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Abstract 

Agricultural productivity is often constrained by nutrient availability; as such, copious 

amounts of synthetic fertilizers are applied to maintain productivity. However, the intensive use 

of synthetic fertilizers has reduced the capacity of the soil to carry out crucial roles such as nutrient 

cycling because of shifts in the microbial community composition and structure. In addition, much 

of the applied synthetic fertilizers become lost to the environment through run-off, which 

contributes to soil degradation. With the increasing demand on agricultural systems to provide 

food and fibre and the adverse impacts of agricultural production on the soil resource, amendments 

that support soil productivity are required to supply plant nutrients.  One way of sustainably 

improving nutrient acquisition and retention is by improving soil fertility; this can be achieved 

through integrative farming strategies that increase organic matter levels and stimulate the 

microbial community. In this greenhouse study, an integrative approach that relied on plant-soil-

microbe interactions was used to evaluate the usage of an agromineral as a slow-release fertilizer. 

This assessment was done by comparing the effects of an agromineral, the Spanish River 

Carbonatite (SRC), and a synthetic fertilizer (Nitrogen-Phosphorus-Potassium (NPK), 20-20-20) 

on soil pH, microbial abundance and respiration, as well as on the legume-Rhizobium symbiosis. 

I hypothesized that the SRC, rich in calcium and other essential plant nutrients, would raise soil 

pH, stimulate microbial abundance and respiration, and enhance the legume-Rhizobium symbiosis 

in comparison to the synthetic fertilizer. In addition, the microbial abundance and respiration 

would differ depending on the plants grown. A mix of leguminous and non-leguminous cover 

crops was grown for 56 days in soils treated with three soil amendments: SRC, ammonium nitrate, 

and NPK synthetic fertilizer. The cover crops were grown in the following pairs: 1) alfalfa and 

chicory and 2) red clover and oilseed radish. At harvest, soil treated with SRC had higher pH 
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values (pH raised by 1.2 units) and exhibited a higher abundance of heterotrophic and symbiotic 

nitrogen-fixing bacteria than those soils lacking the SRC amendment. This effect of SRC was 

observed in the rhizosphere of both cover crop combinations. However, the effect of soil 

amendments on the phosphate-solubilizing bacteria varied between cover crop combinations. The 

relative abundance of phosphate-solubilizing bacteria was enhanced by the SRC amendment in the 

rhizosphere of red clover and oilseed radish plants; in contrast, in the rhizosphere of intercropped 

alfalfa and chicory, the NPK fertilizer was the amendment that stimulated the abundance of the 

phosphate-solubilizer bacteria. Additionally, microbial respiration was reduced in soils treated 

with SRC compared to that of ammonia nitrate- and NPK fertilizer-treated soils. The results 

indicate that soil amendments were the drivers of soil pH and abundance of symbiotic nitrogen-

fixing and heterotrophic microorganisms, as well as the drivers of microbial respiration, while the 

plant combination had more pronounced effects on the abundance of phosphate-solubilizing 

bacteria. Furthermore, the SRC amendment appeared to have enhanced the legume-Rhizobium 

symbiosis compared to amendments lacking SRC. These preliminary findings suggest that SRC 

as a slow-release fertilizer may be useful as part of an integrative strategy to improve soil fertility 

by stimulating microbial activity. 
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Chapter 1: General Introduction 

1.1 Background 

Many reports have indicated that agricultural production will need to increase by 70-100% 

to meet the demands of the growth in population (Coskun et al. 2017). However, arable lands 

required for production have become degraded and are no longer suitable for maximum 

productivity (Seufert et al. 2012; FAO 2016). To meet the food demand, agricultural intensification, 

i.e., increasing output over the same land area, and agricultural extensification, i.e., bringing more 

land into production (Gabriel et al. 2013), have been proposed. There are concerns with these 

suggestions; the former contributes to greenhouse gas emissions while the latter is a significant 

driver of biodiversity loss (Gabriel et al. 2013; FAO 2016). Furthermore, there have been reports 

that crop yields have plateaued despite using synthetic fertilizers (Cassman 1999; Brisson et al. 

2010). The plateauing of crop yields are expected to worsen as land value increases (Pingali 2012) 

and as the non-renewable resources used in the manufacture of synthetic fertilizers decrease 

(Badgley et al. 2007; Manning 2010). 

Although the Green Revolution of the 1950s and 1960s has remarkably transformed 

farming practices resulting in significant increases in crop productivity (Fitzgerald-Moore and 

Parai 1996; Pingali 2012), it has led to soil impoverishment (Tilman et al. 2002). Practices such as 

the misuse of agrochemicals, e.g., synthetic fertilizers and pesticides, and high-yielding 

monocropping have resulted in soil degradation as well as biodiversity loss (Tilman et al. 2002; 

Jacques and Jacques 2012; Pingali 2012). The continuous cultivation of crops has depleted the soil 

of its essential minerals (Stern et al. 2006; Drinkwater and Snapp 2007). To replenish the soil, 

farmers add synthetic fertilizers (Drinkwater and Snapp 2007), and this practice has modified
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biogeochemical nutrient cycles such as those of N and P (Drinkwater and Snapp 2007; Parikh and 

James 2012).  Soil degradation impacts the productive and functional capacities of the soils to 

meet human demands and perform several ecosystem services (Lehman et al. 2015a). Addressing 

the concerns of food insecurity and soil degradation is linked to improving the biological 

functioning of the soil resource (Lehman et al. 2015b). Restoring degraded soils can be achieved 

by integrating sustainable soil management strategies (Tilman et al. 2002; Pingali 2012) into 

current farming practices.  

 

1.2 Research Gap and Goal 

The adverse impact of agricultural intensification has been a cause for concern, and in 

recent times, the urgency to find ways to produce crops more sustainably has increased.  The 

increased use of fertilizers has induced changes in soil properties, and over time these changes are 

thought to have had significant effects on the microbial community composition, structure and 

function (Zhong and Cai 2007; Treseder 2008; Tan et al. 2013; Geisseler and Scow 2014). Many 

reports have highlighted contrasting effects of synthetic fertilizer inputs on soil microbial 

properties such as the stimulation of particular microbial groups (Spehn et al. 2000; Borken et al. 

2002; Zhong and Cai 2007; Zhao et al. 2016) and the reduction of others (Borken et al. 2002; 

Kennedy et al. 2004; Wu et al. 2005; Ramirez et al. 2012; Shen et al. 2016). The use of soil 

microorganisms and agrominerals represents a key strategy to improve crop productivity by 

potentially increasing nutrient uptake (von Wilpert and Lukes 2003; van Straaten 2006; 

Adesemoye et al. 2008; Adesemoye et al. 2009). However, before implementing an integrated soil 

management strategy, we need to evaluate the potential effects of these strategies on soil ecosystem 

processes such as nutrient cycling and decomposition. Studies have been done to investigate the 
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effects of agricultural intensification on the drivers of ecosystem processes, for example, on 

microbial diversity. The data indicate that plant species (Grayston et al. 1998; Paterson et al. 2007; 

Eisenhauer et al. 2010; Ladygina and Hedlund 2010), soil conditions such as pH (Kennedy et al. 

2004; Rousk et al. 2010), and soil nutrient status (Zhong and Cai 2007; Ramirez et al. 2012; Shen 

et al. 2016) are all affecting soil microbial communities.  

The purpose of this study, therefore, was to evaluate the effect of an agromineral and a commercial 

fertilizer on chemical and biological indices of soil health. 

 

Chapter 2: Literature Review 

2.1 The role of soil in ecosystem functioning 

Agricultural production has been the cornerstone of many civilizations, both past and 

present, and optimal production remains vital for future generations. The soil is an essential driver 

of the functioning of natural and managed ecosystems, and it acts as a medium in which abiotic 

and biotic factors are at play (Grayston et al. 1998; Alkorta et al. 2003; Richardson et al. 2009a;  

Ladygina and Hedlund 2010).  It represents a dynamic and complex ecosystem (Paterson et al. 

2007; Zhong and Cai 2007) that supports not only crop growth but is also a habitat for a wide range 

of macro- and micro-fauna (Alkorta et al. 2003; Tian et al. 2015; Jacoby et al. 2017). The soil biota, 

e.g., nematodes, earthworms, bacteria, fungi, and protozoans, plays a key role in ecosystem 

functioning and services (Figure 2.1) (Richardson 2001; Alkorta et al. 2003; Chaparro et al. 2012; 

Lehman et al. 2015b; Holland et al. 2016).  
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Figure 2.1 Soil functions and ecosystem services 

The soil, as an ecosystem of macro-and microfauna, carries out many ecosystem functions and 

services that are key to agricultural productivity. For example, it allows nutrient cycling, helps 

in pest and pathogen suppression, and through stable aggregates formation, it reduces the risk 

of soil erosion and increases infiltration rates.  
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Soil health is often viewed as the continued capacity of the soil to serve as an essential 

living system within natural and managed ecosystem boundaries (Alkorta et al. 2003; Kibblewhite 

et al. 2008).  Among all the ecosystems, the soil is thought to host the highest microbial diversity 

(Lehman et al. 2015b), and these microorganisms mediate many biochemical processes through 

enzyme-catalyzed reactions (Tabatabai 1982; Alkorta et al. 2003). Microbial communities are 

sensitive to disturbances in their environment; as such their activities and biomass are often used 

as indicators to assess soil health (Pankhurst et al. 1995; Alkorta et al. 2003; Nakhro and Dkhar 

2010; Tian et al. 2015). Healthy soils can promote root growth, retain and release water, cycle 

nutrients, and promote optimal gas exchange and biological activity (Alkorta et al. 2003; Lehman 

et al. 2015b). Currently, most agricultural soils have lost their ability to carry out these roles, 

because of anthropogenic activities and poor management practices (Parikh and James 2012; 

Strecker et al. 2015; FAO 2016). Therefore, farmers must take an integrated approach to remediate 

degraded soils. Some of the current and suggested approaches are highlighted in Figure 2.2.  
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Figure 2.2 Management practices that influence soil health 

The management practices referred to as integrative are the suggested practices that promote the 

biological activity of the soil, and thus soil health. The conventional practices are those that are 

primarily used in modern farming systems.  The “+” sign represents methods that reduce soil 

disturbance while the “-” sign indicates an increase in mechanized tillage.  
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2.2 Nutrient requirement and crop growth 

Plant growth is often limited by mineral nutrient availability, and under these 

circumstances, plants depend on the cycling of soil nutrients or external inputs (Paterson 2003). 

There are sixteen essential nutrients (Table 2.1)that have several biochemical and physiological 

functions in plants (Parikh and James 2012; Chen and Liao 2017). As such, a deficiency in any of 

these minerals, especially macronutrients, can severely limit crop growth and yield (White and 

Brown 2010; Sugiyama and Yazaki 2012). Mineral nutrients influence internal plant signals, many 

of which control plant developmental stages such as seedling establishment, which is a high 

nutrient demanding stage (Dakora and Phillips 2002). In many managed ecosystems, the nutrient 

requirements for crop growth are high, and N and P are often the most limiting nutrients (White 

and Brown 2010; Parikh and James 2012; López-Arredondo et al. 2014). Potassium is vital to 

increasing the plants’ resistance to diseases such as those caused by the root-rotting fungi present 

in the soil (Wang et al. 2013). K+ is not critically limiting in most soils, except in tropical regions 

where it has the highest depletion rate (Manning 2010). Going forward I will be focusing on N and 

P. 
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Table 2.1 Essential plant nutrients 

  

 

Mineral nutrients Chemical symbol 

Macronutrients 

Nitrogen N 

Phosphorus P 

Potassium K 

Calcium Ca 

Magnesium Mg 

Sulphur S 

Silicon Si 

Micronutrients 

Boron B 

Chlorine Cl 

Copper Cu 

Manganese Mn 

Molybdenum Mo 

Nickel Ni 

Zinc Zn 

*Cobalt Co 

*Sodium Na 

  

The required nutrients are categorized as macro-and micronutrients based on their relative 

concentrations in the plant tissue. Macronutrients are further divided into primary (shaded rows, 

i.e., N, P and K) and secondary macronutrients, Ca, Mg, S and Si).  

*Co and Na are essential to some plants, and although aluminum is not considered an essential 

mineral, the addition of small amounts to nutrient solutions stimulates plant growth.  
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2.2.1 Nitrogen 

Nitrogen is one of the most crucial nutrients for plant growth and productivity (Beeckman 

et al. 2018), and although 78% of the atmosphere is made up of nitrogen, as N2, this form is not 

directly available for plant use (Behie and Bidochka 2014; Hoffman et al. 2014; Oldroyd and 

Dixon 2014; Stein and Klotz 2016). A dynamic equilibrium exists between N2 and the preferred 

useable forms nitrate (NO3
-) and ammonium (NH4

+) (O’Brien et al. 2016; Stein and Klotz 2016) 

but these forms are limited in agroecosystems (O’Brien et al. 2016). The assimilation of these 

available forms of N is known to have different effects on root growth (Beeckman et al. 2018). On 

the one hand, NH4
+ is known to stimulate root branching (Lima et al. 2010; Xuan et al. 2017; 

Beeckman et al. 2018), increasing the surface area available for nutrient absorption. On the other 

hand, NO3
- stimulates the elongation of lateral roots (Beeckman et al. 2018), enhancing the plant 

foraging capacity. Furthermore, NO3
- has been reported to act as a signal molecule, modulating 

many processes such as root system architecture and seed dormancy (O’Brien et al. 2016; Xuan et 

al. 2017). Because of its negative charge, NO3
- does not bind to the surfaces of soil particles and, 

hence, it is very mobile in the soil. As such, it is susceptible to leaching (Beeckman et al. 2018), 

rendering the application of  NO3
- less efficient than that of NH4

+ under field conditions (Beeckman 

et al. 2018).  

The majority of soil N exists in the form of organic matter (O’Brien et al. 2016), which 

cannot be directly assimilated by plants. However, through the activities of soil microorganisms, 

useable N is either assimilated in their biomass or made available for plant uptake (Lupwayi and 

Kennedy 2007) (Figure 2.3). Factors, such as temperature and soil moisture (Lupwayi and 

Kennedy 2007), C:N ratio and the quality of the residues (Watson et al. 2002), and root exudates 

(Faucon et al. 2017), influence the rates at which microbial immobilization or mineralization 
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occurs (Paterson 2003). For example, the release of root exudates or microbial biomass turnover 

may enhance the microbial mineralization of organic residue increasing the availability of 

inorganic N, and if microbes are N-limited, they will incorporate the available N into their biomass, 

reducing the N available for plant uptake (Faucon et al. 2017). As the exudates, the C:N ratio of 

the organic matter can stimulate microbial mineralization, e.g., if the residues have low C:N ratios 

and the  microbes are C-limited (Crews and Peoples 2005); it can also stimulate microbial 

immobilization if the  residue C:N ratios are high and the microbes are N-limited  (Paterson 2003; 

Mommer et al. 2016). In the latter case, a temporary deficit is created, and useable N is only 

available for plant use if the microbes die and the N in their biomass is mineralized, or when other 

sources of useable N are made available (Crews and Peoples 2005). 
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Figure 2.3 Transformation of nitrogen between soil pools 

The soil contains substantial amounts of N, but most of it is “locked” up in organic forms. Soil 

microorganisms can either mineralize organic N forms, e.g., in plant residue, into plant useable 

NO3
- and NH4

+ or immobilize these inorganic mineral forms as they incorporate them into their 

biomass, rendering them unavailable for plant uptake. Factors that are known to influence 

microbial activity, e.g., moisture and elemental stoichiometry ratios among others, influence the 

rate and extent to which mineralization and immobilization occur. 
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2.2.2 Phosphorus 

P is the second most limiting plant nutrient found in soils and is critical to plant 

development (Shepherd et al. 2016). P has roles in the division and organization of cells promoting 

root development and seedling establishment (Sugiyama and Yazaki 2012). Although P is essential 

to plants, the bioavailability of phosphate ion (PO4
3-), the useable form of P, in soils is generally 

low (Roberts and Johnston 2015). Because PO4
3- is bound to the mineral fractions of soils, it is 

highly insoluble, and its availability depends on soil chemistry (Mommer et al. 2016), pH in 

particular. In acidic soils, PO4
3- is absorbed by the plants as dihydrogen phosphate, H2PO4

-, which 

is highly reactive with Al and Fe cations (Hou et al. 2018). In alkaline soils, it exists as hydrogen 

phosphate, HPO4
2-, which complexes with Ca and Mg cations (Hinsinger 2001; Ros et al. 2017). 

Since these forms of PO4
3- are quickly adsorbed onto clay surfaces and chelate with metal oxides, 

they become unavailable for plant uptake (López-Arredondo et al. 2014; Ros et al. 2017) (Figure 

2.4). Up to 80% of the total P in the soil is organic P, and this form is not available to plants. As 

such, organic P must be mineralized into useable forms before being absorbed by plant roots 

(Hinsinger 2001; Chen and Liao 2017). The turnover of organic P is primarily carried out by plants 

and soil microorganisms (Hou et al. 2018) via the action of plant and microbial phosphatases (Tan 

et al. 2013), acidification (Dakora and Phillips 2002; Gyaneshwar et al. 2002; Burghelea et al. 

2015), the release of exudates (Li et al. 2014), and the process of weathering (van Straaten 2006).  
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Figure 2.4 Transformation of phosphorus between soil pools 

There are two forms of phosphate available for plant uptake, and the pH of the soil will influence 

the dominant form. The bioavailability of phosphate is low soil solution because it is often found 

in organic matter and microbial biomass as organic phosphorus or adsorbed onto clay surfaces, 

bound to metal cations or complexed in P-rich minerals as inorganic phosphorus. However, 

through natural weathering, exudation of H+ and organic anions, as well as the activities of 

microorganisms, unavailable P is made available for microbial use and plant uptake. The 

microbial biomass, the C:N and C:P ratios, as well as the pH, influence the release or 

immobilization of bound P. 
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2.3 The impact of industrial agriculture on the ecosystem 

The farming practices introduced during the Green Revolution have been the blueprint for 

many current small- and large-scale farms. These practices include, but are not limited to, the 

cultivation of a single high-yielding crop variety (Kiers et al. 2007) such as barley, wheat, corn, 

and rice (Rahman 2003; Jacques and Jacques 2012; Qiu and Li 2016).  These crop varieties require 

copious amounts of synthetic fertilizers to maintain yield, and fertilizers are often composed of 

soluble salts of a single elemental nutrient, such as ammonia nitrate and triple superphosphate 

fertilizer, or a combination of N, P, and K (Nziguheba et al. 2000; Zhang et al. 2017a). Crops as 

monocultures have replaced many natural ecosystems that once flourished (Tilman 1999; Jacques 

and Jacques 2012), resulting in increases in the susceptibility of crop species to diseases because 

of biodiversity loss (Strecker et al. 2015). Synthetic herbicides and pesticides are, therefore, needed 

to control weeds and pests (Tilman 1999; Jacques and Jacques 2012; Pingali 2012). Even though 

these farming practices, particularly the use of synthetic N and P fertilizers, have significantly 

contributed to increased productivity, their use has reduced the N2-fixing ability of microorganisms 

that provided a biologically-fixed source of useable N (Gan et al. 2004; Stein and Klotz 2016). 

This imbalance has led to the modification of many soil ecosystem processes, such as N  and P 

cycling (Bennett and James 2011; Tkacz and Poole 2015), and has contributed to soil degradation 

(Diaz and Rosenberg 2008).  

Furthermore, the manufacture of NPK fertilizers contributes to the depletion of non-

renewable resources (Bohlool et al. 1992; Choudhary et al. 1994; van Straaten 2002a; Manning 

2010; Baker et al. 2015; Rosemarin and Ekane 2016; Shepherd et al. 2016). Phosphorous rock  

(PR) refers to the diverse range of naturally-occurring minerals that contain relatively high levels 

of P, such as apatite (Zhang et al. 2017b). This non-renewable ore is the source from which 
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synthetic P fertilizers are manufactured (van Straaten 2002b; Shepherd et al. 2016; Talboys et al. 

2016), and their manufacture consumes approximately 80% of the PR ore mined annually (Roberts 

and Johnston 2015). Therefore, long-term supplies of PR are critical to agricultural productivity if 

farmers wish to maintain the current rate of crop production, i.e., 160-170 million tonnes/year 

(Roberts and Johnston 2015), and keep pace with the projected demand for food.  

Moreover, the industrial reduction of N2 to NH3 via the Haber Bosch process requires high 

temperatures (up to 1200 °C) and pressures (1000-3000 kPa) (Bohlool et al. 1992; Jensen and 

Hauggaard-Nielsen 2003; Manning 2010; White and Brown 2010). This process requires six times 

the amount of energy needed to produce P or K fertilizer (Santi et al. 2013), and this energy is 

often derived from non-renewable energy sources, for example, natural gas and coal (Bohlool et 

al. 1992; Jensen and Hauggaard-Nielsen 2003). As the price of oil derived from fossil fuel and the 

scarcity of PR increase, so will the price of  N  and P fertilizers (van Straaten 2006; Heppell et al. 

2016). Indeed, the global fertilizer demand is steadily increasing and is estimated to reach 220 

million tonnes by 2020 (FAO 2017; IFA 2018). Coupled with the economic and environmental 

costs of producing fertilizers, the transport and application of synthetic fertilizers to fields are 

energy-intensive and extremely costly (Jensen and Hauggaard-Nielsen 2003). 

Farming practices are known to contribute to greenhouse gas emissions, accounting for up 

to 21% of the total annual global emissions (FAO 2016). The emission of N-based gases represents 

a loss of N from agroecosystems, which significantly contributes to N pollution (FAO 2016). The 

loss of N from agroecosystems often occurs in three ways: 1) global NO3
- leaching and run-off 

(Ramos and Martínez-Casasnovas 2006; García-Díaz et al. 2017), 2) NH3 volatilization (Coskun 

et al. 2017), and 3) microbial transformations such as nitrification and denitrification (Coskun et 

al. 2017). Microbial transformations of applied N sources result in the release of nitrous oxide, a 



 

16 

 

gas of great concern because it has 300 times the heat-trapping capacity of CO2; thus, it has a 

significant potential for global warming (Ravishankara et al. 2009; Richardson et al. 2009b; Hu et 

al. 2015). These microbial processes are influenced by soil N availability, soil organic matter 

(SOM) content, temperature, and oxygen content (Steenwerth and Belina 2010). The loss of N 

from managed ecosystems and its subsequent contribution to environmental degradation are likely 

to increase as agricultural production increases unless strategies aimed at reducing the 

transformation of applied N fertilizers are incorporated. Such strategies include, but are not limited 

to, 1) reducing the use of NH3/NH4
+-based fertilizers (IPCC 2018), 2) using slow-released or time-

released fertilizers as well as optimizing the timing and placement of N fertilizers (Reay et al. 

2012), and 3) planting multiple crop species (Guo et al. 2009). These strategies represent 

sustainable farming practices that aim at increasing biodiversity, promoting nutrient cycling and, 

thus, reducing nutrient loss. In general, sustainable agriculture has been defined as the successful 

management of resources such as soil, water, environment, and non-renewable energy sources to 

satisfy the changing human needs, while maintaining or enhancing the quality of the environment, 

in addition to conserving these crucial resources (FAO 2016; Chen and Liao 2017).  

 

2.4 Farming strategies that promote soil health and nutrient cycling 

Healthy soils are central to sustainable agricultural productivity, and management practices 

that promote and maintain the optimal use of the soil resource overtime must be implemented 

(Singh et al. 2011). Soil organic matter is a central component of an integrated management 

strategy for improving soil health (Wood and Baudron 2018). The level of SOM often serves as a 

sensitive indicator of long-term modifications in the functioning of the soil ecosystems (Lehman 

et al. 2015a; Finney et al. 2016). SOM is a C-rich source of decomposing animal, microbial, and 
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plant residue that holds globally three times more C than the atmosphere and the vegetation 

(Schmidt et al. 2011). The addition of SOM has led to improved soil structure and tilth (Bacq-

Labreuil et al. 2018), thus reducing the risk of soil erosion, and to increased infiltration rates and 

water-holding capacity of the soil (Williams and Hedlund 2013), leading to improved nutrient 

retention (Lupwayi and Kennedy 2007). 

Moreover, SOM increases cation exchange capacity (Chang et al. 2007; Wood and 

Baudron 2018) which influences the soil’s ability to retain essential nutrients and buffer against 

acidification (Chang et al. 2007; Wood and Baudron 2018). Since modern agricultural practices 

contribute to environmental degradation, practices that enhance SOM can potentially reduce soil 

degradation, decrease nutrient loss, and increase C storage (Lehman et al. 2015b). Organic inputs 

represent a viable option because they are obtained more sustainably than chemical inputs, often 

from agricultural, industrial, and municipal processes as nutrient-rich by-products (Jacoby et al. 

2017). These industrial by-products contain organically-bound nutrients that are more stable in the 

soil, and when applied as organic fertilizer, e.g., as compost, they can increase SOM, reduce 

nutrient leaching, and  NH3 volatilization (Jacoby et al. 2017). There has been a resurgence in the 

use of several organic amendments as part of a sustainable management system to improve soil 

health  (Lanza et al. 2016; Zhang et al. 2016; Jin et al. 2016). For example, biochar (Atkinson et 

al. 2010; Lehmann et al. 2011; Robertson et al. 2012), compost, and manure (Pinamonti 1998; 

Birkhofer et al. 2008; Coll et al. 2011; Sharma et al. 2013; Suja et al. 2017) can positively influence 

soil C content, biological activity, and nutrient retention. 

Notwithstanding these positive effects, there have been contrasting reports, however, of the 

inability of organic amendments to support agronomic yield production when compared to their 

synthetic counterparts (Bengtsson et al. 2005; Badgley et al. 2007; Seufert et al. 2012; 
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Pradeepkumar et al. 2017; Suja et al. 2017). The application of these organic sources has been 

reported to have adverse effects on soil microbes because of contaminants associated with the 

source material (Mårtensson and Wetter 1990). However, these reported effects on soil microbes 

depend on the source of the materials used as amendments (Mårtensson and Wetter 1990). Because 

of potential contaminants such as antibiotics and heavy metals associated with these sources, other 

materials such as geological materials (van Straaten 2006) capable of supplying nutrients are being 

assessed. 

 

2.5 The use of rocks in crop production 

Most of the nutrients required for plant growth exist to varying degrees in naturally-

occurring rocks and minerals (Harley and Gilkes 2000; Gillman et al. 2002; van Straaten 2006). 

The term agromineral has been used to describe geological complexes that can serve as low-cost, 

slow-release fertilizers (van Straaten 2006; Zhang et al. 2017b). The use of rocks and minerals or 

their by-products in farming as a soil amendment to remineralize the soil is not a new concept and 

has been in practice since the 19th century (van Straaten 2006; Ramos et al. 2015). For example, 

limestone and dolomite have been used as soil conditioners to raise the pH of acidic soils, perlite 

to enhance aeration in artificial substrates, and vermiculite and zeolite to maintain moisture in 

growth substrates (van Straaten 2002b; van Straaten 2006).  

Although there are many promising reports on the direct use of different agrominerals as 

nutrient sources (Bakken et al. 1996; Bakken et al. 1997; Bakken et al. 2000; Hildebrand and 

Schack-Kirchner 2000; von Wilpert and Lukes 2003; Talboys et al. 2016), other studies found non-

significant results (Bolland and Baker 2000; von Wilpert and Lukes 2003). In studies evaluating 

the use of K-based agrominerals, e.g., granite dust and a complex of dolomite and phonolite, as 
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slow-release fertilizers,  the authors reported that although granite dust raised soil pH, it is 

inefficient in supplying adequate amounts of K and P to meet the demands of wheat plants growing 

in a K-deficient soil (Bolland and Baker 2000). The dolomite and phonolite mineral complex also 

ameliorated the pH of K-deficient forest soil, but the weathering of this K-based mineral resulted 

in the subsequent release of high doses of Na (von Wilpert and Lukes 2003). The simultaneous 

release of copious amounts of Na with the dissolution of these rock sources is of concern because 

large quantities of Na can lead to Na-loading of groundwater (von Wilpert and Lukes 2003); this 

would hinder the use of such complexes as supplements to synthetic fertilizers.  

Carbonatites represent a highly reactive mineral complex that is primarily made up of 

apatite (P source), biotite (K source), and calcite (CaCO3 source), as well as varying quantities of 

micronutrients and rare earth elements (Sage 1987). As carbonatites weather, they release adequate 

amounts of Ca, K, P and Mg over time (Heim et al. 2011; Myrvang et al. 2016). Bakken et al. 

(1997 and 2000) reported having recovered significant amounts of K from the biotite and nepheline 

fractions of a carbonatite absorbed in plants. Although carbonatites represent viable supplementary 

nutrient sources, their short-term use to support crop growth and yield in agricultural systems can 

be limited. One such limitation relates to the dissolution rates of these Ca-rich complexes 

compared to water-soluble synthetic fertilizers (Renforth et al. 2015). The slow release of nutrients 

may hinder seedling establishment and other early plant development processes that have high 

nutrient demands (Choudhary et al. 1994; Silwal 2013). Another limitation relates to their potential 

release and accumulation of toxic elements such as Ba and Sr (Renforth et al. 2015), which may 

pose an environmental risk or inhibit plant growth.  Although most carbonatites are low in toxic 

and radioactive elements such as Cd, Pb, and U, there are some that are enriched with Ba and Sr 

(Heim et al. 2011; Myrvang et al. 2016). One such example is the Stjernøy carbonatite found in 
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Norway (Heim et al. 2011; Silwal 2013; Myrvang et al. 2016). The accumulation of Ba and Sr may 

result in undesired effects on plant growth upon their assimilation (Myrvang et al. 2016). For 

example, Ba has been shown to significantly inhibit germination, seedling establishment, 

photosynthetic activity, and growth of soybean (Iqbal and Ijaz 2002) and maize (Suwa et al. 2008) 

plants, while Sr was shown to decrease chlorophyll α in comparison to chlorophyll ß, inhibiting 

radicle elongation in corn (Moyen and Roblin 2010). 

 

2.6 Spanish River Carbonatite 

Spanish River Carbonatite (SRC) is a carbonatite primarily composed of apatite, biotite, 

and igneous calcite, a rare and highly reactive form of CaCO3 (Boreal Agrominerals Inc.). SRC is 

also made up, to a lesser extent, of varying amounts of elemental nutrients and rare earth elements 

(three of the latter are highlighted in Table 2.2) (Sage 1997; Slack 2003; Boreal Agrominerals Inc.). 

SRC is an igneous, alkaline rock of magmatic origin that is located in the Sudbury region of 

Ontario, Canada (Sage 1987; Slack 2003). This agromineral is free of potentially harmful metal 

leachate, that is typically associated with mine waste facilities, according to the B.C. Waste 

Management Act-Special Waste Regulation Schedule 4, B.C. Reg. 63/88 (Boreal Agrominerals 

Inc.). This unique characteristic of SRC is attributed to its low fluorine content that inhibits the 

formation of pyrochlorate, and the subsequent accumulation of radioactive ions and heavy metals 

(Slack 2003). Because of its high CaCO3 content and its wide range of minerals, SRC is currently 

sold to organic and conventional farmers as a soil fertilizer and conditioner (Boreal Agrominerals 

Inc.). The composition of SRC makes it an attractive slow-release plant useable nutrient source.  

To my knowledge, Jones (2016) is the only researcher who has conducted studies on the 

agronomical value of SRC as a source of plant useable nutrients. This author reported positive and 
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promising effects of SRC as a soil amendment on the growth of pea plants and heterotrophic soil 

bacteria. Also, the author demonstrated that SRC could act as a suitable nutrient source provided 

that the plants are supplemented with N.  Nitrogen supplementation is required because SRC and 

agrominerals in general are not a source of N (van Straaten 2006), and N is critical to plant growth 

(Chen and Liao 2017). The author reported comparable growth and yield of pea plants inoculated 

with N2-fixing bacteria grown in soils amended with SRC and of non-inoculated plants 

supplemented with a soluble nutrient solution. In addition, the SRC amendment resulted in a two-

fold increase in the number of colony-forming units of heterotrophic bacteria in the rhizosphere of 

pea plants and in a two-fold increase in the number of nodules formed on the inoculated pea roots. 

Because SRC acted in a manner comparable to the soluble nutrient solution on the growth of pea 

plants, Jones (2016) recommended that a combination of SRC amendment and rhizobia inoculation, 

in the case of legumes, supplement the use of synthetic fertilizer (Jones 2016).  
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Table 2.2 Mineral composition of SRC 

 

Mineral composition 
% mean dry matter in 

deposit* 

Calcite (CaCO3) 65 

Biotite & vermiculite mica 

(K source) 
15 

Apatite ((Ca3PO4)2 source) 12 

Magnetite & hematite (Fe 

source) 
2 

Magnesite (MgCO3) 1.5 

Pyroxene (silicate source) 1.5 

Orthoclase (K-feldspar source) 1 

Thenardite (Na2SO4 source) 0.2 

Admixture (ppm) 

Mn 1200 

Zn 60 

B 40 

Mo 12 

Cu 10 

Rare Earth Elements (ppm) 

Lanthanium 161 

Neodymium 130 

Yttrium 33 

  

*SRC can contain up to 7% moisture 

Source: http://borealagrominerals.ca/products/composition.html  

 

 

  

http://borealagrominerals.ca/products/composition.html
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Although Jones (2016) indicated that SRC may serve as a supplement for synthetic 

fertilizer, the weathering of Ca-rich compounds may hinder the release of the P-bearing, apatite, 

component via the common ion effect (Choudhary et al. 1994; Zhang et al. 2017b). Indeed, as 

these Ca-rich complexes weather, they release Ca2+, the common ion, into the soil solution that 

already contains Ca2+. This release of  Ca2+ results in an increase in soil pH, but P release from the 

apatite component is limited because, at alkaline pH, PO4
3- becomes complexed with Ca2+ as 

calcium phosphates (Goulding 2016; Ritchey et al. 2016). Therefore, the simultaneous release of 

Ca with the weathering of P-bearing compounds under alkaline conditions may prevent the 

substantial use of mineral complexes rich in Ca in agricultural systems (Heim et al. 2011). 

However, their use on Ca-deficient and neutral soils or in combination with synthetic fertilizers 

may prove beneficial in ameliorating acidic, nutrient-depleted soils (Barea et al. 2002).  

The weathering of agrominerals is a complex process that involves several physical, 

chemical, and biological factors (van Straaten 2006; Zhang et al. 2017b). These factors are often 

linked to the mineralogy, chemical reactivity, rate of application of the complex, soil pH, and 

microbial activity (Ba and Guissou 1996; Burghelea et al. 2015). The use of an integrated farming 

approach involving chemical and biological activities may enhance their long-term efficacy. It is 

well established that the interactions in the rhizosphere between roots and their associated 

microbiota, and those between microorganisms influence the weathering process of complex 

minerals, and the subsequent release and uptake of nutrients (Vanlauwe et al. 2000; Hinsinger 

2001; Blum et al. 2002; Talboys et al. 2016). The rhizosphere is the volume of soil surrounding 

the roots, that is directly influenced by root activity and the microbial interactions (Haichar et al. 

2014; Zwetsloot et al. 2018).   
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These rhizosphere interactions have been shown to enhance the weathering of agrominerals 

via 1) composition of compounds released from the roots (Vanlauwe et al. 2000; Calvaruso et al. 

2006; Talboys et al. 2016), 2) the type of microorganisms present [e.g., phosphate-solubilizing 

bacteria (Toro et al. 1997; Omar 1998; Calvaruso et al. 2006), or ecto- and mycorrhizal fungi (Ba 

and Guissou 1996; Barea et al. 2002; Alves et al. 2010; Burghelea et al. 2015)]. Hinsinger and 

Jaillard (1993) reported that the exudation of H+ and organic acids from rape roots acidifies the 

rhizosphere and leads to the weathering of K-bearing phlogopite mica releasing interlayer K. 

Additionally, forest trees with a low P status were shown to increase their foliar P content by using 

their mycorrhizae to exploit an apatite complex (Hagerberg et al. 2003), suggesting that apatite 

may be used to alleviate P-deficiency in forest soils. Mycorrhizae interactions in the rhizosphere 

modified soil pH, and soil pH is a key factor is determining the dissolution rates of agrominerals 

and their agronomic effectiveness (Hagerberg et al. 2003). 

 

2.7 The role of root exudates in nutrient acquisition 

Access to adequate amounts of soluble nutrients influences internal plant signals that control 

several plant developmental stages (Dakora and Phillips 2002). The availability of nutrients is a 

major constraint to agricultural productivity (Dakora and Phillips 2002). Plants release root 

exudates to enhance nutrient availability in their rhizospheres (Chen and Liao 2017). Root 

exudates are a complex mixture of low and high molecular-weight compounds selectively secreted 

by roots (Huang et al. 2014; Venturi and Keel 2016); they represent a significant C source for 

heterotrophic microbes (Chaparro et al. 2012; Haichar et al. 2014). The composition of the roots 

exudates varies from plant to plant and with soil conditions (Jacoby et al. 2017), and plants growing 

under nutrient-limiting conditions modify the composition of their root exudates (Hartman et al. 
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2009). To deal with deficiencies such as Fe, Mn, Zn, and P plants exude 1) carboxylic acids, H+, 

phenols or siderophores to weather and acquire insoluble minerals making them available for 

uptake (Hartmann et al. 2009) or 2) sugars, amino acids, and organic acids to attract 

microorganisms involved in nutrient acquisition (Dakora and Phillips 2002; Jacoby et al. 2017).  

Besides, some plants are more effective than others at mobilizing soil nutrients, thus 

improving the nutrient availability for themselves and their neighbouring less-effective mobilizers 

(Zhang et al. 2014; Faucon et al. 2017). White lupin and chickpea, for example, are effective 

mobilizers of P from unavailable soil sources (Kamh et al. 1999; Li et al. 2014) and are often 

referred to as P-mobilizing species (Zhang et al. 2014; Faucon et al. 2017). In response to P-

limitation, P-mobilizing species release carboxylates, organic anions, and H+ (Kamh et al. 1999; 

Sugiyama and Yazaki 2012; Li et al. 2014) (which are effective at solubilising P from Ca 

phosphates in alkaline soils) or release phosphatases and phytases to hydrolyse organic P or poorly 

available inorganic P sources (Li et al. 2014; Chen and Liao 2017). Therefore, growing a mix of 

crop species that are differentially capable at mobilizing nutrients may serve as a means to improve 

nutrient availability. 

 

2.8 Plant root-microbe interactions exploited in nutrient acquisition 

With the increasing costs and negative impacts of fertilizers, more attention has been 

placed on exploiting plant-microbe interactions to increase plant nutrient acquisition and improve 

soil health (Dakora and Phillips 2002; Sugiyama and Yazaki 2012). There is a group of 

microorganisms capable of influencing plant growth through direct and indirect interactions. These 

microorganisms are known as plant growth-promoting rhizomicrobes/bacteria (PGPB) (Haichar 

et al. 2014; Jacoby et al. 2017; Martínez-Hidalgo and Hirsch 2017; Mhlongo et al. 2018). PGPB 
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include species of several bacterial genera, for example, Bacillus, Pseudomonas, Enterobacter, 

Arthrobacter, Burkholderia, and Paenibacillus (Mhlongo et al. 2018). They are commonly found 

associated with many agriculturally important crops such as maize and rice (Berg and Smalla 2009; 

Bulgarelli et al. 2015) and lupin and rape (Zhang et al. 2017c). Because of their roles in plant 

protection and growth, PGPB are often used as biofertilizers and biocontrol agents (Pérez-Montaño 

et al. 2014; Mhlongo et al. 2018). However, before their use as biofertilizers in field environments, 

PGPB are screened for common plant growth-promoting characteristics such as phosphate-

solubilization capacity (Gupta et al. 1994; Liu et al. 2015), organic acid production (Liu et al. 2015; 

Álvarez-López et al. 2016), and potassium-solubilization (Sheng and He 2006). Incorporating the 

use of PGPB, especially those involved in nutrient solubilization and mineralization, in farming 

may lead to reduced rates of fertilization. Adesemoye et al. (2009) reported yields of PGPB-

inoculated tomato plants grown in soils supplemented with reduced rates of synthetic fertilizers 

statistically comparable to those of plants grown in soils supplemented with a full dose of fertilizer. 

Such findings are promising and provide insights into the use of soil microorganisms to increase 

nutrient acquisition and plant growth. 

PGPB with the capacity to solubilize and mineralize inorganic and organic phosphate 

sources represent a solution for issues related to P-deficiency in agroecosystems. Bacterial strains, 

including Pseudomonas, Bacillus, Rhizobium, Actinomycetes (Guang-Can et al. 2008; Liu et al. 

2015), and fungal strains of Aspergillus, Penicillium and Rhizophagus, formerly known as Glomus, 

are effective at increasing the availability of soil P (Martin et al. 2007; Arcand et al. 2010; Alori 

et al. 2017). These microorganisms are collectively referred to as phosphate-solubilizing 

microorganisms (PSM) (Richardson and Simpson 2011; Baas et al. 2016; Alori et al. 2017). A 

common mechanism used by PSM is acidification via the production and release of organic acids, 
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such as citric, oxalic, and keto-gluconic acids, into the surrounding environment (Richardson and 

Simpson 2011; Alori et al. 2017). Additional strategies to solubilize P include chelation reactions 

and the secretion of extracellular enzymes (Richardson et al. 2009a; Mohammadi 2012; Behera et 

al. 2017), as well as the use of hyphal networks to aid in P acquisition (Alori et al. 2017). The 

ability to solubilize insoluble P sources is being exploited in field studies to improve P acquisition 

and plant growth (Omar 1998; Rodriquez and Fraga 1999; Taktek et al. 2015; Baas et al. 2016).  

 

2.9 The roles of cover crops in agroecosystems 

Cover crops are herbaceous plants (Sullivan 2003; Steenwerth and Guerra 2012) often grown 

to provide soil coverage and reduce NO3
- leaching during the periods when the land is left bare in 

annual cropping systems (De Baets et al. 2011; Finney et al. 2017; Shelton et al. 2018).  They can 

also be harvested before flowering and incorporated into the soil as green manure to provide 

nutrients upon decomposition and increase SOM content (Abawi and Widmer 2000; Magdoff and 

van Es 2009). Incorporating plant residues into the soil is an effective method of building SOM 

levels (Li et al. 2015a), and the use of cover crops to do so is well documented  (Fageria et al. 

2005; McGourty and Reganold 2005; Baumgartner et al. 2008; Pérez-Bermúdez et al. 2016). Their 

use as a fertility-building tool has declined following the green revolution (McKenna et al. 2018). 

However, recently, there has been a renewed interest in using them because of their positive 

influence on soil properties such as increasing aggregate stability and reducing soil erosion 

(Dabney et al. 2001; Pérez-Bermúdez et al. 2016; Bacq-Labreuil et al. 2018). Different species of 

cover crops are selected depending on their functional traits and the ecosystem services (Table 2.3) 

they provide (Faucon et al. 2017; Sharma et al. 2018; Shelton et al. 2018).  
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Table 2.3 Ecosystem services provided by cover crops 

 

Ecosystem 

services Cover crop Cropping system Reference 

 Alfalfa/weed Mix-crop (Chung and Miller 1995b) 

Suppressing 

weeds & 

pests 

Cowpea/Sudangrass Rotation (Ngouajio et al. 2003) 

 
Oilseed 

radish/nematode 
Mix-crop (Mennan et al. 2008) 

 
Oilseed 

radish/lettuce/weed 
Mix-crop (Lawley et al. 2012) 

 Rapeseed/winter rye Rotation (Larkin et al. 2010) 

 Oats/rye 
Monoculture/mix-

crop 
(Kabir and Koide 2002) 

Improving 

soil structure 

Oilseed radish/cereal 

rye 
Rotation (Williams and Weil 2004) 

 Ryegrass/oats/mustard Mix-crop (De Baets et al. 2011) 

Reducing 

erosion & 

nutrient loss 

Rye/hairy vetch/ 

crimson clover 
Rotation (Daniel et al. 1999) 

 Brassica sp/rye Mix-crop (Dean and Weil 2009) 

Scavenging 

nutrients 

Red 

clover/soybean/maize 
Mix-crop (Gaudin et al. 2015) 

 Brassica sp Rotation (Fageria et al. 2005) 

  Red clover/bluegrass Mix-crop (Thilakarathna et al. 2012) 

Supporting 

microbial 

populations 

Forage radish/cereal 

rye 
Mix-crop (White and Weil 2010) 

 Barley/clover/rapeseed Rotation (Larkin et al. 2010) 
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The families of Poaceae (cereal and grasses) and Fabaceae (legumes) are the most 

commonly-used cover crops and to a lesser extent the families of Brassicaceae (mustards) and 

Asteraceae (daisies) that contain broadleaved herbaceous plants (McGourty and Reganold 2005; 

Dabney et al. 2010; Steenwerth and Guerra 2012). Some desirable traits of cover crops include 

their ability to 1) establish quickly under less than ideal conditions (Sharma et al. 2018), 2) produce 

extensive aboveground biomass that effectively protects the fertile topsoil (Mennan et al. 2008), 

3) act as a host for beneficial microorganisms (Watson et al. 2002; Fageria 2007), and 4) scavenge 

limited nutrients such as N and P (Fageria et al. 2005; Jacobs 2012). Selection of the types of cover 

crops to use as part of a management system requires a good understanding of the interactions that 

occur among plant species because growing cover crops together with the primary crops can 

influence these interactions and negatively affect productivity (Faucon et al. 2017; Finney et al. 

2017). These interactions include temporal and spatial competition for light, water, and nutrients, 

as well as the release of compounds that inhibit the growth of other crops, i.e., allelopathic 

chemicals (Chung and Miller 1995a; Faucon et al. 2017).  These specific chemicals have been 

shown to compromise the yield of the primary crop (Florentín et al. 2011; Lal 2015; Steenwerth et 

al. 2016).  

To achieve a range of ecosystem services (Table 2.3), Shelton et al. (2018) recommend 

incorporating a mix of cover crops as part of an integrated management strategy. For example, 

grasses are ideal for building SOM because their residues have high C:N ratios and lignin content 

(McGourty and Reganold 2005; Olmstead 2006; Dabney et al. 2010). A high C:N ratio and high 

lignin content result in a slower decomposition rate, low net mineralization in the short-term, and 

a sustained release of nutrients for the primary crops (McGourty and Reganold 2005; Olmstead 

2006; Wang et al. 2008a).  Legumes are chosen for their role in symbiotic N2-fixation (Dabney et 
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al. 2010; Alvarez et al. 2017). Compared to grasses, legumes have a lower C:N ratio, as such their 

decomposition rates are rapid once their residues have been incorporated into the soil (McGourty 

and Reganold 2005; Li et al. 2015a).  

Several studies have reported that portions of the N assimilated by the non-legume are 

derived from the N2-fixing legume grown in an intercropping system (Martin et al. 1991; Kurppa 

et al. 2010; Rusinamhodzi et al. 2012; Thilakarathna et al. 2016).  However, the amount of N2 

fixed by the legume cover crop and available for uptake will depend on the cultivar of the plant, 

the effectiveness of the microbial inoculum, and the soil moisture and temperature (Steenwerth 

and Guerra 2012). The root system of many legumes allows them to absorb nutrients available in 

low concentrations deeper in the soil, increasing the nutrient levels in the topsoil (Fageria et al. 

2005). Non-leguminous cover crops are often better at providing soil coverage and reducing soil 

erosion by improving soil structure (Dapaah and Vyn 1998; Williams and Weil 2004).  These 

cover crops have a higher root scavenging capacity than leguminous crops, increasing their 

abilities to reduce NO3
- leaching and soil erosion (Fageria et al. 2005). However, sometimes the 

growth of these scavenging cover crops is limited by N deficiency and growing them in a mixture 

with legumes can be the best strategy to obtain the maximum benefits from cover crops  (Fageria 

et al. 2005). Several studies have highlighted the positive effects of leguminous crops on their 

companion crops, the soil properties, and on the subsequent crop in the rotation. These crop 

rotation studies include soybean-sugar cane (Li et al. 2013), soybean-maize (Rusinamhodzi et al. 

2012; Alvarez et al. 2017), soybean-radish (Antoun et al. 1998), red clover-bluegrass 

(Thilakarathna et al. 2012; Thilakarathna et al. 2016), and wheat-corn-pea-hyacinth bean 

(Rochester et al. 2001).  
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2.10 Legume-Rhizobium symbiosis 

Under N limitations, flavonoids are secreted by leguminous plants to signal to 

microorganisms capable of fixing N2 (Antunes et al. 2006; Sugiyama and Yazaki 2012; Oldroyd 

2013). These N2-fixing microorganisms, collectively called rhizobia, engage in symbiosis with 

about ten angiosperm families (Abdel-Lateif et al. 2012). Successful colonization of the plants by 

these microbes leads to the formation of novel root organs, i.e. the nodules, that are the site of N2-

fixation (Oldroyd 2013). The plants supply the micro-symbionts with fixed C (Downie 2014; Sasse 

et al. 2018); in return, the micro-symbiont provides useable N. The ability to biologically reduce 

N2 to NH3 is limited to prokaryotes, i.e., bacteria and archaea (Gage 2004; Downie 2014; Martin 

et al. 2017), that encode nitrogenase, an O2-sensitive N2-fixing enzyme (Downie 2014; Stein and 

Klotz 2016; Martin et al. 2017). Rhizobia can be found growing endophytically in non-legume 

hosts while others are free-living in soils (Denison and Kiers 2011).  

About 40-100 million metric tonnes of NH3 entering the biosphere per annum does so 

through biological nitrogen fixation (Rubio and Ludden 2008; Downie 2014; Lira et al. 2015; 

Vimal et al. 2017). As such, plants associating with N2-fixing bacteria have a selective advantage 

under conditions of N limitation (Downie 2014). It is estimated that about 80% of biologically-

fixed nitrogen in agricultural systems is derived from symbiotic N2-fixation (Yang et al. 2010; 

Vimal et al. 2017). As such, symbiotic N2-fixation plays an essential role in maintaining soil 

fertility and crop productivity, and it has done so for centuries (Badarneh and Ghawi 1994). This 

biological process is sensitive to environmental factors such as soil pH, nitrogenous compounds, 

and phytohormones (Ferguson et al. 2013; van Noorden et al. 2016). These factors, especially  soil 

pH and nitrogenous compounds, affect multiple aspects of nodulation ranging from flavonoid 

secretion (Dusha and Kondorosi 1993; van Noorden et al. 2016) to nodule initiation, development, 
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and distribution on the root system (Gan et al. 2004; Bollman et al. 2006). Additionally, various 

forms of mineral N adversely affect nodulation and N2-fixation (Gulden and Vessey 1998; Gan et 

al. 2004; Oono and Denison 2010); for example, the presence of NO3
- appears to have a more 

inhibitory effect on the legume-Rhizobium symbiosis than that of NH4
+ (Gulden and Vessey 1997; 

Gulden and Vessey 1998; Bollman et al. 2006). Nevertheless, exploitation of the legume-

Rhizobium symbiosis has been a critical strategy in reducing external N inputs, and its use has 

increased in recent times.  

 

Chapter 3: The Use of an Integrative Strategy to Enhance Nutrient 

Acquisition and Restore Soil Health 

 

Intensive agricultural production, particular the high rates of synthetic fertilizer application, 

has resulted in soil erosion, nutrient depletion, and biodiversity loss (FAO 2009; Strecker et al. 

2015); as such, there is an urgent need to sustainably supply nutrients to plant and restore the 

fertility of degraded soils to avoid further degradation. An ideal farming approach enhances 

productivity while managing natural resources such as the soil (FAO 2009). Therefore, to 

sustainably farm, small- and large-scale farmers must reduce their use of synthetic fertilizers and 

other conventional agriculture practices through the implantation of an integrative management 

system (Figure 2.2). Farmers can protect the soil resource by maintaining diverse plant 

communities and undertaking practices that improve SOM and stimulate the activities of soil 

microorganisms, thus enhancing nutrient cycling. One such integrative strategy (Figure 3.1) uses 

cover crops with different traits, exploits plant-microbe interactions to enhance nutrient acquisition 

and plant growth, and utilizes SRC as a slow-release fertilizer to support both microbial and plant 

growth.  
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Figure 3.1 An integrated approach  

This figure is a representation of the hypothesized interconnected interactions that enhance 

nutrient acquisition and plant growth. Step 1 highlights the plant root-microbe interactions that 

indirectly increase nutrient uptake and promote plant growth. Step 2 is the weathering process 

of the agromineral through the solubilization activities of rhizosphere microbes and Step 3 

represents direct mechanisms that some plant species use to improve nutrient availability. Each 

step depends on the synergistic interaction with the others.  
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Soils in which leguminous and non-leguminous cover crops are grown are expected to 

harbour a diverse number of soil microorganisms such as symbiotic N2-fixing, heterotrophic, and 

phosphate-solubilizing bacteria. The plant-microbe and microbe-microbe interactions in the 

rhizosphere are expected to enhance the weathering of the sparingly soluble SRC. I proposed that 

the release of nutrients from SRC will stimulate cover crop root growth by enhancing nutrient 

availability by gradually releasing nutrients over time in a manner that suits the cover crop 

demands (Harley and Gilkes 2000), whereas the soluble nutrients present in synthetic fertilizers 

would be immediately available for  plant uptake as well as for immobilization and run-off (Gaiotti 

et al. 2017). The release of nutrients from SRC such as P, K, and the N2 fixed by the leguminous 

cover crops and their respective Rhizobium species should support plant growth. In addition, soil 

pH is known to modify the microbial community composition (Rousk et al. 2009; Hou et al. 2018), 

and most of the cover crops previously mentioned grow best in near-neutral soils; the release of 

Ca as a result of SRC weathering should create an ideal environment for bacterial activities (Lauber 

et al. 2009; Rousk et al. 2010). The use of diverse cover crop species, nutrient acquiring 

microorganisms, and a slow-release nutrient source that is free from toxic elements represent a 

viable strategy to improve soil fertility and enhance nutrient acquisition.  

This preliminary study was a collaborative effort with a team of researchers at Brock 

University. The researchers at Brock University focused on the aboveground interactions in a 

vineyard ecosystem, while I focused on those interactions that are occurring belowground. The 

cover crop combinations used in this study was determined by the collaborating team at Brock 

University. They grew the cover crops in different plant combinations, and identified the 

combination of plants that grew well together, i.e., alfalfa and chicory, red clover and oilseed 

(Heather VanVolkenburg, personal communication).  The combination of cover crops I used for 
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this thesis was based on their findings. Informative details about the specific cover crops used can 

be found in Appendix A.  

My overarching objective was to assess, under greenhouse conditions, the effects of three 

soil amendments on soil pH, on the relative microbial abundance, and on the microbial activity of 

three microbial functional groups in the rhizosphere of two cover crop combinations. I was 

particularly interested in understanding the influence of amendments on soil parameters, and how 

these parameters varied depending on the cover crop combination.  

I used pot experiments to evaluate whether SRC represented an efficient slow-release nutrient 

source, and the following hypotheses were developed:  

1. Because SRC is ~65% calcite (Slack 2003), I hypothesized that the pH in SRC-amended 

soils would be higher than those of ammonia nitrate- and NPK fertilizer-treated soils. 

2. Because plant species are known to shape the microbial community structure (Eisenhauer et 

al. 2010), I hypothesized that microbial abundance and respiration vary depending on cover 

crop combination. 

3. Because SRC has been proposed to enhance the legume-rhizobia symbiosis (Jones 2016), I 

hypothesized that the overall symbiotic efficiency of leguminous cover crops grown in SRC-

treated soil is higher than cover crops grown in soils lacking the SRC amendment.  
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Chapter 4: Research Design and Methodology 

A 3 x 2 factorial design was developed in which there were three levels of soil amendment: 

1) Nitrogen as 2.5 mM  ammonium nitrate (Sigma-Aldrich, Oakville, ON), 2) SRC in an SRC-to-

soil ratio of 1:10, and 3) synthetic fertilizer as 20-20-20 N-P-K (Walmart Inc., St. Catharines, ON; 

Appendix B), with two combinations of cover crops: 1) alfalfa and chicory, and 2) red clover and 

oilseed radish, for a total of six treatments (Figure 4.1). All the seeds used in this study were 

obtained from Canadian Comfort Alpacas, Fenwick, ON. In pilot studies done to evaluate the 

growth of the cover crops, I noticed that the leguminous cover crops produced nodules, yet I had 

not inoculated the seeds with rhizobia. Although it is customary to sell inoculated legume seeds, 

this was not the case with the seeds bought. Therefore, I hypothesized that the purchased seeds 

were unintentionally inoculated with rhizobia possibly during the seed harvesting and packaging 

processes.  

Eight replicates per treatment combination were used and were completed in four 

experimental runs. In each experimental run, 24 pots (FibreGrow planter pots (Volume: 6 L: Size: 

30 cm x 30 cm)) were sterilized using the pre-vac 30 cycle of the STERIS AMSCO® Lab 250 

Steam Sterilizer (Mississauga, ON), and were then disinfected with 1% Virkon® aqueous solution 

to minimize fungal contamination. Once pieces of debris (roots, twigs, and peat) larger than 1 cm 

were removed from SunGro Sunshine® Mix 1 potting soil (JVK®, St. Catharines, ON; Appendix 

C), the soil was saturated with non-sterile water. The pots were filled with water-saturated soil and 

left to settle in the greenhouse for 24-48 hours. For SRC treatments, SRC (90 mL) was applied to 

each corresponding treatment pot 24 h before sowing; the SRC was gently worked into the top 5 

cm of the soil surface, and the soil was lightly watered and allowed to sit overnight. 
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Figure 4.1 Experimental design  

The cover crop combinations consisted of alfalfa and chicory (AC), and red clover and oilseed 

radish (RO). The soil amendments were nitrogen (as 2.5 mM ammonium nitrate), SRC (1:10 

SRC:soil ratio), and fertilizer (as 20-20-20 NPK). The first set of intercropped alfalfa and chicory 

was grown from the week of November 13, 2017 to the week of January 08, 2018, while the 

second was grown from the week of November 27, 2017 to the week of January 22, 2018. 

Likewise, the first group of intercropped red clover and oilseed radish plants was grown from 

the week of December 25, 2017 to the week of February 19, 2018. The second group of plants 

was grown from the week of March 05, 2018 to that of April 30, 2018. For each cover crop 

combination and planting time, and for each soil amendment, there were eight pots with two 

plants of each species. 
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The alfalfa-chicory intercropped combination consisted of two alfalfa and two chicory plants per 

pot, whereas the red clover-oilseed radish combination consisted of two red clover and two oilseed 

radish plants per pot (Figure 4.2). Ten seeds were initially sown at about 5-8 cm from each corner 

(depth according to seed company directions) to ensure that at least one plant of each species was 

growing in each location. The seedlings were allowed to grow for fourteen days, at which time 

they were thinned to one per corner. Depending on treatments, pots received 500 mL of ammonium 

nitrate solution, water in the case of SRC, or NPK fertilizer biweekly (i.e., at days 14, 28, and 42). 

Also, all plants received 1 to 2 L of water every three to five days at the soil surface (the point 

where the plant emerges from the soil), and the amount was based on pot weight. Each pot was 

rotated 90° and randomly moved every three days to minimize greenhouse condition bias. The 

conditions in the greenhouse were control-regulated based on ambient conditions, with 

temperatures varying between 20.6 and 24.8 °C and the relative humidity between 52.1 and 21.7%. 

Each experimental run lasted for 56 days and was conducted in the greenhouse located on the roof 

of the Centre for Cold Regions and Water Science at Wilfrid Laurier University, Waterloo, ON. 
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Figure 4.2 Sowing arrangement of cover crop seeds  

Alfalfa (A) and chicory (C) seeds were sown in diametrically opposite positions. Here the plants 

are seen 18 days after planting. The star in the centre indicates where the soil samples were taken 

56 DAP, while the solid red lines indicate the sowing distance from the corners of the pots. 
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4.1 Harvesting 

Soil sampling and laboratory analyses were carried out in an aseptic manner by wearing 

latex gloves during sampling; the gloves and soil corer were sterilized with 70% ethanol before 

collecting the samples from each pot. Materials and utensils used during sampling and analyses 

(e.g., corer, sieves, incubation jars, flasks, and spatula) were washed with soap, rinsed in 10% 

sodium hypochlorite (bleach) solution, and then with deionized water before leaving them to air-

dry. At day 56 after planting, before harvesting the plants, two soil cores (L: 15 cm; W: 1.9 cm) 

were taken from the centre of each pot (Figure 4.2), placed into 50 mL pre-labelled Falcon™ 

conical tubes, and stored at 4 °C until analysis. Because the pots were small and the roots of each 

plant were entangled, the soil in the entire pot was designated the rhizosphere. Sufficient soil was 

collected to measure soil pH, microbial abundance, and microbial respiration. After soil sampling, 

plants were gently removed from each pot and care was taken to preserve the roots and root nodules. 

Uprooted plants were placed into their respective emptied pots, and the shoots were separated from 

the roots at the point where the two joined.  Nodules located on the roots of the legumes were 

detached, counted, and placed into pre-labeled envelopes. The roots were gently washed free of 

debris using water; in the case when more nodules became apparent, they were removed, counted, 

and added to the envelopes.  

 

4.1.1 Evaluating the efficiency of the legume-Rhizobium symbiosis 

To assess the use of SRC in combination with the N fixed in the legume-Rhizobium 

symbiosis as a strategy to support plant growth, the effect of soil amendments on the nodulation 

process was evaluated. The cost and gains of the symbiosis were assessed by calculating:  
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1. The plant return on nodule construction cost (i.e., host total dry weight (g) per g 

nodule dry weight).  

2. Specific nodulation (i.e., the number of nodules per g root dry weight).  

3. Specific nodule dry weight (i.e., nodule dry weight (g) per g root dry weight). This 

parameter  (Gulden and Vessey 1998) 

While the former parameter corresponds to the amount of C (from photosynthesis) invested 

into the symbiosis per nitrogen fixed, reflected in the host biomass  (Oono and Denison 2010), the 

latter two parameters take into consideration the plant growth in response to the presence of the 

mineral nitrogen available (Gulden and Vessey 1998). 

 

4.2 Measuring soil pH 

Soil pH was measured according to Watson and Brown (1998). The measurements were 

done potentiometrically using an electric pH meter (FiveEasy™ FE20, Mettler-Toledo AG, 

Switzerland) in a soil/deionized water slurry. Twenty grams of soil collected from each pot per 

treatment were weighed out into sample cups. Twenty mL of deionized water was then pipetted 

into each cup. The soil/water slurry was mixed by swirling vigorously for 5 seconds, then left to 

equilibrate at room temperature for 10 minutes, before measuring the pH of the soil samples.  

 

4.3 Quantifying relative microbial abundance 

Assessment of the relative abundance of the three microbial groups was carried out 

according to standard methods (EPA 1978) via a series of 10-fold dilution. The extent of the 

dilution is a factor that determines the number of colonies formed on each of the nutrient media. 

The process was carried out under aseptic conditions to avoid the introduction of foreign microbes. 
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Three microbial media were used to allow the growth of the microbial groups that were of interest. 

A modified nitrogen-free Yeast Mannitol Agar or YMA (Vincent 1970) (Appendix D) was used 

to isolate Rhizobium species selectively (i.e., those bacteria that symbiotically fix N2 with legumes) 

from the soil. Nutrient agar or NUTRA (Difco & BBL 2009) was employed for microorganisms 

that use organic carbon as a substrate and energy source, i.e., heterotrophic microbes. Finally, the 

National Botanical Research Institute Phosphate Media or NBRIP (Nautiyal 1999) (Appendix E) 

was used to select for bacteria that can solubilize a partially soluble phosphate source on solid 

media.  

 The isolation and enumeration of colony forming units (CFU) of symbiotic nitrogen-fixing, 

heterotrophic, and phosphate-solubilizing bacteria were conducted according to standard plate 

methods for aerobic bacteria (EPA 1978). To prepare the dilution series, culture tubes were filled 

with nine mL of water (diluent) and capped. These tubes, as well as micropipette tips, were 

autoclaved using the liquid 15 cycle (STERIS AMSCO® Lab 250 Steam Sterilizer) and allowed to 

cool. Since there were eight pots per treatment, a random number generator 

(https://www.random.org/) was used to produce a total of four samples per treatment. Each of the 

four generated samples was a composite from two random pots. From each of the ammonium 

nitrate-treated soil samples, a sub-sample of one gram was weighed out for use in the dilution 

series (Figure 4.3). A sterile working environment was maintained by working aseptically in a 

Labconco™ Purifier Class II Biosafety Cabinet. The one gram of soil was added to a culture tube 

containing nine mL of sterile water (10-1), and the content was mixed via agitation for 30 seconds 

using a vortex (VWR, LAB DANCER S41).  

  

https://www.random.org/
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Figure 4.3 Serial dilution and plating 

Flow diagram of the serial dilution and plating method used in quantifying the relative abundance 

of symbiotic nitrogen-fixers (YMA), heterotrophs (NUTRA), and phosphate-solubilizing (NBRIP) 

bacteria, where YMA is Yeast Mannitol Agar, NUTRA is Nutrient Agar, and NBRIP is the National 

Botanical Research Institute Phosphate media (n=8). There were three media types for each soil 

amendment and two replicates per media. Colony-forming units were counted five and ten days 

after incubation. 
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Because the Sunshine® mix contained sphagnum moss, which created a stopper in the tips of the 

micropipette used, a sterile five mL glass pipette was used to remove one mL from the 10-1 dilution 

tubes. The dilution series was continued by using a 1000 µL micropipette with a sterile tip to make 

three successive dilutions, the tubes were vortexed, and the micropipette tips changed between 

each dilution. A 100 µL micropipette was used to remove 0.1 mL of the sample from the 

 10-4 dilution and to plate it onto each of the three media plates. An L-shaped glass rod was ethanol- 

and flame-sterilized, then cooled for 10 seconds, before using it to spread the inoculum across the 

agar surface (Figure 4.3). Spread plating was carried out in duplicate according to standard 

methods (EPA 1978), and the plates were left to dry for 30 seconds before closing the lids and 

applying Parafilm®. The sealed plates were then inverted, placed in a dark box, and incubated at 

23 °C for ten days in an ENCONAIR™ growth chamber. The above procedure was repeated for 

the SRC- and fertilizer-amended soil samples. The relative abundance of microbes (log CFU/g 

soil) in the undiluted sample was enumerated by counting individual colonies on each of the media. 

Counting the CFU assumes that each colony is separate and is formed by a single microbial 

cell (EPA 1978). The counting range of CFU used in this study was 30-300 per standard plate 

count (Wollum II 1982). Therefore, colonies falling outside the lower and upper limits were 

excluded from the statistical analyses (Lee 2015). The total CFU on YMA, NUTRA, and NBRIP 

agar plates were counted five and ten days after incubation. The CFU obtained and the respective 

dilution factor was used to calculate the relative number of microorganisms in the original soil 

sample and was reported as log CFU per g soil (Lee 2015). 
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4.4 Measuring microbial biomass respiration 

A simple laboratory approach that takes advantage of the reaction that occurs when CO2 is 

converted to carbonate in the presence of excess hydroxonium ions (Figure 4.4) was used to assess 

microbial biomass respiration (Anderson 1982; Rowell 1995; ISO 2002; Haney et al. 2008). Soil 

samples taken at harvest were dried at 40 °C for three days and then ground in a 70% ethanol-

sterilized mortar and pestle (Haney et al. 2008).  

Twenty grams (± 0.01) of the soil was weighed out into pre-labelled, ethanol-sterilized air-

tight Magenta™ jars, and for the controls, silica sand was used as the substrate. Fifty mL of 

deionized water were added to the twenty grams of soil to adjust the soil to a water content of ~ 

20%, and the soil/water slurry was mixed well. A culture tube cap, serving as the CO2 absorption 

vial, was filled with ten mL of 1 M NaOH solution, and once it was securely placed in the rewetted 

soil, the lid of the jar was quickly closed. The jars were positioned in a dark box at room 

temperature (~20 °C in the laboratory) for four days. Following the incubation of the jars, the 

amount of CO2 released from microbial respiration was quantified via titration (Rowell 1995; 

Haney et al. 2008). An acid-base titration was done using 1 M HCl and the 1M NaOH in the vial 

and 1% phenolphthalein indicator (Sigma-Aldrich, Oakville, ON). Barium chloride (BaCl2; 1 M) 

was added to precipitate the resulting sodium carbonate out of solution (Rowell 1995). The 

addition of BaCl2 ensured that only the neutralization of NaOH by the HCl was occurring during 

titration. Complete neutralization was noted when a change of colour, from white to pink, occurred 

in the Erlenmeyer flasks. The standard rate of microbial respiration (RCO2), i.e., CO2 evolved per 

twenty grams of moist soil per second, was calculated and expressed as grams CO2 per grams 

moist soil per second (gCO2 g
-1 moist soil s-1) as per Rowell (1995). 
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Figure 4.4 A simple laboratory respirometer 

Each MagentaTM jar (n=4) per soil amendment contained 20 ± 0.1 g moist soil while the control 

jars (n=3) contained silica sand instead of soil. A vial with ten mL 1M NaOH solution was 

securely embedded into the substrate to absorb the CO2 released during the four days of 

incubation. 
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4.5 Statistical analyses 

Since there were two plants of the same cover crop species per pot (alfalfa-chicory and red 

clover-oilseed radish), an average was first calculated to have a single value per pot. The effects 

of soil amendments on the legume-Rhizobium efficiency were assessed by using the non-

parametric Kruskal-Wallis test. In the cases where the test indicated statistical significance results, 

a multiple comparisons (α = 0.05) was done using the Wilcoxon rank sum test. A one-way analysis 

of variance (ANOVA) was used to assess the effects of the soil amendment on soil pH, microbial 

abundance and respiration. The assumptions of the ANOVA model were evaluated by using the 

Levene’s test to assess the homogeneity of the variance and the Shapiro-Wilks test to assess 

normality. In cases where the assumptions of the ANOVA were violated, the non-parametric 

Kruskal-Wallis test was used. A post-hoc multiple range Tukey HSD test or the Wilcoxon rank 

sum test (α< 0.05) was performed whenever a soil amendment was found to be significant. The 

analyses were done using R software suite (RStudio version 1.1.442-© 2009-2018 RStudio, Inc.; 

https://cran.rstudio.com/) with packages ‘emmeans’ (Type II Satterthwaite approximation), ‘car’, 

‘rcompanion’, and ‘multcomp’. 

 

  

https://cran.rstudio.com/
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Chapter 5: Results 

5.1 The effect of soil amendment on microorganisms 

5.1.1 The rhizosphere of alfalfa and chicory 

On average, the soil in which alfalfa and chicory plants was sown was slightly acidic (6.15 

± 0.04) before sowing and before the addition of the soil amendments. However, at harvest, the 

pH of the soils was raised (Appendix F). There was a significant effect of soil amendment on pH 

(F = 87.618, df =2, p = 3.0E-15). The pH of SRC-treated soil was significantly higher than the pH 

of ammonium nitrate- and fertilizer-treated soils, and the pH of soils amended with fertilizer was 

significantly lower than those treated with ammonium nitrate (Figure 5.1). 

There was no significant effect of soil amendments on the relative abundance (log CFU/g 

soil) of symbiotic nitrogen-fixing, heterotrophic, and phosphate-solubilizing bacteria in the 

rhizosphere of alfalfa and chicory plants (Table 5.1). Although soil amendment did not 

significantly affect microbial abundance, SRC-treated soils tended to have more symbiotic 

nitrogen-fixing and heterotrophic bacteria than soils treated with ammonium nitrate and fertilizer. 

However, fertilizer-treated soils tended to have more phosphate-solubilizing bacteria than SRC-

and ammonium nitrate-treated soils (Figure 5.2). Soil amendment significantly affected the amount 

of CO2 released during microbial respiration (F = 6.6763, df =2, p = 0.003). Microbial respiration 

was significantly higher in soils amended with fertilizer than in those amended with SRC while 

the respiration rate in ammonium nitrate-treated soil was statistically similar to that measured in 

fertilizer- and SRC-treated soils (Figure 5.3). 
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Figure 5.1 Soil pH in the rhizosphere of intercropped alfalfa and chicory plants 

Boxplots of the effect of soil amendments: Nitrogen as 2.5 mM ammonium nitrate, SRC in a 1:10 

SRC:soil ratio, and fertilizer as 20-20-20 NPK commercial fertilizer, on soil pH 56 days after 

planting (n =16). Different letters indicate statistical significance (1-way ANOVA + Tukey HSD 

post hoc test at p ≤ 0.05). The small circle above the fertilizer boxplot whiskers represents an 

outlier, i.e., any point that is 1.5x greater or lesser than the interquartile range for that data group.  
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Table 5.1 Analysis of Variance table for the microbial abundance in the rhizosphere of 

intercropped alfalfa and chicory plants 

. 

Symbiotic nitrogen-fixers 

Level df F-value p-value 

Treatment 2 0.4342 0.650 

Heterotrophs 

Treatment 2 2.4059 0.110 

Phosphate-solubilizers 

Treatment 2 2.4534 0.110 

 

The relative abundance of heterotrophs, symbiotic nitrogen-fixers, and phosphate-solubilizers 

in the rhizosphere of intercropped alfalfa and chicory plants  
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Figure 5.2 Microbial abundance in the rhizosphere of intercropped alfalfa and chicory plants 

Boxplots of the effect of soil amendments: Nitrogen as 2.5 mM ammonium nitrate, SRC in a 

1:10 SRC:soil ratio, and fertilizer as 20-20-20 NPK commercial fertilizer, on the relative 

abundance (log CFU/g soil) of A: symbiotic nitrogen-fixing, B: heterotrophic, and C: 

phosphate-solubilizing bacteria (n = 4) 56 days after planting. The 1-way ANOVA indicated no 

significant differences between soil amendments. The small circle above or below the boxplot 

whiskers represents an outlier, i.e., any point that is 1.5x greater or lesser than the interquartile 

range for that data group. 
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Figure 5.3 Microbial respiration in the rhizosphere of intercropped alfalfa and chicory plants 

Boxplots of the effect of soil amendments: Nitrogen as 2.5 mM ammonium nitrate, SRC in a 

1:10 SRC:soil ratio, and fertilizer as 20-20-20 NPK commercial fertilizer, on the standard rate 

of microbial respiration (gCO2*g-1 soil*s-1) 56 days after planting (n = 4). Different letters 

indicate statistical significance (1-way ANOVA + Tukey HSD post hoc test at p ≤ 0.05). The 

small circle above the boxplot whiskers represents an outlier, i.e., any point that is 1.5x greater 

or lesser than the interquartile range for that data group. 
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5.1.2 The rhizosphere of red clover and oilseed radish 

On average, the soil in which red clover and oilseed plants were sown was slightly acidic 

(6.08 ± 0.16) before sowing and the addition of the soil amendments. However, like for the 

rhizosphere of alfalfa and chicory, the pH of the soil was raised at harvest (Appendix F). At harvest, 

soil amendment significantly affected soil pH (F = 77.648, df =2, p = 2.6E-15); a pattern similar to 

that of alfalfa and chicory soil was observed in red clover and oilseed radish soil. The pH of SRC-

treated soils was significantly higher than that of ammonium nitrate- and fertilizer-treated soils, 

and the soil amended with ammonium nitrate had a significantly higher pH than that of the 

fertilizer-treated soil (Figure 5.4). 

There was no significant effect of soil amendments on the relative abundance (log CFU/g 

soil) of symbiotic nitrogen-fixing, heterotrophic, and phosphate-solubilizing bacteria in the 

rhizosphere of red clover and oilseed radish plants (Table 5.2). Although soil amendments did not 

significantly affect the microbial abundance, SRC-treated soils tended to have more symbiotic 

nitrogen-fixing, heterotrophic, and phosphate-solubilizing bacteria than soils treated with 

ammonium nitrate and fertilizer (Figure 5.5). Likewise, soil amendment did not significantly affect 

the amount of CO2 released during microbial respiration (X2 = 0.74662, df =2, p = 0.689). 

Nevertheless, the amount of CO2 released in soils treated with ammonium nitrate and fertilizer 

tended to be slightly higher than that of soil treated with SRC (Figure 5.6). 
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Figure 5.4  Soil pH in the rhizosphere of intercropped red clover and oilseed radish plants 

Boxplots of the effect of soil amendments: Nitrogen as 2.5 mM ammonium nitrate, SRC in a 

1:10 SRC:soil ratio, and fertilizer as 20-20-20 NPK commercial fertilizer, on soil pH 56 days 

after planting (n =16). Different letters indicate statistical significance (1-way ANOVA + Tukey 

HSD post hoc test at p ≤ 0.05). The small circle above or below the boxplot whiskers represents 

an outlier, i.e., any point that is 1.5x greater or lesser than the interquartile range for that data 

group. 
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Table 5.2 Analysis of Variance table for the microbial abundance in the rhizosphere of 

intercropped red clover and oilseed radish plants   

 

Symbiotic nitrogen-fixers 

Levels df F-value p-value 

Treatment 2 3.6585 0.043 

Heterotrophs 

Treatment 2 2.6312 0.090 

Phosphate-solubilizers 

Treatment 2 0.2508 0.781 

  

The relative abundance of heterotrophs, symbiotic nitrogen-fixers, and phosphate-solubilizers 

in the rhizosphere of intercropped red clover and oilseed radish plants. 
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Figure 5.5 Microbial abundance in the rhizosphere of intercropped red clover and oilseed 

radish plants 

Boxplots of the effect of soil amendments: Nitrogen as 2.5 mM ammonium nitrate, SRC in a 

1:10 SRC:soil ratio, and fertilizer as 20-20-20 NPK commercial fertilizer, on the relative 

abundance (log CFU/g soil) of A: symbiotic nitrogen-fixing, B: heterotrophic, and C: 

phosphate-solubilizing bacteria (n = 4). The 1-way ANOVA indicated no significant differences 

between soil amendments. The small circle above or below the boxplot whiskers represents an 

outlier, i.e., any point that is 1.5x greater or lesser than the interquartile range for that data group. 
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Figure 5.6  Microbial respiration in the rhizosphere of intercropped red clover and oilseed radish 

plants 

Boxplots of the effect of soil amendments: Nitrogen as 2.5 mM ammonium nitrate, SRC in a 1:10 

SRC:soil ratio, and fertilizer as 20-20-20 NPK commercial fertilizer, on the standard rate of 

microbial respiration (gCO2*g-1 soil*s-1) 56 days after planting (n = 4). The 1-way ANOVA 

indicated no significant differences. Indicated no significant differences between soil amendments.  
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5.2 Plant growth 

 Alfalfa and chicory plants grown under fertilization exhibited little to no signs of nutrient 

deficiency, such as chlorosis of the leaves and stunted growth. However, some ammonium nitrate- 

and SRC-grown plants were stunted, and their leaves were pale-green; these symptoms are often 

indicative of deficiencies in P and N, respectively (Figure 5.7A). Regardless of soil amendments, 

the growth of red clover plants appeared to be inhibited; their stunted growth may be attributed to 

the shading caused by their companion crop, the oilseed radish (Figure 5.7B). Also, red clover 

plants grown in ammonium nitrate-amended soil were characterized by leaves that were pale and 

with scorched margins, indicative of N and P deficiencies, respectively. As for red clover plants 

grown under fertilizer, they had pale-green leaves, but those plants grown in SRC-amended soils 

did not display any signs of nutrient deficiency. In fact, the leaves of SRC-grown red clover plants 

were much greener than those of plants grown in the other amendments. The aboveground biomass 

of the oilseed radish plants was so large, especially under NPK fertilization, that the red clover 

plants were obscured from view (Figure 5.7B). Regardless of soil amendment, oilseed radish plants 

displayed signs of N deficiency; however, the yellowing of the lower leaves was more pronounced 

in SRC-grown plants. Also, SRC-grown plants lost more of their leaves than plants grown in 

treatments lacking SRC (Figure 5.7B). The biomass of the cover crops used in this study is found 

in Appendix G. 
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Figure 5.7 Cover crops at harvest 

These photographs illustrate the growth of intercropped plants. A: alfalfa and chicory and B: red 

clover and oilseed radish.  “A” represents alfalfa, “C” chicory, “R” red clover, and “O” oilseed 

radish plants. The plants were grown in soils amended with 2.5 mM ammonium nitrate (referred 

to as Nitrogen), 1:10 SRC:soil ratio (referred to as SRC), or 20-20-20 NPK fertilizer (referred 

to as Fertiliser) for 56 days (n = 16). The circle below the letter is to help with identifying the 

cover crops. 
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5.3 The effects of soil amendments on the efficiency of the legume-Rhizobium 

symbiosis 

At harvest, I observed that the nodules formed on SRC-grown alfalfa and red clover plants 

were pink compared to those on ammonium nitrate- and fertilizer-grown plants that were white. 

Additionally, SRC-grown alfalfa and red clover plants produced six- and eight-times more nodules 

than plants grown without SRC amendment, respectively. The means ± standard deviations of 

nodules borne by SRC-grown alfalfa and red clover plants were significantly higher with values 

of 19 ± 11 and 26 ± 13, respectively, than those of plants grown with ammonium nitrate (alfalfa: 

1 ± 4 and red clover: 1 ± 2), and fertilizer (alfalfa: 4 ± 6 and red clover: 3 ± 0.4).  

Plant return on nodule construction cost, specific nodulation, and specific nodule dry 

weight were used to assess the effects of soil amendments on the symbiotic efficiency between 

alfalfa plants and the colonizing Rhizobium. For the alfalfa plants, the Kruskal-Wallis test showed 

that soil amendments significantly affected the plant return on nodule construction cost (X2 = 

14.044, df = 2, p = 8.9E-04), specific nodulation (X2 = 21.815, df = 2, p = 1.8E-05), and the specific 

nodule dry weight (X2 = 20.597, df = 2, p =3.4E-05). The plant return on nodule construction cost 

was significantly less for ammonium nitrate-grown alfalfa plants than for SRC-grown plants. The 

specific nodulation and specific nodule dry weight values of SRC-grown alfalfa plants were 

significantly higher than those of plants grown with the other two amendments (Table 5.3).  

For the red clover plants, the Kruskal-Wallis test showed that there was no significant effect 

of soil amendment on the plant return on nodule construction cost (X2 = 5.0844, df = 2, p = 0.08); 

however, soil amendments significantly affected the specific nodulation (X2 = 32.703, df = 2, p = 

7.9E-08) and the specific nodule dry weight (X2 = 32.705, df = 2, p =7.9E-08) of red clover plants. 
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SRC amendment resulted in significantly higher values for specific nodulation and specific nodule 

dry weight than those of ammonium nitrate and fertilizer amendments (Table 5.3). Overall, the 

SRC amendment enhanced nodulation efficiency for both legumes; however, the effectiveness of 

SRC was better for the red clover than for the alfalfa plants. 
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Table 5.3 Nodulation parameters reflecting the legume-Rhizobium efficiency  

 
 n = 16 Nitrogen SRC Fertilizer 

  
Plant return on nodule 

construction cost 
0.01 ± 0.03a 0.05 ± 0.05b 0.06 ± 0.11a 

Alfalfa Specific nodulation 30 ± 113a 213 ± 167b 34 ± 58a 

  
Specific nodule dry 

weight 
0.00 ± 0.01a 0.05 ± 0.04b 0.02 ± 0.05a 

  
Plant return on nodule 

construction cost 
0.12 ± 0.13a 0.20 ± 0.20a 0.14 ± 0.16a 

Red clover Specific nodulation 24 ± 39a 458 ± 209b 56 ± 83a 

  
Specific nodule dry 

weight 
0.02 ± 0.04a 0.32 ± 0.15b 0.04 ± 0.06a 

 

 

Values are mean ± standard deviation, and different letters indicate statistical significance 

(Kruskal-Wallis and the Wilcoxon Rank sum post hoc test, α = 0.05). 

NB: Lower values for plant return on nodule construction cost (providing that plant growth is 

not reduced), and higher values for specific nodulation and specific nodule dry indicate an 

efficient symbiosis. 
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Chapter 6: Discussion 

The general findings of this greenhouse study (Table 6.1) confirm the hypotheses that were 

tested (Chapter 3). Regardless of the cover crop combination grown, the SRC amendment 

significantly increased soil pH, and tended to increase the relative abundance of symbiotic 

nitrogen-fixing and heterotrophic bacteria; as well, it enhanced the efficiency of the legume-

Rhizobium symbiosis. In contrast, the effect of the SRC amendment on the abundance of 

phosphate-solubilizing bacteria depended on the rhizosphere from which the microbes were 

cultured. The SRC amendment tended to increase their abundance in the rhizosphere of red clover 

and oilseed radish; however, in the rhizosphere of alfalfa and chicory plants, NPK fertilizer 

stimulated their abundance. Furthermore, NPK fertilizer stimulated microbial activity (measured 

as microbial biomass respiration) in the rhizosphere of both cover crop combinations and 

supported the growth of alfalfa, chicory, and oilseed radish plants. In contrast, the SRC amendment 

supported the growth of red clover plants. 

There were four primary findings of this greenhouse study, and I will discuss them in the 

order found below:  

• SRC amendment alkalinized soil pH 

• Soil amendment is a stronger driver of heterotrophs, symbiotic nitrogen-fixers, and 

microbial respiration than cover crop combination  

• The influence of soil amendment on phosphate-solubilizing bacteria depends on the cover 

crop combination 

• Nodulation appeared to be promoted by SRC in comparison with the other two 

amendments 
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Table 6.1 Summary of findings 

 

Parameters AC RO 

 pH SRC increases pH SRC increases pH 

Heterotrophic bacteria 
SRC supports greater 

abundance 

SRC supports greater 

abundance 

Symbiotic nitrogen-fixing 

bacteria 

SRC supports greater 

abundance 

SRC supports greater 

abundance 

Phosphate-solubilizing 

bacteria 

Fertilizer supports greater 

abundance 

SRC supports greater 

abundance 

Microbial respiration 
SRC results in the lowest 

rate 

SRC results in the highest 

rate 

Plant return on nodule 

construction cost 

Alfalfa: SRC enhances 

investment 

Red clover: SRC enhances 

investment 

Specific nodulation and 

specific nodule dry 

weight 

Alfalfa: SRC enhances 

symbiotic gains 

Red clover: SRC enhances 

symbiotic gains 

Cover crop growth Fertilizer supports growth 

Red clover:  

SRC supports growth                           

Oilseed radish: 

 Fertilizer supports growth 

 

NB: AC represents intercropped alfalfa and chicory, while RO represents intercropped red clover 

and oilseed radish. 

Cover crop growth: sum of shoot and root dry weights (g) and all parameters were subjected to a 

1-way ANOVA or the non-parametric Kruskal-Wallis test.  
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SRC had a liming effect on soil pH 

 
The pH of the potting soil in which the intercropped cover crops were grown was slightly 

acidic before planting and treatment, and at harvest, all soils had a higher pH; thus the three soil 

amendments raised the soil pH (Appendix F). In the case of the alfalfa and chicory soil, the addition 

of ammonium nitrate, SRC, and fertilizer raised the pH by 0.56, 1.16, and 0.31 units, respectively. 

The pH of soil in which red clover and oilseed radish plants were grown was increased similarly 

by 0.91, 1.15, and 0.53 units, respectively. The alkalinizing effect of SRC on soil pH was expected 

because of the CaCO3 content of the agromineral. SRC is 65% calcite which acts as a liming agent, 

and CaCO3-bearing compounds are widely used to ameliorate acidic agricultural soils (van 

Straaten 2006; Goulding 2016). The  effect of SRC on soil pH confirms my hypothesis as well as 

the findings of Jones (2016) who reported that even the additions of small amounts of SRC  (1:20 

SRC:soil ratio) resulted in significant increases in soil pH. NH4
+-based fertilizers, such as the 2.5 

mM ammonium nitrate and 20-20-20 NPK fertilizer used in this study, are known to have 

acidifying effects on soil (Bolan et al. 1991). However, the acidifying effect of NH4
+-based 

fertilizers was not observed in this study since supplementing the soils with ammonium nitrate and 

NPK fertilizer raised the soil pH by 0.74 and 0.42, respectively. Soil acidification often results 

from the bacteria-mediated process of nitrification when NH4
+-based fertilizers are oxidized to 

nitrate via nitrite releasing H+ (Geisseler and Scow 2014). Since soil acidification was not observed 

at harvest, the slight increase in the pH of ammonium nitrate- and NPK fertilizer-treated soils may 

be attributed to the hardness of the water in the greenhouse, weathering of dolomite particles in 

the Sunshine® mix, and/or the absence of nitrifying bacteria in the potting soil. 
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SRC amendment stimulates the microbial abundance of heterotrophic and 

symbiotic nitrogen-fixing bacteria 

 

Soil pH is a key environmental factor that influences soil microorganisms (Lauber et al. 

2009; Rousk et al. 2010) via its influence on plant community composition, and nutrient solubility 

and availability (Fernández-Calviño and Bååth 2010). Higher bacterial and fungal diversities are 

often observed at near-neutral and acidic soil pHs, respectively (Lauber et al. 2009; Rousk et al. 

2010; Geisseler and Scow 2014). In this study, although the direct effects of pH on microbial 

community composition were not evaluated, it was found that supplementing soils with SRC 

resulted in two things; firstly, it raised soil pH to near neutral levels and secondly, SRC-amended 

soil had higher relative abundances of heterotrophic and symbiotic N2-fixing bacteria. This finding 

may suggest that the higher abundance of these two bacterial groups in SRC-treated soil is pH-

related. This inference is plausible since bacterial species are known to have a narrow pH range 

for optimal growth, and any deviations outside this range can immediately result in reductions in 

bacterial growth (Fernández-Calviño and Bååth 2010; Rousk et al. 2010). Lauber et al. (2009) 

reported a proportional increase in the abundance of members of the Alphaproteobacteria class 

with increases in soil pH. The genus Rhizobium belongs to this bacterial class, and since rhizobia 

grow optimally in a pH range of 6.5 – 7.5 (Lei et al. 2011), it is possible that in my study the 

positive effects of SRC on soil pH favoured the growth of these neutrophilic bacteria. Kennedy et 

al. (2004) found that the addition of lime to the soil not only raises the pH but also increases 

microbial activity and biomass. Through raising the pH of the soil, lime may act as a selective 

agent on the soil bacterial community, leading to an increase in biomass and dominance of the 

neutrophilic bacterial species (Kennedy et al. 2004). 
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Furthermore, Fernández-Calviño and Bååth (2010) proposed that a change in soil pH (e.g., 

due to liming) outside the optimal range of bacterial growth can decrease the growth of the native 

bacterial community, making way for an increase in the growth of bacterial species that are better 

adapted to the new soil pH. This account may explain the positive effect of SRC on the relative 

abundance of the symbiotic nitrogen-fixing and heterotrophic bacteria. However, this explanation 

for pH-related microbial community shifts could not be confirmed in this study because of the 

methods used to culture the microbial groups. Several studies evaluating the influence on pH on 

microbial community composition (Lauber et al. 2009; Rousk et al. 2009; Rousk et al. 2010; 

Hartman and Richardson 2013) used methods that offer higher taxonomic resolutions, such as 

metagenomics, pyrosequencing, ribotyping, and phospholipid-derived fatty acid analyses, than the 

culture-based methods used in this greenhouse study. 

 

Cover crops are drivers of the abundance of phosphate-solubilizing bacteria  

Notwithstanding the role of soil pH in shaping microbial community, other factors such as 

C inputs (Grayston et al. 1998; Paterson et al. 2007; Hartman and Richardson 2013; Strecker et al. 

2015) and soil nutrient status (Suzuki et al. 2009; Fierer et al. 2012; Ramirez et al. 2012; Li et al. 

2014) have been shown to influence the composition of microbial communities. Plants are known 

to shape the soil microorganism community structure via their influence on soil chemistry and 

organic matter inputs (Berg and Smalla 2009; Bakker et al. 2014). However, there have been 

contrasting reports of the impact of plant community on shaping the soil microbial community. 

Some have reported that plant species effects are not significant drivers of soil microbial 

community structure (Kennedy et al. 2004; Ladygina and Hedlund 2010; Bakker et al. 2014), while 

others have reported strong plant effects on bacterial communities (Grayston et al. 1998; Zak et al. 
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2003; Steinauer et al. 2016). Paterson et al. (2007) argued that the addition of a root exudate 

solution to an organic soil increases the soil microbial biomass and supports the dominance of 

bacterial populations in the rhizosphere of ryegrass. This observed increase in soil microbial 

biomass corresponds with the greater utilization of rhizodeposition of the perennial ryegrass. These 

different plant species effects on microbial community composition and structure may indicate 

that plant species have a collective, non-specific influence on microbial communities in the soils 

tested (Paterson et al. 2007). These authors suggested that the contrasting findings can be explained 

by differences in the type of C released into the soil, i.e., labile sources of C common to plants, for 

example, organic acids and sugars, versus more recalcitrant organic matter (Paterson et al. 2007). 

Other authors proposed that edaphic factors such as soil organic matter, nitrogen, carbon, and 

potassium content can indirectly influence the structure of the microbial community, such as that 

of Streptomyces (Bakker et al. 2014). 

Phosphate-solubilization is a key process of increasing the bioavailability of useable P 

(Richardson et al. 2009; Spohn 2016). This process occurs via acidification, complexation and 

chelation of bound inorganic P sources (Richardson et al. 2009a; Spohn 2016). In this study, 

fertilizer-treated soil in which alfalfa and chicory plants were grown had higher abundance of 

phosphate-solubilizing bacteria than SRC-treated soil. The elemental stoichiometry of soil 

microorganisms is constrained, and the microbial biomass maintains this homeostasis by 

modifying their microbial rates to acquire the limiting element (Cleveland and Liptzin 2007; 

Griffiths et al. 2012; Spohn 2016). It is possible that the phosphate-solubilizing bacteria in the 

rhizosphere of alfalfa and chicory plants were P-limited; as such, in response to a readily available 

P source, their activities were increased. It is also possible that these microorganisms shifted their 
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abundance and became acclimatized to high nutrient conditions under NPK fertilization 

(Kaminsky et al. 2018). 

Conversely, SRC-treated red clover and oilseed radish soil had a higher abundance of 

phosphate-solubilizing bacteria. In some plants, phosphate deficiency is known to stimulate the 

production and release of phenolic compounds such as flavonoids and caffeic acid to solubilize 

inorganic sources of soil phosphate (Chishaki and Horiguchi 1997; Hartmann et al. 2009). For 

example, red clover plants in response to P-limitation are known to release strigolactones 

(Yoneyama et al. 2007), flavonoids, and carboxylates (Cesco et al. 2010) to aid in P acquisition. 

As such, the higher abundance of phosphate-solubilizing bacteria in the soils of SRC-grown red 

clover and oilseed radish plants could be explained by the following: 

i.  Since these plants did not receive any additional P than that in the potting soil, and 

because SRC contains a relatively insoluble P source. It is likely that the red clover and 

oilseed radish plants, as well as the microbes present, might have been P-limited. In 

response to this P limitation, the cover crops may have recruited microorganisms such as 

phosphate-solubilizing bacteria that can enhance the weathering of SRC via the release 

of exudates. 

ii. Alternatively, the microbes themselves might have produced organic acids or 

phosphatases to acidify the soil or cleave P bound to organic matter to supplement their 

P nutrition.  

Indeed, Yoneyama et al. (2007) reported that red clover plants release more orobanchol as a signal 

for arbuscular mycorrhizal fungi when grown under low P availability. It is possible that a similar 

strategy, such as the exudation of organic acids, phenolic compounds, or sugars, is utilized: red 



 

70 

 

clover exudates could act as signals for specific microorganisms involved in phosphate-

solubilization.  

Furthermore, the amount of CO2 released by the microbes was the lowest in SRC-grown 

alfalfa and chicory and red clover and oilseed radish plants. Microbial respiration is one measure 

of the metabolic activity of the microbial community (Haney et al. 2008) and provides insight into 

the C and N mineralizing potentials of soil microorganisms (Borken et al. 2002). The C and N 

mineralizing activities of the soil microbial community allow the predictions of changes in the 

reserves of SOM (Moinet et al. 2016), thus having implications for terrestrial C cycling (Spohn 

2015). Also, it has been shown that microbial respiration (Lanza et al. 2016; Moinet et al. 2016; 

Zwetsloot et al. 2018), as well as phosphate solubilization (Spohn 2016), are closely related to 

microbial access to C.  

Plant productivity in agricultural systems is often limited by low availability of useable N 

and P, and nutrient additions via synthetic fertilizers usually result in increases in net primary plant 

productivity; this nutrient supplementation, however, may have negative consequences on the 

microbial community (Wardle 1992; Treseder 2008; Strecker et al. 2015). The positive effects of 

fertilization on plant growth influence the amount of C compounds released into the soil (Griffiths 

et al. 2012; Strecker et al. 2015) and thus microbial activity (Wardle 1992). Although soil 

microorganisms, especially bacteria, are often C- and N-limited, their activities are not always 

restricted by the same nutrients that those limiting plant growth (Cleveland and Liptzin 2007; 

Griffiths et al. 2012). Because soil microbes may be limited by C, N, and P, they may respond to 

nutrient inputs differently from plants. In this preliminary study, growth of alfalfa and chicory 

plants were higher under NPK fertilization than that of plants under ammonium nitrate- and SRC- 

amendments (Appendix G). Furthermore, NPK fertilizer stimulated the abundance of phosphate-
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solubilizers as well as microbial respiration in the rhizosphere of alfalfa and chicory plants. 

Geisseler and Scow (2014) in a recent meta-analysis found that under long-term fertilization, the 

microbial biomass C not only increases, but results in shifts in the microbial community 

composition, and this is most likely related to changes in the C and N availability as a result of 

fertilization.  

Ramirez et al. (2012) and Fierer et al. (2012) using pyrosequencing techniques reported 

that fertilization modified the microbial community composition by selecting for specific 

taxonomic groups. For example, supplementing soils with soluble nutrients resulted in a shift from 

microbes that often thrive in low-nutrient environments, such as the slow-growing oligotrophs, to 

those often found in high-nutrient conditions, such as the fast-growing copiotrophs. Is this shift 

from oligotrophs to copiotrophs present in my study, hence explaining the increase in the 

abundance of phosphate-solubilizers in the rhizosphere of alfalfa and chicory plants under NPK 

fertilization? Other studies have reported that fertilization results in shifts in the community 

composition (Kennedy et al. 2004; Nakhro and Dkhar 2010; Li et al. 2015b; Shen et al. 2016). For 

example, Paterson et al. (2007) and Li et al. (2015b) reported reductions in the abundance of gram-

negative bacteria in soils under fertilization. Others reported that there are no significant effects of 

fertilization on microbial biomass and that the observed inhibitory effects were more pronounced 

in long-term studies (Treseder 2008).  

Although culture-based techniques like those used in this study are fast and cost-effective, 

and provide useful information about microbial physiology, habitat, and potential functions (Hill 

et al. 2000; He et al. 2008), they are limited in their ability to describe a specific microbial 

ecosystem (Hill et al. 2000). Culture-based techniques tend to be limited in unravelling functional 

roles of microbial groups because less than 0.1% of soil microorganisms are estimated to be 
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cultured with these methods (Hill et al. 2000). Nevertheless, they are ideal for preliminary studies, 

and a combination of culture-based and molecular techniques should be used in follow-up studies 

to provide information about microbial community shifts in response to management practices. 

Furthermore, microorganisms do not exist in isolation, as such their roles in N mineralization and 

P solubilization, are often carried out by several microbial groups rather than being confined to a 

single phylum (Hill et al. 2000; Bakker et al. 2014). 

 

SRC enhanced legume-Rhizobium efficiency  

The use of fast-release fertilizers is a key management strategy in many farming systems 

to maintain crop productivity (He et al. 2008; Hartman and Richardson 2013). The growth of 

alfalfa, chicory, and oilseed radish was supported by NPK fertilizer, while the growth of red clover 

plants was enhanced by SRC amendment (Appendix G). The positive effects of SRC amendment 

on red clover growth may be attributed to the near-neutral pH of these soils and the absence of 

external N sources.  

Low soil pH has been shown to reduce the survival of rhizobial strains and the efficiency 

of the resulting symbiosis (Morón et al. 2005); the severity of the inhibition depends on the legume 

species, cultivar, as well as the rhizobial strain (Tang and Thomson 1996; Ferguson et al. 2013). 

Furthermore, several studies have demonstrated the inhibitory effects of low pH on the growth and 

persistence of several rhizobial species, such as the microsymbionts of alfalfa (Rice et al. 1977; 

Draghi et al. 2016) and clover (Rice et al. 1977; Zahran 1999). In my study, soil amendment had 

a similar effect on pH, specific nodulation, and specific nodule dry weight, i.e., SRC amendment 

raised soil pH, specific nodulation, and specific nodule dry weight, while ammonium nitrate and 

NPK fertilizer lowered these three parameters. The direct effects of low pH on rhizobia were not 
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assessed in this study. However, the legume-Rhizobium symbiosis was enhanced in soils amended 

with SRC, the same amendment that raised soil pH to near-neutral levels. At harvest, the number 

of nodules formed on alfalfa and red clover roots grown in SRC-treated soils was significantly 

higher than that of nodules formed on plants grown in soils lacking SRC, confirming the 

preliminary findings of Jones (2016).  

These results may suggest a pH-related effect on rhizobia, as stated by  Draghi et al. (2016) 

who observed a reduction in the growth of Sinorhizobium meliloti at pHs between 6.0 and 6.1 and 

enhanced growth at pH 7.0. Soil pH of 6.0 and 6.1 is close to the threshold pH at which S. meliloti 

and N2-fixation are impaired in alfalfa (Rice et al. 1977; Kaminsky et al. 2018). However, the 

positive effect of SRC amendment on specific nodulation and specific nodule dry weight could be 

a result of the presence of high Ca levels and the absence of nitrogenous compounds. The 

experimental design used in this study did not control for pH- or N- or their combined effects on 

nodulation and nitrogen fixation. Many reports have indicated that the addition of lime or CaCO3 

pellets not only raise soil pH but also enhances nodulation and N2-fixation (Buerkert et al. 1990; 

Brauer et al. 2002; Grewal Singh and Williams 2003; Ferguson et al. 2013). Therefore, further 

studies comparing the effects of agricultural lime and SRC on nodulation should be done to 

distinguish the effects of pH to that of the SRC amendment. Experiments should also be performed 

to evaluate the combined effect of lime, SRC, and external nitrogen inputs on nodulation. 

The presence of mineral N, e.g., NH4
+, NO3

-, and urea, have been shown to have complex, 

and diverse, often adverse, effects on nodule formation, growth, and function (Nelson and Edie 

1991; Gan et al. 2004; Mortimer et al. 2012; Xia et al. 2017). However, variations exist in the 

sensitivity of the legume-Rhizobium symbiosis to N additions (Nelson and Edie 1991) and several 

factors are known to impact nodulation. Such factors include legume genotype (Gan et al. 2004), 
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rhizobial strain (Nelson 1987; Mortimer et al. 2012), pH and temperature in the rhizosphere 

(Ferguson et al. 2013), and the concentration and form of N added (Nelson 1987; Gan et al. 2004; 

Bollman and Vessey 2006). The findings of this study may indicate that the SRC amendment 

promoted nodulation because of 1) the high Ca levels, 2) the absence of an external N. Furthermore, 

P is required for nodulation (Kaminsky et al. 2018); therefore, SRC represented a source of P that 

was not inhibitory to the nodulation process.  

Since legumes are agriculturally-important crop plants that rely on N from symbiotic N2-

fixation for growth and development (Mortimer et al. 2012; Ferguson et al. 2013), the legume-

Rhizobium symbiosis represents a sustainable approach to supply useable plant N in agricultural 

systems. The interaction is usually beneficial to both partners, but the legume places restrictions 

on the partnership (Oldroyd et al. 2011) for several reasons. One such reason may be related to the 

C cost of the N2-fixation process, i.e., up to 25% of the legume’s total C fixed may be required by 

the rhizobial strain for N2-fixation (Oono and Denison 2010). The legume host may also be C-

limited leading to the diversion of photosynthetically-derived C from the nodules (Nelson and Edie 

1991; Oono and Denison 2010). As such, it is better to measure both the gains and the cost of the 

association to get an accurate understanding of the symbiotic efficiency (Oono and Denison 2010) 

and inform our use of this approach in the field. 

The findings of this study indicate that in general SRC amendment enhanced the gains 

garnered from the symbiosis by alfalfa and red clover plants. In addition to promoting whole plant 

nodulation, SRC amendment promoted specific nodulation and specific nodule dry weight, 

indicating an efficient symbiosis. Specific nodulation provides a better understanding of factors 

regulating the nodulation process, especially in its early stages, for instance, nodule initiation and 

development (Gulden and Vessey 1998). The same authors used specific nodule dry weight as an 
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indicator of symbiotic efficiency, they hypothesized that since legumes rely on the legume-

Rhizobium symbiosis as their sole N source, the plant will modify the extent of root growth and 

nodule formation to achieve a balanced ratio between the mass of the root system and the mass of 

the nodules. As such, a reduction in specific nodulation and specific nodule dry weight in the 

presence of external mineral N is indicative of a suppressive effect of mineral N on nodule 

initiation (Gulden and Vessey 1998; Gan et al. 2004).  

Although SRC amendment enhanced the respective legume-Rhizobium efficiency in terms 

of gains, the plant return on nodule construction cost varied between alfalfa and S. meliloti and red 

clover and R. trifolii. The plant return on nodule construction assumes that an increased investment 

into the symbiosis (measured by nodule dry weight) should correspond to a proportional increase 

in nitrogen fixation (reflected in the total host dry weight) (Oono and Denison 2010). In this study, 

the plant return on nodule construction cost was lower in SRC-grown alfalfa than in fertilizer-

grown plants, while the cost was higher for SRC-grown red clover plants than for fertilizer-grown 

plants. Although fertilizer-grown alfalfa plants had a higher plant return on nodule construction 

value than SRC-grown plants, this investment of fixed C in nodule construction was not at the 

expense of plant growth because these plants had significantly higher growth than SRC-grown 

alfalfa plants (Appendix G). The suppressive effect of mineral N on nodulation would make an 

investment in the symbiosis redundant for ammonium nitrate- and fertilizer-grown plants. The 

higher cost to produce nodules in SRC-grown plants did not significantly reduce plant growth 

compared to ammonium nitrate-grown plants. However, red clover plants grown in soils lacking 

the SRC amendment had lower plant return on nodule construction cost than plants grown in SRC-

amended soils. A higher plant return on nodule construction cost is indicative of a less efficient 

symbiosis if the growth of the legume is reduced (Oono and Denison 2010). However, this was 



 

76 

 

not the case for SRC-grown red clover plants compared to ammonium nitrate- and fertilizer- grown 

plants. The overall growth of these plants was significantly higher than those of plants grown in 

soil lacking SRC (Appendix G).  

Additionally, more nodules may not translate into greater efficiency since a legume 

colonized by less-effective rhizobia strains will produce more nodules than with a more effective 

strain, and thus have a higher plant return on nodulation cost (Oono and Denison 2010). Moreover, 

I did not inoculate the legumes, and there was no information about the expiration date or the 

effectiveness and quality of the rhizobial strains on the seeds. This information is vital because 

non-viable rhizobia and less effective strains will impact the nodulation process. The cost to 

produce nodules is often increased when a legume interacts with ineffective rhizobial strains (Oono 

and Denison 2010). Non-nitrogen-fixing strains of bacteria may also be present in nodules  

(Martínez-Hidalgo and Hirsch 2017); the different bacteria residing in the nodule microbiome 

could compete for fixed C or synergistically enhance nodulation and plant growth (Martínez-

Hidalgo and Hirsch 2017). Therefore, if ineffective strains are colonizing the nodule and there is 

competition for the limited C from the plant, a higher plant return on nodule construction is likely. 

Since external N sources are known to suppress nodulation and nitrogen-fixation (Gan et al. 2004; 

van Noorden et al. 2016), and the parameters that provide insights into these processes were 

reduced under ammonium nitrate and NPK fertilizer, it is expected that plants grown under these 

conditions would have lower plant return on nodule construction costs. 

Even though the cost to produce nodules in SRC-grown plants was higher than plants 

grown in soil lacking SRC, it appeared that the N2-fixed by SRC-grown red clover and R. trifolii 

in combination with the nutrients obtained from SRC supplementation were adequate to support 

red clover growth. SRC-grown red clover plants had significantly higher above- and below-ground 
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biomass than ammonium nitrate- and NPK fertilizer-grown plants. The enhanced growth of red 

clover plants with little to no signs of nutrient deficiency under SRC amendment suggest that in 

addition to effectively fixing N2 these plants were able to acquire essential nutrients such as P and 

K from SRC. These findings although unsupported by shoot and root tissue nutrient content and 

root exudate evaluation, or knowledge about the viability and effectiveness of the rhizobial strains 

used, could suggest that red clover plants utilized mechanisms to increase nutrient acquisition.  

They may do so by exuding H+ and organic acids to acidify the rhizosphere and/or to recruit 

nutrient-acquiring microbes (Richardson and Simpson 2011; Álvarez-López et al. 2016; Alori et 

al. 2017), thus increasing the weathering of the SRC releasing P and K among several 

micronutrients. In fact, red clover plants are known to release polyphenolic compounds, flavonoids, 

orobanchol, and carboxylates under P-limiting conditions (Yoneyama et al. 2007; Cesco et al. 

2010). 
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Research limitations and Future directions 

This study was rather complex, and in retrospect the experimental designed should have 

been less ambitious. For example, instead of having eight pots for each of the three soil 

amendments and this for each of the cover crop combinations, I could have reduced the number of 

pots per amendment so that the two plant combinations could have been cultivated at the same 

time. Growing the two cover crop combinations at the same time would provide more breadth to 

the study and a better strength in the statistical analysis as the combinations would have been 

subjected to the same external factors.  This may have allowed me to get insight into which of the 

two cover crop combinations used as part of the integrated strategy provided the most benefits in 

stimulating microbial activity.  

Furthermore, nutrient analyses of the shoot and root tissues should be conducted to see if 

those plants grown in soil amended with SRC were able to acquire nutrients for growth.  

Performing studies similar to mine comparing the effects of SRC to those of agricultural lime on 

the indicators of soil health would also be useful to determine if the microbial response I saw was 

caused by the liming property of the SRC or by something else. Further work should not only look 

at “what are the factors shaping the microbial community composition?” but should also ask “how 

do these factors influence the functions/services these microbial groups provide?” These questions 

can be answered by using broad scale and more targeted methods to evaluate specific microbial 

taxa and their related functions. The use of culture-dependent methods, similar to those used in 

this study and enzyme activity study, and culture-independent methods, e.g., molecular-based 

methods, would be required to have a more complete picture of the microbial taxa that are 
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responding to the changes in soil amendments. Collaboration with farmers, microbial ecologists, 

soil scientists, and plant physiologists should continue to ensure that the current stresses on the  

soil ecosystem is alleviated, thus enabling a bottom-up approach to supply nutrients required by 

plants. 
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Concluding remarks 

Meeting the food demands of the growing population requires scientific innovations, and 

since reports have indicated that agricultural intensification, particularly the use of synthetic 

fertilizers, results in ecosystem degradation and biodiversity loss overtime (Strecker et al. 2015), 

strategies capable of supplementing soil nutrients without adverse effects are required. Enhancing 

the productivity of soil by increasing nutrient availability and nutrient use efficiency in managed 

ecosystems could offset the adverse effects of agricultural intensification (Lehman et al. 2015a; 

Lehman et al. 2015b). An understanding of the microbial community contributions to plant nutrient 

acquisition is key to developing sustainable farming practices. An integrated strategy involving 

the use of cover crops with different plant traits and an agromineral was used here to assess the 

response of microbial groups to the agromineral. The findings of this preliminary study indicate 

that SRC amendment could be incorporated by farmers into best management practices that aim 

at enhancing plant growth by stimulating the ecosystem services provided by the soil. Also, when 

particular species of leguminous cover crops are grown in the presence of the SRC amendment, 

nodulation efficiency is enhanced and hence it is expected that nitrogen fixation would increase.  

The strategy used in this study drew on a multidisciplinary team because it relied on the 

partnership and expertise of industry personnel, the vigneron, and a collaboration between 

members of the Biology Departments of Brock University and Wilfrid Laurier University. The 

study was made possible through the contributions of the Ontario-China Innovative Research Fund 

and operators of the Spanish River Carbonatite quarry, Boreal Agrominerals Ltd. As for the study 

site, Hughes vineyard, I visited it to gain a better understanding of the holistic management 

practices the vigneron has implemented to improve its health. The vineyard represents an ideal 

ecosystem, in contrast to the greenhouse, since it contains a diverse plant community (different 
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vine stalks and cover crops), many invertebrates (insects and nematodes), and plant growth-

promoting and pathogenic microbial communities that are interacting both above- and below-

ground through nutrient cycling, plant growth, and energy transfers. Therefore, knowledge of 

ecological principles, plant biology, microbiology, soil science and chemistry and to a lesser extent 

an understanding of anthropology was required to complete this study successfully. Partnering 

with collaborators on such an integrated project although rewarding was not without its challenges; 

for example, there were different schedules and differing ideas that required flexibility from the 

individual parties to achieve the goal set. Integration of ideas fosters a learning environment 

whereby each person, an expert in his/her field, learns from the other. As for me, I entered the 

Master’s degree programme with a background in biotechnology and zoology; as I have 

approached the end of this thesis, I have learnt a great deal which will make me into a better 

scientist. It is this shared knowledge and understanding that are required to restore soil health 

successfully.  
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Appendix A  

Supplementary information about the four cover crops used in this greenhouse study 

The proposed integrated approach involves the use of commonly grown leguminous, 

namely Medicago sativa L. (alfalfa), Trifolium pratense L. (red clover), and non-leguminous, i.e., 

Cichorium intybus L. (chicory) and Raphanus sativus L. (oilseed radish) cover crops (Table A, 

Figure A). Alfalfa and red clover are important forage crops in the family Fabaceae that form N2-

fixing nodules in associations with Sinorhizobium meliloti (Maxwell et al. 1989; Catford et al. 

2003; Nxumalo et al. 2010) and Rhizobium leguminosarum bv. trifolii (Russell and Jones 1975; 

Mårtensson 1990; Jin et al. 2006), respectively. Alfalfa and red clover can fix up to 500 kg N per 

ha per year (Watson et al. 2002) and between 389-460 kg N per ha per year (Watson et al. 2002; 

Lewis 2015), respectively. However, the amount of N2 fixed depends on the cultivars, farming 

practices, and soil properties, e.g., pH and nutrient availability (Nxumalo et al. 2010; Wyngaarden 

2015). These perennial cover crops proliferate in favourable conditions with adequate nutrients, 

such as N, P, K, Mg and Ca (Undersander et al. 2011), and near-neutral pHs (Lacefield et al. 1997; 

Lacefield et al. 2006). Under favourable conditions, these legumes (Figure  A and B) produce high 

biomass, and their root systems (Figure E and F) increase the water infiltration rates in compacted, 

no-till soils (Williams and Weil 2004). In particular, the fibrous root system of red clover plants 

(Figure F)  is ideal for improving soil structure and stability (Wyngaarden et al. 2015) as it 

enmeshes the soil particles, which reduces soil erosion (Watson et al. 2002). This root phenotype 

also renders red clover more efficient at absorbing soil or applied nutrients, especially P and K 

(Undersander et al. 1990), than other cover crops such as alfalfa that have fewer lateral roots 

(Figure E).  
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Chicory is an erect biennial forage herb (Figure C) in the family Asteraceae (Li 1997; 

Kunelius and McRae 1999; Bais and Ravishankar 2001). These plants are hardy, tolerating 

extreme temperatures during their vegetative and reproductive growth stages (OMAFRA 2003). 

They grow best on well-drained medium to fertile soils with pH ranging from 4.5 to 8.3 (Li 1997; 

Hall and Jung 2008) and have a high demand for K and P (Hall and Jung 2008). Also, chicory 

plants are very responsive to N additions; there is a proportional relationship between N 

fertilization and stem growth (Hall and Jung 2008). The root system of chicory plants (Figure G) 

makes them effective scavengers of N from the subsoil levels (Fageria et al. 2005). Because of 

their deep taproot system, chicory plants can be implemented as part of a management system to 

reduce nitrate leaching (Mårtensson et al. 1998; Druart et al. 2000) and increase soil drainage and 

aeration (Li and Kemp 2005). The taproot contains a large percentage of the plant's phytochemical 

compounds including many glucosides, acids, and phenolic compounds (Bais and Ravishankar 

2001). Chicory stores up to 80% of its root biomass as these phytochemicals; therefore, the taproot 

represents an abundant source of carbohydrates supporting shoot emergence and plant 

development (Li and Kemp 2005; Street et al. 2013). 

Oilseed radish is a fall or winter annual cover crop in the mustard family, the Brassicaceae 

(Mutch et al. 2004). Forage radish is often used as a cover crop to maintain soil fertility and crop 

productivity (Magdoff and van Es 2009; Jacobs 2012), improve soil aggregate stability (Dapaah 

and Vyn 1998), and reduce soil erosion (Williams and Weil 2004; De Baets et al. 2011; Jacobs 

2012). The plant is intolerant to shade  (Jacobs 2012; Verhallen et al. 2012), standing water, and 

severely N-deficient soil (Jacobs 2012). However, limitation by N levels depends on soil texture 

and history of nutrient addition (Jacobs 2012). Like chicory, oilseed radish is highly responsive to 

N fertilization (Jacobs 2012). Also, it grows best in cool, moist conditions and is adapted to soils 
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with pHs between 6.0 to 7.5 (Jacobs 2012). This cover crop establishes quickly, producing large 

aboveground biomass (Figure D) in a short period (Mutch et al. 2004; Florentín et al. 2011; 

Jabnoun-Khiareddine et al. 2016) (Figure 3.2 D). Because of this trait, oilseed radish plants provide 

good soil coverage during periods when the soil is in fallow or left bare (Mutch et al. 2004; Mennan 

et al. 2008; Jacobs 2012). This cover crop is often used as a biological solution to suppressing 

weeds (Charles et al. 2006; Wang et al. 2008b) because it establishes quickly (Charles et al. 2006), 

thus outcompeting the weed seedlings for resources (Snapp et al. 2003; Charles et al. 2006). 

Furthermore, these plants secrete glucosinolate compounds, that break down to produce volatile 

molecules like the active chemical metham sodium in the commercial fumigant Vampam® (Mutch 

et al. 2004). These compounds discourage the infestation of soil-borne diseases by fungi as well 

as suppress the growth of nematodes (Mennan et al. 2008; Jacobs 2012). Oilseed radish plants are 

characterized by their large taproots (Figure H) that can penetrate compacted soils, and upon their 

decomposition they leave behind large holes reducing the need for tillage (Jacobs 2012), 

improving aeration, water infiltration (Jacobs 2012), and potentially stimulating microbial activity 

(Mutch et al. 2004). Like chicory, oilseed radish is an effective scavenger of residual N,  

assimilating 100 to 150 lb/acre of N  (Jacobs 2012). Oilseed radish plants can, therefore, be planted 

to reduce NO3
- leaching, and as a source of soil N upon their decomposition in the spring when 

used in crop rotation (Isse et al. 1999;  Wang et al. 2008b; Weil and Lawley 2009). Although there 

are many benefits to using oilseed radish as a cover crop, it can become an invasive or weedy 

species in some regions, because its seeds often remain viable in the soil for many seasons (Jacobs 

2012). 
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Table A Characteristics and growth conditions of the cover crops 

 

Characteristics Alfalfa Chicory Red clover Oilseed radish 

Family Fabaceae Asteraceae Fabaceae Brassicaceae 

Binomial 
Medicago 

sativa 

Cichorium 

intybus 

Trifolium 

pratense 

Raphanus sativus 

var. oleiformis 

Growth cycle Perennial Biennial Perennial Annual 

Rhizobia 
Sinorhizobium 

meliloti 
No 

Rhizobium 

leguminosarum 

bv. trifolii 

No 

C:N ratio  13:1 to 25:1* 48 13.6:16.7 19-20 

Exudates 
Caffeic acid, 

medicarpin 

 Succinic acid, 

glucosides 

Orobanchol, 

genistein 
Glucosinolates 

Optimal pH  6.5 - 7.0 4.5-8.0 6.0 - 7.6° 6.0-7.5 

 

* C:N (Carbon-to-nitrogen ratio) of alfalfa varies from young hay (13:1) to mature hay (25:1). 

°Optimal pH: Although the optimal pH for red clover growth is between 6.0 and 7.6, red clover 

plants can survive in soils with pHs between 5.0-8.5. 
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Figure  Above-and below-ground cover crop characteristics  

A-D depict the aboveground phenotype, while E-H phenotype depict the belowground 

phenotype of the alfalfa, red clover, chicory, and oilseed radish cover crops, respectively. 

Alfalfa plants are characterized by small trifoliate leaves that alternate on the stem (A), and the 

root system  (E) is characterized by a primary root with several lateral roots, which bear multi-

lobed nodules (magnified) in the upper 5-10 cm the roots.  Red clover plants are characterized 

by large trifoliate compound leaves that alternate on the stem (B). The taproot system of red 

clover plants is characterized by a primary root with several lateral roots, bearing single-and bi-

lobed nodules (magnified) along the length of the roots (F). Chicory plants are characterized by 

a rosette of many broad, oblong, or oblanceolate leaves (C). The taproot system of chicory is 

characterized by a primary root that bears several lateral roots (G). Oilseed radish plants are 

characterized by a rosette of large deeply dissected leaves and a flowering stalk that emerges 

from the centre of the rosette (D). These plants have a large, thick taproot system with few lateral 

roots (H). 
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Appendix B 

Guaranteed minimum analysis of 20-20-20 Farm Prod® commercial fertilizer 

 

Mineral composition % minimum analysis 

Total nitrogen (N) 20 

Available phosphoric acid (P2O5) 20 

Soluble potash (K2O) 20 

Actual boron (B) 0.02 

Actual copper (Cu)* 0.05 

Actual iron (Fe)* 0.1 

Actual manganese (Mn)* 0.05 

Actual molybdenum (Mo) 0.0005 

Actual Zinc (Zn)* 0.05 

Ethylene diamine tetra-acetate 

(EDTA)° 1 

 

NB: *Chelated with EDTA  

°Chelating agent 
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Appendix C 

Typical characteristics of SunGro Sunshine® Mix 1 

 

Properties Range 

pH 5.0 - 5.8 

EC 0.75 - 1.75 

*Extractable nutrient (ppm) 

Nitrate-N 4 - 67 

Ammonium-N 1.- 31 

P 9 - 42 

K 36 - 129 

Ca 37 - 158 

Mg 17 - 77 

S 70 - 225 

Mn 0 - 1.5 

Fe 0 - 0.5 

Cu 0 - 0.05 

B 0 - 0.36 

Zn 0 - 0.16 

Mo 0 - 0.07 

Ingredients 

Coarse perlite 

Dolomite 

Gypsum 

Coarse Canadian sphagnum peat moss 

 

NB: The potting soil contains proprietary starter nutrient with major and minor nutrients as well 

as proprietary wetting agent. *Saturated extract procedure two weeks after production 

(https://www.tlhort.com/p-21606-sunshine-mix-1-lc-mix.aspx) 

 

 

  

https://www.tlhort.com/p-21606-sunshine-mix-1-lc-mix.aspx
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Appendix D 

Modified Yeast Mannitol Agar medium (nitrogen-free) for Rhizobium 

 

 

Reagents Quantity (g/L) 

D-mannitol 10 

K2HPO4 0.5 

MgSO4*7H2O 0.2 

NaCl 0.1 

Yeast extract 0.4 

Agar 15 

 

NB: Reagents were dissolved in deionized water, pH to 6.8 before adding agar then autoclaved 

at 121 °C for 15 minutes. 

Ref: Vincent (1970) 
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Appendix E 

National Botanical Research Institute Phosphate Medium for phosphate-solubilizing 

bacteria) 

Reagents Quantity (g/L) 

Glucose 10 

MgCl2.6H2O 5 

MgSO4.7H2O 0.25 

KCl 0.2 

(NH4)2SO4 0.1 

Ca3(PO4)2 5 

Agar 15 

 

NB: Reagents were dissolved in Milli-Q water, pH to 7.0 before adding agar then autoclaved at 

121 °C for 15 minutes. 

Ref: Nautiyal 1999 
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Appendix F 

Soil pH before planting cover crops and applying soil amendments 

 
 

NB: Results are of a repeated measures ANOVA taken at day 0 (before sowing and treatment 

i.e., each of the assigned pots were sampled) and day 56 (harvest i.e., each of the assigned pots 

were sampled). Soil pH at day 56 was consistently higher than that of day 0. AC: represents 

alfalfa and chicory plants, while RO represents red clover and oilseed radish plants.  
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Appendix G   

Cover crop biomass 

Kruskal-Wallis X2-value DF p-value 

Alfalfa 6.111 2 0.047 

Chicory 10.933 2 0.004 

Alfalfa + chicory 8.985 2 0.01 

One-way ANOVA DF F-value p-value 

Red clover 2 8.091 0.001 

Oilseed radish 2 100.828 <2E-16 

Red clover and oilseed 

radish 
2 92.68 3.90E-16 

 

n = 16 Nitrogen SRC Fertiliser 

Chicory 2.2 ± 1.4a 2.1 ± 1.8a 4.4 ± 1.8b 

Alfalfa + 

Chicory 
2.7 ± 1.6a 2.8 ± 2.1a 5.3 ± 2.1b 

Red clover 0.2 ± 0.1a 0.4 ± 1.6b 0.2 ± 0.1a 

Oilseed radish 12.4 ± 4.7a 9.1 ± 3.9b 16.8 ± 3.5a 

Red clover + 

Oilseed radish 
12.6 ± 4.7a 9.5 ± 4.0b 17.0 ± 3.6a 

   

NB: The total plant biomass (g ± SD) was subjected to a 1-way ANOVA or the non-parametric 

Kruskal-Wallis test. 

 

 


