figure 4.2B). Occasionally, the fusion protein appeared as irregular-shaped 

punctate structures.  However, cells that were transformed with OEP18 fused at the 

N-terminus of EGFP (OEP18FL–EGFP) showed little cytosolic EGFP signal (Figure 

4.2C).  Instead, the EGFP signal in most cells appeared as punctate structures with 

elongated extensions that resembled stromules (Figure 4.2C inset).  
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Figure 4.1. Schematic maps of full-length OEP18 fusion constructs.   

 

OEP18 is 164 amino acids in length.  (A) OEP18 is fused to the C-terminus of EGFP (EGFP–OEP18FL) of the pSAT6-C1 vector.  

(B) OEP18 is fused to the N-terminus of EGFP (OEP18FL–EGFP) of the pSAT6-N1 vector.  “FL” denotes it is the “full length” of 

the protein.  
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 Figure 4.2. Transient expression of EGFP fusion proteins with full-length 

sequences of OEP18 

Onion epidermal cells were bombarded with the two full-length OEP18 fusion 

constructs to examine their subcellular localizations.  (A) A representative 

epidermal cell expressing the null vector containing only EGFP.  (B) A cell 

expressing the EGFP–OEP18FL construct with OEP18 fused to the C-terminus of 

EGFP.  (C) A cell expressing the OEP18FL–EGFP construct with OEP18 fused to the 

N-terminus of EGFP.  Each is a representative cell from at least three independent 

experiments.  The inset shows a magnified view of a punctate structure with an 

elongated tail resembling a stromule.  Scale bar = 50 μm   
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4.3 Verifying the Identity of the Punctate Structures through Colocalization 

Analysis of Full Length Fusion Proteins with DsRed in Onion Epidermal Cells 

To further evaluate the efficiency of the full-length OEP18 constructs to 

target to plastids, onion epidermal cells were co-bombarded with the EGFP fusion 

constructs and a second construct encoding DsRed fused to the transit peptide of 

ferredoxin (Figure 4.3).  Ferredoxin is a known protein of plastids, and thus would 

direct DsRed to plastids.  Overlapping signals between the EGFP and DsRed verifies 

that the elongated punctate structures are in fact stromules from etioplasts.  Green 

punctate signals that do not colocalize with DsRed are most likely insoluble 

aggregates that represent protein misfolding (Lung et al., 2014) or proteins that are 

targeted to non-plastid organelles.  The EGFP signal in the control cells showed no 

colocalization with DsRed, therefore indicating the protein is not targeted to 

plastids.  Cells expressing the EGFP–OEP18FL fusion protein showed little-to-no 

overlap with the DsRed-decorated plastids, while the OEP18FL–EGFP signals 

colocalized with DsRed signals, as shown by the yellow punctate signals from the 

merge of the two channels.  This is also supported by the distribution of the two 

signals clustering along the diagonal line in the scatter plot (Figure 4.3).  Finally, 

Pearson’s correlation coefficients (Rr) were higher for OEP18FL–EGFP/DsRed than 

for EGFP–OEP18FL/DsRed (0.7338 ± 0.0527 vs 0.3020 ± 0.0681; Table 4.1).    
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Figure 4.3. Colocalization analysis of EGFP fusion proteins with OEP18FL in 

onion epidermal cells 

Onion epidermal cells were co-bombarded with full-length OEP18 fusion constructs 

and the ferredoxin transit peptide fused to DsRed.  Representative images from 

multiple independent experiments of EGFP (green signal), DsRed (red signal), and a 

merge of the two channels are shown for the control and two full-length OEP18 

constructs.  A scatterplot was generated using the Fiji “Colocalization threshold” 

plug-in of ImageJ to demonstrate the colocalization between EGFP and DsRed 

signals for each construct.  Scale bars = 50 μm  
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Table 4.1. Pearson’s correlation coefficients (Rr) of the two fluorescent channels for 

the EGFP, EGFP–OEP18FL, and OEP18FL–EGFP constructs co-bombarded with 

DsRed tagged to the transit peptide of ferredoxin in onion epidermal cells  

 

Construct EGFP EGFP-OEP18FL OEP18FL-EGFP 

Rr  0.1035 ± 0.0682 0.3020 ± 0.0681 0.7338 ± 0.0527 

 

 

Values represent the mean from four replicates (N=4) of each construct (± SD) from 

multiple independent experiments was calculated.  The maximum theoretical Rr 

score is 1.  
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4.4 Epifluorescence Imaging of Full-Length OEP18 Fusion Constructs in 

Transfected Arabidopsis Protoplasts 

 Chloroplast targeting efficiency of each full-length construct was evaluated 

by transiently expressing them in Arabidopsis protoplasts (Figure 4.4).  Arabidopsis 

protoplasts were isolated and transfected with the full-length OEP18 constructs 

using methods as described previously in Section 2.5, and visualized 12-16 h after 

transfection using epifluorescence microscopy.  In protoplasts that were 

transformed with the control vector containing EGFP, the EGFP signals were mostly 

found in the nucleus and cytoplasm (Figure 4.4A).  Protoplasts transfected with the 

EGFP-OEP18FL construct showed some green fluorescent signals forming ring-like 

structures, suggesting some chloroplast targeting (Figure 4.4B).  In comparison, 

protoplasts expressing the OEP18FL–EGFP construct displayed some nuclear 

expression, but also thinner green fluorescent ring-like structures, more strongly 

suggesting chloroplast targeting (Figure 4.4C). 

  

4.5 Subcellular Localization of Full Length Fusion Constructs in Transfected 

Arabidopsis Protoplasts using a High Resolution Confocal Microscope 

To further differentiate the subcellular localization of the two OEP18 

constructs, transfected Arabidopsis protoplasts were examined using a confocal 

microscope (Figure 4.5).  Z-stack (3-dimensional) reconstructed images were 

captured for each construct, as were optical slices representing the view of a 

transfected protoplast from a single optical plane.   
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Figure 4.4. Transient expression of EGFP fusion proteins with full-length 

sequences of OEP18 in Arabidopsis protoplasts 

Full-length OEP18 fusion constructs transiently expressed in Arabidopsis 

protoplasts and visualized using epifluorescence microscopy.  Representative 

images from multiple independent experiments of protoplasts transfected with (A) 

pSAT6-N1 control, (B) EGFP-OEP18FL, and (C) OEP18FL-EGFP are presented.  For 

each construct, representative images of EGFP (green), autofluorescence (red), and 

a merge of the two channels are displayed.  
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Figure 4.5. Full-length OEP18 fusion constructs transiently expressed in 

Arabidopsis protoplasts and visualized using confocal microscopy 

3-D projections and merged optical slices of protoplasts transformed with (A) 

pSAT6-C1 negative control, (B) Toc34 positive control, (C) EGFP–OEP18FL, and (D) 

OEP18FL–EGFP constructs.  Representative images were taken from multiple 

independent experiments.  For each construct, representative images of EGFP 

(green), chlorophyll autofluorescence (red), and a merge of the two channels are 

displayed. 
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The empty pSAT6-C1 vector containing EGFP was used as a negative control.  The 

large spaces between the chloroplasts filled with green fluorescence indicate 

pSAT6-C1 was expressed mostly in the cytoplasm (Figure 4.5A).  Toc34, a known 

OEP (Bauer et al., 2002), was used as a positive control.  Protoplasts expressing this 

construct showed a thin ring-like appearance of green fluorescent signals 

surrounding the red autofluorescence, indicating chloroplast outer membrane 

expression (Figure 4.5B).  Cells transfected with the EGFP–OEP18FL construct 

displayed some thin ring-like patterns in the z-stack projection, but the optical slices 

displayed thicker ring-like structures and green fluorescent signals filling the spaces 

between red autofluorescence, indicating cytosolic expression (Figure 4.5C).  The z-

stack projection of cells expressing the OEP18FL–EGFP construct displayed a 

distinct ring-like appearance of green fluorescent signals surrounding the red 

autofluorescence, indicating chloroplast outer membrane expression.  The optical 

slice also showed relatively little green fluorescent signals between the red 

autofluorescence of the chloroplasts, indicating far less cytosolic expression in cells 

expressing the OEP18FL–EGFP construct (Figure 4.5D). 

 

4.6 Detection of the Full-Length OEP18 fusion proteins in planta using 

Western Blot analysis 

  The transient expression of the full-length OEP18 fusion proteins in planta 

was verified using western blot analysis using an anti-EGFP antibody (Figure 4.6). 

Arabidopsis protoplasts were transfected with the full-length EGFP constructs and  
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Figure 4.6. Detection of full-length OEP18 fusion constructs in transfected 

protoplasts using western blot analysis 

(A) Total protein extracts from protoplasts transfected with the EGFP-OEP18FL or 

(B) OEP18FL-EGFP construct were separated by SDS-PAGE, followed by 

immunoblotting with an anti-EGFP polyclonal antibody.  Recombinant EGFP (lane 2; 

skinny arrow) was used as a control and the protein ladder is labeled (lane 1).  Full-

length OEP18 fusion constructs are represented in lane 3 (thick arrow).  The right 

panels show the Ponceau stained PVDF membranes to demonstrate a successful 

transfer of protein from the SDS PAGE gel. Numbers to the left indicate the position 

of the marker proteins in kilodaltons. 
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transfection rate was estimated using epifluorescence microscopy.  Protoplasts with 

transfection rates of at least 60% were used in Western blot analysis.  The expected 

molecular mass of the fusion protein (EGFP, 27 kDa and OEP18,18 kDa) was 45 kDa.  

EGFP–OEP18FL (Figure 4.6A) and OEP18FL–EGFP (Figure 4.6B) were detected at 

approximately 45 kDa, indicating their presence of the full-length fusion proteins in 

the protoplast transient expression assays.     

 

4.7 Construct Design for OEP18 Truncation Constructs in a pSAT6-N1 Vector 

 In order to identify the sorting signal used by OEP18 to target itself to 

chloroplasts, a number of transient expression constructs were created by fusing 

various regions of the protein to the N-terminus of EGFP (Figure 4.7).  The size of 

each truncation was based on the ChloroP prediction of transit peptide lengths at 

the N- and C- terminus of OEP18 (Table 3.1, Table 3.2).  Transit peptides were 

predicted to be 23 and 72 amino acids in length at the C-terminus and N-terminus, 

respectively.   
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Figure 4.7. Schematic map of OEP18 deletion fusion constructs 

 

 (A) The 27 amino acids at the C-terminus were deleted and the rest of the protein was fused to EGFP (i.e. OEP18CT–EGFP).  

(B) The 27 amino acids at the C-terminus of OEP18 were fused to EGFP (i.e. OEP18CT–EGFP).  (C) The 72 amino acids at the N-

terminus of OEP18 were fused to EGFP (i.e. OEP18NT–EGFP).  (D) The 72 amino acids at the N-terminus were deleted and the 

rest of the protein was fused to EGFP (i.e. OEP18NT–EGFP).  Truncation designs were based on the transit peptides lengths 

predicted by ChloroP.  
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4.8 Onion Epidermal Cells Bombarded with OEP18 Truncated Constructs            

 The OEP18 truncated constructs were bombarded in onion epidermal cells to 

verify their expression and acquire subcellular targeting information (Figure 4.8).  

Cells transformed with OEP18CT–EGFP and OEP18NT–EGFP constructs showed 

EGFP expression in the nucleus and cytoplasm (Figure 4.8A and C).  EGFP signals 

from OEP18CT–EGFP and OEP18NT–EGFP formed mostly punctate structures and 

showed much less nuclear and cytoplasmic expression (Figure 4.8B and D).  

  

4.9 Verifying the Identity of the Punctate Structures through Colocalization 

Analysis between Truncation Constructs and DsRed in Onion Epidermal Cells 

 Onion epidermal cells were co-bombarded with the OEP18 truncation 

constructs and DsRed to further acquire subcellular targeting information and to 

determine the identity of the punctate structures (Figure 4.9).  In cells co-

transfected with the OEP18CT–EGFP or OEP18NT–EGFP and the ferredoxin TP-

DsRed constructs, the EGFP signals colocalized with DsRed signals, as shown by the 

yellow punctate signals from the merge of the two channels.  This is also supported 

by the distribution of the two signals clustering along the diagonal line in the scatter 

plots produced using the Fiji “colocalization threshold” plug-in ImageJ (National 

Institutes of Health, USA).  Furthermore, Pearson’s correlation coefficients (Rr) for 

OEP18CT–EGFP and OEP18NT–EGFP were high (0.6723 ± 0.0871 and 0.7395 ± 

0.0432, respectively; Table 4.2).  
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Figure 4.8. Transient expression of EGFP fusion proteins with partial OEP18 

sequences in onion epidermal cells 

Onion epidermal cells bombarded with OEP18 truncation constructs to examine 

their subcellular localizations.  (A) OEP18CT–EGFP, (B) OEP18CT–EGFP, (C) 

OEP18NT–EGFP, and (D) OEP18NT–EGFP are representative images from multiple 

independent experiments.  Scale bars = 50 μm 
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Figure 4.9. Colocalization analysis of EGFP fusion proteins with partial OEP18 

sequences in onion epidermal cells 

Onion epidermal cells were co-bombarded with OEP18 truncation constructs and 

the ferredoxin transit peptide fused to DsRed.  Representative images from multiple 

independent experiments of EGFP (green signal), DsRed (red signal), and a merge of 

the two channels are shown for OEP18CT–EGFP and OEP18NT–EGFP.  Scatterplots 

were generated using ImageJ to demonstrate the colocalization between EGFP and 

DsRed signals for both truncated constructs.  Scale bars = 50 μm   
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Table 4.2. Pearson’s correlation coefficients (Rr) of the two fluorescent channels for 

the OEP18CT–EGFP and OEP18NT–EGFP constructs in co-bombarded onion 

epidermal cells with DsRed tagged to the transit peptide of ferredoxin. 

  

Construct OEP18CT-EGFP OEP18NT-EGFP 

Rr  0.6723 ± 0.0871 0.7395 ± 0.0432 

 

 

Values represent the mean from four replicates (N=4) of each construct (± SD) from 

multiple independent experiments was calculated.  The maximum theoretical Rr 

score is 1. 
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4.10 Visualizing Arabidopsis Protoplasts Transfected with OEP18 Truncation 

Constructs by Epifluorescence Microscopy      

Arabidopsis protoplasts were isolated and transfected with OEP18 

truncation constructs and subcellular targeting was visualized using epifluorescence 

microscopy (Figure 4.10).  In protoplasts transformed with the OEP18CT–EGFP 

construct, the EGFP signals were found in the nucleus and cytoplasm as irregular-

shaped punctate structures that likely represent protein misfolding or proteins 

targeted to non-plastid organelles (Figure 4.10A).  Protoplasts transfected with the 

OEP18CT–EGFP construct showed some green fluorescent signals forming ring-like 

structures indicating chloroplast targeting (Figure 4.10B).  Protoplasts transfected 

with the OEP18NT–EGFP construct showed EGFP signals in the nucleus and 

cytoplasm (Figure 4.10C).  Protoplasts transfected with the OEP18NT–EGFP 

construct displayed EGFP signals in the nucleus and also some ring-like structures 

indicating chloroplast targeting (Figure 4.10D).  

 

4.11 Subcellular Localization of OEP18 Truncation Constructs in Transfected 

Arabidopsis Protoplasts using a High Resolution Confocal Microscope 

 A high resolution confocal microscope was used to further differentiate the 

subcellular localization of the truncation constructs transfected in Arabidopsis 

protoplasts (Figure 4.11).  Z-stack (3-dimensional) reconstructed images were 

captured for each construct, as well as optical slices representing the view of a 

transfected protoplast from a single optical plane.  Protoplasts expressing the  
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Figure 4.10. OEP18 truncation constructs transiently expressed in Arabidopsis 

protoplasts and visualized by epifluorescence microscopy. 

 (A) OEP18CT–EGFP, (B) OEP18CT–EGFP, (C) OEP18NT–EGFP, and (D) 

OEP18NT–EGFP are representative images from multiple independent 

experiments.  For each construct, representative images of EGFP (green), 

autofluorescence (red), and a merge of the two channels are displayed.  
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Figure 4.11. OEP18 truncation constructs transiently expressed in Arabidopsis 

protoplasts and visualized by laser scanning confocal microscopy. 

 3-D projections and merged optical slices of protoplasts transformed with (A) 

OEP18CT–EGFP, (B) OEP18CT–EGFP, (C) OEP18NT–EGFP, and (D) OEP18NT–

EGFP constructs.  Representative images are displayed from multiple independent 

experiments.  For each construct, representative images of EGFP (green), 

chlorophyll autofluorescence (red), and a merge of the two channels are displayed. 
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OEP18CT–EGFP construct displayed mostly irregular-shaped punctate structures 

in the cytoplasm indicating protein misfolding or proteins targeted to non-plastid 

structures (Figure 4.11A).  In protoplasts transformed with the OEP18CT–EGFP 

construct, some EGFP signals were found in the nucleus, while some green 

fluorescent ring-like structures surrounded the red autofluorescence, indicating 

chloroplast outer membrane targeting.  The optical slice for the OEP18CT–EGFP 

construct shows minimal green fluorescent signal accumulation between the red 

autofluorescence, which is also an indication of chloroplast outer membrane 

targeting (Figure 4.11B).  The z-stack projection of protoplasts transfected with the 

OEP18NT–EGFP construct showed some thin ring-like structures indicating 

chloroplast outer membrane targeting, but the optical slices displayed green 

fluorescent signal accumulation between the red autofluorescence, indicating 

mostly expression in the cytoplasm (Figure 4.11C).  The z-stack projection and 

optical slices of protoplasts transformed with the OEP18NT–EGFP construct 

displayed mostly thin green fluorescent ring-like structures surrounding the red 

autofluorescence, indicating chloroplast outer membrane targeting (Figure 4.11D).          
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5. Discussion 

 The majority of chloroplast-destined proteins are encoded in the nucleus and 

targeted to chloroplasts after being synthesized by cytosolic ribosomes (Jarvis, 

2008).  Most chloroplast proteins are imported via N-terminal transit peptides (TPs) 

(Keegstra and Cline, 1999).  However, with the exception of Toc75 (Tranel et al., 

1995), outer envelope proteins (OEPs) of chloroplasts are targeted via different 

mechanisms (Hofmann and Theg, 2005).  Multiple OEP targeting pathways are 

known, but with the recent spike in the identification of new OEPs, the mechanisms 

for their targeting have not been completely elucidated.  The current study aimed to 

determine if a recently-identified novel OEP targeting mechanism characterized in 

BsToc159 is used by any other OEPs.  

 

5.1 Identification of Candidate OEPs of Study using a Unique Bioinformatic 

Approach 

 Bioinformatic analysis on the one hundred and seventeen known or 

predicted Arabidopsis chloroplast OEPs provided an essential foundation for the 

current study.  ChloroP predicts the presence of a potential chloroplast transit 

peptide (cTP) in an amino acid sequence submitted by the user.  Since transit 

peptides are used to target proteins to the chloroplast stroma and not to the COM 

(with the exception of Toc75), analyzing OEPs using ChloroP is seemingly 

unorthodox.  Furthermore, using ChloroP to predict the presence of TP-like 

sequences at the C-terminus by analyzing amino acid sequences in the reverse order 

is even more unconventional.  However, this method of analysis was recently shown 
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to be successful in identifying a novel chloroplast targeting signal in the OEP Toc159 

of Bienertia sinuspersici (Lung et al., 2014).  ChloroP was originally used to predict a 

TP-like sorting signal at the C-terminus of BsToc159 (Lung and Chuong, 2012).  

Eight of the 117 known or predicted Arabidopsis chloroplast OEPs were predicted 

by ChloroP to share a similar TP-like targeting signal at their C-terminus in the 

current study (Table 3.1).  Further bioinformatic analyses indicated that two of the 

eight candidate proteins contained a transmembrane domain, which suggests that 

these proteins may use one of the established OEP targeting pathways and were 

thus eliminated as candidates in the current study (Table 3.2).  ChloroP predicted 

OEP18 (At5G42070) with the highest probability to contain a TP-like sorting signal 

at its C-terminus, and therefore was the protein of focus for the rest of the study. 

 

5.2 OEP18 can Target to Plastids when Expressed as an EGFP Fusion protein 

using a pSAT6-N1 Vector 

 The entire coding sequence for OEP18 was fused to the amino and carboxy 

ends of EGFP using pSAT6-N1 and pSAT6-C1 vectors to generate the OEP18FL–

EGFP and EGFP–OEP18FL fusion proteins, respectively (Figure 4.1).  The purpose of 

generating the two different full-length fusion proteins was to determine if there 

were any differences in chloroplast targeting when EGFP is fused to the N- or C-

terminus of OEP18.  Onion epidermal cells were bombarded with the full-length 

fusion constructs to confirm protein expression in a plant cell system and acquire 

protein targeting information.  Results from the onion epidermal cells show largely 

nuclear and cytosolic expression for the EGFP–OEP18FL construct (Figure 4.2B).  In 
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contrast, there were numerous punctate structures present in cells expressing the 

OEP18FL–EGFP construct (Figure 4.2C).  Under high magnification, long extensions 

resembling stromules, which are indicative of etioplasts (Lung et al., 2014), can be 

seen emanating from the punctate structures present in cells bombarded with the 

OEP18FL–EGFP construct (Figure 4.2C inset).  In comparison, under high 

magnification, the green punctate signals produced in the onion epidermal cells 

bombarded with the EGFP–OEP18FL construct were irregular-shaped and did not 

contain long extensions.  Moreover, co-bombardment experiments with DsRed fused 

to the ferredoxin TP confirmed that the punctate structures were etioplasts in cells 

expressing the OEP18FL–EGFP construct.  The signals from the OEP18FL–EGFP 

construct and the signals from DsRed colocalized as indicated by the yellow signals 

produced in the merge of the two channels (Figure 4.3).  Furthermore, the two 

fluorescent signals clustering along the diagonal line in the scatter plot and the high 

Pearson’s correlation coefficient confirmed colocalization between OEP18FL–EGFP 

and DsRed signals (Figure 4.3; Table 4.1).  Co-bombardment of cells with the 

constructs encoding EGFP–OEP18FL and DsRed fused to the ferredoxin TP, on the 

other hand, produced comparatively less overlap between the fluorescent signals 

(Figure 4.3).  The Pearson’s correlation coefficient for the cells expressing EGFP–

OEP18FL and DsRed fused to the ferredoxin TP was slightly higher than the control 

(Table 4.1).  However, this is likely due to only partial targeting of fusion proteins to 

plastids and because the irregular-shaped EGFP punctate structures overlap with or 

reside in close proximity to some of the DsRed-localized plastids.  It was concluded 
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that OEP18 retains best its ability to target to plastids when EGFP is fused to its C-

terminus (OEP18FL–EGFP).  

 Both OEP18 full-length EGFP fusion constructs were also expressed in 

Arabidopsis protoplasts to determine if their targeting behavior is consistent in 

chloroplast-containing cells.  Epifluorescence imaging indicated the presence of 

ring-like structures surrounding the red autofluorescence from chlorophyll 

representing chloroplasts (Figure 4.4).  Chloroplast targeting was apparent for 

OEP18FL–EGFP, highlighted by the green fluorescent signals that produced fine 

ring-like structures (Figure 4.4C) in comparison to the slightly more diffuse ring-like 

structures present in the protoplasts transformed with the EGFP–OEP18FL 

construct (Figure 4.4B).  To confirm this observation at a higher resolution, confocal 

laser scanning microscopy was used to examine the subcellular distribution for the 

same full-length constructs.  The z-stack 3-dimensional projections from the 

confocal microscopy showed fine ring-like structures in the protoplasts transformed 

with the OEP18FL–EGFP construct, indicating targeting to the chloroplast outer 

envelope (Figure 4.5D).  Individual optical slices were also examined to rule out the 

possibility of observing a false ring in the 3-dimensional projections.  The optical 

slices also reveal distinct, ring-like structures surrounding chloroplasts in cells 

expressing the OEP18FL–EGFP construct (Figure 4.5D), which closely resembled the 

ring-structures present in the cells expressing the positive control, Toc34 (Figure 

4.5B).   The EGFP signals produced diffuse ring-like structure for the cells expressing 

the EGFP–OEP18FL construct (Figure 4.5C), which resembled the diffuse green 

fluorescent signal expression present in the cells expressing the negative control, 



 78 

pSAT6-C1 construct (Figure 4.5A).  Overall, these data from the onion epidermal 

cells and transformed protoplasts indicate that the OEP18FL–EGFP construct is 

likely targeted to the chloroplast outer membrane.  The data from the bombarded 

onion epidermal cells and transformed protoplasts also indicate that the EGFP–

OEP18FL construct is expressed mostly in the nucleus and cytoplasm and is not 

efficiently targeted to chloroplasts.  Therefore, chloroplast targeting is achieved 

when EGFP is fused to the C-terminus of OEP18 (OEP18FL–EGFP) and not targeted 

effectively when EGFP is fused to the N-terminus of OEP18 (EGFP–OEP18FL).  

Therefore, fusion proteins with OEP18 on the N-terminus of EGFP were used for the 

remainder of the study.   

 

5.3 The C-terminus of OEP18 contains chloroplast outer membrane targeting 

information 

 Once it was established that OEP18 must be expressed in front of EGFP to 

achieve efficient targeting of the fusion protein to the chloroplast outer membrane, 

OEP18 truncation constructs were designed (Figure 4.7) and expressed in onion 

epidermal cells and Arabidopsis protoplasts to determine what domain(s) of the 

OEP18 protein are required for chloroplast targeting.  Onion epidermal cells showed 

punctate structures in the cells bombarded with the OEP18CT–EGFP and 

OEP18NT–EGFP constructs indicating plastid targeting (Figure 4.8 B and D).  In 

contrast, the onion epidermal cells bombarded with the OEP18CT–EGFP and 

OEP18NT–EGFP constructs showed mostly nuclear and cytoplasmic expression 

(Figure 4.8 A and C).  The punctate structures were confirmed to be plastids using 
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co-bombardment with DsRed fused to the ferredoxin TP.  Colocalization between 

the OEP18CT–EGFP or OEP18NT–EGFP constructs and the ferredoxin TP fused to 

DsRed was demonstrated by the yellow signals produced in the merge of the EGFP 

and DsRed signals (Figure 4.9).  The scatter plots that showed clustering of signals 

around the diagonal line (Figure 4.9) and the high Pearson’s correlation coefficients 

(Table 4.2) further indicated a high degree of colocalization between the OEP18CT–

EGFP or OEP18NT–EGFP constructs and the ferredoxin TP fused to DsRed.  These 

data indicate that the C-terminus of OEP18 is necessary for targeting the protein to 

plastids.  

 Epifluorescence imaging of OEP18 truncation constructs expressed in 

Arabidopsis protoplasts show that when the C-terminus of OEP18 is present, EGFP 

signals form fine ring-like structures around the chloroplasts, as compared to the 

more diffuse ring-like structures and misfolded protein aggregates when the C-

terminus of OEP18 is absent (Figure 4.10).  Z-stack projections were generated 

using a high-resolution confocal microscope, which showed EGFP signals producing 

fine ring-like structures surrounding chloroplasts in the protoplasts transfected 

with constructs containing the OEP18 C-terminus (Figure 4.11 B and D).  In 

comparison, EGFP signals producing diffuse ring-like structures were observed in 

protoplast transfected with the construct without the C-terminus of OEP18 (Figure 

4.11 A and C).  The possibility of observing a false ring from the z-stack projections 

was ruled out by examining individual optical slices for each construct.  The 

individual optical slices revealed that when the C-terminus of OEP18 is expressed in 

protoplasts, fine ring-like structures produced from EGFP signals formed around the 
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red autofluorescence, indicating chloroplast outer membrane targeting (Figure 4.11 

B+D).  In comparison, when protoplasts were expressing OEP18 constructs with 

their C-terminus deleted, individual optical slices revealed diffuse green signal 

accumulation between the chloroplasts, indicating protein expression in the 

cytoplasm (Figure 4.11 A+C).  The results from the transfected Arabidopsis 

protoplasts support the results from onion epidermal cell bombardments and it can 

be concluded that the C-terminus of OEP18 is necessary to target the protein to the 

chloroplast outer membrane.  

 Results from the bioinformatic analyses strongly predicted that chloroplast 

targeting information would be present in the C-terminus of OEP18.  Out of all 117 

known or predicted OEPs of Arabidopsis analyzed by ChloroP, OEP18 received the 

highest score for potentially containing a TP-like targeting signal at its C-terminus 

(Table 3.1).  Furthermore, the secondary structure prediction of OEP18, using the 

bioinformatics tool PSIPRED, predicted the presence of an α-helix within the first 10 

amino acids residues that make up the OEP18 C-terminus (Figure 3.2).  Similarly, an  

α-helix was also predicted in the predicted 51-amino acid TP-like chloroplast 

targeting signal of BsToc159 (Lung et al., 2014). About 30% of transit peptides 

contain an α-helix within the first 10 amino acids (Huang et al., 2009).  This 

structure may serve as a targeting signal for OEP18 to the chloroplast outer 

membrane.  

 The amino acid composition (Figure 3.1) of OEP18 strongly suggests that 

chloroplast targeting information is present in the C-terminus, and not the N-

terminus.  Transit peptides typically have an overrepresentation of serine and 
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threonine residues (Zhang and Glaser, 2002).  Fifteen out of the twenty-eight amino 

acids (54%) that make up the C-terminal end of OEP18 are serine and threonine 

residues (Table 3.3).  This TP-like property is consistent with the C-terminus of 

OEP18 containing a TP-like targeting signal.  In comparison, only 20 out of the 72 

amino acids (28%) that make up the N-terminus of OEP18 are serine and threonine 

residues (Table 3.3).  This low representation of hydroxylated amino acid residues 

indicates that the N-terminus of OEP18 likely does not contain a TP-like targeting 

signal.  Furthermore, only 2 out of 28 amino acids at the C-terminal end of OEP18 

are aspartic acid and glutamic acid (Table 3.3).  Transit peptides generally lack 

acidic amino acids (Zhang and Glaser, 2002).  This further indicates that the C-

terminus of OEP18 is likely to contain a TP-like targeting signal. 

 Collectively, these data from the onion epidermal cell bombardments, 

protoplast transient expression assays, bioinformatic analyses, and amino acid 

composition analyses lead to the conclusion that the C-terminus of OEP18 appears 

to contain a TP-like targeting signal that is necessary and sufficient for targeting the 

protein to chloroplasts.  Although ChloroP predicted the presence of a transit 

peptide in the N-terminus of OEP18, data from the onion epidermal cell 

bombardments and Arabidopsis protoplast transformations (Figure 4.11C) 

combined with amino acid composition analysis indicate that the N-terminus of 

OEP18 does not likely contain a TP-like signal and it cannot efficiently target OEP18 

to chloroplasts.       
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5.4 OEP18 cannot be categorized into any of the broadly classified OEP 

targeting families                    

 The canonical chloroplast targeting mechanisms for many OEPs are 

characterized based on their transmembrane domains (Lee et al., 2013).  Besides 

Toc75, the other identified integral β-barrel proteins (OEP21, OEP24, OEP37) 

appear to self-insert into the chloroplast outer membrane via membrane-spanning 

domains that also contain the proteins’ targeting information (Pohlmeyer et al., 

1998; Bölter et al., 1999, Goetze et al., 2006).  In the current study, not only did the 

secondary structure prediction analysis indicate no β-strands in the C-terminus of 

OEP18, but also there are not nearly enough β-strands present within the total 

OEP18 sequence for it to even possibly form a β-barrel (Figure 3.2).  Furthermore, of 

the few β-strands predicted in the N-terminus and central region of OEP18, they are 

too short (mean = 3.25 residues per strand) to constitute a membrane-spanning 

region (6–25 residues) (Taylor et al., 2006).  Therefore, OEP18 is not a β-barrel 

protein that self-inserts into the chloroplast outer membrane.  

There are two broadly classified OEP families characterized by the location of 

α-helical transmembrane domains within the protein (Hofmann and Theg, 2015).  

OEPs that contain a single transmembrane domain at their N-terminus or at their C-

terminus are referred to as “signal-anchored” and “tail-anchored” proteins, 

respectively (Bölter and Soll, 2011; Dhanoa et al., 2010).  This transmembrane 

domain functions as a membrane anchor, as well as a targeting signal (Bölter and 

Soll, 2011).  Results from the current study demonstrate that the C-terminus of 

OEP18 is necessary and sufficient to target the protein to plastids, and specifically to 
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the chloroplast outer membrane.  The N-terminus alone was not sufficient to target 

OEP18 to the chloroplast outer membrane (Figure 4.11 A+C).  Therefore, OEP18 

cannot be classified as a signal-anchored protein, since the protein does not have 

chloroplast targeting information in its N-terminus.  To be classified as a tail-

anchored protein, the OEP must (I) have the majority of the protein exposed to the 

cytosolic side, (II) contain a transmembrane domain at or near the C-terminus, and 

(III) the C-terminal tail must protrude into the organelle interior (Kutay et al., 1993; 

Abell and Mullen, 2011).  The data from the current study show that the C-terminus 

of OEP18 contains the chloroplast outer membrane targeting information.  

However, much like what was recently identified in BsToc159 (Lung and Chuong, 

2012), bioinformatic analysis using TMHMM2.0 indicates OEP18 does not contain a 

transmembrane domain (Table 3.2).  Therefore, despite having targeting 

information in its C-terminus, if OEP18 does not contain a transmembrane domain, 

it cannot be classified as a tail-anchored protein.  Overall, OEP18 does not appear to 

fall into any of the broadly classified families of OEP targeting mechanisms. 

 

5.5 The targeting mechanism used by OEP18 resembles the new class of 

sorting signal recently identified in Toc159 

 The lack of a canonical transmembrane domain and the presence of a TP-like 

sorting signal at the OEP18 C-terminus suggest that OEP18 may belong to the newly 

identified class of sorting signal found in BsToc159 (Lung et al., 2014).  Future 

experiments need to be conducted in order to conclude that OEP18 shares this novel 

chloroplast outer membrane sorting signal.  More truncation mutants can be made 
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for OEP18 to further dissect and define the specific sequence within the C-terminus 

required for chloroplast outer membrane targeting and association.  The C-terminal 

truncation used in the current study was designed based on the ChloroP prediction 

of a transit peptide 23 amino acids in length (Table 3.1), and was shown to target to 

the chloroplast outer membrane.  However, the majority of chloroplast TPs are 30 to 

80 amino acid residues long (Zhang and Glaser, 2002).  ChloroP analysis on 

BsToc159 by Lung and Chuong (2012) predicted a 51- residue length TP-like sorting 

signal at the C-terminus.  The 51 C-terminal residues were capable of targeting 

BsToc159 to the chloroplast outer membrane.  However, it was later demonstrated 

that including an additional five amino acid residues upstream from the 51-residue 

C-terminal truncation (for a total of 56 C-terminal residues) targeted BsToc159 to 

the chloroplast outer membrane with higher efficiency (Lung et al., 2014).  This 

difference in efficiency was visualized in Arabidopsis protoplasts and was also 

determined using chloroplast fractionation and western blot analysis.  Therefore, 

designing more truncation mutants and determining chloroplast targeting efficiency 

will better define the targeting sequence within the OEP18 C-terminus.  

Furthermore, the design of more C-terminal truncations in BsToc159 helped 

identify the novel membrane association region 60–100 residues upstream of the C-

terminus (Lung et al., 2014).  OEP18, like BsToc159, is predicted to contain no 

canonical transmembrane domain (Table 3.2) and thus, likely associates with the 

chloroplast outer membrane using a non-canonical method.  Designing truncation 

constructs using parts of the OEP18 C-terminus will help identify the sequence 
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required for chloroplast outer membrane association.  It is possible that OEP18 is a 

peripheral membrane protein. 

 

5.6 Other potential TP-like OEP targeting candidates 

 Results from the ChloroP analysis combined with TMHMM2.0 analysis 

indicated that five other known or predicted OEPs of Arabidopsis chloroplast may 

contain a TP-like sorting signal at their C-terminus (Table 3.1; Table 3.2).  The same 

methods from the current study could be applied to these other OEPs to determine 

if they also potentially belong to the same novel class of chloroplast outer 

membrane sorting signal.  

 

5.7 Integrating bioinformatic approaches leads to characterizing novel 

targeting mechanisms in other organelles beyond chloroplasts 

In recent years, unique bioinformatic approaches and machine learning 

techniques have led to characterizing novel intracellular targeting mechanisms in 

organelles besides chloroplasts (Angermueller et al., 2016).  Furthermore, these 

approaches are helping to discover new proteins putatively residing in the organelle 

of interest.  For instance, tail-anchored proteins have always been recognized as a 

class of proteins integral to all cellular membranes and are defined by a single 

transmembrane domain near the C-terminus (Kutay et al., 1993).  Tail-anchored 

proteins are very complex, as they must differentiate between targeting to the ER, 

mitochondria, and in the case of plant cells, plastids (Abell and Mullen, 2011).  Marty 

et al. (2014) recently demonstrated that a dibasic targeting signal motif, originally 
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identified in the electron carrier cytochrome b5 (Hwang et al., 2004), is present in 

many known tail-anchored proteins residing in the outer membrane of 

mitochondria.  Marty et al. (2014) combined predictions from a variety of 

bioinformatic tools, which led to mutational analysis of the dibasic motif, further 

showing that the targeting motif is far more divergent than previously defined.  The 

newly expanded targeting motif led to the novel identification of forty-three 

candidate tail-anchored proteins containing the putative mitochondrial outer 

membrane dibasic targeting signal motif in Arabidopsis (Marty et al., 2014).  

A subset of peroxisome-destined proteins is targeted to peroxisomes using a 

PTS1 signal sequence.  PTS1 sequences have been recognized to conform to a 

similar pattern of amino acids: small side chain amino acid–basic amino acid–

hydrophobic amino acid (Baker et al., 2016).  However, a recently developed 

computational prediction tool and in vivo subcellular targeting analyses 

demonstrated that the plant PTS1 motif is more diverse than previously known, 

including more non-canonical sequences and amino acid residues (Chowdhary et al., 

2012).  Also, the newly identified proteins containing a non-canonical PTS1 were 

found to have four to five amino acid residues in front of the targeting tripeptide 

that enhanced targeting to peroxisomes (Chowdhary et al., 2012).  The newly 

developed PTS1 prediction tool by Chowdhary et al. (2012) led to in vivo targeting 

analysis that validated twenty-three new PTS1 tripeptides in Arabidopsis.  This 

novel computational approach has opened the door to potentially identify more 

plant peroxisomal proteins using non-canonical PTS1s, and suggests that similar 
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approaches such as those used in the this study could reveal new targeting 

sequences for other organelles in plants as well.      

 

5.8 Integrating multiple fields of study and the larger context 

 Molecular biology can sometimes lose its direction without putting the goals 

and objectives of a study into perspective.  Taking a look at this field of study from a 

big picture point of view, plants are essential to the worldwide ecosystem.  

Photosynthetic plants are vital for maintaining atmospheric oxygen levels and 

providing the primary source of energy that drives metabolic processes in all living 

organisms.  The underlying functions of plants are carried out by a series of 

sophisticated intracellular molecular processes, and studying these processes leads 

to an understanding of plant growth and development.  The scientific tools used to 

study these processes are derived from a diverse body of research including 

biochemical, molecular, evolutionary, ecological, genetic, biophysical, chemical, and 

computational approaches.  In the current study, computational approaches were 

used to generate scatterplots to determine plastid colocalization of OEP18, predict 

the secondary structure elements of OEP18, and predict which OEPs might contain 

the putative C-terminal TP-like sorting signal.  Molecular and cellular approaches 

were integrated to design the OEP18-EGFP fusion constructs and examined their in 

vivo expression.  Biochemical approaches were used to confirm the presence of the 

OEP-EGFP fusion proteins using western blot analysis.  Microscopy was used to 

visualize the subcellular localization of various OEP18-EGFP fusion constructs in 

onion epidermal cells and Arabidopsis protoplasts.  Biophysical methods, such as 
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structural analysis, can be used in the future to more accurately determine the 

secondary structural elements of OEP18.  Other molecular approaches such as in 

vitro chloroplast targeting assays can be used as an alternative approach to 

fluorescence microscopy to determine OEP18 targeting information.  The 

application of a variety of scientific approaches is crucial to maximize our 

understanding of complex biological phenomenon.  

 

5.9 Conclusions 

 OEP18 was predicted using bioinformatics, in the same manner as BsToc159, 

to contain a TP-like sorting signal at its C-terminus.  Since BsToc159 was shown to 

contain targeting information at its C-terminus (Lung et al., 2014), it was 

hypothesized that the C-terminus of OEP18 would also be responsible for targeting 

the protein to the chloroplast outer membrane.  The current study has 

demonstrated that C-terminus of OEP18 is necessary and sufficient for targeting the 

protein to chloroplasts.  When the C-terminus of OEP18 is removed, the protein is 

mostly expressed in the nucleus and cytoplasm, or forms punctate structures that 

are indicative of protein misfolding or mistargeted.  Bioinformatic analyses 

indicated that OEP18 is not an integral β-barrel protein and does not contain a 

transmembrane domain.  Therefore, OEP18 likely does not belong to one of the 

broadly classified families of OEP targeting mechanisms and furthermore, may 

potentially associate with the chloroplast outer membrane as a peripheral 

membrane protein.  In the future, more OEP18 truncation constructs should be 

designed to define the exact sequence within the C-terminus required for targeting 
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and membrane association.  In addition, structural analysis can be used to acquire 

more information on the type of association between OEP18 and the chloroplast 

outer membrane.  Overall, the results from the current study indicate that the C-

terminus of OEP18 contains targeting information to the chloroplast outer 

membrane.  Furthermore, OEP18 may share the novel chloroplast targeting 

mechanism first characterized in Toc159. 
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Appendix I - Vector maps 

 

pSAT6-35S:EGFP-N1 sequence landmarks: 

- Cauliflower mosaic virus 35S promoters (35S)  441 - 1,089 

- Translational enhancer from tobacco etch virus (TEV) 1,190 - 1,320 

- Enhanced green fluorescent protein (EGFP)   1,395 - 2,114 

- Cauliflower mosaic virus 35S terminator (35sT)  2,133 – 2,343 

- Ampicillin selection marker (Amp)    3,552 – 4,412
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pSAT6-35S:EGFP-C1 sequence landmarks: 

- Cauliflower mosaic virus 35S promoters (35S)  441 - 1,089 

- Translational enhancer from tobacco etch virus (TEV) 1,190 - 1,320 

- Enhanced green fluorescent protein (EGFP)   1,323 - 2,039 

- Cauliflower mosaic virus 35S terminator (35sT)  2,118 – 2,328 

- Ampicillin selection marker (Amp)    3,537 – 4,397 

 


