
ESTABLISHING THE VIABILITY AND EFFICACY OF

IN SITU REDUCTION VIA LAGRANGIAN REPRESENTATIONS

FOR TIME-DEPENDENT VECTOR FIELDS

by

SUDHANSHU SANE

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2020

DISSERTATION APPROVAL PAGE

Student: Sudhanshu Sane

Title: Establishing the Viability and Efficacy of In Situ Reduction via Lagrangian
Representations for Time-Dependent Vector Fields

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Hank Childs Chair
Boyana Norris Core Member
Brittany Erickson Core Member
Leif Karlstrom Institutional Representative

and

Kate Mondloch Interim Vice Provost and Dean of the
Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2020

ii

c© 2020 Sudhanshu Sane
This work is licensed under a Creative Commons

Attribution (United States) License

iii

DISSERTATION ABSTRACT

Sudhanshu Sane

Doctor of Philosophy

Department of Computer and Information Science

June 2020

Title: Establishing the Viability and Efficacy of In Situ Reduction via Lagrangian
Representations for Time-Dependent Vector Fields

Exploratory visualization and analysis of time-dependent vector fields

or flow fields generated by scientific simulations is increasingly challenging on

modern supercomputers. One possible solution is the use of a Lagrangian-based

in situ reduction and post hoc exploration approach. Although this approach

offers improved accuracy-storage propositions, prior work has failed to evaluate

the viability and efficacy of this method at scale. Additionally, there is a lack

of understanding surrounding best practices that advance the effectiveness of

the Lagrangian-based approach. This dissertation contributes empirical studies

measuring absolute error, calculating the practical in situ encumbrance, and

understanding tradeoffs involving accuracy, storage, and performance. Further,

this dissertation proposes algorithms that 1) improve accuracy-storage propositions

via improved in situ seed placement and post hoc interpolation, and 2) achieve

scalability via a communication-free model. Overall, the research presented

in this dissertation establishes the viability and efficacy of using Lagrangian

representations extracted in situ for post hoc exploratory visualization of large

time-dependent vector fields.

This dissertation includes previously published co-authored material.

iv

CURRICULUM VITAE

NAME OF AUTHOR: Sudhanshu Sane

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
University of Pune, Pune, India

DEGREES AWARDED:

Doctor of Philosophy, Computer and Information Science, 2020,
University of Oregon
Master of Science, Computer and Information Science, 2016,
University of Oregon
Bachelor of Engineering, Information Technology, 2013,
University of Pune

AREAS OF SPECIAL INTEREST:

Flow Visualization
High Performance Computing
Scientific Visualization

PROFESSIONAL EXPERIENCE:

Graduate Research Fellow, University of Oregon, 2016 – Present
Graduate Teaching Fellow, University of Oregon, 2014 – 2016
Graduate Intern, Los Alamos National Laboratory, Summer 2017
Graduate Intern, Lawrence Livermore National Laboratory, Summer 2016

GRANTS, AWARDS AND HONORS:

Area Exam, Passed With Distinction, University of Oregon, 2019
Sushil Jajodia Scholarship, University of Oregon, 2014 – 2019

v

General University Scholarship, University of Oregon, 2017 – 2019
Kenneth S. Ghent Scholarship, University of Oregon, 2015

PUBLICATIONS:

Sudhanshu Sane and Hank Childs. “In Situ Vector Field Data Reduction
Via Lagrangian Representations on Supercomputers.” (In submission)

Sudhanshu Sane, Abhishek Yenpure, Roxana Bujack, Matthew Larsen,
Kenneth Moreland, Christoph Garth, and Hank Childs. “Scalable In
Situ Lagrangian Flow Map Extraction: Demonstrating the Viability of a
Communication-Free Model.” (In preparation)

Sudhanshu Sane and Hank Childs. “In Situ Lagrangian Analysis for
Exploration of Time-Dependent Vector Fields.” In Situ Visualization
for Computational Science (ISVFCS). (Accepted for publication)

Sudhanshu Sane, Roxana Bujack, Christoph Garth, and Hank Childs.
“Survey of Seed Placement and Streamline Selection Techniques,”
Computer Graphics Forum (CGF). (Accepted for publication)

Sudhanshu Sane, Hank Childs, and Roxana Bujack. “An Interpolation
Scheme for VDVP Lagrangian Basis Flows,” In Proceedings of
EuroGraphics Symposium on Parallel Graphics and Visualization
(EGPGV), 2019.

Sudhanshu Sane, Roxana Bujack, and Hank Childs. “Revisiting
the Evaluation of In Situ Lagrangian Analysis,” In Proceedings of
EuroGraphics Symposium on Parallel Graphics and Visualization
(EGPGV), 2018.

Allen D. Malony, Matthew Larsen, Kevin Huck, Chad Wood, Sudhanshu
Sane, and Hank Childs. “When Parallel Performance Measurement and
Analysis Meets In Situ Analytics and Visualization,” In Proceedings of
the International Conference on Parallel Computing (ParCo), 2019.

Hank Childs, et al. “In Situ Terminology Project,” In Proceedings of The
International Journal of High Performance Computing Applications
(IJHPCA). (Accepted for publication)

vi

Shaomeng Li, Sudhanshu Sane, Leigh Orf, Pablo Mininni, John
Clyne, and Hank Childs. “Spatiotemporal Wavelet Compression for
Visualization of Scientific Simulation Data,” In Proceedings of IEEE
International Conference on Cluster Computing (CLUSTER), 2017.

Chad Wood, Sudhanshu Sane, Daniel Ellsworth, Alfredo Gimenez, Kevin
Huck, Todd Gamblin, and Allen D. Malony. “A Scalable Observation
System for Introduction and In Situ Analytics,” In Proceedings of
Workshop on Extreme-Scale Programming Tools (ESPT), 2016.

Pengju Ren, Xiaowei Ren, Sudhanshu Sane, Michel A. Kinsy, and
Nanning Zheng. “A Deadlock-Free and Connectivity-Guaranteed
Methodology for Achieving Fault-Tolerance in On-Chip Networks,” In
Proceedings of IEEE Transactions on Computers (TC), 2015.

vii

ACKNOWLEDGMENTS

First and foremost I would like to acknowledge my advisor Hank Childs and

thank him for being a fantastic and tremendously supportive advisor. I would also

like to thank my dissertation advisory committee for their feedback and support.

I owe a great deal to my mentors and colleagues. Matthew Larsen, Roxana

Bujack, Christoph Garth, and all my CDUX team members — your help and

guidance has been invaluable.

Lastly, I would like to thank my family and friends. They have always given

me something to smile about. Of course, last and certainly not least, my cats

(Ellie, Biggie, Gucci, and Shorty) and Ashley, for being the best company during

this journey.

viii

To my mother, for believing in me every step of the way and teaching me to have

faith in hard work.

ix

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION . 1

1.1 Motivation . 1

1.2 Research Goals and Approaches . 5

1.3 Dissertation Outline . 8

1.4 Co-Authored Material . 9

1 Foundations . 11

II BACKGROUND . 12

2.1 High-Performance Computing and Scientific Visualization 12

2.2 In Situ Processing . 13

III IN SITU LAGRANGIAN ANALYSIS FOR EXPLORATION

OF TIME-DEPENDENT FLOW FIELDS 16

3.1 Introduction . 16

3.2 Background and Motivation . 18

3.3 Lagrangian-Based Flow Analysis . 21

3.4 In Situ Extraction . 25

3.5 Post Hoc Exploration . 32

3.6 Efficacy of Lagrangian-Based In Situ + Post Hoc Flow Analysis . . . 35

3.7 State of the Art of In Situ Lagrangian Analysis 39

x

Chapter Page

2 Findings . 41

IV REVISITING IN SITU LAGRANGIAN ANALYSIS 43

4.1 Introduction . 43

4.2 Theoretical Background . 44

4.3 Study Overview . 45

4.4 Results . 49

4.5 Conclusion . 52

V AN INTERPOLATION SCHEME FOR VDVP

LAGRANGIAN BASIS FLOWS . 53

5.1 Introduction . 53

5.2 Background and Related Work . 54

5.3 Motivation . 56

5.4 VDVP-Interpolation Method . 61

5.5 Generation of VDVP Basis Flows . 64

5.6 Study Overview . 67

5.7 Results . 72

5.8 Conclusion . 78

VI SCALABLE IN SITU LAGRANGIAN FLOW MAP

EXTRACTION: DEMONSTRATING THE VIABILITY

OF A COMMUNICATION-FREE MODEL 80

6.1 Introduction . 80

6.2 Background and Related Work . 81

6.3 Boundary Termination Optimization 83

6.4 Study Overview . 89

xi

Chapter Page

6.5 Results . 92

6.6 Conclusion . 105

VII IN SITU VECTOR FIELD DATA REDUCTION

VIA LAGRANGIAN REPRESENTATIONS ON

SUPERCOMPUTERS . 108

7.1 Introduction . 108

7.2 Related Work . 109

7.3 Evaluating L-ISR-PHE . 110

7.4 Empirical Study Overview . 114

7.5 Results and Discussion . 121

7.6 Conclusion . 137

3 Conclusion and Future Work . 139

VIII CONCLUSION . 141

8.1 Synthesis . 141

8.2 Future Work and Research Directions 143

IX SURVEY OF SEED PLACEMENT AND STREAMLINE

SELECTION TECHNIQUES . 146

9.1 Introduction . 146

9.2 Seed Placement and Streamline Selection Background 147

9.3 Classification . 153

9.4 Automatic Techniques . 155

9.5 Manual Techniques . 201

9.6 Research Challenges . 205

xii

Chapter Page

9.7 Conclusion . 206

REFERENCES CITED . 210

xiii

LIST OF FIGURES

Figure Page

1 Data analysis and visualization workflow incorporating

both in situ and post hoc processing. 14

2 Schematic diagram of work that includes both in situ

and post hoc processing. 18

3 Notional example comparing Lagrangian- and Eulerian-

based methods. 23

4 Examples of spatial seed placement strategies. 27

5 Notional examples of curve sampling strategies. 31

6 Direct visualization of a Lagrangian representation

extracted from a seismic wave propagation simulation. 33

7 Notional example of interpolation from basis flows. 34

8 Visualization of pathlines of an F-5 tornado vortex. 36

9 Comparing pathline accuracy over a set of trajectories

for an F-5 Tornado vortex. 37

10 Pathline visualization for an F-5 tornado vortex

comparing individual trajectories. 38

11 Notional example of trajectories interpolated using

Lagrangian-based and Eulerian-based methods. 48

12 Double Gyre accuracy results measured using the end

point metric. 49

13 Evaluation results using Full L2-norm and Select L2-

norm for all data sets. 50

xiv

Figure Page

14 Series of sample trajectories interpolated for a varying

number of cycles using the Double Gyre data set. 51

15 Notional example of longer basis flows reducing error propagation. . . 57

16 Distorted circular flow example to show error propagation. 58

17 Particle distribution example using the Double Gyre. 59

18 Particle distribution using the VDVP strategy for the

Double Gyre. 61

19 A notional example of VDVP-Interpolation. 65

20 Pathlines depicting a mature tornado vortex. 69

21 Comparing VDVP and FDFP data storage-accuracy

tradeoff results for all data sets. 73

22 The average percentage neighborhood update rate over

all particles for each data set. 78

23 Notional examples of calculating basis flows. 85

24 Notional example of neighborhoods produced using triangulation. . . 86

25 Weak scaling results of Lagrangian-BTO and

Lagrangian-MPI for the Cloverleaf3D data set. 94

26 Comparison of Lagrangian-BTO and Lagrangian-MPI

using FTLE visualizations of the Cloverleaf3D data set. 95

27 Strong scaling pathline reconstruction error plot for the

Cloverleaf3D data set. 98

28 Comparison of Lagrangian-BTO and Lagrangian-MPI

FTLE visualizations of the ABC data set. 101

29 Comparison of Lagrangian-BTO and Lagrangian-MPI

FTLE visualizations of the Jet data set. 104

xv

Figure Page

30 Comparison of Lagrangian-BTO and Lagrangian-MPI

FTLE visualizations of the Nyx data set. 104

31 Plots showing the relation between number of particles

terminated and reconstruction error for all data sets. 106

32 Schematic diagram of the in situ and post hoc

processing workflow. 109

33 Example wave propagation visualization using the SW4

simulation displacement field. 118

34 Visualization of pathlines in the Cloverleaf3D domain. 119

35 Visualization of pathlines in the Nyx domain. 120

36 Charts showing time required for a particle advection

step on GPUs and CPUs. 122

37 Histograms showing the distribution of reconstructed

pathline error for the Cloverleaf3D simulation. 127

38 Accuracy-data storage scatter plot for the Cloverleaf3D simulation. . 127

39 Accuracy-data storage scatter plot for the SW4 simulation. 131

40 Visualization of the Nyx vector field at cycles 0, 200,

and 400. 133

41 Qualitative comparison of Lagrangian and Eulerian

pathlines using the Nyx simulation. 134

42 Accuracy-data storage scatter plot for the Nyx simulation. 135

43 Histograms showing the distribution of reconstructed

pathline error for the SW4 simulation. 136

44 Histograms showing the distribution of reconstructed

pathline error for the Nyx simulation. 136

xvi

Figure Page

45 Classification tree for seed placement and streamline

selection techniques. 152

46 Evaluation axes for classification of seed placement and

streamline selection techniques. 153

47 Notional example of Jobard and Lefer seed placement algorithm. . . . 157

48 Types of critical points in 2D flows. 171

49 Notional example using critical point seed templates and

regions of influence. 172

50 An example of pairing of points in a spatial window to

make a similarity evaluation. 189

xvii

LIST OF TABLES

Table Page

1 Compute and I/O trends on Petascale supercomputers

at ORNL and TACC. 13

2 Differences between the Lagrangian and Eulerian paradigms. 25

3 Timing results for post hoc VDVP-Interpolation. 72

4 Weak scaling configurations and timing results for the

Cloverleaf3D data set. 93

5 Lagrangian-BTO and Lagrangian-MPI timings and

reconstruction accuracy results for the ABC data set. 99

6 Lagrangian-BTO and Lagrangian-MPI timings and

reconstruction accuracy results for the Jet data set. 101

7 Lagrangian-BTO and Lagrangian-MPI timings and

reconstruction accuracy results for the Nyx data set. 101

8 Overview of experiments for in situ encumbrance. 115

9 Overview of experiments for post hoc efficacy. 115

10 Study of write times of binary files between 1 MB and

200 MB on Summit. 119

11 In situ encumbrance experiment configurations and

results for three simulation codes. 123

12 Post hoc efficacy experiment configurations and results

for three simulation codes. 128

13 Preliminary distributed memory post hoc reconstruction costs. 130

xviii

Table Page

14 Similarity measures and corresponding clustering

methods used in streamline selection techniques. 199

15 Comparison of vector field reconstruction errors of

multiple approaches. 201

16 Categorization of seed placement and streamline

selection techniques by target application/context. 208

17 Summary analysis table of seed placement and

streamline selection techniques. 209

xix

CHAPTER I

INTRODUCTION

Some of the text in this chapter comes from a manuscript in submission,

which was a collaboration between Hank Childs and myself. The text used is

relevant for providing context and background information.

1.1 Motivation

The topic of this dissertation is at the intersection of scientific visualization

and high-performance computing.

Scientific visualization is a field within computer science that focuses

on visualizing and analyzing data produced by scientific simulations. Scientific

visualization plays a key role in the scientific discovery pipeline, for understanding,

verifying, and exploring scientific data.

High-performance computing is a field within computer science that

endeavors to provide more compute capability than a typical desktop computer,

and does so via “supercomputers.” These machines are particularly useful for

computational simulations, which model and study various phenomena of interest.

Scientific simulation codes typically utilize high resolution discretized meshes in the

domain, where each point in the mesh has multiple field values associated with it

(for example, temperature, pressure, density, velocity, etc.) in order to accurately

model the phenomena. Each simulation cycle represents the state of the simulation

at a specific simulation time and simulation codes could require thousands of cycles

to complete.

Combining these two topics (scientific visualization and high-performance

computing) causes unique challenges. Executing large scientific simulations often

requires hundreds of processors in a distributed memory environment. Further,

1

these simulations are capable of generating very large amounts of data each

cycle. As a consequence, techniques that facilitate and perform data analysis

and visualization for scientists must be capable of operating on large amounts of

scientific data and running efficiently on high-performance computing resources.

Flow visualization is an important sub-area of scientific visualization

for understanding vector field data. Most flow visualization techniques involve

placing massless particles at seed positions and displacing them according to a

vector field, whether for animating particles, plotting the entire trajectory at once

(streamlines/pathlines), or using particle trajectories as building blocks for other

techniques (e.g., finite-time Lyapunov exponents). Most often, the movements

of particles are calculated by solving an ordinary differential equation, typically

with a Runge-Kutta algorithm [1]. Algorithms like Runge-Kutta require evaluating

the velocity field at multiple locations; the popular fourth order algorithm (RK4)

requires evaluation at four locations. The nature of the evaluations are different

based on whether or not the flow field changes as time evolves (unsteady-state flow)

or is unchanged as time evolves (steady-state flow). When dealing with steady-state

flow, the velocity field evaluations can be performed accurately, with error typically

only arising from interpolation within a cell of a mesh. However, when dealing with

unsteady-state flow, accurate velocity field evaluations can be harder to achieve.

The primary problem with accurate velocity field evaluation for unsteady-

state flow is that computational simulations are unable to store full spatio-temporal

data. These simulations often advance in “cycles.” During a cycle, the simulation

advances from its current time, T , to a new time, T + ǫ. Simulations run for

many cycles, from thousands to hundreds of thousands. Saving simulation state

to disk often is very costly, both in the time to interact with the I/O system and in

2

storage costs (bytes). In response, simulations almost uniformly practice “temporal

subsampling,” meaning that they save data from only a subset of their cycles to

disk. With respect to unsteady-state flow, this means that velocity field evaluation

must do temporal interpolation; further, as fewer and fewer cycles are stored, these

interpolations are increasingly inaccurate, introducing increasing error into flow

visualizations.

In this thesis, we consider a class of flow visualization problems with three

specific properties. These properties are:

1. The flow visualization is exploratory, i.e., the desired particle trajectories will

be specified by a domain scientist during an interactive visualization session

after the simulation completes. As a result, the desired particle trajectories

are not known while the simulation is running.

2. The flow visualization needs to consider unsteady-state flow (the vector field

data from one cycle will not suffice).

3. The simulation saves its data to disk at a low rate, i.e., sparse temporal

subsampling.

We refer to this as an EUS problem: Exploratory analysis + Unsteady-state

flow + Sparse temporal subsampling. We note that removing any of these

three properties simplifies the problem substantially: US can calculate particle

trajectories in situ while the simulation is running, ES does not require inferring

velocity field values between cycles, and EU can infer velocities between time slices

(reasonably) accurately.

EUS problems have occurred more often on supercomputers in recent

years. Over the last decade, the ability to generate data on supercomputers has

gone up by ∼100X, but I/O capabilities have gone up by ∼10X. As a result,

3

simulations must the reduce proportion of the data they store, often creating

Sparse temporal sampling. Additionally, while supercomputers are a major

motivator for considering EUS problems, these problems also are important in

non-supercomputing environments.

In situ processing [2, 3] is an important approach for addressing the “I/O

bottleneck.” Most typically, in situ processing utilizes a priori knowledge of which

visualizations and analyses to complete. However, this in situ style is not congruent

with the Exploratory component of EUS problems. Fortunately, an alternate

worklow avoids the need for a priori knowledge, by using a combination of in situ

and post hoc processing [4]. In the in situ phase, data is transformed and reduced

so that it is small enough to be saved to disk. In the post hoc phase, this data is

used to perform exploratory visualization. In the context of flow visualization, this

means that in situ processing should transform and reduce time-varying vector field

data such that post hoc exploration can use the result to infer arbitrary particle

trajectories — ideally with high accuracy and requiring little data storage, among

other properties.

An important consideration with this in situ + post hoc workflow is how to

transform and reduce data. For our work, we transform/reduce spatio-temporal

vector data using a Lagrangian approach. This choice enables data from all

cycles of a simulation to be represented, which is fundamentally different than

the traditional choice of saving time slices. We refer to this Lagrangian-based

workflow as L-ISR-PHE: Lagrangian-based In Situ Reduction with Post Hoc

Exploration.

Agranovsky et al. [5] used L-ISR-PHE and demonstrated significantly

improved storage-accuracy propositions compared to using the traditional Eulerian

4

paradigm. The method proposed by Agranovsky et al. was straightforward and

simple to implement. The simplicity of the method enabled good domain coverage

but did not consider the benefits more advanced schemes could offer. The most

significant shortcoming of the work was missing evidence that particle trajectory

integration could be performed within in situ constraints in a distributed memory

environment at scale. As a result, there is a lack of understanding of the technical

performance characteristics and the encumbrance placed on a simulation code in

a practical setting. Further, the study itself incorporated a “theoretical in situ

environment,” i.e., an in situ environment was mimicked by loading data from

disk. Finally, the study presented accuracy relative to the traditional approach

and failed to provide a clear understanding of absolute error, per particle outcomes,

and qualitative differences.

1.2 Research Goals and Approaches

This dissertation presents research in response to a central question —

“Is in situ reduction and post hoc exploration via Lagrangian representations a

viable alternative to traditional approaches at scale? What practices advance its

effectiveness?”

In particular, it is our goal to conduct studies to address three key issues,

i.e., research gaps (RG), that prior work did not consider for the L-ISR-PHE

paradigm:

1. RG1: What is the in situ encumbrance? Is it acceptable?

2. RG2: Need for greater understanding of accuracy-performance tradeoffs.

3. RG3: Is it worthwhile to pursue more advanced schemes?

5

We identify the following research subquestions (RQ) to investigate the

corresponding research gaps. To address each of these

– RQ1.1: What is the practical in situ encumbrance of the technique?

– RQ1.2: Are there ways to reduce in situ encumbrance?

– RQ2.1: Are results maintained over varying data sets? Especially non-

analytical data sets?

– RQ2.2: Is this improvement necessary when considering absolute error?

– RQ2.3: What is the spectrum of outcomes compared to the traditional

approach?

– RQ3.1: Can we benefit by innovating past the simple scheme?

– RQ3.2: What new challenges are created by these advancements and can

they be addressed?

The following four sections briefly summarize the four main studies

conducted for this dissertation. Collectively, they address the RQs.

1.2.1 Understanding the In Situ Lagrangian Analysis

Parameter Space and Evaluation. Currently, the performance of L-ISR-

PHE is informed by a single study by Agranovsky et al. [5]. This study presented

the accuracy of Lagrangian analysis relative to the accuracy of Eulerian methods

for time-dependent vector field visualization. Although insightful and guiding,

the study did not consider (1) absolute error introduced by Lagrangian analysis

during flow field reconstruction, (2) causes of error and the performance of in

situ Lagrangian analysis across a spectrum of configurations given a fixed data

6

storage budget, and (3) appropriate metrics to evaluate time-dependent vector field

reconstruction.

We conduct a study to improve the understanding for each of the points

mentioned above to answer RQ2.1 and RQ2.2. Evaluating the absolute error of in

situ Lagrangian analysis and understanding the effect of configuration parameters

(number of particles to be used and frequency of saving particle locations) aids

the decision-making process concerning future research efforts and practical usage.

Further, identifying the appropriate metrics for evaluation improve the validity and

usefulness of the approach for multiple flow visualization exploration tasks.

1.2.2 Improve Reconstruction Accuracy-Data Storage

Propositions. The straightforward nature of the existing L-ISR-PHE approach

has potential shortcomings with respect to resource utilization. Thus, it is valuable

to investigate if improved accuracy-storage propositions can be achieved by more

advanced schemes. Further, it is important to determine at what cost these

advanced schemes can be used.

We conduct a study to improve resource utilization and improve accuracy-

storage propositions to address RQ3.1, RQ3.2, and RQ2.1. Additionally, we

conduct a comprehensive survey of existing advanced strategies for an analagous

problem and inform RQ3.1.

1.2.3 Improve Scalability of In Situ Extraction. A key

requirement for in situ Lagrangian analysis to be viable is for the analysis routine

to fit within in situ constraints. In situ Lagrangian extraction is performed in

a tightly coupled manner with the simulation code and it is critical that the

analysis routine scales with the simulation. Poor scalability would result in a

large and unacceptable encumbrance placed on the simulation code. Prior work

7

failed to address how these technique would operate in a large distributed memory

environment. For RQ1.1, RQ1.2, and RQ2.1, we conduct a study to evaluate

an accuracy-performance tradeoff by considering a communication-free model that

offers improved scalability.

1.2.4 Evaluation of Viability of L-ISR-PHE for Large Time-

Dependent Vector Fields. To address RQ1.1, RQ1.2, RQ2.1, RQ2.2, and

RQ2.3, we consider large time-dependent vector fields generated by Exascale

Computing Project (ECP) applications. We consider hydrodynamics, cosmology,

and seisomology applications. To evaluate viability, we measure in situ execution

costs (communication, particle advection, seed placement), I/O costs (write time,

bytes), and reconstruction accuracy in comparison with the traditional Eulerian

approach. Further, we test these methods for high resolution simulations runs in a

distributed memory environment on the supercomputer Summit at ORNL.

1.3 Dissertation Outline

This disseration is organized as follows:

Part I — Foundations

– Chapter II provides relevant, foundational background information on the

topics of high-performance computing and in situ processing.

– Chapter III provides a full description of Lagrangian analysis in the context

of an in situ data reduction operator. Further, it describes how this approach

differs from the traditional approach.

Part II — Findings

8

– Chapter IV presents our study that broadens the evaluation of spatiotemporal

tradeoffs, causes of error, and appropriate evaluation metrics for L-ISR-

PHE.

– Chapter V introduces a new approach called “variable duration, variable

placement” (VDVP). This chapter explores the use of long trajectories to

improve accuracy, and presents a flexible interpolation scheme to reduce post

hoc interpolation error.

– Chapter VI introduces a novel communication-free model for in situ

Lagrangian basis flow extraction, in order to improve scalability.

– Chapter VII presents our evaluation of L-ISR-PHE on simulation codes in

practical settings.

Part III — Conclusion and Future Work

– Chapter VIII provides a synthesis of the findings and recommendations for

future work.

– Chapter IX is a survey that informs future efforts. Specifically, it surveys

selection of representative sets of integral curves, since these techniques may

inspire new approaches for in situ Lagrangian representation extraction.

1.4 Co-Authored Material

Much of the research presented in this dissertation is from previously

published co-authored material. Below is a listing connecting the chapters with

the publications and the authors that contributed to it. Further detail concerning

the division of labor is provided at the beginning of each chapter. That being said,

9

for each of these works, I was not only the first author of the paper, but also the

primary contributor for implementing systems, conducting studies, and writing

manuscripts.

– Chapter III: Contains text from a publication [6] that was a collaboration

between Hank Childs and myself.

– Chapter IV: Contains text from a publication [7] that was a collaboration

between Roxana Bujack, Hank Childs, and myself.

– Chapter V: Contains text from a publication [8] that was a collaboration

between Roxana Bujack, Hank Childs, and myself.

– Chapter VI: Contains text from a manuscript in preparation [9] and was

a collaboration between Abhishek Yenpure, Matthew Larsen, Kenneth

Moreland, Christoph Garth, Roxana Bujack, Hank Childs, and myself.

– Chapter VII: Contains a text from a manuscript in submission and is a

collaboration between Hank Childs and myself.

– Chapter IX: Contains text from a publication [10] that was a collaboration

between Christoph Garth, Roxana Bujack, Hank Childs, and myself.

10

Part 1

Foundations

11

CHAPTER II

BACKGROUND

Some of the text in this chapter comes from a work in preparation [9]. The

contributors for this text were Hank Childs and myself. The text used is relevant

for providing context and background information.

This short chapter introduces the high-performance computing context and

current trends that impact the data analysis and visualization community and thus,

the scientific community. Next, it discusses the role in situ processing is playing in

responding and adapting to the current trends and constraints. Finally, this chapter

highlights the additional benefits that can be gained from operating in situ.

2.1 High-Performance Computing and Scientific Visualization

High-performance computing (HPC) systems are large computing

platforms that scientists leverage to gain insight in fields including cosmology,

combustion, seisomology, medicine, energy systems, and national security. Scientists

use computational models of various phenomena to study and improve our

understanding of these complex systems. Data analysis and visualization plays a

critical role for researchers in the scientific discovery process.

The HPC ecosystem is constantly evolving, and up until the past decade,

the nearly standard approach of performing scientific analysis and visualization

for computational simulations executing on high-performance computing resources

was “post hoc” processing. In the post hoc setting, computational simulations first

execute on supercomputers and save data to permanent storage. The simulation

data is then loaded at a later time for analysis and visualization by scientists.

However, the paradigm of only using post hoc processing is under threat because

the amount of data generated by computational simulations can be very large.

12

Table 1. Compute and I/O trends on Petascale supercomputers at ORNL and
TACC.

Over the last decade, the compute capabilities of supercomputers have increased

by a whole order of magnitude relative to the I/O capabilities of these machines.

Table 1 shows the compute and I/O trends on Petascale computers at ORNL and

TACC. As a result of these trends, computational simulations on supercomputers

are now able to generate data much faster than they can store it. Although

temporal subsampling, e.g., saving every N th time step for subsequent post hoc

visualization, has always been practiced, the inherent I/O bottleneck on modern

supercomputers is forcing this subsampling to become severe. Such sparse temporal

settings can hinder accurate reconstruction and exploration by domain scientists

during post hoc processing.

2.2 In Situ Processing

In situ processing [3], i.e., coupling analysis routines with the simulation

code and processing data as it is generated, addresses this issue by limiting I/O.

A significant benefit of operating in situ is access to all the spatio-temporal data

generated by the simulation. This creates opportunities that were not available

13

Figure 1. Data analysis and visualization workflow incorporating both in situ and
post hoc processing. Image courtesy of Childs [4].

when storing only a fraction of time slices to disk and is particularly consequential

for analysis of transient or time-varying phenomena in scientific simulations. In

situ processing has gained significant momentum in the last half-decade, including

myriad research efforts, devoted workshops (ISAV, WOIV), and a recent Dagstuhl

seminar [11, 12].

A key issue for in situ processing, particularly in scientific exploration

use cases, is whether there is a priori knowledge on precisely which analysis

and visualizations are desired. If a priori knowledge exists, then in situ analysis

and visualization is a matter of integrating the desired routines into a simulation

code. If not, then in situ visualization is more complicated, since it is unclear what

activities to do. A common solution to this problem is to transform the data to a

reduced form, small enough that it can be stored to disk for post hoc exploration.

We refer to this paradigm as “in situ reduction - post hoc exploration,” or ISR-

PHE. Typically, the ISR-PHE paradigm involves navigating a tradeoff between

data integrity and data reduction, and ensuring that the corresponding routines

14

operate within in situ constraints. In this dissertation project, we consider time-

varying flow visualization in the context of ISR-PHE.

Figure 1 illustrates the ISR-PHE workflow from generation of scientific

data to its consumption. In the ISR-PHE workflow, in situ routines are integrated

and executed on either the same compute resources (“a tightly coupled setting”)

or on distinct resources (“a loosely coupled setting”) as the simulation code. In

this dissertation, we will limit our scope to the scenario with shared compute

resources. When an in situ routine is operating in tandem with a simulation,

control is handed to the in situ routine at some specified frequency. The in situ

routine will typically be passed the relevant simulation data for it to operate on.

The routine completes its computation — it might generate some output data

products in the form of visualizations, derived data, statistics, etc — and returns

control to the simulation code. This dissertation focuses on generating a reduced

data representation of the simulation’s time-varying vector field.

Once an in situ routine produces a reduced data set and stores it to disk,

scientists can employ various data analysis and visualization tools to explore their

data at their convenience. The key opportunity that in situ processing plays is the

generation of a reduced data set that reduces strain on the storage system and can

be more amenable for interactive post hoc exploration, while maintaining high data

integrity.

Chapter III discusses in detail a Lagrangian-based in situ data reduction

operator for time-varying vector field data.

15

CHAPTER III

IN SITU LAGRANGIAN ANALYSIS FOR EXPLORATION OF

TIME-DEPENDENT FLOW FIELDS

Most of the text in this chapter comes from a publication [6], which was a

collaboration between Hank Childs and myself. I was responsible for preparing and

writing the majority of the publication. Hank Childs provided extensive feedback

during the work and was involved in editing the manuscript.

In this chapter, we discuss the approach for enabling post hoc exploration

of time-dependent vector fields via in situ data reduction from the Lagrangian

perspective. This chapter informs a variety of considerations around this topic,

including fundamental concepts, how it works, constraints, differences from the

traditional method, and more.

3.1 Introduction

Flow fields produced by computational fluid dynamics (CFD) simulations

often require scientific visualization to understand, verify, and explore phenomena

of interest. These flow fields are typically represented as time-dependent vector

fields defined over discretized meshes, and these meshes are often very high

resolution in order to achieve accurate modeling. When doing flow visualization,

individual algorithms can choose to operate on the vector field data as “steady

state” (i.e., ignoring that the vector field evolves over time, typically in order

to reduce execution time by considering less data) or as “unsteady state” (i.e.,

recognizing the time-dependent nature of the field, typically at a cost of higher

execution time). That said, for unsteady state flow visualization to be accurate,

it requires complete spatiotemporal data. This data rarely exists for post hoc

analysis in practice, since simulation codes need to perform temporal subsampling

16

to fit their results on disk. The result is that unsteady state flow visualizations

are inaccurate, and they become increasingly inaccurate as the subsampling gets

greater and greater. Worse, trends in high-performance computing are leading

temporal subsampling to become increasingly aggressive, leading unsteady state

flow visualization to become increasingly inaccurate.

With respect to in situ, important considerations include (1) whether there

is a priori knowledge of what to visualize and (2) whether the visualization should

be using steady state or unsteady state flow. When there is a priori knowledge,

then in situ processing is straightforward: the in situ routines can be executed

as the simulation advances, producing the desired results. When the desired

visualizations consider steady state flow, then the only data required comes from

a single time slice (or a handful of time slices if they want to do steady-state flow

at select times during the simulation). In this case, the simulation data for that

time slice can be saved to disk, either at full resolution (if possible based on I/O

constraints) or via a reduced form. That said, when there is no a priori knowledge

of what to visualize (i.e., exploratory analysis) and the desired visualizations must

consider unsteady state flow, then traditional approaches for flow visualization

break down. This use case is the purpose for considering the L-ISR-PHE

paradigm.

This thesis focuses on one way to approach time-dependent vector field data

reduction: in situ processing to calculate a reduced Lagrangian representation

of a time-dependent vector field. Seminal research in the field demonstrated the

approach provides improved accuracy and data storage propositions compared

to traditional methods [5]. Figure 2 shows the relation of the in situ Lagrangian

17

!∀#∃%&∋()∗+,(&∃%−.

/0123∗4056)7589 06)/042)!:579//06;

/∀<=∋%.>)/∃#∀∃(>?

!∀#∃%&∋()1∀.∀>(<(.∃

!∀#∃%∀&∋()∃

∗+∀,−

3∀>#∀.>%∀.)∗.∀∋?≅%≅)

:−Α∃%.(

∗+,∀.&()/%<Α∋∀∃%−.
./0∃1)+∋∀∃2

34)∋+&,∀∃

5)46∀&∋()+∀7

!5/4)Β57)

9Χ!35:∗4056

./0∃8∀4−∃2

34)∋+&,∀∃

5)46∀&∋()+∀7

Figure 2. Diagram showing the operations of an in situ Lagrangian routine, as well
as its relation to the simulation code and post hoc visualization workflow.

routine to the simulation code and its role in the visualization workflow as a data

reduction technique.

3.2 Background and Motivation

This background section contains two parts. Section 3.2.1 discusses how

flow fields are specified and specifically the two frames of reference for representing

time-dependent vector data: Eulerian and Lagrangian. Section 3.2.2 discusses the

limitations of the traditional, Eulerian-based paradigm for visualizing and analyzing

time-dependent vector data.

3.2.1 Frames of Reference in Fluid Dynamics. In fluid dynamics,

the Eulerian and Lagrangian frames of reference are two ways of looking at fluid

motion. When considering the Eulerian frame of reference, the observer is at a fixed

position. In the Lagrangian frame of reference, however, the observer is attached to

a fluid parcel and moves through space and time. In computational fluid dynamics,

simulations can be designed to employ a fixed mesh (Eulerian), feature simulation

grid points that follow the simulation velocity field (Lagrangian), or use hybrid

Eulerian-Lagrangian specifications.

18

When a flow field is stored in an Eulerian representation, it is typically done

by means of its velocity field. A velocity field v is a time-dependent vector field

that maps each point x ∈ R
d in space to the velocity of the flow field for a given

time t ∈ R

v : Rd × R → R
d, x, t 7→ v(x, t) (3.1)

In a practical setting, the vector field is defined over a fixed, discrete mesh

and represents the state of the flow field at a specific instant of time or time slice,

i.e., at a specific simulation time and cycle.

When a flow field is stored in a Lagrangian representation, it is done by

means of its flow map F t
t0
. The flow map consists of starting positions x0 at times

t0 of massless particles and the corresponding particle trajectories advected by the

vector field. The mathematical definition of the flow map is the mapping

F t
t0
(x0) : R× R× R

d → R
d, t× t0 × x0 7→ F t

t0
(x0) = x(t) (3.2)

of initial values x0 to the solutions of the ordinary differential equation

d

dt
x(t) = v(x(t), t) (3.3)

In a practical setting, the flow field is stored as sets of particle trajectories

calculated in the time interval [t0, t] ⊂ R. The stored information, encoded in the

form of known particle trajectories, represents the behavior of the flow field over an

interval of time.

Finally, the two frames of reference are theoretically equivalent [13], i.e.,

particle trajectories can be calculated from the vector field through integration and

the vectors from the particle trajectories through differentiation. That said, their

application in practical contexts varies.

19

3.2.2 Traditional Paradigm for Visualization and Analysis

of Time-Dependent Flow Fields. Particle advection — calculating the

trajectory a massless particle follows in a flow field — is a foundational operation

in integration-based flow visualization techniques (line integral convolution,

finite-time Lyapunov exponents, pathlines, etc.). Flow visualization tasks are

traditionally performed utilizing the Eulerian frame of reference. Given an Eulerian

representation of the vector field as input, calculating particle trajectories requires

an Eulerian-based particle advection scheme. In general, for a given particle,

Eulerian-based particle advection methods require interpolating the velocity of the

flow field at the location of the particle. A particle advection operation assumes the

availability of the complete spatiotemporal resolution of the flow field as generated

by the simulation. However, when considering a time-dependent flow field, only a

subset of this data is practically available in a post hoc, Eulerian settings. Thus,

the velocity field must be interpolated for time steps in between stored time slices.

Interpolation of temporally sparse data, however, can introduce significant error

due to numerical approximation. On the one hand, if the vector field does not

change significantly, the error will be relatively low. On the other hand, if the time

between known steps is large or the vector field changes significantly, the error can

be high and features can be missed.

From an implementation perspective, vector field data mapped onto a fixed

mesh yields two significant benefits: fast cell location and east interpolation. This

makes the computational cost of the particle advection operation during post hoc

flow visualization relatively inexpensive.

As discussed in Chapter II, modern supercomputing trends indicate that

the computational capacity will continue to outpace I/O capabilities. This means

20

that I/O operations — writing large files to disk representing simulation output

and subsequently reading those files from disk for post hoc exploratory flow

visualization — will remain bottlenecks in their respective workflows.

Overall, these challenges in accuracy and performance jeopardize our ability

to perform time-dependent flow visualization of large vector fields under the

traditional paradigm and motivate new approaches.

3.3 Lagrangian-Based Flow Analysis

In situ processing provides significant opportunities to perform more

accurate time-dependent flow visualization, since it can access more spatiotemporal

data. In cases where there is a priori knowledge of what to visualize, the

traditional, Eulerian paradigm can be used. That said, when there is no a priori

knowledge, i.e., for exploratory use cases, the Eulerian paradigm is not as useful

— although in situ processing increases the available temporal information, an

Eulerian approach cannot exploit this additional data since the particle trajectories

desired for a flow visualization are not known. The Lagrangian paradigm, however,

can make use of this additional temporal information. Specifically, research has

shown that reducing the vector field data by transforming it into its Lagrangian

representation and saving this new form to disk for later exploration offers

significant benefits.

The following subsections consider the two distinct phases of computation

involved in L-ISR-PHE, as well as the differences between the Lagrangian and

Eulerian paradigm from the perspective of the data analysis and visualization

workflow.

3.3.1 Phases of Computation. There are two phases of computation

involved in Lagrangian-based flow analysis: in situ extraction and post hoc

21

exploration (described in detail in Sections 3.4 and 3.5, respectively). The in situ

phase involves calculating a Lagrangian representation of the flow field, i.e., tracing

basis trajectories (pathlines that can be used subsequently to infer additional

pathlines). Access to the complete spatial and temporal resolution of the flow field

allows the in situ extraction routine to accurately calculate the trajectories that

form the stored flow map. The goal of the in situ Lagrangian extraction routines is

to select trajectories that should be calculated and stored while remaining within in

situ constraints. The in situ constraints on Lagrangian extraction are discussed in

more detail in Section 3.4.1.

With respect to a Lagrangian representation, the following characteristics

are desired:

– It should be possible to compute within in situ constraints.

– It should maximize information per byte stored to disk.

– It should support accurate and interactive post hoc exploration.

The major research challenge with L-ISR-PHE is to achieve all three of these

characteristics. Further, the basic framework of the Lagrangian paradigm

inherently has no constraints on how particle trajectories should be seeded,

terminated, selected, represented, or stored. In particular, selection of particle

trajectories requires smart sampling along both spatial and temporal axes. These

important areas of flexibility are discussed in Sections 3.4.2 and 3.4.3.

The second phase, i.e., the post hoc exploration phase, involves performing

flow visualizations using the stored Lagrangian basis trajectories. In this phase,

there are no constraints on the types of flow visualizations performed; the flow

visualizations specify seed locations, and new pathlines can be interpolated using

22

! ∀ #∃ #% ∃& ! ∀ #∃ #% ∃&

∋! ∋∀ ∋#∃ ∋#% ∋∃& ∋!!∀ ∋∀!#∃ ∋#∃!#% ∋#%!∃&

!∀#

!∀∃%

!∀∃&

!∀%∋

!∀#

!∀∃%

!∀∃&

!∀%∋

!∀#∃%&∋()∗∋+∃,−.∃/01, 2∋3%∋(3&∋()∗∋+∃,−.∃/01,

Figure 3. Notional example showing the differences between an Eulerian-based and
a Lagrangian-based method. There are differences in the type of data stored, the
information represented by the data, and what data is interpolated post hoc to

calculate a new particle trajectory. In particular, the Eulerian-based method stores
time slices, while the Lagrangian-based method stores time intervals. Image

recreated and based on original figure by Agranovsky et al. [5].

the in situ extracted data. This interpolation step is non-trivial and also the

subject of research (discussed more in Section 3.5). That said, one important

approach is to incorporate principles from scattered point interpolation methods.

3.3.2 Differences between Eulerian and Lagrangian-Based Flow

Analysis. Unlike the Eulerian paradigm, the Lagrangian paradigm operates

in two distinct phases of computation. The first phase, i.e., in situ processing,

introduces an encumbrance on the simulation code. The impact of the overhead

is an important consideration to evaluate the practicality of the method.

To better highlight the differences between the methods, consider a notional

example. Figure 3 presents an example where a simulation code runs for 24 cycles

total and outputs data every 6 cycles. The Eulerian method stores time slices,

23

denoted by FX, where X denotes the cycle. The Lagrangian method calculates

particle trajectories in situ and the stored data captures the behavior of the flow

field over an interval of time. These files are denoted by FX→Y , where X and

Y represent the cycles that begin and end the interval of calculation. Eulerian-

based advection occurs by solving ordinary differential equations and performing

spatial and temporal interpolation. In this case, two time slices (files) are used

for particle advection. For Lagrangian-based advection, a single file is used to

advance a particle across an interval of time. Although the new, interpolated

particle trajectory is identical in both cases of this notional example, it will likely

be different in practice. Further, in practice, the Lagrangian trajectory is typically

superior, since the stored Lagrangian representation can encode more information

per byte of storage, enabling high accuracy. Section 3.6 contains visualizations

highlighting the differences in the interpolated trajectories in practical settings.

Table 2 summarizes some differences between the two methods. Although

the Lagrangian-based method has an increased encumbrance from running in situ,

preliminary work has showed the tradeoffs in storage requirements, accuracy, and

post hoc performance are superior [5]. With respect to reconstruction accuracy,

the Eulerian approach incurs increasing error as temporal sparsity increases, while

the Lagrangian method has increasing error when the number of basis trajectories

reduces. Under sparse temporal settings, the Lagrangian-based method has been

demonstrated to be up to 10X more accurate than the Eulerian-based method

when considering the same storage, and can provide comparable accuracy for data

reductions of up to 64X. Further, depending on the data reduction, the reduced

burden on I/O write and read operations can result in significant performance

improvements.

24

Table 2. Differences between the Lagrangian and Eulerian paradigm from a
simulation’s perspective. This table is based on one appearning in work by

Agranovsky et al.[5].

Eulerian Lagrangian
Saved files contain Vector fields Particle trajectories
Saved files
represent

Time slices Time intervals

Reducing I/O,
storage

Less time slices Less particles

Increasing
accuracy

More time slices More particles

Simulation
overhead

I/O I/O + Lagrangian
analysis routine
computation and
memory

3.4 In Situ Extraction

This section discusses the in situ extraction phase of L-ISR-PHE in more

detail. Specifically, the section begins with a discussion of the in situ costs and

constraints. Next, it covers strategies for spatial and temporal sampling of a time-

dependent flow field. The section concludes with a discussion of options for storage

of a Lagrangian representation and the impact it can have on the overall workflow.

3.4.1 In Situ Costs and Constraints. L-ISR-PHE introduces a

new cost that does not occur with the traditional paradigm: the cost of calculating

basis trajectories. Fortunately, there are several parameters or “knobs” that exist

within the Lagrangian framework that can impact (and potentially reduce) these

costs. The five main components that contribute to in situ costs are:

– The particle advection workload, i.e., the number of particle trajectories being

calculated.

– The frequency and amount of I/O required by the in situ routine.

25

– Communication costs to exchange information in a distributed memory

setting.

– Computation costs of a sampling strategy.

– Costs of storing particle trajectory information in memory.

These components can directly affect in situ costs, for both memory usage

and execution time. In addition, in situ analysis routines are often allocated

a limited resource budget and then required to operate within this budget.

The limited available memory places restrictions on (1) the number of particle

trajectories that can be calculated, (2) the number of locations along each particle

trajectory that can be stored, and lastly, (3) the number of time slices that can

retained in memory in situ. To remain within in situ constraints, an appropriate

particle advection workload and in-memory particle trajectory representation

must be selected. In cases where memory usage increases over an interval of

computation, the frequency at which data is moved from memory to disk is

pertinent.

Computing a Lagrangian representation involves computing integral curves

in a distributed memory environment. Although several research works have

considered preprocessing of the vector field and redistribution of the data, these

options are less feasible within an in situ context. When operating in situ, the

vector field decomposition is determined by the simulation. Depending on the

distribution of the data and the underlying vector field, the number of particles

crossing node boundaries to continue advecting could result in an increase of

overall execution time. With respect to a sampling strategy (spatial and temporal),

the execution time required will vary depending on the sampling algorithm and

26

corresponding implementation. These processes should, ideally, utilize the available

hardware acceleration on the compute nodes of modern supercomputers to produce

low-cost, fast techniques that minimize the overall encumbrance on the simulation

code. Overall, in order to not exceed usage of allocated resources, these costs and

constraints must be accounted for when designing an in situ Lagrangian extraction

routine.

3.4.2 Spatial Sampling: Seed Placement. Spatially sampling the

vector field, i.e., selecting locations to seed basis particles, plays a critical role

in determining the quality of the data extracted. In general, a spatial sampling

strategy is responsible for directing the following three operations:

– An initial placement of seed particles.

– When a new seed particle should be introduced.

– When an existing seed particle should be terminated.

Seed placement or spatial sampling strategies can be guided by the desire to

achieve any of the following objectives in varying orders of priority:

– Maximize information content per byte stored to disk.

!∀# !∃# !%#

Figure 4. An illustration of two possibilities for seed placement given the Double
Gyre vector field. Figure (a) shows a vector glyph visualization. Figure (b) presents
a simple uniform seed placement and Figure (c) colormaps an entropy field derived
from the vector field and shows seed placement with a density proportional to the

value of entropy.

27

– Coverage of the domain, i.e., every region of the domain receives coverage.

– Focus on capturing regions of interest or specific features accurately.

– Minimizing in situ encumbrance, i.e., fast execution times and/or low memory

usage.

To work as an effective in situ data reduction operator, however, these objectives

are sometimes in tension and require navigating a tradeoff. Although maximizing

the information per byte stored to disk might seem of highest priority, it is easy

to imagine a scenario where this characteristic is compromised for better domain

coverage or algorithmic simplicity.

Spatial sampling strategies must consider the distribution of seed particles

in both space and time. Given the nature of particle trajectories in unsteady state

flow, particles can cluster in regions while leaving voids in other regions. To address

this problem, seed particles need to either be reset periodically or added/removed

as required to maintain coverage. In the study by Agranovsky et al. [5], seeds

are placed at uniform locations in the domain and the particle trajectories are

terminated at regular intervals. Although this approach can provide good domain

coverage using short trajectories, a uniform distribution of particles is not always

the best allocation of resources. In Chapter V, we present our own novel algorithm

where seed particles follow the flow field and form long trajectories (since post hoc

interpolation of long trajectories has been shown to be more accurate [13, 14]),

storing locations uniformly along the trajectory. Further, the approach used a

Delaunay triangulation over the seeds to (1) identify locations to add seeds and

fill voids and (2) remove seeds in regions of seed clustering. Although this approach

28

provided up to 2X more accuracy using 50% less basis trajectories, the in situ cost

of the sampling strategy was increased.

There is much research to be done in this space. For example, a strategy

might benefit from seed placement guided by flow field features derived from

the vector field (e.g., entropy, curvature, divergence, etc.). Figure 4 illustrates a

uniform and entropy-guided seed placement for the Double Gyre vector field (a

commonly used analytic data set). Multiple research studies in the area of seed

placement [15, 16, 17] demonstrate the efficacy of field-guided approaches for

streamline selection, and these findings very well may translate to L-ISR-PHE.

Further, informative scalar fields can be quickly derived from vector fields when

using parallel resources. To summarize, field-guided spatial sampling strategies

have significant potential to improve information per byte stored in a Lagrangian

representation while remaining computationally efficient.

3.4.3 Temporal Sampling: Curve Approximation. Temporal

sampling refers to how much of a single basis trajectory should be stored. A

basis trajectory contains the entire route a particle traveled. In practical terms,

this route is comprised of the positions resulting from each advection step. The

temporal sampling question, then, is which of these positions along the trajectory

should be saved? Saving all of the positions along a trajectory will best capture the

underlying flow field, but incurs a large storage cost. Saving fewer positions reduces

this storage cost, at a tradeoff of reduced accuracy.

For each basis trajectory being calculated in situ, there are multiple

options for sampling and storing the trajectory. A straightforward strategy

is to save only the start and end points along the pathline computed in situ.

Although this strategy can provide data storage optimizations and be sufficient for

29

approximating the pathline, in the event of a long interval of calculation or complex

flow field behavior this strategy could be an oversimplification. Agranovsky et

al. [5] calculated short basis trajectories and stored only end locations. Temporal

sampling is more relevant when long basis trajectories are being computed in situ.

The algorithm in Chapter V calculated basis trajectories of variable length and

uniformly sampled the trajectory. Alternate strategies might consider various curve

simplification techniques, like selecting points along a pathline that minimize its

reconstruction error, or using attributes like curvature, winding angle, or linear

and angular entropy to guide a temporal sampling strategy. Figure 5 uses notional

examples to illustrate a comparison between uniform and attribute-guided curve

sampling.

Complex temporal sampling strategies are challenging due to the limited

in situ memory available and the higher memory requirements of these strategies,

i.e., the requirement of storing multiple points along a pathline before selecting a

subset. That said, collective smart temporal sampling across all basis trajectories

could enable a high fidelity reconstruction of the time-dependent flow field for

further reducing storage costs.

3.4.4 Storage Format. Decisions for how to carry out spatial and

temporal sampling affect the storage layout for basis trajectories. In turn, this

can impact storage and memory usage, I/O times (for in situ writing and post hoc

reading), and post hoc execution time (for reconstruction and interpolation).

In general, there are two options for storage: structured and unstructured.

With a structured data set output, the seed locations of basis trajectories lie along

a regular grid. The implicit nature of the grid eliminates the need for storing

seed locations explicitly, and promotes a natural organization of data. Trajectory

30

!∀# !∃# !%#

&∋()∗+,−.∀,/0(∋1 &∋()∗+,−.∀,/0(∋1 &∋()∗+,−.∀,/0(∋1

233+(∃435674(858−.∀,/0(∋1 233+(∃435674(858−.∀,/0(∋1 233+(∃435674(858−.∀,/0(∋1

! ! !

∀

∀

∀

∀

∀

∀

Figure 5. This figure contains three notional basis flows, to illustrate two different
curve sampling strategies: uniform and attribute-guided. Each basis flow is colored

in black, and the data saved is indicated with dotted red lines for uniform
sampling, and dotted blue lines for attribute-guided sampling. Figure (a) considers

a curve whose x value remains relatively the same across time. In this case,
attribute-guided sampling can reduce storage costs and still provide the same

information. Figure (b) shows a curve whose x value first increases, then decreases
before increasing again. In this case, attribute-guided sampling can place samples
where they will best inform the nature of the trajectory. Figure (c) shows a curve
whose x value steadily increases across time. Its benefits are similar to Figure (a) –

reducing storage costs.

data can be stored in “grid” form, with the values at each grid point representing

information about the seed that originated at that location. Agranovsky et al. [5]

adopted this approach, and stored only a single value at each grid location: the

ending position of the seed particle. Of course, additional data can be stored at

each grid point. For example, a field can be used to indicate whether a particle

remained within the bounds of the domain during the interval of calculation.

Although the use of a structured storage format enables a fast post hoc exploration

workflow, it is limited to the case of spatial sampling along a regular grid. Figure 6

shows direct visualizations of a structured data output, where particle trajectories

(represented as line segments) are calculated using the displacement field of a

seismology simulation over three intervals of computation.

When considering the flexibility the Lagrangian framework provides, the

unstructured storage format is a more natural fit when spatial and temporal

31

sampling are irregular (i.e., adapted to maximize the information per byte).

Particle trajectories can be stored as current point locations, lines (two points), or

polylines (more than two points), each with additional attributes (for example, an

identifier to link data points of the same basis trajectory across files) associated

with each object. This approach, however, results in a more expensive post

hoc exploration process since cell location and interpolation require more

elaborate search structures when considering unstructured data. The algorithm

in Chapter V adopted an unstructured storage format to store long particle

trajectories, calculated across multiple file write cycles, as line segments with

identifiers. Although the adopted approach did not increase in situ costs, post hoc

reconstruction required the use of a search structure (Delaunay triangulation) to

locate relevant basis trajectories.

3.5 Post Hoc Exploration

After the in situ generation of basis trajectories, post hoc exploration of

the time-dependent flow field can be performed with nearly any flow visualization

technique. As flow visualization techniques depend on analyzing particle

trajectories, the only difference is in how the trajectories are obtained. Where

the traditional Eulerian approach calculates the trajectories via particle advection

steps, the Lagrangian approach calculates the trajectories by interpolating between

nearby basis trajectories. This interpolation can be thought of as “following” basis

trajectories, i.e., using them as a guide to infer where particles in between the

trajectories would travel. This section discusses how to interpolate a new particle

trajectory, as well as the corresponding search structures that can be used to locate

nearby basis trajectories.

32

!∀#∃%&∋∋∋!(∋∋∋ !)#∃%(∋∋∋!∗∋∋∋ !+#∃%∗∋∋∋!,∋∋∋

Figure 6. This figure is an example of directly visualizing the data extracted from
an in situ Lagrangian analysis routine. Each image is a visualization of a

Lagrangian representation of the time-dependent vector field produced by a seismic
modeling simulation studying seismic wave propagation [18]. For this example,
seeds are initially placed along a regular grid and only the end points of the
particles are saved at the end of an interval, i.e., a structured grid with an

“endpoint” field is stored. In each visualization, the trajectories (represented as line
segments from the grid point to the “endpoint”) capture the displacement caused

by the underlying vector field. For example, Figure (a) shows trajectories
calculated between cycle 3000 and 4000 and represents the earlier stages of the
simulation. The progressive propagation of the seismic waves can be perceived

when considering all three images.

To calculate a new particle trajectory starting at a specific location xi, a

“neighborhood” of basis trajectories to follow needs to be identified. Typically,

depending on the distances of the neighborhood basis trajectories from xi and

the selected interpolation method, different weights are assigned to each basis

trajectory and then used to calculate the next location of the new particle

trajectory. Interpolation methods such as barycentric coodinate interpolation,

Moving Least Squares interpolation, Shepard’s method, etc., can be used to

calculate new particle trajectories [19, 20]. A notional example for interpolation is

illustrated in Figure 7. The determination of the neighborhood is largely dependent

on how the basis trajectories are stored (structured or unstructured). When the

Lagrangian representation is stored using a structured data set, the neighborhood

33

can be identified as the basis trajectories that are initialized at the grid points of

the cell containing the location of the new particle trajectory to be interpolated.

When using an unstructured data set, the neighborhood can be identified as the set

of basis trajectories within a specific search radius or those that form a convex hull

that contains the location of the new particle trajectory. Chandler et al. [21] used

a modified k-d tree to perform a radius search and Sane et al. [8] used a Delaunay

triangulation to identify a containing cell given a Lagrangian representation stored

in an unstructured data set. Further, techniques like binning can be used to

accelerate the neighborhood identification process.

The result of interpolating basis trajectories is a set of points that form a

pathline. These points along the pathline are an interval in time apart. To estimate

the position of the particle in between interpolated locations, various curve fitting

techniques can be used. A simple and straightforward approach to visualize the

!∀
!#

∃∀%&

!

∃∀

!∀

!#

∃#

!∀

!#

∃
#

∃∀

Figure 7. Interpolation of a new particle trajectory (gray) using previously
computed basis trajectories (B1 and B2 in red). Each position along the new

particle trajectory is calculated by following basis trajectories. At time ti, weights
ω1 and ω2 are calculated based on the distance of B1 and B2 from xi respectively.
The weights are then used to estimate xj at time tj. This process can continue to

trace the complete trajectory.

34

interpolated positions along a pathline is the use of a C0 polygonal chain. This

approach is used to visualize pathlines interpolated from basis trajectories in

Section 3.6. As the size of the interval increases, however, the aesthetic quality

of the C0 representation of the pathline deteriorates and can be improved by

using parameter curves. Bujack et al. [13] studied and evaluated the use of

multiple parameter curves (cubic Hermite spline, Bèzier curve) to represent particle

trajectories.

The complexity of a post hoc Lagrangian-based interpolation routine

is dependent on the format of the extracted Lagrangian representation of the

time-dependent vector field. If basis trajectories are long and span across

several simulation cycles storing multiple positions along the way, then pathline

interpolation following the same neighborhood of basis trajectories results in more

accurate interpolation [13, 8]. Although following short (single interval) basis

trajectories is straightforward, changing the neighborhood frequently propagates a

local truncation error [13, 14, 7]. Overall, there is a need for complex, yet efficient,

and accurate post hoc Lagrangian-based interpolation systems, and this topic

requires future research.

3.6 Efficacy of Lagrangian-Based In Situ + Post Hoc Flow Analysis

For time-dependent flow visualization, the Lagrangian paradigm offers

significantly improved accuracy and data storage propositions compared to the

Eulerian paradigm under sparse temporal settings. This is possible because the

Lagrangian representation of time-dependent vector data is capable of encoding

more information per byte. The Lagrangian representation captures the behavior of

the underlying flow field over an interval of time. This is in contrast to an Eulerian

representation that captures the vector data at a single time slice. Further, in

35

!∀#!∃# !%#

!∀#!∃# !%#

Figure 8. Visualizations of an F-5 tornado vortex to qualitatively compare the
accuracy of pathlines traced using two methods under sparse temporal settings:
Lagrangian (orange trajectories) and Eulerian (purple trajectories). The ground

truth set of trajectories, calculated using every cycle of the simulation, is traced in
white. The six visualizations present results for varying configurations of how many
basis trajectories are stored in the Lagrangian representation. The configurations

are: 1:1 ratio of particles to grid points in (a) and (d), 1:2 in (b) and (e), and 1:4 in
(c) and (f). With respect to temporal subsampling, every 8th simulation cycle is

stored. For all three configurations, the method described by Agranovsky et al. [5]
is used. For the post hoc visualizations, particles are initially seeded in a rake and
trace trajectories that enter the tornado vortex region from the bottom-right (a-c)
and top-right (d-f) of the figures. In Figures (a) and (d), the white (ground truth)
and orange (Lagrangian) pathlines following very similar trajectories. The Eulerian

method pathlines (purple) have diverged from the white trajectories in most
instances. Figures (b) and (e) show the Lagrangian representation performing

better than the Eulerian method using half as much storage. A similar trend can be
observed in Figures (c) and (f) where Lagrangian configurations use a quarter of
the storage. In these figures Lagrangian accuracy deteriorates as the number of
particle trajectories stored reduces from 1:1 to 1:4. That said, in all cases the
accuracy of the Lagrangian pathlines remains higher than the corresponding

Eulerian pathlines using the full spatial resolution.

36

!∀#∃%&∋()∗+

!∀#∃%&∋(),−

!∀#∃%&∋().

!∀#∃%&∋()/

0%1∀(23%∀34

5∋6%∋(6&∋()/

5∋6%∋(6&∋().

5∋6%∋(6&∋(),−

5∋6%∋(6&∋()∗+

7∃%8∃93:;99∀%∋9<

=∃∋%#<:;99∀%∋3∃

>∀94:5∃??:;99∀%∋3∃

Figure 9. Pathline visualizations to compare the accuracy of pathlines traced using
two methods: Eulerian and Lagrangian. Lagrangian X and Eulerian X denote
configurations that store data every X th cycle, i.e., the size of the interval. Left:
five ground truth pathlines and the corresponding Eulerian pathlines. Right: five
ground truth pathlines, and the corresponding Eulerian and Lagrangian pathlines.

situ access to the complete spatiotemporal resolution of the simulation vector

field enables accurate computation of the Lagrangian representation. This section

highlights the efficacy of the Lagrangian-based approach for time-dependent flow

visualization by considering both quantitative and qualitative aspects.

The study by Agranovsky et al. [5] demonstrated the ability of the

Lagrangian representation to retain substantially better accuracy relative to

the Eulerian method, even with significantly less data. For example, the study

demonstrated the Lagrangian-based approach achieving comparable accuracy

using a 64X data reduction. When using the same amount of storage as the

Eulerian approach, the Lagrangian representation enabled an over 10X more

accurate reconstruction of the flow field. Further, the study showed how increasing

the interval between storing information to disk is far less detrimental to the

37

Figure 10. Twelve sets of pathlines traced using multiple Eulerian and Lagrangian
configurations. Each set shows a ground truth pathline, and four Eulerian and
Lagrangian pathlines each. The color scheme is the same as that described in

Figure 9. Overall, Lagrangian pathlines more closely follow their respective ground
truth trajectories and the Eulerian pathlines are less accurate in settings of

temporal sparsity, i.e, configurations with large intervals between saving data to
disk.

Lagrangian-based method than the Eulerian approach. We complement and

broaden the Agranovsky study with our own study in Chapter IV. Chapter IV

presents a study using multiple evaluation metrics to compare the absolute

errors of both the methods and observe trends across a range of spatiotemporal

configurations. This study also demonstrated the significantly improved accuracy-

storage propositions offered by the Lagrangian method in settings of temporal

sparsity.

To compare the Lagrangian and Eulerian methods qualitatively,

Figures 8, 9, and 10 visualize pathlines from an F-5 tornado weather simulation.

The simulation has a base grid resolution of 490 × 490 × 280. Further, we consider

38

512 consecutive simulation cycles, corresponding to the time period when a mature

tornado vortex exists. Ground truth pathlines that are interpolated using every

simulation cycle, and Lagrangian and Eulerian trajectories computed under sparse

temporal settings, are visualized. In Figure 8, Lagrangian pathline interpolation

using the same number of particles as grid points (Figure 8a) is nearly perfectly

accurate to the ground truth. As the number of particles used reduces (Figures 8b

and 8c), the accuracy of Lagrangian pathline interpolation decreases. That being

said, it remains more accurate than the Eulerian method. In comparison to the

Lagrangian pathline interpolation, the pathlines generated by the Eulerian method

trace much less accurate trajectories. Figures 9 and 10 demonstrate the effects

of increasing temporal sparsity on the Lagrangian and Eulerian methods. As

expected, when the size of the interval increases, the accuracy of the Eulerian

pathlines decreases. In nearly every case, only the Eulerian pathline computed

using a small interval size remains accurate. In contrast, the Lagrangian pathlines

remain nearly accurate and closely follow the ground truth trajectories irrespective

of the size of the interval.

Overall, the Lagrangian method is capable of significantly improving our

ability to perform exploratory time-dependent flow visualization by providing high

integrity reconstructions of the flow field and requiring less data to be extracted

from a simulation.

3.7 State of the Art of In Situ Lagrangian Analysis

Over the past decade, Lagrangian methods have been increasingly used

for flow visualization. Lagrangian coherent structures (LCS), proposed by Haller

et al. [22, 23, 24], are a popular technique to visualize attracting and repelling

39

surfaces and have seen research focused on the acceleration of computation and

visualization [25, 26, 27, 28], and the application of LCS [29, 30, 31].

In a post hoc setting, Hlawatsch et al. [32] explored the use of a hierarchical

scheme to construct longer pathlines using previously computed Lagrangian basis

trajectories. The constructed pathlines would be more accurate due to being

constructed using fewer integration steps.

In recent years, there has been an increased interest in the use of in situ

processing to compute a Lagrangian representation of the flow field, i.e., L-ISR-

PHE. Agranovsky et al. [5] first demonstrated the benefits of this approach.

Chandler et al. [21] extracted a Lagrangian representation from an SPH [33]

simulation and used a modified k-d tree to accelerate post hoc interpolation.

Additionally, Chandler et al. [34] conducted studies to identify correlations between

Lagrangian post hoc interpolation error and divergence in the flow field. Other

theoretical error analysis studies and empirical evaluations have been conducted

to study the absolute error of Lagrangian analysis and error propagation during

particle trajectory computation [13, 14, 7]. Most recently, Sane et al. [8] explored

the use of variable duration basis trajectories and proposed interpolation schemes

to accurately compute pathlines by following long basis trajectories to reduce error

propagation.

40

Part 2

Findings

41

This part of the dissertation presents the findings and the details of our

research studies. Chapter IV presents our study that improves our understanding of

the spatiotemporal tradeoffs, causes of error, and appropriate evaluation metrics

for L-ISR-PHE. This initial study served to cultivate our understanding of

the research space, and to empirically understand post efficacy characteristics

and evaluation methods. Next, Chapter V presents research considering novel

approaches to improve accuracy-storage propositions compared to the current state

of the art. The study builds upon theoretical understandings regarding causes of

error when interpolation Lagrangian representations. We propose a method that

reduces error and supports more flexibility with respect to sampling the domain.

Chapter VI explores the use of a communication-free model to address scalability

during in situ Lagrangian basis flow extraction. This is an important advancement

in order to make in situ encumbrance low enough that the L-ISR-PHE paradigm

can be viable. Chapter VII presents our evaluation of L-ISR-PHE for simulation

codes on a supercomputer. This empirical study provides the first clear evidence

that a Lagrangian representation can be viably extracted at scale while supporting

high integrity post hoc efficacy for real-world simulations.

42

CHAPTER IV

REVISITING IN SITU LAGRANGIAN ANALYSIS

Most of the text in this chapter comes from a publication [7], which was a

collaboration between Roxana Bujack, Hank Childs, and myself. I was responsible

for system implementation, conducting the experiments, preparing, and writing the

manuscript. Roxana Bujack advised and assisted with theoretical background in

the manuscript. Hank Childs advised, provided extensive feedback during the work

and was involved in editing the manuscript.

4.1 Introduction

The main purpose of this chapter is to further evaluate the L-ISR-PHE

paradigm. Although the initial study by Agranovsky et al. [5] showed the potential

of the technique, their evaluation had two significant issues. First, all of their

results were comparative in nature. There was no information provided regarding

spatial and temporal tradeoffs. In short, it showed Lagrangian techniques were

superior to Eulerian techniques, but did not provide insights into how many

basis flows were needed to achieve desired accuracies. Second, their accuracy

metric focused on the end location of an interpolated particle trajectory, and

did not consider the locations between the seed and the end point. This resulted

in a limited overview of the accuracy of particle trajectories as a whole, and in

particular for circular flow.

This study addresses both of the issues with their evaluation. The result

both supplements the evaluation of Agranovsky et al. and also provides new

understanding of the efficacy of their technique. We believe the evaluations in the

current study will be the most useful comparators for future Lagrangian research

43

that endeavors to improve on the work of Agranovsky et al. Specifically, our study

focuses on the following points:

– We use an accuracy metric which evaluates the entire particle trajectory.

– Where the previous study considered reduced storage for only the Lagrangian

approach, our study considers reduced storage for both approaches.

– We conduct experiments evaluating interpolation steps, which advance a

particle forward in time. Specifically, we study the effect of large numbers

of interpolation steps, each of which results in further advancement in

time. This is important because each interpolation step has an associated

error, and so multiple interpolation steps suffer from error propagation and

accumulation.

4.2 Theoretical Background

In this section, we will provide a brief recap of the theoretical foundations.

We use ht to denote the resolution in time and hx for the resolution in space.

Post-hoc advection in the Eulerian setting is typically performed using

the fourth order Runge Kutta scheme, which is an iterative numerical integration

method that has a total accumulation error of O(h4
t) [35, 36]. Since we use it on

top of discrete data interpolated multi-linearly in space, it actually is of the overall

order O(h4
t + h2

x).

Previous work [13] showed that the Lagrangian method as described

by Agranovsky et al. [5] is also a numerical integration method with a total

accumulation error of O(h2
x) for each interpolation. Since we approximate the

intermediate values between two cycles using linear interpolation in time, it is of

overall order O(h2
t + h2

x).

44

4.3 Study Overview

4.3.1 Study Configuration. We use the same in situ basis flow

extraction and post hoc pathline interpolation technique as Agranovsky et al. [5].

Like the Agranovsky study, our in situ environment was theoretical, evaluating

analytic data sets on the fly or loading simulation results from disk.

4.3.1.1 Data Sets. We used the following data sets for our

experiments:

Double Gyre — This data set is a two-dimensional flow field consisting of

two counter-rotating gyres with a time dependent perturbation. This data set is

simulated for 1024 cycles at a base grid resolution of 512 × 256. We set the period

of the Double Gyre flow to 1000 cycles.

Arnold-Beltrami-Childress (ABC) — This data set is a time-dependent

variant of the three-dimensional ABC analytic vector field [37]. This data set is

simulated for 400 cycles with a base grid resolution of 128 × 128 × 128. We set the

period of the ABC flow to 100 cycles.

Tornado — This data set is from a simulation of the dynamics of an F5

tornado [38]. The base grid resolution is 490 × 490 × 280. A mature tornado

vortex exists in the domain during the 512 simulation seconds we considered for

our experiments. Our collaborating scientist normally uses a temporal frequency of

“every two simulation seconds” for his studies. Thus, we consider 256 time slices,

with the time-steps evenly distributed from t0 = 8502s to t256 = 9014s.

Let NT denote the total number of time slices or cycles. For the Double

Gyre data set, NT = 1024. For the ABC data set, NT = 400. For the Tornado data

set, NT = 256.

45

4.3.1.2 Storage Budget. We use the term storage budget to denote

the allowed amount of data that can be saved to disk for post hoc pathline

interpolation. We believe allowing both Lagrangian and Eulerian the same storage

budget enables a fair comparison between them. Let NC denote the number of

cycles saved (NC ≤ NT) and let P denote the number of basis flows or vector

samples stored per cycle. If B denotes the storage budget for total number of basis

flows or vector samples that can be saved, we select combinations of NC and P

such that NC × P = B. Further, we set the value of B to be equal to the number

of points in the base grid resolution of each data set respectively. For the Double

Gyre data set, B = 131, 072 points. For the ABC data set, B = 2.1M points. For

the Tornado data set, B = 67.2M points. For our experiments we consider three

storage budgets (1B, 2B, 4B) for each data set. For each budget, we select multiple

configurations that are combinations of NC and P .

For example, the Double Gyre 2B test used 262,144 points. It further varied

NC with values ranging from 4 to 1024. For NC = 4 we calculate four intervals

of basis flows (Lagrangian) or four time slices of vectors (Eulerian), with each set

containing P = 65536. Similarly, for NC = 1024, there are 1024 sets, with P = 256.

4.3.2 Error Evaluation. For a given seed point, we calculate its

corresponding pathline using three different methods.

– Ground Truth — We calculate the ground truth trajectories with a fourth-

order Runge Kutta scheme [1] using the full spatial and temporal resolution

available for each data set. The ground truth is considered to be perfectly

accurate and have 0% error.

46

– Lagrangian — We calculate basis flows in situ with each selected

configuration of NC and P . We then use the calculated basis flows post hoc

to interpolate new Lagrangian trajectories.

– Eulerian — We calculate Eulerian trajectories with each selected

configuration of NC and P , for comparison with the Lagrangian approach.

Similar to ground truth calculation, a fourth-order Runge Kutta scheme is

used to calculate the Eulerian trajectories.

Together, these three sets of trajectories can be used to evaluate and compare the

approaches.

For both the ABC and Double Gyre data sets we randomly seed 1000 points

over the entire flow field. For the Tornado data set, we place 144 seeds along rakes

at locations used by our collaborating scientist to study the phenomena.

In contrast to the error metric used by Agranovsky et al. [5], we use a

standard curve evaluation error metric — the L2-norm. The number of positions

of a particle to represent the ground truth is equal to NT . However, the number of

known positions for a Lagrangian trajectory is NC .

Given a test configuration average L2-norm is calculated as follows:

1

p

p∑

i=0

1

n

n∑

t=0

||xi,t − gi,t|| (4.1)

where p is the total number of particles, xi,t is the location of a Lagrangian

or Eulerian interpolated particle i at time t and gi,t is the location of the ground

truth particle i at time t. We use two variants of the L2-norm to calculate the

error:

– Full L2-Norm Metric When calculating the Full L2-norm, n is equal to NT

(total number of cycles).

47

– Select L2-Norm Metric When calculating the Select L2-norm, n is equal to

NC (number of cycles saved).

Agranovsky et al. used n = 1, which is similar in spirit to the Select L2-

Norm; we add the Full L2-Norm for our evaluation to capture behavior along the

interpolated trajectory at locations between the seed and the end point.

Figure 11. Notional example of trajectories interpolated using
Lagrangian-based (red) and Eulerian-based (blue) methods and the corresponding

ground truth (black).

Figure 11 illustrates a notional example of the difference between the

accuracy metrics for a simplified sample trajectory. While the Lagrangian

trajectory is accurate at its known points, the remainder of the trajectory can

significantly deviate from the ground truth because it is linearly interpolated from

the known points. We expect the Full L2-norm evaluation to show this error for

low NC configurations. In contrast, the Select L2-norm, which evaluates only at the

known points along the trajectory, shows how close a particle is to the ground truth

at these locations. Together, these error metrics provide a more comprehensive

evaluation and understanding of a Lagrangian trajectory accuracy as a whole.

48

Figure 12. Double Gyre analysis verifying Agranovsky et al.’s results.

4.4 Results

The first step of our evaluation was to verify the Agranovsky et al. results

using their error metric. One of our results, for Double Gyre, is plotted in

Figure 12. These results match their findings. Further, the results are similar to

the Select L2-norm results in Figure 13b.

After verifying Agranovsky et al.’s results, we proceeded with our own study.

The trends we observe, for both our spatiotemporal and error propagation analyses,

are consistent regardless of data set. Figure 13 plots our results.

4.4.1 Spatiotemporal Tradeoff. For each of the Full L2-norm

evaluations, the optimal values fell in between our largest and smallest NC

configurations (i.e., NC = 32 for Double Gyre, 20 for ABC, and 8 for Tornado).

This represents configurations using a sufficiently high P , enabling accurate

interpolation, and sufficiently high NC , such that the trajectory is well represented

even with linear interpolation being performed between known points.

49

1024 512 256 128 64 32 16 8 4

Number of Cycles Saved

A
v
e

ra
g

e
 F

u
ll

L
2

−
n

o
rm

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Lagrangian − 131,072 points

Lagrangian − 262,144 points

Lagrangian− 524,288 points

Eulerian − 131,072 points

Eulerian − 262,144 points

Eulerian − 524,288 points

(a) Double Gyre - Full L2-norm

400 200 100 40 20 10 4

Number of Cycles Saved

A
v
e

ra
g

e
 F

u
ll

L
2

−
n

o
rm

0
.0

0
0
.0

5
0
.1

0
0
.1

5 Lagrangian − 2.1M points

Lagrangian − 4.2M points

Lagrangian − 8.4M points

Eulerian − 2.1M points

Eulerian − 4.2M points

Eulerian − 8.4M points

(b) ABC - Full L2-norm

128 64 32 16 8 4

Number of Cycles Saved

A
v
e

ra
g

e
 F

u
ll

L
2

−
n

o
rm

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0 Lagrangian − 67.2M points

Lagrangian − 134.4M points

Lagrangian− 268.9M points

Eulerian − 67.2M points

Eulerian − 134.4M points

Eulerian − 268.9M points

(c) Tornado - Full L2-norm

1024 512 256 128 64 32 16 8 4

Number of Cycles Saved

A
v
e

ra
g

e
 S

e
le

c
t

L
2

−
n

o
rm

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Lagrangian − 131,072 points

Lagrangian − 262,144 points

Lagrangian− 524,288 points

Eulerian − 131,072 points

Eulerian − 262,144 points

Eulerian − 524,288 points

(d) Double Gyre - Select L2-norm

400 200 100 40 20 10 4

Number of Cycles Saved

A
v
e

ra
g

e
 S

e
le

c
t

L
2

−
n

o
rm

0
.0

0
0
.0

2
0
.0

4
0
.0

6

Lagrangian − 2.1M points

Lagrangian − 4.2M points

Lagrangian − 8.4M points

Eulerian − 2.1M points

Eulerian − 4.2M points

Eulerian − 8.4M points

(e) ABC - Select L2-norm

128 64 32 16 8 4

Number of Cycles Saved

A
v
e

ra
g

e
 S

e
le

c
t

L
2

−
n

o
rm

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0 Lagrangian − 67.2M points

Lagrangian − 134.4M points

Lagrangian− 268.9M points

Eulerian − 67.2M points

Eulerian − 134.4M points

Eulerian − 268.9M points

(f) Tornado - Select L2-norm

Figure 13. Evaluation results for Full L2-norm and Select L2-norm. Legends
indicate the total data storage budget information.

As NC gets smaller, the Lagrangian trajectories have poor accuracy as a

whole (see Full L2-norm result) even though the interpolated trajectory follows the

ground truth closely at known locations (see corresponding Select L2-norm result).

For example, in Figures 13a and 13b, for NC = 4 and 8, we observe high error

50

for Full L2-norm but low error for Select L2-norm. As demonstrated by Bujack et

al. [13], curve fitting can significantly reduce the Full L2-norm error for Lagrangian

trajectories. For Eulerian configurations with a low NC , the approach suffers from

low temporal resolution and this is reflected in the high error for both metrics.

Further, we observe increases in storage benefit the Lagrangian approach

more than the Eulerian approach. An increase in the number of basis flows reduces

the interpolation error per step. Figure 14 shows Double Gyre trajectories for

multiple configurations, each using the same total storage.

Figure 14. Series of sample trajectories interpolated in the Double Gyre data set
using varying number of cycles saved. Color code: Black - Ground Truth, Red -
Lagrangian, Blue - Eulerian. From l-r : 1024, 512, 64, 8 and 4 cycles saved.

4.4.2 Error Propagation. High NC configurations in particular

allow us to study the effect of large numbers of interpolations steps, each of

which advances a particle forward in time. The performance of the Lagrangian

trajectories for high NC values is poor relative to the Eulerian approach. The

first contributing factor is the low value of P (which, for this study, is inversely

proportional to NC to keep total storage constant). We observe large gains in

accuracy with an increase in storage budget for these configurations. The second

contributing factor is the error propagation which occurs when using the one-step

second order integration method [14] for Lagrangian interpolation. The left-most

set of trajectories in Figure 14 show the difference in error accumulation when

51

using the second order integration method for the Lagrangian trajectory and the

fourth order integration method used for the Eulerian trajectory.

4.5 Conclusion

Our study provided information regarding spatial and temporal trade-offs

when working with a fixed storage budget. Further, by considering multiple storage

budgets, our study informed trade-offs between data reduction and accuracy for

the Lagrangian approach. With these results, future researchers can make better

informed decisions regarding how many basis flows are needed to achieve reasonably

high accuracy. Another takeaway from our study is an increased understanding

of best practices for the Lagrangian approach with respect to tradeoffs between

number of basis flows and frequency of output. Further, we suggest (and use) two

variants of the L2-norm which together provide a more comprehensive evaluation of

a Lagrangian trajectory.

52

CHAPTER V

AN INTERPOLATION SCHEME FOR VDVP LAGRANGIAN BASIS FLOWS

Most of the text in this chapter comes from a publication [8], which was a

collaboration between Hank Childs, Roxana Bujack, and myself. I was responsible

for system implementation, conducting the experiments, and preparing and writing

the manuscript. I did the majority of the work as an intern at Los Alamos National

Lab, where Roxana Bujack was my mentor for this project. Roxana Bujack and

Hank Childs advised, provided extensive feedback during the work, and were

involved in editing the manuscript.

5.1 Introduction

We contribute a new interpolation scheme to consume information extracted

in situ which enables new techniques for the Lagrangian paradigm to maintain high

accuracy while reducing data storage. Previous work considered using basis flows

of fixed duration and fixed placement (FDFP). However, post hoc reconstruction

of the flow field using short basis flows, while relatively straightforward, results in

inaccuracy due to “stitching” a particle trajectory together [13, 14]. Each stitching

event corresponds to a particle basis flow neighborhood update and propagates a

local truncation error. Our work introduces the notion of variable duration and

variable placement (VDVP) Lagrangian basis flows which enables the use of longer

basis flow trajectories. We also introduce an interpolation scheme for VDVP flows,

VDVP-Interpolation, that can use longer Lagrangian basis flows to calculate new

particle trajectories with reduced error propagation and accumulation. The VDVP-

Interpolation scheme allows particles to maintain their basis flow neighborhoods

for longer durations, i.e., fewer “stitching” events, and limits interpolation error by

evaluating the particle neighborhood.

53

Our research furthers the usage of L-ISR-PHE for the EUS problem

by increasing the information content per byte. The use of VDVP allows for

much variation in the specific placement and durations of extracted basis flows,

potentially allowing for saving more information per byte than FDFP. Further, it

enables reduced error propagation from the use of longer trajectories. To realize

the benefits of VDVP, an interpolation scheme that makes optimal usage of such

input is necessary. This paper contributes that component, i.e., an interpolation

scheme for VDVP Lagrangian basis flows, enabling future in situ methods research.

Our evaluation is aimed at demonstrating the value of the VDVP approach, and

thus the value of our interpolator. We consider multiple data sets and demonstrate

improved accuracy-storage propositions compared to previous methods. As a result

of using both VDVP-Interpolation and VDVP Lagrangian basis flows, we calculate

more accurate pathlines while using less data storage.

Our specific contributions with this work are:

– We contribute a configurable, neighborhood-aware interpolation scheme for

Lagrangian basis flows that vary in seed position and duration.

– Building on previous theoretical work, we present the first implementation of

generating and using basis flows of variable duration and variable placement

(VDVP), forming a foundation for future research.

– We demonstrate better accuracy-storage propositions compared to previous

work.

5.2 Background and Related Work

5.2.1 Seed Placement Techniques for Flow Analysis.

Chapter IX covers several seed placement and streamline selection research

54

works. The majority of these works deal with steady state flow. Seed point

placement strategies to extract information and maintain coverage of a 3D time-

varying flow is limited. Specifically related to strategies for the extraction of

basis flows, Agranovsky et al. [5] placed seeds along a uniform grid periodically.

With our work, in addition to primarily allowing particles to follow the flow, we

strategically introduce basis flow seeds to limit the error during post hoc flow field

reconstruction and maintain an approximately uniform particle distribution over

time (details in Section 5.5). The system we adopt is most similar to Mebarki et

al. [39] who used Delaunay triangulation to identify cavities in the field and then

placed seeds at the centroid of the triangle.

5.2.2 Fixed Duration Fixed Placement. Summarizing discussion

from Chapter III, Agranovsky et al. [5] presented an approach that is useful for

exploratory flow analysis, i.e., analysis when the user does not know which particle

trajectories are desired before the simulation is run. In the first phase, basis flows

are calculated in batches in situ. Particles are seeded along a uniform grid to begin

a batch. These particles advect for a fixed number of cycles (e.g., 200 cycles), to

form basis flows. The particles are then terminated and the end points of the basis

flows are stored to disk. The cycle when data is stored to disk is referred to as a

“write cycle.” The process then repeats until the simulation completes.

In the second phase, the basis flows from the first phase are used to

approximate the behavior of the flow field. To begin, for a given particle,

the algorithm identifies a neighborhood of surrounding basis flows to follow.

Specifically, the neighborhood is the set of basis flows that form a minimum

convex hull around the particle in space and time. The particle’s next position is

determined by interpolating the basis flows via barycentric coordinate interpolation.

55

This process advances the particle to the same time as when the current batch of

basis flows ends. To advance the particle further, the process is repeated with the

following batches of basis flows, until the particle reaches its desired termination

time. Agranovsky et al.’s study showed that using the Lagrangian approach is

significantly superior to the Eulerian approach under sparse temporal settings.

Agranovsky’s seminal work falls in the FDFP (fixed duration, fixed placement)

category of basis flows. We refer to the associated interpolation scheme using

FDFP basis flows as FDFP-Interpolation.

5.3 Motivation

This motivation section begins by describing a problem — local truncation

error — and then a proposed solution. It then describes another problem —

unbounded interpolation error in divergent areas — and another proposed solution.

Problem: The FDFP-Interpolation approach can suffer from local

truncation error propagation. A particle is advanced in time by following a

neighborhood of basis flows. However, given that the basis flows are calculated

in batches for the FDFP approach, the process requires identification of a new

neighborhood, i.e., a neighborhood update, for each step (advancement in time).

To produce the final particle trajectory, interpolation steps are stitched together as

the particle is advanced forward in time. Figure 15a illustrates how a small local

truncation error occurs with each interpolation step. Further, this local truncation

error propagates with each interpolation step resulting in an increase of the global

truncation error. The details of the error propagation and accumulation have been

shown by Bujack et al. [13]. The final accuracy is then dependent on the number

of interpolation steps stitched together, i.e., the number of neighborhood updates.

When the number of interpolation steps being stitched together is high, as in the

56

(a) Basis flows are plotted in black, with the basis flow seed being a hollow black circle
and the basis flow end point being a solid black circle. The desired trajectory to

interpolate starts at the hollow green circle. The hollow yellow and hollow red circles are
the interpolated positions from using short basis flows. In this case, the slightly incorrect

position from the interpolation error at t = 1 (hollow yellow) leads to an even more
incorrect position at t = 2 (hollow red), i.e., error propagation. The solid green and solid

yellow are the correct particle end locations for each respective interpolation. The
relatively small local error (distance between solid green and hollow yellow, or solid yellow
and hollow red) is (12h

2
x‖f

′′‖)[13]. The local error propagates with each interpolation. The
global error is enhanced by the Lipschitz constant htL of f . Thus, at t = 2, the global

error is already 1
2h

2
x‖f

′′‖(1 + htL) [14].

(b) Interpolation error when using longer basis flows. The local interpolation error for
each step is inevitable, but using the original neighborhood prevents the incorrect

intermediate results from influencing the future path of the particle. The overall global
error is then limited to the local interpolation error 1

2h
2
x‖f

′′‖.

Figure 15. A notional example to provide intuition of how longer basis flows can
reduce error propagation.

57

Figure 16. Motivating result comparing FDFP-Interpolation to pure interpolation
on an analytic data set of distorted circular flow data. The image on the left is the
LIC of the flow field (color encodes the velocity magnitude). The white lines are
the FDFP basis trajectories. The image on the right is a plot of error propagation
over 2000 cycles. In contrast to FDFP-Interpolation, the pure interpolation only

shows local interpolation error and has no error propagation.

case for long simulation runs, the error propagation and accumulation can grow

exponentially and lead to poor accuracy [7].

Our Solution: Extend the duration of basis flows for as long as possible.

The error propagation and accumulation occurs for every instance of a stitching

event (neighborhood update). We can mitigate this issue if:

1. Basis flows live for the duration of the simulation.

2. The interpolation is done based on the initial neighborhood information.

Having basis flows live for the duration of the simulation means a particle

can have the same neighborhood for each interpolation step.

Calculating a particle trajectory would then require only interpolation (i.e.,

from start time to current time using the same basis flows) and there would be

58

(a) Cycle - 0 (b) Cycle - 100

(c) Cycle - 200 (d) Cycle - 1000

Figure 17. Particle distribution for the Double Gyre, with period set to 1000 cycles.
Figure (d) shows significantly under and over represented regions of the flow.

no error propagation events since there is no need for a neighborhood update.

Then, the error of this pure interpolation approach is O(h2
x), where hx is the

resolution in space [13]. Figure 15b illustrates particle interpolation by using the

same neighborhood.

The FDFP-Interpolation scheme suffers from local truncation error

propagation, while our approach uses pure interpolation. To highlight the difference

in error propagation and accumulation between the two methods, we consider

an analytic field — a distorted circular flow. Figure 16 shows that the pure

interpolation approach has absolutely no error propagation, while the stitching

together of trajectories shows a growth in error for every advancement in time

(cycle).

Problem: The interpolation error can become unbounded in divergent

areas. While using longer basis flows for interpolation reduces error propagation,

59

generating longer basis flows may result in certain regions having poor basis

coverage, depending on the nature of the flow field. Figure 17 shows the

distribution of particles at various stages when considering the Double Gyre [40].

Figure 17a shows the initial distribution of particles along a uniform grid.

Figures 17b and 17c show the divergene of particles. There are observable regions

in the field that are under and over represented in Figure 17d. If the basis flows of

a neighborhood diverge, i.e., the neighborhood is stretched or basis flow particles

separate, then the neighborhood size hx ∈ R can become unbounded. Using

the pure interpolation approach with divergent basis flows will result in a high

linear interpolation error (with overall performance then being worse than FDFP-

Interpolation). This is in accordance with Chandler et al. [34], who show the

correlation between using diverging basis flows and post hoc interpolation error.

If new particles are not frequently introduced, then the post hoc analysis of the

underrepresented regions could be poor.

Our Solution: Extend the duration of basis flows for as long as possible,

but update the particle neighborhood if it diverges beyond a limit.

In this paper, we propose a hybrid approach between the uniform case and

the pure interpolation approach. As input, we generate basis flows of variable

duration and variable placement (VDVP) during the first phase. When performing

interpolation using the VDVP Lagrangian basis flows, as long as a particle lives

in a non-divergent neighborhood, it uses the pure interpolation approach. As

soon as particle neighborhood divergence is detected, the particle neighborhood

is updated. In order to guarantee that a small neighborhood can always be found,

an approximately uniform distribution of particles is required in the domain. There

60

are several ways in which this can be achieved. Our VDVP approach introduces

new particles with the objective of limiting post hoc interpolation error.

The following sections provide details regarding the implementation of our

solution. VDVP-Interpolation is our neighborhood-aware interpolation scheme

for VDVP Lagrangian basis flows. It enables interpolation with reduced error

propagation when using longer basis trajectories. Further, it limits interpolation

error by evaluating particle neighborhoods for divergence and only updates if it

exceeds a limit for hx.

5.4 VDVP-Interpolation Method

(a) Cycle - 0 (b) Cycle - 100

(c) Cycle - 200 (d) Cycle - 1000

Figure 18. Particle distribution after addressing under and over represented regions
for the Double Gyre.

Our Lagrangian-based technique is implemented by following the same

high level approach, in that it is a two stage process, as described in Section

5.2.2. However, to effectively use longer duration basis flows we designed a simple

61

interpolation scheme that evaluates the quality of the particle neighborhood formed

by in situ extracted basis flows at each step.

Given a set of VDVP input basis flows, such that each individual basis flow

is represented as a starting location at time Ti, zero or more intermediate locations,

and an end location at time Ti+j, where j ≥ 1. A basis flow can exist for as short as

a single step, or for as long as the length of the simulation. Additionally, there are

no contraints on the spatial location of the basis flows. However, from a temporal

perspective, locations of the basis flow are only stored at write cycles, i.e., Ti,

Ti+1, ... , Ti+j correspond to times at write cycles. For a given particle location

P0 at time T0, our interpolation scheme starts by identifying a neighborhood of

basis flows B1, B2, ... , Bn (where n = 3 for 2D and n = 4 for 3D) surrounding

P0. Given a neighborhood of basis flows to follow, we interpolate each particle

trajectory location using barycentric coordinates interpolation. In an ideal case,

we can follow the same neighborhood of basis flows, performing each interpolation

from the starting location, to calculate an entire particle trajectory with no error

propagation.

To begin, an interpolation step is performed using the neighborhood of

basis flows of P0 at time T0, to calculate the next location P1 at time T1. After the

interpolation step, we evaluate the neighborhood of basis flows at T1. We perform a

neighborhood update if:

– A basis flow Bi of the particle neighborhood terminates. In this case

we need to identify a new neighborhood of basis flows to continue particle

trajectory interpolation.

62

– Basis flows of particle neighborhood diverge. We evaluate the

neighborhood of basis flows to keep the interpolation error bounded. If the

basis flows are deemed to have diverged, we perform a neighborhood update.

If a neighborhood update is not required, then we use the same

neighborhood of basis flows of P0 at time T0 to calculate the next location P2 at

time T2, i.e., a longer interpolation step is performed by following the same set of

basis flows. The process is then repeated by evaluating the neighborhood of basis

flows at time T2 and so on.

Algorithm 1: VDVP-Interpolation Algorithm

Data: ParticleSet P , BasisFlowSet B,
float UpperThreshold, int Tstart, int Tend,
int WriteInterval

1 Function VDVP-Interpolation()
2 Tcurrent = Tstart;
3 while Tcurrent < Tend do
4 DT = Delaunay(B, Tcurrent);
5 if Tcurrent = Tstart then
6 foreach Particle p ∈ P do
7 p.NB = UpdateNBInfo(p,DT);
8 end

9 else
10 foreach Particle p ∈ P do
11 if EvaluateNB(p.NB,UpperThreshold) then
12 p.NB = UpdateNBInfo(p,DT);
13 end

14 end

15 end
16 foreach Particle p ∈ P do
17 p = Interpolate(p, p.NB);
18 end
19 Tcurrent = Tcurrent +WriteInterval;

20 end

63

If a neighborhood update is performed, then we use the new neighborhood

of basis flows of P1 at time T1 to calculate the next location P2 at time T2. The

process is then repeated by evaluating the neighborhood of basis flows at time T2

and so on.

To identify particle neighborhoods at time Ti, we first perform a single

Delaunay triangulation over all basis flow particle locations at time Ti. If required,

each particle neighborhood can then be identified as the cell containing the particle

location Pi at time Ti.

A particle neighborhood is deemed to have diverged if the circumradius

of the cell, representing the particle neighborhood, is greater than a user-defined

parameter UpperThreshold. Barycentric coordinates interpolation error is bounded

from above through the circumradius R ∈ R of the corresponding cell. The

interpolation error is given by the equation:

‖f(x)− Lf(x)‖ ≤
1

2
R2‖f ′′‖∞ (5.1)

where f(x) is the ground truth location, Lf(x) is the barycentric coordinates

interpolated location, and ‖f ′′‖∞ is the maximum function space norm of the

second derivative of f [41].

Our technique is configured to limit interpolation error by only using

particle neighborhoods that have a circumradius less than UpperThreshold. In

the following subsection we describe measures taken to generate VDVP basis flows

that guarantee a neighborhood with circumradius less than UpperThreshold can be

found for each time step.

5.5 Generation of VDVP Basis Flows

In order to evaluate VDVP-Interpolation we need to generate VDVP basis

flows. Our objectives are to generate long duration basis flows and simultaneously

64

Figure 19. A notional example of VDVP-Interpolation. Basis flows are plotted in
black and a sample particle trajectory being interpolated is shown in green. Hollow

circles are initial positions. Red arrows show interpolation. Red dashed boxes
denote neighborhood update events. t0 - particle identifies an initial neighborhood.

t1 - particle maintains neighborhood. t2 - particle neighborhood update
(neighborhood basis flow terminates). t3 - particle maintains neighborhood. t4 -

particle neighborhood update (basis flows diverge).

provide sufficient coverage to limit interpolation error. VDVP basis flow generation

and distribution management can be guided by distance fields, spatial binning,

neighborhood entropy, vector field divergence, and so on. Determining an optimal

and efficient basis flow particle distribution approach in situ is a large topic beyond

the scope of this paper and will be considered as future work. VDVP-Interpolation

can be configured to interpolate VDVP basis flows, with any spatial distribution,

if represented as defined in the previous section. For this study, we address the

problem of underrepresented regions or particle clustering that come from allowing

particles to follow longer trajectories, by employing a method to limit interpolation

error.

With our VDVP approach, we begin by placing particles along a uniform

grid in the volume. These particles are advected through the time steps until

a write cycle completes. At the end of a write cycle, the particle positions are

saved to disk. A particle is terminated if it exits the volume. Advection continues

65

for the remaining particles from their last position. Thus, at write cycles (i.e.,

simulation cycles where data is saved to disk), intermediate locations along a

particle trajectory are saved to disk. This results in longer basis flow trajectories

with the distribution of seeds determined by the flow itself. Figure 17 shows the

distribution of particles achieved by a flow-guided VDVP approach for the Double

Gyre data set.

To limit interpolation error, our goal is to guarantee a particle neighborhood

update during interpolation can find a valid sized neighborhood. In addition to

placing new seed particles to address the problem of underrepresented regions,

we selectively terminate basis flows to mitigate particle clustering. To identify

candidate regions for particle addition and removal, we perform Delaunay

triangulation on the existing particles in the volume at the end of a write cycle.

The circumradius of the largest Delaunay cell has a direct relationship to how

sparse the particle sampling is in that region. The circumcenter is farthest away

from any other current particle, and therefore a natural candidate to insert a

seed to improve the overall coverage. If the circumradius of a cell is larger than

UpperThreshold, we place a seed point at the circumcenter if it lies inside the cell,

or at the location on the boundary of the cell that is closest to the circumcenter if

it is outside. For particle removal, for every vertex in the triangulation we calculate

the average circumradius of cells that the vertex is a member. If the average

calculated circumradius is below a user-defined threshold LowerThreshold, the

associated basis flow particle is removed.

Figure 18 shows a more uniform distribution of particles achieved by a flow-

guided VDVP approach using particle distribution management for the Double

Gyre data set.

66

5.6 Study Overview

We evaluate the VDVP-Interpolation method using results of the FDFP-

Interpolation approach as a baseline for comparison. For our study, we generate our

input basis flows by evaluating analytic data sets on the fly or loading simulation

results that were precalculated for each cycle from disk. The study consists of

configurations which vary over five parameters:

1. Lagrangian-based techniques

2. Data sets

3. Total data storage

4. Number of cycles saved (write cycles)

5. Number of basis flows saved per write cycle

We test our implementation on a single node. We ran a total of 144 test

configurations on a Xeon E5-2667v3 CPU. We used 12 cores at 3.2GHz and 256 GB

DDR4 memory. Post hoc particle interpolation and basis flows particle advection

was performed in parallel using OpenMP. We used the CGAL library to calculate

the Delaunay triangulation, and to perform vertex insertion and deletion.

5.6.1 Configuration Parameters.

5.6.1.1 Lagrangian-based techniques. We compare the FDFP-

Interpolation using FDFP input basis flows to VDVP-Interpolation using VDVP

input basis flows. We generate multiple sets of each type of input basis flows by

varying configurations parameters.

5.6.1.2 Data Sets. We considered three data sets to evaluate our

method:

67

Double Gyre — This data set is an analytic two-dimensional flow field

that is commonly used to study flow visualization techniques [40]. It consists of

two counter-rotating gyres with a time dependent perturbation. The data set is

simulated for 2048 cycles at a base resolution of 512 × 256 (≈ 6.4GB). We set the

period of the Double Gyre flow to 1000 cycles (each cycle is 0.01 seconds).

Arnold-Beltrami-Childress (ABC) — This data set is a time-dependent

variant of the three-dimensional ABC analytic vector field [37]. For this variant of

the ABC analytic vector field we used A = B = C = 1 and selected values of

ε = 1 and Ω = 1. The data set is simulated for 2048 cycles at a base resolution of

128× 128× 128 (≈ 103GB). We set the period of the ABC flow to 1000 cycles (each

cycle is 0.001 seconds).

Tornado — This data set is a real-world simulation of the dynamics of an

F5 tornado [38]. The base resolution is 490 × 490 × 280. A mature tornado vortex

(depicted in Figure 20) exists in the domain during the 512 simulation seconds

we considered for our experiments. Our collaborating scientist normally uses a

frequency of “every two simulation seconds” to study this turbulent data set. Thus,

we considered 257 time slices (≈ 415GB), with the time-steps evenly distributed

from t0 = 8502s to t256 = 9014s.

5.6.1.3 Total Data Storage, Number of Cycles Saved, and

Number of Basis Flows Saved per Cycle. The total number of basis flows

saved, i.e., the total data storage, is the summation of the number of basis flows

saved over every write cycle. For FDFP input, the number of basis flows saved

every write cycle can be fixed. Let P denote the number of basis flows saved at a

write cycle. Let NC denote the number of cycles saved, i.e., the number of write

cycles. Then, the total data storage required can be calculated as the product of

68

Figure 20. Pathlines traced depict a mature tornado vortex.

NC and P . If X denotes the total data storage, then X = NC × P . We select

multiple combinations of P and NC for a given X. The selected combinations of P

and NC are together a set of configurations to generate FDFP basis flows. For the

Double Gyre and ABC data set, NC = {8, 16, 32, 64, 128, 256, 512, 1024, 2048}.

For the Tornado data set, NC = {8, 16, 32, 64, 128, 256}.

For our study, we have three sets of selected combinations of NC and P ,

for the evaluation of the FDFP-Interpolation approach. The set of options for NC

remains the same across all three sets of selected combinations. The values of P in

the second and third set are two times and four times the corresponding values of

P in the first set. Thus, the total data storage of the second and third set is two

times and four times respectively. We denote these sets of test configurations as

FDFP-1X, FDFP-2X, and FDFP-4X.

We selected the smallest value of total data storage, 1X, used to calculate

multiple combinations of P and NC , to be equal to two times the total number of

grid points in the base resolution of the specific data set. For the Double Gyre data

69

set, X = (512 × 256) × 2 = 262, 144 points (≈ 6MB). For the ABC data set,

X = (128 × 128 × 128) × 2 = 4.2M points (≈ 100MB). For the Tornado data set,

X = (490× 490× 280)× 2 = 134.4M points (≈ 3.2GB).

When generating VDVP input, the number of basis flows fluctuates over

time, i.e., the number of basis flows saved every write cycle is not fixed. Thus,

in the case of our VDVP input, the total data storage is observed. To compare

VDVP-Interpolation with FDFP-Interpolation, we have a corresponding set of test

configurations, with the same three sets of selected combinations of P and NC to

generate VDVP basis flows. However, the value of P is only the initial number of

basis flows placed, i.e., it is not fixed. We denote these corresponding sets of test

configurations as VDVP-1X, VDVP-2X, and VDVP-4X.

In addition to particles exiting the domain, the total data storage costs

of VDVP is influenced by particle addition and removal. Let R denote the

circumradius of a cell after the initial placement of particles along a uniform grid.

Then, we define UpperThreshold and LowerThreshold as follows:

UpperThreshold = CR (5.2)

LowerThreshold =
R

C
(5.3)

where C is a user-defined value to control particle addition and removal. For our

study, we empirically selected C = 2 for the two-dimensional Double Gyre data set,

and C = 8 for the three-dimensional ABC and Tornado data sets. We found these

values allowed us to keep particle addition and removal relatively balanced.

5.6.2 Error Evaluation. We calculate particle trajectories using

three methods.

70

– Ground Truth — The particle trajectory is calculated with a fourth-

order Runge Kutta scheme [1] using the full spatial and temporal resolution

available. The ground truth is considered to be perfectly accurate, i.e., it has

0% error.

– FDFP-Interpolation — Lagrangian particle trajectories are calculated by

FDFP-Interpolation using FDFP input basis flows for every configuration of

NC and P .

– VDVP-Interpolation — Lagrangian particle trajectories are calculated by

VDVP-Interpolation using VDVP input basis flows for every configuration of

NC and P . In this case, P is only the initial number of basis flow particles

seeded in the volume.

We evaluate the accuracy of the Lagrangian particle trajectories calculated from

a test configuration by comparing it to the calculated ground truth. For both the

Double Gyre and ABC data set we randomly seed 1000 particles in the volume. For

the Tornado data set, we place 144 particles along rakes at locations used by our

collaborating scientist to study the phenomena (Figure 20). We then calculate the

set of trajectories for each test configuration.

To compare two trajectories we measure the L2-norm. NC is the number

of cycles saved and consequently the number of known particle positions along a

Lagrangian trajectory.

The average L2-norm is calculated as follows —

1

p

p∑

i=0

1

NC

NC∑

t=0

||xi,t − gi,t|| (5.4)

71

where p is the total number of particles, xi,t is the location of a Lagrangian

interpolated particle i at time t and gi,t is the location of the ground truth particle

i at time t.

Thus, we evaluate the distance between the ground truth and a Lagrangian

trajectory at every known point of the Lagrangian trajectory. The points that are

known of the Lagrangian trajectory can be connected using linear interpolation

or curve fitting. Representation of a Lagrangian trajectory using curve-fitting has

been studied by Bujack et al. [13]. For our study, we focus on the accuracy of the

interpolated locations of a Lagrangian particle trajectory.

5.7 Results

The accuracy of interpolated pathlines is dependent on both the input basis

flows and the interpolation scheme used. VDVP-Interpolation can utilize the FDFP

input and produce pathlines of the same accuracy as FDFP-Interpolation. Given

both approaches require varying data storage, we take the number of basis flows

used for the pathline interpolation into account.

Configuration Double Gyre Configuration ABC Configuration Tornado
NC Data Time Per Interval NC Data Time Per Interval NC Data Time Per Interval

2048
1X 0.1704

2048
1X 0.4897

128
1X 3.5335

4X 0.1774 4X 0.5669 4X 14.6271

128
1X 0.1821

128
1X 0.6528

32
1X 12.3912

4X 0.1775 4X 1.0535 4X 50.4528

8
1X 0.2075

8
1X 4.1075

8
1X 54.5112

4X 0.2712 4X 16.2275 4X 184.1937

Table 3. Timing results for post hoc interpolation using the VDVP-Interpolation
method. For the Double Gyre data set, X = 262,144 points. For the ABC data set,

X = 4.2M points. For the Tornado data set, X = 134.4M points. All timings
reported are the average time for a single interval and measured in seconds.

5.7.1 Accuracy and Data Storage Comparison. We analyze the

results of accuracy achieved and the corresponding number of basis flows used by

each approach, shown in Figure 21. The x-axis represents the average number

72

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Average Number Of Points Saved Per Write Cycle

A
ve

ra
g

e
 L

2
 N

o
rm

128 512 2048 8192 32768 131072

l

l

l

l

l

l

l
l l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l
l

l l

l

l

l

l

l
l

l l l

l

l

l

l

l
l

l l l

l

l

l

l
l

l l l l

FDFP−1X

VDVP−1X

FDFP−2X

VDVP−2X

FDFP−4X

VDVP−4X

(a) Double Gyre - L2-norm. X = 262,144 points.

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

Number Of Points Saved Per Write Cycle

A
ve

ra
g

e
 L

2
 N

o
rm

1728 8000 32768 125000 512000 2097152

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l
l

l l

FDFP−1X

VDVP−1X

FDFP−2X

VDVP−2X

FDFP−4X

VDVP−4X

(b) ABC - L2-norm. X = 4.2M points.

5
0

1
0

0
2

0
0

3
0

0
4

0
0

Number Of Points Saved Per Write Cycle

A
ve

ra
g

e
 L

2
 N

o
rm

250000 1000000 4000000 16000000 64000000

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

FDFP−1X

VDVP−1X

FDFP−2X

VDVP−2X

FDFP−4X

VDVP−4X

(c) Tornado - L2-norm. X = 134.4M points.

Figure 21. Evaluation results using L2-norm. Legend indicates the configuration
information.

73

of points stored per write cycle, denoted by Pavg, and uses a logarithmic scale.

The y-axis represents the average L2-norm and uses a linear scale. Each curve

represents one of the sets of configurations. Thus, for each curve, as the number of

particle locations saved increases (Pavg), the number of cycles (NC) saved decreases.

Further, since number of basis flows used does not match exactly for corresponding

configurations of each approach, we highlight example configurations which used

approximately similar amounts of data storage or achieved similar accuracy for

different amounts of data storage.

For the Double Gyre plot in Figure 21a, considering all configurations,

VDVP-Interpolation calculated particle trajectories that are 48% more accurate

on average than the corresponding FDFP-Interpolation approach, however, it used

16% more data storage on average. Our VDVP generation approach produced more

basis flows given the divergent nature of the flow and the contained nature of the

data set, i.e., no particles exit. We observed the number of basis flows generated

was proportional to the value of NC for this data set. As the interval increases,

i.e., as NC gets smaller, and the opportunities to add particles coincides with

clustering of particles in the domain, we observe a more balanced particle addition

and removal. For configurations between NC = 64 and NC = 8, we observe VDVP-

Interpolation is on average 50% more accurate while using 2% less data storage.

Further, interpolation using VDVP-4X is approximately 56% more accurate than

FDFP-4X for NC = 128 (P = 8192), while using only 1.8% more data storage,

and particle trajectories calculated using VDVP-2X are approximately 59% more

accurate than FDFP-2X for NC = 32 (P = 16384), while using 1.4% less data

storage.

74

For the ABC data set, we observe the benefits of using VDVP-Interpolation

given particles travel in relatively straight trajectories and maintain the same

neighborhood for most interpolation steps (Section 5.7.2.2). Considering

configurations between Pavg = 1372 to Pavg = 125000 in Figure 21b, VDVP-

Interpolation is 6.5% more accurate while using 22% less data storage. Further,

for multiple configurations our approach maintains accuracy while requiring less

data storage. For example, interpolation using VDVP-2X has approximately the

same accuracy as interpolation using FDFP-2X for NC = 2048 (P = 4096), while

using 20% lesser data storage, and interpolation using VDVP-4X is approximately

2.5% more accurate than using FDFP-4X for NC = 128 (P = 131072), while using

30% less data storage.

For the Tornado plot in Figure 21c, considering all configurations, VDVP-

Interpolation on average calculated particle trajectories that are 31% more accurate

than the corresponding FDFP-Interpolation approach, while using 48% less data

storage. Comparing VDVP-1X and FDFP-1X configurations, we observe that

VDVP-Interpolation using 50% less data storage is approximately 60%, 47%, 40%,

and 38% more accurate than corresponding FDFP-Interpolation accuracy for

NC = 256, 128, 64, and 32 respectively. We placed seeds in areas from which

particles are pulled into the vortex of the Tornado in the data set. Given the

nature of the Tornado data set, we expect a lot of basis flows to exit the domain

during the run and this contributes significantly to the lowered data storage.

Overall, the interpolation accuracy of VDVP-Interpolation configurations is

significantly better than the corresponding FDFP-Interpolation configurations

across the board. We believe VDVP-Interpolation benefits from basis flows

75

adapting and following the flow field thus offering better spatial resolution for the

particles being interpolated.

5.7.2 VDVP-Interpolation Evaluation. In addition to accuracy

and data storage we discuss the computation time required by our interpolation

method. Further, to aid our understanding of the divergence in the flow field and

the relation to interpolated pathline accuracy we observe the rate of neighborhood

updates during interpolation.

5.7.2.1 Computation Time. Table 3 shows the average time

required for a single interval when performing VDVP-Interpolation for a select

set of configurations. Given the number of intervals corresponds to the value

of NC , the total time required can be computed as a product of the average

time per interval and NC . Each interval of VDVP-Interpolation consists of

identifying the next location for a set of particles and performing a serial Delaunay

triangulation over the current set of input basis flows to identify the containing cell.

Identification of the next location for each particle is computed using Barycentric

coordinates interpolation and is computed in parallel over the total set of particles.

For the configurations shown in Table 3, we believe the mid-value for NC represents

the most practical choice for configurations in practice.

For the Double Gyre data set, we observe short computation times given the

2D Delaunay triangulation is inexpensive for a relatively smaller number of points.

Thus, the interpolation times are dominated by the parallel particle interpolation

process. Overall, the total interpolation time is greater for high NC and relatively

low when NC is small. For the ABC data set, we observe similar trends with

total computation time proportional to the value of NC . However, we do observe

the impact of the 3D Delaunay triangulation over a large number of points as a

76

bottleneck when NC = 8 and VDVP-4X is used. For the Tornado data set, the 3D

Delaunay triangulation dominates the total time required and is greater for VDVP-

4X configurations. The number of intervals has a lesser effect when the Delaunay

triangulation is expensive. For example, the total time required by the NC = 128

and VDVP-1X configuration is less than the time required by the NC = 8 and

VDVP-4X configuration.

Our experiments with parallel calculation of the Delaunay triangulation

showed it can significantly improve computation times, but there are constraints

such as CGAL only offers a parallel 3D Delaunay triangulation which requires TBB

(no support for 2D), and Delaunay triangulation on GPUs does not scale beyond

a few million points due to memory constraints. We discuss potential solutions to

this challenge in Section 5.8.

5.7.2.2 Neighorhood Update Rate. Figure 22 plots the average

percentage neighborhood update rate of particles interpolated using the saved basis

flow information. During VDVP-Interpolation, a particle follows a neighborhood of

basis flows for an interval of time, followed by an evaluation of the continuation and

quality of the neighborhood. If a member basis flow of the neighborhood terminates

or the basis flows diverge beyond an acceptable threshold the particle identifies

a new set of basis flows to follow by performing a neighborhood update. We use

Nupdate to denote the average percentage neighborhood update rate. The FDFP-

Interpolation approach has Nupdate equal to 100%.

For the Double Gyre data set, where we seeded particles randomly in the

domain, we observe Nupdate is high when the intervals are large, i.e., the number of

write cycles is small. This is expected given the circulating and diverging nature of

the Double Gyre flow. For the ABC data set, where we seeded particles randomly

77

0
2
0

4
0

6
0

Number of Write Cycles

A
ve

ra
g
e
 %

 o
f
P

a
rt

ic
le

 N
e
ig

h
b
o
rh

o
o
d
 U

p
d
a
te

s

8 16 32 64 128 256 512 1024 2048

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l l l l

l

l

l

l

l

l

Double Gyre

ABC

Tornado

Figure 22. The average percentage neighborhood update rate over all particles for
each data set. The x-axis shows the number of write cycles, i.e., the number of

“opportunities” a particle being interpolated had to evaluate and decide whether to
update its neighborhood. The y-axis plots the average percentage of neighborhood
updates over all interpolated particle trajectories, considering all configurations,

i.e., VDVP-1X, VDVP-2X, and VDVP-4X.

in the domain, we observe low values for Nupdate irrespective of the number of write

cycles. This is expected given particles have rather straight trajectories for this

data set, thus being able to maintain the same neighborhood. For the Tornado

data set, we seeded particles at select locations in order to capture the flow of the

mature vortex in the field. We observe that for the large intervals, particles have

Nupdate approximately equal to 25%. For all data sets, for small temporal intervals

(i.e., high values of NC), we observed low values for Nupdate. Thus, particles choose

to continue using the same neighborhood of basis flows for upcoming interpolations.

5.8 Conclusion

Our interpolation scheme VDVP-Interpolation reduces error propagation

and limits interpolation error when calculating particle trajectories using VDVP

78

Lagrangian basis flows. VDVP-Interpolation makes configurable neighborhood-

aware usage of VDVP basis flows and is the main contribution of this work.

Further, our work is the first practical implementation of generating and using

VDVP basis flows. This serves as a starting point for future in situ methods

research for flow analysis and visualization using the L-ISR-PHE paradigm.

We evaluated the accuracy-storage propositions offered by our method

for multiple data sets and demonstrate improved accuracy and reduced storage

compared to previous methods. For example, VDVP-Interpolation was able to

calculate particle trajectories that were between 40%-60% more accurate while

using 50% less storage for certain configurations of the Tornado data set.

Identifying the neighborhood of a particle can be expensive using a global

search structure which requires construction over a large number of points or

updating every interval. An alternative approach could be a local parallel search for

nearby, relevant basis flows to form the neighborhood for each particle. Identifying

an efficient approach for tracking particle neighborhoods for unstructured input will

be explored as a future research direction with options including spatial hashing

and binning being considered.

Our study answers our research question regarding whether considering

more complex seeding, termination, and interpolations methods are worthwhile

— they are. Further, we feel that additional research on this topic will be fruitful

(see Chapter VIII).

79

CHAPTER VI

SCALABLE IN SITU LAGRANGIAN FLOW MAP EXTRACTION:

DEMONSTRATING THE VIABILITY OF A COMMUNICATION-FREE

MODEL

Most of the text in this chapter comes from a manuscript that will be

submitted for publication soon [9]. This work was a collaboration between

Abhishek Yenpure, Roxana Bujack, Matthew Larsen, Kenneth Moreland, Christoph

Garth, Hank Childs, and myself. I was responsible for system implementation,

conducting the experiments, preparing and writing the manuscript. Abhishek

Yenpure and Kenneth Moreland assisted with the generation of FTLE images.

Matthew Larsen helped me with using Ascent and integrating in situ Lagrangian

analysis functionality into the framework. This project was started when I was a

visiting student at the Technische Universität Kaiserslautern and collaborating with

Christoph Garth. Roxana Bujack advised and assisted with theoretical background

in the text. Hank Childs advised, provided extensive feedback, and was involved in

editing the manuscript.

6.1 Introduction

A major concern for in situ processing is the encumbrance placed on the

simulation code. In situ analysis tasks are allocated a limited resource budget,

and, since analysis is coupled with a simulation, analysis performance directly

impacts the overall performance. In situ calculation of a Lagrangian representation,

i.e., the “ISR” of the L-ISR-PHE paradigm, however, involves distributed

memory particle advection to calculate sets of basis flows, introducing a heavy

communication overhead. Although addressing the scalability of distributed

memory integral curve computation has been extensively studied in a post hoc

80

setting, current techniques often do not operate within in situ constraints. Further,

communicating particle information between nodes every cycle is expensive and

will only become more so as supercomputers get larger. To address the challenge

of in situ scalability, we evaluate the viability of a communication-free model. In

the context of distributed memory integral curve computation, this is a relatively

unexplored idea. However, as opposed to post hoc flow visualization (toward which

most research efforts have been directed), we believe our objective of extracting a

Lagrangian flow map in situ permits such a model.

In this study, we propose the Boundary Termination Optimization (BTO),

a simple, yet novel, communication-free algorithm to improve the performance

of in situ extraction of Lagrangian flow maps. We demonstrate the viability

and limitations of this method by considering multiple simulation data sets and

parameter configurations. Our study finds that a communication-free model,

for the several practical configurations considered, achieves 3x speed-up while

calculating flow maps in situ and can approximate the complete flow map while

maintaining over 96% reconstruction accuracy in several cases compared to using

communication during the first phase of L-ISR-PHE.

6.2 Background and Related Work

A key operation for calculating a Lagrangian flow map in situ is computing

pathlines in a distributed memory environment. Efficient computation of integral

curves in a distributed memory environment is an extensively researched field.

However, the majority of works are limited to steady state vector fields in a post

hoc environment. The primary challenge addressed by these works is improving the

scalability, load balance, and overall efficiency of distributed memory integral curve

computation. Typical parallelization strategies adopted to improve performance are

81

parallelize-over-data [42, 43, 44, 45, 46], parallelize-over-particles [47, 48, 49, 50],

or a hybrid approach [51, 52, 53]. Parallelize-over-data techniques determine a

domain decomposition and assign a subset of the total domain to each node.

While calculating integral curves, these methods communicate particles between

processors when required. Parallelize-over-particles techniques assign a set of

particles to each node and load data from disk on demand. For a complete review

of the algorithms, we refer the reader to a recent survey by Zhang et al. [54].

Although aiming to improve performance for different flow visualization

tasks and involving similar keywords as our work work, the following related works

are only applicable to steady state vector fields in a post hoc setting. Bleile et

al. [55] accelerated streamline calculation by swapping traditional Eulerian and

Lagrangian-based advection at node boundaries. In this case, after a particle

is communicated across a boundary, a previously computed mapping is used

to transport the particle across the entire node. Liao et al. [56] presented a

communication-free 3D LIC technique. They limit communication by using a

preprocessing step to regroup unstructured grid cells and restricting particle

advection to within the confines of a single cell.

Existing algorithms are difficult to adopt in the context of in situ calculation

of pathlines. Operating in an in situ environment introduces new constraints

with regard to which process can access what domain subset in space and time.

First, domain decomposition and distribution are simulation-determined. Second,

the time-varying nature of simulation data in conjunction with in situ memory

constraints means only a single time step can be accessed at any given time,

and communicating this information across processors each step is prohibitively

expensive. These constraints complicate techniques like data prefetching,

82

rearrangement, or completing particle advection within a node before particle

exchange. (In situ methods are currently limited to advancing a particle by a

single step before the vector field changes.) Further, the problem of poor scalability

remains when considering a large number of processors and communication between

them every cycle.

6.3 Boundary Termination Optimization

In this section, we first define requirements for extracting flow field

information as a set of pathlines in situ. Next, we describe Boundary Termination

Optimization (BTO), which results in the communication-free technique

Lagrangian-BTO. Our demonstration of the viability of a communication-

free model is the main contribution of this study. Further, we discuss the

accuracy-performance tradeoff when comparing a communication-based versus

communication-free model. Finally, we provide the details of the Lagrangian-based

advection scheme we use for reconstruction and a theoretical error analysis.

The requirements surrounding the calculation of integral curves in

distributed memory depends on whether the computation is for the purpose of

post hoc visualization and analysis or in situ extraction of a flow map. Whereas

in a post hoc setting an integral curve must continue particle integration across

node boundaries, this is not necessary to calculate a Lagrangian representation of

the flow field. We identify different requirements when extracting a Lagrangian flow

map in situ and define them as follows:

1. Extraction of a flow map or set of pathlines in situ should demonstrate good

scalability.

2. Flow field reconstruction using extracted pathlines should be accurate.

83

The method by Agranovsky et al. [5] demonstrated only the second

requirement. We implement the method by Agranovsky et al. [5] using MPI [57]

for communication and refer to this technique as Lagrangian-MPI. In this paper, we

use Lagrangian-MPI as a baseline for comparison.

6.3.1 In Situ Extraction Using BTO. Our contribution with this

work is a simple communication-free algorithm for extracting a Lagrangian flow

map in situ. The benefit of this approach is that it has less execution time and

improved scalability characteristics, which reduces the burden on the simulation

code. To improve performance, our approach requires a small modification to

Lagrangian-MPI: eliminate information exchange and synchronization.

Similar to Lagrangian-MPI, we use an initially uniform seed placement and

advect particles for predetermined nonoverlapping intervals of time. However, as

opposed to continuing particle integration across node boundaries, our approach

terminates and discards these particle trajectories. Figures 23a and 23b illustrate

notional examples of basis flows calculated by Lagrangian-MPI and Lagrangian-

BTO, respectively. Thus, we store only those particle trajectories that remain

within the domain until the end of the interval. Terminating particles that

require communication across node boundaries to continue trajectory integration,

allows the approach to remain communication-free. Since processors do not

exchange particles, the Lagrangian analysis operator on each processor can operate

independently and asynchronously.

We build both Lagrangian analysis techniques, i.e., Lagrangian-MPI and

Lagrangian-BTO, as in situ analysis filters using the VTK-m [58], VTK-h [59], and

Ascent [59] libraries. VTK-m is a platform portable scientific visualization library

for shared memory parallel environments. VTK-h is a distributed memory wrapper

84

around VTK-m. Ascent is an in situ visualization infrastructure that we use to

both integrate with simulations and create a workflow when loading data sets from

disk.

The Lagrangian-BTO filter has two operations to perform: particle

advection and particle management. Particle advection is performed using RK4

interpolation implemented as a VTK-m worklet [60]. Particle management involves

tracking particle trajectories, evaluating the validity, and managing memory to

prevent invalid particles from being launched on GPU threads during advection.

The Lagrangian-MPI filter has to perform three operations: particle advection,

particle management, and communication. Consistent with the Agranovsky

approach, communication of particles and particle information between ranks

is performed using asynchronous, non-blocking, buffered MPI communication.

Additionally, particle management further includes tracking of internal and

external particles in order to return particles to originating nodes at write cycles.

(a) Lagrangian-MPI (b) Lagrangian-BTO

Figure 23. Notional examples of calculating basis flows. Only green trajectories are
stored to disk.

Accuracy-Performance Tradeoff — The loss of information in the

form of terminated and discarded particle trajectories reduces the quality of flow

85

reconstruction. Flow information that will typically be lost near boundaries can,

however, be interpolated using additional information from adjacent processes

post hoc. With respect to simulation overhead, the communication-free model

offers a reduced cost and improved scalability. We believe evaluating the accuracy-

performance tradeoff and determining the viability of a communication-free model

as an alternative low-cost choice for a scientist or researcher is valuable. Our

hypothesis regarding this method is that the execution time will be substantially

improved (since there is no communication required), but the accuracy will be only

modestly affected.

Finally, the Agranovsky work demonstrated that the Lagrangian method can

be much more accurate than the Eulerian approach, including some cases where the

accuracy improved by over 10x. Even though our practice of terminating particles

at the boundary will reduce accuracy compared to the Agranovsky approach, we

still would be much more accurate than the Eulerian approach. If we also can

demonstrate significantly faster execution times, then we believe our proposed

method would be appealing to future researchers and domain scientists in many

settings.

(a) Neighborhoods using 23a (b) Neighborhoods using 23b

Figure 24. Notional examples of neighborhoods produced using triangulation over
basis flows shown in Figure 23. The blue circles represent starting locations of basis

flows saved to disk.

86

6.3.2 Post Hoc Reconstruction. To reconstruct the complete flow

map or to trace new pathlines, we set up a parallelize-over-data distributed memory

Lagrangian-based advection scheme that is conceptually similar to previous

work [5, 21, 7]. For a given interval, each process loads basis flows generated from

its own and adjacent processes for that interval. For any new trajectory to be

calculated using basis flows, the particle must identify a neighborhood (convex

hull) of basis flows to follow for the duration of an interval. We perform a Delaunay

triangulation over the start locations of loaded basis flows to identify neighborhoods

for tracing new particle trajectories. Figure 24 illustrates a notional example of

triangulation using basis flows from the two nodes demonstrated in Figure 23.

Using basis flows data from adjacent neighboring processes, i.e., flow information

from all directions, allows approximation of regions where information has been

lost. Once a particle neighborhood is identified, the location of the particle at the

end of the interval can be calculated by following the neighborhood of basis flows.

In our work, we use Barycentric coordinate interpolation to calculate the particle’s

end position. To calculate a pathline for a duration greater than the interval of

basis flows, a trajectory can be stitched together by using basis flows of successive

nonoverlapping intervals.

We implemented our reconstruction workflow using CGAL for 3D parallel

Delaunay triangulation [61] and the vtkProbeFilter from the VTK library [62] for

Barycentric coordinate interpolation. Further, we performed all our reconstruction

and accuracy measurements on our in-house research cluster.

6.3.3 Theoretical Error Analysis. We use a one-dimensional linear

interpolation L of a function f : R → R for x ∈ [x0, x1] ⊂ R

Lf(x0),f(x1)(x) =
x− x0

x1 − x0
f(x1) +

x1 − x

x1 − x0
f(x0). (6.1)

87

The higher dimensional result satisfies Equation (6.1) for each component.

In our approach, a particle starting at x1 that reaches the node boundary

during the interval of advection is terminated. Thus, its function value (the flow

map) is not known. However, we can reconstruct it from its known neighbors

Lf(x0),f(x2)(x1). Consider a particle x ∈ [x0, x1] ⊂ R whose path is interpolated

post hoc using this reconstructed value. We get the same result as if we had used

the closest existing neighbors directly, because let L′ denote Lf(x0),Lf(x0),f(x2)
(x1)(x),

then

L′
(6.1)
=

x− x0

x1 − x0
Lf(x0),f(x2)(x1) +

x1 − x

x1 − x0
f(x0)

(6.1)
=

x− x0

x1 − x0
(
x1 − x0

x2 − x0
f(x2) +

x2 − x1

x2 − x0
f(x0)) +

x1 − x

x1 − x0
f(x0)

=
x− x0

x2 − x0
f(x2) +

(x2 − x1)(x− x0) + (x2 − x0)(x1 − x)

(x2 − x0)(x1 − x0)
f(x0)

=
x− x0

x2 − x0
f(x2) +

x2 − x

x2 − x0
f(x0)

(6.1)
= Lf(x0),f(x2)(x).

(6.2)

Bujack et al. [13] previously established that the post hoc interpolation of

pathlines is a numerical one-step integration method [63]. Its accuracy is bounded

by its global truncation error at stitching step n ∈ N of

en ≤
d2

8
(tn − t0)h

2
x max
τ∈[t0,tn]

max
ζ∈Rd

‖HḞ τ
tj−1

(ζ)‖∞eL(tn−t0) (6.3)

with dimension d, start time t0, end time tn, spatial Lipschitz constant L, Hessian

H of the temporal derivative of the flow map Ḟ , and spatial distance hx between

the basis flows. As a result, the interpolation error is O(h2
x) if the flow map has

bounded second derivatives in space and first derivatives in time, which is a

reasonable assumption for a differentiable vector field, because the solutions of an

initial value problem depend smoothly on the initial conditions and time [64].

Equation (6.2) shows that the error bound O(h̃2
x) still holds but with a

larger h̃x > hx. Its size is determined by the size of missing information, which

is limited by the maximum distance particles can move in one time interval. If

a particle is seeded further than maxxi∈R
d maxj=1..n ‖F

j
j−1(xi)‖ away from the

88

node boundary, it cannot reach it and must therefore have the correct flow map

information. In the worst case, we can have missing information on both sides of

the boundary, and therefore we get

h̃x ≤ 2hx + 2 max
xi∈Rd

max
j=1..n

‖F j
j−1(xi)‖

≤ 2hx + 2ht max
x∈Rd

max
t∈[tj−1,tj]

‖v(x, t)‖

(6.4)

with the underlying velocity field v : Rd × R → R
d and the temporal step size

ht, which is the interval time between storing data to disk, which is usually around

one-thousandth of the total integration time. Please note that the future increase of

the global truncation error of a particle that traverses this region can continue even

after it has left the region, but for all particles that never enter the region close to

the boundary, the original error bound holds.

6.4 Study Overview

In this section, we describe our experiments to evaluate performance and

reconstruction accuracy, and the metrics we use to measure the same.

6.4.1 Experiment Setup. To evaluate the viability of the

Lagrangian-BTO analysis filters, we set up two workflows.

– WF1: In situ weak scaling study to evaluate speed-up.

– WF2: Evaluation of reconstruction accuracy by varying parameters used in

flow map generation.

For the WF1 workflow, Ascent is directly connected to a simulation code.

Lagrangian analysis parameters are specified as input to the Ascent pipeline. The

simulation code generates vector field data and pauses when it invokes Ascent calls

in order to perform in situ analysis. We scaled the number of processors used and

proportionately increased the size of the simulation grid. Our WF1 experiments

provide insight into the performance of both Lagrangian analysis filters at scale.

89

For the WF2 workflow, we load data set files from disk to create a

theoretical in situ setup, and then call Ascent to initiate the Lagrangian analysis

filters. We consider a fixed number of MPI tasks and nodes for WF2, i.e., we use a

fixed domain decomposition for all tests. Our WF2 experiment configurations are

designed to understand the range of specifications under which Lagrangian-BTO

extracts accurate flow maps and to identify the potential limitations of using this

method. We vary the value of the interval parameter (i.e., the number of cycles we

wait before writing to disk) to understand the effect of longer advection intervals

on flow map generation using the Lagrangian-BTO approach. In general, the

longer the interval, the greater the probability of particles reaching the boundary

and being terminated. Further, we consider the impact of various data reduction

options. When using a very sparse number of particles to capture the behavior of

the flow, the effect of losing particles to boundary termination could be greater.

Similar to the format used in other chapters, data reduction values are described in

the form of 1:X, i.e., one particle for every X grid points.

6.4.2 Performance Metric. We measure performance in terms of the

execution time of the Lagrangian analysis filters. All of our timings are measured

using the timing functionality in Ascent. We measure the average time per cycle,

which includes time to perform particle advection, particle management, and also

communication in the case of Lagrangian-MPI. To simplify understanding the

scalability of both Lagrangian analysis filters with respect to communication costs,

we exclude cycles at the end of an interval. These cycles include a communication

cost incurred to return all particles to the respective origin nodes for Lagrangian-

MPI and an I/O cost to write information to disk for both methods. In this

90

paper, we do not analyze the parallel I/O times, and we consider I/O optimization

methods to be beyond the scope of this work.

6.4.3 Accuracy Metric. We measure the accuracy of flow field

reconstruction by the Lagrangian-BTO analysis filter relative to the accuracy

achieved by the corresponding Lagrangian-MPI analysis filter. Comparisons of

Lagrangian-MPI to the traditional Eulerian method can be found in previous

works [5, 7]. We measure total flow volume error using the average L2-norm over

all samples considered. The total average L2-norm is calculated as

1

p

p∑

i=0

||bi,t −mi,t|| (6.5)

where p is the total number of particles, bi,t is the location of a Lagrangian-BTO

interpolated particle i at time t, and mi,t is the location of the Lagrangian-MPI

particle i at time t.

For a given total average L2-norm value L, the reconstruction accuracy

percentage is proportional to the length of cell side C for that specific

configuration, and is calculated as

Accuracy% =
C − L

C
× 100 (6.6)

We note that we use the total average L2-norm in two contexts. First, to

measure error when reconstructing the complete flow map as generated by the

Lagrangian-MPI method. Second, to measure error of new pathlines traced using

basis flows generated by both methods when compared to a ground truth.

In addition to the above total flow volume error measure, we report the

maximum L2-norm in two forms — the greatest maximum L2-norm across all

91

interval reconstructions, i.e., the error of the least accurately interpolated single

basis flow, and the average maximum L2-norm across all intervals.

6.4.4 Data Sets. We consider four data sets: a Cloverleaf3D

simulation, Arnold-Beltrami-Childress flow, a Jet flow simulation, and a Nyx

cosmology simulation.

6.4.5 Runtime Environment. We tested the Lagrangian analysis

techniques by running our experiments on Summit, a supercomputer at ORNL.

Each node of Summit has two IBM Power9 CPUs, each with 22 cores running

at 3.8 GHz and 512 GBytes of DDR4 memory. Further, nodes on Summit have

enhanced on-chip acceleration with each CPU connected via NVLink to 3 GPUs,

for a total of 6 GPUs per node. Each GPU is an NVIDIA Tesla V100 with 5120

CUDA cores, 6.1 TeraFLOPS of double precision performance, and 16 GBytes of

HBM2 memory.

6.5 Results

We organize our results into four subsections, 6.5.1 to 6.5.4. Each subsection

is focused on one data set. Specifically, in subsection 6.5.1, we consider the

Cloverleaf3D simulation with workflow WF1 for our weak scaling study and

workflow WF2 for our strong scaling study. In subsections 6.5.2, 6.5.3, and 6.5.4,

we consider the ABC, Nyx, and Jet flow simulations, respectively, and run

experiments with workflow WF2.

For all data sets, we measured the accuracy of basis flows generated for

every interval across all nodes. Tables 4, 5, 6, and 7 show reconstruction accuracy

averaged over all the intervals, i.e., average reconstruction accuracy for the entire

simulation duration. Figure 31 shows the change in reconstruction accuracy over

every interval and the correlation to the number of particles terminated during

92

that interval for a single configuration of each data set. Figures 31a, 31c, 31e,

and 31g use bubble size to represent the number of particles terminated and the

corresponding figures 31b, 31d, 31f, and 31h show average L2-norm curves and

reconstruction accuracy as a percentage.

To supplement our quantitative evaluation, Figures 26a, 26b, 28, 29, and 30

provide a qualitative comparison using colormapped visualizations of surfaces of

subvolumes of FTLE scalar fields generated post hoc using basis flows calculated

by Lagrangian-MPI and Lagrangian-BTO. Well-defined ridges in the FTLE

field (identified by high scalar values), used to visualize Lagrangian Coherent

Structures, are of particular interest in these figures.

Nodes MPI GPUs/ Dims Step L-BTO L-MPI Speed-up Discarded Greatest Max Avg. Max Total Avg. Accuracy

Ranks Node Size (s) (s) % L2-norm L2-norm L2-norm %

1 2 2 813 0.038 0.0050 0.0190 3.8x 1.9 2.52×10−3 7.58×10−4 4.53×10−4 99.6

1 4 4 1023 0.029 0.0106 0.0301 2.8x 2 2.44×10−3 7.68×10−4 4.19×10−4 99.5

1 6 6 1163 0.025 0.0158 0.0380 2.4x 2.8 3.43×10−3 1.20×10−3 4.89×10−4 99.4

2 8 4 1283 0.023 0.0109 0.0405 3.7x 1.8 1.61×10−3 6.49×10−4 2.60×10−4 99.6

2 12 6 1463 0.019 0.0173 0.0398 2.3x 2.4 2.84×10−3 1×10−3 3.09×10−4 99.5

4 16 4 1613 0.017 0.0107 0.0338 3.1x 2.9 1.11×10−2 1.97×10−3 4.38×10−4 99.2

4 24 6 1843 0.015 0.0178 0.0410 2.3x 4.6 5.83×10−3 2.35×10−3 6.28×10−4 98.8

8 32 4 2033 0.013 0.0140 0.0506 3.6x 4.1 3.11×10−3 1.44×10−3 3.83×10−4 99.2

8 48 6 2323 0.011 0.0201 0.0449 2.2x 4.9 5.70×10−3 3.15×10−3 4.45×10−4 98.9

16 64 4 2563 0.010 0.0140 0.0504 3.6x 4.5 8.39×10−3 3.58×10−3 3.62×10−4 99.1

16 96 6 2933 0.009 0.0200 0.0510 2.5x — — — — —

32 128 4 3223 0.008 0.0180 0.0750 4.1x — — — — —

32 192 6 3703 0.007 0.0301 0.0620 2.0x — — — — —

64 256 4 4063 0.006 0.0230 0.0808 3.5x — — — — —

128 512 4 5123 0.005 0.0303 0.1001 3.3x — — — — —

256 1024 4 6453 0.004 0.0380 0.1390 3.6x — — — — —

512 2048 4 8123 0.003 0.0475 0.1544 3.2x — — — — —

Table 4. Weak scaling configurations and timing results for the Cloverleaf3D data
set WF1 experiments. Lagrangian-BTO and Lagrangian-MPI columns show the
average time per step in seconds. We post-processed and measured accuracy for

only a subset of the WF1 experiments (10 of 17), since calculating the
reconstruction accuracy takes prohibitively long periods of time on our local

cluster. Each node operates on an approximately 643 grid. Reported results are
measured across all intervals.

6.5.1 Cloverleaf3D Simulation. Cloverleaf3D is a three-dimensional

version of the Lagrangian-Eulerian explicit hydrodynamics mini-application

93

Cloverleaf [65]. It has been developed and used to evaluate techniques targeting

Exascale applications.

!

!∀!#

!∀!∃

!∀!%

!∀!&

!∀∋

!∀∋#

!∀∋∃

!∀∋%

!∀∋&

∋ # ∃ & ∋% (# %∃ ∋#& #)%)∋# ∋!#∃ #!∃&

∗
+
,
−.
/
,
01
23

,
04
,
−0
5
6,
4
07
89

:;3<,−0=>0?−=≅,88,807Α?Β06.8Χ89

∆./−.Ε/2.ΕΦΓ1Η

∆./−.Ε/2.ΕΦΑ?Β

(a)

!

!∀!#

!∀!∃

!∀!%

!∀!&

!∀∋

!∀∋#

∋ # ∃ & ∋% (# %∃ ∋#& #)%)∋# ∋!#∃ #!∃&

∗
+,

−
./
01

23,4−5.67.8569−00−0./:8;.<=0>01

?=≅5=Α≅+=ΑΒ:8;.Χ6,,3Α+9=<+6Α

(b)

Figure 25. Weak scaling study results for the Cloverleaf3D data set. In the top
sub-figure 25a, each curve plots the average time required for a single step for an
increasing number of MPI tasks. Lagrangian-BTO is on average 3x faster than

Lagrangian-MPI. The bottom sub-figure 25b shows the approximate time required
for MPI communication by the Lagrangian-MPI analysis filter averaged across all

processes. All measurements are in seconds.

6.5.1.1 Weak Scaling. We performed WF1 experiments, i.e., an in

situ weak scaling study to evaluate performance, using the Cloverleaf3D simulation

on Summit. For each run, we terminated the simulation after 500 cycles. Given

94

(a) Lagrangian-MPI (b) Lagrangian-BTO

Figure 26. 26a and 26b compare FTLE visualizations generated post hoc using
basis flows from Lagrangian-MPI and Lagrangian-BTO, respectively.

that our study varies the resolution of the simulation with the number of processes,

the total number of simulation steps varies. 4 of 17 experiment configurations

completed before 500 cycles and all the simulations that are terminated at 500

cycles reach different stages of the simulation (variable step size). In general, the

greater the spatial resolution of the data set, the greater the number of cycles

required to reach completion. Our experiment configurations span 813 across 2

MPI tasks to 8123 across 2048 MPI tasks, with each MPI rank operating on an

approximately 643 grid. In each case, a single MPI task is allocated a single GPU.

Thus, our smallest configuration used 2 GPUs on a single compute node, and the

largest used 2048 GPUs across 512 compute nodes. Additionally, given that each

node on Summit has 6 GPUs, we varied the number of GPUs utilized on a single

node to gauge on-node MPI communication optimizations and performance of

particle advection using multiple GPUs on the same node. For each experiment, we

set the maximum step size to 0.1. However, Cloverleaf3D uses an adaptive step size

based on the simulation grid resolution. We report the average step size taken by

the simulation, configuration information (number of nodes, MPI ranks, and GPUs

95

per node, and dimensions), and scalability performance results in Table 4. Further,

each weak scaling test extracted basis flows at an interval of every 25 cycles and

used a data reduction of 1:8, i.e., one particle for every eight grid points.

Performance — Figure 25a compares the average time required per step

by each technique. Lagrangian-BTO scales better than Lagrangian-MPI because it

is a communication-free analysis filter. For the extraction of Lagrangian flow maps

in situ, Lagrangian-BTO demonstrates an average of 3x speed-up over Lagrangian-

MPI. We observe the cost of particle advection (for both techniques) increases

as the scale of the simulation increases. However, each process operates on an

approximately 643 grid irrespective of the total number of MPI tasks, and each

Lagrangian-BTO process operates without any knowledge of other processes. In

addition to the number of particles being advected, multiple variables influence

the cost of the particle advection worklet, namely, cell size, step size, and the

vector field. Performing Runge Kutta fourth-order interpolation could require

interpolating velocity information from multiple cells (determined by cell size, step

size, and the vector field). Although the increased cost of particle advection affects

the time required by both Lagrangian analysis techniques, exact comparisons

between different configurations (i.e., rows in Table 4) would not account for the

above parameters. We believe the performance of the particle advection worklet

considering the above parameters is worth future investigation. Further, use

of a faster particle advection kernel would result in greater speed-ups for the

Lagrangian-BTO technique.

Varying number of GPUs/node — The “sawtooth” nature of the plots

in Figures 25a and 25b is a result of alternating the number of GPUs being utilized

between 4 and 6. Particle advection performs better with 4 GPUs per node versus

96

6. The use of shared memory by multiple GPUs on a single node and saturation of

the NVLink by the VTK-m particle advection worklet causes this effect. Figure 25b

captures the difference in time between both curves, i.e., approximates the time

spent on communication, and shows a reduction in MPI communication costs

when using 6 ranks versus 4 per node, albeit scaling poorly as the number of

nodes increases. On-node MPI communication optimizations contribute to better

performance when grouping a larger number of MPI tasks on each node. However,

as the number of nodes increases, the cost of inter-node communication remains

high in comparison to on-node communication.

Accuracy — Higher resolution simulation configurations use a

proportionately larger number of particles and thus generate more basis flows.

We measured accuracy for only a subset of the WF1 experiments (10 of 17),

since calculating the reconstruction accuracy takes prohibitively long periods of

time on our local cluster. Lagrangian-BTO terminated between 2-5% of basis

flows on average across all experiments, i.e., 2-5% less data was saved to disk.

However, after we interpolate the missing trajectories using the saved basis flows,

we approximate the complete flow map (as generated by Lagrangian-MPI) with

over 99% accuracy on average using the L2-norm metric.

Figures 26a and 26b compare FTLE visualizations generated using

approximately 2M basis flows saved by each technique (configuration in row 10

of Table 4). We observe no significant differences in the visualizations with both

methods capturing the FTLE ridges with the same quality.

Overall, our weak scaling study showed that for the Cloverleaf3D data set,

Lagrangian-BTO was on average 3x faster, while generating 99% as accurate flow

maps on average and qualitatively comparable post hoc FTLE visualizations as

97

Lagrangian-MPI. In situ analysis using Lagrangian-MPI contributed between 5-12%

of the total simulation time, and in most cases, Lagrangian-BTO required 50%-80%

less time than the corresponding Lagrangian-MPI configuration.

1 8 32

Cloverleaf3D − Pathline Reconstruction Error

Number of Processes (MPI tasks)

A
ve

ra
g
e
 L

2
−

n
o
rm

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Lagrangian−MPI_25 − 1:1

Lagrangian−BTO_25 − 1:1

Lagrangian−MPI_50 − 1:1

Lagrangian−BTO_50 − 1:1

Lagrangian−MPI_100 − 1:1

Lagrangian−BTO_100 − 1:1

Lagrangian−MPI_25 − 1:8

Lagrangian−BTO_25 − 1:8

Lagrangian−MPI_50 − 1:8

Lagrangian−BTO_50 − 1:8

Lagrangian−MPI_100 − 1:8

Lagrangian−BTO_100 − 1:8

Lagrangian−MPI_25 − 1:27

Lagrangian−BTO_25 − 1:27

Lagrangian−MPI_50 − 1:27

Lagrangian−BTO_50 − 1:27

Lagrangian−MPI_100 − 1:27

Lagrangian−BTO_100 − 1:27

Figure 27. Strong scaling pathline reconstruction error plot for the Cloverleaf3D
data set WF2 experiments. We use warm colored bars for Lagrangian-MPI and
cool colored bars for Lagrangian-BTO. Bars are grouped from left to right by

number of MPI tasks used, i.e., in increasing order of degree of domain
decomposition. Within each group of bars, configurations are subgrouped by data
reduction options, i.e, 1:1, 1:8, and 1:27. Within a subgroup, pairs of matching
Lagrangian-MPI and Lagrangian-BTO tests are ordered from left to right by

interval value. In these experiments, a 643 dimension data set was used. The total
number of simulation cycles was set to 800. We traced pathlines for 800 cycles
using the basis flows generated by each Lagrangian analysis technique and

compared them to the ground truth.

6.5.1.2 Strong Scaling. Whereas the weak scaling study

demonstrated the viability of using Lagrangian-BTO, the strong scaling study

helps us understand its limitations. We considered a 643 grid and decomposed

it into smaller grids based on the number of MPI tasks. Further, for these WF2

experiments, we considered interval values of 25, 50, and 100, and data reduction

values of 1:1, 1:8, and 1:27. The interval determines how long particles advect

98

before their end locations are saved. The longer the interval, the greater chance

of particles exiting the node domain and vice versa. Further, the number of

particles that exit the node domain and terminate directly impacts the accuracy

of the approximation. Figure 27 shows the accuracy results when decomposing the

domain across 1, 8, and 32 MPI tasks.

Interval Reduction L-BTO L-MPI Speed-up Discarded Greatest Max Avg Max Total Avg Accuracy

(s) (s) % L2-norm L2-norm L2-norm %

25 1:1 0.0059 0.0143 2.3x 2.7 6.85×10−4 4.97×10−4 6.15×10−5 99.7

50 1:1 0.0066 0.0145 2.1x 5.5 3.03×10−3 1.85×10−3 2.31×10−4 99.0

100 1:1 0.0067 0.0144 2.1x 10.9 7.87×10−3 6.81×10−3 1.09×10−3 95.5

25 1:8 0.0026 0.0065 2.4x 2.6 1.40×10−3 3.41×10−4 3.93×10−5 99.8

50 1:8 0.0033 0.0086 2.6x 5.4 3.71×10−3 1.23×10−3 1.32×10−4 99.4

100 1:8 0.0026 0.0075 2.8x 10.8 6.15×10−3 2.63×10−3 3.65×10−4 98.5

25 1:27 0.0024 0.0065 2.7x 1.6 5.24×10−5 4.87×10−5 1.61×10−5 99.9

50 1:27 0.0029 0.0048 1.6x 5.1 2.62×10−3 1.28×10−3 1.23×10−4 99.5

100 1:27 0.0027 0.0053 1.9x 10.4 1.25×10−2 6.53×10−3 5.01×10−4 97.9

Table 5. Speed-up and reconstruction accuracy results for the ABC data set WF2
experiments. Lagrangian-BTO and Lagrangian-MPI columns show average time per

step in seconds. Reported results are measured across all intervals.

For these experiments, we measured accuracy by calculating pathlines

using the basis flows generated by each technique and evaluating their accuracy

in comparison to a ground truth at interpolated locations. The ground truth

is calculated by performing RK4 advection using the full spatial and temporal

resolution of the data set. We placed 1,000 particles in the domain to generate

pathlines for this evaluation. We compared the similarity between ground truth

and pathlines generated by interpolating Lagrangian basis flows using the average

L2-norm metric. Our metric compared the accuracy of interpolated points along

the trajectory [8]. Lastly, for these experiments, we loaded Cloverleaf3D vector

field data from disk and set the maximum simulation step size to 0.01 and used 800

simulation steps. Therefore, we generated pathlines for a duration of 800 simulation

steps by stitching together results using successive batches of basis flows [5, 13, 7].

99

Figure 27 groups configurations by number of processes used, i.e., the

degree of decomposition. We note that Lagrangian-MPI accuracy is not affected

by degree of decomposition and hence remains constant irrespective of number of

processors. When considering only a single processor, both methods lose particles

that exit the entire domain during the interval of advection. Thus, performance

on a single MPI task is identical for both methods. When decomposed across 8

tasks, we see the error of Lagrangian-BTO increases slightly for configurations that

use a 1:27 data reduction. Specifically, accuracy reduces from 100% as accurate as

Lagrangian-MPI to 96% as accurate when the interval increases from 25 to 100.

For domain decomposition across 32 tasks, i.e., the highest degree of decomposition

we consider, Lagrangian-BTO error increases as the interval increases and fewer

particles are used. These experiments are valuable in demonstrating the limitations

of the Lagrangian-BTO method. However, we believe our strong scaling study

tests an extreme case, because we expect our target applications will have higher

resolution grids and use a larger number of particles to capture the flow field

behavior.

6.5.2 Arnold-Beltrami-Childress (ABC). We used a 3D time-

dependent variant of the ABC flow analytic vector field [37]. We used one complete

period of the flow for a total of 1000 time steps at a grid resolution of 2563. For the

WF2 ABC data set experiments, we considered three options for interval (25, 50,

100) and three options for data reduction (1:1:, 1:8, 1:27). All tests use 16 nodes,

64 MPI tasks, with 4 MPI tasks using 4 GPUs on each node. Table 5 contains

configuration details, percentage of discarded particles, speed-up achieved, and the

reconstruction accuracy percentages for the ABC data set.

100

(a) Lagrangian-MPI (b) Lagrangian-BTO

Figure 28. Qualitative comparison of post hoc FTLE visualizations generated using
basis flows for the ABC data set.

Interval Reduction L-BTO L-MPI Speed-up Discarded Greatest Max Avg Max Total Avg Accuracy

(s) (s) % L2-norm L2-norm L2-norm %

5 1:1 0.0062 0.0089 1.4x 0.7 5.66×10−4 1.73×10−4 1.89×10−5 99.7

10 1:1 0.0035 0.0089 2.5x 2.7 3.12×10−3 1.20×10−3 1.45×10−4 98.1

5 1:8 0.0024 0.0044 1.8x 0.8 8.64×10−4 2.69×10−4 3.77×10−5 99.5

10 1:8 0.0022 0.0059 2.6x 2.1 4.41×10−3 1.45×10−3 2.06×10−4 97.3

5 1:27 0.0031 0.0038 1.2x 0.7 8.47×10−4 3×10−4 4.32×10−5 99.4

10 1:27 0.0024 0.0094 3.9x 1.9 4.27×10−3 1.72×10−3 2.48×10−4 96.8

5 1:64 0.0025 0.0037 1.4x 0.5 9.19×10−4 3.30×10−4 4.34×10−5 99.4

10 1:64 0.0029 0.0039 1.3x 1.5 4.89×10−3 1.96×10−3 2.80×10−4 96.4

Table 6. Speed-up and reconstruction accuracy results for the Jet flow data set
WF2 experiments. Lagrangian-BTO and Lagrangian-MPI columns show average

time per step in seconds. Reported results are measured across all intervals.

Interval Reduction L-BTO L-MPI Speed-up Discarded Greatest Max Avg Max Total Avg Accuracy

(s) (s) % L2-norm L2-norm L2-norm %

10 1:1 0.0027 0.0067 2.4x 4.1 5.06×10−4 1.52×10−4 3.93×10−5 99.5

20 1:1 0.0026 0.0067 2.5x 8.4 8.19×10−4 4.83×10−4 1.52×10−4 98.0

40 1:1 0.0026 0.0139 5.2x 15.9 3.97×10−3 2.25×10−3 9.02×10−4 88.5

50 1:1 0.0025 0.0079 3.1x 19.3 6.04×10−3 3.59×10−3 1.64×10−3 79.1

10 1:8 0.0024 0.0045 1.8x 3.2 9.68×10−4 1.67×10−4 3.96×10−5 99.4

20 1:8 0.0023 0.0107 4.6x 7.9 1.74×10−3 7.05×104 2.19×10−4 97.2

40 1:8 0.0027 0.0046 1.7x 15.5 6.19×10−3 2.92×10−3 1.18×10−3 85.6

50 1:8 0.0030 0.0045 1.4x 18.9 7.74×10−3 4.32×10−3 2.02×10−3 74.3

Table 7. Speed-up and reconstruction accuracy results for the Nyx simulation data
set WF2 experiments. Lagrangian-BTO and Lagrangian-MPI columns show

average time per step in seconds. Reported results are measured across all intervals.

101

Lagrangian-BTO demonstrates an average of 2.3x speed-up when compared

to Lagrangian-MPI. For the ABC data set, reconstruction accuracy does not

significantly deteriorate when using a smaller number of particles. However, for

configurations with an interval equal to 100, a large number of particles exit the

node boundaries and are terminated. For example, when the interval is set to

100 and a data reduction of 1:1 is used, over 1.7M particles are terminated every

interval (approximately 10% of all seeds initially placed), which results in the

reconstruction accuracy reducing to 95.5%. For the ABC data set, the number of

particles terminated per interval approximately doubles every time the interval

doubles. We observe that all configurations that have an interval of 25 or 50

achieve a reconstruction accuracy that is greater than 99%. When considering the

average L2-norm error of individual intervals of the ABC data set in Figure 31c

and 31d, we observe a sinusoidal behavior in the error that is due to the sinusoidal

ABC analytical function.

Figures 28a and 28b compare FTLE visualizations generated using

approximately 2M basis flows computed over 100 time steps and saved by

each technique (configuration in row 6 of Table 5). Although we observe small

discontinuities in the ridges of the FTLE field generated using Lagrangian-BTO

basis flows, the overall quality of the FTLE visualization is similar.

6.5.3 Jet Flow Simulation. The Jet data set is a simulation of a

jet of high-velocity fluid entering a medium at rest. It was created using the Gerris

Flow Solver [66]. The vector field is defined over a 128× 256× 128 uniform grid and

we use a total of 500 time steps (previously subsampled). These WF2 experiments

tested the performance of the Lagrangian-BTO when reconstructing this turbulent

data set by considering two intervals (5, 10) and four data reduction values (1:1,

102

1:8, 1:27, 1:64). All tests used 16 nodes, 64 MPI tasks, with 4 MPI tasks using 4

GPUs on each node. Table 6 contains configuration information and results of the

Jet data set.

Lagrangian-BTO demonstrates an average speed-up of 2x when compared

to Lagrangian-MPI for this data set. The domain contains regions of high velocity

resulting in the reconstruction accuracy of the Lagrangian-BTO analysis filter being

adversely affected as the interval increases. For configurations with the interval set

to 5, the data reduction is less consequential, and all configurations achieve greater

than 99% accuracy. However, for configurations with the interval set to 10, the

reconstruction accuracy decreases from 98.1% to 96.4% as data reduction ranges

from 1:1 to 1:64. Thus, similar to the result observed in the strong scaling study

in Section 6.5.1, the combination of larger interval and reduced number of particles

results in less accurate reconstruction.

Figures 29a and 29b compare visualizations produced using 4.2M basis flows

saved by each method (configuration in row 2 of Table 6). The Lagrangian-BTO

FTLE visualization has some instances of a less pronounced structure in the FTLE

ridges. However, the differences are localized and relatively small compared to the

overall information conveyed by the images.

6.5.4 Nyx Cosmology Simulation. The Nyx simulation is a N-body

and gas dynamics code for large-scale cosmological simulations [67]. We use a Nyx

test executable named TurbForce to generate 500 cycles of a 1283 data set with an

average time step of 0.002. The generated flow field grows in turbulence over the

duration of the simulation. These WF2 experiments with the Nyx data set test the

reconstruction accuracy of Lagrangian-BTO when considering four intervals (10, 20,

40, 50) and two data reduction values (1:1, 1:8). Similar to previous setups, we use

103

(a) Lagrangian-MPI (b) Lagrangian-BTO

Figure 29. Qualitative comparison of post hoc FTLE visualizations generated using
basis flows for the Jet flow data set.

(a) Lagrangian-MPI (b) Lagrangian-BTO

Figure 30. Qualitative comparison of post hoc FTLE visualizations generated using
basis flows for the Nyx data set.

64 MPI tasks evenly distributed across 16 nodes with each MPI task using a single

GPU. Table 7 details test configurations and results for the Nyx data set.

Lagrangian-BTO demonstrates an average speed-up of 2.8x over Lagrangian-

MPI. Configurations with an interval of 10 or 20 have high reconstruction

accuracies greater than 97%. However, as the interval increases, the reconstruction

accuracy is adversely affected by the large number of particles terminated and the

significant turbulence in this data set. Further, Lagrangian-BTO can reconstruct

104

the field relatively more accurately when using a 1:1 data reduction compared to

a 1:8 configuration. Figures 30a and 30b compare FTLE visualizations generated

using approximately 2M basis flows saved by each technique (configuration in row 1

of Table 7). We observe qualitatively comparable FTLE ridge structures.

6.6 Conclusion

Our proposed algorithm represents an important step in enabling the

L-ISR-PHE paradigm to be viable for large-scale simulations. Predecessor

work demonstrated that accuracy-storage tradeoffs were clearly superior to the

traditional approach [5]. However, this work did not place a significant emphasis

on minimizing in situ execution times and ensuring scalability. Our work addresses

this point, and the corresponding reduced execution times (2x to 4x) and improved

scalability remove another barrier to adoption.

We feel the most surprising result from our work is the rate at which we

achieve high reconstruction accuracy. Clearly, terminating particles at block

boundaries makes for less useful basis flows, and can create issues where post hoc

exploration accuracy suffers. However, our results empirically show that this feared

case happens relatively infrequently in practice and is limited to instances of long

intervals, i.e., large integration times. Our proposed approach works particularly

well for practical configurations with a short or medium interval, while delivering

the same performance benefits. 31 of our 35 tests gave accuracy that was greater

than 96%. In addition to our quantitative evaluation, we qualitatively showed that

comparable FTLE visualizations can be generated using basis flows extracted at

a fraction of the in situ cost. These evaluations are relative to the Agranovsky et

al. approach, which incurred significantly more cost in execution time and scales

poorly. Further, while we are slightly less accurate than Agranovsky et al., our

105

!

∀#!!!

∃!!!!

%#!!!

! ∀!! &!! ∃!! %!! #!!

∋(
)∗

+,
−
.(
/

0+∗12−.+3,40.(5

(a) Cloverleaf3D

!

!∀!!!#

!∀!!∃%

!∀!!&∋

! ∃!! &!! (!! ∋!!)!!∗
+
,
−.
/
,
01
&
23
4
−5

67589.:74306:,;

!!∀#∃

!%∀&∃

!∋∀(∃

!%∀#∃

(b) Cloverleaf3D

!∀#∃

!%∃∃

!%#∃

!&∃∃

!&#∃

∃ %∃∃ ∋∃∃ (∃∃ !∃∃ ∀∃∃∃

)∗
+,

−.
/
0∗
1

2−,34/0−5.620∗7

(c) ABC

!∀#∃%&∋#

!∀(!%&∋#

!∀(#%&∋#

!∀(∃%&∋#

∋)∋∋ ∗∋∋ (∋∋ ∃∋∋ !∋∋∋+
,
−
./
0
−
12
)
&3
4
.5

67589/:74316:−;

!!∀!#∃

!!∀!%∃

!!∀!#∃

(d) ABC

!

∀#!!

∃#!!!

%%#!!

! ∃!! %!! &!! ∋!! #!!

()
∗+

,−
.
/)
0

1,+23./,4− 1/)5

(e) Jet Flow

!∀!!!!

!∀!!!#

!∀!!!∃

!∀!!!%

! &!! #!! ∋!! ∃!! (!!)
∗
+
,−
.
+
/0
#
12
3
,4

56478−9632/59+:

!!∀!#

!∃∀%#

!&∀%#
!∋∀(#

(f) Jet flow

!

∀#!!

∃#!!!

%%#!!

! ∃!! %!! &!! ∋!!

()
∗+

,−
.
/)
0

1,+23./,4−51/)6

(g) Nyx

!

!∀!!!#

!∀!!!∃

!∀!!!%

! &!! #!! ∋!! ∃!!(
)
∗
+,
−
∗
./
#
01
2
+3

45367,8521.48∗9

!∀∀#

∃%&∋#

∃(&∃#

(h) Nyx

Figure 31. The plots show the relation between number of particles terminated and
average L2-norm for all intervals of a single configuration of each data set. 31a
and 31b show row 10 of Table 4 for the Cloverleaf3D data set. 31c and 31d show
row 7 of Table 5 for the ABC data set. 31e and 31f show row 4 of Table 6 for the

Jet flow data set. 31g and 31h show row 6 of Table 7 for the Nyx data set.

106

approach would still be much more accurate than the traditional Eulerian approach

for time-varying flow visualization in sparse temporal settings.

In terms of future work, we aim to store particle trajectory termination

locations on the boundary, develop Lagrangian-based advection schemes that can

consume flow maps with trajectories stopping (and starting) at arbitrary times,

integrate adaptive variable duration variable placement (VDVP) techniques [8],

and consider the use of flow field characteristics to guide flow map extraction.

Further, research is required to address edges cases and the limitations of a

communication-free model demonstrated by our experiments. We believe our work

is foundational because it evaluated the use of a simple communication-free model

and demonstrated improved scalability with only a reasonable loss of accuracy.

Remaining communication-free is particularly essential for Lagrangian analysis

techniques that aim to scale well and remain within in situ constraints of large-scale

simulations.

107

CHAPTER VII

IN SITU VECTOR FIELD DATA REDUCTION VIA LAGRANGIAN

REPRESENTATIONS ON SUPERCOMPUTERS

Most of the text in this chapter comes from a manuscript in submission,

which is a collaboration between Hank Childs and myself. I was responsible for

system implementation, conducting the experiments, and preparing the manuscript.

Hank Childs contributed text to the manuscript, in addition to advising and

providing extensive feedback throughout.

7.1 Introduction

This chapter presents an empirical study on the L-ISR-PHE workflow to

the EUS problem. It considers L-ISR-PHE holistically: considering evaluation

criteria at each phase of processing, defining metrics to measure these criteria,

defining workloads of interest, and then evaluating the workloads and metrics

in a large study. One highlight of our study is that it is the first to evaluate the

encumbrance placed on a simulation code during in situ reduction. Of note, all

previous studies ran in “theoretical” in situ environments, meaning that they

loaded data sets from disk, rather than truly integrated with a simulation code.

Another highlight is that our study provides detailed quantitative evaluations of the

extracted Lagrangian data, as well as an estimate of costs for distributed memory

post hoc reconstruction. Previous studies have failed to consider the distribution

of outcomes when inferring new particle trajectories, instead focusing on average

behavior. In all, our empirical study provides the most clear evidence to date

that L-ISR-PHE is viable and should be the preferred solution for most EUS

problems.

108

!∀#∃%&∋()∗+,(&∃%−.

/0123∗4056)7589 06)/042)!:579//06;

/∀<=∋%.>)/∃#∀∃(>?

!∀#∃%&∋()1∀.∀>(<(.∃

!∀#∃%∀&∋()∃

∗+∀,−

3∀>#∀.>%∀.)∗.∀∋?≅%≅)

:−Α∃%.(

∗+,∀.&()/%<Α∋∀∃%−.
!∀#∃%&

∋()∃(∗)+(∗&

,%−∃%.%∗∀(∀+#∗

!5/4)Β57)

9Χ!35:∗4056

∋#(/&

∋()∃(∗)+(∗&

,%−∃%.%∗∀(∀+#∗

8∀∃∀

/∃−#∀>(

0.∃(#=−∋∀∃()8∀∃∀

Figure 32. Schematic diagram of the L-ISR-PHE workflow showing in situ
processing, data storage, and post hoc exploration.

7.2 Related Work

Time-dependent vector field exploration poses several large data analysis

and visualization problems. Often, solutions to large data challenges involve

data reduction. Multiple works have proposed vector field reduction strategies

while maintaining an Eulerian representation. Lodha et al. [68] controlled

the compression of similar vectors into single vectors representing larger area.

Further, Lodha et al. [69] proposed a top-down topology preserving compression

technique. Theisel et al. [70] computed critical points and viewed the task as a

mesh reduction, and later provided a threshold to filter important features [71].

Each of these studies performed compression on the vector field of a single time

step. With the objective of highlighting temporal features of the vector field, Tong

et al. [72] compressed the total amount of data steps stored by identifying key time

steps. Although these techniques could be used to reduce data and store more

frequently, these approaches do not address the challenge of increasing temporal

sparsity.

109

7.3 Evaluating L-ISR-PHE

This section describes considerations for an empirical study of the L-ISR-

PHE workflow. Specifically:

– Subsection 7.3.1 describes the instantiation we consider.

– Subsection 7.3.2 describes evaluation criteria.

– Subsection 7.3.3 describes important factors in defining workloads.

7.3.1 Instantiation. Figure 32 shows a high-level description of the

L-ISR-PHE workflow. There are many possible strategies for accomplishing the

components within this workflow, i.e., sampling strategy, particle management,

storage, and interpolation. That said, we focus this empirical study on the current

best practices in this space.

In Situ Reduction: For this empirical study, we introduced particles

using the uniform seed placement scheme from Agranovksy et al. [5], including

re-introducing particles at fixed intervals. Our particle termination follows the

communication-free model from Chapter VI, where particles are terminated either

if they reach the end of the interval of if they exit the block. While this captures

less information at the block boundaries, results show that the overall loss of

accuracy is very low, and the in situ encumbrance is much reduced.

Data Storage: For our empirical study, a particle trajectory in the

Lagrangian representation is stored using a start and end location of the trajectory

during the interval of calculation, similar to previous works [5, 7, 9].

Post Hoc Exploration: The essential operations involved in constructing

new particle trajectories are identifying which basis flows to interpolate

and performing interpolation. Further, distributed-memory settings require

communication to continue particle trajectory computation across node boundaries.

110

Depending on whether the Lagrangian representation is structured or unstructured,

different search structures are required. We believe evaluating the cost of

interpolating an unstructured particle set is more valuable, as it informs the

general case. Therefore, for our empirical study, we use the Lagrangian-based

advection scheme described in Chapter VI, to perform search structure (Delaunay

triangulation) construction in parallel and operate in a distributed-memory

environment. To perform interpolation on unstructured data, multiple scattered

point interpolation schemes can be used. However, the choice of interpolation

scheme impacts efficacy, and thus, we use Barycentric coordinates, as recommended

in a study by Agranovsky et al. [19].

7.3.2 Evaluation Criteria. We consider evaluation criteria for each

component of the workflow:

In situ reduction:

– ISR-1 Time: the execution time spent by the simulation on data analysis

and visualization.

– ISR-2 Memory: the runtime memory used by in situ processing.

Data storage:

– DS-1 Size: the file storage costs (i.e., bytes).

Post hoc exploration:

– PHE-1 Time: the execution time spent to construct new particle

trajectories from basis flows (search structure construction, interpolation,

communication).

– PHE-2 Accuracy: the accuracy of interpolated trajectories.

111

We also eliminated some criteria from consideration to limit scope:

In situ reduction: We did not add an evaluation criteria to consider the ease of

in situ integration. This is an important concern, but we feel that it is beyond the

scope of this study. Further, there has been significant research on reducing the

burden on simulation codes to incorporate in situ visualization routines [73, 74, 75,

76, 77], and so we are confident that this barrier will become smaller over time.

Data storage: We did consider and measure execution time, but found

supercomputing I/O times were very fast for our scale of study and often contained

noise, likely due to contention on the supercomputer. More discussion can be found

in 7.4.5.2.

Post hoc exploration: We did not consider if and whether Lagrangian-based

extracts would affect specific flow visualization techniques. For example, are

techniques, such as path surfaces or finite-time Lyapunov exponents, sensitive or

insensitive to the L-ISR-PHE workflow? We view this as future work.

7.3.3 Workload Factors. To understand the technique performance

characteristics of the L-ISR-PHE workflow, we identified four parameters that

when varied produce the workloads we want to evaluate for our empirical study.

– Number of particles: Our study varies the number of particles initialized

per node and thus inform the cost of performing particle advection for varying

workloads every cycle of the simulation. Further, the number of particles

initialized is directly impacts the size of the data stored to disk and the

accuracy of the reconstruction. We specify the number of particles initialized

using the notation 1:X, where X is the reduction factor. For example, a

1:1 configuration states that one particle is used for every grid point (no

112

reduction) and a 1:8 configuration states that one particle is used for every

8 grid points (12.5% of the original data size).

Impacts → ISR-1, ISR-2, DS-1, PHE-1, PHE-2

– Interval: We consider the interval or frequency at which files are stored

to disk. For a given total number of simulation cycles, this impacts the

total amount of data stored to disk. Additionally, for the Lagrangian

representation, the interval is equal to the integration length of each particle,

and can thus, be consequential to the accuracy of reconstruction.

Impacts → DS-1, PHE-1, PHE-2

– Grid size: We consider different grid sizes to measure the in situ

encumbrance of varying workloads. Different grid sizes will use a different

number of particles to sample the domain reasonably accurately. In

particular, we are interested in the in situ encumbrance when a single

compute node is operating on a large number of grid points. An additional

benefit of varying grid size is insight into the variation in simulation cycle

time and consequently the percentage of time spent on in situ processing.

Impacts → ISR-1, ISR-2, DS-1

– Concurrency: We consider the costs at various scale (i.e., number of

compute nodes, MPI ranks). Further, the simulation codes required different

parallelization hardware and thus, across simulation codes we measure the

costs of Lagrangian representation extraction using, both, GPUs and CPUs

for particle advection.

Impacts → ISR-1, PHE-2

113

7.4 Empirical Study Overview

This section provides an overview of our experiments. It is organized

as follows: experiments performed (7.4.1), simulation codes (7.4.2), software

implementation (7.4.3), hardware (7.4.4), and metrics (7.4.5).

7.4.1 Experiment Overview. Our experiments are designed in

response to the evaluation criteria from Section 7.3.2. Since our evaluations can be

separated into two distinct phases, we organized our experiments into two distinct

campaigns (one for in situ encumbrance and one post hoc efficacy), although some

of the experiments were used in both campaigns.

Our experiments considered five basic factors:

– Simulation code

– Number of particles (Lagrangian basis flows)

– Interval (number of cycles between saves)

– Grid size

– Concurrency

For each factor, there are many possible options. Therefore, running experiments

for the cross-product of options was prohibitive, especially since we had limited

time on our supercomputer (1000 node hours). Instead, we sampled the space

of possible options. For both campaigns, our organization was around our three

simulation codes: Cloverleaf3D, SW4, and Nyx (described in subsection 7.4.2). For

a given simulation code, we varied some factors and fixed others. Our goal was

to simultaneously provide coverage and yet allow us to see the impact of certain

factors, all while staying within our compute budget. In all, we ran 47 experiments,

22 for in situ encumbrance and 25 for post hoc efficacy. Table 8 shows our choices

for the in situ encumbrance campaign, while Table 9 shows our choices for the post

114

hoc efficacy campaign. Specific choices for options are documented in the Results

section.

Simulation Code Cloverleaf3D SW4 Nyx
of Particles 3 3 3

Interval 3 1 1
Grid Size 1 3,2 2

Concurrency 1 2 1
Total Experiments 9 7 6

Table 8. Experimental overview for the in situ encumbrance campaign. For SW4,
we were able to run a very fine grid size at low concurrency, but not the entire cross
product of options due to limitations in compute time. Overall, we considered 22

experiments for this campaign.

Simulation Code Cloverleaf3D SW4 Nyx
of Particles 3 4 3

Interval 3 1 4
Grid Size 1 1 1

Concurrency 1 1 1
Total Experiments 9 4 12

Table 9. Experimental overview for the post hoc efficacy campaign. Overall, we
considered 25 experiments for this campaign.

7.4.2 Simulation Codes. For our study we consider three simulation

application codes that are used and/or developed as part of the Exascale

Computing Project from the United States Department of Energy.

First, we use the Cloverleaf3D [65] mini or proxy ECP application that

solves compressible Euler equations in a hydrodynamics setting on a Cartesian

grid using an explicit second-order method. Cloverleaf3D has been developed and

used by several studies to evaluate emerging architectures and various techniques

targeting Exascale applications. The simulation is initially relatively stable and

begins with an energy bar expanding from the center of the XY plane along the

Z-axis. Figure 34 show pathlines calculated in the Cloverleaf3D domain that show

this initial behavior in the simulation.

115

Next, we consider the SW4 seisomology simulation [18]. This is an ECP

application developed to study seismic wave propagation. It operates and produces

multiple domains with a time-dependent displacement field depending on the input

deck provided to it. We operate on a single domain and use the displacement

vector field as input to our in situ Lagrangian operator. Figure 33 is generated by

visualizing the displacement magnitude of the particle trajectories extracted over

the first 1000 cycles.

The last data set we consider is the Nyx cosmology simulation [67], another

ECP application. The simulation’s hydrodynamics is based on a compressible flow

formulation in Eulerian coordinates. We built an Lya executable used to model

Lyman-alpha forest in quasar spectra. For this simulation, we derived the velocity

field using the fields of momentum and density. Figure 35 is a visualization of the

volume of the domain using 50,000 randomly seeded pathlines integrated for the

first 25 cycles of the simulation.

7.4.3 Software Implementation.

7.4.3.1 In Situ Reduction. We use the Ascent [59] in situ

infrastructure and VTK-m [58] library to implement in situ data reduction via

by calculating a Lagrangian representation. The VTK-m Lagrangian filter on

each rank operates independently and maintains its own list of basis particles and

uses the existing particle advection infrastructure available in VTK-m [60]. RK4

particle advection is implemented using VTK-m worklets (kernels or functors) that

offer performance portability by utilizing the underlying hardware accelerators.

In our implementation, each Lagrangian filter stores the displacement of each

particle (3 doubles), as well as its validity (1 Boolean), i.e., whether the particle

remained within the domain during the interval of calculation. In more complicated

116

frameworks, it is possible to associate additional information (for example, ID,

age, start location, previous locations, etc.) with each particle at the cost of higher

runtime memory usage and data storage.

We use Ascent to store the complete velocity field at a specified frequency

in order to evaluate the traditional Eulerian paradigm. For every Eulerian

configuration, we store the full spatial resolution of the simulation domain under

consideration.

7.4.3.2 Post Hoc Exploration. We build two parallelize-over-data

distributed-memory post hoc interpolation pipelines, one for each: Lagrangian

and Eulerian. For the Lagrangian PHE we construct a search structure in the

form of a Delaunay triagulation over the start locations of valid basis particles

using CGAL [61] to identify particle neighborhoods. In our implementation, each

rank loads basis particles of the rank itself as well as basis particles generated by

spatially adjacent ranks (i.e., upto 27 ranks for a rectilinear simulation grid). Once

a particle neighborhood is identified, barycentric coordinate interpolation is used to

calculate the displacement of p. Our implementation uses MPI to communicate

particles across ranks and continue the integration of trajectories across node

boundaries.

For the Eulerian post hoc interpolation pipeline, we use the VTK-m particle

advection infrastructure to perform RK4 integration and MPI for communication of

particles across ranks.

7.4.4 Runtime Environment. Our empirical study uses the

Summit supercomputer at ORNL. A Summit compute node has two IBM Power9

CPUs, each with 21 cores running at 3.8 GHz and 512 GBytes of DDR4 memory.

Nodes on Summit also have enhanced on-chip acceleration with each CPU

117

Figure 33. SW4 wave propagation visualization.

connected via NVLink to 3 GPUs, for a total of 6 GPUs per node. Each GPU is

an NVIDIA Tesla V100 with 5120 CUDA cores, 6.1 TeraFLOPS of double precision

performance, and 16 GBytes of HBM2 memory. Lastly, it uses a Mellanox EDR

100G InfiniBand, Non-blocking Fat Tree as its interconnect topology.

7.4.5 Evaluation Metrics.

7.4.5.1 In Situ Encumbrance. Our empirical study measures in

situ encumbrance in terms of execution time and memory usage. For ISR-1, we

measure the cost of each invocation of the Lagrangian VTK-m filter and report the

average time, i.e., cost of particle advection for one cycle or Step. Additionally, we

measure and report the percentage of simulation time spent on data analysis and

visualization routines, or DAV%. For this we consider the simulation cycle time

or Simcycle. For ISR-2, we measure the runtime memory cost incurred by every

compute node to maintain the state (current position) of particles at runtime in

Bytes.

7.4.5.2 I/O Cost. In this empirical study, we do not report or

factor the cost of I/O write times. Besides being an operation that is performed

118

Figure 34. Visualization of pathlines in the Cloverleaf3D domain.

infrequently in our case, we observed for the scale of study we conducted that

Summit provides very fast write times. Table 10 documents write times of varying

file sizes in binary format on Summit. Given the range of file sizes stored to disk by

File Size (MB) 1 MPI/Node (s) 6 MPI/Node (s)
1 0.0018 0.0022
10 0.0032 0.0045
50 0.0064 0.013
100 0.0125 0.038
200 0.0231 0.171

Table 10. Write time measurements for various file sizes (in binary format) to disk
on Summit. We consider two cases: one MPI rank or six simultaneous MPI ranks
each writing the file to disk on a single compute node. For each timing, we average

over multiple runs and every timing is reported in seconds.

a single MPI rank in our empirical study is between 0.5 MB to 115 MB, we believe

this cost is negligible at the scale that we test (and perhaps, even at larger scales).

Thus, we limit our measurement and discussion of I/O to the total data storage

required on the file system and report DS-1 in Bytes stored.

119

Figure 35. Nyx flow visualization: 50,000 randomly seeded pathlines calculated for
the first 25 cycles of the simulation.

7.4.5.3 Post Hoc Efficacy. Our empirical study measures time-

dependent vector field reconstruction error by evaluating the accuracy of test

particles trajectories interpolated using the extracted Lagrangian representation.

For PHE-1, our empirical study measures the L2-norm, i.e., the Euclidean

distance, for each interpolated point and compares it to a ground truth that is

precomputed using the complete simulation data. We use AvgL2 and MaxL2 to

denote the average and maximum L2-norm for an individual particle trajectory,

respectively.

An overall average of AvgL2, denoted by AvgNL2, is measured across N

test particle samples and provides a robust statistic [5, 7, 8, 78]. Unlike AvgNL2,

a maximum error is more susceptible to outliers that could arise from small but

complex regions of flow. To provide a more detailed quantitative analysis compared

120

to prior work, we use histograms to capture the distribution of error (AvgL2,

MaxL2) across all test particles and provides insight into per particle outcomes.

Further, for PHE-2 we include a study of post hoc reconstruction costs.

7.5 Results and Discussion

We evaluated L-ISR-PHE using seismic wave propagation, cosmology, and

proxy ECP hydrodynamics simulations (Section 7.4.2) for two aspects: (1) in situ

encumbrance under varying workloads (Section 7.5.1); and (2) post hoc efficacy for

various configurations (Section 7.5.2).

7.5.1 In Situ Encumbrance. Table 11 contains the results of our

experiments for this campaign using all three simulation codes. In this discussion,

we assume a simulation can afford to spend 10% to 20% on in situ processing

routines and refer to this as the budget. Although this might not hold true

for every simulation, this estimate is based on interactions with computational

scientists and thus, we believe this is a reasonable working estimate. The Step and

DAV% columns in Table 11 redundantly encode the value in each cell using cell

background color (white to pure red hue for the ranges [0,0.75] (Step in seconds)

and [0,20] (DAV%), respectively).

For ISR-2, i.e., memory costs, we observe that across all experiments,

the largest usage of runtime memory was approximately 112 MB. Each Summit

node has multiple GBs of memory on CPU (512) and GPU (16), and we believe

extracting a Lagrangian representation increases the cost of memory on the

simulation by approximately one simulation “field.” We note that simulations

can have tens to hundreds of fields defined on the simulation grid and thus, this

cost would likely be considered acceptable for most simulations. Our reporting of

memory usage is contained in Table 11.

121

!∀!#∃%&∃

!∀!∋#&∃

!∀!%&∃

!∀#&∃

!∀&∃

!∀∃

#

∋& &∃% &!()

!∀
#∃
%&
∋
#∃
&(
)
#∗
%+
(
#,
−.

/∋+0(1#23#451&%67(−8/29(#,:;<<<.

=#>4?−8/29(#)51&%67(#59≅(6&%2∀#!∀#∃ &%+(−
Α51Β(1−Χ#∆72≅(17(53ΕΦ#,215∀Γ(.Η#∃Ιϑ#,07∋(.#

(a) GPU timings

!∀!!#∃%&#

!∀!!&∃!∋&

!∀!!()#∗%

!∀!#%∋∗%

!∀!&#∗%

!∀!∋∗%

!∀#∗%

+ #∋ ∋+ ∗%∋ #!∗+ +!∃∋

!∀
#∃
%&
∋
#∃
&(
)
#∗
%+
(
#,
−.

/∋+0(1#23#451&%67(−8/29(#,:;<<<.

=#>4?−8/29(#)51&%67(#59≅(6&%2∀#!∀#∃ &%+(−
Α51Β(1−Χ#/∆:#ΕΦΓΗ#,6∆5∀.Ι#/∆:#;=ϑΓΗ#,1(9.#

(b) CPU timings

Figure 36. GPU and CPU timings - Number of particles vs time required per step.

122

Nodes MPI Dims Interval Simcycle Particles Memory Step DAV%
Ranks /Node /Node

(MB)
Cloverleaf3D Proxy Hydrodynamics Application

16 96 5863

20 4.73
1.5M 40.2

0.4475 9.408
40 4.08 0.3221 7.894
60 4.39 0.3838 8.742
20 4.50

474k 12
0.1882 4.182

40 4.14 0.1628 3.932
60 4.33 0.1498 3.459
20 4.19

186k 4.2
0.0925 2.207

40 4.11 0.1043 2.537
60 3.87 0.0830 2.144

SW4 Seismic Modeling Simulation

1 6
2512 × 70

200

0.35 555k 13.89 0.0412 11.67
3352 × 93 2.02 1.3M 33.16 0.2125 10.48
5012 × 139 7.58 4.4M 111.13 0.3309 4.365

64 384
10012 × 276

1.6 66k 1.6 0.0194 1.201
1.5 146k 3.6 0.0295 1.944
1.3 540k 13.5 0.0798 6.175

13352×368 2.9 1.2M 31.9 0.2095 7.074
Nyx Cosmology Simulation

1 1

653

100

10.9
274k 6.8 0.0122 0.112
32k 0.8 0.0033 0.030
9k 0.2 0.0025 0.023

1293 88.3
2.1M 53.6 0.0596 0.067
262k 6.5 0.0101 0.011
32k 0.8 0.0044 0.005

Table 11. In situ encumbrance evaluation and experiment configurations for our
three simulation codes.

7.5.1.1 Cloverleaf3D Hydrodynamics Proxy Simulation. For

the Cloverleaf3D simulation, we considered 3 options for number of particles and

interval, and 1 option for grid size and concurrency. In particular, we are interested

in the in situ encumbrance (ISR-1) of varying particle advection workloads,

i.e., the number of particles. We note that each node used 6 GPUs for particle

advection and that they all access the same shared memory. For our specific grid

123

size and domain decomposition, each MPI rank operated on over 2M grid points

and the Simcycle was usually between 4-5 seconds. Overall, we observe an increase

in Step costs as the number of particles advected per node increases. Given, the

Simcycle remained relatively stable, the increase in Step is clearly matched by the

DAV% trend.

For this integration, we observed that as the number of particles increases

from 186k to 474k (2.5X increase) that the cost of performing particle advection

only increases by approximately 1.6X. For the next workload increase, i.e., sampling

1.5M particles (∼3X increase), the cost of performing particle advection increases

by approximately 2X. By running the same workload multiple times, we capture

variation in the costs within a workload. The variation in the Step cost is greater

when the workload is larger and we attribute this to the increased memory

allocation and memory transfer costs each step. This is relevant particularly on

GPUs where the initial setup cost can be high.

Overall, for ISR-1, we found that for our set of experiments increasing the

number of particles by 8X results in the in situ encumbrance increasing by 3X-

4X with the Simcycle relatively stable. The cost of a single Step to calculate the

Lagrangian representation for Cloverleaf3D was as low as 0.08 seconds and in all

cases, below half a second, thus, remaining within our identified budget.

7.5.1.2 SW4 Seismic Wave Propagation Simulation. For the

SW4 simulation, we considered 2 concurrencies: 1 compute node (6 MPI ranks,

GPUs) and 64 compute nodes (384 MPI ranks, GPUs).

In the first case, i.e., using 1 compute node and 6 MPI ranks, we considered

three grid sizes, each using a proportional number of particles (1:8). We increase

the number of particles proportionately, rather than holding it constant, since we

124

believe this would be a more representative of a workload. These results in our

empirical study highlight the impact of an increasing grid size on ISR-1 and the

relation to Simcycle. For the smallest grid size, 555k particles per node are advected

every cycle. Although the cost of a particle advection Step is low (0.041s), the

DAV% is over 10% because the Simcycle is very small (0.035s) in this case. In

contrast, for the largest grid size (each rank operated on 5.8M grid points), we

advected 4.4M particles per node and observed a proportional increase in Step

cost, but half as much time was spent by the simulation on DAV%. This is due to

the higher Simcycle for the larger grid size. We note this trend would be expected

for computational simulations as they increase in resolution per compute node.

In the second case, i.e., using 64 compute nodes and 384 MPI ranks, we ran

SW4 four times. Three times with one grid size to observe in situ encumbrance

for varying particle advection workloads, and one time using a larger grid with 1:8

particles per node. Similar to the Cloverleaf3D experiments, we observed a steady

increase in Step and DAV% as the number of particles per node increases. For

the fixed grid size, an 8X increase in the particle advection workload results in an

approximately 4X increase, considering Simcycle with small variability. However, as

we increased the grid size, and consequentially, the workload from 540k to 1.2M

particles per node (∼2X), although the Step cost increased by over 2.6X, DAV%

increased by less than 1%.

Overall, we first observed that the DAV% is closely related to the Simcycle.

Although extracting a Lagrangian representation might place a higher encumbrance

on a simulation with a small Simcycle value, for all grid sizes considered the in situ

encumbrance, i.e., DAV%, of the corresponding workload remained within our

expected budget and the cost of Step was less than half a second in each case.

125

7.5.1.3 Nyx Cosmology Simulation. Unlike our previous

experiments, the Nyx simulation and Lagrangian filter use OpenMP for parallelism,

i.e., particle advection is performed using all the CPU cores on a compute node.

We considered 3 options for number of particles and 2 options for grid size.

First, focusing on the impact of an increase in the grid size on ISR-1, we

found a small increase (<1.5X) in the absolute cost of a particle advection Step for

the same workload, albeit interpolating a grid 8X in size. Further, in the context

of DAV%, the Simcycle cost increases proportionately to the increase in grid size

(8X). Thus, the DAV% reduces as the simulation grid size increases. Next, for

ISR-1 across workloads using a fixed grid size, for the smaller grid we observed less

than a 5X increase when going from 9k particles to 274k particles per node (30X

increase in workload). For the larger grid, a 65X increase in workload resulted in a

13X increase in Step time.

The most interesting finding of these experiments was that using the CPUs,

a single particle advection step for the number of particles we considered, costs less

than 6 GPUs. For example, the Step cost for 2.1M particles on 2 CPUs is less than

half compared to the Step cost for 1.3M and 1.5M particles using 6 GPUs. We do

note there are differences, such as 6 GPUs (i.e., 6 MPI ranks) accessing the same

memory versus 1 MPI rank on 2 CPUs accessing memory. Although this outcome is

likely not surprising (given our knowledge of memory allocation and transfer times

for GPUs versus CPUs), this finding certainly encourages future research on how to

utilize compute resources if the in situ routine frequency is very high (every cycle

in our study).

126

(a) Eul 20
AvgL2 L2

!∀!∀#

(b) Eul 40
AvgL2 L2

!!!∀∀

(c) Lag 40 1:8
AvgL2

!∀!#∃

(d) Lag 40
1:27 AvgL2

!∀#∀∃

(e) Lag 40
1:64 AvgL2

(f) Eul 20
MaxL2

!∀#∃!

(g) Eul 40
MaxL2

!∀#∃#

(h) Lag 40 1:8
MaxL2

!∀∀#∀

(i) Lag 40 1:27
MaxL2

!∀!#∃

(j) Lag 40 1:64
MaxL2

Figure 37. Cloverleaf3D experiment histograms for 100,000 test particle
interpolation errors. Each plot has 25 bins, ranging from 0 to >0.05, with bar
height encoding number of particles. Horizontal grid lines mark increments of

5,000.

!

∀

!#

#∀

∃%#

& !&& ∃&& ∋&& ∀&& %&&

!
∀#
∀∃
%
#&
∋∀
(
)∃
∗+
,
−

./(0!∀ 1∋∋&∋∃∀2∃3∃&4∃5)66∃%78)

56&/)∋6)∀4∃9!∃.::;∋∀:<=%#&∋∀()

>∀∋?)∋2≅∃Α∀(∋∀Β(7∀Β∃∗∋)8−Χ∃1;6)∋7∀Β∃∗∆6;)−

Figure 38. Cloverleaf3D accuracy-data storage scatter plot.

Overall, considering the larger Simcycle times and low memory latency when

parallelizing using CPUs, the highest in situ encumbrance we observed to extract a

Lagrangian representation was 0.1% of the simulation time.

7.5.2 Post Hoc Efficacy. Table 12 contains the results of our

experiments for this campaign using all three simulation codes. For each simulation

code we consider multiple options of number of particles and interval. Varying

either of these parameters impacts PHE-1, PHE-2, and DS-1. The Cell

127

Technique Interval Reduction Data AvgNL2 Cell
Side%

Cloverleaf3D Proxy Hydrodynamics Application

Eulerian
20

Full Res
267 GB 0.0197 116.17

40 133 GB 0.0459 270.49
60 95 GB 0.0725 426.96

Lagrangian

20
1:8 34 GB 0.0032 18.928
1:27 10 GB 0.0040 23.891
1:64 4 GB 0.0040 23.583

40
1:8 17 GB 0.0043 25.646
1:27 5.1 GB 0.0049 29.145
1:64 2 GB 0.0053 31.353

60
1:8 12 GB 0.0064 37.882
1:27 3.4 GB 0.0066 39.002
1:64 1.3 GB 0.0070 41.247

SW4 Seismic Wave Modeling Simulation

Eulerian
250

Full Res
1100 MB 3.5714 0.9224

500 550 MB 5.0493 1.3023

Lagrangian 250

1:1 1300 MB 0.0005 0.0001
1:8 158 MB 0.0033 0.0008
1:27 42 MB 0.0072 0.0018
1:64 16 MB 0.0128 0.0031

Nyx Cosmology Simulation

Eulerian

25

Full Res

227 MB 0.010 2.2954
50 120 MB 0.037 8.4090
100 67 MB 0.090 20.454
200 40 MB 0.265 60.227

Lagrangian

25
1:1 232 MB 0.051 11.613
1:8 27 MB 0.164 37.272
1:27 8 MB 0.320 72.727

50
1:1 166 MB 0.059 13.409
1:8 14 MB 0.153 34.772
1:27 4 MB 0.256 58.181

100
1:1 58 MB 0.067 15.227
1:8 7 MB 0.159 36.136
1:27 2 MB 0.261 59.318

200
1:1 29 MB 0.103 23.409
1:8 3.4 MB 0.204 46.363
1:27 1 MB 0.321 72.954

Table 12. Post hoc efficacy evaluation and experiment configurations for our three
simulation codes.

128

Side% column in Table 12 redundantly encodes the value in each cell using cell

background color (white to pure red hue for the range [0,100], where 0 or white

indicates a particle is perfectly accurate and 100+ or pure red indicates particles

on average are at least a grid cell side away from ground truth). In addition

to Table 12, our empirical study includes a more detailed look at per particle

interpolation error using histograms. We present a set of histograms for each

simulation code. For each histogram chart we exclude the axes and instead describe

the common details of the plot in the captions (number of bins, range, horizontal

grid line increment, etc.) and use annotation to mark histogram bars whose height

exceeds the plot area. Although use of an annotation rather than the true height

of the bar visually misrepresents a single data point in some plots, we believe this

tradeoff is worth the closer look at the remaining data points.

7.5.2.1 Cloverleaf3D Hydrodynamics Proxy Simulation.

For the Cloverleaf3D time-dependent vector field, we considered 3 options for

both number of particles and interval, to encode the behavior of the field. We

randomly placed 100,000 test particles in the domain and tested the accuracy of

reconstructed trajectories. We use the first 600 cycles of the simulation and set

step size to 0.0045. Overall, we observed that the Lagrangian technique performed

significantly better and offered improved data storage-accuracy propositions.

With respect to DS-1 and PHE-1, even a 100X data reduction results

in improved accuracy compared to storing a full resolution Eulerian grid more

frequently. For example, a Lagrangian configuration using 1:64 number of particles

and an interval of 60 stores 1.3 GB over 600 cycles, and has an AvgNL2 of 41.2%

of the cell side. In comparison, an Eulerian configuration storing the full mesh

every 40 cycles requires 133 GB over 600 cycles, and has an AvgNL2 of 270.4%

129

of the cell side. For all the Lagrangian configurations, the AvgNL2 was low and

particles on average remained within the same cell as the ground truth.

Although this proxy simulation demonstrates very clearly the shortcomings

of the Eulerian technique as the interval increases, we observed that the Lagrangian

technique benefits minimally from an increase in the number of particles. We

believe this is due to Cloverleaf3D being a miniapp, where increasing the spatial

resolution does not increase the complexity of the physics, i.e., no new features are

introduced as they would be in a real-world simulation. That being said, even if

the Eulerian technique used multi-resolution to achieve reduced storage, it would

be less accurate than Lagrangian, given using the full spatial resolution is less

accurate.

The histogram plots in Figure 37 show the distribution of particle

interpolation error clearly indicating the superiority of the Lagrangian technique

for EUS. Comparing the histogram plots, although Eulerian (267 GB) is storing

full resolution data sets twice as often, the number of test particles with a MaxL2

of over 300% of the cell side distance (right-end bin in each plot) is over 15%,

compared to less than 5% for Lagrangian (2 GB to 17 GB) in all cases. This

provides intuition regarding the “rate of inaccurate interpolation” for each

technique for the EUS problem.

Samples CGAL Interpolation Communication
/Rank Serial (s) (s) (s)
7.2M 178 0.00246

0.001252.1M 53 0.00141
887k 21 0.00093

Table 13. Distributed memory post hoc interpolation cost for 100,000 particles
across a single interval of the Cloverleaf3D extracted data using 16 compute

nodes and 96 MPI ranks on Summit. Values averaged over all reconstruction runs.

130

!∀

!∀∀

!∀∀∀

∀#∀∀∀! ∀#∀∀! ∀#∀! ∀#! ! !∀

∃%
&
∋(
)
∗
+,−

.
/

!∀#∃!∀ %&&∋&

()∗++!,,−&.,/01.2.+(2∋&.#3+

4.&53&67+8.#&.9#:.9+;&3<=>+%−?3&:.9+;≅?−3=

Figure 39. SW4 accuracy-data storage scatter plot.

For PHE-2, we measured the time required for Cloverleaf3D

reconstructions. In our empirical study, we only reconstructed Cloverleaf3D

pathlines in a distributed-memory setting (16 nodes, 96 MPI ranks). Table 13

contains timings for our reconstruction method for a single interval given a

workload, i.e., number of samples to be triangulated and interpolated per rank.

The most dominant cost during this process is the search structure construction,

i.e., the Delaunay triangulation. Although we avoid the prohibitive cost of a global

Delaunay triangulation with our implementation, we believe there is room for

improvement. That being said, for reduced Lagrangian representations, the parallel

Delaunay construction cost can be comparable to the Eulerian approach that

requires performing interpolation and communication for every cycle. For example,

the Lagrangian configuration using an interval of 40 and 1:64 number of particles,

can be used to construct pathlines for 100,000 particles across 600 cycles in under

6 minutes (excluding I/O). For an Eulerian approach to be faster, it would need to

compute each cycle in 0.6 seconds (our implementation required 0.47 seconds per

cycle excluding I/O; approximately 5 minutes).

131

7.5.2.2 SW4 Seismic Wave Propagation Simulation. For

the SW4 simulation, we considered 4 options for number of particles. The SW4

simulation generates a displacement vector field that captures the wave propagation

modeled in the simulation. In this case, the Lagrangian representation is far

better equipped than the traditional method to accurately encode this transient

behavior in the domain. Our experiments considered 2000 cycles of the simulation,

and evaluated accuracy by reconstructing 90,000 test particle trajectories placed

randomly between Z=5,000 and Z=15,000 (the layer of most activity in the

domain) using a step size of 1.

The SW4 simulation domain extents are very large, thus each cell side is

approximately 387 in our experiments. The AvgNL2 value of our test particles

indicates all particles remained within the cell, with the Lagrangian technique

offering near perfect reconstruction, while the Eulerian technique only suffers

from an error of 1% of the cell side by this measure. However, displacement values

in an earthquake simulation are expected to be small and an error of even that

magnitude might represent failure to capture the wave propagation.

The SW4 histogram plots (Figure 43) use different bin ranges for Lagrangian

and Eulerian given the distributions were very different. The plots show the an

increase in error for the Eulerian technique as the interval increases and an increase

in error for the Lagrangian technique as the number of particles used decreases

from 1:27 to 1:64.

Overall, the Lagrangian technique offers excellent propositions for DS-1 and

PHE-1. The Lagrangian technique was able to preserve near perfect integrity with

upto 70X less data storage.

132

7.5.2.3 Nyx Cosmology Simulation. For the Nyx cosmology

simulation, we considered 4 options for number of particles and interval to provide

an understanding across a wider spatiotemporal range. Figure 40 shows a slice of

the Nyx vector field at two three slices (0, 200, 400). We observed that the unit

vectors at each grid point in the domain remain relatively the same across all

cycles. The slow evolution of the vector field is in terms of velocity magnitude

in few regions of the domain. The maximum velocity magnitude in the domain

increases steadily for the 400 cycles of the simulation we use in this study. Our

experiments considered 50,000 test particle trajectories placed randomly in the

domain and set a step size to 0.02.

!∀# !∃# !%#

!&# !∋# !(#

Figure 40. Nyx vector field visualization: (a) and (d) show the vector field at time
0 and the maximum velocity magnitude is 52.02, (b) and (e) show the vector field
at time 200 and the maximum velocity magnitude is 145.0, and finally, (c) and (f)

show the vector field at time 400 and the maximum velocity is 571.2.

An interesting outcome of these experiments was observing PHE-1,

i.e., accuracy, given the variation in interval. The Eulerian technique is nearly

133

!

∀

#

∃

%

Figure 41. A qualitative comparison of pathline reconstruction over one interval for
the Nyx data (Interval = 25 case). For each configuration we specify DS-1 and
PHE-1 as (Bytes, Cell Side%). Image A (white) is the ground truth, B (light-blue)

is Eulerian (227MB; 2.29%), C (yellow) is Lagrangian 1:1 (232MB; 11.61%),
D (green) is Lagrangian 1:8 (27MB; 37.27%), E (pink) is Lagrangian 1:27 (8MB;

72.727%).

134

!

∀!

#!!

#∀!

∃!!

∃∀!

! ∃! %! &! ∋!

!
∀#
∃%
&
∋(
)∗
+
,

−.&/!∀ 0∃∃#∃(%1(2(#3(4∋55(!67∋

/89(−::;∃%:8<=%∀%(!∀#∃%&∋(
0>:#76>&?(≅%&∃%>&6%>()1Α;%∃∋,Β(0;5∋∃6%>():6∃:5∋,(

Χ>∀∋∃.%5(∆Ε()Φ;∃Φ5∋,Β(Χ>∀∋∃.%5(ΕΓ()∃∋7,Β(
Χ>∀∋∃.%5(ΗΓΓ():8%>,Β(Χ>∀∋∃.%5(∆ΓΓ()#∃%>&∋,

Figure 42. Nyx accuracy-storage scatter plot.

perfectly accurate when the sampling is less sparse (interval = 25). In contrast,

the Lagrangian technique is less accurate, even when using the same number of

particles as grid points. Such behavior is expected when the variation between

the vector field across cycles is very small (Figure 40). In such a setting, using

only a fourth-order Runge Kutta (RK4) provides more accurate interpolation

than applying a second-order barycentric coordinates interpolation on top of the

trajectories extracted using RK4. This “stitching” error has been studied in several

prior works [32, 13, 14, 8].

As the interval size increases, i.e., the Sparsity component of the EUS

problem, we observe Lagrangian improving in accuracy and offering multiple

favorable data storage-accuracy propositions. For example, for an interval of 200,

greater accuracy can be achieved by the Lagrangian technique using a 10X data

reduction. The behavior of techniques (one losing integrity as sparsity increases;

another becoming more accurate as sparsity increases) is well captured by the

histograms in Figure 44. Of course, a longer interval does not guarantee better

135

a Eul 250
AvgL2

b Eul 500
AvgL2

c Eul 250
MaxL2

d Eul 500
MaxL2

!∀∀#∃

e Lag 250
1:27 AvgL2

!∀!#!

f Lag 250
1:64 AvgL2

!∀#∃%

g Lag 250
1:27 MaxL2

!∀#∃%

h Lag 250
1:64 MaxL2

Figure 43. SW4
experiment histograms for

90,000 test particle
interpolation errors. Each
plot has 25 bins, Eulerian
bins range from <0.6 to

>15, Lagrangian bins range
from 0 to >0.2, with bar
height encoding number of
particles. Horizontal grid
lines mark increments of

2,000.

!∀!#∀

a Eul 25
AvgL2

!∀#!∃

b Eul 50
AvgL2

c Eul 100
AvgL2

d Eul 200
AvgL2

!∀#∃#

e Eul 25
MaxL2

!∀#∃%

f Eul 50
MaxL2

g Eul 100
MaxL2

h Eul 200
MaxL2

!∀#∀!

i Lag 25
AvgL2

!∀#∀!

j Lag 50
AvgL2

!∀#∀∀

k Lag 100
AvgL2

!∀#∃#

l Lag 200
AvgL2

m Lag 25
MaxL2

n Lag 50
MaxL2

!∀∀#∃

o Lag 100
MaxL2

!∀#!∃

p Lag 200
MaxL2

Figure 44. Nyx experiment histograms for 50,000 test
particle interpolation errors. Each plot has 20 bins,
ranging from 0 to >0.44, with bar height encoding
number of particles. Horizontal grid lines mark

increments of 2,000.

136

accuracy for the Lagrangian technique in all settings. Divergence over a long

interval impacts Lagrangian-based interpolation accuracy [34].

With respect to the impact of number of particles on PHE-1 and DS-1, we

observe that error increases due to data reductions are higher when the interval is

smaller. For example, error increases by 3X for a 27X data reduction for interval

200 and error increases by over 6X for a 27X data reduction for interval 25. We

note that in each of these cases, the increases in error resulted in AvgNL2 values

that still indicate that the majority of test particles were within the same cell as

the ground truth particle. This result supports the notion that the Lagrangian

technique can effectively support data reduction in settings of temporal sparsity.

Overall, our empirical study using the derived Nyx vector field produced interesting

trends that support the use of Lagrangian technique for EUS problem, while also

demonstrating a stitching error when storing data to disk more frequently.

7.6 Conclusion

We contribute an empirical study in response to uncertainty regarding

whether or not the L-ISR-PHE workflow is practically viable and should be the

preferred solution for the EUS setting. Although previous works had demonstrated

compelling propositions with respect to accuracy-storage tradeoffs, they had been

mostly performed in theoretical in situ environments. This research gap concerning

practical in situ encumbrance and viability on a supercomputer is a barrier for

adoption. Filling this research gap is the key contribution of our empirical study.

We provide insight on this front by considering execution time, memory usage,

and percentage of time spent by the simulation on in situ processing. Our key

findings show that simulations almost always spent less than 10% of time on

in situ processing and in some cases, less than 1%. For the post hoc phase, our

137

empirical study improves on prior evaluations of data storage-accuracy propositions

both quantitatively and qualitatively. We present per particle outcomes using

histograms and believe this representation accurately captures interpolation error

changes across configurations. For EUS settings, our experiments demonstrate

significant data storage reduction (8X-200X) while maintaining accuracy (in every

case, particles remained within ground truth cell on average). Further, we provide

cost estimates for a Lagrangian-based distributed-memory post hoc advection

scheme. Overall, we believe this empirical study addresses the existing research

gap concerning in situ encumbrance on a supercomputer and contributes to existing

evaluations of post hoc efficacy.

138

Part 3

Conclusion and Future Work

139

This part concludes the dissertation. Chapter VIII provides a synthesis of

the findings and recommendations for future work. Chapter IX comes from the

work done as part of my oral comprehensive exam. L-ISR-PHE is yet in the

early stages of its development and use as a data reduction operator. The task of

selecting the best set of data during in situ Lagrangian extraction, however, has

parallels to existing research. Chapter IX presents a survey of seed placement

and streamline selection algorithms. These are a large number of algorithms

that have been proposed over the past two decades to calculate representative

integral curves in a vector field. Although these works have been predominantly

proposed in a post hoc processing context, this problem is very closely associated

given the commonality of the underlying problem. Overall, several of the studies

in Chapter IX could inspire new in situ Lagrangian representation extraction

techniques.

140

CHAPTER VIII

CONCLUSION

8.1 Synthesis

The ability to perform accurate exploratory time-dependent vector field

visualization is threatened by I/O gap trends seen at exascale (and expected to

continue beyond). The L-ISR-PHE is a viable solution to that problem. This

dissertation identified research gaps pertaining to in situ encumbrance, accuracy-

performance tradeoffs, and value/challenges of advanced techniques. Research

conducted in this dissertation investigates these research gaps and provides answers

for the corresponding research questions listed in Chapter I.

– RQ1.1 What is the practical in situ encumbrance of the technique?

Chapter VII presents a study that finds in situ Lagrangian representation

extraction can in most cases (high and low simulation cycle time) be

performed within in situ processing resource budgets, i.e., between 10% to

20% of the simulation time. We found that in most cases, our implementation

cost less than 10% and in some cases, as low as under 1%.

– RQ1.2 Are there ways to reduce in situ encumbrance? Chapter VI

evaluates a communication-free model and finds that reconstruction accuracy

is high for short and medium length integration intervals. A communication-

free model offers an accuracy-performance tradeoff that provides good

propositions in many practical settings. Further, Chapter VII showed that

multi-core CPUs offer fast in situ computation of particle trajectories. Hybrid

CPU-GPU techniques that could maximize resource utilization could further

reduce in situ encumbrance.

141

– RQ2.1 Are results maintained over varying data sets? Especially

non-analytical data sets? Yes. This dissertation considered multiple data

sets across all studies and observed consistent trends related to accuracy-

storage propositions.

– RQ2.2 Is this improvement necessary when considering absolute

error? We understand this is use case/application dependent. That being

said, as temporal sparsity increases, the Lagrangian technique is far more

accurate. Further, this dissertation includes a qualitative evaluation that

highlights the benefits of using a Lagrangian representation compared to an

Eulerian representation. Overall, we believe the improvement is necessary

given the benefits of reduced data size and improved or maintained accuracy.

– RQ2.3 What is the spectrum of outcomes compared to the

traditional approach? Chapter VII extends the evaluation of L-ISR-PHE

by considering the outcomes on a per particle basis using histograms. The

use of these histograms enables a comparison to the traditional approach

across several configurations and provides insight into reconstruction error

distribution and its relation to temporal sparsity.

– RQ3.1 Can we benefit by innovating past the simple scheme?

Chapter V explored novel techniques and introduce variable duration variable

placement schemes with the goal to reduce reconstruction error. The study

found improved accuracy-storage propositions across all data sets and

demonstrated the benefits of more advanced schemes.

– RQ3.2 What new challenges are created by these advancements and

can they be addressed? More advanced schemes introduce complexity

142

due to the need of a global solution in many cases (for example, a global

triangulation) and by likely introducing an unstructured point set. However,

in many cases local solutions can be computed in a distributed environment

and offer speed ups.

Overall, our findings show that L-ISR-PHE is a viable and effective

alternative for the EUS problem to traditional approaches at scale. Computing

local flow maps and using Lagrangian representation that utilize longer trajectory

forms advance the effectiveness of the technique either from a performance and

accuracy standpoint, respectively. More advanced techniques combining these

methods and considering boundary conditions would benefit from gains in both

accuracy and performance. Overall, we addressed each research gap and can answer

the central dissertation question as “yes.”

8.2 Future Work and Research Directions

Given in situ Lagrangian analysis is a relatively new research area, the

foundational work that is part of this dissertation has identified several key areas

of research going forward. We break our discussion of future research works into

two topics: in situ sampling strategies and post hoc reconstruction techniques.

8.2.1 In Situ Sampling Strategies. The general in situ Lagrangian

analysis framework offers plenty of flexibility with respect to spatial and temporal

sampling strategies. Future researchers can evaluate the costs of using more

computation time to execute improved sampling strategies or the use of more

memory to store more state information about individual samples. With respect

to spatial sampling, feature-guided techniques and machine learning offer solutions

to identify an optimal set of Lagrangian basis flows to store. However, identifying

scalable techniques that improve information content per byte stored to disk is the

143

challenge. Further, it would be valuable to see in situ Lagrangian analysis deployed

for an application and configured to accurately capture an application-specific

feature.

In the area of temporal sampling, there are plenty of open challenges with

respect to applying curve simplification strategies to pathline trajectories in situ

and identifying the best set of data points to store to disk. Evaluation along the

temporal axis will require exploring strategies to manage high in situ memory

consumption patterns. The successful development of efficient techniques could

potentially result in the accurate reconstruction of the entire temporal resolution of

a time-dependent vector field.

8.2.2 Post Hoc Reconstruction Techniques. Although the focus

of this dissertation was demonstrating the viability and efficacy of extracting a

Lagrangian representation of a time-dependent vector field, several of our studies

improved and advanced the state of the art with respect to Lagrangian-based

advection schemes. In the future, development of fast and scalable interpolation

methods would enable interactive time-dependent vector field visualization.

Additionally, there is the need to incorporate Lagrangian-based advection schemes

into vector field visualization frameworks.

Other research works in the space of post hoc reconstruction techniques

can consider methods to improve reconstruction quality at the boundary of nodes

or identification of optimal Lagrangian basis flow neighborhoods at each step.

In general, however, post hoc reconstruction methods are closely tied to their in

situ extraction counterparts — decisions made during extraction, can offer require

special treatment during the post hoc reconstruction.

144

8.2.3 Extending Evaluations. The flow visualization community

would benefit from an extensive evaluation (quantitative and qualitative) of the

effects of increasing temporal sparsity on traditional exploratory flow visualization

integrity. Another valuable future direction of research is to extend evaluations and

consider other data reduction mechanisms that could be applied for vector fields.

145

CHAPTER IX

SURVEY OF SEED PLACEMENT AND STREAMLINE SELECTION

TECHNIQUES

Most of the text in this chapter comes from a publication [10], which was a

collaboration between Roxana Bujack, Christoph Garth, Hank Childs, and myself.

I was the primary contributor of this work and I was responsible for surveying

the field, creating a classification, and writing the manuscript. Roxana Bujack,

Christoph Garth, and Hank Childs provided timely, valuable feedback and were

involved in editing the manuscript.

In this chapter, we survey an extensively researched problem: how to

place seeds and select integral curves (the majority of the literature focuses on

streamlines) such that a representative visualization of the vector field can be

produced. The underlying commonality of the problem to that of sampling during

in situ Lagrangian analysis, makes this a very relevant and foundational field of

research for future in situ Lagrangian analysis techniques.

9.1 Introduction

Advances in parallelization technology have enabled efficient computation

of a large numbers of streamlines [79, 60]. Using a large number of streamlines,

however, does not guarantee a useful visualization. Thus, motivated by the need

to assist scientists with the exploration of flow fields in various contexts (planar

surface, curved surface, or volume flow), the identification of initial seed placement

and the selection of streamlines to visualize has been an active research area. In

particular, several research efforts have aimed to automatically generate or select

a representative set of streamlines for a given flow field. A survey of these seed

placement and streamline selection (SPSS) techniques is the focus of this chapter.

146

Concerning previous work, the survey by McLoughlin et al. [80] is the most

notable study that has addressed seed placement for flow visualization. Although

covering the most prominent studies up until that time, SPSS techniques were not

a central theme of the study, and the techniques used to identify a representative

set of streamlines have significantly evolved since. Over the past decade, several

studies have presented techniques that identify representative streamlines via

selection from a random set as opposed to iterative generation methods (typically

seen in seed placement algorithms). Further, on the topics of general feature

extraction or vector field clustering techniques (often employed in SPSS workflows),

studies by Post et al. [81], Laramee et al. [82, 83], and Pobitzer et al. [84] provide

comprehensive coverage.

This survey is organized as follows: Section 9.2 covers background

information on SPSS, including the mathematical definition of a streamline,

challenges, desired characteristics of visualizations, and evaluation methodology.

Sections 9.3 introduces a high-level classification of techniques and a basic road

map for the reader to navigate the survey. Sections 9.4 and 9.5 contain details of

techniques for each technique and strategy. Section 9.6 discusses future work, and

finally, Section 9.7 highlights our contributions and concludes the report.

9.2 Seed Placement and Streamline Selection Background

This section discusses key aspects of the seed placement and streamline

selection (SPSS) techniques. First, we differentiate between seed placement and

streamline selection from a terminology point of view. A seed placement algorithm

is the process of selecting particle seed locations to calculate useful streamlines.

In contrast, a streamline selection algorithm is the process of choosing useful

streamlines from a large set of precalculated streamlines (typically generated

147

using a random seed placement). In several instances, both seed placement and

streamline selection are used together to produce the desired outcome.

The following sections cover the challenges and application contexts, desired

characteristics of visualizations, and the evaluation methodologies used with

respect to SPSS techniques. Further, we introduce the axes we use in this survey

to evaluate different classes of SPSS techniques.

9.2.1 Streamlines and Pathlines. A streamline is a curve xs :

R → R
d that is everywhere tangential to the instantaneous velocity of an unsteady

vector field v : Rd × R → R
d at one fixed time t

dxs(s)

ds
= v(xs(s), t), xs(s) = xs(s0) +

∫ s

s0
v(xs(τ), t)dτ (9.1)

while a pathline xp : R → R
d is tangential to the vector field over time

dxp(t)

dt
= v(xp(t), t), xp(t) = xp(t0) +

∫ t

t0
v(xp(τ), τ)dτ. (9.2)

Both are uniquely defined through a differentiable vector field and the location and

time of their seedpoints xs(s0), xp(t0) [85].

9.2.2 Challenges. SPSS strategies have been proposed to address

various flow visualization tasks. In this survey, the majority of research studies

propose an algorithm to generate informative flow visualizations using a

representative set of streamlines.

The wide usage of streamlines to effectively visualize a flow field has resulted

in several research efforts directed at the generation of a representative set of

streamlines. Producing an image using an excessively large number of streamlines

can result in a dense and cluttered visualization showing redundant information.

However, if the number of streamlines used is too few, important flow features can

be missed. Further, in a three-dimensional settings, streamlines often occlude one

another. It is desirable that less informative streamlines do not occlude streamlines

148

capturing important features of the flow. Streamline length is an additional

consideration when proposing an algorithm. Uniformly placed short streamlines

often result in visual artifacts, whereas complete streamlines (i.e., streamlines

that only terminate at boundaries or critical points) might result in cluttered non-

uniform distributions.

Although comprising a smaller body of work, we additionally consider SPSS

techniques for flow visualization tasks such as:

– Selection of streamlines that are similar to a query streamline, i.e., a user-

specified streamline.

– Particle-based flow visualization systems that require seed placement to

control particle density distribution.

Our survey includes these studies, given the commonality of the underlying

objectives and algorithms. These studies are useful in that they address challenges

like identifying similar streamlines in an orientation, position, and scale invariant

manner, particle density distribution management, and minimization of vector field

reconstruction error.

9.2.3 Desired Characteristics. Verma et al. [15] were the first to

explicitly list characteristics that are desired of the selected set of representative

streamlines. These characteristics are:

– Coverage: Streamlines should not miss interesting regions of the flow field.

– Uniformity: Streamlines should be uniformly distributed over the field.

– Continuity: From an aesthetic perspective, streamlines should be selected

such that they show continuity in the flow, i.e., long streamlines are preferred.

149

However, these desired characteristics have been modified by researchers

and scientists as this area of research has evolved, particularly after considering

3D volume flows, view of the domain, specific features of interest, and information

content. Thus, additionally desired characteristics include:

– Visibility of regions of interest (ROI), i.e., occlusion management [86].

– Smooth transitions or frame coherence when visualizing time-dependent flow

or changing viewpoints [87, 88]

– Retaining spatial perception for depth cues [89]

– Representing maximum information content using the least number of

streamlines [90]

Contributions to this area of research have prioritized different characteristics

while advancing or improving on previous work — either from a visualization or

computational perspective.

9.2.4 Evaluation Methodology. The results of SPSS techniques

have seen on-going improvements over the past two decades. These improvements

have been evaluated qualitatively and/or quantitatively. The majority of these

visualization research studies have used a qualitative evaluation to demonstrate

that the proposed technique achieves some desired characteristic better than a

previous approach. Although fewer in number, multiple studies have quantitatively

evaluated a technique by considering the accuracy of vector field reconstruction

using the selected streamlines or computational performance.

Qualitative evaluations can be biased based on the specific requirements or

objectives of an individual study. Thus, capabilities such as maintaining spatial

perception, or highlighting multiple ROI are viewed as “upgrades.” To limit the

150

scope of this survey, rendering techniques, such as thinning of lines or lighting

effects, are not discussed. That being said, choices surrounding the rendering

and presentation of streamlines can contribute to and improve our perception and

understanding of the flow field.

In this survey, we evaluate classes of strategies based on three factors. These

three factors enable our analysis of techniques, and we incorporate the qualitative

and quantitative criteria determined by the studies themselves. These three factors

are:

– Regions of interest (ROI): Evaluation of whether a technique can identify

and focus on ROI.

– Minimization of redundancy: Evaluation of whether a technique mitigates

the selection of redundant streamlines.

– Computational performance: Evaluation of whether a technique can be

used in computationally constrained contexts.

The ROI axis is important to evaluate the ability of an algorithm to

primarily focus on salient features, avoid occlusion by less important streamlines

in 3D, and generate a visualization that naturally draws the user’s focus to

the ROI of the field [15, 86, 91]. The redundancy axis is important to evaluate

whether an algorithm is selecting multiple streamlines that convey relatively the

same information (e.g., parallel streamlines) [92, 90]. Considering redundancy is

particularly useful when there is a tradeoff between the number of streamlines that

can be used and the total information conveyed by the set of streamlines. The

computation axis is useful to understand the cost of a particular strategy and its

viability under different scenarios (e.g., interactive, in situ, distributed memory). In

151

total, considering these three axes informs recommendations for which technique to

use depending on the application and constraints.

!∀∀#∃%&∋(∀)∀∗+∃∋∗#∃!+,∀∋)&−∗∀∃!∀&∀(+−.∗∃/∀(0∗−12∀3

42+.)∋+−(∃/∀(0∗−12∀3∃567

8∋∗2∋&∃/∀(0∗−12∀3∃597

:∀∗3−+;<=∋3∀#∃56>?7

≅∀∋+2,∀<=∋3∀#∃56>Α7

!−)−&∋,−+;<=∋3∀#∃56>Β7

Χ−∀∆<Ε∗#∀Φ∀∗#∀∗+∃.,∃ΓΗΙ∀(+∃!Φ∋(∀∃56>?>?7

Χ−∀∆<:∀Φ∀∗#∀∗+∃.,∃Ε)∋ϑ∀∃!Φ∋(∀∃56>?>Α7

≅&.∆∃/.Φ.&.ϑ;∃56>Α>?7

:∀,−Κ∀#∃≅−∀&#∃56>Α>Α7

Λ3∀,<:∀Μ−∗∀#∃!(∋&∋,∃≅−∀&#∃56>Α>Β7

!Φ∋+−∋&∃:−3+∋∗(∀∃56>Β>?7

!0∋Φ∀∃56>Β>Α7

8∋(0−∗∀∃Ν∀∋,∗−∗ϑ∃56>Β>Β7

Λ3∀∃.Μ∃Ε∗+∀,∋(+−Κ∀∃/..&3∃59>?7

Λ3∀∃.Μ∃:.)∋−∗∃Ε∗Μ.,)∋+−.∗∃59>Α7

Figure 45. Classification tree for seed placement and streamline selection
techniques. To assist with correlating this classification with Figure 46, we color
subclasses of density-based purple, feature-based blue, and similarity-based red.
Finally, each subclass has its corresponding subsection within the survey listed

parenthetically.

152

!∀#∃%&∋(#)#∋(#∋∗+,−+./0#1∗+2)31#+4567678

!∀#∃%9#)#∋(#∋∗+,−+&:3;#+2)31#+45676<8

=>,∃+?,),>,;≅+456<678

9#−∀Α#(+=∀#>(+456<6<8

ΒΧ#−%9#∆∀∋#(+213>3−+=∀#>(+456<6Ε8

2)3∗∀3>+9∀Χ∗3∋1#+456Ε678

2Φ3)#+456Ε6<8

Γ31Φ∀∋#+Η#3−∋∀∋;+456Ε6Ε8

!∀#∃%&∋(#)#∋(#∋∗+,−+./0#1∗+2)31#+4567678

!∀#∃%9#)#∋(#∋∗+,−+&:3;#+2)31#+45676<8

=>,∃+?,),>,;≅+456<678

9#−∀Α#(+=∀#>(+456<6<8

ΒΧ#−%9#∆∀∋#(+213>3−+=∀#>(+456<6Ε8

2)3∗∀3>+9∀Χ∗3∋1#+456Ε678

2Φ3)#+456Ε6<8

Γ31Φ∀∋#+Η#3−∋∀∋;+456Ε6Ε8

!∀#∃%&∋(#)#∋(#∋∗+,−+./0#1∗+2)31#+4567678

!∀#∃%9#)#∋(#∋∗+,−+&:3;#+2)31#+45676<8

=>,∃+?,),>,;≅+456<678

9#−∀Α#(+=∀#>(+456<6<8

ΒΧ#−%9#∆∀∋#(+213>3−+=∀#>(+456<6Ε8

2)3∗∀3>+9∀Χ∗3∋1#+456Ε678

2Φ3)#+456Ε6<8

Γ31Φ∀∋#+Η#3−∋∀∋;+456Ε6Ε8

!∀#∃%&∋(%)(∗&+∀,∀∋+ !∀−.&−/&01 2%34.+/+∃%&

!∀#!

∃%&

∋()∗∃+))

,%−+)∃%&

Figure 46. Approximate, general ordering of the identified categories of seed
placement and streamline selection techniques based on three evaluation axes, as
discussed in Section 9.3. We use the same color coding as used in Figure 45. We
intend on the rating along the evaluation axes to be used as an approximate guide
for the reader to identify categories of interest based on constraints or application

contexts.

9.3 Classification

To explore a flow field, without any assistance or prior knowledge, a

scientist would be required to select locations for seed placement, followed by the

generation of streamlines. Based on the computed visualization, the scientist can

then iteratively refine their seed placement to produce a meaningful visualization.

However, this method can be challenging when dealing with complex flow fields. To

assist scientists with this challenge, two high-level classes of approaches have been

developed over the past two decades. The first class of techniques is automatic,

i.e., researchers have automated the process by developing algorithms that

produce a set of streamlines that convey flow field information. The second class

of techniques is manual, i.e., researchers employ interactive methods or leverage

domain knowledge to place seed points and manage streamlines. Given elements of

153

overlap between several of the proposed algorithms, we aim to classify studies based

on the technique contributed to generate or select streamlines.

As shown in Figure 45, we further classify automatic techniques into

density-based (purple), feature-based (blue), and similarity-based (red) strategies.

Within each of these classes, we identify subclasses of techniques. The manual

techniques surveyed are classified into interactive tools for the placement or control

of streamlines and strategies that use domain-information for seed placement.

Automatic techniques have significant diversity in strategy. Figure 46

shows an evaluation of automatic techniques along three axes (introduced in

Section 9.2.4). Given that each class of algorithms contains subclasses and multiple

works, our rating is approximate and relatively general. We base our rating

using comparisons (both qualitative and quantitative) made within research

works themselves, type of algorithms, scalability of the solution, and our overall

understanding of the field. The majority of research studies conduct comparative

evaluations with previous work qualitatively and/or quantitatively (e.g., [93, 89, 94]

compare against multiple other works). These ratings have not been established by

conducting new experiments, and certain works within subcategories are exceptions

to the position of the entire subcategory along our axis. The objective of the figure

is to provide an approximate guide for the reader to navigate the large space of

SPSS techniques. Further, the difference between categories might not necessarily

be as vast as the position along an axis might suggest. For example, on the ROI

axis, although a feature-based strategy will capture a ROI better than a view-

independent technique and is rated higher, the view-independent technique will

indeed have sampled the ROI albeit without any specific focus.

154

If the reader desires to find a strategy for their own SPSS problem, this

evaluation can be used as an approximate guide. For example, assume the reader

is interested in a high ability to capture ROI, is indifferent toward redundancy,

and desires fast computation, then the reader might be interested in exploring the

Derived Field class of strategies.

Lastly, although we do not organize this survey based on the target contexts

of SPSS studies, we believe such a grouping is valuable. Readers can reference

Table 16 to identify works which consider a specific target (for example, steady

state volume flow).

9.4 Automatic Techniques

Automatic seed placement or streamline selection algorithms follow a set of

rules to generate a distribution/selection of streamlines (or particles in some cases).

These algorithms may consider the view direction, properties of the vector field,

properties of integrated streamlines and so on. Our classification identifies whether

a particular algorithm is primarily contributing a density-based (9.4.1), feature-

based (9.4.2), or similarity-based (9.4.3) approach. For example, an algorithm

might first extract flow feature locations and strategically place seed points in ROI

before placing additional seeds to generate an approximately uniform distribution

of streamlines while highlighting flow features — we categorize this as a feature-

based approach and not a density-based approach. Often, the motivation of studies

will overlap given the desired characteristics are not mutually exclusive, i.e, an

algorithm may strive to achieve several desired characteristics in some order of

priority.

9.4.1 Density-Based. Density-based techniques are typically

proposed when a uniform or user-defined distribution of streamlines (not seed

155

points) is the desired outcome of an SPSS algorithm. A uniform distribution

of streamlines provides the user with an overview of the entire flow field.

Corresponding techniques typically generate approximately evenly-spaced

streamlines in object or image space. We categorize the density-based

approaches as view-independent (9.4.1.1) or view-dependent (9.4.1.2). For view-

independent (object space) approaches, the resultant set of streamlines do not

change if the view of the domain changes. Whereas, view-dependent (image space)

techniques might select different sets of streamlines when the viewpoint of the

domain changes.

9.4.1.1 View-Independent or Object Space Techniques.

Density-based view-independent approaches propose algorithms to obtain a uniform

or user-defined density distribution of streamlines in object space. The remainder of

this section is divided into algorithms that use local or global seeding strategies.

Algorithms Using Local Seeding Strategy

The first use of an automatic seed placement technique to maintain

distances between streamlines was by Hultquist et al. [95]. Hultquist et al.’s early

work considered seed point addition and removal in the context of stream surface

construction. After seed points are initialized as a rake, the distance between

particles is tracked as particle trajectories (streamlines) are integrated. Based on

the premise that to achieve a good surface visualization an approximately uniform

spacing between streamlines is desired, new seeds are added or existing seeds are

merged based on a user-defined neighboring particle distance criterion.

Max et al. [96] used evenly-spaced short streamlines to visualize a 3D

vector field on a contour surface. They considered several projections to visualize

the streamlines. While they evaluated different projections (Eye, Normal, XY,

156

Figure 47. Candidate seed points are identified at locations a minimum separating
distance away from the initial streamline (thick). Image inspired by Jobard et

al. [97].

and Cylinder) on the 3D surface and transitions of those projections as the view

changes, a precomputation phase involved seed placement and particle tracing in

object space. To allow streamlines to be traced for long distances before they get

too close to each other, the initial positions of seed points are chosen on an integer

lattice in a spatially hierarchical manner. A streamline length threshold is used to

determine the minimal length of accepted streamlines. A streamline grows until it

reaches a surface edge, a singularity in the field, or becomes too close to another

streamline.

Jobard and Lefer extended the work done by Max et al. [96] and proposed

an effective and popular single pass method for placement of long evenly-spaced

streamlines in a 2D steady state field [97]. The method can achieve visualizations

ranging from dense texture-like to sparse hand-drawing styles by only setting the

separating distance, denoted by dsep, between adjacent streamlines. The algorithm

initially places a random seed point and integrates a new streamline backward and

forward until some termination criterion is met. The first streamline is used to

calculate a set of candidate seed points dsep distance away from the streamline. The

candidate seed points are added to a queue to be evaluated. Each candidate seed

157

point is used as a starting location to integrate a streamline until it is within some

distance dtest (a fraction of dsep) from existing streamlines. Figure 47 illustrates

seed points, a user-defined distance away from an initial streamline, used to

integrate new streamlines. If the integrated streamline is accepted, then the new

streamline contributes a set of candidate seed points to the existing queue. To

accelerate the computation process, Jobard and Lefer proposed two optimizations:

– Streamlines consist of a set of evenly-spaced sample points that are a distance

smaller than dsep apart. Only these sample points are considered in distance

computations.

– A cartesian grid with cell side dsep is superposed on the domain to support

binning of sample points and limit distance computations to surrounding

cells.

These optimizations have been employed in several following research works.

The algorithm achieved placement quality as good as previous techniques, i.e.,

work by Turk and Banks [98] (described in Section 9.4.1.2), while significantly

improving computation speeds. Jobard and Lefer extended their initial work to

propose a multiresolution technique for steady state flow [99] and an approach to

create animations for visualizing unsteady flow [100]. To generate a sequence of

streamline-based images of a vector field with different density (multiresolution),

they computed an initial set of streamlines for a large separating distance value.

The resulting streamlines then form an initial set of streamlines for the next level,

i.e., an image that has a higher streamline density and uses a smaller separating

distance value. This process is performed for the desired number of levels of

streamline density. The shortcoming of this approach is that streamlines traced for

later levels were shorter due to the existence of the initial set of longer streamlines.

158

For the visualization of unsteady flow in 2D, they proposed a feed-

forward algorithm that used reference streamlines from one time step to select

corresponding streamlines in the next time step. Sample points of reference

streamlines act as initial seed locations to generate candidate streamlines. The

best candidate streamline, based on an L2-norm correlation measure, is selected as

a corresponding streamline in the next time step. If required, additional streamlines

are calculated to obtain a uniform distribution. By correlating instantaneous

visualizations of the vector field at the streamline level, they animated 2D unsteady

flow visualization.

Mattausch et al. [101] adopted Jobard’s and Lefer’s algorithm [97] with the

aim to improve focus+context techniques and the spatial perception of 3D flow

fields. To extend to 3D, six candidate seed points are calculated at a distance

dsep for every sample point on a streamline. Additionally, they improved the

multiresolution technique presented by Jobard and Lefer [99] by preventing the

generation of shorter streamlines for higher levels of detail.

Jobard’s and Lefer’s algorithm has been utilized as an intermediate step

for texture-based flow visualization techniques and domains such as DTI Fiber

Tracking [102, 103]. Li et al. [104] presented Chameleon, a texture-based rendering

framework, which decouples the calculation of streamlines and the mapping of

visual attributes, allowing flexible control of the visual appearance of the vector

field. The seed placement algorithm is employed to control the length and density

of the generated streamlines. A trace volume is created using a dense set of evenly-

spaced streamlines and their geometric properties. The trace volume can then be

combined with varying input appearance textures to produce a wide range of effects

interactively. Shen et al. [105] extended the Chameleon framework to support

159

unsteady flow fields by calculating pathlines instead of streamlines. The algorithm

tracked pathline segment intersections and trace volume updates during rendering.

However, the study did not address the distribution of pathlines across the domain

over time.

Employing a pipeline similar to Chameleon, Helgeland et al. [106]

proposed a method to use evenly-distributed particles as input for a texture-based

visualization of unsteady flow in 3D. The algorithm outputs a point set, i.e,, seed

locations, instead of a set of streamlines. Using an initially random pool of seed

points, Jobard’s and Lefer’s algorithm [97] is applied to identify the subset of seed

points that generate a set of streamlines dsep distance apart. The resultant point

set is used to generate streamlines using a texture-based method (for example, Seed

LIC [107]) for each time step. After each advection step, cluttering is avoided by

removing particles that are less than dtest distance apart. While particles leaving

the domain are naturally removed, particles are added to account for inflow. A

seed point is added to the center of boundary voxels if a fixed length streamline

traced from it is dsep distance from existing streamlines. Overall, particle density is

maintained by injecting particles into areas with low density without exceeding a

user-defined maximum number of seed points for the domain.

Algorithms Using Global Seeding Strategy

Unlike local seeding strategies that place seeds in the vicinity of previously

placed streamlines, Mebarki et al. [39] proposed to place seeds furthest away

from all previously placed streamlines. Using an approach proposed by Chew et

al. [108] that had already been successfully applied to point sampling and mesh

refinement [109, 110, 111], Mebarki et al. place new seed points at the center of the

biggest voids within the domain. Using Delaunay triangulation to identify voids

160

in the domain, the circumcenter of the triangle with the largest circumradius is

chosen as the next seed location. Streamlines, approximated using a set of sample

points, are inserted one at a time and are traced until a minimum separating

distance criterion is violated. Processing a priority queue of triangles, sorted by

circumradius and with circumcircle diameter larger than the separating distance,

the algorithm ends when the priority queue is empty. The computation of the

process is significantly optimized by only using every nth sample point to calculate

the Delaunay triangulation and only adding triangles incident to the streamline

end points to the priority queue. Placing seed points farthest away from existing

streamlines results in long streamlines, improving on the quality of representative

streamlines by reducing streamline discontinuities. Mebarki et al. demonstrated

reduced execution time compared to Jobard and Lefer [97] for 2D domains, while

retaining the placement quality of Turk and Banks [98].

To study flow phenomena near wall regions or boundaries, i.e., curved

surfaces in 3D, Rosanwo et al. [112] proposed a greedy seed placement algorithm.

Similar to previous approaches, a single distance δ is used to control streamline

density. However, the method avoids the computation of geodesic distances and

reduces the search space for seed placement to a set of curves. The algorithm

employs two sets of streamlines, namely, primal and dual streamlines. Primal

streamlines are tangential to the vector field at every point and are used to

visualize flow phenomena. Used to approximate the largest uncovered areas in

the domain, dual streamlines are a supplementary set of streamlines that are

orthogonal to the vector field at every point. A small set of both primal and dual

streamlines can be initialized either randomly or by using flow field topology.

Given the orthogonal directions of the two sets of streamlines, they intersect at

161

several locations. Segments of primal streamlines are stored in a priority queue

P , ordered by arc length. Similarly, segments of dual streamlines are stored in

a priority queue D, ordered by arc length. The algorithm iteratively selects the

longest arc in P or D and places a seed at the midpoint to calculate the next

streamline, followed by both queues being updated based on new intersections and

segments. The algorithm stops when the length of the longest segment is less than

twice the value of δ. An informed placement of the initial set of streamlines can

reduce time to convergence for the algorithm and highlight flow topology resulting

in speedups of 2x-3x and improved streamline placement quality over previous

approaches [97, 39, 98] when evaluating streamline placement for planar surfaces.

Zhang et al. [113, 114] proposed a method to place streamlines in parallel

for 2D flow fields. They define local tracing areas (LTAs) as subdomains enclosed

by streamlines and/or field borders, i.e., regions where the tracing of streamlines

is localized. Using an irregular domain decomposition strategy, the initial LTA is

recursively partitioned into hierarchical LTAs. Within an LTA, if a valid seeding

area (VSA, determined by streamline proximity criteria) exists, a new seed point

is placed at the centroid of the biggest VSA. They use a cell marking technique,

instead of performing distance checking, to mark zones where seeds can be placed

and streamlines traced. The authors further extended the algorithm to support

multiresolution and 3D flow fields [115, 116]. A comparison with Mebarki et al. [39]

showed equivalent or better placement quality and an order of magnitude faster

computation on parallel hardware.

Analysis: View-independent algorithms inherently provide coverage of the

entire domain, i.e., object space, either by generating nearby candidate seeds

from existing streamlines or by placing seeds in the largest voids in the domain.

162

However, given the primary objective is to achieve a desired density of streamlines,

none of these algorithms have a focused ability to capture a ROI. Instead these

algorithms primarily operate on the concept of maintaining a minimum separating

distance. As a consequence, generated streamlines can be similar to existing

streamlines since there is no measure to account for redundancy. Concerning

computation, the majority of these algorithms adopt an iterative serial algorithm.

Tracing streamlines one at a time, would limit applicability when considering large

vector field data sets across multiple nodes or under in situ constraints.

View-independent algorithms support fast exploration once a set of

streamlines is generated given only a single set of streamlines serves all viewpoints.

Further, these techniques are typically limited to planar or curved surface flows,

or are used in conjunction with other techniques such as texture-based flow

visualization or interactive methods to address occlusion in volume flows.

9.4.1.2 View-Dependent or Image Space Techniques. By only

considering object-space, view-independent techniques did not address occlusion

problems that pose a significant challenge when exploring volume flows. View-

dependent techniques presented in this section, take the image viewed by the user

into account or use the current image as a guide to determine the placement of seed

points and the selection of streamlines. The remainder of this section is divided

based on whether algorithms use filters, image space seeding, or occlusion and

projection of streamlines.

Algorithms Using Filters

Pioneering work in the field of streamline placement, Turk and Banks [98]

proposed the use of a stochastic mechanism to iteratively refine the placement of

streamlines to visualize 2D steady state flow. The approach is based on the idea

163

that for a given image containing a set of streamlines, the application of a low-pass

filter to its corresponding binary image should result in an evenly-gray image if the

streamlines are uniformly distributed. Areas with streamlines cluttered will have

bright pixel values while sparsely represented areas will remain dark in the low-pass

filtered image. The energy of the streamline image can be quantified as the sum of

difference with a given gray-scale value at each pixel of the low-pass filtered image.

The density of streamlines can be controlled by adjusting the size of low-pass filters

and optimization of the streamline distribution is realized via iteratively minimizing

the energy function. For this work, the filter applied is a circularly symmetric filter

kernel from a basis function of cubic Hermite interpolation.

Beginning with streamlines generated from seed points at vertices of a

2D grid, where each streamline has an associated energy contribution, the set of

streamlines is modified until the desired energy threshold is reached. The algorithm

considers moving, lengthening, shortening, deleting, inserting, and combining

streamlines based on energy. The streamlines modifications are either proposed

by an oracle (50%) or are random (50%) to prevent any oracle bias. The oracle

speeds up the convergence of the optimization by a factor of 3x-5x. To propose

effective changes, the oracle uses image information to identify sparse regions and

maintains a priority queue of streamlines based on energy level. Thus, the oracle

suggests regions to insert streamlines or how to reduce the energy contribution of

the most energetic streamlines. If the modification lowers the overall energy value

of the image, the change is accepted, otherwise, the change is rejected. The process

continues until the energy function reaches a threshold or the accepted changes

are rare. Although this approach produced high quality streamline placement, it is

computationally expensive given long convergence times.

164

Mao et al. [117] extended the Turk and Banks algorithm to uniformly

distribute streamlines on a curvilinear grid. They use the image-guided algorithm

because density distribution on curvilinear grids, which are anisometric, is hard

to achieve with distance-based approaches. First, a mapping of vectors on the

curvilinear surface to computational space is performed. To account for the

mapping distortion caused by an uneven grid density on a curvilinear grid, a new

energy function is employed. Using a Poisson ellipse sampling to distribute a set

of rectangular windows in computational space, the streamline density is locally

adapted to the inverse of the grid density in physical space. Use of such an energy

function ensures the generated set of streamlines are evenly distributed after being

mapped back onto the 3D surface.

Algorithms Using Image Space Seeding

Uniformly distributed streamlines in 3D space are not guaranteed to

be evenly spaced in their 2D projection. To avoid clutter in a 3D streamline

visualization, Li et al. [118] performed seed placement and streamline termination

in image space, and streamline advection in object space. The algorithm operated

similar to Jobard’s and Lefer’s algorithm [97], except that candidate seed points for

a streamline were dsep apart from the streamline in image space. Thus, even though

a 3D volume flow is under consideration, for every sample point of the streamline

only two possible candidate points are identified. A streamline is advected in object

space and terminated if it is within dsep from another streamline in image space.

Further, a streamline closer to the viewpoint is preferred to another far behind. To

support importance-driven seed placement, their algorithm decoupled seed point

generation and streamline spacing control. A set of seed points is produced using a

process that stochastically generates more seeds in a ROI, followed by tracing the

165

corresponding streamlines in object space. To avoid clutter, streamlines that violate

spacing requirements in image space are deleted. This approach by Li et al. was

the first work which used an image space based seeding strategy.

Spencer et al. [119] presented an evenly-spaced streamline seeding algorithm

for vector fields defined on surfaces in 3D space. The algorithm is capable of

generating both sparse and dense representations of the flow and can handle large,

complex, unstructured grids with holes and discontinuities. Streamlines are only

integrated for the portions of the surface visible in image space. The advection

strategy removes the need to perform streamline tracing on a triangular mesh

and instead projects the vector field onto the image plane. Seed placement and

streamline integration are then performed in image space. The flow data is stored

in a ”velocity“ image where each pixel stores the flow velocity on the surface and

a 16-bit representation of the z-buffer representing the distance of the surface.

The use of a z-buffer allows the algorithm to disregard non-visible portions of

the surface and plays an important role in detecting discontinuities or edges. The

algorithm places seed points, called grid-based seeds, in every cell of the mesh with

non-zero depth. Next, it generates vector field-based seeds, i.e., candidate seed

points, in a manner similar to Jobard’s and Lefer’s algorithm. They terminate a

streamline when the proximity to another streamline drops below dtest or when

z-buffer drops to zero or the change in z-buffer exceeds a user-defined threshold.

Using both sets of seeds in combination ensures all visible sections (there are

potential geometric discontinuities arising from edges and occluding surfaces) have

a uniform distribution of streamlines. To avoid terminating streamlines near edges

due to proximity in image space (greater distance apart in object space) they check

for approximately the same z-buffer value. To improve depth perception in the

166

visualization, the value of dsep varies with depth. The idea of reducing any complex

surface to a 2D problem results in a computationally efficient algorithm. Spencer et

al. used a GPU to improve rendering times and showed their streamline generation

is faster than an implementation of Jobard’s and Lefer’s algorithm in 3D object

space.

Algorithms Using Occlusion and Projection

Given the extensive use of contours to visualize scalar fields, Annen et

al. [120] introduced the concept of vector field contours for flow exploration. The

proposed algorithm generates isolated streamline which display behavior similar

to that of isocontours. The approach is view-dependent in that seeding structures

are identified by locating points where the dot product of the view direction and

the vector field is zero, and a seed which takes one infinitesimal integration step

preserves that condition. Multiple rendering passes are applied to extract the

seeding structure with curvature being used in a similar manner as an isovalue in

a scalar field. Streamlines are then integrated forward and backward until the dot

product of the vector at the streamline position and the view direction exceeds a

threshold. The extraction and rendering of the vector field contours is inter-frame

coherent, with the flow field capable of being interactively explored.

Marchesin et al. [86] selected streamlines that contribute to understanding

flow field characteristics, while simultaneously accounting for cluttering for a

given view. The approach uses streamline features and the occlusion caused by

it to decide whether to include a particular streamline. The four stage algorithm

begins with the computation of a random pool of streamlines. Projecting all the

computed streamlines onto an occupancy buffer helps identify highly occluded

regions for a given view. Given the importance of swirling lines to understand

167

flow behavior, the occupancy buffer does not account for self-occlusion caused by

a single streamline and simply measures the screen space footprint. Next, for each

pixel, the number of streamlines projecting onto this pixel is calculated. The third

stage, a pruning step, evaluates information conveyed and occlusion caused by a

streamline. To determine the quantity of information conveyed by the streamline,

the linear and angular entropy values of segments of a streamline, i.e., the local

length and angular variation, are used. Additionally, they consider an overlap value

to determine the occlusion caused for a given view. Combining these values, they

present a streamline metric which is a weighted sum of the linear and angular

entropies divided by the average overlap. Sorting streamlines by their score, the

streamlines with the lowest score are iteratively removed, followed by an update

of the occupancy buffer, and affected streamlines. The final stage of the algorithm

decomposes the occupancy buffer into a number of tiles and computes the average

occupancy for each tile. Seeding a small pool of random streamlines from the

tile with the lowest occupancy, the streamline resulting in the least occlusion

is retained. This process is repeated until all tiles have a non-zero occupancy.

The approach captured features of the flow better than previous view-dependent

methods and required a GPU for fast computation.

Günther et al. [87] presented an interactive, view-dependent, and inter-frame

coherent flow visualization technique whose results are dependent on user-driven

seed placement. The method has an initial preprocessing step, which involves

both user-guided seed placement using a seed box, and random placement to

generate streamlines that cover the entire flow field. For each streamline, a screen

contribution value is computed by using a cubic Hermite interpolation function to

map the number of visible pixels of the streamline to a transparency value. The

168

screen contribution values are used to determine which streamlines are visible to

the user for a given view and fade out streamlines with only minor contributions.

Given one important region of the flow can occlude another, the user can selectively

place seed boxes in order to focus on certain regions. To support exploring regions

of coherent flow, the user can highlight a set of similar streamlines by selecting a

single streamline. Streamlines in a limited screen-space neighborhood window of

the selected streamline are evaluated for similarity using linear and angular entropy.

Günther et al. [91] extended their previous work [87] by adopting a global

line selection strategy. Starting with an initially dense domain sampling, the

algorithm computes the opacity for every streamline segment in the field as a

solution to a bounded-variable least-squares optimization problem. Metrics such

as curvature, linear entropy, angular entropy, scalar entropy, segment length, or

screen contribution can be used as an importance measure of a streamline segment.

Depending on the metrics chosen the algorithm highlights relevant features in

the flow field by minimizing the occlusion caused by other streamlines. While

the optimization problem is based on the total number of streamline segments

in the flow, the number of segments increases significantly and can become a

bottleneck when considering unsteady state flow. To tackle the challenge of 3D

unsteady flow, Günther et al. [121] modify their approach and employ a hierarchical

representation of an integral curve and consider only a view-dependent set of

candidate segments for the optimization process. Günther et al. use the GPU

to achieve frame coherent, time coherent, and interactive flow exploration, thus

improving on previous research.

Ma et al. [122] presented a view-dependent streamline selection algorithm

that evaluates the information content of streamlines. As a preprocessing step, a

169

dense set of streamlines intersecting every voxel in the domain is computed. Next,

for every sample viewpoint, the streamlines are sorted on the basis of importance.

The streamline importance measure consists of entropy (considering both direction

and magnitude) measured along the streamline, an evaluation of how much entropy

is preserved for a given 2D projection, and a shape characteristic metric indicating

whether the streamlines characteristics are being conveyed for a given viewpoint.

The last two factors together form a view-dependent importance measure for each

streamline for each viewpoint. First, a set of view-independent representative

streamlines are identified by inserting streamlines into a priority queue based on

the summation of their view-dependent importance measure for every view. A

minimum threshold distance is used to avoid selecting redundant streamlines.

To generate the view-dependent set of streamlines, the top-ranked streamlines

for a viewpoint are combined with the highest rated streamlines from the view-

independent set. Further, to maintain coherence as the viewpoint is changed,

streamlines from a previous viewpoint are retained. A density map is employed

to determine uncovered regions before rendering the final visualization. Their

algorithm was able to generate fewer redundant streamlines compared to Marchesin

et al. [86].

Analysis: View-dependent or image space algorithms have largely been proposed

to account for occlusion that arises from visualizing streamlines in 3D. With respect

to ROI, these techniques have evolved from initially only considering uniform

placement on planar or curved surfaces, to limiting streamline calculation to the

image space, to evaluating occlusion, projection, and information conveyed by

a streamline before selection. Thus, the current state of the art includes view-

dependent algorithms that are capable of highlighting ROI for a given viewing

170

angle. However, in general, these methods do not identify or strategically place

seeds closer to ROI. Additionally, an important feature can occlude a second

important feature resulting in only the streamlines in the foreground being selected.

Most view-dependent algorithms do not consider similarity between streamlines

selected and thus selections can be redundant if pruning steps are not performed.

Early methods using filters were iterative and required long convergence times,

whereas more recent algorithms are faster and provide interactive exploration of

the flow field. However, during exploration, streamlines need to be reselected for

every change in viewing angle and frame coherence techniques need to be adopted.

View-dependent techniques would be suitable when considering automated in situ

flow visualization or in an interactive setting with a user responsible for selecting

the appropriate viewing angle.

!∀#∃∀% &∋(()∀ ∗∀+∀)),#−.&+,%∋)

/∃∃%∋0∃,#−.&+,%∋)&,#1&23%0∀

Figure 48. Types of critical points in 2D flows.

9.4.2 Feature-Based. Feature-based techniques make use of available

vector field information to guide the seed placement or streamline selection.

Prioritizing coverage of ROI of the flow field over a uniform distribution, these

171

approaches aim to first take measures to ensure seed placement occurs near salient

flow features (e.g., critical points shown in Figure 48). We classify feature-based

techniques depending on whether they explicitly extract flow field topology (9.4.2.1)

for precise information or allow derived (9.4.2.2) and user-defined (9.4.2.3) scalar

field to guide the algorithm. Approaches use a derived scalar field in order to either

capture some particular flow field behavior or as an alternative approach to capture

salient flow features without explicitly calculating their locations. In addition to

strategies to highlight features, feature-based techniques often utilize density-based

strategies to calculate streamlines in less interesting regions.

9.4.2.1 Flow Topology. Flow topology-based techniques calculate

the locations of critical points or the separatrices and then use the information

for seed placement. The remainder of this section is divided based on whether an

algorithm uses critical point locations or directly uses separatrices as an initial set

of representation streamlines.

!∀##∃%

&%∋(%)∗+∗!,−)∀∃

!./)0%∗+∗!−∋1

Figure 49. Images show seed templates for various critical points and regions of
influence identified by the flow-guided algorithm. Example inspired by Verma et

al. [15].

172

Algorithms Using Critical Point Locations

To visualize nested weather models, Treinish [123] proposed to use a

combination of critical point analysis and a filter similar to Turk and Banks [98].

Deriving a set of seeds using a low-order approximate critical point analysis, an

initial set of streamlines is computed. A low-bandpass filter is subsequently applied

to the entire forecasted velocity field, as opposed to an image of the streamlines,

to identify regions with a relatively large change in wind speeds. Seed points are

placed in these regions to calculate additional streamlines. The technique was

superior to using uniformly sampled seed points and captured detailed features

from the forecast. However, this particular work did not provide seed placement

specifics in relation to critical points or ROI.

Verma et al. [15] proposed the use of critical point-specific seeding template

to capture flow behavior in the vicinity of critical points. The algorithm first

identifies the locations and types of critical points in the 2D flow field and then

segments the domain into approximate critical point neighborhoods. For the

approximation, a Voronoi diagram partitions the flow into regions containing

similar flow behavior. A second objective of the approach is to provide sufficient

coverage of non-critical regions. After tracing long streamlines using the template

seeds, a region of influence is determined for each critical point. In the spaces

outside the regions of influence, Poisson disk distribution [124] is used to place

additional seed points, with streamlines generation following Jobard’s and Lefer’s

algorithm [97]. Figure 49 shows the seed placement templates, and a sample field

with critical points, corresponding templates, and regions of influence, and the field

partitioning such that each partition contains a single critical point. The algorithm

was able to better capture flow behavior around critical points in both dense and

173

sparse flow representations when compared to previous techniques [98] while being

computationally faster when selecting a greater number of streamlines.

In addition to extending the template-based approach to 3D steady state

flow, Ye et al. [125] proposed improvements to the Verma et al. algorithm [15].

To account for the distance between and relative strength of critical points, they

change the shape of the templates by mapping how eigenvalues of one critical point

evolve into the eigenvalues of another. To determine the size of seed templates,

separating regions are calculated. To calculate separating regions in 3D for each

critical point, instead of using expensive full topological analyses [126, 127], an

approximation is used. The size of the seeding template is set to a quarter of the

distance to the nearest other critical point. Poisson sphere distribution is used

to fill areas between critical point regions of influence. The algorithm involves a

streamline filtering step to provide a less cluttered visualization. Streamlines are

filtered on the basis of length, accumulated winding angle, and proximity to other

streamlines. First removing short streamlines with low winding angles, followed by

identifying a single representative streamline for a set of streamlines that have a

similar start, end, and centroid location. Finally, for a cell with a high streamline

count, denoting a dense region, streamlines with high winding angles are removed.

Liu et al. [128] proposed an evenly-spaced streamline algorithm (ADVESS)

that employs two queues of candidate seeds. The primary queue consists of

an initial set of seeds generated using the templates used by Verma et al. [15].

Candidate seeds generated from the initial location of the streamline seeds are also

added to the primary queue to maximize the effect of the seeding patterns. The

secondary queue, used only if the primary queue is empty, consists of candidate

seeds generated along the calculated streamlines. As an optimization, cubic

174

Hermite polynomial interpolation using large sample spacing is used to represent

a streamline using fewer points. As a consequence, the cost of distance checking is

reduced due to less samples points considered. The algorithm terminates when all

the seeds are processed, i.e., the queues are empty.

An additional improvement on previous evenly-spaced streamline algorithms

is the use of an adaptive dtest value based on the local variance measured at

each grid point in the 2D field. Appropriately scaling the value of dtest causes

fewer cavities in the streamline placement. Further, the authors propose a robust

loop detection technique which limits a streamline loop to a single cycle [129].

Employing the algorithm as one part of a hybrid seed placement approach,

Liu et al. [130] presented a view-dependent approach for seed placement on a

planar or curved surface. Using the double queue strategy differently, Poisson

disk distribution is used to push a set of seeds to the secondary queue and begin

the process. Candidate seeds introduced by the seed location of the accepted

streamline are stored in the primary queue, and other candidate seeds are stored

in the secondary queue. The approach is used for the purposes of image space

seed placement to fill spaces after a primary set of physical space seeds are used

to generate streamlines that are reused and lengthened between view frames. The

combination of the two strategies provides a temporally coherent visualization.

In comparison to previous approaches, the algorithm achieved placement quality

better than Jobard and Lefer [97] and as good as Mebarki et al. [39] with loop

detection, in addition to being computationally faster than both.

Ding et al. [131] present a technique to maintain temporal coherence

when viewing unsteady 2D flow fields by using a moving mesh method. Another

extension of Jobard’s and Lefer’s algorithm, they first extract critical points

175

to calculate an initial set of candidate seeds. Using Poisson disk distribution,

they place seed points in ROI and add them to the queue of candidate seeds.

They move the seeds towards the critical features by creating and deforming an

auxiliary mesh along with the evolution of the vector field. They use a similar feed

forward pipeline system to identify corresponding streamlines to maintain temporal

coherence across frames.

Algorithms Using Separatrices As Initial Set

Chen et al. [132] modified Jobard’s and Lefer’s algorithm to highlight the

vector field topology. Motivated by the visual discontinuity in periodic orbits and

separatrices in current techniques, before using the seed placement algorithm, they

first extract periodic orbits and separatrices and make them the initial streamlines.

Further, to avoid clutter near sources, sinks, and periodic orbits, they terminate a

separatrix if it is within a user-defined distance from the non-saddle end.

Preceding the parallel hierarchical LTA algorithm presented in

Section 9.4.1.1, Zhang et al. [133] proposed to extract the flow topology and use

the topological skeleton as the initial set of streamlines that segment the field.

Next, additional streamlines are calculated by placing seed points at the center

of topological areas in a recursive manner creating an approximately uniform

distribution of streamlines. They extend the vector field domain in each direction

by adding a layer of mirrored boundary cells [134]. Using the additional critical

points from the extended vector field helps capture open separation and attachment

lines.

Wu et al. [93] similarly extracted the flow field topology and partitioned

it into regions of uniform flow behavior. However, as opposed to adopting a

recursive method, they search for the longest path that orthogonally crosses all

176

streamlines within a region. Seeds are placed evenly along the longest path to

produce approximately uniformly placed streamlines. They treat periodic orbits

and saddle-connected loops as special cases. Using vector field reconstruction error

as a quantitative measure for comparison, they demonstrate superior streamline

placement than previous works [97, 39, 128, 132]. Their study shows that as

a sparser set of streamlines is used, i.e., as the minimum separating distance

increases, their algorithm results in lower reconstruction error in comparison to

other algorithms.

Analysis: Flow topology-guided techniques have a primary objective of

highlighting ROI in the flow field. With respect to redundancy, additional

streamlines generated to fill empty spaces of the image or object space can

introduce redundant streamlines given the use of only minimum separating

distances. Computing the flow topology robustly for large scale complex vector

fields is challenging given small changes in the flow field can lead to vastly different

topological connections. However, for smaller scale problems, computing the flow

topology is tractably. The majority of these techniques are most appropriate

for a planar or curved surface flow given they either do not extend to 3D or

result in occluding streamlines in 3D. For 2D domains, these methods have been

demonstrated to have low reconstruction errors, which is highly desirable for

multiple applications.

9.4.2.2 Derived Field. The topological structure of the flow field

often shows a strong correlation to fields that can be derived from the vector field.

Thus, several research efforts have leverage this property to propose the use of

derived fields as an alternative approach to guide SPSS to capture salient flow

177

features. The remainder of this section is divided into algorithms that use entropy,

derived vector field characteristics, or user-defined scalar fields.

Algorithms Using Entropy (Information Theory)

We can measure the amount of information or uncertainty in a local region

using Shannon’s entropy H(X), where X is a random variable that models the

input vector field.

H(X) = −
∑

xi∈X

p(xi) log2 p(xi) (9.3)

A second key concept is conditional entropy. If Y models the visualization

output consisting of streamlines, the conditional entropy between two variables

H(X|Y) informs how much uncertainty in the input data X remains after a set

of streamlines in Y are displayed. This measure allows more streamlines to be

placed in regions whose information is not sufficiently captured. The entropy of a

vector field can be computed for each grid point in the domain and provides insight

into the variation among vectors for a given neighborhood. Further, the entropy

of a streamline is the accumulated value of entropy at sample points along the

streamline, and the entropy of a voxel is the average of entropy values at the grid

points of a single voxel.

Furuya et al. [135] considered streamline selection in combination with scalar

field isosurfaces. The algorithm begins by integrating a large number of streamlines.

The entropy of segments of individual streamlines is measured and used as a basis

for selection. The measure of streamline entropy accounts for occlusion caused

by isosurfaces by penalizing a streamline if segments of the curve are occluded.

Finally, streamlines are sorted and selected in order of highest entropy. To control

density, streamlines are only rendered if they are some minimum threshold distance

away from existing streamlines.

178

Xu et al. [16] presented a framework that evaluates the effectiveness of a

visualization by measuring how much information in the original data is being

communicated. In this work, they empirically demonstrate that entropy in regions

near critical points and separation lines is higher than that of other regions.

Modeling a vector field as a distribution of directions, entropy is used to measure

the information content in the vector field. The effectiveness of the streamline

placement is measured by reconstructing a distribution of vectors derived from

the selected streamlines. The approach begins by iteratively placing seed points

in regions of high entropy. The authors use a diamond shape template to place 9

seed points in 2D and an octahedral shaped template consisting of 27 seed points in

3D. Further, to prevent large voids, seed are placed proportional to the computed

conditional entropy. The streamline addition process ends when the value of

conditional entropy of the entire domain converges to a small value. A final pruning

step removes redundant streamlines. The algorithm provided quantitative control of

the selection of streamlines.

Lee et al.[136] extended the framework presented by Xu et al. [16], to

support a view-dependent streamline selection aimed at minimizing occlusion

and revealing important flow features. Using the derived entropy field, a maximal

entropy projection (MEP) frame buffer is computed for a given image space. The

MEP buffer stores maximal entropy values, as well as the corresponding depth

values for the given viewpoint. To identify the optimal viewpoints, i.e., views that

convey maximum entropy information, MEPs of 780 viewports are evaluated. A

streamline is assigned a higher priority if it reveals the flow near salient features

and a lower priority if it occludes an important region of the flow. Streamlines are

segmented and each fragment in the image plane is evaluated using information

179

stored in the MEP buffer, i.e., depth and entropy, to compute a scalar score ω.

The streamlines are prioritized based on their value of ω which can be positive or

negative. To maintain a streamline density proportional to the flow complexity,

the screen space is divided into tiles and an expected streamline density equal

to the average normalized entropy of the region in the MEP buffer is computed.

For a given streamline, if the addition of the streamline affects more tiles with a

density lower than the expected density, the streamline is added. This approach

favors streamlines that reveal salient flow features without occluding other more

important features. They demonstrated improved feature capturing compared

to Marchesin et al. [86] for a view-dependent selection of streamlines. Further,

athough they significantly benefitted from using a GPU, the serial selection is a

bottleneck.

Ma et al. [88] present FlowTour, a framework that selects best viewpoints to

explore a flow field visualized using streamlines. A skeleton-based seeding algorithm

is employed to generate a set of streamlines that capture critical regions of the field.

Variation of both direction and magnitude of vectors are considered to compute the

entropy of voxels. Critical regions are identified as local neighborhoods in which

voxel entropy values exceed a threshold. Sufficiently large regions of connected

voxels with high entropy are used as input to a volume thinning algorithm that

extracts the skeleton points. Skeleton points are connected by applying a minimum

spanning tree algorithm to produce a tree-structured skeleton line. The density

of streamlines is controlled by evenly-spaced seed placement along the skeleton.

Candidate viewpoints are generated on the basis of the critical regions identified in

the field. Finally, best viewpoints for each region are selected and connected into a

view path using a B-spline curve.

180

Algorithms Using Derived Vector Field Characteristics

The problem of image space cluttering is exacerbated in 3D unsteady

state flow, given pathlines can intersect in space. To study unsteady state 3D

flow, Wiebel et al. [137] introduced the concept of an eyelet. Calculating a set of

pathlines that pass through the same single point (eyelet) in space at different

times yields an insightful static visualization of the unsteady flow field. The

collection of pathlines can be used to construct a surface to visualize the flow.

If pathlines diverge more than a user-defined threshold, a new seed is added at

the eyelet at a time step in between the time steps of its neighboring particles.

While this approach is conceptually similar to Hultquist [95], instead of adding a

new point at the location where divergence is detected, it is added at the eyelet

to guarantee the particle would indeed pass through the eyelet. The placement of

the eyelet plays a critical role in the usefulness of the algorithm to study the flow

field. They identify regions of high activity by introducing measures to capture

the change of a vector field over time. A dot product variation is computed by

accumulating the positive dot products of vectors in consecutive time steps. A

second measure, the vector variation is the norm of the computed difference of the

two vectors considered. Isosurfaces drawn using these variation fields help identify

regions of high and low activity for further investigation. Additionally, edges and

corners, or regions behind flow passed objects, singularities, and vortex cores serve

as good locations to place an eyelet.

Wang et al. [138] visualized explosion fields by first generating an isosurface

of the magnitude of velocity. The isosurface region is then divided into a series of

subregions that are almost equal in area. The center of each subregion is used as

181

a seed point with the integrated streamlines always starting from the center of the

explosion and extending outward in a direction perpendicular to the isosurface.

Luo et al. [139] proposed a technique that combined the use of derived scalar

fields and topological methods, such as contour trees and persistent homology.

Global importance is measured in terms of persistence of topological features in

the vector field and streamline density in the generated visualization is used to

reflect the same. Hodge decomposition [140] is a technique used to convert a 2D

vector field into two scalar fields gradient potential and curl potential. Maxima

and minima of the gradient field correspond to sources and sinks respectively

and guide the placement of a set of gradient seeds. The number of seeds placed

is proportional to the persistence of the maxima and minima, measured by

determining the amount of perturbation required to smooth out the mountain peak

or valley. A contour tree encodes the evolution of level sets of the curl field and is

used to generate a set of curl seeds. Each branch of the contour tree corresponds to

a topological component of the domain. Each branch is assigned a number of seeds

proportional to its range function to collectively produce a set of curl seeds. Every

seed location is evaluated to determine gradient vector or curl vector magnitude

dominance at that position. Only gradient seeds in positions of gradient dominance

are used. Similar, only curl seeds in positions of curl dominance are used. Luo

et al. demonstrated superior placement quality in terms of reconstruction error

compared to Li et al. [90] and Xu et al. [16].

Yu et al. [17] used the curvature and torsion of the vector field to generate

a saliency map to guide seed placement. The saliency map is computed as

the difference between Gaussian-weighted averages of curvature and torsion

fields calculated at multiple scales, i.e., varying the standard deviation of the

182

Gaussian filter. The saliency map is computed for five threshold distances and

then all five saliency maps are combined with a nonlinear normalization. While

the computation of the saliency map is relatively expensive on CPUs, it can

be computed within a few seconds on a GPU. Given a final saliency map, the

seed placement algorithm selects locations in order of decreasing saliency. Long

streamlines are favored, with streamlines integrated until they reach a critical point

or leave the domain. To reduce redundancy, streamlines that occupy the same voxel

as an existing streamline are discarded. The use of the saliency map as opposed

to directly seeding based on the curvature or torsion fields, allows streamlines

to be placed closer to critical points. Further, the generated set of streamlines

is hierarchically clustered to enable exploration at different levels of detail and

manage clutter (details in Section 9.4.3.1).

Zhang et al. [141] investigated the usage of a scalar field Φ derived from

the input vector field by integrating the rotation of the integral curves. Seeds are

placed where |∇Φ|, the magnitude of the rate of variation of the derived field Φ, is

greater than a user-defined threshold. Randomly starting from a placed seed point,

an integral curve is computed, followed by the filtering of nearby seeds. The process

is repeated with the remaining seeds.

To visualize a vortex rope that builds up in the draft tube of a water

turbine, Bauer et al. [142] proposed a particle seeding scheme to visualize unsteady

flow. They use Sobol quasirandom sequences [143] to obtain a uniform distribution

while avoiding clustering and artifacts like regular patterns. Given the vortex rope

is a rotating helical structure, the helicity in the field is evaluated to identify ROI.

New particles are introduced to regions with a scalar value of helicity greater than

a predefined threshold by offsetting the original point set of quasirandom sequences.

183

They use a layer of invisible buffer cells that enable particles to fade in and out

smoothly from the ROI. Guthe et al. [144] presented another seed placement

approach aimed at distributing more particles in ROI. The seed placement is based

on an adaptive sampling of the field with the goal of achieving a higher sampling

resolution in more interesting regions and a lower sampling resolution in less

interesting regions. The local gradient, divergence, and curvature of the vector field

is used to influence the particle distribution. Additionally, local shear and rotation

of the vector field or distance to the closest critical point can be used. An octree

data structure is employed to maintain the distribution of particles in the domain.

The distribution octree is updated as particles travel along streamlines with particle

age being a deciding factor in regard to particle removal in overcrowded regions.

Particle-based visualization systems have seen efforts to improve the

interactivity of flow visualization [145, 146, 147, 148]. Engelke et al. [149] proposed

a particle system that results in an adaptive particle density by using autonomous

particles. Particles operate in parallel without neighborhood information or inter-

particle communication by following a set of rules. The rules dictate particle birth,

death, and split events that influence the density of particles in different regions of

the flow. The study uses split criteria such as λ2 [150], the curvature of the particle

trajectory, and distance to an object in the field. The parallel nature of the system

allows interactive visualization while maintaining a smart sampling of the flow.

Both context and feature particles are used, with context particles being randomly

introduced into the domain to prevent underrepresented regions. Feature particles

are children of context particles and are introduced when a split event occurs. Split

events are determined by a combination of properties such as energy, generation of

the parent particle, and the local importance measures in the flow.

184

Analysis: Several studies demonstrated the use of derived fields such as entropy,

curvature, and torsion to highlight salient features of a flow field using streamlines.

Additionally, derived fields provided a means to visualize regions of maximum

interest irrespective of the depth from a given viewing angle. To reduce redundancy

the use of a pruning step to remove redundant streamlines was demonstrated,

however, minimal redundancy is not the focus of these algorithms. Deriving fields

from the vector field can often be performed in parallel and computed relatively

fast without considerable scalability issues. Thus, these techniques have the benefit

of fast computation and the ability to highlight ROI. Considering these benefits,

derived field techniques have the potential to be applied to particle-based flow

visualization systems or within in situ flow visualization contexts.

9.4.2.3 User-Defined Scalar Field. The algorithms in this section

are designed to use either a specific user-defined scalar field or are adaptable to

utilize any given scalar field to generate a representative set of streamlines.

Zockler et al. [151] proposed to use a statistical method to facilitate

placement of streamlines with a density proportional to some scalar quantity.

Considering a uniform grid over the domain, for each cell, a local degree of interest

is computed. Cells are selected on the basis of the parameterization of a probability

distribution using the local degree of interest. Seeds are then placed in those cells,

with streamlines grown for a fixed length with forward and backward integration.

For scalars ranging over multiple orders of magnitude, streamline distribution can

be unsatisfactory. To address this problem, a histogram equalization approach is

used to obtain a homogenous distribution. Weinkauf et al. [152, 153] applied this

technique using fields of curvature and torsion.

185

Schlemmer et al. [154] presented a heterogeneous distribution of streamlines

based on a density map derived using scalar fields (temperature), derived vector

field information (magnitude of velocity, vorticity), or a user-defined density

function. Here, streamline density is the number of occupied cells over the total

number of cells in a domain. To calculate priority streamlines, they first define

a density map used to guide seed placement, with the map updated after every

streamline calculation. The first seed is placed at the location of the maximum

value of the initial density map. The next location is chosen as the furthest of the

next five maximum values. Given the density map is monotonically decreasing over

time as streamlines are added, the algorithm will eventually terminate.

Shen et al. [155] proposed the use of fractal dimensions [156] for streamline

selection. Measured using the box-counting ratio [156], fractal dimensions can

provide insight into the complexity of a streamline by considering its space-filling

properties [157]. The box counting ratio is measured by counting the number of

cells a streamline intersects in a small grid. For each voxel in the domain, a scalar

value is calculated using the local box counting ratio of streamlines that intersect

the voxel. The scalar grid is used to filter streamlines by fractal dimension and

to identify regions containing vortices and turbulence. Although the space-filling

properties of streamlines are evaluated and desired regions are highlighted, it does

not guarantee to capture ROI in the flow. The algorithm demonstrates ability to

capture a feature focused set of streamlines and remove redundant curves.

Given a pattern template as input, Bujack et al. [158, 159] derived a scalar

field that shows how similar each location in the vector field is to the template

using rotation invariant pattern detection. Next, they seed streamlines with a

186

probability that is proportional to the calculated scalar field. This method is able

to explicitly visualize ROI as defined by the user and minimize their occlusion.

Analysis: Algorithms using alternative scalar fields defined by the user are capable

of highlighting ROI to the user. However, these are less traditional approaches

to visualizing flow features and require users to define parameters. Given the

diversity in the underlying approach, these methods demonstrated varying degrees

of control with regard to minimizing redundancy. Pruning of streamlines can be

easily integrated in a technique by controlling the number of streamlines passing

through any cell. Lastly, these techniques can be relatively fast given the easy

generation and use of a guiding scalar field in conjunction with straightforward

algorithms.

9.4.3 Similarity-Based. SPSS techniques based on density

distribution or feature extraction have certain drawbacks, i.e., redundancy, require

feature extraction or derivations of guiding fields. Similarity-based approaches

have been gaining popularity in the past decade due to their ability to overcome

these drawbacks and by serving multiple flow exploration tasks. These techniques

are based on the concept of first identifying similar streamlines and then selecting

representatives from groups of similar streamlines. Additionally, these approaches

support hierarchical grouping of streamlines for a level-of-detail approach and

the identification of streamlines similar to a query streamline, i.e., isolating

streamlines that match a given description. Similarity between streamlines is

measured using spatial proximity (9.4.3.1), shape (9.4.3.2), or by employing

machine learning (9.4.3.3) to cluster streamlines based on several feature attributes.

Streamline clustering and selection research has extended beyond the tasks

mentioned above to include feature-specific selection, application to non-dynamic

187

vector fields or medical applications, and methods to improve costs of clustering.

For example, in an effort to highlight structures of interest in the flow, Salzbrunn

et al. [160, 161] define streamline and pathline predicates to cluster similar integral

curves that satisfy some criteria. Clustering of curves is commonly used to visualize

diffusion tensor imaging (DTI) data [162, 163, 164, 165, 166]. With respect to

medical visualization, Oeltze et al. [167] evaluated three clustering techniques —

k-means, agglomerative hierarchical clustering (AHC), and spectral clustering

to reduce clutter when visualizing streamlines traced from simulated blood flow.

Recently, Shi et al. [168] conducted an in-depth comparative study of several curve

clustering and simplifications algorithms used for flow visualization to provide

users with a systematic guideline to choose a specific approach. Lastly, given the

high cost of similarity metrics that involve pairwise streamline comparison, Shi et

al. [169] proposed metrics that run in linear complexity.

9.4.3.1 Spatial Distance. Streamlines in the proximity of one

another are likely to have sections that display similar curves. One way to identify

such streamlines is through spatial distance. The remainder of this section is

divided into algorithms that use proximity as a measure of similarity or methods

that use the mean of closest point distances as a similarity metric.

Algorithms Using Dissimilarity Metrics

Motivated by the shortcomings of density and feature guided methods, Chen

et al. [92] presented the first similarity guided streamline placement algorithm for

2D and 3D steady flows. The algorithm naturally accentuates regions of geometric

interest while minimizing streamlines in areas of parallel flow. As a measure of

similarity between two streamlines, a similarity distance metric that has two

influencing factors is defined. The first factor is a translational distance measured

188

as the Euclidean minimum distance between points on two streamlines. The

second factor is a measure of shape and orientation similarity, and is measured

over a spatial window. A spatial window is formed by identifying a predefined

number of equally spaced sample points along the curve. Figure 50 shows sample

point pairs for two streamline windows. The translational distance is the average

!
!

!
∀
!
#
! !

∃ !
% !

&

∀
!∀

∀∀
#∀∀

∃
∀
%

∀
&

Figure 50. The figure shows the pairs of points in a spatial window used by Chen
et al. [92]. The pairing considers velocity direction along the streamline and thus

measures shape and orientation similarity.

deviation of sample point pair distances from the the center point pair distance.

Starting from a dense set of candidate seed points, a streamline is traced until its

similarity distance for a window falls below a pre-specified similarity tolerance. If

the streamline length is greater than a minimum length threshold, the streamline

is added to the set of selected streamlines. The use of shape and orientation for

similarity resulsts in 30% better placement compared to only using the translational

distance. However, the method is sensitive to the order in which candidate seed

points were tested.

Li et al. [90] proposed an iterative algorithm to select a small set of

streamlines in 2D steady state flow fields. The algorithm exploits the spatial

coherence in a flow field to achieve a minimal selection of representative

streamlines. The density of selected streamlines, each of which is integrated for

189

as long as possible, varies to reflect the different degrees of coherence in the field.

Their algorithm derives local and global metrics by employing 2D distance fields

that measure the distances from each grid point to nearby streamlines. The local

metric measures the direction difference between the vectors of the original field

and an approximate field computed from streamlines in the vicinity. The global

metric measures streamline dissimilarity by accumulating the local dissimilarity

at every integrated point along a streamline trajectory. To place seed points, the

algorithm begins by placing a random or central seed point. Next, the streamline

is integrated and local dissimilarity is evaluated at each grid point. A streamline

is accepted if the local dissimilarity value of the original seed point is greater than

a threshold and if the global dissimilarity value of the streamline is greater than a

second threshold. The next candidate seed is picked by sorting the grid points into

a sorted queue in descending order of the local dissimilarity value. The process ends

when no remaining candidate seeds satisfy the dissimilarity threshold requirements.

To optimize the algorithm, the number of candidate seeds is reduced by eliminating

grid points on boundaries and by marking cells visited by rejected streamlines, i.e.,

streamlines with global dissimilarity values below the threshold.

Algorithms Using Mean of Closest Point Distances

The mean of closest point distances (MCPD) [163] is the mean of Euclidean

distances between pairs of points formed by mapping each point of one streamline

to the closest point of the other. MCPD has proven useful for multiple SPSS

algorithms.

Building on the feature highlighting streamline generation technique

presented in Section 9.4.2.2, Yu et al. [17] enable exploration at varying levels of

detail via a hierarchical streamline bundling visualization. To calculate the bundles

190

of streamlines, i.e., clusters, MCPD is used as a similarity measure. Beginning with

each streamline in a distinct cluster, they successively merge the two most similar

streamlines in a bottom-up fashion until a stopping criterion is reached. Clusters

are merged using the single-link method where the distance between two clusters

is the minimum of the distances between all pairs of member streamlines. To

represent each cluster of streamlines, as opposed to streamlines close to the cluster

centroid, the union of streamlines along the cluster boundary is used. In addition to

capturing sources and sinks, only boundary streamlines of a cluster best reveal the

saddle together with other boundary streamlines of neighboring clusters.

While Yu et al. [17] used MCPD as a measure to merge streamlines into

a cluster, Tao et al. [170] use the measure to identify redundancy and limit the

number of representative streamlines selected. Measured using a streamline

information metric, the selection is performed by considering the contribution of

a streamline to a large set of sample viewpoints. Starting with a random pool of

streamlines, a matrix containing the probabilities of seeing each streamline from

each viewpoint considered is created. The probability of seeing a streamline is

high if it contains a high amount of information in 3D and the 2D projection for

a given view preserves the information well. Additionally, they score the shape

characteristics of a streamline projection by evaluating each segment of a streamline

subsampling and score segments higher if they form a 45 or 135-degree angle to

the viewing direction. Streamline information represents the degree of dependence

between a streamline and the set of viewpoints. A low value indicates a streamline

contributes in a balanced manner to a large number of viewpoints, while a high

value would indicate a streamline visible in a small set of viewpoints. Streamlines

are sorted into a priority queue in decreasing order of accumulated streamline

191

information. However, these streamlines have significant redundancy and are likely

cause clutter in 3D. Pairwise similarity between streamlines is measured using

MCPD to avoid repetitive streamlines. Further, a viewpoint information measure

is defined to similarly guide viewpoint selection for the chosen streamlines. In

comparison to other works, the vector field reconstruction error for this algorithm

is lower than both Xu et al. [16] and Marchesin et al. [86]. Han et al. [171] employ

this technique in situ to save a compressed representative set of streamlines for post

hoc flow analysis.

Opacity adaption is a technique used to manage occlusion and cluttering of

streamlines in a 3D field. However, it can result in the loss of spatial perception

when streamlines are faded out to reveal ROI. To retain the perception of spatial

relationships between streamlines, Kanzler et al. [89] select a set of streamlines

such that the screen-space density of the streamlines is locally adapted to the

importance of the streamlines. The algorithm requires computing a fully balanced

line hierarchy to facilitate the uniform removal of streamlines in the domain

and obtain the desired density at run time. MCPD is computed for all pairs of

streamlines and is used to define a fully connected distance graph. A minimum

cost perfect matching algorithm is recursively used to identify pairs by minimizing

the sum of all included edge weights, i.e., the similarity measure. Single linkage

is used to merge clusters since it results in spatially coherent merging of clusters.

Streamlines are selected by using visibility values based on (1) an importance

measure, such as curvature, measured along the streamline, and (2) the occlusion

caused by the streamline to other potentially more important lines. Visibility

thresholds are assigned to lines in the hierarchy based on the level at which the

line is the representative for its cluster. Further, the visibility values are then used

192

to locally control the line density. Although this method improves the spatial

perception of the visualization, it incurs a long preprocessing time to build a

balanced line hierarchy.

Analysis: Algorithms using spatial distance to measure similarity between

streamlines were capable of selecting distinct streamlines that accurately captured

flow features and provided a parameter to control redundancy. Calculating the

similarity between large numbers of streamlines can be computationally expensive

and require large preprocessing times depending on the approach adopted. The

shortcoming of using a spatial distance for similarity measure is that the metric

is limited to similarity between streamlines in proximity, i.e., similar streamlines

present in different regions of the flow would not appear similar. This limits the

use of spatial distance to the application of generating a representative set of

streamlines.

9.4.3.2 Shape. Feature attributes have been extensively used to

evaluate the similarity between streamlines. A common use case is to identify

all streamlines similar to a given streamline. Distance-based similarity measures

primarily account for proximity and are sensitive to rotation, translation, and

scaling. Feature attributes address these shortcomings by evaluating similarity in

a proximity, size, and orientation insensitive manner. The remainder of this section

is divided into algorithms that use sample points or segments of a streamline to

measure shape similarity between streamlines.

Algorithms Using Point Sampled Features

Wei et al. [172] proposed a technique to select streamlines similar to a user-

sketched streamline. The user sketch is a 3D curve whose 2D projection is used

as the input to the algorithm. The algorithm approximates the sketched curve

193

and the streamlines using an arc length parameterized cubic B-spline and samples

the curvature at equal arc length intervals along the curve. Using a feature vector

constructed by concatenating the curvature and torsion at sampled points, they

employ a string matching approach to find similar streamlines. The difference

between two vectors is measured using the edit distance [173]. The most similar

3D streamline is identified and used it as a reference for clustering. All streamlines

similar to the reference streamline are selected as the result of the streamline

query. Additionally, Wei et al. proposed to choose cluster representatives from

an AHC scheme on the basis of view-dependent quality. Viewpoint quality of a

streamline is computed by accumulating the winding angle of the 2D projection of

the streamline, with larger values representing more information.

Zheng et al. [174] presented a streamline selection algorithm for 2D flow

fields that uses streamline feature classification, similarity and entropy. Streamlines

are first classified on the basis of the feature they highlight, i.e., a vortex, source,

sink, or saddle, and are also prioritized in that order when they capture more than

one feature. In addition to feature type, each streamline has a feature position,

i.e., the vortex center for a vortex streamline, the critical point for a source-

sink streamline, or the point of highest entropy for a saddle streamline. Next,

streamlines are iteratively clustered on the basis of a combination of feature type

and proximity of the feature position. A similarity metric that uses a combination

of both geometric shape properties and proximity is defined. Curvature and

accumulated angle are used as geometric shape properties. Sample points between

two streamlines are mapped using Dynamic Time Warping (DTW) [175], which

is a dynamic programming algorithm to find an optimal mapping between two

sequences. For a proximity evaluation, MCPD is employed. The algorithm selects

194

a set of streamlines by identifying a streamline from each feature subset with the

highest entropy accumulated along the points of the streamline. Streamlines within

each feature subset that are least similar to the previously selected streamlines

are picked next. The last step involves, selecting more streamlines by considering

similarity to previously chosen streamlines and streamline entropy until a desired

number of streamlines is selected. The algorithm limits the number of redundant

streamlines and is capable of generating a placement qualitatively equivalent to the

work by Yu et al. [17] for a 2D flow.

Algorithms Using Segmentation

To tackle the high computational expense of distance-based similarity

measures which involve performing large numbers of Euclidean distance tests,

McLoughlin et al. [176] propose to measure streamline similarity by first computing

an integral curve-specific signature. The signature is computed by segmenting an

integral curve and using a set of curve-based attributes, namely, curvature, torsion,

and tortuosity, to describe the integral curve per unit length of the curve. The χ2

test [177] is used to measure similarity between streamlines and is performed for

all streamline pairs generating a similarity matrix that enables fast lookup for

the clustering process. Additionally, given the streamline signature is proximity

independent, a Euclidean distance measure can be used to supplement the χ2

similarity measure. To address segment alignment issues when comparing a pair

of streamlines, seed placement is limited to rakes orthogonal to the local flow

and a hierarchical signature for each streamline is considered. The algorithm was

demonstrated to be orders-of-magnitude faster than the approach by Chen et

al. [92].

195

Chen et al. [178] use an entropy-guided seed placement strategy to generate

an initial set of streamlines. Streamlines are clustered using a two-stage k-means

algorithm. The first stage only considers the start, middle, and end point of a

streamline for clustering. Each cluster after the first stage is further subdivided into

clusters by considering the linear and angular entropy of streamline segments. The

two stage k-means algorithm is chosen over single-linkage clustering with MCPD

due to the quadratic computational complexity of the latter.

Lu et al. [179] proposed a similarity measure based on the statistical

distribution of measurements along a streamline. As a result of being based on

distributions, the similarity measure is less sensitive to length, spatial location, and

orientation. First, streamlines are recursively segmented until a minimum length

threshold is reached or a segment cannot be split into two segments which are

dissimilar enough. Next, a 1D histogram is constructed to represent every segment,

and a 2D histogram to represent the entire curve. The use of the 2D histogram

is to capture the order of the segments, and thus avoid dissimilar streamlines

with similar feature distributions appearing similar. Given streamlines may be

represented by a varying number of segments, a mapping between two sets of

segments is performed by using DTW. The difference between two histograms

is measured using earth mover’s distance (EMD). Curvature, torsion, and curl

are used as measures along a streamline to demonstrate the distribution-based

approach. Their proposed AHC scheme, in addition to using a distance measure

(for example, single-linkage), uses a balance parameter that accounts for number of

streamlines in a cluster and can force smaller clusters to merge early in the process

to produce a more balanced tree. The algorithm was demonstrated to be much

faster than using distance measures to identify similarity.

196

Li et al. [180] proposed to use a similar feature vector description approach

to measure streamline similarity. To address the issue of dissimilar streamlines

having very similar feature distributions, they use a feature descriptor that

encodes the spatial relations among the features. The encoding mitigates the

need to segment the streamline and find mappings between two streamlines

during similarity evaluation. Beside using local streamline metrics like curvature

and torsion, Li et al. use global geometric properties of tortuosity and velocity

direction entropy to describe a streamline. A weighted Manhattan distance

between constructed feature vectors of two streamlines measures the similarity

between them. Following a pairwise similarity evaluation between all streamlines,

affinity propagation [181] is used to cluster streamlines and form a hierarchy. The

affinity propagation algorithm accepts the measured similarity values as input and

simultaneously considers all the data points as possible cluster centers. It uses

similarity values as preference values for each data point. The algorithm then

exchanges real-valued messages between data points until it converges to produce

a set of cluster centers of high quality.

FlowString is a framework for partial streamline matching proposed by Tao

et al. [182] that models streamlines as strings. Streamlines are first resampled on

the basis of winding angle, using a threshold small enough to capture relatively

simple patterns of the streamline segment between neighboring sample points. All

sample points are then evaluated pairwise for a similarity measure, the Procrustes

distance (a metric to quantify similarity for 3D shapes and is extensively used in

biological morphometrics), followed by applying affinity propagation for clustering

using a GPU. The resultant clusters after two levels of affinity propagation serve as

the local shapes for the data set. The local shapes are used as characters, which

197

together form an alphabet, using which words can be formed by concatenating

characters together. Their work differentiates between approximate and exact

searches; they achieve the former with dynamic programming and the latter

with a suffix tree. This work was the first to pursue labeling and classification of

streamline segments.

Analysis: Use of features along a streamline allowed for comparison between

streamlines in a proximity, scale, and orientation invariant manner. Table 14 shows

similarity measures and corresponding clustering techniques used. Streamlines

were either identified by the feature attributes of points along the curve or curve

segments. Thus, with respect to ability to identify ROI, these algorithms are

capable of responding to streamline similarity queries in addition to calculating

a representative set. In general, similarity-based methods provide the user with

control of redundancy by allowing the number of clusters or similarity threshold

to be varied. However, computing similarity between streamlines requires a one-

to-one comparison and significant processing times. To accelerate the process,

there are two major techniques: (1) using accelerators for clustering, and (2) use of

segmentation to avoid large numbers of Euclidean distance checks. However, these

similarity measures are being performed on a relatively small number of curves

and extending these techniques to scale by using more computationally efficient

measures is a current research area.

9.4.3.3 Machine Learning. The application of machine learning

techniques to scientific visualization problems has been a recent development in

the field. With respect to flow visualization and specifically the use of streamlines,

there has been recent activity.

Algorithms Using SVM For Segmentation

198

Reference Similarity Measure Clustering
[178] Spatial, Shape Properties K-means
[176] χ2 AHC
[179] EMD AHC
[180] Manhattan Distance Affinity Propagation
[182] Procrustes Distance Affinity Propagation

Table 14. Similarity measures and the corresponding clustering methods used by
similarity-based techniques that use segmentation.

Streamline segmentation has growing importance given its application

in identifying the similarity between streamlines. However, current measures of

segmentation and similarity measurement do not account for human perception

or what a human considers important. Li et al. [183] adopted a user-guided

approach that used a binary support vector machine (SVM) to perform streamline

segmentation. The approach begins by first generating a pool of random

streamlines, followed by the use of affinity propagation for clustering based on a

similarity metric that uses curvature and torsion 1D histograms. 1D histograms,

formed by concatenating previously computed histograms of curvature (20 bins)

and torsion (40 bins), describe the shape characteristics of a streamline. Next,

users choose segmentation points along the set of representative streamlines from

each cluster. For every segmentation point, the algorithm computes a feature

vector comprising velocity direction ratio, tortuosity ratio, the curvature and

torsion histograms, and the volume ratio of minimum-bounding ellipsoids using

varying neighborhood sizes. User-selected segmentation points are positive training

samples, while all non-segmentation points are negative training samples used

to train an SVM classifier. The streamline segmentation process is carried out

for the remaining streamlines using the classifier. If a group of nearby points is

selected as segmentation candidates, a post-processing step chooses the point

199

with the smallest ratio of minimum-bounding ellipsoids as the final segmentation

point. The algorithm presented by Li et al. is the first to use supervised machine

learning for streamline segmentation. They demonstrated superior segmentation

and feature capturing in comparison to previous similarity-based methods that used

segmentation.

Algorithms Using DNN For Feature Description

Han et al. [94] used a DNN, named FlowNet, to identify a representative

set of streamlines for a given flow field. An autoencoder, which features both

convolutional and fully-connected layers, enables the network to learn a complex

data representation by using both local and non-linear combinations of neurons.

FlowNet accepts voxelized and downsampled representations of streamlines as

input to learn features by non-linearly mapping each representation to a feature

descriptor of 1024 dimensions. A binary cross-entropy loss function is employed

to train FlowNet. To explore the feature descriptors generated, t-SNE [184] is

applied for dimensionality reduction, followed by interactive parameter tuning

of the clustering method DBSCAN [185] to find a suitable number of clusters or

set the minimum number of samples in a cluster. A representative streamline is

then identified as one who minimizes the sum of Euclidean distance to all other

points in the cluster. Han et al. don’t explicitly use any streamline attributes, but

instead, are the first to employ a DNN to calculate flow features before clustering

and selection. They demonstrated streamline selection which results in lower vector

field reconstruction error (Table 15) compared to Tao et al. [170] and Xu et al. [16].

However, training the network can require days to complete.

Analysis: The use of machine learning for scientific visualization has increased

recently. Machine learning has been leveraged to accurately capture ROI in a

200

Dataset [94] [170] [16]
crayfish 0.102 0.116 0.144
solar plume 0.283 0.280 0.303
five critical pts 0.023 0.026 0.031
tornado 0.080 0.105 0.101
two swirls 0.065 0.070 0.071

Table 15. Vector field reconstruction error measures from the study by Han et
al. [94]. Error is measured as the average angle difference between the original

vector field and the vector field reconstructed using the streamlines.

volume flow and to perform streamline segmentation based on a user specification

of what is considered interesting. The method by Han et al. [94] selects only

representatives of clusters and thus minimizes redundancy. Currently, the two

major drawbacks of these methods are (1) the need to subsample the data set

in order for it to be feasible to process and (2) long run times. Further, the

features learned are data set-specific and require each data set to be processed.

Future efforts can aim to build a large database to train neural networks to

identify flow features. Thus, there is potential for further research concerning

the application of machine learning techniques to unsteady flow visualization and

overall computational improvements.

9.5 Manual Techniques

Manual placement of initial seed positions is a common first step when using

streamlines to study a flow field. Interactive flow visualization techniques were

introduced two decades ago and have since evolved to give the user varying degrees

of control of the generated visualization. While several interactive flow visualization

techniques exist, in this section, we limit our study to manual techniques involving

tools for placement of seeds, density control, and the use of domain information to

do the same.

201

9.5.1 Use of Interactive Tools. The virtual windtunnel

project [186] was an immersive virtual reality-based system used for the

investigation of airflow around a Space Shuttle. In this work, Bryson et al. describe

the use of a hand position sensitive glove controller for injecting particles into a 3D

unsteady flow. To study ROI in the flow, such as boundary layers and turbulent

regions, the locations of seed points are interactively selected and the corresponding

pathlines are integrated. The resultant graphics objects can be visualized and

manipulated. In addition to rapid seed placement, the environment supports

repositioning, grouping of seeds as a rake, and deletion of existing seed points using

hand gestures. Hardware limitations at the time (1998) meant spatial subsampling

of the vector field was required for interactivity or use of a supercomputer with

dedicated graphics resources.

Schulz et al. [187] aimed to improve the interactivity of a virtual reality-

based exploration system. The target application, a car body development

aerodynamics simulation, required particle tracing to account for collisions with the

car body. The initial positions of seeds are specified using a freely movable probe

similar to Bryson et al. [186] and aligned on a rake or inside a cube. Additionally,

they proposed application-specific data structures and interpolation techniques for

fast particle tracing.

Laramee et al. [188] proposed the use of a manual seeding tool which

allowed six degrees of freedom. The seed placement tool is a two dimensional

seeding plane grid. Initial seed locations are set at the grid points before

streamlines are calculated. Besides offering grid resolution control, the seeding

plane can be translated, rotated, and scaled enabling convenient seed placement

options. Laramee [189] proposed another system, named Streamrunner, which

202

attempted to address problems of occlusion, and the lack of directional and depth

cues when interactively using streamlines in 3D flow. Streamrunner gave the user

control over seed placement and the evolution of streamlines from the time they are

seeds until they reach full length. This provided users with a sense of direction of

flow and depth when observing the growth of the streamlines.

9.5.2 Use of Domain Information for Direct Seed Placement.

To generate informative visualizations, the manual placement of seed points or

rakes is most suitable when aspects of the flow field behavior are known and

scientists can intelligently place seed points. Alternatively, seed points may be

manually placed near local maxima of an interesting scalar derived from the

vector field or near critical points of the vector field topology [194]. Several flow

visualization works adopt this approach.

For certain applications, knowledge of moving objects in the domain or

specific component design assists in deciding seed point locations. Engineers are

often required to evaluate the pattern of flow, such as a swirl or tumble flow, in

the combustion chamber of an automobile in order to achieve efficient and stable

combustion. Laramee et al. [188] strategically placed a seeding plane near the

intake ports of a combustion chamber from where fluid enters to evaluate swirl

flow. Multiple seeding planes are manually placed and the length of the generated

streamlines in the combustion chamber to capture tumble motion is limited. In

another study involving the complex geometry of an automotive engine cooling

jacket, Laramee et al.[190] generated seed points at the inlet of the cooling jacket.

To maintain seed density, a scheme similar to Bauer et al. [142] is adopted and

particles travel along integral curves until they hit a boundary or leave through

the outlet. Interactively exploring the cooling jacket proved tedious given the rapid

203

visual clutter created by complicated twisted paths and the difficulty in identifying

recirculation zones. To visualize flow past a marine turbine, Peng et al. [191] used

derived swirl flow information and multiple-coordinated views to assist domain

experts manually place seeds in regions of reverse flow.

To understand and predict the development of cerebral aneurysms, Behrendt

et al. [193] proposed an interactive flow visualization technique to isolate pathlines

near vessel surfacecs. After domain experts select patches of the surface that match

certain features of interest, a pre-computed set of pathlines is filtered in order to

retain pathlines within a threshold distance of the surface patch. The resultant

pathline bundle then provides the user with a visualization of the local blood flow

pattern. Further, the user can specify multiple patches and use color coding to

differentiate between pathline bundles.

For a biology-inspired CFD simulation, Koehler et al. [192] presented a novel

seed placement method for the visual flow analysis of insect flight. The domain

contained multiple dynamically deforming flapping dragonfly wings. Traditional

methods of using static seed points suffer in situations where there are immersed

boundaries in the flow field. The technique is based on the premise that interesting

flow phenomena generally occur near and move with the wings. Seeds are bound

in the direction of the vertex normal of user-selected points near the surface of the

immersed objects (for this application the wings). The user is given control of the

seed density and how far in the normal direction seeds are placed. Seed curves are

obtained by connecting points at neighboring time steps that are the same distance

in the normal direction of the same point on the wing mesh. Seed curves are then

color-mapped to a scalar of interest such as velocity, vorticity or λ2. The user

204

can then choose seed curves that are informative and be used further to generate

various integration-based flow lines.

9.6 Research Challenges

The majority of automated flow visualization algorithms using integral

curves operate under the post hoc visualization paradigm and consider a steady

state field. As such, there are many potential solutions (SPSS techniques) available.

As of writing this, the most obvious opportunities to improve the existing work are

in reducing computation. That said, application of SPSS techniques to unsteady

vector fields, in order to visualize integral curves such as pathlines or streaklines

in volume flow, still has unsolved problems and continuing challenges. This task

is challenging because, unlike streamlines, integral curves in evolving vector fields

can intersect in space at different points in time and the amount of vector data to

be processed is greater. Further, particles in a unsteady vector field can cluster in

certain regions while leaving other regions void. This necessitates tracking of the

particle distribution over time to ensure continued coverage of the spatial domain.

In the past decade, multiple works have researched seed placement and

stream surfaces selection techniques for the automatic generation of stream surface-

based flow visualizations [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 94].

For stream surfaces, the placement, separation, and alignment of seed curves is of

interest to researchers. This is an active area of research with new techniques being

developed to use stream surfaces effectively.

Uncertainty visualization is an important emerging area of research.

Relevant research in the field of uncertain flow visualization has studied the

uncertainty that arises in integral curve visualizations from user-input parameters

such as seed positions [206]. In another study, Ferstl et al. [207] convey uncertainty

205

in vector field ensembles using streamline variability plots. Both studies rely on

identifying similarity between streamlines in proximity, i.e., they use similarity-

based methods, and are applied to steady and unsteady vector fields. Future

research could utilize these methods for other integral curves (e.g., streaklines) or

to identify optimal instances in time to introduce seeds in the domain.

Another area for the application of SPSS techniques is in situ visualization.

In situ processing is typically performed with a limited computational budget

and in a distributed memory environment. Initial studies in this space have

used SPSS techniques to represent and store steady state vector field data in

the form of streamlines [171] and unsteady state vector field data in the form of

pathlines [5, 13, 21, 7, 8, 78]. These methods use SPSS techniques to perform

an intelligent sampling and reduction of large vector fields such that they can

be accurately reconstructed and explored post hoc. Further, the use of SPSS

techniques under in situ computational constraints for the purposes of in situ flow

visualization, i.e., generating useful flow visualizations as a large-scale simulation

progresses, is relatively unexplored.

9.7 Conclusion

This chapter describes the state-of-the-art techniques for seed placement and

streamline selection used for flow visualization. The extensive use of streamlines

for flow visualization has resulted in several methods and suggested approaches

regarding how to use them to explore a flow field. Our classification of these

algorithms resulted in three strategy classes (density-based, feature-based,

similarity-based) for automatic techniques and two strategy classes (interactive

tools, domain information) for manual techniques.

206

Our survey evaluated automatic techniques to compare and relate them

along three axes, namely, redundancy, regions of interest and computation

(Figure 46). The three automatic technique classes each offer different benefits.

First, density-based techniques provide coverage of the field in either object space

or image space and are relatively straightforward. Second, feature-based techniques

focus on highlighting salient features of the flow and can often be computed fast.

Third, similarity-based techniques minimized redundancy and picked streamlines

that together provided the best representative views of the flow. Depending on the

use case, different algorithms can be explored or benefits of different algorithms

can be combined. Table 17 summarizes the highlights and potential shortcomings

of the various SPSS technique categories. Further, Table 16 in the survey shows

a grouping of SPSS works based on the context, dimension, and state of flow

to which a technique is applied. Although multiple different streamline-based

flow visualization tasks have been tackled by SPSS techniques, future research

applying these techniques to unsteady state flow, stream/path surface visualization,

uncertainty flow visualization, and within an in situ flow visualization context is

rich in challenging open problems.

207

Technique
Target/Context

Dims State View-
Dependent

Distribution References

Planar Surface Flow

2D Steady No Uniform [97, 99, 39, 114,
115, 113][15, 132,
133, 93]

2D Steady No Non-Uniform [90, 174]

2D Steady Yes Uniform [98]

2D Steady Yes Non-Uniform [139]

2D Unsteady No Uniform [100][131]

Curved Surface Flow
3D Steady No Uniform [96, 112]

3D Steady Yes Uniform [117, 119][130]

Volume Flow

3D Steady No Uniform [101, 116][125, 128,
129][92]

3D Steady Yes Uniform [118, 86, 87, 91,
122][136][89]

3D Steady Yes Non-Uniform [120][135][172]

3D Steady No Non-Uniform [151, 123, 154,
16, 138, 17, 88,
155][170, 179, 182,
180, 183, 171,
94][189, 188, 190,
191]

3D Unsteady No Non-Uniform [137, 141][176][186,
187, 192, 193]

3D Unsteady Yes Uniform [121]

Streamsurface
Construction

3D Steady No Uniform [95]

Particle-Based Vis
3D Unsteady No Uniform [142]

3D Steady No Non-Uniform [149]

Texture-Based Vis

3D Steady No Uniform [104]

3D Unsteady No Uniform [105, 106]

3D Unsteady No Non-Uniform [144]

Table 16. Grouping of algorithms based on the application context, dimensions,
state of flow, dependency on viewpoint, and distribution. References in the
right-most column are color-coded based on the type of technique, i.e.,
density-based (purple), feature-based (blue), similarity-based (red), and

manual (green).

208

Categories of SPSS
Techniques

Highlight Potential Shortcoming

View-Independent or
Object Space

Complete domain coverage. Often contain redundant
streamlines.

View-Dependent or
Image Space

Efficient occlusion
management, prioritization
of interesting streamlines
for a given view.

Can contain redundant
streamlines.

Flow Topology Great at emphasizing
features.

Can contain redundant
streamlines and hard to
extend some to 3D.

Derived Field Good at capturing ROI,
fast computation.

Can contain redundant
streamlines.

User-Defined Scalar
Fields

Can be good at capturing
ROI, fast computation.

Not guaranteed to capture
ROI.

Spatial Distance Great at controlling
redundancy and capturing
ROI.

Large number of distance
computations and limited
to similarity in proximity.

Shape Can measure similarity in
an orientation-, position-,
and scale-invariant manner.

Large preprocessing
time for large number
of streamlines.

Machine Learning Great at accurately
capturing vector field
information in the form of
streamlines.

Slow to compute.

Table 17. A summary of the highlights and potential shortcomings of the various
automatic SPSS technique categories. Each category name is colored based on its
classification, i.e., purple for density-based, blue for feature-based, and red for

similarity-based techniques.

209

REFERENCES CITED

[1] J. R. Cash and A. H. Karp, “A variable order runge-kutta method for initial
value problems with rapidly varying right-hand sides,” ACM Transactions
on Mathematical Software (TOMS), vol. 16, no. 3, pp. 201–222, 1990.

[2] K.-L. Ma, “In situ visualization at extreme scale: Challenges and opportunities,”
IEEE Computer Graphics and Applications, vol. 29, no. 6, pp. 14–19, 2009.

[3] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K. Moreland,
P. O’Leary, V. Vishwanath, B. Whitlock, et al., “In situ methods,
infrastructures, and applications on high performance computing platforms,”
in Computer Graphics Forum, vol. 35, pp. 577–597, Wiley Online Library,
2016.

[4] H. Childs, “Data Exploration at the Exascale,” Supercomputing Frontiers and
Innovations, vol. 2, pp. 5–13, Dec. 2015.

[5] A. Agranovsky, D. Camp, C. Garth, E. W. Bethel, K. I. Joy, and H. Childs,
“Improved post hoc flow analysis via lagrangian representations,” in Large
Data Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium on,
pp. 67–75, IEEE, 2014.

[6] S. Sane and H. Childs, “In situ lagrangian analysis for exploration of
time-dependent vector fields,” in ISVFCS20 (accepted for publication).

[7] S. Sane, R. Bujack, and H. Childs, “Revisiting the Evaluation of In Situ
Lagrangian Analysis,” in Eurographics Symposium on Parallel Graphics and
Visualization (H. Childs and F. Cucchietti, eds.), The Eurographics
Association, 2018.

[8] S. Sane, H. Childs, and R. Bujack, “An Interpolation Scheme for VDVP
Lagrangian Basis Flows,” in Eurographics Symposium on Parallel Graphics
and Visualization (H. Childs and S. Frey, eds.), The Eurographics
Association, 2019.

[9] S. Sane, A. Yenpure, R. Bujack, M. Larsen, K. Moreland, C. Garth, and
H. Childs, “Scalable in situ lagrangian flow map extraction: Demonstrating
the viability of a communication-free model,” arXiv preprint
arXiv:2004.02003, 2020.

[10] S. Sane, R. Bujack, C. Garth, and H. Childs, “Survey of Seed Placement and
Streamline Techniques,” Computer Graphics Forum (accepted for
publication).

210

[11] H. Childs, J. Bennett, C. Garth, and B. Hentschel, “In Situ Visualization for
Computational Science,” IEEE Computer Graphics and Applications
(CG&A), vol. 39, pp. 76–85, Nov./Dec. 2019.

[12] J. C. Bennett, H. Childs, C. Garth, and B. Hentschel, “In Situ Visualization for
Computational Science (Dagstuhl Seminar 18271),” Dagstuhl Reports, vol. 8,
pp. 1–43, July 2018.

[13] R. Bujack and K. I. Joy, “Lagrangian representations of flow fields with
parameter curves,” in Large Data Analysis and Visualization (LDAV), 2015
IEEE 5th Symposium on, pp. 41–48, IEEE, 2015.

[14] M. Hummel, R. Bujack, K. I. Joy, and C. Garth, “Error estimates for
lagrangian flow field representations,” in Proceedings of the
Eurographics/IEEE VGTC Conference on Visualization: Short Papers,
pp. 7–11, Eurographics Association, 2016.

[15] V. Verma, D. Kao, and A. Pang, “A flow-guided streamline seeding strategy,” in
Proceedings of the conference on Visualization’00, pp. 163–170, IEEE
Computer Society Press, 2000.

[16] L. Xu, T.-Y. Lee, and H.-W. Shen, “An information-theoretic framework for
flow visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 16, no. 6, pp. 1216–1224, 2010.

[17] H. Yu, C. Wang, C.-K. Shene, and J. H. Chen, “Hierarchical streamline
bundles,” IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 8, pp. 1353–1367, 2012.

[18] N. A. Petersson and B. Sjögreen, “Wave propagation in anisotropic elastic
materials and curvilinear coordinates using a summation-by-parts finite
difference method,” Journal of Computational Physics, vol. 299,
pp. 820–841, 2015.

[19] A. Agranovsky, D. Camp, K. I. Joy, and H. Childs, “Subsampling-based
compression and flow visualization,” in Visualization and Data Analysis
2015, vol. 9397, p. 93970J, International Society for Optics and Photonics,
2015.

[20] A. Agranovsky, C. Garth, and K. I. Joy, “Extracting flow structures using
sparse particles.,” in VMV, pp. 153–160, 2011.

[21] J. Chandler, H. Obermaier, and K. I. Joy, “Interpolation-based pathline tracing
in particle-based flow visualization,” IEEE Transactions on Visualization
and Computer Graphics, vol. 21, no. 1, pp. 68–80, 2015.

211

[22] G. Haller, “Finding finite-time invariant manifolds in two-dimensional velocity
fields,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 10,
no. 1, pp. 99–108, 2000.

[23] G. Haller and G. Yuan, “Lagrangian coherent structures and mixing in
two-dimensional turbulence,” Physica D: Nonlinear Phenomena, vol. 147,
no. 3-4, pp. 352–370, 2000.

[24] G. Haller, “Distinguished material surfaces and coherent structures in
three-dimensional fluid flows,” Physica D: Nonlinear Phenomena, vol. 149,
no. 4, pp. 248–277, 2001.

[25] C. Garth, F. Gerhardt, X. Tricoche, and H. Hans, “Efficient computation and
visualization of coherent structures in fluid flow applications,” IEEE
Transactions on Visualization and Computer Graphics, vol. 13, no. 6,
pp. 1464–1471, 2007.

[26] C. Garth, G.-S. Li, X. Tricoche, C. D. Hansen, and H. Hagen, “Visualization of
coherent structures in transient 2d flows,” in Topology-Based Methods in
Visualization II, pp. 1–13, Springer, 2009.

[27] F. Sadlo and R. Peikert, “Efficient visualization of lagrangian coherent
structures by filtered amr ridge extraction,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 6, pp. 1456–1463, 2007.

[28] F. Sadlo, A. Rigazzi, and R. Peikert, “Time-dependent visualization of
lagrangian coherent structures by grid advection,” in Topological Methods in
Data Analysis and Visualization, pp. 151–165, Springer, 2011.

[29] H. Guo, W. He, T. Peterka, H.-W. Shen, S. M. Collis, and J. J. Helmus,
“Finite-time lyapunov exponents and lagrangian coherent structures in
uncertain unsteady flows,” IEEE Transactions on Visualization and
Computer Graphics, vol. 22, no. 6, pp. 1672–1682, 2016.

[30] T. M. Özgökmen, A. C. Poje, P. F. Fischer, H. Childs, H. Krishnan, C. Garth,
A. C. Haza, and E. Ryan, “On multi-scale dispersion under the influence of
surface mixed layer instabilities and deep flows,” Ocean Modelling, vol. 56,
pp. 16–30, 2012.

[31] B. Schindler, R. Peikert, R. Fuchs, and H. Theisel, “Ridge concepts for the
visualization of lagrangian coherent structures,” in Topological Methods in
Data Analysis and Visualization II, pp. 221–235, Springer, 2012.

[32] M. Hlawatsch, F. Sadlo, and D. Weiskopf, “Hierarchical line integration,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 8,
pp. 1148–1163, 2011.

212

[33] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics-theory
and application to non-spherical stars,” Monthly notices of the royal
astronomical society, vol. 181, pp. 375–389, 1977.

[34] J. Chandler, R. Bujack, and K. I. Joy, “Analysis of error in interpolation-based
pathline tracing,” in Proceedings of the Eurographics/IEEE VGTC
Conference on Visualization: Short Papers, pp. 1–5, Eurographics
Association, 2016.

[35] K. E. Atkinson, An introduction to numerical analysis. John Wiley & Sons,
2008.

[36] M. Schatzmann, Numerical Analysis: A Mathematical Introduction. New York,
USA: Oxford University Press, 2002.

[37] N. Brummell, F. Cattaneo, and S. Tobias, “Linear and nonlinear dynamo
properties of time-dependent abc flows,” Fluid Dynamics Research, vol. 28,
no. 4, pp. 237–265, 2001.

[38] L. Orf, R. Wilhelmson, and L. Wicker, “Visualization of a simulated Long-Track
EF5 tornado embedded within a supercell thunderstorm,” Parallel Comput.,
vol. 0, no. 0, 2015. in press.

[39] A. Mebarki, P. Alliez, and O. Devillers, “Farthest point seeding for efficient
placement of streamlines,” in Visualization, 2005. VIS 05. IEEE,
pp. 479–486, IEEE, 2005.

[40] S. C. Shadden, F. Lekien, and J. E. Marsden, “Definition and properties of
lagrangian coherent structures from finite-time lyapunov exponents in
two-dimensional aperiodic flows,” Physica D: Nonlinear Phenomena,
vol. 212, no. 3, pp. 271–304, 2005.

[41] S. Waldron, “The error in linear interpolation at the vertices of a simplex,”
SIAM Journal on Numerical Analysis, vol. 35, no. 3, pp. 1191–1200, 1998.

[42] D. Sujudi and R. Haimes, “Integration of particle paths and streamlines in a
spatially-decomposed computation,” in Parallel Computational Fluid
Dynamics 1995, pp. 315–322, Elsevier, 1996.

[43] T. Peterka, R. Ross, B. Nouanesengsy, T. Y. Lee, H. W. Shen, W. Kendall, and
J. Huang, “A study of parallel particle tracing for steady-state and
time-varying flow fields,” in 2011 IEEE International Parallel Distributed
Processing Symposium, pp. 580–591, May 2011.

[44] L. Chen and I. Fujishiro, “Optimizing parallel performance of streamline
visualization for large distributed flow datasets,” in 2008 IEEE Pacific
Visualization Symposium, pp. 87–94, March 2008.

213

[45] H. Yu, C. Wang, and K.-L. Ma, “Parallel hierarchical visualization of large
time-varying 3d vector fields,” in Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, p. 24, ACM, 2007.

[46] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen, “Load-balanced parallel
streamline generation on large scale vector fields,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 12, pp. 1785–1794, 2011.

[47] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha,
“Scalable work stealing,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, pp. 1–11, IEEE,
2009.

[48] D. Camp, H. Childs, A. Chourasia, C. Garth, and K. I. Joy, “Evaluating the
benefits of an extended memory hierarchy for parallel streamline
algorithms,” in Large Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on, pp. 57–64, IEEE, 2011.

[49] C. Muller, D. Camp, B. Hentschel, and C. Garth, “Distributed parallel particle
advection using work requesting,” in Large-Scale Data Analysis and
Visualization (LDAV), 2013 IEEE Symposium on, pp. 1–6, IEEE, 2013.

[50] H. Guo, J. Zhang, R. Liu, L. Liu, X. Yuan, J. Huang, X. Meng, and J. Pan,
“Advection-based sparse data management for visualizing unsteady flow,”
IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2555–2564, 2014.

[51] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber, “Scalable
computation of streamlines on very large datasets,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, p. 16, ACM, 2009.

[52] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erickson,
“Simplified parallel domain traversal,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, p. 10, ACM, 2011.

[53] K. Lu, H.-W. Shen, and T. Peterka, “Scalable computation of stream surfaces
on large scale vector fields,” in Proceedings of the international conference
for high performance computing, networking, storage and analysis,
pp. 1008–1019, IEEE Press, 2014.

[54] J. Zhang and X. Yuan, “A survey of parallel particle tracing algorithms in flow
visualization,” Journal of Visualization, vol. 21, no. 3, pp. 351–368, 2018.

214

[55] R. Bleile, L. Sugiyama, C. Garth, and H. Childs, “Accelerating advection via
approximate block exterior flow maps,” Electronic Imaging, vol. 2017, no. 1,
pp. 140–148, 2017.

[56] Y. Liao, H. Matsui, O. Kreylos, and L. H. Kellogg, “Scalable parallel flow
visualization using 3d line integral convolution for large scale unstructured
simulation data,” in EGPGV, 2019.

[57] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable
implementation of the mpi message passing interface standard,” Parallel
computing, vol. 22, no. 6, pp. 789–828, 1996.

[58] K. Moreland, C. Sewell, W. Usher, L.-t. Lo, J. Meredith, D. Pugmire, J. Kress,
H. Schroots, K.-L. Ma, H. Childs, et al., “Vtk-m: Accelerating the
visualization toolkit for massively threaded architectures,” IEEE Computer
Graphics and Applications, vol. 36, no. 3, pp. 48–58, 2016.

[59] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci, and
C. Harrison, “The alpine in situ infrastructure: Ascending from the ashes of
strawman,” in Proceedings of the In Situ Infrastructures on Enabling
Extreme-Scale Analysis and Visualization, pp. 42–46, ACM, 2017.

[60] D. Pugmire, A. Yenpure, M. Kim, J. Kress, R. Maynard, H. Childs, and
B. Hentschel, “Performance-Portable Particle Advection with VTK-m,” in
Eurographics Symposium on Parallel Graphics and Visualization (H. Childs
and F. Cucchietti, eds.), The Eurographics Association, 2018.

[61] A. Fabri and M. Teillaud, “Cgal-the computational geometry algorithms
library,” in 10e colloque national en calcul des structures, p. 6, 2011.

[62] W. J. Schroeder, B. Lorensen, and K. Martin, The visualization toolkit: an
object-oriented approach to 3D graphics. Kitware, 2004.

[63] D. F. Griffiths and D. J. Higham, Numerical Methods for Ordinary Differential
Equations: Initial Value Problems. London, UK: Springer, 2010.

[64] P. Hartman, “Ordinary differential equations,” 1973.

[65] A. Mallinson, D. A. Beckingsale, W. Gaudin, J. Herdman, J. Levesque, and
S. A. Jarvis, “Cloverleaf: Preparing hydrodynamics codes for exascale,” The
Cray User Group, vol. 2013, 2013.

[66] S. Popinet, “Gerris: a tree-based adaptive solver for the incompressible euler
equations in complex geometries,” Journal of Computational Physics,
vol. 190, no. 2, pp. 572–600, 2003.

215

[67] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel, “Nyx: A
massively parallel amr code for computational cosmology,” The
Astrophysical Journal, vol. 765, no. 1, p. 39, 2013.

[68] S. K. Lodha, J. C. Renteria, and K. M. Roskin, “Topology preserving
compression of 2d vector fields,” in Proceedings Visualization 2000. VIS
2000 (Cat. No. 00CH37145), pp. 343–350, IEEE, 2000.

[69] S. K. Lodha, N. M. Faaland, and J. C. Renteria, “Topology preserving
top-down compression of 2d vector fields using bintree and triangular
quadtrees,” IEEE Transactions on Visualization and Computer Graphics,
vol. 9, no. 4, pp. 433–442, 2003.

[70] H. Theisel, C. Rossl, and H.-P. Seidel, “Combining topological simplification
and topology preserving compression for 2d vector fields,” in 11th Pacific
Conference onComputer Graphics and Applications, 2003. Proceedings.,
pp. 419–423, IEEE, 2003.

[71] H. Theisel, C. Rössl, and H.-P. Seidel, “Compression of 2d vector fields under
guaranteed topology preservation,” in Computer Graphics Forum, vol. 22,
pp. 333–342, Wiley Online Library, 2003.

[72] X. Tong, T.-Y. Lee, and H.-W. Shen, “Salient time steps selection from large
scale time-varying data sets with dynamic time warping,” in IEEE
Symposium on Large Data Analysis and Visualization (LDAV), pp. 49–56,
IEEE, 2012.

[73] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie, and
E. Bethel, “The SENSEI Generic In Situ Interface,” in Proceedings of the
Workshop on In Situ Infrastructures for Enabling Extreme-scale Analysis
and Visualization (ISAV), pp. 40–44, IEEE Press, 2016.

[74] T. Fogal, F. Proch, A. Schiewe, O. Hasemann, A. Kempf, and J. Krüger,
“Freeprocessing: Transparent in situ visualization via data interception,” in
Eurographics Symposium on Parallel Graphics and Visualization, pp. 49–56,
2014.

[75] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci, and
C. Harrison, “The ALPINE In Situ Infrastructure: Ascending from the
Ashes of Strawman,” in Proceedings of the In Situ Infrastructures on
Enabling Extreme-Scale Analysis and Visualization (ISAV), pp. 42–46, 2017.

[76] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky,
R. Tchoua, J. Lofstead, R. Oldfield, et al., “Hello ADIOS: the challenges and
lessons of developing leadership class I/O frameworks,” Concurrency and
Computation: Practice and Experience, vol. 26, no. 7, pp. 1453–1473, 2014.

216

[77] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, “Topology-aware
Data Movement and Staging for I/O Acceleration on Blue Gene/P
Supercomputing Systems,” in Proceedings of International Conference for
High Performance Computing, Networking, Storage and Analysis (SC11),
pp. 19:1–19:11, 2011.

[78] T. Rapp, C. Peters, and C. Dachsbacher, “Void-and-cluster sampling of large
scattered data and trajectories,” IEEE Transactions on Visualization and
Computer Graphics, vol. 26, no. 1, pp. 780–789, 2019.

[79] D. Pugmire, T. Peterka, and C. Garth, “Parallel integral curves,” High
Performance Visualization: Enabling Extreme-Scale Scientific Insight,
pp. 91–113, 2012.

[80] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen, “Over
Two Decades of Integration-Based, Geometric Flow Visualization,” in EG
2009 - State of the Art Reports, pp. 73–92, 2009.

[81] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, “The state of
the art in flow visualisation: Feature extraction and tracking,” in Computer
Graphics Forum, vol. 22, pp. 775–792, Wiley Online Library, 2003.

[82] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf,
“The state of the art in flow visualization: Dense and texture-based
techniques,” in Computer Graphics Forum, vol. 23, pp. 203–221, Wiley
Online Library, 2004.

[83] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post, “Topology-based flow
visualization, the state of the art,” in Topology-based methods in
visualization, pp. 1–19, Springer, 2007.

[84] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel,
K. Matković, and H. Hauser, “The state of the art in topology-based
visualization of unsteady flow,” in Computer Graphics Forum, vol. 30,
pp. 1789–1811, Wiley Online Library, 2011.

[85] E. A. Coddington, An introduction to ordinary differential equations. Courier
Corporation, 2012.

[86] S. Marchesin, C.-K. Chen, C. Ho, and K.-L. Ma, “View-dependent streamlines
for 3d vector fields,” IEEE Transactions on Visualization and Computer
Graphics, vol. 16, no. 6, pp. 1578–1586, 2010.

[87] T. Günther, K. Bürger, R. Westermann, and H. Theisel, “A view-dependent
and inter-frame coherent visualization of integral lines using screen
contribution.,” in VMV, pp. 215–222, 2011.

217

[88] J. Ma, J. Walker, C. Wang, S. Kuhl, and C. K. Shene, “Flowtour: An
automatic guide for exploring internal flow features,” in Visualization
Symposium (PacificVis), 2014 IEEE Pacific, pp. 25–32, IEEE, 2014.

[89] M. Kanzler, F. Ferstl, and R. Westermann, “Line density control in screen-space
via balanced line hierarchies,” Computers & Graphics, vol. 61, pp. 29–39,
2016.

[90] L. Li, H.-H. Hsieh, and H.-W. Shen, “Illustrative streamline placement and
visualization,” in Visualization Symposium, 2008. PacificVIS’08. IEEE
Pacific, pp. 79–86, IEEE, 2008.

[91] T. Günther, C. Rössl, and H. Theisel, “Opacity optimization for 3d line fields,”
ACM Transactions on Graphics (TOG), vol. 32, no. 4, p. 120, 2013.

[92] Y. Chen, J. Cohen, and J. Krolik, “Similarity-guided streamline placement with
error evaluation,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1448–1455, 2007.

[93] K. Wu, Z. Liu, S. Zhang, and R. J. Moorhead II, “Topology-aware evenly
spaced streamline placement,” IEEE Transactions on Visualization and
Computer Graphics, vol. 16, no. 5, pp. 791–801, 2010.

[94] J. Han, J. Tao, and C. Wang, “Flownet: A deep learning framework for
clustering and selection of streamlines and stream surfaces,” IEEE
Transactions on Visualization and Computer Graphics, 2018.

[95] J. P. M. Hultquist, “Constructing stream surfaces in steady 3d vector fields,” in
Proceedings Visualization ’92, pp. 171–178, Oct 1992.

[96] N. Max, R. Crawfis, and C. Grant, “Visualizing 3d velocity fields near contour
surfaces,” in Proceedings of the conference on Visualization’94, pp. 248–255,
IEEE Computer Society Press, 1994.

[97] B. Jobard and W. Lefer, “Creating evenly-spaced streamlines of arbitrary
density,” in Visualization in Scientific Computing ’97, (Vienna), pp. 43–55,
Springer Vienna, 1997.

[98] G. Turk and D. Banks, “Image-guided streamline placement,” in Proceedings of
the 23rd annual conference on Computer graphics and interactive techniques,
pp. 453–460, ACM, 1996.

[99] B. Jobard and W. Lefer, “Multiresolution flow visualization,” 2001.

[100] B. Jobard and W. Lefer, “Unsteady flow visualization by animating
evenly-spaced streamlines,” in Computer Graphics Forum, vol. 19, pp. 31–39,
Wiley Online Library, 2000.

218

[101] O. Mattausch, T. Theußl, H. Hauser, and E. Gröller, “Strategies for interactive
exploration of 3d flow using evenly-spaced illuminated streamlines,” in
Proceedings of the 19th spring conference on Computer graphics,
pp. 213–222, ACM, 2003.

[102] A. Vilanova, G. Berenschot, and C. Van Pul, “Dti visualization with
streamsurfaces and evenly-spaced volume seeding,” in Proceedings of the
Sixth Joint Eurographics-IEEE TCVG conference on Visualization,
pp. 173–182, Eurographics Association, 2004.

[103] D. Merhof, M. Sonntag, F. Enders, P. Hastreiter, R. Fahlbusch, C. Nimsky,
and G. Greiner, “Visualization of diffusion tensor data using evenly spaced
streamlines,” First publ. in: Vision, Modeling and Visualization / Gnther
Greiner ... (eds.). Berlin: Akademische Verl.-Ges. AKA, 2005, pp. 257-264,
01 2005.

[104] G.-S. Li, U. D. Bordoloi, and H.-W. Shen, “Chameleon: An interactive
texture-based rendering framework for visualizing three-dimensional vector
fields,” in Visualization, 2003. VIS 2003. IEEE, pp. 241–248, IEEE, 2003.

[105] H.-W. Shen, U. D. Bordoloi, and G.-S. Li, “Interactive visualization of
three-dimensional vector fields with flexible appearance control,” IEEE
Transactions on Visualization and Computer Graphics, vol. 10, no. 4,
pp. 434–445, 2004.

[106] A. Helgeland and T. Elboth, “High-quality and interactive animations of 3d
time-varying vector fields,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 6, pp. 1535–1546, 2006.

[107] A. Helgeland and O. Andreassen, “Visualization of vector fields using seed lic
and volume rendering,” IEEE Transactions on Visualization and Computer
Graphics, no. 6, pp. 673–682, 2004.

[108] L. P. Chew, “Guaranteed-quality mesh generation for curved surfaces,” in
Proceedings of the ninth annual symposium on Computational geometry,
pp. 274–280, ACM, 1993.

[109] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest point
strategy for progressive image sampling,” IEEE Transactions on Image
Processing, vol. 6, no. 9, pp. 1305–1315, 1997.

[110] H. Edelsbrunner and D. Guoy, “Sink-insertion for mesh improvement,” in
Proceedings of the seventeenth annual symposium on Computational
geometry, pp. 115–123, ACM, 2001.

219

[111] S. Oudot and J.-D. Boissonnat, “Provably good surface sampling and
approximation.,” in Symposium on Geometry Processing, pp. 9–18, 2003.

[112] O. Rosanwo, C. Petz, S. Prohaska, H.-C. Hege, and I. Hotz, “Dual streamline
seeding,” in Visualization Symposium, 2009. PacificVis’ 09. IEEE Pacific,
pp. 9–16, IEEE, 2009.

[113] W. Zhang, Y. Wang, J. Zhan, B. Liu, and J. Ning, “Parallel streamline
placement for 2d flow fields,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 7, pp. 1185–1198, 2013.

[114] W. Zhang, B. Sun, and Y. Wang, “A streamline placement method
highlighting flow field topology,” in Computational Intelligence and Security
(CIS), 2010 International Conference on, pp. 238–242, IEEE, 2010.

[115] W. Zhang, M. Zhang, and B. Sun, “Multiresolution streamline placement for
2d flow fields,” in Computational Intelligence and Security (CIS), 2011
Seventh International Conference on, pp. 1174–1178, IEEE, 2011.

[116] W. Zhang, J. Ning, M. Zhang, Y. Pei, B. Liu, and B. Sun, “Multiresolution
streamline placement based on control grids,” Integrated Computer-Aided
Engineering, vol. 21, no. 1, pp. 47–57, 2014.

[117] X. Mao, Y. Hatanaka, H. Higashida, and A. Imamiya, “Image-guided
streamline placement on curvilinear grid surfaces,” in Visualization’98.
Proceedings, pp. 135–142, IEEE, 1998.

[118] L. Li and H.-W. Shen, “Image-based streamline generation and rendering,”
IEEE Transactions on Visualization and Computer Graphics, no. 3,
pp. 630–640, 2007.

[119] B. Spencer, R. S. Laramee, G. Chen, and E. Zhang, “Evenly spaced
streamlines for surfaces: An image-based approach,” in Computer Graphics
Forum, vol. 28, pp. 1618–1631, Wiley Online Library, 2009.

[120] T. Annen, H. Theisel, C. Rössl, G. Ziegler, and H.-P. Seidel, “Vector field
contours,” in Proceedings of Graphics Interface 2008, pp. 97–105, Canadian
Information Processing Society, 2008.

[121] T. Günther, C. Rössl, and H. Theisel, “Hierarchical opacity optimization for
sets of 3d line fields,” in Computer Graphics Forum, vol. 33, pp. 507–516,
Wiley Online Library, 2014.

[122] J. Ma, C. Wang, and C.-K. Shene, “Coherent view-dependent streamline
selection for importance-driven flow visualization,” in Visualization and
Data Analysis 2013, vol. 8654, p. 865407, International Society for Optics
and Photonics, 2013.

220

[123] L. A. Treinish, “Multi-resolution visualization techniques for nested weather
models,” in Proceedings of the conference on Visualization’00, pp. 513–516,
IEEE Computer Society Press, 2000.

[124] R. L. Cook, “Stochastic sampling in computer graphics,” ACM Transactions
on Graphics (TOG), vol. 5, no. 1, pp. 51–72, 1986.

[125] X. Ye, D. Kao, and A. Pang, “Strategy for seeding 3d streamlines,” in
Visualization, 2005. VIS 05. IEEE, pp. 471–478, IEEE, 2005.

[126] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, “Saddle connectors-an
approach to visualizing the topological skeleton of complex 3d vector fields,”
in Visualization, 2003. VIS 2003. IEEE, pp. 225–232, IEEE, 2003.

[127] K. Mahrous, J. Bennett, G. Scheuermann, B. Hamann, and K. I. Joy,
“Topological segmentation in three-dimensional vector fields,” IEEE
Transactions on Visualization and Computer Graphics, no. 2, pp. 198–205,
2004.

[128] Z. Liu, R. Moorhead, and J. Groner, “An advanced evenly-spaced streamline
placement algorithm,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 965–972, 2006.

[129] Z. Liu and R. J. Moorhead II, “Robust loop detection for interactively placing
evenly spaced streamlines,” Computing in Science & Engineering, vol. 9,
no. 4, pp. 86–91, 2007.

[130] Z. Liu and R. J. Moorhead, “Interactive view-driven evenly spaced streamline
placement,” in Visualization and Data Analysis 2008, vol. 6809, p. 68090A,
International Society for Optics and Photonics, 2008.

[131] Z. Ding, X. Zhang, W. Chen, X. Tricoche, D. Peng, and Q. Peng, “Coherent
streamline generation for 2-d vector fields,” Tsinghua Science and
Technology, vol. 17, no. 4, pp. 463–470, 2012.

[132] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang, “Vector
field editing and periodic orbit extraction using morse decomposition,” IEEE
Transactions on Visualization and Computer Graphics, no. 4, pp. 769–785,
2007.

[133] W. Zhang and J. Deng, “Topology-driven streamline seeding for 2d vector field
visualization,” in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE
International Conference on, pp. 4901–4905, IEEE, 2009.

[134] W. Zhang and J. Su, “Extraction of limit streamlines in 2d flow field using
virtual boundary,” in Computational Intelligence and Security, 2009. CIS’09.
International Conference on, vol. 1, pp. 171–175, IEEE, 2009.

221

[135] S. Furuya and T. Itoh, “A streamline selection technique for integrated scalar
and vector visualization,” in In IEEE Visualization, Poster Session, 2008.

[136] T.-Y. Lee, O. Mishchenko, H.-W. Shen, and R. Crawfis, “View point
evaluation and streamline filtering for flow visualization,” in Visualization
Symposium (PacificVis), 2011 IEEE Pacific, pp. 83–90, IEEE, 2011.

[137] A. Wiebel and G. Scheuermann, “Eyelet particle tracing-steady visualization of
unsteady flow,” in Visualization, 2005. VIS 05. IEEE, pp. 607–614, IEEE,
2005.

[138] Y. Wang, W. Zhang, and J. Ning, “Streamline-based visualization of 3d
explosion fields,” in Computational Intelligence and Security (CIS), 2011
Seventh International Conference on, pp. 1224–1228, IEEE, 2011.

[139] C. Luo, I. Safa, and Y. Wang, “Feature-aware streamline generation of planar
vector fields via topological methods,” Computers & Graphics, vol. 36, no. 6,
pp. 754–766, 2012.

[140] R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and
applications, vol. 75. Springer Science & Business Media, 2012.

[141] L. Zhang, G. Chen, R. S. Laramee, D. Thompson, and A. Sescu, “Flow
visualization based on a derived rotation field,” Electronic Imaging,
vol. 2016, no. 1, pp. 1–10, 2016.

[142] D. Bauer, R. Peikert, M. Sato, and M. Sick, “A case study in selective
visualization of unsteady 3d flow,” in Proceedings of the conference on
Visualization’02, pp. 525–528, IEEE Computer Society, 2002.

[143] D. Stalling and H.-C. Hege, “Fast and resolution independent line integral
convolution,” in Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pp. 249–256, ACM, 1995.

[144] S. Guthe, S. Gumhold, and W. Straßer, “Interactive visualization of volumetric
vector fields using texture based particles,” 2002.

[145] A. Fuhrmann and E. Gröller, “Real-time techniques for 3d flow visualization,”
in Proceedings of the conference on Visualization’98, pp. 305–312, IEEE
Computer Society Press, 1998.

[146] J. Kruger, P. Kipfer, P. Konclratieva, and R. Westermann, “A particle system
for interactive visualization of 3d flows,” IEEE Transactions on
Visualization and Computer Graphics, vol. 11, no. 6, pp. 744–756, 2005.

222

[147] K. Burger, P. Kondratieva, J. Kruger, and R. Westermann,
“Importance-driven particle techniques for flow visualization,” in
Visualization Symposium, 2008. PacificVIS’08. IEEE Pacific, pp. 71–78,
Citeseer, 2008.

[148] R. Van Pelt, J. O. Bescos, M. Breeuwer, R. E. Clough, M. E. Groller, B. ter
Haar Romenij, and A. Vilanova, “Interactive virtual probing of 4d mri
blood-flow,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 2153–2162, 2011.

[149] W. Engelke, K. Lawonn, B. Preim, and I. Hotz, “Autonomous particles for
interactive flow visualization,” in Computer Graphics Forum, Wiley Online
Library, 2018.

[150] J. Jeong and F. Hussain, “On the identification of a vortex,” Journal of fluid
mechanics, vol. 285, pp. 69–94, 1995.

[151] M. Zockler, D. Stalling, and H.-C. Hege, “Interactive visualization of 3d-vector
fields using illuminated stream lines,” in Visualization’96. Proceedings.,
pp. 107–113, IEEE, 1996.

[152] T. Weinkauf and H. Theisel, “Curvature measures of 3d vector fields and their
applications,” Journal of WSCG, vol. 10, pp. 507–514, February 2002.

[153] T. Weinkauf, H.-C. Hege, B. R. Noack, M. Schlegel, and A. Dillmann,
“Coherent structures in a transitional flow around a backward-facing step,”
Physics of Fluids, vol. 15, no. 9, pp. S3–S3, 2003.

[154] M. Schlemmer, I. Hotz, B. Hamann, F. Morr, and H. Hagen, “Priority
streamlines: A context-based visualization of flow fields.,” in EuroVis,
pp. 227–234, 2007.

[155] H.-W. Shen, R. Vasko, and R. Wenger, “Visualizing flow fields using fractal
dimensions,” in Proceedings of the Eurographics/IEEE VGTC Conference on
Visualization: Short Papers, pp. 25–29, Eurographics Association, 2016.

[156] M. Khoury and R. Wenger, “On the fractal dimension of isosurfaces,” IEEE
Transactions on Visualization and Computer Graphics, vol. 16, no. 6,
pp. 1198–1205, 2010.

[157] A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and R. Wenger, “Exploring flow fields
using space-filling analysis of streamlines,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 10, pp. 1392–1404, 2014.

[158] R. Bujack, J. Kasten, I. Hotz, G. Scheuermann, and E. Hitzer, “Moment
invariants for 3d flow fields via normalization,” in 2015 IEEE Pacific
visualization symposium (PacificVis), pp. 9–16, IEEE, 2015.

223

[159] R. Bujack and H. Hagen, “Moment Invariants for Multi-Dimensional Data,” in
Modelling, Analysis, and Visualization of Anisotropy (E. Ozerslan,
T. Schultz, and I. Hotz, eds.), Mathematica and Visualization, Springer
Basel AG, 2017.

[160] T. Salzbrunn and G. Scheuermann, “Streamline predicates,” IEEE
Transactions on Visualization and Computer Graphics, vol. 12, no. 6,
pp. 1601–1612, 2006.

[161] T. Salzbrunn, C. Garth, G. Scheuermann, and J. Meyer, “Pathline predicates
and unsteady flow structures,” The Visual Computer, vol. 24, no. 12,
pp. 1039–1051, 2008.

[162] A. Brun, H. Knutsson, H.-J. Park, M. E. Shenton, and C.-F. Westin,
“Clustering fiber traces using normalized cuts,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention,
pp. 368–375, Springer, 2004.

[163] B. Moberts, A. Vilanova, and J. J. Van Wijk, “Evaluation of fiber clustering
methods for diffusion tensor imaging,” in Visualization, 2005. VIS 05. IEEE,
pp. 65–72, IEEE, 2005.

[164] L. ODonnell and C.-F. Westin, “White matter tract clustering and
correspondence in populations,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 140–147,
Springer, 2005.

[165] A. Tsai, C.-F. Westin, A. O. Hero, and A. S. Willsky, “Fiber tract clustering
on manifolds with dual rooted-graphs,” in Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1–6, IEEE, 2007.

[166] M. Maddah, W. E. L. Grimson, S. K. Warfield, and W. M. Wells, “A unified
framework for clustering and quantitative analysis of white matter fiber
tracts,” Medical image analysis, vol. 12, no. 2, pp. 191–202, 2008.

[167] S. Oeltze, D. J. Lehmann, A. Kuhn, G. Janiga, H. Theisel, and B. Preim,
“Blood flow clustering and applications invirtual stenting of intracranial
aneurysms,” IEEE Transactions on Visualization and Computer Graphics,
vol. 20, no. 5, pp. 686–701, 2014.

[168] L. Shi, R. S. Laramee, and G. Chen, “Integral curve clustering and
simplification for flow visualization: A comparative evaluation,” IEEE
Transactions on Visualization and Computer Graphics, 2019.

[169] L. Shi and G. Chen, “Metric-based curve clustering and feature extraction in
flow visualization,” 2017.

224

[170] J. Tao, J. Ma, C. Wang, and C.-K. Shene, “A unified approach to streamline
selection and viewpoint selection for 3d flow visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 19, no. 3,
pp. 393–406, 2013.

[171] J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and C. Wang, “Flow field
reduction via reconstructing vector data from 3-d streamlines using deep
learning,” IEEE Computer Graphics and Applications, vol. 39, no. 4,
pp. 54–67, 2019.

[172] J. Wei, C. Wang, H. Yu, and K.-L. Ma, “A sketch-based interface for
classifying and visualizing vector fields,” in Visualization Symposium
(PacificVis), 2010 IEEE Pacific, pp. 129–136, IEEE, 2010.

[173] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,”
Journal of the ACM (JACM), vol. 21, no. 1, pp. 168–173, 1974.

[174] L. Zheng, W. Wang, and S. Li, “Feature-based streamline selection method for
2d flow fields,” in Computer-Aided Design and Computer Graphics
(CAD/Graphics), 2015 14th International Conference on, pp. 129–136,
IEEE, 2015.

[175] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in
time series.,” in KDD workshop, vol. 10, pp. 359–370, Seattle, WA, 1994.

[176] T. McLoughlin, M. W. Jones, R. S. Laramee, R. Malki, I. Masters, and C. D.
Hansen, “Similarity measures for enhancing interactive streamline seeding,”
IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 8,
pp. 1342–1353, 2013.

[177] K. Pearson, “X. on the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can be
reasonably supposed to have arisen from random sampling,” The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
vol. 50, no. 302, pp. 157–175, 1900.

[178] C.-K. Chen, S. Yan, H. Yu, N. Max, and K.-L. Ma, “An illustrative
visualization framework for 3d vector fields,” in Computer Graphics Forum,
vol. 30, pp. 1941–1951, Wiley Online Library, 2011.

[179] K. Lu, A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and P. C. Wong, “Exploring
vector fields with distribution-based streamline analysis.,” in PacificVis,
pp. 257–264, Citeseer, 2013.

[180] Y. Li, C. Wang, and C.-K. Shene, “Streamline similarity analysis using
bag-of-features,” in Visualization and Data Analysis 2014, vol. 9017,
p. 90170N, International Society for Optics and Photonics, 2014.

225

[181] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” science, vol. 315, no. 5814, pp. 972–976, 2007.

[182] J. Tao, C. Wang, and C. K. Shene, “Flowstring: Partial streamline matching
using shape invariant similarity measure for exploratory flow visualization,”
in Visualization Symposium (PacificVis), 2014 IEEE Pacific, pp. 9–16,
IEEE, 2014.

[183] Y. Li, C. Wang, and C.-K. Shene, “Extracting flow features via supervised
streamline segmentation,” Computers & Graphics, vol. 52, pp. 79–92, 2015.

[184] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of
machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[185] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.,” in Kdd,
vol. 96, pp. 226–231, 1996.

[186] S. Bryson, S. Johan, L. Schlecht, B. Green, D. Kenwright, and
M. Gerald-Yamasaki, “The virtual windtunnel,” in Computational Fluid
Dynamics Review 1998: (In 2 Volumes), pp. 1113–1130, World Scientific,
1998.

[187] M. Schulz, F. Reck, W. Bartelheimer, and T. Ertl, “Interactive visualization of
fluid dynamics simulations in locally refined cartesian grids (case study),” in
Proceedings of the conference on Visualization’99: celebrating ten years,
pp. 413–416, IEEE Computer Society Press, 1999.

[188] R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser, “Investigating swirl
and tumble flow with a comparison of visualization techniques,” in
Visualization, 2004. IEEE, pp. 51–58, IEEE, 2004.

[189] R. S. Laramee, “Interactive 3d flow visualization using a streamrunner,” in
Conference on Human Factors in Computing Systems: CHI’02 extended
abstracts on Human factors in computing systems, vol. 20, pp. 804–805,
2002.

[190] R. S. Laramee, C. Garth, H. Doleisch, J. Schneider, H. Hauser, and H. Hagen,
“Visual analysis and exploration of fluid flow in a cooling jacket,” in
Visualization, 2005. VIS 05. IEEE, pp. 623–630, IEEE, 2005.

[191] Z. Peng, Z. Geng, M. Nicholas, R. S. Laramee, N. Croft, R. Malki, I. Masters,
and C. Hansen, “Visualization of flow past a marine turbine: the
information-assisted search for sustainable energy,” Computing and
Visualization in Science, vol. 16, no. 3, pp. 89–103, 2013.

226

[192] C. Koehler, T. Wischgoll, H. Dong, and Z. Gaston, “Vortex visualization in
ultra low reynolds number insect flight,” IEEE Transactions on
Visualization and Computer Graphics, no. 12, pp. 2071–2079, 2011.

[193] B. Behrendt, P. Berg, O. Beuing, B. Preim, and S. Saalfeld, “Explorative
blood flow visualization using dynamic line filtering based on surface
features,” in Computer Graphics Forum, vol. 37, pp. 183–194, Wiley Online
Library, 2018.

[194] D. Sujudi and R. Haimes, “Identification of swirling flow in 3-d vector fields,”
in 12th Computational Fluid Dynamics Conference, p. 1715, 1995.

[195] M. Edmunds, T. McLoughlin, R. S. Laramee, G. Chen, E. Zhang, and N. Max,
“Automatic stream surface seeding.,” in Eurographics (Short Papers),
pp. 53–56, 2011.

[196] M. Edmunds, R. S. Laramee, R. Malki, I. Masters, T. Croft, G. Chen, and
E. Zhang, “Automatic stream surface seeding: A feature centered approach,”
in Computer Graphics Forum, vol. 31, pp. 1095–1104, Wiley Online Library,
2012.

[197] M. Edmunds, R. S. Laramee, G. Chen, E. Zhang, and N. Max, “Advanced,
automatic stream surface seeding and filtering.,” in TPCG, pp. 53–60, 2012.

[198] J. M. Esturo, M. Schulze, C. Rössl, and H. Theisel, “Global selection of stream
surfaces,” in Computer Graphics Forum, vol. 32, pp. 113–122, Wiley Online
Library, 2013.

[199] M. Edmunds, R. S. Laramee, R. Malki, I. Masters, Y. Wang, G. Chen,
E. Zhang, and N. Max, “Interactive stream surface placement a hybrid
clustering approach supported by tree maps,” in Information Visualization
Theory and Applications (IVAPP), 2014 International Conference on,
pp. 347–355, IEEE, 2014.

[200] M. Schulze, J. M. Esturo, T. Günther, C. Rössl, H.-P. Seidel, T. Weinkauf, and
H. Theisel, “Sets of globally optimal stream surfaces for flow visualization,”
in Computer Graphics Forum, vol. 33, pp. 1–10, Wiley Online Library, 2014.

[201] M. Bartoň, J. Kosinka, and V. M. Calo, “Stretch-minimising stream surfaces,”
Graphical Models, vol. 79, pp. 12–22, 2015.

[202] A. Brambilla and H. Hauser, “Expressive seeding of multiple stream surfaces
for interactive flow exploration,” Computers & Graphics, vol. 47,
pp. 123–134, 2015.

227

[203] J. Tao and C. Wang, “Peeling the flow: A sketch-based interface to generate
stream surfaces,” in SIGGRAPH ASIA 2016 Symposium on Visualization,
p. 14, ACM, 2016.

[204] J. Tao and C. Wang, “Semi-automatic generation of stream surfaces via
sketching,” IEEE Transactions on Visualization and Computer Graphics,
2017.

[205] R. Vasko, Techniques for Assistance in Streamline and Stream Surface
Visualizations. PhD thesis, The Ohio State University, 2017.

[206] T. McLoughlin, M. Edmunds, C. Tong, R. S. Laramee, I. Masters, G. Chen,
N. Max, H. Yeh, and E. Zhang, “Visualization of input parameters for
stream and pathline seeding,” Int. J. Adv. Comput. Sci. Appl.(IJACSA),
vol. 6, no. 4, pp. 124–135, 2015.

[207] F. Ferstl, K. Bürger, and R. Westermann, “Streamline variability plots for
characterizing the uncertainty in vector field ensembles,” IEEE Transactions
on Visualization and Computer Graphics, vol. 22, no. 1, pp. 767–776, 2015.

228

