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ABSTRACT

Transforming growth factor  (TGF-B) family members play an extensive role in cellular commu-
nication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-f3
family signaling is associated with a pathological outcome in numerous diseases, and in-depth
understanding of molecular and cellular processes could result in therapeutic benefit for patients.
Canonical TGF-B signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-
mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an
essential negative regulator of the pleiotropic TGF-p and bone morphogenetic protein (BMP) sig-
naling pathways. In a negative feedback loop, SMAD7 inhibits TGF-f signaling by providing com-
petition for TGF-B type-1 receptor (TPRI), blocking phosphorylation and activation of SMAD2.
Moreover, SMAD7? recruits E3 ubiquitin SMURF ligases to the type | receptor to promote ubiqui-
tin-mediated proteasomal degradation. In addition to its role in TGF-f and BMP signaling,
SMAD? is regulated by and implicated in a variety of other signaling pathways and functions as
a mediator of crosstalk. This review is focused on SMAD?7, its function in TGF- and BMP signal-
ing, and its role as a downstream integrator and crosstalk mediator. This crucial signaling mol-
ecule is tightly regulated by various mechanisms. We provide an overview of the ways by which
SMAD? is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications
(PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel
disease (IBD).

Abbreviations: AhR: Aryl hydrocarbon receptor; ALK: Activin-receptor-like kinase; AON: Antisense
oligonucleotide; BMDC: Bone marrow-derived cell; BMP: Bone morphogenetic proteins; BMSC:
Bone marrow mesenchymal stem cell; CD: Crohn’s disease; CIA: Collagen-induced arthritis;
CircRNA: Circular RNA; CRC: Colorectal cancer; DEN: N-nitrosodiethylamine; DSS: Dextran sulfate
sodium; EAE: Experimental autoimmune encephalomyelitis; ECM: Extracellular matrix; EGF:
Epidermal growth factor; EMT: Epithelial-to-mesenchymal transition; EV: Extracellular vesicle;
GBM: Glioblastoma; GDF: Growth and differentiation factor; HCC: Hepatocellular carcinoma;
HDAC: Histone deacetylases; HSC: Hepatic stellate cell; IBD: Inflammatory bowel disease; IFN:
Interferon; IL: Interleukin; LncRNA: Long non-coding RNA; LRM: Leucine rich motif; MAPK:
Mitogen-activated protein kinase; MD: Molecular dynamics; MH: MAD homology; MIS: Mullerian-
inhibiting substance; MiRNA: MicroRNA; NcRNA: Non-coding RNA; OncomiR: Oncogenic miRNA;
Pre-miRNA: Precursor miRNA; Pri-miRNA: Primary miRNA; PTM: Post-translational modification; RA:
Rheumatoid arthritis; RTK: Receptor tyrosine kinase; SBE: SMAD binding element; SCC: Squamous
cell carcinoma; SCLC: Small cell lung cancer; STAT: Signal transducer and activator of transcrip-
tion; TAK: Transforming growth factor B-activated kinase; TGF-B: Transforming growth factor f3;
TNF: Tumor necrosis factor; TPA: 12-O-tetradecanoylphorbol-13-acetate; TRAF: TNF receptor-asso-
ciated factor; UTR: Untranslated region
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Introduction

The transforming growth factor beta (TGF-B) family is
comprised of over 30 secreted multifunctional polypep-
tides, including TGF-Bs, activins, bone morphogenetic
proteins (BMPs), growth and differentiation factors
(GDFs) and Millerian-inhibiting  substance  (MIS).

Members of the TGF-f family are ubiquitously
expressed in metazoans and play an extensive role in
cellular communication that orchestrates both early
development and adult tissue homeostasis (Massagué
1998). These proteins are involved in a range of cellular

processes, including proliferation, cell death, adhesion,
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migration and differentiation. Additionally, the bio-
logical effects of TGF-B family members are highly cell
and context dependent. Aberrant TGF-f family signal-
ing is often associated with a pathological outcome,
highlighting the importance of this pathway in main-
taining tissue homeostasis. Studies have linked inappro-
priate functional activation or inhibition of TGF- family
signaling components with a broad spectrum of human
diseases, including cancer, fibrosis, developmental-,
musculoskeletal-, cardiovascular-, and autoimmune dis-
orders (Akhurst and Hata 2012; Morikawa et al. 2016;
Batlle and Massagué 2019; Yu and Feng 2019).

TGF-B family member ligands are initially synthesized
as latent precursor proteins with an N-terminal propep-
tide region. After proteolytic processing, the mature,
biologically active ligand is obtained (Derynck and Budi
2019). TGF-B family members signal via heteromeric
complexes of single-pass transmembrane type |, also
termed activin-receptor-like kinases (ALKs), and type-ll
serine/threonine  kinase receptors (Heldin and
Moustakas 2016). Seven type-l receptors have been
described in vertebrates: ALK1, ALK2 (also termed
ActRI), ALK3 (also termed BMPRIA), ALK4 (also termed
ActRIB), ALK5 (also termed TPRI), ALK6 (also termed
BMPRIB), and ALK7. Type-l receptors for activin and
TGF-B are ALK4 and ALKS5, respectively. BMPs signal
through ALK1, ALK2, ALK3 and ALK®6. Five type-Il recep-
tors have been identified: TGF-B type-Il receptor (TBRII),
activin type Il and type IIB (ActRll, and ActRIIB), BMP
type-ll receptor (BMPRI) and AMH type-ll receptor
(AMHRII). The type-l and type-ll receptors have cyst-
eine-rich extracellular domains through which signaling
can be initiated by association with TGF- family mem-
ber ligands.

Upon ligand binding, the type-l and type-Il receptor
intracellular domains associate in a heteromeric com-
plex (Wrana et al. 1994). Type-l receptors contain a gly-
cine-serine repeat motif (GS domain), of which certain
serine and threonine residues can become phosphory-
lated by the constitutively active type-Il receptor kinase.
Subsequently, an intracellular cascade by means of
phosphorylation of downstream SMAD effector proteins
is triggered. These SMADs can act as transcription fac-
tors and are the central mediators in the canonical TGF-
B signaling pathway (Derynck et al. 1998). The eight
vertebrate SMADs are divided into three distinct SMAD
subtypes: the receptor-requlated SMADs (R-SMADs,
SMADT1, 2, 3, 5, and 8), the co-mediator SMAD (Co-
SMAD, SMAD4) and inhibitory SMADs (I-SMADs, SMAD6
and 7). Upon receptor activation, specific R-SMADs are
phosphorylated at two carboxy (C)-terminal serine resi-
dues by the type-l receptor intracellular kinase activity

and undergo formation of heteromeric complexes with
SMAD4 (Shi and Massagué 2003). SMAD2/3 mediate
TGF-B family signaling, while SMAD1/5/8 respond pri-
marily to the BMP family. The activated SMAD com-
plexes then translocate into the nucleus where they
activate or repress the transcription of target genes.
With the exception of a common spliced isoform of
SMAD?2, the above-mentioned R- and Co-SMADs are
able to directly interact with DNA (Massagué 2012). The
MAD homology (MH)1 domain of these SMADs facili-
tates their sequence-specific DNA-binding activity.
However, SMADs have limited affinity and specificity for
DNA and therefore rely on cooperation with other
DNA-binding proteins, such as DNA-binding transcrip-
tion factors and transcriptional coregulators (Hill 2016).

I-SMADs were discovered due to their similarity to
previously identified R- and Co-SMADs as they also con-
tain a large conserved MH2 domain (Topper et al.
1997). The I-SMADs, SMAD6 and SMAD7, are potent
modulators of the TGF-B family. They inhibit TGF-$§ and
BMP signaling in a negative feedback circuit by block-
ing type | receptor activity through physical interaction.
Moreover, SMAD?7 is able to target receptors for protea-
somal degradation, preventing R- and Co-SMAD com-
plex formation (Miyazawa and Miyazono 2017). SMAD6
principally regulates BMP signaling, while SMAD7 is
able to repress signaling in both the TGF- and BMP
signaling pathway (Itoh and ten Dijke 2007) (Figure 1).

While R- and Co-SMADs are critical in propagating
TGF-B family signals from cell surface complexes to the
nucleus, inhibition of signaling activity by I-SMADs is
essential for maintaining a proper physiological
response to TGF-f or BMP signaling. This review focuses
on our current understanding of the complex and
multifaceted role of SMAD7, as a key player in SMAD
signaling inhibition, and as downstream integrator pro-
viding crosstalk between the TGF-B family and other
signaling pathways. We also highlight recent discov-
eries focusing on SMAD7 regulation. Particularly, we
address the increasing number of publications that
demonstrate noncoding RNA-governed regulation of
SMAD?7. Moreover, we describe its function as revealed
by genetic studies in mice and human. And finally, we
discuss the role of SMAD7 in disease onset and progres-
sion, and possible avenues for therapeutic intervention
by targeting SMAD?7.

SMAD? structure and function in TGF-f
signaling

Human SMAD7 consists of 426 amino acid residues and
is comprised of two globular domains, connected by a
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Figure 2. Schematic representation of the structural domains of SMAD7 as they relate to function. PY, proline-tyrosine motif;

MH2, Mad homology 2 domain; L3/B8, L3/B8 loop-strand module.

relatively short linker region (Figure 2). SMAD7 interacts
with the activated TPRI through its MH2 domain
(Hayashi et al. 1997; Nakao et al. 1997). However,
SMAD?7 lacks a C-terminal SSXS motif, which is required
for phosphorylation of SMAD2 and —3 by the TPRI kin-
ase, (Abdollah et al. 1997; Souchelnytskyi et al. 1997)
suggesting that it is not a substrate for TBRI phosphor-
ylation. SMAD?7 inhibits signaling by providing competi-
tion for receptor binding, blocking phosphorylation and
activation of downstream SMAD2. Thereby, it prevents
SMAD2/4 complex formation and translocation of
SMAD?2 to the nucleus (Hayashi et al. 1997). Moreover,

SMAD7? recruits E3 ubiquitin ligases such as NEDDAL,
SMURF1 and SMURF2 to TGF- receptors, thereby pro-
moting their ubiquitin-mediated degradation (Kavsak
et al. 2000; Ebisawa et al. 2001; Kuratomi et al. 2005).
Other mechanisms by which SMAD7 inhibits TGF-B sig-
naling include recruitment of phosphatase GADD34-
PP1c to the TBRI and hindrance of SMAD-DNA complex
formation (Shi et al. 2004; Zhang et al. 2007).

The MH2 domain of SMAD7 contains a basic region
that includes the so-called L3 loop and B8 strand (Yan
et al. 2016). Additionally, unlike R- and Co-SMADs, the
SMAD7 MH2 domain also includes an o helix containing
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K312 and K316, which contributes to the basic charac-
ter of this domain. SMAD7-TBRI interaction relies on
four basic amino acid residues in the basic surface of
this C-terminal region: K312, K316, K401, and R409
(Mochizuki et al. 2004). Mutations of these residues
abrogate the inhibitory effects of SMAD7 on TGF-B sig-
naling by interrupting SMAD7-TBRI interaction.
Furthermore, inhibition of BMP signaling by SMAD?7 is
likely dependent on two of the above-mentioned
SMADY7 residues (K401 and R409), as mutation in either
residue abolishes SMAD7-mediated inhibition of the
pathway (Mochizuki et al. 2004).

In addition to facilitating SMAD-receptor interaction,
the MH2 domain also enables SMAD-protein interaction
(Massagué and Wotton 2000). The MH2 domain allows
for SMAD:s to interact with each other and with regula-
tor and effector proteins, including DNA-binding cofac-
tors and chromatin modifiers. The L3/B8 loop-strand
module and adjacent lysines comprise key residues that
permit SMAD7-SMAD3 association (Yan et al. 2016).
This suggests that the MH2 domain is not only a critical
structural determinant in establishing SMAD-receptor
interaction, but also in establishing SMAD-SMAD inter-
action. Molecular dynamics (MD) simulations predicted
that the L3/B8 loop contributes to the considerable
functional flexibility of SMAD7. Hariharan et al. describe
that SMAD7 has a flexible overall folding, due to the
presence of flexible amino acids in the MH2 domain of
the protein, and more specifically in the L3 loop (F411,
K401, and C406) (Hariharan and Pillai 2008).

Additionally, the MH2 domain of SMAD?7 is able to
bind to oligonucleotides containing the minimal SMAD
binding element (SBE). Shi et al. demonstrated that the
isolated MH2 domain of SMAD7 had a higher DNA
binding affinity than full-length SMAD?7 (Shi et al. 2008).
The difference in binding affinity was attributed to an
repressive effect of the SMAD7 N-terminal region. The
MH2 domain of SMAD?7 is able to bind to DNA and
thereby suppresses SMAD2/4-DNA complex formation
and is able to directly bind to the plasminogen activator
inhibitor 1 (PAI-1) promoter under physiological condi-
tions (Zhang et al. 2007).

As described above, SMAD7? inhibits TGF-f and BMP
signaling by promoting receptor turnover through
ubiquitination (Kavsak et al. 2000; Ebisawa et al. 2001;
Murakami et al. 2003; Wiesner et al. 2007). The PPxY
sequence (proline-tyrosine motif, PY motif) in the
SMAD?7 linker region has a pivotal role in the recruit-
ment of Homologous to E6AP C-terminus (HECT) type
E3 ubiquitin ligases, including NEDD4L, and SMURF1/2
(Figure 2) (Aragon et al. 2012). The WW domains of
these E3 ligases bind to the PY motif in the linker

region of SMAD7. Consistent with this notion, a PY
motif deletion or mutation weakens association of
SMAD7 with SMURF1/2 (Kavsak et al. 2000; Ebisawa
et al. 2001). It has been reported that the SMURF2 WW3
domain binds to an extended binding motif in SMAD7
that includes the PY motif and six C-terminal residues
(Chong et al. 2006). Furthermore, as an adaptor protein,
SMAD?7 antagonizes inhibitory intramolecular interac-
tions between the SMURF2 C2 and HECT domains and
relieves C2 domain-dependent autoinhibition, ultim-
ately promoting SMURF2 activity. Besides ubiquitin-
mediated regulation of receptors, SMAD7-SMURF2 com-
plexes were recently shown to promote proteasomal
degradation of SMAD anchor for receptor activation
(SARA), a positive regulator of TGF-B signaling
(Wojtowicz et al. 2020). Lastly, the SMAD7 PY motif is
involved in binding Yes-Associated Protein (YAP)65 in
order to co-repress TGF-B signaling (Ferrigno
et al. 2002).

Contrary to the MH2 domain, the N-terminal region
of SMAD7 (amino acids 1-260) shows limited similarity
with the MH1 domain found in SMAD1 to SMAD5. The
SMAD7 N-terminal region has several distinct functions
in TGF-B signaling. First, the N-terminal amino acid resi-
dues 32-90 were found to be important determinants
of inhibitory effect on the receptor signaling.
Additionally, even though the SMAD7-TfRI interaction
is mainly MH2-mediated, the N-terminal region co-
determines the affinity of SMAD7 for TBRI. Furthermore,
inhibition of TGF-B signaling is potentiated by physical
interaction between the SMAD7 N-terminal region and
MH2 domain (Hanyu et al. 2001). In addition, the N-ter-
minal domain was shown to determine subcellular
localization of SMAD7 in multiple cell lines (Itoh et al.
1998; Hanyu et al. 2001). Furthermore, the N-terminal
region of SMAD7 contains a Leu-rich motif (LRM), which
is important in the recruitment of the E2 ubiquitin-con-
jugating enzyme UbcH7 to the SMURF2 HECT domain
(Ogunjimi et al. 2005). Moreover, the SMAD7 N-terminal
region has been suggested to contain DNA-binding
ability. In R-SMADs, the MH1 domain is responsible for
DNA-binding activity. The N-terminal region of I-SMADs,
however, lacks the DNA-binding B-hairpin motif. |-
SMADs are predicted to contain a zinc atom in their N-
terminal region, similar to the zinc atom in R-SMADs
that facilitates DNA-binding (Hariharan and Pillai 2008),
indicating a possible role for the SMAD7 N-terminal
region in DNA-binding. Taken together, these studies
demonstrate how divergent structural features of
SMAD?7, as compared to R- and Co-SMADs, facilitate its
function.
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Figure 3. Examples of SMAD7 regulation on a transcriptional and post-transcriptional level. A. TGF-f3 and BMP signaling activa-
tion positively regulate SMAD7? transcription. The SMAD7 promoter is a target for direct association with R- and Co-SMADs, stimu-
lating promoter activity. B. Long non-coding RNA Erbb4-IR suppresses SMAD7 transcription by binding to the 3’ UTR of the
SMAD7 gene. C. MiR-21 modulates SMAD7 expression by targeting mRNA for translational repression by pairing to sequence in
the mRNA 3’-untranslated region (3’ UTR). D. Circular RNA cESRP1 sponges miR-93, a negative regulator of SMAD7, to inhibit
TGF-B signaling. SBE, SMAD binding element; TF, transcription factor.

Regulation of SMAD7 expression and function

SMADY?7 is differentially expressed across various tissues
and is subject to tight regulation by a range of mole-
cules and a number of regulatory mechanisms. In this
section, we will discuss various mechanisms by which
SMAD7 expression and function are controlled, includ-
ing transcriptional, post-transcriptional and post-trans-
lational mechanisms (Figure 3).

Transcriptional regulation of SMAD7

SMAD7 mRNA expression is promoted by TGF- family
members (Nakao et al. 1997; Afrakhte et al. 1998).
SMAD3 and SMAD4 directly associate with the SMAD7
promoter, through its consensus SBE, stimulating pro-
moter activity (Figure 3(A)) (Nagarajan et al. 1999; Von
Gersdorff et al. 2000). As SMAD7? functions as a TGF-3
signaling antagonist, it thereby participates in a nega-
tive feedback circuit.

Gene expression can also be modulated by control-
ling the accessibility of transcription factors to the
corresponding gene through covalent histone modifica-
tion (Strahl and Allis 2000). Histone methylation and
acetylation are reversible and their effects are context

dependent. Histone deacetylases (HDACs) regulate the
acetylation of histone proteins, for the purpose of gene
expression control. TGF-B stimulation has been shown
to increase histone H4 acetylation at the SMAD7 pro-
moter 3.2-fold. This increase corresponded with an
induction of SMAD7 mRNA (Alliston et al. 2005).
Corepressor Evi-1 and associated corepressor C-ter-
minal-binding protein (CtBP) obstructed TGF-B-induced
histone acetylation at the endogenous SMAD7 pro-
moter, mitigating SMAD7 mRNA expression. In a similar
fashion, transcription co-factor Ski, in cooperation with
protein arginine methyltransferase 5 (PRMT5) and
HDAGCS3, is present at the SMAD7 promoter and pro-
motes SMAD?7 transcriptional repression (Tabata et al.
2009), suggesting a role for PRMT5 and HDAC3 in main-
taining the basal repressed state of SMAD7.

Noncoding RNA-mediated regulation of SMAD7
expression

SMAD?7 expression is extensively regulated at the RNA
level by noncoding RNAs (ncRNAs), such as microRNAs
(miRNAs), circular RNAs (circRNAs) and long noncoding
RNAs (IncRNAs). MiRNAs are small, endogenous non-
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coding RNA molecules of approximately 22 nucleotides
in length, involved in the regulation of gene expression
(Bartel 2004; Ambros 2004). In the nucleus, RNA poly-
merase |l or lll transcribes primary miRNA (pri-miRNA).
Subsequently, 70 nucleotide stem-loop precursor
miRNAs (pre-miRNAs) are excised by the RNase Il
DROSHA microprocessor complex and exported to the
cytoplasm (Kim et al. 2009). The cytoplasmic RNase IlI
enzyme Dicer completes the processing of pre-miRNAs
to form mature miRNAs. MiRNAs modulate expression
by targeting mRNA for translational repression by pair-
ing to sequences in the mRNA 3’-untranslated region
(3’ UTR) in target mRNAs or inhibiting translation
(Fabian et al. 2010). Hundreds of mammalian miRNAs
have been identified as key post-transcriptional regula-
tors in biological processes such as development, cell
proliferation and cell death (Landgraf et al. 2007).

MiRNA processing is promoted by TGF-f and BMP
signaling (Davis et al. 2010). Following ligand stimula-
tion, R-SMADs associate with the RNA SMAD-binding
element (R-SBE) of pri-miRNA transcripts in order to
facilitate DROSHA-mediated miRNA maturation. This
indicates that R-SMADs modulate gene expression by
(A) transcriptional induction and (B) facilitating post-
transcriptional processing of miRNAs. Here, we provide
an overview of several key miRNAs that regulate
SMAD7 expression, and discuss other examples of
ncRNA-mediated SMAD7 regulation.

MiR-21

One of the most extensively studied miRNA regulating
SMAD?7 is human miR-21 (hsa-miR-21). Its role in regu-
lating SMAD7 expression has mainly been examined in
the context of disease. MiR-21 was first identified as a
regulator of SMAD7 expression in liver fibrosis based on
TargetScan predictions (Marquez et al. 2010). Marquez
et al. established post-transcriptional regulation of
SMAD7 by miR-21. They demonstrated direct inter-
action between miR-21 and the SMAD7 3'UTR using
site-directed mutagenesis in the miR-21 seed sequence,
which is the primary determinant of miRNA specificity
(Marquez et al. 2010). Afterwards, it was confirmed that
treatment with miR-21 precursor indeed leads to
decreased SMAD7 protein levels in fibroblasts (Liu
et al. 2010).

MiR-21 has been extensively studied in a range of
diseases, such as cancer, cardiovascular disease, and
pulmonary disease. In malignancies, miR-21 is a central
player as an oncogenic miRNA (oncomiR) targeting
tumor suppressor proteins, including for example PTEN
(Feng and Tsao 2016). MiR-21 is upregulated in intra-
ductal epithelial proliferations of breast tissue

compared to healthy tissue (Chen et al. 2013). This
overexpression correlates with decreased SMAD?7 levels.
MiR-21 knockdown restored SMAD7 mRNA levels in
MCF-7 and Hs578T breast cancer cells. Likewise, SMAD7
mMRNA expression was significantly increased in miR-21
knockout Hela cells (Chen et al. 2015). Wang et al. dem-
onstrated that SMAD? is also a direct target for transac-
tivated miR-21 in colorectal cancer (Wang et al. 2017).
Similar results have been reported for coronary heart
disease, autoimmune disease, diabetes and during
wound healing (Li et al. 2015, 2018; Murugaiyan et al.
2015; Luo et al. 2017).

Chang et al. have demonstrated a divergent role for
hsa-miR-21-5p in the regulation of SMAD7 in hypoxic
conditions, compared to normoxic conditions. Here, 5p
refers to the 5p strand that is located in the forward (5'-
3') position, whereas the 3p strand is present in the
reverse position. In hypoxia, hsa-miR-21-5p expression
increased protein expression of SMAD7 in human
umbilical vein endothelial cells, whereas at normoxia
hsa-miR-21-5p induces downregulation of SMAD7 in
these cells, providing a prime example of the effect of
context-dependency on functional output (Chang et al.
2017). In conclusion, the fact that SMAD?7 is a confirmed
target for miR-21 in a plethora of diseases highlights
the importance of SMAD7 in maintaining appropriate
TGF-B signaling.

SMAD? regulation by diverse miRNAs
MiRNA-mediated regulation of SMAD? is not limited to
miR-21. The miR-15 family, consisting of six highly con-
served miRNAs (miR-15a/b, miR-16, miR-195, miR-497,
miR-322), inhibits TGF-B signaling in cardiovascular tis-
sues (Tijsen et al. 2014). Knockdown of the miR-15 fam-
ily resulted in upregulated SMAD7 mRNA levels and
increased SMAD7 3'UTR reporter activity in cardiomyo-
cytes. It remains unclear, however, whether these
effects are due to direct interaction between miR-15
family members and SMAD7 3’UTR (Tijsen et al. 2014).
Direct regulation of SMAD7 by miR-15b was demon-
strated in osteogenic differentiation of bone marrow
mesenchymal stem cells (BMSCs) (Fang et al. 2019).
Interestingly, distinct miRNA variants derived from
the same precursor can affect SMAD7 gene expression
in different cell types. For example, from the miR-181
precursor four mature miRNAs can be produced: miR-
181a, miR-181b, miR-181c or miR-181d, of which MiR-
181a was found to induce repression of its functional
target SMAD? in ovarian cancer cells to promote TGF-
B-mediated epithelial-to-mesenchymal transition (EMT)
(Parikh et al. 2014), whereas MiR-181c downregulated
SMAD?7 expression in neuroblastoma and osteosarcoma
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Table 1. MiRNAs regulating SMAD7 expression in the context of disease®.

Conditions(s)

MiRNAs

Reference(s)

Cancer

Fibrosis

Cardiovascular disease and repair

Bone development and disease

Muscle development, dysfunction and repair
Eye disease

Chondrogenic differentiation

Pulmonary disease

Allergy

Angiogenesis

Inflammatory bowel disease

Keloid formation

Autoimmune disease

Metabolism

Kidney disease

Wound healing
Pancreatitis

Polycystic ovary syndrome
Kawasaki disease

ECM formation

MiR-10b, miR-15a, miR-18a, miR-20a, miR-21,
miR-25, miR-32, miR-92a/b, miR-93, miR-106a,
miR-106b ~25, miR-130b, miR-132, miR-181,
miR-182, miR-185, miR-195, miR-216a, miR-
324, miR-367, miR-424, miR-452, miR-497,
miR-503, MiR-519d, miR-520g/h, miR-543,
miR-663b, miR-1269, miR-2909, miR-4775

MiR-10a, miR-16, miR-17, miR-21, miR-30, miR-
33a, miR-93, miR-96, miR-150, miR-182, miR-
195, miR-212, miR-216a, miR-411, miR-877

MiR-15a, miR-20b, miR-21, miR-92a, miR-125b,
miR-195, miR-224, miR-410, miR-424, miR-484,
miR-503

MiR-15b, miR-16, miR-17, miR-33a, miR-200, miR-
590, miR-877

MiR-125b, miR-542
MiR-187, miR-3175
MiR-526b, miR-590
MiR-15b, miR-195
MiR-17

MiR-21

MiR-195

MiR-96

MiR-21, miR-181

MiR-92a

MiR-92b, miR-541
MiR-21

MiR-216a
MiR-423

MiR-27b

MiR-590

(Smith et al. 2012; Chen et al. 2013; Li et al. 2013; Xia
et al. 2013; Chang et al. 2013; Li et al. 2014; Parikh
et al. 2014; Yu et al. 2014; Chen et al. 2015; Kan
et al. 2015; Liu et al. 2015; Tang et al. 2015; Zhu
et al. 2015; Bu et al. 2015; Wang et al. 2015; Xu
et al. 2015; Hu et al. 2016; Zhuang et al. 2016;
Zhou et al. 2016; Liu et al. 2016; Wang et al. 2016;
Duan and Chen 2016; Dai et al. 2016; Yu et al.
2016; Ratz et al. 2017; Tong et al. 2017; Yang et al.
2017; Zhao et al. 2017; Wang et al. 2017; Wang
2017; Ayub and Kaul 2017; Hujie et al. 2018; Wang
et al. 2018; Wang et al. 2018; Zhang et al. 2018;
Chen et al. 2018; Wang et al. 2018; Zhai et al. 2018;
Fu et al. 2019; Huang et al. 2019; Shen et al. 2019;
Hu et al. 2019; Zhu et al. 2019; Hsu et al. 2020; Li
and Zeng 2020; Huang et al. 2020)

(Liu et al. 2010; Marquez et al. 2010; Huang et al.
2015; Tu et al. 2015; Yu et al. 2015; Zhu et al. 2015;
Wang et al. 2016; Zhou et al. 2016; Song et al.
2017; Zhu et al. 2018; Luo et al. 2018; Che et al.
2020; Tao et al. 2019; Li et al. 2019; Hu et al. 2019;
Wang et al. 2019; Gao et al. 2020; Chen et al. 2020)

(Zhang et al. 2014; Tijsen et al. 2014; Li et al. 2015;
Yang et al. 2017; Du et al. 2017; Liang et al. 2018;
Wang et al. 2018; Gu et al. 2018; Rong et al. 2018;
Zou et al. 2018; Xu et al. 2019; Liu et al. 2020;
Pulignani et al. 2020)

(Jia et al. 2014; Kostopoulou et al. 2015; Vishal et al.
2017; Xu and Xu 2017; Fang et al. 2019; Chen et al.
2019; He et al. 2019; Song et al. 2020)

(Garros et al. 2017; Song et al. 2018)

(Zhang et al. 2015; Zhong et al. 2020)

(Wu et al. 2018)

(Ezzie et al. 2012; Zeng et al. 2018)

(Huang et al. 2018)

(Luo et al. 2017; Chang et al. 2017)

(Chen et al. 2015)

(Chao et al. 2019)

(Murugaiyan et al. 2015; Ghorbani et al. 2017;
Zhang et al. 2018)

Zhang et al. 2019)

Wei et al. 2019; et al. 2020)

Li et al. 2018)

Zhang et al. 2014)

Li et al. 2019)

Rong et al. 2018)

(Liu et al. 2017)

(
(
(
(
(
(

This table includes SMAD7-regulating miRNAs from homo sapiens, mus musculus and rattus norvegicus.

(Li et al. 2014; Fu et al. 2019). Additionally, miR-181 var-
iants have been shown to regulate T cell phenotype in
autoimmune neuroinflammation by directly targeting
SMAD7 mRNA (Ghorbani et al. 2017; Zhang et al. 2018).

Many other miRNAs have been shown to regulate
SMAD7 expression (Table 1). Of note, in many cases of
miRNA-mediated SMAD7 regulation it remains unclear
which variant governs the regulation, and whether the
repression of SMAD7 expression occurs due to direct
interaction with the SMAD7 3'UTR or through inter-
mediary regulators, such as SMAD7 interacting proteins.

SMAD?7 regulation by other types of ncRNAs
In addition to miRNA-mediated regulation, SMAD7 is
subject to regulation by circRNAs, and IncRNAs.

CircRNAs, which result from backsplicing of pre-mRNAs,
regulate the expression of protein-coding transcripts
(Huang et al. 2017). CircRNAs can function as a sponge
for miRNAs, obstructing their regulatory function. In
TGF-B signaling, circRNA cESRP1 protects SMAD7 from
downregulation by sponging miR-93-5p (Huang et al.
2020). Furthermore, Circ-LARP4 has been found to posi-
tively regulate SMAD7 expression in non-small-cell lung
cancer (Shi et al. 2020).

Finally, IncRNAs have also been attributed with
SMAD7? regulatory functions. For example, linc-SMAD7
increases SMAD7 expression by sponging SMAD7-tar-
geting miR-125b (Song et al. 2018). Other instances in
which IncRNAs were found to influence SMAD7 expres-
sion are summarized in Table 2.
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Table 2. LncRNA that positively and negatively regulate SMAD?7.

IncRNA Effect on SMAD7 expression level

Mechanism Reference(s)

Erbb4-IR Down
Linc-SMAD7 Up
COL1A2-AS1 Up
PRINS Up
MEG3 Up
XIST Up
HOTAIR Up
Lnc-Ang362 Down
SNHG6 Down

Transcriptional repression of SMAD7

MiIRNA sponge for miR-125b

MiIRNA sponge for miR-21

Unknown mechanism

Unknown mechanism

Reciprocal repression between miR-92b and XIST.
Inhibition of miR-17-5p

Transcriptional repression

Binding UPF1, a negative regulator of SMAD7

(Feng et al. 2018)
(Song et al. 2018)
(Nong et al. 2018)
(Jiao et al. 2019)
(Xu and Xu 2017)
(Zhuang et al. 2016)
(Wei et al. 2017)
(Chen et al. 2020)
(Chang et al. 2016)

Control of SMAD7 by post-translational
modifications

SMAD? is also known to be extensively regulated by
post-translational modifications (PTMs) such as methy-
lation, ubiquitination, acetylation and phosphorylation
(Figure 4), which are discussed in more detail below (Xu
et al. 2016).

Methylation

Methyltransferases are able to transfer methyl groups
to histones, but are also able to target a variety of non-
histone proteins, including SMAD7. Histone-lysine N-
methyltransferase SET9 promotes TGF-B signaling by
methylating SMAD?7. This methylation of SMAD?7 signifi-
cantly increased the interaction with E3 ubiquitin ligase
Arkadia (also termed RNF111), facilitating SMAD7 ubig-
uitination and proteasomal degradation (Elkouris et al.
2016). SMAD?7 is also a substrate for PRMT1, another
methyltransferase (Inamitsu et al. 2006; Katsuno et al.
2018). Arg-57 and Arg-67 methylation of SMAD7 by
PRMT1 led to lowered TPRI-binding efficiency and
increased degradation of SMAD7. Taken together, these
results indicate that methylation of the SMAD7 protein
promotes its degradation.

Phosphorylation

In R-SMADs and SMADA4, the linker region is a target for
phosphorylation by a large variety of serine/threonine
kinases such as mitogen-activated protein kinases
(MAPKs), extracellular-signal regulated kinase (ERK), Jun
N-terminal kinase (JNK) and p38 kinase (p38) (Kamato
et al. 2013). Linker region phosphorylation of R-SMADs
regulates SMAD stability, activity and nuclear transport
(Matsuzaki 2011). SMAD?7 is subject to serine phosphor-
ylation in the linker region, at S249 (Figure 4).
Phosphorylation at this site does not inhibit SMAD7
regulatory function in TGF-$ or BMP signaling, but does
affect SMAD7-dependent  transcriptional  activity
(Pulaski et al. 2001). Conversely, linker region

phosphorylation at S206, directly adjacent to the PY
motif, increases binding affinity between SMAD7 and
the WW4 domain of E3 ubiquitin ligase WWP2 (Wahl
et al. 2019). Besides serine phosphorylation, SMAD7 can
also become phosphorylated at T354 (Casado
et al. 2013).

Ubiquitination

Ubiquitination (also called ubiquitylation) is a crucial
regulator of protein stability. This reversible protein
modification occurs through an enzymatic cascade per-
formed in succession by ubiquitin-activating enzymes
(E1s), ubiquitin-conjugating enzymes (E2s), and ubiqui-
tin ligases (E3s). The key regulatory roles of E3 ligases in
TGF-B signaling have been previously reviewed
(Imamura et al. 2013). Here, we highlight two vital E3s
that regulate SMAD7 stability. Arkadia is an E3 ligase
that promotes TGF-f signaling by inducing polyubiqui-
tination and degradation of SMAD7 (Koinuma et al.
2003). E3 ubiquitin ligase atrophin 1-interacting protein
4 (AIP4) (also termed ITCH) was shown to positively
regulate TGF-B signaling via SMAD7 ubiquitination and
subsequent degradation (Park et al. 2015). However,
AlIP4 is also able to affect SMAD7 function independent
of its catalytic activity. A catalytic mutant of AlP4 stabil-
izes the SMAD7-TBRI complex, effectuating TGF-f sig-
naling inhibition (Lallemand et al. 2005). Furthermore,
in an extensive mass spectrometry experiment, SMAD7
was found to be ubiquitinated at K101. However, the
functional effect of ubiquitination at this site remains
unknown (Akimov et al. 2018).

An important SMAD? function is its role as adaptor
for E3 ligase SMURF2. SMAD7 recruits SMURF2 to the
cell membrane in order to induce TBRI degradation by
means of ubiquitin-mediated proteolysis (Kavsak et al.
2000). Conflicting results have been described on
whether SMAD? itself is a target for ubiquitination by
SMURF2. Kavsak et al. showed increased SMAD7 deg-
radation upon overexpression of SMURF2 (Kavsak et al.
2000). In contrast, Zhang et al. report physical inter-
action between SMURF2 and SMAD7 but no evidence
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Figure 4. Schematic representation of SMAD7 including identified post-translational modifications. PY, proline-tyrosine motif;

MH2, Mad homology 2 domain; L3/38, L3/B8 loop-strand module.

for SMURF2-mediated ubiquitination and degradation
of SMAD7 (Zhang et al. 2001). More recent reports,
however, again suggest a role for SMURF2 in SMAD7

proteasomal degradation (Zhao et al. 2016; Liu
et al. 2017).
Deubiquitination

Emerging players in the field of SMAD7 regulation are
deubiquitinating enzymes (DUBs). In 2004, associated
molecule with the SH3 domain of STAM (AMSH2) was
discovered to interact with SMAD7 and to positively
regulate TGF-B signaling (lbarrola et al. 2004).
Moreover, CYLD deubiquitinates SMAD7 at K360 and
K374 and thereby negatively regulates TGF-B-induced
TAK1 kinase activity in CD4+ T cells (Zhao et al. 2011).
Ubiquitin-Specific Peptidase 26 (USP26) has been found
to deubiquitinate and thereby stabilize SMAD7, result-
ing in reduced TGF-B signaling (Kit Leng Lui et al.
2017). Similarly, OTU Deubiquitinase 1 (OTUD1) cleaves
polyubiquitin chains from SMAD7 K220, exposing the
PY maotif. This in turn enables SMURF2 binding and pro-
motes receptor turnover (Zhang et al. 2017).

Acetylation

SMADY?7 stability is regulated by acetylation and the con-
sequential competition between this modification and
ubiquitination (Gronroos et al. 2002). SMAD7 interaction
with transcription coactivator and acetyltransferase
p300 leads to its acetylation at two N-terminal lysines
(K64 and K70), preventing ubiquitination at these sites.
Additionally, HDAC1-mediated deacetylation of SMAD7

decreases SMAD?7 stability by enhancing its ubiquitina-
tion and subsequent degradation in the proteasome
(Simonsson et al. 2005). In accordance with these find-
ings, Monteleone et al. demonstrated that SMAD7 is
not transcriptionally regulated in the human gut.
Rather, SMAD7 is post-translationally stabilized by
p300-mediated acetylation (Monteleone et al. 2005).
Taken together, these results suggest that SMAD7 sta-
bility is regulated by acetylation and ubiquitination in a
mutually exclusive manner.

Protein interactions govern SMAD?7 stability and
activity

Another manner of SMAD7 regulation is via protein-
protein interactions. E3 ubiquitin ligase SMURF1 directly
binds SMAD7 and facilitates cytoplasmic localization of
SMAD?7, targeting SMAD7 to the plasma membrane
through its N-terminal C2 domain. This enables nega-
tive regulation of TGF-B signaling independent of its
catalytic function (Suzuki et al. 2002). SMAD7 can also
be regulated by direct interaction with other proteins,
such as Vpr binding protein (VprBP) and REGy. VprBP
was found to interact with SMAD7 to promote SMAD7-
SMURF1-TBRI complex formation (Y et al. 2020).
Conversely, REGy, a member of the 11S proteasome
activators, binds to SMAD7 in order to promote its turn-
over (Jiao et al. 2020a). The microtubule actin crosslink-
ing factor 1 (MACF1), a protein highly abundant in
bone tissue, has been identified as a SMAD?7 interaction
partner in mesenchymal stem cells. MACF1 facilitates
SMAD7 nuclear translocation to promote osteogenic
differentiation (Zhao et al. 2020).
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Figure 5. SMAD? is regulated by and regulates various signaling pathways. In the Wnt signaling pathway, SMAD7 regulates the
activity and stability of B-catenin by functioning as a SMURF2 adaptor. Similarly, SMAD7 can affect NFkB signaling by inhibiting
phosphorylation and degradation of 1kB and disrupting recruitment of the TAK1 complex to TRAF2. SMAD7 expression can be
positively regulated by inflammatory cytokines such as TNF-o and IFN-y, and YAP/TAZ, effectors in the Hippo signaling pathway.
Lastly, SMAD7 expression is positively requlated by laminar shear stress, UV light, TPA and EGF. SMAD?7 is also important for JNK
and p38 activation. ERK, Extracellular-signal-regulated kinase; JAK, Janus kinase; JNK, c-Jun N-terminal kinase; NFxB, Nuclear factor
kappa B; STAT, Signal transducer and activator of transcription; TAK, TGF-B-activated kinase; TAZ, Tafazzin; TRAF, TNF receptor-

associated factor; YAP, Yes-associated protein.

As discussed, SMAD?7 requires interaction with other
proteins in order to successfully antagonize TGF-f and
BMP signaling. For instance, SMAD7 recruits E3 ubiqui-
tin ligases, such as NEDD4L and SMURF1/2 to induce
receptor polyubiquitination and degradative endocyto-
sis (Kavsak et al. 2000; Ebisawa et al. 2001; Kuratomi
et al. 2005). SMAD7 activity can, therefore, be regulated
by competition for its binding partners. For example,
SMURF2 establishes mutually exclusive complexes with
SMAD7 or RNF11 (Malonis et al. 2017). Accordingly,
RNF11 regulates SMAD7 activity by sequestering
SMURF2 at the cell membrane. Moreover, c-SRC-medi-
ated phosphorylation of SMURF2 at W14 and W434 was
found to reduce SMAD7 binding, enhance intramolecu-
lar interactions within SMURF2, and result in inhibition
of SMURF2 activity (Sim et al. 2019).

In addition to being a target for deubiquitination,
several DUBs interact with SMAD7 to regulate the TGF-
B signaling pathway (Herhaus and Sapkota 2014). Both
USP11 and USP15 are able to bind to SMAD7 to deubi-
quitinate and stabilize the TPBRI, enhancing signaling
TGF-B signaling (Al-Salihi et al. 2012; Eichhorn et al.
2012). Moreover, SMAD7 recruits ubiquitin C-terminal
hydrolase 37 (UCH37) to antagonize the SMURF-medi-
ated ubiquitination and subsequent degradation of the

TBRI (Wicks et al. 2005; Cutts et al. 2011). Taken
together, these studies indicate that DUBs can counter-
act SMADY function at the receptor level.

In conclusion, SMAD?7 functioning is in part depend-
ent on interaction with interaction partners, such as
SMURF1/2 and is affected by competition for and modi-
fication of these interaction partners.

SMAD?7 as signaling integrator

At any given moment, cells receive a multitude of sig-
nals simultaneously that are integrated to determine
cell shape and function. A single pathway is often con-
nected at different steps with other pathways, resulting
in complicated signaling networks that allow for appro-
priate spatio-temporal responses. SMAD7 is an import-
ant regulatory TGF-B signaling component by which
signaling crosstalk is achieved. Initially identified in
endothelial cells as a shear stress-inducible gene
(Topper et al. 1997), SMAD7 is a potent antagonist of
TGF-B and BMP signaling. SMAD7 expression is induced
by TGF-B and BMP stimulation, and thereby participates
in a negative feedback loop controlling the duration
and intensity of the TGF-B family signaling response
(Nakao et al. 1997). Efficient induction of SMAD7 by



TGF-B, however, depends on various transcription fac-
tors and cofactors, such as activator protein 1 (AP-1),
stimulating protein-1 (Sp1), transcription factor mE3
(TFE-3) , activating transcription factor 2 (ATF2), CBP/
p300 and Forkhead box H1 (FOXH1) (Brodin et al. 2000;
Hua et al. 2000; Uchida et al. 2001; Jungert et al. 2006;
Gohla et al. 2008). Many of these factors are regulated
by other signaling cascades besides TGF- as well.
Moreover, SMAD7 expression can be induced by epi-
dermal growth factor (EGF), human epidermal growth
factor receptor 2 (HER2/Neu), UV irradiation, and TPA
(Afrakhte et al. 1998; Quan et al. 2001; Dowdy et al.
2003; Tsunobuchi et al. 2004). Thus, this suggests a role
for SMAD7 as integrator and crosstalk mediator
between TGF-f signaling and other signaling pathways.
Here, we provide a comprehensive overview of SMAD7
as a signaling integrator.

EGFR signaling and the MAPK/ERK pathways

Crosstalk between TGF-B and other signaling pathways
was originally demonstrated by the discovery that EGF
increased the expression of SMAD7 mRNA (Afrakhte
et al. 1998). The EGF receptor (EGFR) belongs to the
receptor tyrosine kinase (RTK) family and is activated by
various ligands, including EGF and TGF-a. Luwor et al.
reported that EGFR-induced desensitization to TGF-J is
dependent on signal transducer and activator of tran-
scription (STAT)3-mediated SMAD7 promoter activation
(Luwor et al. 2013). On the other hand, SMAD7 regu-
lates EGF signaling as well. SMAD7 sequesters E3 ubi-
quitin ligase c-Cbl, thereby inhibiting ligand-induced
EGFR ubiquitination and proteasomal degradation in
human HaCaT keratinocytes (Ha Thi et al. 2015).
Similarly, SMAD7 overexpression stimulates EGFR-sig-
naling activation and its downstream signaling in skin
carcinogenesis (Ha Thi et al. 2019).

Mitogen-activated protein kinases (MAPKs), including
ERK1/2, JNK1/2/3, and p38/MAPKs, are serine-threonine
kinases and essential mediators of intracellular signaling
events involved in regulating cellular processes related
to proliferation, differentiation, survival, and death in
response to a diverse array of stimuli. Extracellular stim-
uli, such as EGF, can prompt a phosphorylation cascade
from MAP kinase kinase kinase (MAPKKK) to MAP kinase
kinase (MAPKK), and ultimately MAPK (Pearson et al.
2001). ERK1/2, JNK1/2/3, and p38 MAPK have all been
implicated in the transcriptional regulation of SMAD7
(Figure 5) (Brodin et al. 2000; Uchida et al. 2001; Dowdy
et al. 2003). In turn, SMAD? itself regulates MAPK signal-
ing. Transient and stable SMAD7 expression leads to
sustained JNK activation, potentiating apoptosis
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(Mazars et al. 2001). Moreover, SMAD7 expression is
critical for TGF-B-induced activation of MKK3 and p38
kinases (Edlund et al. 2003). Thus, SMAD7 expression is
regulated by EGFR and all MAPK branches and, in turn,
SMAD?7 influences EGFR and MAPK signaling.

The IL, TNF, and IFN-y pathways

Interleukines (ILs), tumor necrosis factor-alpha (TNF-a),
and interferon-gamma (IFN-y) are secreted factors that
regulate important immune responses, by signaling
through the NF-xB and just another kinase (JAK)/STAT
pathways in receiving cells. Upon IL- or IFN-y receptor
binding, JAK becomes activated by transphosphoryla-
tion and in turn phosphorylates STAT proteins on tyro-
sine residues. Subsequently, STAT proteins disassociate
from the receptor, dimerize and translocate into the
nucleus (Rawlings et al. 2004). TNFa can trigger activa-
tion of NF-kB proteins, including p50, p52, RelA/p65,
and RelB, by inducing degradation of the IxB protein.
After entering the nucleus, these activated NF-kB pro-
teins function as transcription factors (Figure 5)
(Napetschnig and Wu 2013).

Crosstalk between SMAD7 and the
pathway

The TGF-$ and IFN-y signaling pathways often have dis-
tinct opposite effects and reciprocally inhibit each
other, for example in the regulation of inflammatory
responses. Through JAK1 and STATT1, IFN-y induces the
expression of SMAD7, thereby preventing the inter-
action of SMAD3 with the TPRI (Ulloa et al. 1999).
Further investigation of IFN-y-mediated reduction of
TGF-B signaling showed that Y-box protein-1 (YB-1)
activation by JAK1 is necessary for IFN-y-mediated
upregulation of SMAD7 (Dooley et al. 2006). YB-1 binds
directly to a recognition site in the SMAD7 promoter to
induce transcription. Moreover, IL-6 treatment results in
STAT3-dependent transcriptional induction of SMAD? in
gp130Y7>"FY757F mice (Jenkins et al. 2005).

IFN-y/STAT

Crosstalk between SMAD7 and TNF-o/NF-xB
signaling

The proinflammatory cytokines TNF-a and IL-18 induce
SMAD7 expression in an NF-xB/RelA-dependent man-
ner in mouse fibroblasts (Bitzer et al. 2000). However,
activation of NF-xB by TNF-a stimulation was shown to
inhibit the SMAD7 promoter in HEK293 cells. This inhib-
ition could be reversed by overexpression of the tran-
scription co-activator p300, indicating that NF-xB
regulates SMAD7 expression by competition for the

common transcription coactivators (Nagarajan et al.
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2000). How SMAD? transcription is modulated by NF-xB
might therefore be dependent on the cellular context.
Transmembrane protein CD40, member of the TNF-
receptor superfamily, promotes SMAD7 expression
through the NF-xB pathway (Patil et al. 2000).
Conversely, SMAD7 has been reported to have an anti-
inflammatory effect by affecting NF-kB signaling.
SMAD7 could promote expression of IkB, a specific
inhibitor of NF-xkB (Wang et al. 2005). Similarly, in colon
cancer cells, SMAD7 can inhibit the phosphorylation
and degradation of IkB (Grau et al. 2006). Another
mechanism through which SMAD7 can regulate NF-kB
signaling is by formation of SMAD7-TGF-B-activated kin-
ase (TAK1)-binding protein (TAB)2 and SMAD7-TAB3
complexes, disrupting recruitment of the TAK1 complex
to TNF receptor-associated factor 2 (TRAF2), and
thereby blocking propagation of proinflammatory sig-
nals (Figure 5; Hong et al. 2007).

Whnt signaling

The Wnt signaling pathway initiates when a Wnt-pro-
tein ligand binds to a Frizzled family receptor, trigger-
ing intracellular signaling cascades via the Disheveled
protein. Canonical Wnt signaling leads to transcriptional
regulation of target genes via the nuclear translocation
of B-catenin, an essential mediator of this pathway
(Clevers and Nusse 2012). Edlund et al. demonstrated
physical interaction between SMAD7 and [-catenin
(Edlund et al. 2005). Additionally, SMAD7 has been
shown to bind B-catenin and thereby promote its deg-
radation through SMURF2-mediated ubiquitination
(Han et al. 2006). Axin, a key component of the canon-
ical Wnt pathway, suppresses Wnt signal transduction
by promoting B-catenin degradation. SMAD7 can bind
to Axin in order to stabilize B-catenin (Tang et al. 2008).
Conversely, Axin can function as a scaffold protein in
TGF-B signaling by formation of a multimeric complex
with SMAD7 and Arkadia. This promotes SMAD7 turn-
over via proteasomal degradation (Liu et al. 2006).
Lastly, Yanagida et al. found that supplementing
exogenous Dickkopf-related protein (Dkk), a Wnt antag-
onist, increased SMAD7 expression in a liver fibrosis
mice model (Yanagida et al. 2011). These results indi-
cate an intimate relationship between SMAD7 and Wnt/
[-catenin signaling.

Hippo signaling

The evolutionarily conserved Hippo pathway is charac-
terized by a kinase cascade, where, in mammals,
Macrophage-stimulating protein (MST)1 and 2 and

scaffold protein SAV1 form a complex in order to phos-
phorylate and activate Large tumor suppressor kinase 1
(LATS)1 and 2. In turn, LATS1 and 2 phosphorylate and
inhibit two important downstream effectors of the
Hippo pathway; Yes-associated protein (YAP) and
Tafazzin (TAZ) (Meng et al. 2016). YAP is able to
enhance TGF-B signaling inhibition by facilitating
recruitment of SMAD?7 to the TBRI (Ferrigno et al. 2002).
In human skin dermal fibroblasts, YAP/TAZ have been
found to inhibit TGF-B signaling by promoting SMAD7
expression via transcription factor AP-1 (Qin et al. 2018).
Moreover, loss of tumor suppressor Merlin, an upstream
activator of the Hippo signaling pathway, leads to unre-
strained YAP/TAZ activity and is concordant with
decrease of SMAD7 expression (Mota et al. 2018).

Notch signaling

The Notch signaling pathway is important for regula-
tion of cell differentiation, proliferation, and cell death.
The Notch receptor is a cell-surface receptor that trans-
duces signals by interacting with transmembrane
ligands, such as Delta-like and Jagged, on juxtaposed
cells (Siebel and Lendahl 2017). Tsai et al. determined
that SMAD? is a Notch signaling target in limbal epithe-
lial stem cells, and propose that it may facilitate the
function of Notch in mitigating EMT (Tsai et al. 2014).
Additionally, Notch signaling activation was found to
be essential for maintaining vascular endothelial
growth factor (VEGF)165-induced SMAD7 expression in
endometrial stromal cells (Lv et al. 2019).

The ATM-dependent DNA damage signaling
pathway

As with ultraviolet (UV) light, radiation therapy can
induce SMAD7 mRNA (Kruse et al. 2009). Upon TGF- B
stimulation, SMAD?7 is able to affect the ataxia-telangi-
ectasia mutated (ATM)-dependent DNA damage path-
way by acting as a scaffold protein to facilitate
interaction between p38 MAPK, ATM and p53, thereby
promoting their activation. SMAD7 was found to coloc-
alize with H2A histone family member X (yH2AX) in
DNA damage foci. Moreover, SMAD7 is necessary for
proper TGF-B induced cell cycle arrest (Zhang et al.
2006). Consistent with these results, Park et al. demon-
strated that SMAD7 promotes the interaction between
ATM and Nibrin (NBN, also termed NBS1), enhancing
DNA repair (Park et al. 2015). Furthermore, SMAD7
localizes to irradiation-induced double strand breaks
(Wang et al. 2013). These results indicate a role for
SMAD? in facilitating DNA damage repair.



In summary, SMAD?7 is subject to regulation by a
myriad of pathways, integrating information from many
extracellular stimuli (Figure 5). Accordingly, targeting
SMAD7 for therapeutic intervention might produce
undesirable outcomes in patients, because of the high
degree of connectivity between pathways and the inte-
gral role of SMAD7 in a multitude of ways.

Physiological roles of SMAD7 in health and
disease

Since the discovery of SMAD7, much research has been
conducted to uncover its biological functions in the
context of human diseases. In this section, we discuss
what genetic studies, in mice and humans (if available),
and recent biochemical studies have revealed about
the physiological role of SMAD7 in fibrosis, cancer, and
inflammatory bowel disease. We also discuss opportuni-
ties for therapeutic intervention by targeting SMAD?7.

Fibrosis

Genetic studies in mice

TGF-B signaling is an important signaling pathway in
tissue fibrosis (Hu et al. 2018). Across numerous fibrosis
models, expression or disruption of SMAD7 resulted in
reduced or enhanced fibrosis in mice respectively
(Nakao et al. 1999; Dooley et al. 2008; Hamzavi et al.
2008; Chung et al. 2009; He et al. 2009). Pancreatic
fibrosis is a characteristic hallmark of chronic pancrea-
titis. Upon induction of chronic pancreatitis, mice with a
deficiency in exon | of SMAD7 (SMAD7AET1) showed a
more severe response characterized by an enhanced
accumulation of extracellular matrix (ECM), an increased
number of mesenchymal cells, and enhanced infiltra-
tion of inflammatory cells (Li et al. 2016). Taken
together, these mice studies suggest a protective func-
tion of SMAD?7 in fibrosis in various organs through
inhibition of profibrogenic TGF-f signaling.

Human biological studies

Recent research using human endometrial tissue sup-
ports the view of SMAD7 as a protective factor in fibro-
genesis. It was reported that SMAD7 and Notch are
essential downstream molecules for VEGF165 function-
ing in endometrial fibrosis. VEGF165 reverses TGFf1-
stimulated fibrotic gene expression. However, this pro-
tective effect is SMAD7-dependent (Lv et al. 2019).
Collectively, these recent studies provide evidence for
the perceived protective role for SMAD7 in fibrotic
disease.
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Cancer

Genetic studies in mice

The role of SMAD7 in cancer growth and progression
has been previously reviewed (Stolfi et al. 2013). TGF-B
signaling has a dual role in tumor initiation and pro-
gression. In early stages, TGF-B signaling functions as a
tumor suppressor. However, in later stages aberrant
TGF-B signaling can facilitate EMT, migration, invasion
and metastasis (Massagué 2008). In a mouse model for
squamous cell carcinoma (SCC), SMAD7 enhanced kera-
tin 8, a marker of malignant conversion (Liu et al. 2003).
Contrarily, transgenic expression of SMAD7 was found
to reduce 12-O-tetradecanoylphorbol-13-acetate (TPA)-
induced hyperplasia in mouse skin (Hong et al. 2007).
1205Lu melanoma cells with stable SMAD7 overexpres-
sion showed diminished ability to form tumors by xeno-
graft experiment in nude mice (Javelaud et al. 2005).
Moreover, these mice demonstrated prolonged survival
and significantly less bone metastasis (Javelaud et al.
2007). Additionally, SMAD7wt transgenic mice showed
significantly greater papilloma formation, compared to
control and SMAD7mut mice (Ha Thi et al. 2019), while
conditional SMAD7 deletion led to highly proliferative
and invasive cells and sustained melanoma growth and
metastasis (Tuncer et al. 2019). Taken together, these
contrary results highlight the complicated, context-
dependent role of both SMAD7 and the TGF-f pathway
in cancer.

SMAD?7 overexpression has been shown to inhibit
carcinogenesis and metastasis under certain conditions.
In murine osteosarcoma and breast cancer models,
SMAD?7 overexpression resulted in a decrease in metas-
tasis and longer survival, compared to control mice
(Azuma et al. 2005; Lamora et al. 2014). Wang et al.
showed that SMAD7 KO mice were more susceptible to
N-nitrosodiethylamine (DEN)-induced hepatocellular
carcinoma (HCC) than their wild-type counterparts
(Wang et al. 2013). Adenoviral overexpression of
SMAD?7? in SCC cells inhibited growth of xenografts in
severe combined immunodeficient (SCID) mice
(Leivonen et al. 2006). Similarly, SMAD7 expression in
CD4" T cells was found to prevent colitis-associated
colorectal cancer due to increased expression of IFNy
(Rizzo et al. 2011). Even independent of chronic inflam-
mation, T-cell-specific overexpression of SMAD7-pro-
tected mice against tumor development (Rizzo
et al. 2014).

Conversely, SMAD7 is also able to promote cancer
initiation and progression. It has been reported that
SMAD?7 overexpression in colon adenocarcinoma cells
induces tumorigenicity (Halder et al. 2005). Knockdown
of SMAD7 using antisense oligonucleotide resulted in
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reduced tumor growth in RAG1-/- mice (Stolfi et al.
2014). Moreover, SMAD7 promotes hepatic metastasis
in CRC (Halder et al. 2008). Transgenic pancreas-specific
expression of SMAD7 induced premalignant ductal
lesions in mice (Kuang et al. 2006). Hepatocyte specific
deletion of SMAD7 revealed that SMAD7 inhibits IL-6
production in hepatocellular carcinoma, thereby
decreasing STAT3 signaling and accelerating tumor
growth (Feng et al. 2017). In bronchiolar exocrine cells,
present in the mouse airway, constitutively expressed
SMAD? increased incidence of urethane-induced lung
cancer (Luo et al. 2010). Altogether, these studies illus-
trate a complex, multifaceted role of SMAD7 in
tumorigenesis.

Genetic studies in humans

In 2007, researchers first demonstrated the importance
of SMAD?7 in colorectal cancer (CRC) in a genome-wide
association study (GWAS) (Broderick et al. 2007). They
showed significant association between single nucleo-
tide polymorphism (SNP) rs4939827 of SMAD7 and CRC.
Two other SNPs (rs4464148 and rs12953717) were
shown to confer modest susceptibility to CRC (Tenesa
et al. 2008). In 2014, Fortini et al. discovered four
SMAD7 NSPs (rs6507874, rs6507875, rs8085824, and
rs58920878) that were in linkage disequilibrium with
rs4939827 (Fortini et al. 2014). In normal colon tissues,
the SNP rs8085824 C (minor) allele was found to correl-
ate with increased SMAD7 expression. The discovery of
these SNPs sparked a new line of investigation into the
pathogenesis of CRC, however the functional signifi-
cance of SMAD?7 variants is not yet clear and provides
avenues for future research.

Human biological studies

As in in vivo experiments, in vitro research demonstrates
a dual role for SMAD7 in cancer initiation and progres-
sion. SMAD7 is commonly upregulated in CRC tissue
compared to healthy adjacent tissue and SMAD?7 inhib-
ition causes a block in the S phase of the cell cycle,
resulting in reduced CRC cell growth in vitro (Stolfi et al.
2014). It was discovered that SMAD7 inhibition pro-
motes phosphorylation and activation of the eukaryotic
Initiation Factor 2o (elF2a) pathway via serine-threo-
nine protein kinase RNA (PKR), leading to enhanced cell
death (De Simone et al. 2017).

Conversely, Kruppel-like factor 4 (KLF4) overexpres-
sion inhibits TGF-B-induced cell migration and invasion
by enhancing SMAD?7 transcription in HCC cells (Sun
et al. 2017). In glioblastoma (GBM), HECT-domain ubiqui-
tin ligase HERC3 induces ubiquitination-mediated deg-
radation of SMAD7, resulting in TGF-f pathway

activation. HERC3-induced downregulation of SMAD7
potentiated TGF-B-induced EMT and was linked to temo-
zolomide chemoradiotherapy resistance in GBM cells (Li
et al. 2019). Furthermore, it has been reported that REGy,
the gamma subunit of the 11S regulator, regulates EMT,
by mediating ubiquitin-independent degradation of
SMAD?7 in human lung cancer cells (Tong et al. 2020).
Moreover, REGy has been found to mediate anaplastic
thyroid cancer (ATC)-associated dedifferentiation via
SMAD7 degradation (Jiao et al. 2020b).

Taken together, these studies suggest that SMAD7
is critical in several cancer hallmarks such as cell death
resistance, EMT and altered cellular identity, as well as
drug resistance and provide rationale for use of TGF-B
inhibitors in (late stage) cancer treatment. However,
careful patient selection is warranted in order to
ensure the maximum benefit and limit adverse effects.

Inflammatory bowel disease (IBD)

Genetic studies in mice

Inflammatory bowel disease (IBD) is characterized by
aberrant TGF-B signaling (lhara et al. 2017). High
expression of SMAD7 in CD4" T Cells was associated
with severe colitis. Recombination activating gene 1
(RAG1)-/- mice reconstituted with SMAD7tg cells dis-
played more pronounced mucosa hyperplasia and dras-
tic loss of goblet cells (Fantini et al. 2009). Moreover,
transfer of SMAD7-overexpressing T cells was inversely
correlated with aryl hydrocarbon receptor (AhR) expres-
sion and IL-22 production (Monteleone et al. 2016).
Recently, a study reported that a short splice form of
CYLD (sCYLD) mediates K63-linked ubiquitination and
nuclear translocation of SMAD7 in CD4™ T cells, inhibit-
ing TGF-B signaling. Furthermore, regulatory T (Treg)
cells from sCYLD"/SMAD7* mice failed to prevent the
induction of adoptive transfer induced colitis in RAG1”"
mice (Tang et al. 2019). In addition, dendritic cell (DC)-
specific deletion of SMAD7 enhances TGF-f} responsive-
ness and expression of programmed death ligand
(PDL)1/2, and promotes Treg differentiation, mediating
intestinal inflammation in mice (Garo et al. 2019). Sedda
et al. demonstrated a novel reciprocal regulatory mech-
anism between SMAD7 and class Il NAD+-dependent
deacetylase SIRT1 in the gut using a SMAD7? transgenic
mouse model (Sedda et al. 2018), adding further
nuance to the regulation of SMAD7 in IBD.

SMAD7 antisense oligonucleotide (AON) treatment
in inflammatory bowel disease

For the better part of two decades, the scientific com-
munity has followed the development of AON



treatment in various diseases, including IBD (Scarozza
et al. 2019). It was reported that SMAD7 AON treatment
could potentially restore the endogenous TGF-f3 signal-
ing pathway and attenuate IBD (Boirivant et al. 2006). In
2014, Celgene Corporation acquired Mongersen (GED-
301), a SMAD7 specific AON-containing medication,
from Nogra Pharma as a late stage candidate in CD.
However, despite encouraging results in pre-clinical
and early clinical trials, the phase lll clinical trial was
prematurely terminated due to lack of efficacy
(Ardizzone et al. 2016; Sands et al. 2019). Interestingly,
early clinical trials were designed without a control arm
(Monteleone et al. 2012; Zorzi et al. 2012; Feagan et al.
2018). However, as the placebo response rate in induc-
tion and maintenance trials in CD trials were reported
at 28% (95% Cl 24-32%) and 26% (95% Cl 24-32%)
respectively, this demonstrates that it is crucial to
establish appropriate controls to exclude placebo effect
(Jairath et al. 2017). As CD is a relapsing-remitting dis-
ease, it is much more difficult to study than continuous
and progressive inflammatory disease. Additionally,
between phase Il and phase lll, there were several not-
able differences (Bewtra and Lichtenstein 2020).
Patients in the phase-ll study were enrolled from select
Italian centers, and therefore, there is a risk that those
results might not translate into favorable outcomes in
phase Il by enrolling a more heterogeneous population
of patients from 34 countries. Moreover, the discrep-
ancy in study results between the two trials, despite
their similar primary endpoints, could be due to distinct
inclusion criteria. Ultimately, these disappointing results
serve to emphasize the importance of careful trial
design and nuance the perspective of SMAD7 as a drug
target in IBD.

Conclusion and perspectives

TGF-B signaling is involved in cell proliferation, differen-
tiation, survival and death across all metazoans. SMAD7,
an I-SMAD, negatively regulates TGF-3 and BMP signal-
ing through various mechanisms. Similar to R- and Co-
SMADs, SMAD7 contains a conserved MH2 domain,
enabling type | receptor and R-SMAD interaction.
Conversely, its N-terminal region shares limited similar-
ity with R- and Co-SMADs. Of note, the SMAD7 PY motif
is critically important to mediate type-l receptor deg-
radation. Overall, it may be said that the structure of
SMAD?7 underpins its functional divergence, and allows
for efficient inhibition of TGF-B and BMP signaling.
SMAD?7 is regulated at the transcriptional, post-tran-
scriptional and post-translational level, and is subject to
a number of PTMs. As the functional relevance of these
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PTMs is often unclear, this provides avenues for future
research. Recently, there has been a marked increase in
research addressing the regulation of SMAD7 by
ncRNAs. However, how these ncRNAs regulate SMAD7
expression, whether through direct interaction or regu-
lation of an intermediary protein often remains
unknown. In addition to its role in TGF-3 and BMP sig-
naling, SMAD?7 is an important integrator and crosstalk
mediator between TGF-f} signaling and other signaling
pathways, such as MAPK signaling. Since SMAD7 can
affect many cellular processes, both by antagonizing
TGF-B signaling and by facilitating crosstalk with other
signaling pathways, it may be interesting, for instance,
to investigate the SMAD?7 interactome and PTMs in dif-
ferent cell types. This could lead to a more in depth
understanding of how such signaling diversity can be
accomplished by SMAD?. This inhibitory SMAD plays an
integral role in health and disease and is, among others,
important in cancer, fibrosis and IBD. Nonetheless,
results from recent clinical trials have painted a more
nuanced view of the future of SMAD7 targeting AON
in CD.
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