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ABSTRACT 

Female mate choice is a significant driving force of evolutionary change and can explain 

the evolution of exaggerated male traits and/or displays, and dimorphism between the 

sexes. Females are thought to choose mates based on the greatest provision of direct or 

indirect benefits. Despite this, we often still see substantial individual variation in female 

mate choice behaviours both within and across populations. Recent studies suggest that 

female mate choice is a complex decision-making process that involves many context-

dependent factors. However, the precise sources of this variation, such as previous 

mating experience, are not completely understood. In Drosophila melanogaster, mating 

can be harmful and have costly effects on a female's lifetime fitness. As such, sexual 

conflict theory predicts that females may make trade-offs in their mate choice decisions 

to balance the direct costs and indirect benefits associated with mating. In this thesis, I set 

out to understand if the harmfulness of a previous mating experience influences a 

female's subsequent mate choice behaviours. In chapter two of this thesis, I assessed the 

effect of male exposure on female fitness by measuring the change in their fecundity (a 

meaningful metric of fitness) across a brief and prolonged period of exposure. In this 

experiment, we found that the degree that different males harm their mates across this 

time period largely depended on the male's genetic background. Using these results, I was 

able to quantify the harmfulness of 26 male hemiclone lines that each possess a unique 

genetic background. In chapter three of this thesis, I used these quantified males to 

examine if the direct costs of a previous mating experience has an effect on subsequent 

female mate choice behaviours and to quantify the degree of additive genetic variation 

associated with this effect. The results of my studies suggest that females alter their mate 
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choice behaviours based on previous mating experiences, and that the degree to which 

these behaviours change has a genetic basis. I discuss how these results are significant for 

our understanding of the evolution of female mate choice, and the maintenance of 

variation in harmful male traits. 
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CHAPTER 1 

Context-dependent mate choice and its relation to sexual conflict 

Introduction 

Sexual selection, the differential success of individuals in a population associated with 

acquiring and securing mates, often leads to the evolution of exaggerated traits and/or 

displays in males and dimorphism between males and females of the same species 

(Darwin, 1891; Andersson, 1994).  This differential success can be the outcome of intra-

sexual selection (competition for access to mates, typically male-male) and/or inter-

sexual selection (choice of mates, typically by females). In many species, females exhibit 

mate choice as an evolutionary means of selecting a mate whom yields the greatest 

benefits towards her lifetime reproductive success(Kokko et al., 2003). These benefits 

may directly improve a female’s fitness such as through the provision of nuptial gifts, 

parental care and protection (Heywood, 1989), or may indirectly do so by transmitting 

“good genes”, resulting in offspring with increased attractiveness and/or survivability 

(Kirkpatrick, 1996).  

 Since Darwin's time, questions as to how and why mate choice evolves have been 

vigorously debated (Kirkpatrick & Ryan, 1991). In the past 30 years, a large amount of 

empirical and theoretical research has improved our understanding of the underlying 

mechanisms of sexual selection and how they influence the evolution of species 

(Andersson, 1994; Jennions & Petrie, 1997; Kokko et al., 2003). Recently, the concept of 

sexual conflict has particularly sparked much interest. Sexual conflict may arise when 

males and females of the same species have different and incompatible strategies for 
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maximizing their individual reproductive success (Parker, 1979), which typically results 

in antagonistic coevolution between the sexes (Chapman et al, 2003a; Arnqvist & Rowe, 

2005). Frequently, males will evolve harmful traits to exploit females, and in response, 

females will coevolve traits to resist this harm (Arnqvist & Rowe, 2005). Although 

Darwin (1891) alluded to this concept in chapter 8 of The descent of man, and selection 

in relation to sex, it wasn’t until the explosion of sexual conflict research in the 1990s 

that these concepts were empirically demonstrated (Rice, 1992; Rowe et al, 1994; 

Arnqvist, 1997).  Ultimately, the integration of sexual conflict into sexual selection 

theory has broadened our once narrow view of mate choice. Instead of viewing mate 

choice as a process where females choose “ideal” mates to maximize benefits, biologists 

may alternatively consider if sexually antagonistic coevolution results in females 

evolving biases against harmful mates to resist the direct costs associated with mating. 

Holland & Rice (1998) first described this idea in their chase-away sexual selection 

model, wherein females evolve resistance (decreased attraction) to male displays or traits 

that are directly harmful to their lifetime fitness. As a result, males are expected to evolve 

exaggerated display traits in attempt to continuously exploit female mating thresholds 

(Holland & Rice, 1998).   

 In addition to sexual conflict, recent studies that demonstrate individual variation 

in female mate choice behaviours have broadened our understanding of the operation of 

sexual selection and its evolutionary implications (Jennions & Petrie, 1997; Widemo & 

Sæther, 1999). Traditionally, biologists have viewed female mate preferences as static 

and uniform, but empirical evidence has shown that environmental factors and individual 

genotypes can influence a female’s mate choice phenotype (Moore & Moore, 2001; Hunt 
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et al., 2005).  Collectively, these studies imply that plasticity in female mate choice 

behaviours is common (Jennions & Petrie, 1997), and may be an adaptation to mitigate 

the costliness of expending time and resources while searching for a mate (Qvarnström, 

2001). Although our understanding of the causes and consequences of individual 

variation in female mate choice has improved to date, no one has ever tested how the 

costliness of a previous mating experience (i.e. via sexual conflict) affects the expression 

of mate choice behaviours. 

 In this thesis, I performed a series of experiments in order to examine if female 

mate choice decisions are influenced by the degree of direct costs incurred from previous 

mating experiences and the social context of that encounter (amount of time exposed to 

males and genotype of mates). In this chapter, I review the relevant background literature 

on sexual conflict and individual variation in mate choice, and how these topics may be 

integrated to better understand how sexual selection operates. 

Mate choice: Preference and choosiness 

Mate choice is important in understanding the evolution of traits in many sexually 

reproducing species as it influences the reproductive success of individuals (Andersson, 

1994). Selective behaviours toward prospective mates can impact the evolution of traits 

considered to be “attractive” (Pomiankowski & Iwasa, 1998), and also accelerate the 

evolution of traits favoured by natural selection (Servedio et al., 2011). Therefore, 

quantifying a species’ mate choice behaviours can offer insight into understanding how 

and why mate choice behaviours and the traits they influence can evolve. 

  Modern evolutionary biologists typically quantify mate choice by measuring two 

components: preference and choosiness (Jennions & Petrie, 1997). Preference is defined 
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as how "attractive" an individual finds a potential mate, where "attractiveness" is 

characterized by an individual's ranking of potential mates based on their phenotypic 

traits and/or displays (Jennions & Petrie, 1997). Preference can be evaluated by placing a 

female in a scenario where she can actively choose who to mate or associate with (e.g. 

Sharon et al., 2010). On the other hand, choosiness has to do with the amount of effort or 

energy an individual is willing to put in to assess or discriminate between potential mates 

(Jennions & Petrie, 1997), which can be quantified by measuring latency before mating 

with males that vary in the intensity of a trait and/or display (e.g. Hunt et al., 2005). 

Despite the potential for fitness benefits, mate choice can be costly, particularly for 

individuals that are too choosy (Kokko et al., 2003). The act of searching for a suitable 

mate requires the expenditure of time and resources (Parker, 1983; Gibson & Bachman, 

1992; Etienne et al., 2014), and may put an individual at greater risk of predation and/or 

injury (Forsgren, 1992; Hedrick & Dill, 1993; Godin & Briggs, 1996; Booksmythe et al., 

2008). Thus, females who are too choosy may risk not mating at all in their lifetime, or 

have decreased net reproductive success compared to individuals whom are less choosy  

(Kokko et al., 2003). 

 Although the phenomenon and evolution of mate choice has been extensively 

described in a number of ways (i.e. Fisher's run-away hypothesis (Fisher, 1930), the 

"good genes" hypothesis (Williams, 1966; Ryan, 1996), the direct benefits hypothesis 

(Price et al., 1993) and the sensory bias hypothesis (Endler & Basolo, 1998)), there are 

aspects to mate choice that are relatively new to the literature. Particularly, the causes and 

consequences of mating biases against certain phenotypes (via sexual conflict) and 

individual variation in mate choice behaviours are not well understood. In the following 
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two sections, I discuss the relevance of these topics in regards to our understanding as to 

how and why mate choice may evolve, and suggest what specific areas require more 

research. 

Sexual conflict and male-induced harm 

One way in which sexual selection may operate is via sexual conflict, a process arising 

when males and females of the same species have different (and incompatible) strategies 

for maximizing their individual reproductive success (Chapman et al., 2003a). Typically, 

this conflict is rooted in anisogamy, where parental investment into offspring production 

between the sexes is asymmetrical (Trivers, 1972). Sexual conflict may be manifested 

when the fitness optimum for a trait controlled at a specific locus is different between 

males and females (intra-locus sexual conflict), or when males and females express traits 

or behaviours that are beneficial to their own reproductive success, but not of their mates’ 

(inter-locus sexual conflict) (Arnqvist & Rowe, 2005). In the latter case, males and 

females frequently engage in a sexually antagonistic arms race, a continuous co-

evolutionary cycle of adaptation and counter-adaptation. One way in which sexually 

antagonistic co-evolution may proceed is males evolve selfish traits that harm females, 

and in response, females evolve traits to resist the consequences of such exploitation 

(Chapman, 2006). The harm induced by males can occur before, during, and after mating 

(Arnqvist & Rowe, 2005). For example, male water striders in the genus Gerris 

frequently harass females to mate, which is costly to females. Males have evolved 

grasping structures that increase the efficiency of copulation at a cost to females, while 

females have evolved antigrasping structures to resist this harm (Arnqvist & Rowe, 

2002). Male bedbugs, Cimex hermipterus, traumatically inseminate their mates by 
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physically puncturing their abdomens and injecting sperm directly into the bloodstream. 

These encounters leave visible melanized scars (Walpole, 1988) and reduce the lifespan 

of females (Newberry, 1989). This harm can be a great selective pressure for females, 

and therefore females are expected to evolve traits and/or strategies to resist this harm 

(Holland & Rice, 1999; Wigby et al., 2004). 

 Theoretically, one way females may resist the harm associated with sexual 

conflict is by avoiding harmful mates via mate choice (Holland & Rice, 1998; Gavrilets 

et al., 2001). The chase-away sexual selection hypothesis states that females may evolve 

resistance (decreased attraction) to reduce the direct costs of harmful male traits, and in 

response, males may evolve exaggerated traits to overcome the new female mating 

threshold (Holland & Rice, 1998; Figure 1). However, this hypothesis is highly 

controversial (Brooks & Jennions, 1999; Rice & Holland, 1999) and has only been 

theoretically demonstrated by Gavrilets et al. (2001) using quantitative genetic models. 

As such, there is a clear need to empirically investigate the possibility of male-induced 

harm influencing the evolution of female mate choice behaviours. In order for this type of 

mate choice (resistance) to evolve, there needs to be heritable individual variation in the 

amount of harm that males inflict via mating. A challenge in testing this model is the 

need to be able to accurately quantify the amount of harm individual males inflict, 

especially in natural populations. However, one model species has been extensively used 

to perform empirical tests of questions regarding mate choice and sexual conflict. The 

fruit fly, Drosophila melanogaster, is frequently used to understand the causes and 

consequences of individual variation in male-induced harm (Civetta & Clark, 2000; 

Sawby & Hughes, 2001; Lew & Rice, 2005).  
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 In D. melanogaster, males harm their mates via the toxic-side effects of accessory 

gland proteins (Acps) transferred in their ejaculate (Chapman et al., 1995; Rice, 1996) 

and through courtship and copulation behaviours (Partridge & Fowler, 1990; Kamimura, 

2007). Although male-induced harm is well documented in Drosophila, the factors that 

influence the extent of harm a male inflicts during mating (i.e. the degree of reduction to 

his mate's fitness) are not well understood. A handful of studies demonstrate that this 

harm may have an additive genetic basis (Friberg, 2005; Lew & Rice, 2005; Fiumera et 

al., 2006), but all of these studies are limited in their quantification of female fitness. 

Firstly, they quantified harm by measuring the fitness of females that carried multiple 

deleterious mutations and were derived from different source populations than the males. 

The presence of multiple deleterious mutations represents a clear limitation as it could 

result in spontaneous decreased fitness from epistatic interactions (Simmons & Crow, 

1977; Otto & Feldman, 1997). Additionally, using males and females derived from 

different source populations may yield results of questionable evolutionary relevance. As 

sexual conflict theory predicts that males and females co-evolve harmful and resistance 

traits respectively, using two isolated populations may not be representative of the male-

induced harm that exists in natural populations (Chapman et al., 2003; Long et al., 2006). 

Secondly, they quantified female fitness by measuring the longevity of females, a fitness 

metric of limited value in lab-reared organisms cultured in short, non-overlapping 

generations who do not have the opportunity to reproduce the entire duration of their 

natural lifespan. As an alternative, I argue that measuring egg production during key 

oviposition windows yields a more evolutionary relevant measure of fitness (Long et al., 

2006). 
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 In chapter two of this thesis, I describe how I quantified the degree of additive 

genetic variation in the magnitude of harm that males impose by measuring the fecundity 

of females exposed to males of different genetic backgrounds over a brief and prolonged 

period of time. Using these quantified male backgrounds, it is possible to answer 

questions regarding the influence of male-induced harm on individual variation in female 

mate choice behaviours.  

Variation in mate choice 

As with many traits and behaviours, females often exhibit a wide degree of individual 

variation in their mate choice behaviours both within and between populations (Jennions 

& Petrie, 1997; Widemo & Sæther, 1999). Understanding the causes and consequences of 

this variation is fundamental to our understanding the operation of sexual selection 

because variation among female preferences and choosiness can influence both the rate 

and direction of the evolutionary change (Jennions & Petrie, 1997). Variation in mate 

preferences can be characterized by two functions: peak preference and preference 

selectivity. A change in peak preference is when there is a shift in the trait value with the 

highest attractiveness (Rodríguez et al., 2013; Figure 2a), while a change in preference 

selectivity indicates that the peak attractiveness stays the same, but the range of traits that 

a female may find attractive changes (Rodríguez et al., 2013; Figure 2b). Characterizing 

the type of changes in female preference functions (and the sources of these changes) can 

help infer the evolutionary consequences of individual variation in mate preferences, as 

they can help predict what male traits and/or displays are the most attractive in specific 

contexts (Bailey, 2008; Rodríguez et al., 2013).  

 One potential source of variation in mate preferences is an individual’s genotype 
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(Brooks & Endler, 2001; Ritchie et al., 2005; Ratterman et al., 2014; Tennant et al., 

2014).  Research by Ritchie et al. (2005) suggests that this variation is present both 

within and between populations. Quantifying this variation is important, because for mate 

choice behaviours to (co-)evolve, there must be heritable additive variation within the 

population (Jennions & Petrie, 1997). Additionally, the degree of individual variation in 

female choice within populations can mediate the maintenance of genetic variation in 

male display traits (Ratterman, 2014, but see Tennant et al., 2014). Quantifying the 

degree of genetic variance associated with individual variation in female mate choice can 

therefore improve our understanding of the potential for evolutionary change and the 

factors that contribute to the maintenance of this variation (Chenoweth & Blows, 2006). 

 In addition to genetic influences, individual variation in mate choice behaviours 

may arise from a variety of environmental factors (Jennions & Petrie, 1997; Widemo & 

Sæther, 1999). Qvarnström (2001) argued that a large amount of this variation may 

originate from context-dependent plasticity. In some contexts, the costs associated with 

mate choice (i.e. resource expenditure and risk of predation) may be greater in 

comparison to other contexts. Therefore, a female that is able to alter her mate choice 

behaviours across environments may be able to maximize her potential reproductive 

success over multiple contexts (Qvarnström, 2001). This hypothesis has been empirically 

tested across numerous factors such as population size (Berglund, 1994), nutritional state 

(Hunt et al., 2005), age (Moore & Moore, 2001), and social experience (Bailey & Zuk, 

2009). For example, Hunt et al. (2005) showed that in the black field cricket, 

Teleogryllus commodus, females reared on high-nutrition diets exhibited a stronger 

preference for males whose mating calls were of a higher frequency and more dominant 
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compared to those females reared on low-nutrition diet. They argued that the costs 

associated with mate choice might be higher for under-nourished individuals, so less 

choosy under-nourished individuals may have a reproductive advantage over individuals 

who are choosier. To fully understand the causes and consequences of individual 

variation in mate choice behaviours, it is therefore absolutely necessary that we explore 

all the potential sources that contribute to this variation. 

 Despite the considerable amount of scientific investigation that has gone into 

understanding the factors that influence the evolution and maintenance of individual 

variation in mate choice behaviours, very few studies have considered the potential role 

of mating experience. Amongst the studies that have, none have considered the potential 

role of male-induced harm in shaping female mate choice behaviours. In the next and 

penultimate section of this chapter, I discuss my proposed synthesis between sexual 

conflict theory and experience-dependent mate choice that I hope will pave the way for 

many exciting questions regarding the dynamics between the evolution and maintenance 

of variation in mate choice behaviours and antagonistic coevolution between the sexes. 

A new synthesis: Sexual conflict and experience-dependent mate choice 

In many species, an individual’s experience can shape their subsequent behaviours in a 

variety of ways, including mate preferences (Verzijden et al., 2012; Rodríguez et al., 

2013). Although previous studies have looked at the effect of courtship experience 

(Dukas, 2005; Rebar et al., 2009) and mating experience (Rebar et al., 2011) on female 

mate choice behaviours, no one has ever considered the role of direct costs associated 

with mating (i.e. via sexual conflict) as a factor in these changes. For example Rebar et 

al. (2011) analyzed the effect of mating experience in Pacific field crickets, Teleogryllus 
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oceanicus and found that females that had mated with an “attractive” male 24h prior to a 

new mating encounter mounted more slowly compared to females who mated with an 

“unattractive” male 24h earlier. Although this study demonstrates that mating experience 

can influence female choosiness, the authors did not look at its potential impact on the 

differential expression of female preferences. Plasticity in preferences is important to 

consider, as it may influence the direction of sexual selection depending on the stability 

of different contexts that may trigger this plasticity. Additionally, the authors did not 

discuss their results in the context of sexual conflict. As sexual conflict has not been 

extensively studied in this species, a better model for studying the relationship between 

sexual conflict and behavioural plasticity in mate choice would be D. melanogaster. 

         While much is known about sexual selection in D. melanogaster, the effect of 

mating experience on subsequent female mate choice behaviours has only been 

investigated in a single study. Dukas (2005) looked at the effect of previous courting 

experience on mate choice by experimentally pairing virgin D. melanogaster females 

with males of varying body sizes and analyzing their behaviours the following day. He 

found that females previously courted by smaller males were more likely to mate with 

both small and large males compared to females previously courted by larger males. This 

result demonstrates that females do exhibit plasticity in their mate choice behaviours as a 

result of male exposure, however it does not take into account the potential effects of 

mating (copulation and ejaculate transfer). In D. melanogaster, copulation with a male 

can cause damage to females’ genitalia (Kamimura, 2007) and the transfer of Acps in 

their mate’s ejaculate can have toxic-side effects (Chapman et al., 1995; Rice, 1996). 

More specifically, mating can elicit changes in a female’s physiological and behavioural 
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phenotypes by increasing egg production (Soller et al., 1999), decreasing mating 

receptivity (Chen et al., 1988; Chapman et al., 2003b), decreasing lifespan (Chapman et 

al., 1995), and increasing feeding behaviour (Carvalho et al., 2006).  Given that courtship 

experience can affect female mate choice behaviours and mating can influence a female's 

physiology and behaviour, it is plausible to hypothesize that mating experience may also 

influence an individual's mate choice behaviours. 

 In chapter 3 of my thesis, I explore the role of mating experience on subsequent 

female mate choice behaviours in the context of the direct costs incurred via mating (i.e. 

male-induced harm). I argue that similar to how females may exhibit behavioural 

plasticity to reduce the costs associated with mate choice, or increase their indirect 

benefits by finding a more attractive mate (Rodríguez et al., 2013) females may also alter 

their mate choice behaviours in order to reduce the direct costs incurred from previous 

mating experiences. 

Significance, objectives and hypotheses 

A review of recent literature reveals a pressing need to investigate the genetic basis and 

maintenance of variation in male-induced harm, and its potential role as a source of 

individual variation in female mate choice behaviours. The major focus of this thesis was 

to investigate the effect of mating experience and male-induced harm on female mate 

choice behaviours. To do this, I had to first quantify the degree to which individual males 

vary in their harmfulness, leading me to ask: 

1.) Is there phenotypic variation in the effect of length of male exposure (courtship & 

copulation) on female fitness, and does this variation have a genetic basis?  
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To answer this question, I quantified the effect of male-exposure on female fitness across 

26 genetic backgrounds using an evolutionary relevant metric of fitness (fecundity) and a 

protocol that mimicked the developmental conditions of our laboratory population. Next, 

I was able to use these lines of quantified male-induced “harm” to ask the question: 

 

2.) Do females differ in their individual mate choice behaviours depending on the 

harmfulness of a previous mating experience, and does this variation itself have a genetic 

basis? 

 

To answer these questions, I investigated a (poorly understood) source of individual 

variation in female mate choice behaviours ,mating experience,and examined the causes 

and consequences of this variation from a novel perspective (relationship to sexual 

conflict).  

 

In these studies I predicted that: 

 

1.) Males would phenotypically vary in their impact on female fitness between a brief 

and prolonged period of exposure, and there would be underlying additive genetic 

variation associated with this phenotypic variation. 

 

2.) Female mate choice behaviours will differ depending on the harmfulness of their 

previous mate(s). Furthermore, I predict that there will be differences in the expression of 

individual female behavioural phenotypes associated with their genetic background. 
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In the following two chapters, I describe my two major experiments, designed to test 

these questions and expand our understanding of harmful male traits, individual variation 

in female mate choice (and the potential interactions between the two). 
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Figure 1.1: The chase-away sexual selection model for the evolution of elaborate male 

display traits. A male display trait is defined as any phenotype trait that attracts females, 

and thereby increases the probability of mating (Adapted from Holland & Rice, 1998). 
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Figure 1.2: Describing variation in mate preference functions. Mate preferences may 

differ in shape. They may be ‘closed’ (unimodal), as shown in the left hand panels in (a) 

and (b), or ‘open-ended’, as shown in the right-hand panels in (a) and (b). Mate 

preferences of either shape can be further characterized with two main traits: (a) ‘peak 

preference’ is the ornament trait value with highest attractiveness; each panel in the top 

row shows two mate preferences that differ in peak preference; (b) ‘preference 

selectivity’ summarizes variation in aspects of preference shape other than peak; each 

panel in the bottom row shows two mate preferences that differ in selectivity (Adapted 

from Rodríguez et al., 2013). 
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Preamble 

The following chapter was written in the style of Biology Letters, where it was published 

on April 27, 2016.  Due to word count and figure limitations enforced by the journal, the 

following chapter was slightly modified from the published version to include details 

from the supplementary materials section. Figure and table numbers have been slightly 

altered for consistency with the rest of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

CHAPTER 2 

Genetic variation in male-induced harm in Drosophila melanogaster  

 

 

  

David C.S. Filice1,2, Tristan A.F Long1 

 

 

 

 

 

 

 

 

 

 

1. Department of Biology, Wilfrid Laurier University  

2. Corresponding author: Department of Biology, Wilfrid Laurier University, 75 

University Avenue West, Waterloo, ON N2L 3C5, Canada.  

Phone: +1 519-884-0710 x2888     Email: fili2950@mylaurier.ca  

 

 

Keywords: Drosophila melanogaster, male-induced harm, mate choice, sexual conflict, 

fitness, population genetics 



25 

 

Abstract 

In Drosophila melanogaster, prolonged exposure to males reduces the longevity and 

fecundity of females. This harm arises from the effects of male courtship behaviours and 

the toxic-side effects of the accessory gland proteins (Acps) in their seminal fluids. Here, 

we examine the relationship between male exposure and its harmful effect on the lifetime 

fitness of his mates, and quantify the genetic basis for this variation.  We found 

significant additive genetic variation in the magnitude of harm that males impose on 

females by exposing females to males from a variety of hemiclonal backgrounds for 

either a brief or prolonged period of time and measuring their fecundity, a meaningful 

fitness index. Furthermore, we discovered a strong negative correlation between the 

magnitude of harm and the short-term effects of male exposure on female fitness. We 

discuss the evolutionary significance of these results with regards to potential life-history 

trade-offs in females, and its relationship to male body size. 
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Introduction 

Selection acting on males to increase their individual reproductive success can sometimes 

favour the evolution of traits that are ultimately deleterious to the fitness of their mates 

[1]. This inter-locus sexually antagonistic selection may be manifested through physical 

harm that males inflict on their mates during courtship and copulation [2,3]. The male-

specific benefits associated with harm can be substantial, and are likely to be under 

strong directional selection [4]. Despite this, we see considerable phenotypic variation in 

the magnitude of individual male-induced harm within populations (possibly due to 

segregating genetic variation) [5,6]. As such, we set out to study the ecological and 

genetic underpinnings of male-induced harm in order to gain insight in the forces that 

shape its evolution.  

 Our study used fruit flies, Drosophila melanogaster, a model species in which the 

mechanisms of male-induced harm has been extensively investigated. Male flies transfer 

numerous Acps in their ejaculate to their mates, some of which have toxic side-effects 

[7,8]. Additionally, males harm females during courtship and copulation [9,10]. This 

harm is manifested as decreased female fecundity and/or longevity, and thus constitutes 

an important selective pressure on females in this species [11]. The extent to which this 

trait is heritable will therefore have important consequences for the rate and/or trajectory 

of inter-sexual co-evolution. Despite its importance, only a handful of attempts have been 

made to determine if there is additive genetic variance for male-induced harm [12,13,14]. 

Additionally, these studies have been limited in several ways. Firstly, they only examined 

variation present on a single chromosome and/or quantified harm using females carrying 

multiple deleterious mutations that were obtained from populations with a different 
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evolutionary origin from which the males' genetic material was derived. Secondly, harm 

was quantified by examining female mortality rates, a fitness metric of limited value in 

laboratory-reared organisms cultured with short, non-overlapping generations. Instead, 

measuring egg production during key oviposition-windows yields more meaningful 

estimates of fitness [15], and avoids genotype-by-environment interactions for 

performance under novel test conditions [16]. 

 Here, we set out to determine if phenotypic variation in the magnitude of harm 

that males inflict on their mates reflects the presence of additive genetic variation.  Our 

assays were conducted using a large, outbred population, and used a protocol that 

mimicked (as closely as possible) the environment to which fruit flies were adapted [16]. 

We used hemiclonal analysis techniques [17 & Supplemental Methods] to quantify the 

degree of additive genetic variation responsible for male-induced harm to female 

fecundity, where harm is quantified for each hemiclone line as the difference in fecundity 

of females that were briefly exposed to males, and those continuously housed with males 

[18]. Furthermore, we also examined the potential relationship between harm and male 

body size, as these two traits are often assumed to be positively correlated with each other 

[19,20]. 

Materials and Methods 

In this experiment, we used fruit flies derived from the large (~3500 adults per 

generation), wild-type population Ives (hereafter “IV”) which has been cultured under 

standardized conditions for hundreds of generations [15 & Supplemental Methods]. This 

population harbors considerable genetic variation for many traits, and has been used in a 

wide range of behavioral ecology and population genetics studies [5,16,21]. The 



28 

 

population is cultured on a non-overlapping two-week schedule, in which they are 

combined en masse every 14 days and distributed onto fresh media. After 2-3 hours, adult 

flies are discarded and the density of eggs in each vial is standardized to ~100 apiece. The 

number of eggs laid by females during this brief period of time is thus of great relevance 

to their fitness, as it is their only opportunity to directly pass on their genes to the next 

generation. From this population, we established 26 whole haploid-genome clone lines 

using cytogenetic cloning techniques [17,22], which we subsequently expressed in a 

hemiclonal state using established protocols [17,22 & Supplemental Methods].  

  

            To quantify the genetic basis for variation in the magnitude of male-induced 

harm, 200 hemiclone males were collected from each line, and housed in single-sex vials. 

Simultaneously, 1300 females were collected as virgins (within 8h of eclosion) from 

standard IV culture vials. The larvae pupated on acetate inserts [15], which were 

transferred to holding vials prior to adult eclosion, allowing us to save the “natal” vials 

(containing spent media) for use as mating chambers. On the morning corresponding to 

the 11th day of the flies’ culture cycle, in each of two replicate blocks, we created two 

mating chambers for each hemiclonal line, consisting of 25 females and 50 males placed 

into a “natal” vial. Males and females were left in one of these vials for 180 minutes (the 

“short-exposure” treatment), which is typically sufficient to ensure all females will have 

mated once (TAFL, pers. obs.).  Following this, males were removed from these vials, 

and females were retained for an additional 45h. In the other vial (the "long-exposure" 

treatment), females and males we housed together for the full 48h period. At the end of 

this period, females in both treatments were removed from their vials, and individually 
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placed into test tubes (containing 3mL of fresh media) for 18h before being discarded and 

their eggs immediately counted. This protocol attempts to mimic the phenology & 

developmental conditions historically experienced by this population as closely as 

possible (see Supplemental Methods). All males were collected, frozen, and later dried 

overnight at 70°C to be weighed on a Sartorius M5 microbalance to the nearest 0.001mg. 

Results 

For both the long- and short-exposure treatments, male line had a significant effect on the 

observed phenotypic expression of their mates’ fecundity (Table 2.1). Furthermore, 

prolonged exposure to male flies resulted in a substantial decrease in the fitness of female 

flies (Treatment Effect: χ1²= 233.871, p<2.2x10-16). However, the male effects on female 

fecundity that were associated with each of the hemiclonal lines were not homogenous 

across exposure treatments (Treatment x Clone Line: p<0.0001), indicating the presence 

of significant additive genetic variation in male-induced harm (Table 2.1 & Figure 2.1). 

 We found no significant correlation between the number of eggs laid by females 

mated to hemiclones in the short-exposure treatment, and those laid by females mated to 

the same hemiclones in the long-exposure treatment. (Spearman’s rho= 0.156, S= 2470, 

p= 0.446). Similarly, there was no correlation between body mass and the magnitude of 

harm (the difference in the number of eggs laid between short- and long-exposure 

treatments [18]) associated with each hemiclone line (Spearman’s rho= 132, S= 2538, p= 

0.518). However, a strong negative correlation was detected between the number of eggs 

laid in the short-exposure treatment and the magnitude of harm (Spearman’s rho= -0.785, 

S= 5222, p= 4.42x10-6, Figure 2.2).  
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Discussion 

The outcome of intra- and inter-sexual selection processes in D. melanogaster has 

important consequences for the variation in individual reproductive success in both sexes. 

For females, male identity has been associated with a sizeable percentage of the 

phenotypic variation in female fecundity [23]. Here, we demonstrated that this variation 

is due (in part) to the presence of segregating additive genetic variation, which can 

account for ~10% of female fecundity variation. Consistent with previous research [13], 

we found prolonged exposure to males was associated with decreased female fecundity 

(i.e. harm), presumably as a side-effect of traits that have evolved to benefit male fitness 

[1,2]. Interestingly, the effect of male hemiclone line on female fitness was not consistent 

between exposure times (Table 1), indicating that variation in the magnitude of harm has 

a genetic basis. Furthermore, our assay revealed that the impact of a male hemiclone line 

on a female’s fecundity following a brief interaction was negatively correlated with the 

magnitude of harm associated with their prolonged interaction. This observation may 

help explain the maintenance of additive genetic variation for harmfulness in this species, 

if females vary in their preference for males depending on the temporal stability of their 

social environment and/or their extrinsic mortality risk. When associations are ephemeral, 

females may prefer mating with males that provide the greatest short-term benefits, but in 

more stable groups they may prefer to associate and mate with males that are inflict less 

harm over the long-term. More broadly, these results may prove enlightening to the study 

of life-history trade-offs between longevity and fecundity [23,24]. In environments where 

survivorship of females is relatively high, it may be advantageous to mate with males 

whose harmful effects are less deleterious to later-life fecundity, compared to situations 
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where there are high rates of adult mortality. We look forward to conducting future 

empirical and theoretical tests of these hypotheses. 

 A second surprising observation was the lack of any correlation between male 

body size and variation in short-exposure fitness, long-exposure fitness or magnitude of 

harm. Interestingly, these findings are at odds with previous studies that have found male 

body size and harm to be associated with each other [19,20]. However, in these studies 

body size variation was achieved by manipulating larval densities/nutrition [19,20], while 

our males were reared under the standardized conditions that the IV population has 

evolved under for decades. It is possible that phenotypic correlations may have arisen due 

to trade-offs resulting from this methodology. While the evolution of Acps is often 

viewed in the framework of increased post-copulatory success [7,8], there appears to be 

no genetic correlation between sperm competitive ability and male body size (at least for 

genes on the 2nd and 3rd chromosomes) [25]. Therefore, the biochemical and 

morphological traits associated with male-induced harm may actually not scale with male 

body size. Ultimately, the continued exploration of the relationships between male body 

size, harm, female preferences, and fitness variation under controlled genetic and 

environmental conditions are promising avenues for future research.  
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Figure 2.1: Effect of male genotype and exposure treatment on fecundity (number of 

eggs laid on Day 14 of the culture cycle) of female Drosophila melanogaster. The 

reaction norm plot at the centre depicts female fecundity for each of the 26 hemiclone 

lines across the two male-exposure duration treatments, while boxplots illustrate the 

overall differences between the treatments. The boxes enclose the middle 50% of each 

distribution (inter-quartile range, IQR), with the horizontal bars indicating the location of 

the medians. Values >±1.5x the IQR are outliers, and are indicated by closed circles, and 

whiskers extend from the margins of the box to the minimum and maximum values that 

are not outliers.  
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Figure 2.2: Scatterplot and regression line illustrating the negative relationship between 

fecundity of females in the short-term treatment, and the net-cost of prolonged male 

exposure in female Drosophila melanogaster that had been exposed to 26 different male 

hemiclone lines. Fecundity is defined as the number of eggs laid by females on Day 14 of 

their culture cycle.  
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Table 2.1: Variance components estimated using generalized linear mixed models fit by 

maximum likelihood for phenotypic variation in fecundity (egg production on Day 14 of 

their culture cycle) of female Drosophila melanogaster exposed to male hemiclones for 

either a short or a long period of time. We created models that included exposure 

treatment as a fixed effect, and clone line and interaction between exposure treatment and 

clone line as treated as random effects, as well as models for each treatment separately. 

Variance components and bootstrapped CI values were calculated using lme4 package 

[26]. The statistical significance of each variance component was determined using a 

permutation test approach with 10,000 samples (see Supplemental Methods). A 

significant interaction between treatment and hemiclone line indicated that the fitness 

consequence of associating (and mating) with males from a given hemiclone background 

vary depending on their length of exposure to males.  

    

Fitness Source of 

Variance 

 Variance (SD) Bootstrapped Upper & 

Lower 95% CI 

% of Variance 

explained 

P-value  

Short-term 

exposure 

Clone Line  3.194    (1.787) 5.524, 1.400 10.19 <0.0001 

Residual  28.143  (5.305)    

Long-term 

exposure 

Clone Line  2.297    (1.516) 3.975, 1.047 12.84 <0.0001 

Residual  15.589  (3.948)    

Both Short-

and Long 

Exposures 

Treatment x 

Clone Line 

 2.517    (1.586) 3.851, 1.104 10.23 <0.0001 

Clone Line  0.232    (0.481) 1.155, 0.000 0.94 0.0257 

Residual  21.853  (4.674)    
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Supplemental Methods 

Source population history & culture protocols 

The ultimate source of the genetic variation in our assays was the Ives (hereafter IV) 

population of Drosophila melanogaster. This outbred, wild-type, population was founded 

in 1975 from a sample of 200 females and 200 males collected in South Amherst, MA, 

USA. Since 1980, this population has been at large census size (>1000 adults/generation), 

on non-overlapping generations on a standardized culture protocol (Rose et al. 1984, 

Long et al. 2006, Martin & Long 2015). Flies are cultured in vials, each of which 

contains ~10ml of media consisting of banana, agar, corn syrup, barley malt & killed 

yeast. IV flies are maintained in an 25°C, 50% relative humidity environment on a 

12L:12D diurnal light cycle. Our lab’s population of IV is maintained at ~3500 adult flies 

generation-1 and was obtained from Adam Chippindale (Queen’s University, Kingston) in 

2011, who, in turn, obtained them from Michael R. Rose (UC Irvine, Irvine) in 2002 

(Long et. al 2006). 

At the start of each culture generation (Day “0”) all eclosed adult flies are 

removed from their “natal” vials (the vials in which they has developed) using light CO2 

anesthesia, and mixed en masse, before being divided into equal groups and transferred to 

35 new “oviposition” vials (vials containing fresh media). Flies are left in these vials for 

~2-3 hours before being removed, and the eggs that are laid during this time are culled 

(by hand) to a density of 100 eggs vial-1. These vials become the “natal” vials for the next 

generation of flies. Females start eclosing from their pupae as adults ~Day 8, and males 

start eclosing as adults ~Day 9. All flies are kept in these vials until the end of the 

generation (Day 14). 
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 In our assays we also used flies obtained from the IV-bw population, which was 

created by repeatedly backcrossing a recessive brown-eyed mutant (bw1) into the IV 

genetic background. The IV-bw population is maintained under the same culture protocol 

as the IV population, and is regularly backcrossed to the IV population to ensure that the 

two populations have not diverged.  

The selective environment under which the IV population has been cultured under 

for >900 generations has favoured the evolution of semelparous life-history traits in 

female flies. The brief window in which female flies find themselves in the oviposition 

vials is effectively the only opportunity that they have to make a contribution to the next 

generation. While adult females in the IV population will mate (repeatedly) in their natal 

vials, they largely delay ovipositing until they are transferred to the “oviposition” vial 

(Long et al. 2006). Thus measuring egg production on Day 14 of a female’s life cycle 

(using a protocol that mimics as closely as possible the conditions to which flies have 

adapted) provides a meaningful metric of her individual lifetime fitness (see Rice et al. 

2006). In our experiments we replicated the developmental environment of flies’ early-

adulthood by placing recently-eclosed flies into vials containing “spent” media (in which 

larvae had developed) (following protocols described in Long et al. 2006), which 

approximates the pre-“Day 14” culture conditions experienced by these flies. Since we 

wanted to measure individual female egg-production, we placed females into individual 

test-tubes, and measured egg laying over a 18h period (as per Tennant et al. 2013, 

Tennant et al. 2014), which is longer than typically afforded to females, but reduces the 

impact of stochastic variation associated with the anesthetization and transfer of 

individual females from vials to test-tubes. 
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Cytogenetic cloning & hemiclonal analyses 

From the IV population we established 26 clone lines, using cytogenetic cloning 

techniques, which were subsequently expressed in a hemi-clonal male genetic 

background. Each clone line was created following established protocols (Chippindale et 

al. 2001, Tennant et al. 2014), and consists of a nearly-complete haploid genomes, 

maintained and propagated in a unrecombined state (see Chippindale et al. 2001, Rice et 

al. 2006, Abbott & Morrow 2011).  

 Clone lines are created and maintained by mating males randomly sampled from 

the IV population with females from a “clone-generator” population, who possess a 

random Y chromosome, a conjoined “double -X” chromosome [C(1)DX, y, f], and are 

homozygous for translocated autosomes [T(2;3) rdgC st in ri pP bwD]. Establishment, 

propagation, and maintenance of clone lines is possible due to the lack of recombination 

in male D. melanogaster, and the phenotypic expression of the artificial cytogenetic 

constructs in offspring (Chippindale et al. 2001, Rice et al. 2006, Tennant et al. 2014, 

Abbott & Morrow 2011). Together these allow us to track the haploid genome as it is 

passed on from father to sons, generation after generation. 

 These haploid genomes can be then expressed in a male “hemi-clonal” state 

(paired with a random genetic background) by crossing clone males with flies from the 

“DX-IV” population, that contained the “double-X” chromosome, but otherwise possess 

a random sample of autosomes originating from the IV population. In these crosses, 

fathers contribute the X-chromosome to their sons, which receive their Y-chromosome 

from their mother. Due to the high (75%) inviability of the offspring resulting from these 

crosses (due to chromosomal imbalances), eggs produced from these crosses are placed 
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into vials in sets of 200, along with 50 similarly-aged IV-bw eggs, in order to maintain a 

developmental environment that is similar to that which has been historically experienced 

by the IV population (i.e. 100 viable eggs vial-1). 

Statistical analyses associated with generalized linear mixed models 

Data on female fecundity (egg production on Day 14 of their culture cycle) in female D. 

melanogaster was analyzed using generalized linear mixed models created in R (v 3.1.2; 

R Core Team) using the lme4 (Bates et al., 2014) package. In our initial model, we 

included exposure treatment (short or a long period of time), replicate vial, and their 

interaction as fixed effects, and clone line and the interaction between exposure treatment 

and clone line as treated as random effects. The significance of fixed effects was first 

tested using Wald Chi-square tests implemented in the Anova function of the car package 

(Fox & Weisberg, 2013). As neither the effect of vial, nor the interaction between 

treatment and vial were significant (1
2= 0.082, p=0.774;  & 1

2= 0.632, p=0.437, 

respectively), they were removed from subsequent models, while the significant (1² = 

233.871, p<2.2x10-16) effect of treatment was retained.  

We next created models that included treatment as a fixed effect, and clone line 

and the interaction between exposure treatment and clone line as treated as random 

effects. Additional models were created for each treatment separately, in which clone line 

was included as a random effect. For each of these models, we used the bootMer function 

(in the lme4 package) to obtain 95% confidence intervals for our variance estimates. We 

then determined, using a permutation approach, the probability of obtaining (by random 

chance) our variance component estimates. Following the recommendations of Manly 

(2007), we randomized the fecundity data (without replacement) across all females, re-
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ran the model and extracted the relevant variance component(s) from the model. This 

procedure was repeated 10,000 times. We then determined the fraction of repetitions in 

which the calculated variance estimates exceeded the magnitude of the values obtained 

from the model analyzing the original data. This constitutes our p-value in Table 1. 
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Preamble 

The following chapter was written as manuscript in the style of Animal Behaviour, where 

we plan to submit it for review. Figure numbers have been slightly altered for consistency 

with the rest of the thesis. 
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Individual variation in female mate choice in Drosophila melanogaster is influenced by her 

mating experience and genotype 

 

 

  

David C.S. Filice1,2, Tristan A.F Long1 

 

 

 

 

 

 

 

 

 

 

 

1. Department of Biology, Wilfrid Laurier University  

2. Corresponding author: Department of Biology, Wilfrid Laurier University, 75 

University Avenue West, Waterloo, ON N2L 3C5, Canada.  

Phone: +1 519-884-0710 x2888     Email: fili2950@mylaurier.ca  

Females typically choose mates based on the greatest provision of direct or indirect 

benefits. Despite this, we still see significant variation in female mate choice 
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behaviours both within and across populations. Recent studies suggest that female 

mate choice is a complex decision-making process that involves many context-

dependent factors. In Drosophila melanogaster, mating can have costly effects on a 

female's lifetime fitness. As such, sexual conflict theory predicts that females may 

make trade-offs in their mate choice decisions to balance direct costs and indirect 

benefits associated with mating. Here, we examined if the direct costs of a previous 

mating experience has an effect on subsequent female mate choice behaviours (assay 

1) and quantified the degree of additive genetic variation associated with this effect 

(assay 2). In assay 1, randomly sampled females either remained virgin, or were 

mated to a male from a high, medium, or low harm genetic background.  These 

treatments were replicated for either a short (3hrs) or long (48hrs) exposure to 

males before mate choice was scored. We found significant differences in the 

resulting female mate choice behaviours. In assay 2, a hemiclonal analysis was 

performed to quantify the additive genetic variation associated with experience-

dependent mate choice behaviours. We discuss the significance of these results with 

regards to the evolution of plasticity in female mate choice behaviours and the 

maintenance of variation in male traits. 

 

 

 

 

Introduction  
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 Inter-sexual selection is traditionally envisioned as individuals of one sex 

(typically males) competing for the reproductive interest of individuals of the opposite 

sex (typically females) (Andersson, 1994) where individuals of the "choosy" sex bias 

their mating decisions based on the anticipated direct and/or indirect benefits associated 

with those that are selected for mating (Wiley & Poston, 1996). Models of inter-sexual 

selection often assume that while males may vary in their phenotypic display traits, 

female preference for these traits are consistent within populations (Jennions & Petrie, 

1997), treating female choice as a fixed behaviour and ignoring the possibility of 

individual variation between females. However, recent empirical studies have found that 

individual variation in female mate choice behaviours is common (Jennions & Petrie, 

1997; Widemo & Sæther, 1999). Understanding the causes and consequences of this 

variation is crucial for our understanding of sexual selection, as the underlying factors 

associated with individual variation in mate choice can influence the strength and 

direction of evolution via sexual selection (Jennions & Petrie, 1997). Here, we explore 

some of the factors that may explain the presence of individual variation in female mate 

choice. 

 It is possible that some of the observed individual variation in female mate choice 

behaviours may be attributed to an organism’s specific environmental and genetic history 

(as well as the interaction between these factors). With regards to environmental factors, 

individual female mate choice may vary depending on context-dependant factors 

including physiological state (Hunt et al., 2005; Hebets et al., 2008), age (Moore & 

Moore, 2001; Anjos-Duarte & Costa, 2011; Abraham et al., 2016), and social experience 

(Dukas, 2005; Bailey & Zuk, 2009; Rebar et al., 2011). As mate choice is often a costly 
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behaviour (Kokko et al., 2003), it is possible that the expression of choice may be traded-

off as other life-history traits under different contexts. Qvarnström (2001) argued that in 

some circumstances, plasticity in mate choice behaviours may be favoured by selection 

over static behaviours. In some conditions, the expenditure of resources and risk of 

injury/predation associated with choosing between mates may be at a greater cost 

compared to other conditions. If a female can change her mate choice behaviours, she 

could potentially maximize her potential reproductive success over multiple contexts. For 

instance, in the black field cricket, Teleogryllus commodus, females that had been fed 

high-nutrition diets were more sexually responsive and demonstrated a stronger 

preference for males that exhibited mating calls at faster rates and at a more dominant 

frequency compared to females reared on low-nutrition diets (Hunt et al., 2005). The 

authors concluded that female mate choice operated as a condition-dependent life-history 

trait. Theoretically, the costs associated with mate choice may be higher for an individual 

whom is under-nourished, and therefore, individuals with reduced choosiness may have a 

reproductive advantage. Similarly, Moore & Moore (2001) observed that in cockroaches, 

Nauphoeta cinerea, older females were significantly less choosy for mates than younger 

females. They argued that older females were less choosy in order to reduce the costs 

associated with mate choice and to avoid their risk of failing to find a mate. The context 

of social experiences may also influence the expression of female mate choice 

behaviours. Female Pacific field crickets, Teleogryllus oceanicus, modify the expression 

of both their pre- and post-copulatory choice mechanisms depending on the specific 

context of a previous mating experience (Rebar et al., 2011). Females that had mated to 

an "attractive" male 24h earlier mounted new males more slowly compared to females 
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that had previously mated with an "unattractive" male, suggesting that females may use 

the attractiveness of their previous mates as a proxy to evaluate the attractiveness of 

subsequent mates (Rebar et al., 2011). For example, a female that previously mated to an 

unattractive male may be less choosy because on average, her prospective mates will be 

more attractive than her previous encounter. This type of plasticity may help a female 

ensure that she is choosing the most attractive mate available in her social environment 

(Rebar et al., 2011). Collectively, these studies indicate that individual plasticity in 

female mate choice behaviours can be influenced by a variety of context-dependent 

environmental factors. 

In addition to environmental influences, individual variation in female mate 

choice may have a genetic basis (Brooks & Endler, 2001; Ritchie et al., 2005; Ratterman 

et al., 2014; Tennant et al., 2014). Quantifying this variation is important because in 

order for elaborate mate choice behaviours to co-evolve with male display traits, there 

must be heritable additive genetic variation present in these behaviours. In fruit flies, 

Drosophila montana, females differ in their expressed preferences for male courtship 

frequencies (both within and across families) suggesting the presence and maintenance of 

genetic variation in preferences within the gene pool (Ritchie et al., 2005). Furthermore, 

the phenotypic expression of mate choice behaviours may be shaped by the interactive 

effects between an individual’s genotype and their environment (GxE). Although an array 

of empirical results suggests that female genotype and environmental factors can have an 

interactive effect on sexual trait expression (i.e. courtship behaviour (Etges et al., 2007) 

and sperm length (Morrow et al., 2008)), few studies have demonstrated that female 

choice can similarly be affected (Ingleby et al., 2010). In the only study to date to 
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investigate this specific type of interaction (in the lesser waxmoth, Achroia grisella,)  

different families of females showed variation in their preference for male courtship 

signals (pulse rate) across two rearing temperatures (22ºC and 25ºC) (Rodríguez & 

Greenfield, 2003). Clearly, this topic is an important but under-investigated area of 

research. 

 When considering the sources of variation in female mate choice behaviours, 

researchers typically frame plasticity as either a mechanism of increasing the acquisition 

of benefits provided by their mates, or reducing the costs associated with mate choice 

such as resource expenditure. However, the role of the direct costs associated with 

physical mating experience (i.e. arising via sexual conflict) on variation in mate choice 

behaviours has not received any specific attention. Sexual conflict is predicted to arise 

when males and females of the same species have different and incompatible strategies 

for maximizing their individual reproductive fitness (Parker, 1972; Chapman et al., 2003; 

Arnqvist & Rowe, 2005). In many species, males may physically harm their mates as the 

pleiotropic side effect of traits that have evolved to increase individual male success 

(Morrow et al., 2003). This harm can be costly to a female’s lifetime fitness as it can 

cause physical genitalia damage (Kamimura, 2007) and may reduce both her longevity 

and/or fecundity (Lew & Rice, 2005; Filice & Long, 2016).  

 In the fruit fly, Drosophila melanogaster, a model species for the study of sexual 

selection and conflict, males harm their mates via toxic side-effects of accessory proteins 

(Acps) in their ejaculate (Chapman et al., 1995; Rice, 1996), and through physical 

harassment during courtship and copulation (Partridge & Fowler, 1997; Kamimura, 

2007). Furthermore, substantial evidence suggests individual variation in the degree of 
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male-induced harm has an additive genetic basis (Friberg, 2005; Lew & Rice, 2005; 

Fiumera et al., 2006; Filice & Long, 2016). In addition to their harmful side-effects, Acps 

in male ejaculates can also influence the physiological state and/or behaviour of females 

(Chapman & Davies, 2004; Wong & Wolfner, 2006; Bonduriansky & Day, 2013).  

 As such, we can synthesize these features with our understanding of individual 

variation in mate choice behaviours to formulate some interesting predictions. Firstly, if 

male phenotypes have an impact on the physiological state and/or behaviours of their 

mates, then we should predict that virgin flies will exhibit different mate choice 

behaviours than flies that have mated. In this study, we empirically tested this hypothesis 

by comparing the mate choice behaviours of virgin and mated flies. Secondly, if males 

vary in the magnitude of their male-induced harm exerted on females, then we predict 

that female mate choice behaviours will differ depending on the degree of harm 

associated with their mate’s phenotype. To test these predictions we examined if female 

mate choice behaviours were influenced by a) the duration of male exposure and b) the 

magnitude of harm associated with the genotype of a previous mate. Furthermore, 

Drosophila melanogaster females may exhibit genetic variation in how they rank male 

“attractiveness” and in how much they discriminate against certain males (Ratterman et 

al., 2014; but see Tennant et al., 2014). As such, we also examined if there was genetic 

variation associated with female behavioural response to mating experience. If there is a 

genetic basis for individual variation in female mate choice behaviours, then we may also 

expect to see genetic variation associated with changes in behaviour due to experience 

(i.e. a GxE interaction). By studying the potential role that male-induced harm  
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contributes to individual variation in female male choice, this study helps advance our 

understanding of the complex nature of evolutionary change via sexual selection. 

 

Methods 

Fly stock and hemiclone generation 

The flies used in our experiments were derived from the large outbred wild-type Ives 

(hereafter “IV”) population.  This population originated from a sample of 200 females 

and 200 males collected in South Amherst, MA, USA, 1975. Since 1980, this population 

has been cultured at a large census size (>1000 adults/generation) on non-overlapping 

generations and standardized protocols (Rose et al. 1984, Long et al. 2006, Martin & 

Long 2015; Filice & Long, 2016). Flies are cultured in vials containing 10mL of a 

banana-agar-killed yeast medium, and stored in an incubator maintaining a consistent 

temperature of 25°C, humidity of 60%, and light:dark cycle of 12h:12h. At the start of 

each generation, flies are collected from their “natal” vials as adults, mixed en masse, and 

transferred into equal groups into “oviposition” vials containing fresh media. Flies are 

left in this vials for ~2-3 hours to allow oviposition. After this period, the adult flies are 

removed and the eggs that were laid are trimmed (by hand) to a density of 100 eggs/vial. 

These oviposition vials become the natal vials for the next generation of flies. 

From the IV population we established 26 male clone lines using cytogenetic 

cloning techniques (Chippindale et al. 2001, Tennant et al. 2014), which were 

subsequently expressed in a male or female “hemiclonal” background. Clone lines were 

created and maintained by mating males chosen from the IV population to females from a 

“clone-generator” (CG) population, who possess a random Y chromosome, a conjoined 
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“double -X” chromosome [C(1)DX, y, f], and are homozygous for translocated autosomes 

[T(2;3) rdgC st in ri pP bwD]. The resulting clone males all possess one full haplotype 

originating from the base IV population maintained in an unrecombined state and with 

the translocated autosomes inherited from their CG mother. To express the haploid 

genome in a male hemiclonal state, clone males are crossed with virgin females from the 

“DX-IV” population (which possess the “double-X” chromosome and autosomes 

originating from the IV population). To express the haploid genome in a female 

hemiclonal state, clone males are crossed to virgin females from the base IV population. 

Ultimately, all target hemiclones resulting from one of these crosses posses one 

haplotype identical to all other individuals in the line, and one randomly inherited 

haplotype.  

Prior to this study, we quantified the magnitude of male-induced harm in 26 

hemiclone lines by measuring the fecundity (a meaningful metric of fitness (Rice et al., 

2006)) of IV females that were exposed to males of different genetic backgrounds for 

either a short (3hrs) or long (48hrs) period. By measuring the difference in fecundity 

between the two treatments for each of the male lines, we were able to estimate their 

harmfulness (see Filice & Long, 2016). From these 26 lines, we identified the 2 lines with 

the greatest mean effect on female fecundity (high harm males), the two lines that had the 

lowest mean effect (low harm males) and one line that had the median effect (medium 

harm males). 
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Assay 1: Does mating experience influence female mate choice behaviours? 

Experience phase 

In this assay, we were interested in examining if mating experience has an effect 

on female mate choice behaviours. The experiment began by collecting 400 female flies 

as virgins (upon 8 hours from ecolosion) from the base IV population, reared at standard 

culture densities. These flies were all placed into individual vials and assigned to four 

different treatments. In the control treatment, 100 females remained virgins throughout 

the experiment. The other 300 females were randomly assigned to one of three “mating” 

treatments: “low-harm”, “medium-harm”, and “high-harm”. In the low-harm treatment, 

each female was housed with a single male derived from the least harmful hemiclone 

line. In the medium-harm treatment, each female was housed with a single male derived 

from the hemiclone line that had the median impact on female fecundity. Finally, in the 

high-harm treatment, each female was housed with a single male derived form the most 

harmful hemiclone line. Next, males were removed from half of the vials in each 

treatment after 3h of exposure (short-term treatment). In the short-term treatment, all 

vials were observed to assure at least one mating occurred. The other half of the females 

remained with males for an additional 45h (total of 48h) until the mate choice assay 

(long-term treatment), allowing for continuous courtship and multiple matings to occur. 

Mate choice assay 

Following the “experience phase” of our experimental protocol, individual 

females were placed into mate choice chambers (using light CO2 anesthesia) in order to 

observe their subsequent mate choice behaviours (Figure 3.1). These chambers consisted 

of a 41 x 41 x 8mm main area (Fisher brand weighing boat 08-732-112) covered with a 
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sheet of clear styrene (Evergreen Scale Models, Inc.), held in place with a bulldog-clip, 

thereby creating an arena where females could freely move. Inside the arena we installed 

four sub-chambers attached to the base of the main chamber (Micrewtube brand, Simport 

Scientific Inc.). One of these sub-chambers was filled with 60μL of media for the female, 

and the other three caps were filled with 20μL of media for males, who were physically 

blocked from the main chamber by a ½” (OD) 149-micron polypropylene mesh disk 

(AmazonSupply.com). The mesh restricts the males from physically interacting with the 

female (and each other), but does not disrupt olfactory and auditory signals between 

males and females. Thus, this design allows for females to sample (some) male display 

traits but eliminates the potential for male-male competition and harassment to confound 

the expression of a female’s mate choice. 

We placed males into their sub-chambers 18 hours before the start of the mate 

choice assay. In each mate choice chamber, we placed a single high-harm male and a 

single low-harm male (both from different hemiclonal backgrounds from the males used 

in the experience phase) into individual sub-chambers, and left the third sub-chamber 

empty (Figure 3.1). All mate choice chambers were placed randomly over a light board. 

The light emitted from below the chambers ensured the females would appear in strong 

contrast to the background in our videos. We filmed chambers from above using JVC 

Everio GZ-HM440U video cameras on a time-lapse setting (1 frame s-1) for ~4 hours.  

 

Assay 2: Does variation in experience-dependent female choice have a genetic basis? 

In this assay, we set out to quantify the amount of additive genetic variation underlying 

individual variation in female mate choice behaviours following different mating 
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experiences. This experiment’s protocol was similar to that described above for assay 1, 

except that in this assay we experimentally controlled female genotype instead of using 

randomly-sampled IV females. In this assay we used the 21 clone-lines that were not 

used to generate the low-, medium-, and high-harm males, used in experiment 1. From 

each of these lines we obtained 24 females hemiclones by crossing clone males to virgin 

IV females. In this assay, we restricted the number of mating treatments during the 

experience phase to just low- and high-harm males. In this assay 6 females derived from 

each hemiclone line were either mated to males from the low- or high-harm hemiclonal 

backgrounds used in assay 1. Females were housed at a 2:1 male:female ratio (12 males 

& 6 females/vial). Half of these females remained together for 3h and were then 

separated from the males (short-term exposure) while the other half remained together for 

the 48hrs until they were filmed (long-term exposure).  

Mate choice assay 

Following the four combinations of treatments during the experience phase (low harm or 

high harm x short-term or long-term) across the 21 female hemiclone lines, we 

transferred all flies into mate choice chambers and filmed their interactions in the same 

manner as described above for assay 1.  

Video Analysis  

Videos files were analyzed using the program DTrack (Courtesy of Dr. Scott Pletcher, 

University of Michigan) in order to track the physical position of the individual females 

in each frame of the video. Using this software, we counted the number of frames that 

each female spent on the surface of each sub-chamber containing either a "high-harm 

male", "low-harm male", or were elsewhere in the chamber (Figure 3.1).  
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Statistical Analysis  

To understand female mate choice behaviours, we were interested in analyzing females' 

interest in males and male preference. Interest in males was defined by the total amount 

of time (i.e. the number of frames) a female spent associating with males compared to the 

entire duration of the assay. This was calculated by dividing the sum of frames a female 

spent on the surface of a chamber containing the high- and the low-harm males by total 

number of frames recorded in the assay.  

Preference was defined by the amount of time (number of frames) a female spent 

with high harm male compared to the amount of time spent with either male. This was 

calculated by dividing the number of frames a female spent on the surface of the chamber 

containing the high-harm male by the number of frames spent on the surface of the 

chamber containing the low-harm male added to the number of frames spent on the 

surface of the chamber containing the high-harm male. Our decision to use high-harm 

males as the numerator was arbitrary. Although our results would be inversed if we used 

the low-harm males as the numerator, the conclusions and implications of these results 

would remain the same. 

All data analyses were conducted using R v3.1.2 (R Core Team, 2014). For assay 

1, we constructed generalized linear models (GLMs) with quasibinomial errors and used 

the Anova function in the car package (Fox and Weisberg, 2011) to determine whether 

virgin and mated females differed in their interest in males and preferences. Next, we 

used GLMs with quasibinomal errors and the Anova to determine the effect of mating 

treatment (high and low), length treatment (short and long), and their interaction had an 

effect on female interest in males and preference. To determine differences within 
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treatments, we used a Tukey’s post-hoc from the multcomp package (Horthorn et al. 

2008). 

For assay 2, data collected from hemiclonal females were analyzed using 

Generalized Linear Mixed Models (GLMMs), created using the lme4 package (Bates et 

al., 2014). As the response variables in both models (examining the overall female 

attractio to males, and the female’s preference for the harmful male) are binomial, the 

models were fit with a logit link function. Initially the models included mating treatment 

(high or low-harm 1st mate), mating exposure treatment (brief or prolonged) and their 

interaction as fixed effects, with hemiclone line (and all of it possible interactions with 

the previous effects) entered as random effects. First, the significance of fixed effects was 

first determined using the Anova function, and models were simplified by the removal of 

non-significant effects (and their corresponding random-effects). Next, using the bootMer 

function 95%CI were calculated for the random effect variables based on 1,000 bootstrap 

samples. The statistical significance of each variance component was determined using a 

permutation test approach (Manley, 2007) whereby the magnitude of our model’s 

variance component was compared to the distribution of 10,000 variance components 

each derived a randomize set of the experimental data.  

 In order to better understand the nature of the interaction between clone line and 

mating treatments, we calculated the mean fraction of time females from each clone line, 

in each of the two treatments (mated to high-harm male or mated to low-harm males) 

spent associating with the high-harm male in the male-choice chamber. We then 

calculated the correlation between these two variables, and obtained the Standardized 

Major Axis (SMA) method (Sokal & Rolf, 2012) using the lmodel2 package (Legendre, 
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2014). A SMA regression was calculated, as both the x-and y-axes were subject to natural 

variation and measurement error. For each of these statistics we calculated 95% CI by 

bootstrapping the data 10,000 times each. 

 

Results 

Assay 1: Does mating experience influence female mate choice behaviours? 

Our first objective was to compare the mate choice behaviours of mated and virgin 

females. Our analysis revealed that females that remained virgin throughout the 

experiment spent approximately twice the amount of time in association with males in the 

mate choice phase compared to females who had mated (x̄virgin = 0.0826, x̄mated = 0.0463 

2=15.43, Df=1, p=8.55x10-5)(Figure 3.2), but did not differ in their preference of males 

(2=2.32, Df=1, p=0.128).  

Our next analysis looking at the effect of mating experience on mate choice 

behaviours (i.e. harmfulness of first mate and length of exposure) revealed a significant 

effect of length of male exposure (p=0.0056), no effect of mating treatment (p=0.1416) 

and a significant interaction between length and mating treatments (p=0.0001)(Figure 

3.3; Table 3.1). A Tukey’s post-hoc test revealed that females that had previously mated 

with a low-harm or medium-harm male spent the same amount of time with males 

between the short- and long-term treatments. However, females previously mated to 

high-harm males spent significantly more time with males in the short-term treatment 

compared to the long-term treatment (Figure 3.3; Table 3.1). For male preference, there 

was a significant effect of mating treatment (p=0.0047), but no significant effect of length 

treatment (p=0.2258) or the interaction between the mating and length treatments 
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(p=0.0575)(Figure 4, Table 1). A Tukey’s post-hoc test revealed that females that had 

previously mated with a medium-harm male spent significantly more time associating 

with the high-harm male compared to those females that had previously mated with a 

high-harm male, but the same amount of time as females that had previously mated with 

a low-harm male. (Figure 3.4, Table 3.1). 

Assay 2: Does variation in experience-dependent female choice have a genetic basis? 

When analyzing the degree of genetic variation associated with experience-dependent 

mate choice behaviours, we found a significant effect of mating treatment on interest in 

males (2=20.57, Df=1, p=5.76x10-6), but no effect of exposure length (2=0.3797, Df=1, 

p=0.5378) nor for the interaction between length and mating treatment (v2=0.0059, Df=1, 

p=0.9388). When including random effects, we found that although clone line alone was 

not a significant factor and explains almost none of the variation, the interaction between 

mating treatment and clone line is significant and explains 4.2% of the observed variation 

in the amount of time females spent associating with males (Figure 3.5, Table 3.2). To 

better understand how each hemiclone line was affected by the two mating treatments, we 

looked at the correlation in overall interested in males of the clone lines between females 

previously mated to a high-harm male and females previously mated to low-harm males 

and detected a strong negative correlation  

 When looking at female preference, no fixed effects had a significant effect 

(mating treatment (2=1.1147, Df=1, p=0.2911), length treatment (2=2.1131, Df=1, 

p=0.1469), and their interaction (2=0.0013, Df=1, p=0.9711)). Upon analysis of the 

random effects, clone line was not a significant factor and explains none of the observed 

variation, but the interaction between clone line and mating treatment was significant and 
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explained ~10.4% of the observed phenotypic variation in female preferences (Figure 3.6, 

Table 3.3). When we examined the behaviour of the hemiclone females that had been 

mated to either high-harm or low-harm males, we found a significant, negative 

correlation, of weak-to-moderate effect size (correlation [bootstrapped 95%CI]: -0.298 [-

0.025 -0.557]). Similarly, the SMA regression also has a significant negative slope (slope 

[bootstrapped 95%CI]: [-0.424,-1.539])(Figure 3.7). 

 

Discussion 

Individual variation in female mate choice can have important consequences for the 

direction and/or strength of the evolution of sexually selected traits (Jennions & Petrie, 

1997). In many animals, individual experiences can shape and modify behaviours in a 

variety of ways, including mate choice behaviours (Verzijden et al., 2012; Rodríguez et 

al., 2013). Here, we demonstrate that some of the individual phenotypic variation in 

female mate choice behaviours is shaped by previous mating experience. While previous 

studies have identified plasticity in mate choice behaviours (Dukas, 2005; Rebar et al., 

2009; Rebar et al., 2011), we are the first to identify a genetic component underlying this 

variation and to identify a link to sexual conflict. Our results indicate that i.) the 

magnitude of direct costs a female incurs from a her previous mating experience(s) may 

shape her subsequent mate choice behaviours, ii.) some of his variation is rooted in the 

presence of additive genetic variation in the population and iii.) the expression of this 

genetic variation is highly plastic (i.e. exhibits  GxE effects). Our study’s results advance 

our understanding of the causes and consequences of individual variation in female mate 

choice behaviours, and the potentially important role of sexual conflict.  
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Interest in males, but not preferences, influenced by individual mating status 

In our first assay, we found that virgin females spent more time on the surface of 

sub-chambers containing males compared to mated females. This suggests that virgin 

females may be more interested in general in associating with males than those females 

that had previously mated. This result is consistent with data that shows virgin flies are 

more receptive to courtship than mated flies (Manning, 1967), and that Acps transferred 

by previous mates decrease female receptivity to later males’ courtship (Chen et al., 

1988; Aigaki et al., 1991). There are two possible (but not mutually-exclusive) 

explanations for this observation that are related to sexually-antagonistic coevolution 

between the sexes. Firstly, mated females may avoid males in order to avoid the direct 

costs associated with courtship and/or mating. As prolonged exposure to males and 

multiple matings has been shown to reduce both the longevity (Lew & Rice, 2005) and 

fecundity (Filice & Long, 2016) of females, it may be in a female's best interest to focus 

on oviposition until her stored sperm is depleted (Chapman et al., 1995). A second 

hypothesis, proposed by Johnstone & Keller (2000), is that the decreased female 

receptivity to males following remating is due to manipulation by the earlier mate, who is 

attempting to increase his share of paternity by reducing his partner’s interest in other 

mates. Their model predicts that the size and potency of the manipulative substances 

transferred to females should increase in species with greater second-male advantage, a 

phenomena well documented in Drosophila (Price, 1997; Price et al., 1999). To test these 

hypotheses, future studies could quantify how changed in female interest in males 

changes with time since mating, and its relationship to remating rates, female egg 

production and the outcome of sperm competition. 
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Somewhat surprisingly, there was no effect of mating status on the expression of 

female preferences. Both virgin and mated females spent, on average, the same amount of 

time associating with the sub-chamber containing the “high-harm” male as they spent 

over sub-chamber containing the “low-harm” male. This is possibly due to the 

phenomenon observed in our second assay, that the effect of mating treatment on female 

preference largely depended on female's genetic identity. Since females were all 

randomly selected IV females (of unknown genetic identities), any behavioural 

differences in female preferences due to mating status may have been obscured by the 

wide range of phenotypes expressed by females in each treatment group. 

Interest in males influenced by identity of previous mate and interaction with genotype 

In assay 1, we also observed that amongst mated females, the differences in individual 

mate choice behaviours were associated with differences in the phenotype of her mate 

and the length of her exposure to that mate. In the short-term exposure treatment, females 

that were previously mated to a high-harm male spent significantly more time on the 

surface of sub-chambers containing males compared to females that had been previously 

housed with high-harm males for a prolonged period (Figure 3.2). This result might be 

explained in part by the relationship between the length of exposure to males, and the 

effect of those males on a female’s fecundity. In Filice & Long (2016), we found that 

males who are the most harmful to female fitness over a prolonged period of time tended 

to be the most beneficial to female fitness after a single mating. Thus, it is possible that 

females in the "high-harm, long-term exposure" treatment were the least interested in 

males because they incurred the greatest amount of costs to their lifetime fitness and may 

be less interested in remating as a means to reduce the costs (decreased fecundity, 
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longevity) associated with continuous male harassment and mating. Alternatively, as 

several studies have also found that increased exposure to the toxic side-effects of Acps 

reduces female longevity (Chapman et al., 1995; Rice, 1996) and receptivity to mating 

(Chen et al., 1988; Aigaki et al., 1991), it is possible that the more harmful a previous 

mating experience was (i.e. increased exposure to the toxic side-effects of Acps) the less 

willing a female would be to be receptive to the courtship of other (harmful) males.  

Together, these results suggest that the observed plasticity in female mate choice 

behaviours may be an adaptation that allows females to reduce the direct costs associated 

with previous mating encounters. This hypothesis is consistent with models that predict 

experience-dependent plasticity in female mate choice may evolve as an adaptation 

(Fawcett & Bleay, 2009), as the benefits associated with mate choice can frequently be 

context dependent (Qvarnström, 2001). For example, a female that incurs low 

physiological costs from a previous mate may benefit from remating if they are able to 

acquire and select higher quality sperm via sperm competition and/or cryptic mate choice 

(Dickinson, 1997; Jennions & Petrie, 2000). However, a female that incurs relatively 

higher physiological costs may not receive a net-benefit from remating, even if it means 

potentially producing higher quality offspring.  

The presence of mate-choice plasticity can potentially explain the maintenance of 

variation of deleterious alleles within a population's gene pool. It is possible that male-

induced harm is acting as an indirect genetic effect (IGE) which arise when the 

phenotypic expression of an individual's genes influence the phenotype of another (Wolf, 

2000). In Filice & Long (2016), we showed that there is significant genetic variation 

associated with phenotypic variation in male-induced harm. Our current study may 
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explain how this variation is maintained: if females that have mated with a harmful male 

are less likely to remate, then one would predict increased frequency of alleles associated 

with male-induced harm represented in the next generation. 

In assay 2, we did not detect an identical pattern, but our results still support this 

hypothesis.  The effect of treatment length was not significant, and in both the short- and 

long-exposures, females previously mated to low-harm males spent more time with males 

than those previously mated to high-harm males (Figure 3.5). We suspect that this could 

have occurred due to the fact that in this assay females were housed at a 2:1 male:female 

ratio (12 males and 6 females) rather than the 1:1 ratio (single male and single female) in 

assay 1. This may have resulted in increased male harassment and male aggression due to 

increased competition, even in the short-term exposure. Interestingly, we also observed a 

significant interaction between individual female genotype and mating treatment, which 

accounted for ~4.19% of the total observed variation in interest in males (Table 2). This 

means that not all female lines that had mating experience with "high-harm" males 

responded by spending less time with males in the choice trial compared to females from 

the same line but experience mating with "low-harm" males. However, this inconsistency 

was only observed in 3 of the 21 lines (Figure 3.5), and the effect of this interaction is 

quite weak (p=0.048, Table 3.2). As such, we suspect that these lines are outliers, and 

that the negative trend between mating treatments is relatively consistent across 

genotypes. 

 

 

 



67 

 

Female preferences influenced by identity of previous mate and interaction with 

genotype 

 In our analysis of preference in assay 1, we did not find any statistical differences 

between the behaviours of females previously mated to high- and low-harm males did not 

differ in their preferences, contrary to our initial predictions. However, the results in 

assay 2 shed some light on the reason no differences between treatments were detected. 

Here, we found a significant interaction between female genotype and experience that 

was characterized by a negative correlation between the female preference phenotype 

exhibited by hemiclonal females previously mated to a high harm male and females from 

the same hemiclonal line that had previously mated to a low harm male. This means that 

a female genotype that exhibited a strong preference for low-harm males after having a 

previously mated with a “high-harm” male tended to exhibit a strong preference for high-

harm male if female of the same genotype had previously mated with a “low-harm” male. 

This surprising result yields many exciting implications for our understanding of the 

causes and consequences of individual variation in female mate preferences. Firstly, it 

suggests that the plasticity we observed in female choice is due an interaction between 

mating individual experience and genotype. Secondly, it may explain the maintenance of 

genetic variation in populations despite some females consistently choosing phenotypes 

in males over others to acquire the greatest indirect benefits. This phenomenon, known as 

the “lek paradox”, asks how genetic variation is maintained in the face of directional 

sexual selection (Kokko & Heubel, 2008). Models have predicted that GxE interactions 

between experience and genotype may act as a mechanism to maintain genetic variation 
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(Kokko & Heubel, 2008; Ingleby et al., 2010), and here we provide empirical evidence of 

such a mechanism.  

Plasticity as resistance? 

Our study’s results have interesting implications regarding the evolution of 

plasticity in mate choice behaviours and female resistance to male harm. Rodríguez et al. 

(2013) proposed five hypotheses that may explain the evolution of behavioural plasticity 

in mate preferences. All five of these hypotheses are explained by two general functions: 

a) that females alter their preference to ensure mating and reduce the costs associated 

with mate choice (i.e. resource expenditure, time searching, predation risk) and b) that 

females alter their preference to ensure mating with an "attractive" mate, or to prevent 

mating with an "unattractive" mate. While it is possible that our results support the latter 

function, we have no evidence to suggest if males from the "high-harm" line are 

inherently more or less attractive than males from the "low-harm" line. Although it is 

often assumed that “harmful males” are “attractive” (e.g. Friberg & Arnqvist, 2003), 

virgin females from our first assay spent nearly the exact same time on average on the 

surface the "high-harm" chamber as they did over the "low-harm" chamber (x̅= 0.519). 

We showed here that females could alter both their interest in prospective mates 

(receptivity) and preference based on the harmfulness of a previous mate. Therefore, we 

suggest that plasticity in mate choice behaviours may operate as a mechanism of female 

“resistance” to male-induced harm.  

In previous research demonstrating genetic variation (Linder & Rice, 2005; Lew 

et al., 2006) and an evolutionary basis (Holland & Rice, 1999; Wigby et al., 2003) for 

female resistance, the actual mechanisms that mediate female resistance were not well 
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characterized. Holland & Rice (1998) suggested in their “chase-away” sexual selection 

hypothesis that females may resist the direct costs of mating by evolving biases against 

traits that stimulate them to mate. Since then, theoretical models have inferred that 

females can indeed evolve mate choice behaviours as a means of reducing the direct costs 

of mating (Gavrilets et al., 2001), but to date no studies have empirically demonstrated 

this. Therefore, it is integral for future studies to continue investigating the dynamics 

between sexual conflict theory and mate choice. In order to better understand 

evolutionary significance of our results, studies should consider how individual 

components of harm (i.e. Acp concentrations, physical condition) influence mate choice, 

and how female fitness is affected by changes in mate choice behaviours. 

Conclusions  

In this experiment, we identified mating experience as a novel source of variation 

in female mating choice behaviours in the model species D. melongaster. By comparing 

the mate choice behaviours of virgins and mated females, we showed that virgin females 

were significantly more interested in spending time over male chambers, but did not 

differ in their preference of males. We found that the duration of exposure to males had a 

interactive effect with the type of male a female was exposed to on her subsequent 

interest in males, and that mating treatment had a significant effect on her mate 

preference. We also identified an interaction between mating experience and individual 

genotype (a GxE effect) on interest in males and female preferences, making this the 

second study to observe such an effect (other than Rodríguez & Greenfield, 2003). Our 

results offer new insight into the maintenance of variation of male traits and the evolution 

of plasticity in female mate choice behaviours. 
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Figure 3.1: Illustration of experimental mate choice chambers and setup. Figure A 

depicts the chamber from a top (bird’s eye) perspective, and figure B depicts the chamber 

from a side-view perspective. Sub-chamber 1 contained a male from a high-harm 

hemiclonal background, sub-chamber 2 contained media for the experimental female, 

sub-chamber 3 contained a male from a low-harm hemiclonal background, and sub-

chamber 4 remained empty as a control. 
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Figure 3.2: Effect of mating status on interest in associating with males. The boxplots 

illustrate the differences between virgin and mated females in the proportion of time 

females spent over a sub-chamber containing a male out of the entire duration of the 

assay. The boxes contain the middle 50% of data (inter-quartile range, IQR), and the 

horizontal lines represent the medians. Values > ± 1.5x IQR are outliers and are 

represented by open circles, and all other values that are not outliers are represented by 

the whiskers above and below each box. 
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Figure 3.3: Effect of previous mating experience and length of exposure to that mate on 

the proportion of time females spent with males during the mate choice assay (interest in 

males). The box plots show variation in the data distributions of each treatment 

combination. The boxes contain the middle 50% of data (inter-quartile range, IQR), and 

the horizontal lines represent the medians. Values > ± 1.5x IQR are outliers and are 

represented by open circles, and all other values that are not outliers are represented by 

the whiskers above and below each box. The letters beside each line indicate the 

statistical similarity of the means using a Tukey's post-hoc test (Table 1). 



79 

 

 

Figure 3.4: Effect of previous mating experience on the proportion of time females spent 

with the high harm male out of their total time spent with males during the mate choice 

assay (preference for high harm male). The box plots show variation in the data 

distributions of each mating treatment. The boxes contain the middle 50% of data (inter-

quartile range, IQR), and the horizontal lines represent the medians. Values > ± 1.5x IQR 

are outliers and are represented by open circles, and all other values that are not outliers 

are represented by the whiskers above and below each box. The letters beside each line 

indicate the statistical similarity of the means using a Tukey's post-hoc test (Table 3). 
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Figure 3.5: Effect of previous mating experience and female genotype on female interest 

in associating with males in Drosophila melanogaster.  The reaction norm plot in the 

centre depicts the proportion of time each female hemiclone line spent over a sub-

chamber containing a male over the entire duration of the assay across the two mating 

experience treatments, while the boxplots depict the distribution of data independent of 

hemiclonal background.  The boxes contain the middle 50% of data (inter-quartile range, 

IQR), and the horizontal lines represent the medians. Values > ± 1.5x IQR are outliers 

and are represented by closed circles, and all other values that are not outliers are 

represented by the whiskers above and below each box. 
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Figure 3.6: Effect of previous mating experience and female genotype on female 

preference in Drosophila melanogaster.  The reaction norm plot in the centre depicts the 

proportion of time each female hemiclone line spent with the high harm male over the 

total time she spent with males across the two mating experience treatments (degree of 

preference for high-harm male), while the boxplots depict the distribution of data 

independent of hemiclonal background.  The boxes contain the middle 50% of data 

(inter-quartile range, IQR), and the horizontal lines represent the medians. Values > ± 

1.5x IQR are outliers and are represented by closed circles, and all other values that are 

not outliers are represented by the whiskers above and below each box. 
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Figure 3.7: Scatterplot and regression line illustrating the negative relationship between 

the amount of time spent with the high-harm male compared to the low-harm male 

between females previously mated to a high-harm male and females previously mated to 

low-harm males (degree of preference for high harm male) of 21 different hemiclone 

lines (correlation [bootstrapped 95%CI]: -0.298 [-0.025 -0.557]). 
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Table 3.1: Anova results of our GLMs for interest in males and degree of preference of 

the female Drosophila melanogaster from assay 1. Females had been previously mated to 

a low-harm male, medium-harm male, or high-harm male (mating treatment) for either a 

short or long period of time (length treatment). 

 

Response variable  Factor 𝛘2 df p-value 

Interest in males   Length treatment 7.675 
 

1 0.0056 

  Mating treatment 3.909 2 0.1416 

  Length treatment x 

Mating treatment 

 

17.661 2 0.0001 

Degree of 

preference for 

high-harm male 

 Length treatment 

 
1.4669 1 0.2258 

 

 

 

 Mating treatment 10.717 2 0.0047 

  Length treatment x 

Mating treatment 
5.710 2 0.0575 
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Table 3.2: Variance components estimated using a generalized linear mixed model 

(GLMM) fit by maximum likelihood (Laplace Approximation) for hemiclonal 

Drosophila melanogaster female interest in males. Females had previously been mated to 

either a high-harm or a low-harm male. The 95% CI values for the variance components 

were based on 1,000 bootstrapped samples of the data. The statistical significance of each 

variance component was determined using a permutation test approach (Manley 2007) 

whereby the magnitude of each model’s variance component was compared to the 

distribution of 10,000 variance components obtained from models by randomizing the 

identity of the original data. 

 

Source of Variance  Variance (SD) Bootstrapped 

Upper & Lower 

95% CI 

% of Variance 

Explained 
P-value 

Clone   0.0397 

(0.1992) 

0.1214341 

<0.001 

1.142358 0.0615 

Clone x Treatment  0.1457 

(0.3817) 

0.2232277 

0.06597954 

4.192482 0.0476 

Residual*  3.289868    

*Residual variance value of 2/3 as per Nakagawa & Schielzeth (2010) for a GLMM binomial model fit 

with logit link function. 
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Table 3.3: Variance components estimated using a generalized linear mixed model 

(GLMM) fit by maximum likelihood (Laplace Approximation) for hemiclonal 

Drosophila melanogaster female preference of harmful males. Females had previously 

been mated to either a high-harm or a low-harm male. The 95% CI values for the 

variance components were based on 1,000 bootstrapped samples of the data. The 

statistical significance of each variance component was determined using a permutation 

test approach (Manley 2007) whereby the magnitude of each model’s variance 

component was compare to the distribution of 10,000 variance components obtained from 

models by randomizing the identity of the original data. 

 

Source of Variance  Variance (SD) Bootstrapped 

Upper & Lower 

95% CI 

% of Variance 

Explained 
P-value 

Clone   <0.001 

(<0.001) 

0.1681924 

0.000 

0.00 0.5043 

Clone x Treatment  0.3834 

(0.6192) 

0.5094962 

0.1755919 

10.43757 0.0021 

Residual*  3.289868    

*Residual variance value of 2/3 as per Nakagawa & Schielzeth (2010) for a GLMM binomial model fit 

with logit link function. 
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CHAPTER 4  

 

The role of experience-dependent mate choice in the maintenance of genetic variation 

and evolution of species 

 

The primary purpose of this thesis was to determine if there was an effect of mating 

experience on subsequent mate choice behaviours in females. Specifically, I was 

interested in investigating if the degree of male-induced harm experienced by females 

caused changes in mate choice behaviours, and if these changes had a genetic basis. To 

do this, I first quantified the harmfulness of 26 male hemiclone lines. These lines were 

used to experimentally manipulate the amount of degree of harm experienced by females, 

and to measure her subsequent preferences for males. The data from my two 

experimental chapters have yielded interesting results that have shed light on the 

understudied relationship between male harm and female choice (Kokko et al., 2003). In 

this chapter, I discuss these implications, and conclude with a discussion about the 

integrative techniques I used throughout my research. 

 

Maintenance of male-induced harm and male competitive success  

Although it is well understood that male-induced harm typically arises from the sexually-

antagonistic arms-race between the sexes (Rice, 1996; Morrow et al., 2003; Arnqvist & 

Rowe, 2005), the specific causes and consequences underlying individual variation in 

harmful male traits are not fully understood. In chapter 2, we showed that the magnitude 

of harm a female experiences via courtship and/or mating depended on her length of 

exposure to males and the genotype of her mates. This study is the first to date to show 

that phenotypic variation in female fecundity is affected by the genetic background of 
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their mates, and indicates the presence of an indirect genetic effect (Wolf, 2000). We also 

found that males who are more harmful tend to provide the greatest benefits to female 

fecundity if the exposure was brief (i.e. a single mating), which was a somewhat 

surprising result, as it indicates that the male that provides the greatest direct-benefits to 

the female is strongly context-dependent. In our second experiment, we found that in the 

long-exposure treatment, females that were previously housed with a harmful male are 

subsequently less interested in associating with males compared to females that were 

previously housed with a less harmful male, but in the short-exposure treatment, females 

showed no differences in their interest in males. From these results, we can infer that 

females may vary in their preferences depending on the temporal stability of their social 

environment. In situations where encounters to males may be low/brief, females may 

prefer to mate with a more harmful male, but in environments where encounters are 

high/prolonged, a female may prefer to mate with a more harmful male. This 

phenomenon may help explain the maintenance of additive genetic variation for harm in 

this species. 

 In order to better understand how harmful traits evolve and are maintained in 

populations, future research should compare the potential relationship between male-

induced harm and male competitive success over time. This could be tested by combining 

"target males" that vary in their degree of harm with females and random "competitor 

males" and measuring the reproductive success of the "target males" over four different 

days. If increased harm is associated with increased competitive success (i.e. positively 

correlated), then this could serve as an alternate explanation for the evolution and 

maintenance of variation in harm. Rather than harm evolving only as a pleiotropic by-
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product of improved sperm competition and copulation success (Morrow et al., 2003), 

such a result would imply that harm could be the by-product of improved male-male 

competition. By examining this relationship over multiple days, we would also gain 

insight if harmfulness is a continuously optimal strategy. For example, if harmful males 

are very successful on day one, but consistently drop off in success over the next three 

days, then this would imply the strategies associated with harm are only beneficial in the 

short-term. Such a result could be another explaining factor for the maintenance of 

harmful male traits in populations. Together with our results, these hypothetical results 

would strongly suggest that multiple factors can lead to the evolution of male-induced 

harm, and variation in these harmful traits can be maintained due to a variety of context-

dependent factors. 

 

Evolution of plasticity in female mate choice and female fitness 

The idea that plasticity in female mate choice behaviour evolves as an adaption is 

relatively new (Qvarnström, 2001; Hunt et al., 2005), but has been actively investigated 

(Rodríguez et al., 2013). However, the role of mating experience on mate choice 

behaviours, particularly in the context of the direct costs of mating, has not previously 

received any study. In chapter 3, we showed that mating experience can influence a 

female's subsequent mate choice behaviours, and that some of this variation has a genetic 

basis. Specifically, we found that females that previously mated with a "high-harm" male 

were subsequently less interested in associating with males compared to females that 

previously mated with a "low-harm" male. We hypothesized that females may be 
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changing their mate choice behaviours in order to reduce the direct costs associated with 

a previous mating experience.  

 In order to test this hypothesis, future studies should attempt to quantify the 

fitness effects on females that alter their mate choice behaviours. This could be done by 

experimentally mating females to males that vary in harmfulness (identical to our 

protocol in chapter 3), giving them the option to remate, and comparing the fecundity 

and/or longevity between females that did and did not remate. If females that had been 

mated to a harmful male and didn't subsequently remate had greater fitness than those 

that remated, then it would suggest that the decision to delay remating is adaptive. 

Additionally, future studies should investigate the role of post-copulatory (cryptic) 

female choice, as this can influence the evolution of male traits and shed light on what 

traits may be beneficial (Eberhard, 1991). This can be easily tested by comparing the 

reproductive success (offspring produced) between the first and second males in the 

protocol described above. Answering these questions would allow us to better understand 

if mate choice behaviours can evolve as a means of female resistance, as predicated by 

Holland & Rice (1998). 

 

An integrative perspective  

One challenge I faced while designing and executing my thesis work was how to 

approach my research questions from a wide variety of biological perspectives. 

Throughout my work, I focused on techniques and literature from the disciplines of 

evolutionary biology, behavioural ecology, and population (quantitative) genetics. I 

encourage future students in the Long Lab (and elsewhere) to continue integrating new 
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perspectives into similar questions. Specifically, a biochemical analysis of the 

relationship between male-induced harm and female choice appears to be an exciting 

avenue. In D. melanogaster, cuticular hydrocarbons (CHCs) play an important role in 

communication and mate choice (Ferveur, 2005). By examining the relationship between 

the CHC profile of males and their harmfulness, we could potentially gain answers as to 

how females discriminate against males that vary in harmfulness. Additionally, as 

increased exposure to Acps has been shown to have deleterious effects on females 

(Chapman et al.,1995; Rice, 1996), investigating the relationship between harmfulness 

and Acp profiles may shed some light on the exact factors that make "harmful" males 

more harmful. Ultimately, it is important for biologists to take an integrative approach in 

order to place their specific questions into the bigger picture. Although I sometimes wish 

I could take a completely naturalistic approach to my research, my work throughout this 

thesis has taught me the importance of thinking about the same question from a variety of 

perspectives.  
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