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DISSERTATION ABSTRACT

Shaomeng (Samuel) Li

Doctor of Philosophy

Department of Computer and Information Science

March 2018

Title: Wavelet Compression for Visualization and Analysis on High Performance
Computers

As HPC systems move towards exascale, the discrepancy between

computational power and I/O transfer rate is only growing larger. Lossy in situ

compression is a promising solution to address this gap, since it alleviates I/O

constraints while still enabling traditional post hoc analysis. This dissertation

explores the viability of such a solution with respect to a specific kind of

compressor — wavelets. We especially examine three aspects of concern regarding

the viability of wavelets: 1) information loss after compression, 2) its capability

to fit within in situ constraints, and 3) the compressor’s capability to adapt to

HPC architectural changes. Findings from this dissertation inform in situ use of

wavelet compressors on HPC systems, demonstrate its viabilities, and argue that its

viability will only increase as exascale computing becomes a reality.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Scientific simulations on high performance computing (HPC) systems

usually advance and output their states at regular (or irregular) intervals. Each

output is effectively a snapshot in time, or “time slice” of what is happening in the

simulation. The course of a simulation is then temporally sampled by the output

time slices, which are saved in storage, usually parallel filesystems. The policy for

when to store a time slice to disk varies by simulation code, with examples such

as “every 100th cycle,” “every five seconds of simulation time,” and “every hour of

computation time.” Importantly, these time slices have typically been stored at

their native resolutions, meaning that the simulation mesh is not modified, and

every field value on that mesh is stored (at least for the fields that are stored).

With the traditional paradigm for visualizing and analyzing the simulation data,

the saved time slices are read out at a later time for visualization and analysis.

This paradigm is often referred to as “post hoc” analysis.

As supercomputers get larger and larger, a consistent trend has been

that the ability to generate data outpaces the ability to perform I/O, resulting

in a relatively reduced I/O. An example is the current and next generation

supercomputer systems in the Oak Ridge National Lab, where the next generation

system (named Summit) will have 5X computational power compared to the

current system (named Titan), while its I/O stays almost the same. In response to

reduced I/O, there are three main strategies. First, save data less often. As trends

worsen, this strategy may become unpalatable for many application domains, since

temporal sparsity can result in loss of science. Second, do visualization and analysis

1



in situ, where the I/O step is completely skipped. This strategy is increasingly

being preferred for the cases where domain scientists know what they want to

analyze a priori. However, for data exploration-oriented use cases, where new

science is often discovered, there often is no a priori knowledge of what to look for.

This observation motivates the third strategy, which is to use a combination of in

situ and post hoc techniques. In the in situ phase, data is transformed and reduced

before saved to storage, with hopes that the reduction will be sufficient to meet

I/O requirements. In the post hoc phase, data in the transformed and reduced

form is still available for exploration-oriented use cases. That said, the assumption

from the traditional paradigm that data be stored at full resolution and all field

values are stored, essentially equates to lossless compression, which limits how much

reduction can be achieved. As a result, research in this third strategy often assumes

that domain scientists will accept lossy techniques when I/O constraints preclude

their traditional workflow. This assumption is important, since allowing for some

loss in data integrity enables the strategy to be practical.

There are multiple data reduction techniques that fit in the in situ + post

hoc strategy; this dissertation specifically focuses on one family of those, namely

wavelet-based lossy compression. We also note that there are different approaches

to reduce the data size which fit within this strategy, and these approaches are

surveyed in Section 3.1.1.

Wavelet-based lossy compression techniques have proven to be effective

in the image processing community, such as the latest still image compression

standard JPEG2000 (Skodras, Christopoulos, & Ebrahimi, 2001). Its main idea

is to exploit the coherence in the data (i.e., neighboring values are likely to have

similar values), allowing redundancy to be discarded at a cost of a small accuracy
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loss. While image data and scientific data share characteristics, there are still

unknowns of applying wavelet compression to scientific data, especially in the

intended in situ compression use cases. These unknowns are one of the motivations

for this dissertation, which takes the first steps to find the answers.

1.2 Research Goals and Approaches

The research direction of this dissertation is to investigate and better

understand the viability of wavelet compression being used as an in situ compressor

in an HPC environment. More specifically, this dissertation has three research

goals.

First, we aim to find the most suitable wavelet approaches and parameters

for compressing scientific data with respect to scientific visualizations. Though

one could reasonably assume that the benefits from wavelet compression in image

processing will translate, the magnitude of effects are still unknown. We take

various established visualizations, tailor evaluation metrics to fit in each one of

them, and quantify the impact of information loss to science discoveries. This

goal is really twofold: we determine the most suitable parameters through a set

of evaluations, at the same time we better understand the efficacy of wavelet

compression on real-world visualization and analysis.

Second, we aim to better understand and quantify the performance impacts

in situ wavelet compression brings to simulations. Improved I/O is at the center

of many aspects of these impacts. For the work described in this dissertation, we

tightly couple a wavelet compressor with a proxy simulation so they can run in

situ. We perform a weak scaling experiment with up to 1,000 compute nodes, and

measure the I/O and computational impacts on a leading edge HPC system.
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Third, we aim to develop new approaches for wavelet compression to

make use of emerging hardware on cutting-edge HPC systems, namely many-

core architectures and solid state drives (SSDs). For many-core architectures, our

approach is to utilize a “parallel data primitives” (DPPs) programming paradigm

so one implementation can run on multiple architectures without significant

performance penalty. We compare the performance of this implementation with

architecture specific implementations to demonstration its viability. For SSDs, our

approach is to propose and evaluate a new compression scheme, spatiotemporal

compression, which is only enabled by the SSDs’ capability to temporarily store

multiple time slices before processing them. We study the characteristics and

viability of this new scheme.

These three research goals combine to inform the big picture on in situ

wavelet compression and its potential to address the I/O challenges on HPC

systems.

1.3 Dissertation Outline

The dissertation is organized to have either one or two Chapters address

one of the above mentioned research goals. Chapter II investigates the wavelet

compression approaches and parameters for scientific data through evaluations on

real-world visualization and analysis. Chapter III investigates the viability of in

situ wavelet compression on a leading edge HPC system. Chapter IV and Chapter

V both explore means for wavelet compressors to adapt to emerging architectures,

with Chapter IV focusing on many-core architectures and Chapter V focusing on

SSDs. Finally, Chapter VI concludes this dissertation and discusses further research

directions.
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1.4 Co-authored Material

Much of the work in this dissertation is from previous collaborative

publications. Below is a listing connecting the chapters with the publications and

authors that contributed. A more detailed elaboration on the division of labor

is also provided at the beginning of each chapter. That said, for each of these

publications, I was not only the first-author of the paper, but also the primary

contributor for implementing systems, conducting studies, and writing manuscripts.

– Chapter II is mainly based on publication (Li, Gruchalla, Potter, Clyne, &

Childs, 2015), and is a collaboration between Kenny Gruchalla, Kristi Potter,

John Clyne, Hank Childs, and myself.

– Chapter III is mainly based on publication (Li, Larsen, Clyne, & Childs,

2017), and is a collaboration between Matt Larsen, John Clyne, Hank Childs,

and myself.

– Chapter IV is mainly based on publication (Li, Marsaglia, et al., 2017), and is

a collaboration between Nicole Marsaglia, Vincent Chen, Christopher Sewell,

John Clyne, Hank Childs, and myself.

– Chapter V is mainly based on publication (Li, Sane, et al., 2017), and is

a collaboration between Sudhanshu Sane, Leigh Orf, Pablo Mininni, John

Clyne, Hank Childs, and myself.
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CHAPTER II

WAVELET COMPRESSION APPROACHES AND THEIR EFFICACY ON

SCIENTIFIC DATA

This section contains co-authored material as detailed below. The

background (Section 2.1) and wavelet basics (Section 2.2) are compiled from

relevant sections of collaborative publications (Li et al., 2015; Li, Larsen, et al.,

2017; Li, Marsaglia, et al., 2017; Li, Sane, et al., 2017). Experiments in this chapter

(Section 2.4 through 2.7) are specifically from work originally appearing at the

IEEE Symposium on Large Data Analysis and Visualization (Li et al., 2015), where

Hank Childs provided guidance for the first analysis (Section 2.5.1) and Kenny

Gruchalla provided guidance for the second analysis (Section 2.5.2). Further,

John Clyne was extremely helpful in assisting with understanding of wavelets.

Hank Childs and Kristi Potter were heavily involved in developing the experiment

methodology, as well as editing the final paper.

This chapter describes the basics of wavelet transforms and various

parameter options to use them to achieve compression. We then apply wavelet

compression on two real-world analyses to evaluate the pros and cons of each

option, and identify the best ones for scientific data compression. These evaluations

serve a twofold purpose, as they also inform the efficacy of wavelet compression

with respect to real-world analyses. We note that though studies in this chapter are

complete by themselves, many experiments throughout the dissertation also provide

insights into the efficacy of wavelets with different settings. We briefly summarize

these experiments towards the end of this chapter in Section 2.8.
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Figure 1. Demonstration of information compaction of wavelets. The input is
a discrete sine wave with 20 data points (left), and the output is 20 wavelet
coefficients (right). The magnitude of the wavelet coefficients is proportional to
their information content.

2.1 Background

There are multiple approaches to use wavelets for compression, and at the

heart of each approach is wavelet transform. Wavelet transforms operate similarly

to Fourier transforms in that they both represent data in another domain. In

contrast to Fourier transforms which represent data in the frequency domain,

wavelet transforms represent data in the wavelet domain, which contains both

frequency and time information.

The wavelet domain representation has a few desirable properties that

are used in a wide range of applications, with one being lossy compression.

Compression is enabled by the information compaction property of wavelets. More

specifically, wavelet transforms are able to remove coherence from data so most of

the information is kept in a small number of coefficients in the wavelets domain.

Lossy compression is achieved by discarding the majority of less information-

rich coefficients. The more coherence that exists in the data, the better wavelets

compacts information, i.e., more information per byte. Figure 1 visualizes the

effect of applying wavelet transforms on a sine wave. Here the resulting wavelet

coefficients have information content proportional to their magnitude. As the
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visualization shows, much information is compacted to a few large magnitude

coefficients, resulting in many near-zero coefficients, which are opportunities for

lossy compression.

2.2 Basics of Wavelet Transforms

This section provides an abbreviated description of the wavelet transform

from the standpoint of compression applications. Excellent and more detailed

introductory descriptions are available in (Stollnitz, DeRose, & Salesin, 1996) and

(Burrus, Gopinath, Guo, Odegard, & Selesnick, 1998).

2.2.1 One-dimensional Wavelet Transform. It is often

advantageous to express a function or signal x(t) as a linear expansion about a set

of basis functions. In the case of wavelet bases, such a decomposition is given by:

x(t) =
∑
k∈Z

∑
j∈Z

aj,kψj,k(t), (2.1)

where aj,k are real-valued coefficients, and ψj,k(t) are wavelet functions typically

forming an orthonormal basis. Conceptually, the coefficients, aj,k measure the

similarity between the input signal and the basis functions. For finite, discrete

x[n] under a “non-expansive” wavelet transform, the number of coefficients aj,k has

the same size as x[n]. If x[n] exhibits sufficient coherence, and if ψj,k(t) is suitably

chosen, then many of the aj,k coefficients will tend toward zero, with only a fraction

of the remaining non-zero coefficients containing most of the energy or information

content of the signal.

The resulting wavelet coefficients have two flavors: the “approximation”

coefficients which provide a coarsened representation of the data, and the

“detail” coefficients which contain the missing information from the coarsened

representation. Figure 1 illustrates this intuition: the first ten coefficients
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Figure 2. Illustration of one level of wavelet transforms for a three-dimensional
cube. Approximation and detail coefficients are denoted using “L” and “H,”
respectively. From left to right are the original cube, and the resulting coefficients
after wavelet transforms in the X, Y , and Z axes, respectively.

approximates the data, and the second ten coefficients provide the deviation

information.

Wavelet transforms can then be applied recursively on coefficients from

previous wavelet transforms, resulting in a hierarchy of coefficients. This recursive

application of wavelet transforms helps concentrate information content into

fewer and fewer coefficients, and the resulting coefficient hierarchy enables a data

representation spanning multiple resolutions. In Equation 2.1, j indicates the

different scales.

2.2.2 Multi-dimensional Wavelet Transforms. The one-

dimensional wavelet transform can be extended to multiple dimensions by

successively applying a one-dimensional transform along each axis, i.e., output

coefficients of one transform become the input of the next transform along a

different axis. This practice takes advantage of data coherence along all dimensions.

The ordering of axes to apply transforms on may differ though.

Figure 2 illustrates a commonly adopted ordering, referred to as “non-standard

decomposition” in some literature. First, each row goes through a wavelet

transform pass in the X direction, resulting in approximation and detail coefficients

with respect to the X axis. Second, these coefficients then go through wavelet
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transforms in the Y direction as columns, resulting in approximation and detail

coefficients with respect to the Y axis. Third, the output coefficients from the

second set of transforms go through wavelet transforms in the Z direction, resulting

in approximation and detail coefficients with respect to the Z axis. Though named

“non-standard decomposition,” this ordering is actually the most popular one in

practice. More details and discussions on the ordering topic could be found in

(Stollnitz et al., 1996) and (Burrus et al., 1998).

2.2.3 Wavelet Kernel Choices. Wavelet kernels are used to generate

the basis functions from Equation 2.1. These basis functions, in turn, have different

efficacies when used for data compression. We consider a basic yet popular wavelet

kernel, the Haar kernel, and two more complicated ones, which are both members

from the Cohen-Daubechies-Feauveau (CDF) family.

2.2.3.1 Haar Kernel. The Haar (Haar, 1910) kernel is one of the

most basic and widely understood wavelet kernels. It serves as a baseline for our

evaluation because of its popularity. The Haar kernel generates a series of “square-

shaped” functions for its basis functions. When used with the multi-resolution

strategy, the Haar kernel yields a hierarchical representation that is identical to

that produced with a linear (trilinear in three dimensions) down-sampling filter.

Computation wise, the Haar kernel introduces only a modest computational cost.

2.2.3.2 CDF Wavelet Family. The Cohen-Daubechies-Feauveau

(Cohen, Daubechies, & Feauveau, 1992) wavelet family has multiple members;

they differ based on their filter shapes and sizes. The filter sizes are also used to

indicate individual kernel members. For example, CDF 9/7 is a member with filters

(for different tasks) of size nine or seven, and CDF 8/4 is a member with filters

(for different tasks) of size eight or four. These two are also included in our study.

10



The CDF family of wavelets is widely used in the compression of non-periodic

signals (e.g., images and video) due to its effective boundary handling capabilities

(Usevitch, 2001). The CDF 9/7 kernel, in particular, has been empirically shown

to yield superior compression distortion results for imagery (Antonini, Barlaud,

Mathieu, & Daubechies, 1992; Villasenor, Belzer, & Liao, 1995), and is what is used

in JPEG 2000 (Skodras et al., 2001).

All these three wavelet kernels have the property that their wavelet

coefficient magnitudes are proportional to their information content. Thus, a

sensible approach to compression using wavelet transforms is to retain only

coefficients with the largest magnitudes. We will discuss two of these approaches

in the following subsection.

2.2.4 Compression Strategy Options. There are multiple ways

to lay out wavelet coefficients. Given a storage budget, the ordering of coefficients

determines which coefficients are included to reconstruct the approximation, and

thus determines the compression strategy. There are two popular strategies: multi-

resolution and coefficient prioritization.

2.2.4.1 Multi-resolution. With a multi-resolution approach,

coefficients are laid out naturally with respect to the coefficient hierarchy. Because

each level of coefficients reconstructs an approximation of the original data

array, compression is achieved by storing only some levels of coefficients from the

hierarchy. Coefficients stored in this manner retain their addresses, i.e., where they

belong to in the coefficient hierarchy, and thus do not require additional addressing

mechanisms.

Each iteration of wavelet transform coarsens the data array into half of

its previous resolution. As a result, the multi-resolution compression strategy
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offers a pyramid representation that is strictly limited to power-of-two reductions

along each axis. In the case of a three-dimensional regular mesh, the applicable

compression ratios are of the form 8N :1, where N is the number of iterations of

wavelet transform to apply. That is, applicable compression ratios include 8:1, 64:1,

512:1, etc.

The multi-resolution wavelet approach differs from similar techniques

used by the visualization community, such as mipmapping (Williams, 1983), and

space-filling curves (Morton, 1966) and (Liang, Chen, Huang, & Liu, 2008). In

the first case, mipmapping requires additional storage space for the coarsened

approximations. In the second case, the coarsened approximations come from single

point data (nearest neighbor sampling), rather than average of all points in that

region.

2.2.4.2 Coefficient Prioritization. When reconstructing the original

data from the wavelet expansion given in Equation 2.1, coefficients have different

importance, i.e., coefficients representing the more rapidly changing parts of the

original data contribute more than coefficients representing the more self-similar

parts. The prioritized coefficient technique makes use of this property by laying out

the coefficients based on their importance, i.e., important coefficients are placed

toward the beginning of the storage space. Compression is thus achieved by storing

only the collection of important coefficients, and treating the rest of the coefficients

as zeros.

The prioritized coefficient strategy differs from the multi-resolution strategy

in that: 1) it supports an arbitrary compression ratio, by choosing what percentage

of total coefficients to keep; 2) it supports reconstructing the mesh on its full

resolution, by assigning zeros to the coefficient locations that are not stored; and
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3) it requires extra mechanisms to keep track of where the prioritized coefficients

belong in the coefficient hierarchy. One mechanism is to keep coefficient addresses

explicitly, thus introducing storage overhead.

We note that more efficient coding and storage of these coefficients is a

sizable area of research that we do not address here. Interested readers can consult

other sources for SPECK (Islam & Pearlman, 1998), SPIHT (Kim & Pearlman,

1997), and EBCOT (Taubman, 2000), for example, and their corresponding high-

dimensional derivatives.

2.3 Prior Research of Wavelets in Visual Analytics

Wavelet compression has been previously employed with scientific

visualization. When reconstructing slices of a CT data set, two-dimensional wavelet

transforms have been proven to provide high compression rates with fast decoding

for performing random access of voxels (Ihm & Park, 1999; Rodler, 1999). When

used on three-dimensional volume data sets, such as hydrodynamic simulations,

global ocean models, or terrain data, wavelet compression has been shown to be

effective when visualizing different levels of detail (Bertram, Duchaineau, Hamann,

& Joy, 2000; Olanda, Pérez, Orduña, & Rueda, 2014; Sakai, Sasaki, Obayashi, &

Nakahashi, 2013; H. Tao & Moorhead, 1994). Wavelet compression also brings new

possibilities for real-time analysis on large-scale data sets on commodity hardware

(Gioia, Aubault, & Bouville, 2004; Guthe & Straßer, 2001).

In contrast to previous studies, we consider a variety of wavelet

configurations, evaluate tradeoffs in accuracy, storage cost, and execution time,

and decide the best parameters for scientific data compression.
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DATA DATA’WAVELET 
COMPRESSION

ANALYSIS

RESULTS RESULTS’

Figure 3. Our experiment methodology. We used wavelet compression to create
a compressed form (DATA’) from its original form (DATA). RESULTS and
RESULTS’ represent the analysis results from DATA and DATA’, respectively.
Our study then quantitatively evaluated the difference between RESULTS and
RESULTS’.

2.4 Study Overview

We studied multiple wavelet configurations, varying over compression

strategies, wavelet kernels, and compression ratios. Section 2.4.1 describes our

experiment methodology for a generic configuration, and Section 2.4.2 describes

the different wavelet configurations we studied.

2.4.1 Experiment Methodology. Our experiment methodology,

illustrated in Figure 3, was as follows:

– We began with turbulent flow data in its raw form.

– We applied wavelet compression to the raw data to get the compressed form.

– We applied an analysis routine to the data in both its raw and compressed

forms.

– We quantitatively evaluated the difference between the results.

This wavelet transformations were performed using the VAPOR software

package (Clyne, Mininni, Norton, & Rast, 2007; Clyne & Rast, 2005). VAPOR also

has advantages over other implementations, for example the work by Woodring

et al. (Woodring, Mniszewski, Brislawn, DeMarle, & Ahrens, 2011), that VAPOR
14
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8:1 16:1 32:1 64:1 128:1 256:1 512:1

8:1 16:1 32:1 64:1 128:1 256:1 512:1

Haar
Multi-res ✔ ✔ ✔

Prioritized ✔ ✔ ✔ ✔ ✔ ✔ ✔

CDF 9/7 Prioritized ✔ ✔ ✔ ✔ ✔ ✔ ✔

CDF 8/4 Prioritized ✔ ✔ ✔ ✔ ✔ ✔ ✔

Kernel
Compression 
Strategy

Figure 4. Wavelet configurations studied. Cross signs represent configurations
examined in our first round of experiments, circles represent configurations
examined in our second round of experiments, and squares represent configurations
examined in our third round of experiments.

natively supports wavelet transforms in three dimensions, and operates on floating

point data. For the analysis routines, we used the software that was used to

perform the analysis originally: VisIt (Childs et al., 2012) or VAPOR.

2.4.2 Wavelet Configurations Studied. We performed our

experiments in three rounds.

In the first round, we considered the wavelet compression strategy.

Specifically, we compared multi-resolution with prioritized coefficients (see

Section 2.2.4), both using the Haar kernel. Since the multi-resolution approach

requires two-to-one reduction in all three dimensions, only reductions that are

powers of eight are possible. The three compression ratios we studied for this round

were 8:1, 64:1, and 512:1.

In the second round, we studied the effects of the wavelet kernels.

Specifically, we compared the Haar kernel, the CDF 9/7 kernel, and the CDF 8/4

kernel. All tests in this round used the prioritized coefficients strategy. The

compression ratios for this round were 8:1, 16:1, 32:1, 64:1, 128:1, 256:1, and 512:1.

With prioritized coefficients, arbitrary ratios would have been possible, but we

chose powers of two for easy comparisons with the multi-resolution approach.

15



In the third round, we repeated the wavelet configurations from the first two

rounds, but with a different analysis routine.

Figure 4 summarizes the wavelet configurations we studied over all three

rounds.

2.5 Visual Analytics Overview

Our study incorporated two analysis routines, both of which came from

established research on turbulent-flow data. These two analyses were both

performed on rectilinear data sets from simulations. In our study, we located

the original data sets used in the two predecessor studies. We denote their data

sets DS1 and DS2 for simplicity. DS1 contained a single scalar field defined over

thirteen time slices on a 4, 0963 mesh. DS2 did not vary in time. It contained a

scalar field and a vector field, both defined on a 1, 0243 mesh. For DS1 and DS2,

the scalar field was “enstrophy,” which directly measures the kinetic energy in a

flow model. For DS2, the vector field was velocity.

Both established analysis routines identified and analyzed critical structures,

which are defined as regions with significantly higher enstrophy values than the

areas surrounding it. However, they focused on the critical structures’ properties

in different scopes. The first analysis focused on the global population of all critical

structures, while the second analysis focused on the local dynamics of individual

critical structures.

Finally, we note that our goal is to evaluate tradeoffs in compression and

accuracy on established analysis routines with wavelet compressed data over a

variety of wavelet configurations. In particular, if an analysis routine is especially

sensitive to lost accuracy in the data, then we view that as a finding for our study,

but not as a cue that we should extend or modify the established analyses.
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(a) The baseline rendering
(b) One identified structure

Figure 5. The left rendering shows critical structures identified from the first time
slice of DS1. Each structure has a unique color in this view. The right rendering
shows a close-up view of one of the critical structures.

We describe the key steps of these two visual analytics routines in the

following subsections.

2.5.1 Critical Structure Identification. Gaither et al. performed

an analysis that included measuring the global population of critical structures

(Gaither et al., 2012). Identifying these critical structures took two steps. The first

step isolated regions with enstrophy values higher than α, a fixed value provided

by domain scientists. For reference, the test data set DS1 contains millions of

these high-enstrophy regions. The second step eliminated structures with a volume

smaller than a threshold β, again a fixed value provided by domain scientists. For

DS1, this process reduces the number of critical structures down to hundreds.

Figure 5 shows a screenshot of these identified critical structures at the first time

slice of DS1, as well as a close-up look at one of the critical structures.

This analysis routine can potentially be quite sensitive to changes in

the enstrophy field from compression. If the compressed enstrophy breaks a
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component, then the result may put that component below β. Similarly, if the

compressed enstrophy joins two disjoint components, then the result may put the

joined component above β. Such a change would affect the statistics of the global

population of critical structures.

2.5.2 Local Dynamics Analysis. Gruchalla et al. analyzed the

dynamics of individual structures in a turbulent-flow simulation (Gruchalla,

Rast, Bradley, Clyne, & Mininni, 2009). Specifically, for a single structure, they

studied the change in velocity from the inside of the structure to the outside.

For their analysis, structures were first identified following steps similar to those

described in Section 2.5.1, and then representatives from two distinct types of

local dynamics were picked to perform further analysis. Renderings of these two

representations can be found in Figure 10a and 10b in the results discussion.

The high-enstrophy areas of these structures are rendered in blue, and their local

dynamics are illustrated by yellow streamlines seeded in the velocity field. We refer

to these two types of structures as S1 and S2. Visually, the two types of dynamics

can be distinguished from each other, since streamlines twist around the core with

S1, and follow the writhe of the tube with S2.

Their primary analysis looked at radial-enstrophy profiles — enstrophy

as a function of radius — for individual structures. They created this profile by

considering fifteen cross sections along the major axis of a structure. Within a cross

section, they identified the center of the structure for that cross section. They then

calculated the average enstrophy around this center for many different radii. This

resulted in a radial-enstrophy profile for that cross section. They then averaged the

radial-enstrophy profiles over all cross sections to create the final radial-enstrophy
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profile. Figure 10e and 10f plots the two radial-enstrophy profiles for structures S1

and S2.

A radial-enstrophy profile captures local flow dynamics. For S1, the profile

shows high enstrophy values in the core, and drops rapidly when exiting the

structure. For S2, the profile shows moderate enstrophy values in the core and

drops slowly when exiting the structure.

2.6 Efficacy Evaluations

In this section we present evaluation results from our two established

analyses. The first subsection presents the results from the first analysis: critical

structure identification. This subsection consists of the first two rounds of our

experiment. The second subsection presents the results from the second analysis:

local dynamics analysis. This section consists of the third round of our experiment.

For each of the two analyses, we first describe our evaluation metric, and

then present the evaluation results.

2.6.1 Evaluation: Critical Structure Identification.

2.6.1.1 Evaluation Metric. The critical structure identification task

yields some number of identified structures on both the raw data and the wavelet-

compressed data. In the ideal case, the number of critical structures for both would

be the same, and each critical structure in the baseline analysis would have a

corresponding structure in the same location in the compressed data. However,

in practice, the critical structures do not always align in this ideal way.

There are two types of error that can occur. First, a critical structure can

appear in the compressed data that does not appear in the raw data. We refer to

this type of error as a false positive. Second, a critical structure can fail to appear

in the compressed data, even though it does appear in the raw data. We refer to
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this type of error as a false negative. Our evaluation metric is based on the number

of false positives and false negatives — the lower these two numbers are, the better

the results from the compressed data match the baseline results from the raw data.

To provide a better comparison among all time slices, we considered the

proportion of error among the critical structures, rather than absolute numbers.

Formally, let FN be the number of false negatives, FP be the number of false

positives, and COMM be the number of critical structures common to both. We

then focused on two error metrics:

FN_Proportion =
FN

FN + COMM
,

and

FP_Proportion =
FP

FP + COMM
.

Both metrics range between zero and one, with values closer to zero being better.

Determining if an identified critical structure is common to both is not a

trivial task. We used a proximity test to match up critical structures in COMM .

This test compared the bounding boxes of all structures in the baseline with the

bounding boxes of all structures in the compressed data. For each pair of baseline-

and-compressed structures, the overlap was measured. The overlap was calculated

so that structures with similar sizes and similar spatial extents would have high

values. Specifically, if V was the volume of intersection between the two, VB was

the volume of the baseline structure, and VC was the volume of the compressed

structure, then their overlap was scored as

V 2

(VB × VC)
.

A perfect overlap would score one, and no overlap would score zero. A baseline-

compressed structure pair was then identified as the “same” if, for a baseline
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structure b and a compressed structure c, then b’s best match (i.e., highest score)

was c, and c’s best match was b. This meant that large baseline structures that got

split during compression would contribute false positives (as only one compressed

structure would match, but one would find no match), and separate baseline

structures that got combined during compression would contribute false negatives

(as only one baseline structure would match the combined structure).

2.6.1.2 Results: Wavelet Compression Strategy. We evaluated the

two wavelet compression strategies — prioritized coefficients and multi-resolution

(see Section 2.2.4) — with three compression ratios: 8:1, 64:1, and 512:1. Each test

used the Haar kernel. This resulted in six different wavelet settings. Figure 6 shows

renderings from our analysis using each of the six settings on the first time slice of

DS1. Visual inspection shows that results using the prioritized coefficient strategy

not only retain more critical structures from the baseline, but also preserve more

shape details.

Figure 7 compares FN_Proportion and FP_Proportion between the

prioritized coefficient strategy and the multi-resolution strategy. It plots the

average values over all thirteen time slices. Prioritized coefficients clearly

outperform the multi-resolution approach, as the blue lines are significantly lower

than the red ones. That said, FN for multi-resolution drops at the 512:1 ratio. This

is because the multi-resolution strategy fails to identify most of the structures at

this compression level, so the few identified ones are likely to be correct. Restated,

this low false positive proportion does not indicate better performance for the

multi-resolution strategy.

2.6.1.3 Results: Wavelet Kernel Choice. We then expanded our

kernel choices to include the CDF 9/7 and CDF 8/4 kernels. This meant there
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(a) Multi-resolution, 8:1 (b) Prioritized Coefficients, 8:1

(c) Multi-resolution, 64:1 (d) Prioritized Coefficients, 64:1

(e) Multi-resolution, 512:1 (f) Prioritized Coefficients, 512:1

Figure 6. Screenshots from our critical structure identification task using the multi-
resolution strategy (left column) and the prioritized coefficient strategy (right
column). These screenshots are from the first time slice of DS1, so Figure 5b shows
the baseline result for raw data for this task.
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Figure 7. False negative (solid lines) and false positive (dashed lines) proportions
for two compression strategies. The multi-resolution results are colored red, and
the prioritized coefficient results are colored blue. Each line is an average of results
from all thirteen time slices.

were a total of three kernels, as we still considered the Haar kernel. We no longer

considered a multi-resolution approach, and this allowed us to consider more

compression ratios. We studied seven: 8:1, 16:1, 32:1, 64:1, 128:1, 256:1, and 512:1.

Thus, the total number of experiments was 21. Figure 8 shows the visual difference

among three wavelet kernels using the 256:1 compression ratio (8b, 8c, and 8d), and

their comparison to the baseline (8a). Visual inspection shows that while all kernels

capture many structures, CDF 9/7 and CDF 8/4 manage to keep more details than

Haar.

We plotted FN_Proportion and FP_Proportion for the three wavelet

kernels in Figure 9. Again they are averaged over all thirteen time slices. The top

plot shows that the CDF 9/7 and CDF 8/4 have similar false negative proportions,

and they are both lower than the Haar kernel. The bottom plot shows that the

CDF 9/7 kernel has the lowest false positive proportions at every compression ratio

by a clear margin. Summing up, results from this evaluation indicate that CDF 9/7

is the best choice among these three wavelet kernels for this analysis.

2.6.2 Evaluation: Local Dynamics Analysis.
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(a) Baseline Result (b) Haar Kernel, 256:1

(c) CDF 9/7 Kernel, 256:1 (d) CDF 8/4 Kernel, 256:1

Figure 8. Screenshots from our critical structure identification analysis on the
first time slice of DS1. All the compressed results (b, c, and d) use a prioritized
coefficient strategy.
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Figure 9. False negative (top) and false positive (bottom) proportions for three
wavelet kernels. Each line is an average of results from all thirteen time slices.

2.6.2.1 Evaluation Metric. Our evaluation process began by

identifying the two structures, S1 and S2, in the raw and wavelet-compressed

versions of the data. We then calculated their radial-enstrophy profiles. Ideally, the

profile produced using the compressed data would be the same as the profile from

raw data, i.e., the radial-enstrophy plots would overlap with each other. However,

in practice, there were differences between the two profile lines. We evaluated

the wavelet compression by quantifying the difference between these two radial-

enstrophy profiles — the smaller the difference, the better the compressed data

preserved local dynamics.

We used the root mean square error (RMSE) metric to measure the

difference between the two profiles. Specifically, given the baseline radial-enstrophy

profile E[r] (0 6 r < N) and the radial-enstrophy profile from compressed data
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(a) S1: Baseline Rendering (b) S2: Baseline Rendering

(c) S1: CDF 9/7+Prioritized, 128:1 (d) S2: Haar+Multi-resolution, 64:1

(e) Radial-enstrophy profile for S1, using
baseline data.

(f) Radial-enstrophy profile for S2, using
baseline data.

Figure 10. Visualizations of identified critical structures (rendered in blue) and
their local dynamics (rendered in yellow). The top-row subfigures show the baseline
rendering using the raw data; the middle-row subfigures show the rendering using
the compressed data; and the bottom-row subfigures show the radial-enstrophy
profiles for these two structures.

Ẽ[r] (0 6 r < N), RMSE is then defined as:

RMSE =

√∑N−1
r=0 (E[r] − Ẽ[r])2

N
. (2.2)

In this work, we normalized RMSE by the observed data range. Thus, the

normalized RMSE (a.k.a. NRMSE) evaluated to zero when E[r] and Ẽ[r] are

exactly the same, and evaluated to one in the worse possible case.

2.6.2.2 Evaluation Results. We included all three wavelet kernels

and both compression strategies for this evaluation. The multi-resolution strategy
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Figure 11. NRMSE of the radial-enstrophy profiles for S1 (top) and S2 (bottom).
Each color represents a wavelet setting in our experiment, with the legend displayed
in the bottom figure. The red color represents Haar+multi-resolution, which only
supports compression ratios at 8:1, 64:1, and 512:1.We connect the data points of
64:1 and 512:1 in this setting using a straight line.

used three compression ratios (8:1, 64:1, and 512:1), and the prioritized coefficient

strategy used five compression ratios (8:1, 64:1, 128:1, 256:1, and 512:1). So the

total number of wavelet configurations tested was eighteen. Figure 10a and 10b

show baseline renderings for these tests, and Figure 10c and 10d show two examples

from the eighteen configurations. Visual inspection shows that data compression

changes the streamlines in both structures compared to the baseline renderings

Figure 11 shows the NRMSE of the radial-enstrophy profile for the two

structures after data compression. Both NRMSE plots show that the three

wavelet settings using prioritized coefficients yield significantly lower errors than

Haar+multi-resolution. In addition, when using prioritized coefficients, the two

CDF kernels always perform better than the Haar kernel at compression ratios

up to 256:1, and the CDF 9/7 kernel has the lowest errors at most configurations.
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This result is consistent with our findings from the critical structure identification

analysis.

2.6.3 Summary From Two Analyses. Table 1 summarizes our

findings regarding how accuracy compares over wavelet configuration. In this table,

the multi-resolution+Haar configuration serves as the baseline result, with the

accuracy gains from other configurations shown comparatively. Only compression

ratios of the form 8N are shown, since those are the only ratios supported by the

multi-resolution strategy. In all cases, the prioritized coefficients strategy using a

CDF kernels perform best. The two CDF kernels perform similarly in most cases,

although CDF 9/7 outperforms CDF 8/4 several times. Finally, the improvement

is very significant at finer representations, but less noteworthy at very coarse

representations.

2.7 Further Evaluation of Accuracy, Storage Cost, and Execution Time

Our evaluation in the previous section helps illuminate tradeoffs between

compression and accuracy in real-world scientific analyses. With this section, we

report statistical error measurements, storage overhead incurred by the prioritized

coefficient strategy, and execution time in three subsections, respectively.

2.7.1 Statistical Error Measurements. While the focus of our

study was on evaluating wavelet efficacy for established analyses, we also wanted

to understand traditional statistical error measurements. The measurements we

chose to perform were the L∞-norm and the root mean square error. We chose

these two metrics because they measure extreme differences and average differences,

respectively. Specifically, the L∞-norm captures the largest possible point-wise

difference between the original and compressed data, and RMSE provides an

average error across all vertices in the volume.
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Table 1. Accuracy summary of different wavelet configurations. The multi-
resolution+Haar configuration serves as the baseline, and the improvements from
other configurations are shown comparatively.

Wavelet Analysis 1 Analysis 2
Configurations Proportion of NRMSE for

FN FP S1 S2
(8:1 Comp.)
Multi-res+Haar 1x 1x 1x 1x
Prioritized+Haar 11.63x 9.16x 19.31x 3.74x
Prioritized+CDF 8/4 16.40x 13.60x 21.97x 9.93x
Prioritized+CDF 9/7 24.27x 16.35x 26.72x 21.88x
(64:1 Comp.)
Multi-res+Haar 1x 1x 1x 1x
Prioritized+Haar 3.32x 3.59x 4.43x 3.86x
Prioritized+CDF 8/4 5.31x 3.07x 8.19x 14.05x
Prioritized+CDF 9/7 5.34x 3.80x 16.40x 14.05x
(512:1 Comp.)
Multi-res+Haar 1x 1x 1x 1x
Prioritized+Haar 1.39x 0.83x 1.43x 2.21x
Prioritized+CDF 8/4 1.37x 1.39x 1.11x 1.30x
Prioritized+CDF 9/7 1.38x 1.38x 1.39x 1.27x

29



(a) Compression errors measured by Normalized L∞-norm. Normalization
is performed by scaling the absolute L∞-norms by the maximum enstrophy
in DS1. Each box in this box plot represents a distribution of the L∞-norm
over thirteen time slices of DS1. Note that the Y-axis is on a logarithmic
scale.

(b) Compressor errors measured by normalized RMSE. Normalization is
performed by scaling the absolute RMSE values by the maximum enstrophy
in DS1. Each line in this chart represents an average of DS1’s thirteen time
slices.

Figure 12. Statistical measurements of wavelet compression errors for all time slices
of DS1.
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We performed our calculations by directly comparing every pair of

corresponding vertices from the original and compressed data for all thirteen time

slices of DS1. Because this comparison is meaningful only when the compressed

data has the same mesh resolution as the original data, the multi-resolution

strategy was not used. Figure 12a represents the normalized L∞-norm using box

plots, and Figure 12b shows the normalized RMSE (NRMSE). The CDF 9/7 kernel

consistently performs the best up to 128:1 compression with the L∞-norm, and

up to 256:1 with RMSE. This result is consistent with our previous findings. We

also note that while the CDF 8/4 kernel generally outperforms the Haar kernel in

evaluations both in the previous section with real-world analyses and in the RMSE

evaluation of this section, it yields larger L∞-norm values than the Haar kernel.

2.7.2 Storage Overhead. Table 2 shows file sizes at different

compression ratios for the first time slice of DS1 (256GB in raw form). The rest

of the time slices have the same file size since they the same mesh resolution.

We tested both multi-resolution and prioritized coefficient schemes. Because the

prioritized coefficient scheme essentially introduces the same storage overhead

regardless of wavelet kernel, we only report results from the Haar kernel. This table

shows that the multi-resolution scheme achieves ratios close to ideal, i.e., the file

sizes are very close to being in proportion with the compression ratio. It also shows

that the prioritized coefficient scheme introduces approximately more than 50%

overhead in storage.

The multi-resolution scheme is able to achieve full storage savings since the

scheme can store its coefficients in the order generated by the forward wavelet

transforms; the addressing of coefficients is implicit. The slight increases over the

compression ratio are from meta data stored in the file.
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Table 2. File sizes for wavelet-compressed data in GB. Our test data set was
256GB, and was compressed using the Haar kernel with multi-resolution and
prioritized coefficient strategies. The actual achieved compression ratios are shown
in parentheses. The four “N/A” entries are ratios that the multi-resolution scheme
does not support.

Comp. Ratio Ideal Multi-resolution Prioritized
1:1 256.0 256.0179 (0.99:1) 274.1094 (0.93:1)
8:1 32.0 32.0022 (7.99:1) 50.1094 (5.11:1)
16:1 16.0 N/A 25.0938 (10.20:1)
32:1 8.0 N/A 12.5781 (20.35:1)
64:1 4.0 4.0003 (63.99:1) 6.3125 (40.55:1)
128:1 2.0 N/A 3.1719 (80.71:1)
256:1 1.0 N/A 1.5938 (160.62:1)
512:1 0.5 0.5000 (511.97:1) 0.7969 (321.24:1)

The prioritized coefficient scheme must order coefficients based on their

information content. This re-ordering requires tracking their addresses, and, in

our study, the addressing is explicit. We note that, in the image processing space,

encoders such as SPIHT (Kim & Pearlman, 1997) and SPECK (Pearlman, Islam,

Nagaraj, & Said, 2004) are able to avoid this overhead with complex encoding

strategies. However, their approaches require byte-scaling floating point data to

integers, which may introduce additional information loss.

2.7.3 Execution Time. When used as an in situ compressor, wavelet

compression introduces computational overhead during writing (to perform the

forward wavelet transform that compresses the data) and reading (to perform

the inverse wavelet transform that decompresses the data). In this section, we

examine these computational overheads with different wavelet configurations,

as the multi-resolution and prioritized coefficients compression strategies have

different characteristics. For the multi-resolution strategy, the computational

cost is closely related to the compression ratio. This is because more aggressive

compression is achieved by applying the wavelet transform repeatedly to the data,
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thus introducing more computational burden. In our study, we performed the

wavelet transform three times (and thus achieved a compression ratio of 512:1).

For the prioritized coefficient strategy, the computational cost is independent of

the compression ratio, because we always reconstruct the meshes at their native

resolutions.

We ran our tests on a subset of DS1 that measured 4GB in raw form. We

did not use the whole data set since any given node of a supercomputer will be

operating only on a portion of the overall data set.

Our experiment used one compute node on Maverick, a machine at the

Texas Advanced Computing Center. Compute nodes on this machine have 20

CPU cores and 256GB system memory. We used community software (VAPOR)

to perform the wavelet compression. This software was multi-threaded when using

the prioritized coefficient strategy, i.e., it spawned 20 threads on our test machine.

However, the software ran single-threaded when using the multi-resolution strategy.

Table 3 reports the run time to perform the forward Discrete Wavelet

Transform (DWT) and the Inverse Discrete Wavelet Transform (IDWT), with

each measurement averaged over ten runs. The results show that the prioritized

coefficient strategy, even with improved parallelism, introduces significantly larger

computational costs than the multi-resolution strategy. The CDF 9/7 kernel, which

performed best in our accuracy evaluations, is the slowest to execute. Finally, we

notice that the IDWT operations take significantly less time than DWT, meaning

that it is much faster to decode wavelet-compressed data in a post hoc analysis.

While the run times to apply DWT are greater than ten seconds, they may

be acceptable for in situ usage. We envision wavelet compression running only

when the simulation wants to output data; since this happens infrequently and,
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Table 3. Time cost, in seconds, to perform Discrete Wavelet Transform (DWT) and
Inverse Discrete Wavelet Transform (IDWT) on a 4GB subset of DS1.

Multi-resolution Prioritized Coefficients
Haar Haar CDF 9/7 CDF 8/4

DWT 11.4297 12.9927 14.2177 13.9134
IDWT 5.2971 2.2621 3.8233 3.0584

since I/O is a costly operation, the overhead from the compression is likely small in

comparison.

2.8 Other Experiments Informing Wavelet Efficacy

A few more experiments reported in other chapters of this dissertation also

inform the efficacy of wavelets, though they are designed for other purposes. These

experiments include:

– visualization of compression artifacts and statistical error measurements on a

Lulesh (Karlin, Keasler, & Neely, 2013) simulation, in Section 3.4.3.

– statistical error measurements on multiple variables from three simulations

(Ghost (Mininni, Alexakis, & Pouquet, 2006), Tornado (Orf, Wilhelmson,

Lee, Finley, & Houston, 2017), and CloverLeaf3D (Mallinson et al., 2013)), in

Section 5.4.

– visualization and error measurement of pathline integration over 220 time

slices, in Section 5.5.1.

– visualization and error measurement of isosurface analysis, in Section 5.5.2.

Findings from these experiments together with the evaluations in this chapter

provide a better understanding on the efficacy of wavelet compression for scientific

simulation data.
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2.9 Conclusion

We performed an evaluation study on the efficacy of wavelet configurations

for turbulent-flow simulations. Our approach took two existing visual analytics

routines and repeated them on compressed data sets, varying over compression

strategies (multi-resolution and coefficient prioritization), wavelet kernels (Haar,

CDF 9/7, and CDF 8/4), and compression ratios. We complemented this analysis

with traditional statistical error measurements, additional information on storage

requirements, and computational overhead for applying wavelet transforms. In

total, this study informs the tradeoffs between accuracy, storage cost, and execution

time when applying wavelets to turbulent-flow data.

Our findings show that the coefficient prioritization approach and the CDF

kernels provide significant benefits over the multi-resolution schemes that rely

on (tri)linear filtering to produce coarsened data (Haar as an example). Since

the experiments we performed were diverse and their results were consistent, we

believe that these findings are likely to generalize to other scientific visualization

usages as well. While our findings match best practices from the image processing

community, our focus on quantifying the accuracies achieved for domain scientist’s

analyses allow us to determine the magnitude of the benefit for real world settings.

Interestingly, the variation in overall accuracy was quite high across analysis

routines, emphasizing the importance of keeping the final usage in mind.
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CHAPTER III

VIABILITY OF IN SITU WAVELET COMPRESSION

This chapter is mainly based on a collaborative publication (Li, Larsen, et

al., 2017). Hank Childs and I finalized the experiments to run; I performed the

experiments with valuable help from Matt Larsen; and all of us contributed to the

analysis and understanding of the experiment results. Hank Childs and John Clyne

also helped me edit the final paper to have a clearer presentation.

While we aim to fit wavelet compression in the in situ compression+post hoc

analysis paradigm, its performance impacts to simulations are not fully understood,

especially on today’s large-scale supercomputers. This is because, although the

computational costs are relatively predictable, the I/O performance is subject to

many factors on supercomputers, and the parallel filesystems themselves tend to

have less intuitive characteristics. In this chapter, we take a first step to understand

these impacts: we test an in situ lossy wavelet compressor together with a proxy

simulation on Cheyenne (CISL, 2017), the flagship supercomputer of National

Center for Atmospheric Research. We run a weak scaling test with up to 1,000

compute nodes and measure the performance impacts in both computation and

I/O. Based on data collected from this experiment, we discuss various in situ

wavelet compression considerations, and our major contributions in this chapter

are 1) analysis of a weak scaling experiment on a large-scale supercomputer, and 2)

derivation of an empirical equation regarding I/O tradeoffs for in situ compression.

3.1 Related Work

3.1.1 In Situ Processing and Analysis. In situ processing has been

in use since the 1960s, where it was used to print images of a running simulation

directly to microfilm (Zajac, 1964). Later, in situ processing and analysis, also
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referred to as “co-processing,” has been used for computational steering that

allows users to alter a simulations as it executes for a variety of reasons including

preventing crashes, changing numerical solvers, and performance optimization

(Heiland & Baker, 1998; Mulder, van Wijk, & van Liere, 1999). More recently, the

growing I/O gap has reinvigorated research into in situ techniques, so analysis can

take place while the data is still in memory or the amount of data is reduced before

it is written to disk. For example, LibSim (Whitlock, Favre, & Meredith, 2011)

and Catalyst (Fabian et al., 2011) facilitates in situ visualization with existing

visualization packages.

There have also been many interesting ideas for operators that enable

exploratory visualization with the in situ + post hoc strategy, including the

following examples. Cinema’s (Ahrens et al., 2014) main strategy is to transform

the data to images, with the idea being that many, many images will still be

smaller than simulation data, and that exploration can happen by loading

successive images as if they were being generated by a traditional visualization

program. The idea with Lagrangian basis flows (Agranovsky et al., 2014) is

to transform vector field data into pathlines in situ, and then interpolate new

pathlines post hoc from the extracted ones. This technique was shown to be more

accurate than saving vector field data, and used less storage as well. As some final

examples, Analysis-Driven Refinement (Nouanesengsy, Woodring, Patchett, Myers,

& Ahrens, 2014), or ADR, prioritized the data to save based on the analyses that

would be performed, while Lehmann et al. (Lehmann & Jung, 2014) explored a

multi-resolution technique in both space and time. A comprehensive report by

Bauer et al. (Bauer et al., 2016) surveys even more in situ reduction directions.
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3.1.2 Compression of Scientific Data. Compression has been

well explored to reduce the size of scientific data. Lossless techniques (e.g., Fpzip

(Lindstrom & Isenburg, 2006) and FPC (Burtscher & Ratanaworabhan, 2009))

retain the full integrity of data, but hardly achieve impressive reduction factors.

As a result, more techniques opt for a lossy compression, with examples being

ZFP (Lindstrom, 2014), SZ (Di & Cappello, 2016; D. Tao, Di, Chen, & Cappello,

2017), ISABELA (Lakshminarasimhan et al., 2011), and wavelet based compressors

(Kim & Pearlman, 1997; Norton & Clyne, 2012; Tang, Pearlman, & Modestino,

2003). Lossy compression techniques can achieve aggressive reduction factors while

still allowing meaningful analysis to be carried out, as reported in analyses of

turbulent flow data (Li et al., 2015), climate data (Baker et al., 2014; Woodring et

al., 2011), and physics-based proxy simulations (Laney, Langer, Weber, Lindstrom,

& Wegener, 2013).

For in situ compression, the compressor’s ability to utilize parallelism

becomes critical. ISABELA divides data into windows and compresses each window

independently (Lakshminarasimhan et al., 2011). VAPOR divides a volume into

domains (typically of size 643) and applies wavelet compression on each domain

independently (Norton & Clyne, 2012). Another piece of our work (Li, Marsaglia,

et al., 2017), used in the remainder of this chapter and described later in detail in

Chapter IV, contributed a wavelet compression implementation using data parallel

primitives, achieving portable performance among multiple architectures. The

work reported in this chapter differs from previous work in that we focused on the

compressor’s performance impacts to simulations in an in situ setting.
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3.2 Experiment Overview

3.2.1 Software Used. Our experiments ran under the umbrella of

ALPINE Ascent in situ infrastructure (Larsen et al., 2017), a production version of

Strawman (Larsen et al., 2015). The infrastructure consists of two main parts: an

interface to simulations and a hybrid-parallel library that provides a distributed-

memory layer on top of shared-memory parallel algorithms in VTK-m (Moreland et

al., 2016); together they enable fast prototyping of in situ algorithms.

On the simulation side, our study used the Lulesh (Karlin et al., 2013)

proxy-application, a 3D Lagrangian shock hydrodynamics code. Lulesh implements

the Sedov test problem, which deposits initial energy at one corner of a cube, and

propagates a shock wave from the origin outward to the rest of the cube. In terms

of computation, Lulesh uses thread-level parallelism (via OpenMP) for calculation

within a domain, and process-level parallelism (via MPI) for multiple domains.

For wavelet compression, we used an implementation introduced in (Li,

Marsaglia, et al., 2017) that we integrated into ALPINE’s hybrid-parallel library.

This implementation fits well in our in situ experiment settings because it has

comparable performance with the best multi-thread CPU wavelet compressors,

and is versatile enough to enable high-performance compression on GPUs. It

implements filter-bank based wavelet transforms, and we used the CDF 9/7

(Cohen et al., 1992) wavelet kernel in this study. For lossy compression, it uses

the coefficient prioritization approach, which keeps the wavelet coefficients that

contain the most information (i.e., largest magnitudes) and discards the rest. For

example, a 64:1 compression means keeping 1/64th of all coefficients. We note

that the CDF 9/7 + coefficient prioritization combination was determined to

be the most suitable wavelet configurations for compression uses in Chapter II.
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In terms of computation, this implementation achieves thread-level parallelism

using data parallel primitives on single compute nodes, but does not have process-

level parallelism between compute nodes. After finishing compressing, each node

independently writes its data in the compressed form to disk via an fwrite()

function call of the C programming language.

3.2.2 Simulation with In Situ Compression. Our simulation and

compression code runs in an in situ setting: at the end of each simulation cycle,

simulation variables are passed to the compression code to perform compression,

and then written to disk in the compressed form. Multiple variables are processed

one at a time, during which the simulation is suspended. As a result, each complete

cycle consists of one simulation step and multiple compression and writing steps

(for multiple variables). Specifically, our experiment has seven variables: pressure,

energy, relative volume, artificial viscosity, and the x, y, z components of velocity.

One might think compressing multiple variables together could better exploit the

available parallelism. However, our in situ wavelet compressor is already a parallel

implementation, so simultaneous compression would not make a big difference

in computational time. (It would make more difference in memory consumption

though, since multiple variables need to stay in memory simultaneously.) Finally,

while data being saved so frequently does not reflect real world usage, it is sufficient

for our study.

Our in situ compression is “tightly coupled.” This means, each compute

node not only performs simulation on a domain, but also compresses the data of

the same domain without data movement through the network.

Disk I/O is handled individually by each compute node as well. After

processing a variable of a domain, the compute node writes its content to disk as
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an individual file no matter whether there is compression or not, until all variables

are processed.

We note that we use MPI barriers in the code to keep all MPI ranks in

sync, meaning that they are always in the same stage of performing simulation,

compression, or writing. We feel this represents real-world usage in terms of bursty

I/O coming from all nodes at the same time.

Finally, our compression code treats the compression ratio 1:1 as a special

case — it does not perform any compression on the data, and directly passes the

data to the file writer. In our tests, this configuration acts as the baseline case to

compare and measure in situ compression impacts.

3.2.3 Experiment Runs. We ran our experiments on Cheyenne,

the flagship supercomputer of National Center for Atmospheric Research. Each

compute node is equipped with two 18-core Xeon CPUs at 2.3GHz (36 cores in

total) and 64GB memory. Both simulation and compression software were compiled

with GCC-6.3.0, and they used 64-bit floating point values to carry out their

computation.

With the Lulesh simulation, we fixed the size of each MPI rank’s domain

size to be 3203 (3203 cells and 3213 vertices). The entire simulation then scales

up by using more domains/MPI ranks, making it a weak scaling problem. Lulesh

supports the number of MPI ranks being cubics of natural numbers, i.e., 13, 23, 33,

etc.

We vary two parameters for experiment runs:

– number of MPI ranks: 1, 8, 27, 64, 125, 216, 343, 512, 729, and 1,000;

– compression ratio: 1:1, 16:1, 64:1, and 128:1;
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Figure 13. Per cycle execution time breakdown of 40 experiment runs. Each
group of four uses the same number of compute nodes (X labels), but different
compression ratios: 1:1, 16:1, 64:1, and 128:1 (from left to right within each group).

The number of MPI ranks is essentially the number of compute nodes we use, since

we assign one MPI rank to a node. The total number of tests we performed is then

10× 4 = 40.

3.3 Results

3.3.1 Execution Time Impacts. We present the execution times in

Figure 13. Each column is one experiment run. These columns are grouped into

groups of four; each group has experiment runs with the same number of compute

nodes. The four columns within each group differ in their compression ratios;

they are 1:1, 16:1, 64:1, and 128:1 from left to right. Note the 1:1 column has no

compression time.

Each column provides an execution time per cycle averaged from five cycles.

Though each cycle has one simulation step, it has seven compression and writing

steps for seven variables. (see Section 3.2.2). The sum of the seven compression

and writing times are reported here. The runs were performed during a lull on the
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Figure 14. Achieved parallel filesystem writing speed with different number of
compute nodes (X-axis).

machine in the middle of the night, in an effort to minimize I/O contention with

other jobs running on the supercomputer.

Experiment results show that simulation time stays relatively steady at

around 9 seconds per cycle, no matter how many nodes are in use and whether

or not in situ compression is involved. Wavelet compression adds computational

overhead to every cycle. This overhead is mostly consistent as well (around 5

seconds per cycle), because the wavelet transform and coefficient thresholding steps

are both independent of the final compression ratio.

3.3.2 I/O Performance Analysis. The I/O time shows more

interesting results than computational time considering the huge difference in the

amount of data being written to the filesystem. With our experiment settings,

each node generates a fixed amount of raw data per cycle. The total amount of

data is then proportional to the number of nodes. However, looking at the writing

time of raw data (left-most columns of each group of four), they are by no means

proportional to the total amount of data being written.
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We consider this interesting I/O behavior to be attributed to the very large

aggregate bandwidth of parallel filesystems. This bandwidth is large enough that a

small set of compute nodes are not using up all of it — the I/O is constrained by

the network between individual nodes and the parallel filesystem. After the number

of concurrently-writing nodes grows past a certain point, the I/O bottleneck starts

to shift to the parallel filesystem, when its bandwidth gets saturated. Looking at

our results, the raw data writing time is almost constant up to 216 nodes, and then

starts to grow with the number of nodes.

We compared our results with the specs of the test system (Cheyenne of

NCAR), which is equipped with a 200GBps filesystem. The amount of raw each

compute node generates each cycle is roughly 1.84GB. The achieved aggregate

I/O is then calculated using the total amount of data and writing time, which is

presented in Figure 14. It tops out at approximately 170GBps starting from 343

nodes, which is plausible given the hardware specs. We achieved this I/O rate

partially because we run our experiments when the supercomputer is relatively

idle, and in-production simulations are likely to face more contentious conditions.

The I/O time with compression is much less consistent, meaning that

writing time for the same-ratio compressed data vary considerably from one run

to another. Compared to raw data writing time, it is almost always taking a larger

percentage of time than its data size fraction. We consider this to be due to the

relatively large latency of parallel filesystems, which introduces a lot of variance

to writes with small amount of data. The only certainty for such scenarios is that

writing compressed data takes much less time than raw data.
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3.4 Viability of In Situ Compression

3.4.1 Overall I/O Viability. With in situ compression,

computational overhead is incurred while the actual I/O is most likely reduced. We

thus consider the overall I/O, which includes both computational and the actual

I/O cost. In our experiment, computational overhead counts for the majority of

overall I/O, which may or may not improve over writing raw data.

In the case where the number of compute nodes is small, the achievable

aggregate I/O is able to grow as the number of compute node grows. The

computation of the compression then needs to be performed fast enough to

improve the overall I/O, at least faster than writing raw data to disk. This can

be considered as a performance lower bound. The in situ wavelet compression

implementation we tested fails in this criterion, and it caused overall I/O to grow

with less than 512 nodes (Figure 13).

In the case with a large number of compute nodes, their concurrent I/O

requests may top out past the aggregate I/O of the parallel filesystem. In situ

compression is then possible to improve overall I/O here. Given a filesystem with

aggregate I/O bandwidth Vaggr, N compute nodes each generating Ddomain amount

of data, the I/O time to write the raw data is

Traw =
N ·Ddomain

Vaggr
.

Assume an in situ compressor that takes Tcomp time in calculation and achieves a

compression ratio of R, the overall I/O for the same N compute nodes is then

Tin−situ = Tcomp +
N ·Ddomainr

Vaggr ·R
.
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The overall I/O Tin−situ improves over Traw when the compression time satisfies the

following equation:

Tcomp <
N ·Ddomain · (R− 1)

Vaggr ·R
.

With lossy compression, compression ratios are usually big enough that (R − 1)/R

can be approximated to be 1. The equation can then be re-written as:

N >
Tcomp · Vaggr
Ddomain

.

This equation means that with enough compute nodes, in situ compression

can always improve the overall I/O. First, without much surprise, this threshold is

proportional to the computational overhead Tcomp, so faster compression lowers this

threshold. Second, this threshold is also proportional to the rate between aggregate

filesystem bandwidth and the domain size (Vaggr/Ddomain). Given that the domain

size may be constrained by the memory capacity of compute nodes, and that the

memory capacity growth keeps outpacing the bandwidth growth, this trend further

lowers this threshold. In our experiment, 512 was estimated to be the threshold

so the overall I/O was improved with 729 and 1,000 nodes; the I/O time of 1,000

nodes was almost cut in half. We anticipate simulation runs with larger numbers of

nodes would benefit even more.

Besides the factors we have analyzed here, the overall I/O of real-

world simulation runs is also subject to other variations, including hardware

specifications, parallel filesystem characteristics, and even other users concurrently

using the system. An accurate analysis of the overall I/O is even more challenging

with these variations. We believe the trend is a more important takeaway, which

is that larger simulations are more likely to benefit from a reduced overall I/O,
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and the amount of benefit is going to grow as the relative I/O bandwidth keeps

decreasing.

3.4.2 Memory Viability. Memory overhead is another consideration

of in situ compression, since many simulations are already bound by available

system memory. The wavelet compressor we used does not work in a streaming

fashion. Instead, it requires an extra buffer space for each variable it processes.

That means, for a variable of size S, it introduces a memory overhead of 2S. A

simulation usually consists of multiple variables. In the case where the in situ

compressor fully makes use of the available parallelism, this memory overhead is

not multiplied since these variables can be processed one by one. The 2S memory

overhead thus becomes independent of the total number of variables, making

in situ compression more viable. In the case where the compressor is not fully

parallelized, multiple variables need to be processed simultaneously to exploit

the available parallelism. The 2S memory overhead is then multiplied, making

in situ compression less viable. The wavelet compressor in our experiment falls

into the first case, so it introduced memory overhead that is twice the largest

variable at 3213 resolution, or 529MB in total, which was acceptable for our test

supercomputer system.

3.4.3 Data Integrity Viability. Data integrity is a universal concern

of all lossy compression techniques, but the acceptance of information loss greatly

varies. This acceptance is usually determined by factors such as the nature of the

intended analysis, the accuracy requirement of a particular application, as well

as resource limitations such as I/O and storage. Given that this paper focuses on

performance impacts of in situ compression, we present a visualization and simple

statistics of the resulting compression but choose not to go into detailed analysis.
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(a) Rendering from the raw data. (b) From 16:1 compressed data.

(c) From 64:1 compressed data. (d) From 128:1 compressed data.

Figure 15. Ray tracing renderings of the pressure field from Lulesh: a shock wave
propagates in a cube. They are from the raw data, and compressed data with ratios
of 16:1, 64:1, 128:1. Note that most artifacts emerge on the shock wave front.

Table 4. Error measurements from compression for each compression ratio (first
column from left). Both root-mean-square error (RMSE) and L-∞ norm values
(second column) are normalized by the range of data. The rest columns are
evaluations of five data fields: energy (e), relative volume (v), pressure (p), artificial
viscosity (q), and x-velocity (xd).

e v p q xd

16 RMSE 6.7e− 8 4.1e− 8 3.5e− 4 2.2e− 4 1.1e− 3
L−∞ 9.2e− 7 4.7e− 7 5.3e− 3 4.4e− 3 1.5e− 2

64 RMSE 7.7e− 7 4.8e− 7 4.9e− 3 5.8e− 3 1.0e− 2
L−∞ 1.8e− 5 1.6e− 5 1.0e− 1 1.2e− 1 2.0e− 1

128 RMSE 1.7e− 6 1.1e− 6 1.0e− 2 1.2e− 2 1.8e− 2
L−∞ 3.8e− 5 2.3e− 5 2.6e− 1 2.9e− 1 3.4e− 1
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Figure 15 presents ray tracing results of the pressure field of this shock

wave at time step 4,300, in a 1283 cube. While the 16:1 result looks almost

indistinguishable from the baseline, the 64:1 result has clear “ripples” along the

shock wave front, since that is where most of the energy resides. The 128:1 result is

even more deteriorated with not only rough front, but also artifacts in the volume.

Table 4 presents error measurements for multiple data fields at the same time step.

The normalized root-mean-square error provides an average deviation, and the

normalized L − ∞ norm provides the maximum point-wise difference. We used

a 1283 cube for this visualization instead of sizes in our performance tests (3203)

because the per-voxel differences are still prominent in smaller volumes; renderings

look more similar to each other in a 3203 cube. Again, data integrity is highly

analysis-dependent and a complex topic by itself. Interested readers should review

recent publications such as (Laney et al., 2013; Li et al., 2015; Woodring et al.,

2011).

3.4.4 Storage Viability. In situ compression reduces the storage cost

regardless of its performance: either the same data takes less storage, or the same

storage is able to hold more data. If data integrity requirements are satisfied, both

scenarios are welcome for scientists. Thus, the storage viability is really a benefit

rather than a concern.

3.5 Conclusion

We studied performance impacts of in situ wavelet compression on a

scientific simulation. Based on results and analysis of a weak scaling experiment

on a large-scale supercomputer, we gained better understanding of the I/O impacts

of in situ compression, and derived an empirical equation to quantify when we

can expect in situ compression to improve the overall I/O. Finally, we argued
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that in situ compression is a viable alternative to post hoc and in situ analysis by

discussing various aspects of its viability.
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CHAPTER IV

WAVELETS FOR EMERGING ARCHITECTURES: MANY-CORE

ARCHITECTURES

This chapter is mainly based on a collaborative publication (Li, Marsaglia,

et al., 2017). Hank Childs, Christopher Sewell, and I produced the original plan

for this study. While I performed the major software development in this study,

Christopher Sewell provided valuable guidance in adopting the novel programming

paradigm (data parallel primitives with VTK-m), and John Clyne greatly helped

me understand the many details of wavelet compression algorithms. Nicole

Marsaglia and Vincent Chen contributed a native GPU implementation for

performance comparison in this study (Section 4.5.2). Hank Childs, Christopher

Sewell and John Clyne helped me analyze and understand the experiment results,

as well as edit the final submission.

In terms of my research goals of this dissertation, this chapter addresses

the third one, i.e., a focus on a specific kind of emerging hardware. In particular,

this chapter addresses many-core architectures. The next chapter (Chapter V)

still addresses the third research goal, but will focus on another kind of emerging

hardware: burst buffers.

4.1 Motivation

The computational capacity of HPC systems never stops growing. To

develop even faster HPC systems, there are two approaches. The first is to

make individual processing units run faster. In most cases, this is a synonym for

higher clock frequencies. The second approach is to use more processing units.

Traditionally, this is a synonym for more compute nodes, or CPU cores. Since the

2000s, it has become increasingly difficult to achieve significant advances with the
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first approach. The major limiting factor has been the amount of power needed

to drive very high clock frequencies (often above 3GHz), and the associated heat

dissipation requirements at those frequencies. As a result, the second approach has

been playing a more important role to achieve better performance. For example,

the number of compute nodes grows from one generation of HPC systems to the

next, and these compute nodes tend to contain more cores through the use of

multi-core CPUs.

More recently, the “using more processing units” approach is also prevailing

in the designs of processors that are intended to use within a compute node. More

specifically, manufacturers are in favor of packing more cores into a processor rather

than improving a single core’s performance. At times, the performance of a single

core may even decrease. Examples of such processors include the Intel Xeon Phi,

which contains 60 to 70 cores with each running at 1.1 to 1.4GHz, and the Nvidia

Tesla, which contains thousands of cores with each running at hundreds MegaHertz.

Processors with this massive parallelism usually have very distinct characteristics,

and architectures of this type are often referred to as “many-core” architectures.

The emergence of many-core architectures imposes two challenges to

application developers: the first being how to harness the amount of parallelism

available, and the second being how to program with portable performance. Here

portable performance means that the same program performs well not only on

one many-core architecture, but also on others, not to mention the existing multi-

core architectures of today. In some cases, portable performance is a premise of

making use of the massive parallelism, since with a growing number of architectures

thriving simultaneously, developers can no longer afford to design and tune

programs targeting a specific architecture. In fact, algorithms and programs with
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portable performance are expected to play larger roles in the future of HPC, and

portability is becoming a key factor deciding how applicable an application could

be in various usages.

This chapter investigates the portability of wavelet compression. Specifically,

it focuses on designing a wavelet compressor that will be hardware-agnostic and

yet still achieves high performance on each architecture it runs on. Ideally, this

design can “future-proof” our code to run not just on today’s architectures, but

also tomorrow’s. Recent research has demonstrated that designing code using data

parallel primitives (DPPs) as building blocks is a promising direction for achieving

this goal. Therefore, the research involved with this work — and the contribution

of this chapter — is to re-think wavelet compression using data parallel primitives

and to demonstrate the efficacy of the resulting algorithm on multiple architectures.

4.2 Related Work

4.2.1 Parallel Wavelet Transforms on CPUs. Domain

decomposition is a popular yet effective approach for achieving parallel processing

on CPUs. Using this approach, an entire domain is decomposed into smaller

subdomains and each subdomain is processed individually. For 2D matrices, the

JPEG 2000 image compression standard employs this approach (Acharya & Tsai,

2004). A similar application on multi-node settings is also reported in (Uhl, 1995).

For 3D volumes, VAPOR (Clyne et al., 2007; Clyne & Rast, 2005), an open-

source visualization package with a wavelet compression component, decomposes

incoming volumes into 643 cubes by default and then processes them in parallel.

Although domain decomposition has the advantage of simplicity, the technique can

suffer from blocking effects along subdomain boundaries, which arise from wavelet

artifacts on finite-length input boundaries.
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More complicated parallel approaches treat the entire domain as a whole

while performing wavelet transforms in parallel. These approaches eliminate

blocking effects, but introduce inter-process communications. Nielsen et al. (Nielsen

& Hegland, 2000) developed a parallelization strategy that eliminates a time-

consuming distributed matrix transpose, and demonstrates strong scalability.

Chaver et al. (Chaver, Prieto, Pinuel, & Tirado, 2002) partitioned 2D matrices

into stripes and studied the performance differences between X-partitioning and

Y -partitioning. Chadha et al. (Chadha, Cuhadar, & Card, 2002) further developed

a partitioning strategy where intermediate information exchanges are restricted

to neighboring processors. Though proven to be effective on multi-core CPUs and

distributed systems, it is unclear how similar strategies would perform on many-

core architectures. Also, these strategies seem to have, for the most part, not

considered 3D volumes.

4.2.2 Parallel Wavelet Transforms on GPUs. Parallel wavelet

transforms on GPUs have been predominantly conducted within the CUDA

framework (Nickolls, Buck, Garland, & Skadron, 2008). Natural parallelization

strategies on GPU include row-based and column-based processing, which uses

one GPU thread to process a row or a column of an image at a time (Ao, Mitra,

& Nutter, 2014; Enfedaque, Auli-Llinas, & Moure, 2015). Domain decomposition

is also used to get the CPU and GPU to work together: a CPU sends subdomains

to a GPU to process, and retrieves back the results one-by-one (Franco, Bernabé,

Fernández, & Ujaldón, 2010).

A trend in GPU-based wavelet transforms is to exploit the many memory

hierarchies on GPU devices to achieve higher speedups, including discussions on the

use of shared memory (Franco et al., 2010), texture memory (Garcia & Shen, 2005),
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and even registers (Enfedaque et al., 2015). While these fine-grained tunings are

very effective in making the most out of the hardware, they usually require a good

amount of GPU programming skills, and the performance gains are not guaranteed

to translate to another version of hardware.

Finally, we point out that an important use of GPU wavelet transform is

to perform on-demand decompression at rendering time. The idea is to postpone

decompression to the latest possible stage of the rendering pipeline, which is

on GPUs, to reduce the expensive data movement costs. An example of this

use is GST (Krajcevski, Pratapa, & Manocha, 2016), where “supercompressed”

textures are decoded on GPUs. A detailed survey on this topic is also available at

(Balsa Rodríguez et al., 2014).

4.2.3 Visualization Algorithms With DPPs. Several studies have

investigated how to re-think a specific algorithm in the framework of data parallel

primitives. They include Maynard et al. with thresholding (Maynard, Moreland,

Atyachit, Geveci, & Ma, 2013), Larsen et al. with ray-tracing (Larsen, Meredith,

Navrátil, & Childs, 2015) and unstructured volume rendering (Larsen, Labasan,

Navrátil, Meredith, & Childs, 2015), Schroots and Ma with cell-projected volume

rendering (Schroots & Ma, 2015), Lessley et al. with external facelist calculation

(Lessley, Binyahib, Maynard, & Childs, 2016), Lo et al. with isosurface generation

(Lo, Sewell, & Ahrens, 2012), and Carr et al. with contour tree computation (Carr,

Weber, Sewell, & Ahrens, 2016). Our own work differs in that we are considering a

different algorithm (wavelet transform).

4.2.4 Other State-of-the-art Floating Point Compressors.

Motivated by the I/O bottleneck on supercomputers, several schemes are designed

to specifically compress the floating-point data arising from numerical simulations.
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Some representatives include Fpzip (Lindstrom & Isenburg, 2006), ZFP (Lindstrom,

2014), SZ (Di & Cappello, 2016), and ISABELA (Lakshminarasimhan et al., 2011).

However, the ability of these schemes to perform well on multiple architectures is

still not clear, and this work focuses on how to obtain portable performance for

wavelet compression.

4.3 Data Parallel Primitives

In the data parallel paradigm, algorithms are made by composing together

so-called data parallel primitives, or DPPs. A DPP specifies the pattern of how

an input array is processed in parallel to produce outputs, while users take the

responsibility to specify operations applied on each individual element. This user-

specified operation is sometimes referred to as “functors” or “worklets.” A benefit of

using data parallel primitives is that execution details such as thread and memory

management are abstracted away from general users, which in turn allows specific

implementations to optimize for underlying architectures. Algorithm designers then

re-think their algorithms using a relatively small set of data parallel primitives to

harness the massive parallelism in modern architectures. Here we briefly describe a

few data parallel primitives for demonstration purposes. Readers can consult work

by Blelloch (Blelloch, 1990) for theoretical foundations and Nvidia’s Thrust (Bell &

Hoberock, 2011) for examples in an actual product.

Map is a simple yet powerful data parallel primitive — it maps each data

element from the input array to an element in the output array. The input and

output arrays thus have the same size. Map resembles a traditional for loop if

there are no loop-carried dependencies. Elements are thus processed in parallel with

arbitrary order.
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Scan also maps an input array to an output array with the same size,

but resembles a for loop that does have loop-carried dependencies. Scan can be

efficiently executed in parallel in a bottom-up fashion.

Reduce uses all elements from the input array to produce a single output

value, for example the sum or the maximum of the input array. Reduce can also be

efficiently executed in parallel in a bottom-up fashion.

Scatter and Gather are data parallel primitives to facilitate data

movement — individual elements are moved in parallel to or from designated

locations assuming there are no index conflicts.

In practice, more complex data parallel primitives can be constructed by

composing the basic data parallel primitives. This process is useful for providing

fundamental algorithms, and an example of this is the Sort algorithm in Thrust.

4.4 Algorithm Description

Our compression algorithm consists of two primary steps: wavelet

transformation followed by coefficient prioritization. The basics of wavelet

transformation is already covered in Section 2.2, so here we detail a specific

approach (filter-banks) we used for implementation in Section 4.4.1. We then

briefly discuss coefficient prioritization with DPPs in Section 4.4.2, before we

discuss more implementation specifics in Section 4.4.3.

4.4.1 Filter-bank Based Wavelet Transforms. There are multiple

approaches available to perform the wavelet transform, with filter banks (Strang

& Nguyen, 1996) and lifting schemes (Sweldens, 1996) being most popular. We

adopted the filter bank approach in this study because of its flexibility; different

wavelets can be handled using different filter banks without dramatical changes to

the program.
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Figure 16. Illustration of a filter-bank based wavelet transform workflow. The
input signal (x[n]) passes through a low-pass and high-pass filter (g[n] and
h[n], respectively), and is then down-sampled by a factor of two, resulting in
approximation and detail wavelet coefficients. This process is repeated on the
approximation coefficients to create a second level wavelet transform.

With the filter bank approach, the core operation to calculate wavelet

coefficients is discrete convolution. More specifically, we use a two-channel filter

bank to perform wavelet transforms, with each filter convolving with the input

array (signal) to produce wavelet coefficients. The first channel is a low-pass filter,

and the resulting “approximation” coefficients provide a coarsened representation

of the signal. The second channel is a high-pass filter, and the resulting “detail”

coefficients contain the missing information from the low-pass filtering. The total

number of output coefficients is doubled by convolving with two filters. A down-

sampling step with a factor of two then restores the same number of coefficients to

the input array. Despite downsampling, it is still possible to retain all information

according to the Nyquist’s rule: half of the frequency components passed through

a filter, thus only half of the coefficients were needed to represent them (Nyquist,

1928).

The approximation coefficients are recursively transformed in the same

manner — iterating through the filter banks until a stopping criterion is reached.

This practice further decorrelates the approximation coefficients to achieve a better

compression. Figure 16 illustrates a two-level wavelet transform workflow.
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In practice, discrete convolution requires special care on the boundaries

for finite-length input data. In the general case that the data is not periodic, the

data array needs to be extended by half the filter length on both ends, so discrete

convolution can perform as usual on the real data. Usually, the extension past the

boundary uses the last few elements of the input data array. With an appropriate

choice of convolution filter pairs, and careful boundary extensions, mathematically

perfect reconstruction is possible with the number of wavelet coefficients matching

the number of original samples.

Also from a practical standpoint, the down-sampling step in Figure 16

leaves opportunities to eliminate unnecessary calculation of coefficients, i.e., to

skip calculation of coefficients that are meant to be discarded. This is achieved by

performing discrete convolution with the low-pass filter on even indexed elements,

and the high-pass filter on odd indexed elements.

4.4.2 Coefficient Prioritization. The second step of wavelet

compression is to prioritize all coefficients and keep only the ones with the most

information content. The heart of this process is a “sort” routine based on the

magnitudes of the coefficients. After sorting, a decision is made (typically as input

to the compression process) about how many coefficients to save. These coefficients

are the largest values. The remaining coefficients are not saved, and treated as

zeros during data reconstruction.

4.4.3 Implementation Specifics. We implemented our algorithm

within the VTK-m framework (Moreland et al., 2016). VTK-m provides a set of

platform-agnostic data parallel primitives to algorithm developers, which sits on

top of architecture-specific back ends. Currently, VTK-m has two optimized back

ends for its DPPs: CUDA (Nickolls et al., 2008) for Nvidia architectures, and Intel
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TBB (Pheatt, 2008) for Intel architectures. Also, because of the high-level nature of

VTK-m, some architectural specifics, such as the different kinds of memories on an

Nvidia GPU, are not exposed to its users.

With regards to memory organization, our implementation keeps data in

a row-major one-dimensional array regardless of its logical dimensionality. This

design means we must face less-than-ideal memory access patterns when accessing

data in columns or frames. One potential work-around is to transpose the matrix

(or volume) to the desired orientation before performing wavelet transforms

along that axis. However, in-place transposition for a matrix (or volume) with

different sizes along each dimension is not trivial by itself. We did not choose this

optimization for simplicity.

Our implementation supports four wavelets: three members from the CDF

(Cohen et al., 1992) wavelet family (CDF 9/7, CDF 8/4, and CDF 5/3), and the

Haar wavelet. We used the CDF 9/7 wavelets in this study because it is arguably

the best for lossy compression usage.

Finally, we note that our implementation is already merged into the open-

source VTK-m repository.

4.4.3.1 Wavelet Transform with DPPs. We used the “Gather”

data parallel primitive to perform signal extension. Gather naturally fits in here

since it retrieves elements from designated locations of the signal to extensions

(just like gathering). We use specific worklets to guide Gather to correctly handle

different dimensionalities and extension directions (e.g., left, right, etc.). Though

extending a signal is computationally light because of the small sizes of extensions,

implementing them using a data parallel primitive has the additional benefit of

avoiding potential data transfers between different computing environments (e.g.,
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Algorithm 1 Worklet for 3D Wavelet Transform in the X Axis
Require: signal, leftExt, rightExt, workIdx . workIdx is assigned by VTK-m
Ensure: coefficients

1: procedure TransformX( signal, leftExt, rightExt, workIdx, coefficients)
2: (x, y, z)← GetLogicalIndex( workIdx )
3: if x is even then . Because this is transform along X
4: array ← ComposeX( signal, leftExt, rightExt, x, y, z )
5: sum← DiscreteConvolution( arrary, lowWaveletF ilter )
6: outIdx← GetOutputIndexApproximationCoeff(x, y, z)
7: coefficients[ outIdx ]← sum
8: else
9: array ← ComposeX( signal, leftExt, rightExt, x, y, z )
10: sum← DiscreteConvolution( array, highWaveletF ilter )
11: outIdx← GetOutputIndexDetailCoeff( x, y, z )
12: coefficients[ outIdx ]← sum
13: end if
14: end procedure

between the host and a GPU). This is because DPPs can usually be scheduled to

run on designated devices, which allows us to schedule them in the environment

where data resides.

Wavelet transforms are carried out using a “Map” data parallel primitive.

Details of the transforms, such as wavelet banks and convolution operations, are

passed in as worklets. We implemented individual worklets for wavelet transforms

in each dimensionality and direction; each worklet results in a slightly different

Map that performs wavelet transform for one particular case. This practice reduces

execution branches inside a worklet, which helps maximize the GPU performance.

Algorithm 1 outlines a worklet performing 3D wavelet transforms along the X axis.

It assumes that each row of the three-dimensional input is properly extended with

an extension on both left and right side (leftExt and rightExt, respectively), and

receives its own work index (workIdx) from the VTK-m scheduler, so each instance

of the worklet performs convolution on one index: (x, y, z).
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4.4.3.2 Coefficient Prioritization with DPPs. For coefficient

prioritization, we used the “Sort” data parallel primitive provided by VTK-m.

VTK-m exposes platform-optimized sort when possible. Specifically, it exposes the

parallel merge sort from Thrust (Bell & Hoberock, 2011) on GPUs, and the parallel

quick sort from TBB on CPUs.

4.5 Study Overview

4.5.1 Experiment Overview. We performed our experiments in two

rounds. The first round focused on evaluating our own algorithm, while the second

round focused on comparing with hardware-specific implementations.

4.5.1.1 Round 1: Evaluation of the VTK-m Approach. This

round was designed to better understand the basic performance of wavelet

compression across multiple platforms. It varied two factors:

– Hardware architecture: multi-core CPU and GPU.

– Data sizes: 2563, 5123, 1, 0243, and 2, 0483.

We tested all data sizes on CPU, but skipped the 2, 0483 data size on GPU due

to the GPU memory capacity limitation. We also tested 1D and 2D data inputs

for evaluation purposes, and their results yielded similar patterns to 3D inputs.

Since 3D data sets are most relevant to HPC applications including simulations

and scientific visualizations, we only report 3D results here. We report results from

artificial data sets with Gaussian distributions, although the actual data values

do not impact performance significantly, because the number of floating point

operations and function invocations remains constant for each test size.

4.5.1.2 Round 2: Comparison with Platform Specific

Implementations. This round compared the VTK-m implementation with

platform specific implementations for multi-core CPUs and CUDA GPUs, namely
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VAPOR (Clyne et al., 2007; Clyne & Rast, 2005) for multi-core CPUs, and a

native CUDA implementation for GPUs. These implementations represent the best

practices on respective architectures, so they are good comparators for the VTK-m

implementation. The total number of configurations for this round is four: VTK-

m and VAPOR on multi-core CPUs, and VTK-m and CUDA on GPUs. Again,

we opt to only report 3D test results as representatives, and each test is run with

multiple problem sizes.

4.5.2 Software Specifications. There are three software packages

used in our study: our VTK-m implementation, VAPOR, and a native CUDA

implementation. Details about the VTK-m implementation are in Section 4.4.3,

so this section focuses on VAPOR and the CUDA implementation.

VAPOR is an open-source software framework consisting of multiple

components, including a GUI for post hoc exploration of wavelet-compressed

data. For this study, we made use of the standalone wavelet compression utilities

included with VAPOR. This program achieves parallel processing through domain

decomposition, i.e., a large volume would be decomposed to fixed-sized blocks, and

multiple blocks are processed individually and simultaneously using pthreads.

Coefficient prioritization (described in Section 4.4.2) is performed individually

within each block as well using the C++ STL sort.

The native CUDA implementation was written for our study. It followed

implementation decisions discussed in (Scivoletto & Romano, 2016) with

adaptations to our GPU. For example, we maxed out the number of threads per

block on our GPU to be 1, 024 for larger throughput. Wavelet transforms in each

direction (X, Y , and Z) are implemented as separate CUDA kernels for parallel

processing. Data is always organized as one-dimensional arrays in the global
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memory on the GPU without explicit use of shared memory. Thrust sort was

used here during coefficient prioritization. Overall, this CUDA implementation

has a very similar structure to its VTK-m counterpart, minus the platform-agnostic

infrastructure from VTK-m.

Both CPU softwares (VTK-m+TBB and VAPOR) are compiled using GCC,

and both GPU softwares (VTK-m+CUDA and native CUDA implementation)

are compiled using NVCC with GCC. We turned on -O2 optimization for all

compilations.

4.5.3 Hardware Specifications. To support the tests described in

Section 4.5.1, we used the following test systems; both systems are used in both

rounds of our testing.

– CPU System: Dual socket Intel Xeon Haswell CPUs running at 3.2GHz.

There are 16 cores in total, and each core is hyper-threaded to have 2 threads.

– GPU System: Nvidia Tesla K40 GPU. There are 2,880 cores in total, each

running at 745MHz. This GPU also has 12GB on-board high speed memory.

4.6 Results

The results are organized following the two rounds of our experiments:

Section 4.6.1 analyzes the performance of our algorithm over multiple architectures,

and Section 4.6.2 compares our performance to hardware-specific implementations.

4.6.1 Performance Analysis of the Algorithm. We separately

analyze multi-core CPU performance (4.6.1.1) and GPU performance (4.6.1.2).

4.6.1.1 Multi-core CPU Performance Analysis. Our first set

of experiments studied strong scaling of the VTK-m implementation. We ran a

baseline of a single core, and then ran additional tests with sixteen cores. In both

cases, the compressed volume was the same size. Table 5 shows timing values
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Table 5. Strong scaling study of VTK-m on 16 Xeon CPU cores. For each problem
size, computation time is reported for both transform (shortened as XForm) and
sort subroutines in seconds. The achieved speedup is reported in the last column.

Size Subroutine 1-core 16-core Speedups

2563
XForm 4.72 0.33 14.30X
Sort 1.36 0.22 6.18X

5123
XForm 37.22 2.06 18.07X
Sort 12.23 1.41 8.67X

1, 0243
XForm 298.67 16.22 18.41X
Sort 103.75 13.32 7.79X

2, 0483
XForm 2512.10 131.40 19.12X
Sort 884.53 93.18 9.49X

Table 6. Factor of computational time increase from a smaller to a bigger problem
size. Values in this table are derived from the 16-core results in Table 5.

Size Incr. XForm Time Incr. Sort Time Incr.
2563 → 5123 6.24X 6.41X
5123 → 1, 0243 7.87X 9.45X
1, 0243 → 2, 0483 8.10X 7.00X

and speedup factors on four problem sizes. The results show that the transform

subroutine achieves near perfect speedups (around 16X), indicating that the

worklet based approach is able to harness the additional CPU cores. In some

cases, the speedup numbers are even higher than 16X. We speculate this is due

to the hyper-threading nature of the Xeon CPUs, since VTK-m sees 32 logical

cores through TBB and launches 32 threads for computation. However, the sort

subroutine only has speedups from 6.18X to 9.49X. This reduced performance is

expected, since sorting requires coordination between the cores.

Our second set of experiments looked at the execution time increase as the

problem size grows. We calculate the ratio of execution times using the sixteen

core results and list them in Table 6. The problem size grows by 8 at each step.

This table shows that both transform and sort subroutines take close to 8X more
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Table 7. Wavelet transform and sorting time on a Tesla K40 GPU in seconds. The
factor of time increase from the previous problem size is indicated in parentheses.

Size XForm Time Sort Time
2563 0.0463 0.0445
5123 0.3177 (6.86X) 0.3834 (8.62X)
1, 0243 2.4419 (7.69X) 3.1766 (8.29X)

Table 8. Theoretical and achieved occupancy of our wavelet compressor on a Tesla
K40 GPU. The transform subroutine was implemented as a worklet, and the sort
subroutine was a data parallel primitive provided by VTK-m.

Theoretical Occupancy Achieved Occupancy
XForm 75% 70.3%
Sort 50% 49.4%

time to finish processing the next problem size. This result indicates that this

implementation is not slowing down as we approach data sizes up to 2, 0483.

4.6.1.2 GPU Performance Analysis. Our first set of experiments

measure raw performance on the GPU. Table 7 provides the time the GPU takes

to perform wavelet compression on three data sizes: 2563, 5123, and 1, 0243. We

did not test the 2, 0483 data size because it exceeded the memory capacity on our

GPU. These tests show a significant performance boost compared to 16-core CPUs.

Given that this is the same code base compiled on two very distinct architectures,

it shows that the performance can be portable. Also, the execution time increase is

in line with the problem size growth: it takes roughly 8X more time to solve an 8X

larger problem.

Secondly we use occupancy reported by the Nvidia Visual Profiler to

assess the efficiency of the VTK-m program. In Nvidia’s model, adjacent threads

are grouped into warps. There is a maximum number of warps that can be

concurrently active on a Streaming Multiprocessor depending on the underlying

hardware. Occupancy is then defined as the ratio of active warps to the maximum
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number of active warps supported by the Streaming Multiprocessor. It is not

always possible to achieve 100% occupancy for a general program because of

limiting factors in compilation and GPU invocation specifics (more details can be

found in Nvidia documentation (Nvidia, 2015)). As a result, the Nvidia Visual

Profiler reports a theoretical occupancy as well as an achieved occupancy. The

achieved occupancy cannot reach the theoretical occupancy when the scheduler is

not able to issue sufficient instructions because of data or instruction dependencies.

We report both occupancy metrics in Table 8 for two major subroutines in our

algorithm: wavelet transform and sort.

The occupancy results are generally good, with the wavelet transform

worklet achieving a higher occupancy. This is because of the nature of the

wavelet transform that worklets working on individual convolutions are more

independent with each other than sorting. For both subroutines, the Nvidia Visual

Profiler suggests that the occupancy is large enough that further improvements in

occupancy may not improve performance.

We note that for large-scale simulations on supercomputers, a 1, 0243 cube

is on a par with problem sizes a single compute node normally processes. We argue

that the achieved compression speed on GPUs, e.g., under six seconds for a 1, 0243

cube, is likely fast enough to fit within in situ requirements and facilitate the in

situ+post hoc strategy to alleviate I/O constraints.

4.6.2 Comparisons With Hardware-Specific Software.

4.6.2.1 VAPOR. As previously discussed, VAPOR achieves parallel

processing via domain decomposition and pthreads (see Section 4.5.2). For the

tests on different size data sets, we maintained the number of total subdomains at

64, allowing VAPOR to make full use of the multi-core CPU. In our case, the test

67



��

����

����

����

����

����

����

����� �����

�����������

��
����

��
����

��
����

��
����

��

����� �����

�����������

��

��

���

���

���

���

���

���

����� �����

�������������

��

���

����

����

����

����

����

����

����� �����

�������������

Figure 17. Comparison of execution time (in seconds) between VTK-m and
VAPOR. The purple region is for wavelet transforms, and green is for sorting.

machine has 16 physical cores which are hyperthreaded to appear as 32 cores, so

VAPOR launches 32 threads with each one processing two subdomains. VAPOR

processes each subdomain following the transform and sort subroutines as the

VTK-m implementation does. We note that the local sort within each subdomain

actually results in fewer calculations than the global sort in VTK-m, but for

simplicity in comparison, we consider the sort time to be local for VAPOR and

global for VTK-m.

Figure 17 shows the performance comparison between VTK-m and VAPOR.

These results show that VTK-m and VAPOR have comparable performance with

VTK-m being faster in three of the four test sizes. However, a more prominent

difference is how they allocate time differently between their two subroutines.

While VTK-m spends more than half its time performing wavelet transforms,

VAPOR spends less than a quarter, especially as the problem size grows. This

result is interesting since it shows that our DPP-based wavelet transform is 3X

to 4X slower than the best implementations on CPU.

We speculate two design choices by VAPOR contributed to its superior

performance: slice-by-slice data processing, and transposition for cache alignment.

Both design choices aim to better use the caching mechanism on CPUs. First, a
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Figure 18. Comparison of execution time (in seconds) between VTK-m and CUDA.
The purple region is for wavelet transforms, and green is for sorting.

slice from the subdomains that VAPOR processes is most likely to fit into the

last level of cache in modern CPUs. For example, a slice from 5123 subdomains

is 1MB in 32-bit float or 2MB in 64-bit double type, which can easily fit into

the 20MB L3 data cache per CPU socket (40MB in total) in our test system.

Second, VAPOR transposes data to align arrays in storage to the one dimensional

wavelet transforms about to be performed, further increasing cache utilizations in

smaller but faster L2 and L1 caches. On the contrary, our data parallel primitive

based transform schedules worklets to process arrays as long as one entire volume

dimension without certain orderings, hardly making good use of the caching

mechanism.

In terms of the time cost for sorting, the STL sort employed by VAPOR

does not perform as well as VTK-m’s sort, which is TBB’s sort for CPUs. One

might think that replacing the STL sort in VAPOR to TBB sort could be a simple

solution to increase VAPOR’s performance. However, it would not be that easy,

since VAPOR is already parallelizing across cores for the domain decomposition,

and thus the sort for each subdomain can only use a single thread.

4.6.2.2 Native CUDA Implementation. Figure 18 compares the

performance difference between the VTK-m and native CUDA implementations.
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Since they share similar parallelization strategies (see Section 4.5.2), this

comparison actually quantifies the performance overhead of VTK-m on GPUs. As

the results show, this overhead is always within 40% of the CUDA performance.

In fact, this overhead has a trend to decrease as data size grows (i.e., from 35% at

2563 to 20% at 1, 0243).

4.7 Conclusions and Future work

This chapter explored a new approach to implement a wavelet compression

algorithm, distinguished in its aim to achieve portable performance over multiple

architectures. This new approach made use of the data parallel primitive paradigm,

which aims to future-proof for emerging architectures. We showed that our

performance is comparable with two hardware-specific softwares on multi-core

CPUs and Nvidia GPUs. The GPU comparison also quantifies the VTK-m

overhead to be no more than 40% of its native CUDA counterpart.

For future work, we would like to explore techniques that enable us to

process larger data sets on GPUs despite their constrained memory capacity, for

example, the greatly enhanced unified memory from CUDA 8.
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CHAPTER V

WAVELETS FOR EMERGING ARCHITECTURES: BURST BUFFERS

This chapter is mainly based on a collaborative publication (Li, Sane, et

al., 2017). Hank Childs and John Clyne helped me to form the game plan for

this study. Leigh Orf and Pablo Mininni provided data from their simulations,

as well as analyses which are used repeatedly in this study. I performed most

of the experiments except a pathline integration implementation (Section 5.5.1),

which was contributed by Sudhanshu Sane. Hank Childs and John Clyne were also

heavily involved in experiment result analysis as well as paper editing.

In terms of my research goals of this dissertation, this chapter addresses the

third one with a focus on another type of emerging hardware: burst buffers. The

previous chapter (Chapter IV) addressed the same research goal with a different

focusing hardware: many-core architectures.

5.1 Introduction

5.1.1 Motivation. Modern computers are equipped with a hierarchy

of memory. Usually this hierarchy consists of registers and a few levels of caches on

the same processor dies of CPUs, system memory for the multiple processing units

in the same compute node, and the parallel filesystem for the entire HPC system.

Tape-based storage would contribute one more level of hierarchy to systems that

are equipped with it. Overall, this hierarchy of memory aims to ensure the most

frequently used data is accessible with the least amount of time.

With the increasing I/O bottleneck which we keep referring to in this

dissertation, the discrepancy between two levels in this hierarchy, main memory and

the parallel filesystem, is growing rapidly. Following the same spirit of our existing

memory hierarchy, modern architectures could have one more level of hierarchy
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in between, mitigating this discrepancy. In fact, with the development of one

particular technology, solid state drive (SSDs), this extra hierarchy level is emerging

in more and more systems, and is often referred to as “burst buffers.” These burst

buffers usually provide a higher throughput than the main filesystem, although

with a smaller capacity. For example, the Wrangler system from The Texas

Advanced Computing Center has an SSD-based storage achieving an aggregate

rate of 1TB/s, which is 40 times higher than the primary filesystem. Its capacity,

on the other hand, is about 1/20th of the primary storage.

How to make use of this burst buffers and an extra memory hierarchy is a

hot research topic. Its superior capability to handle intermittent large amount of

I/O requests motivates us to re-think our in situ compression workflow, especially

temporal compression opportunities between time slices.

To date, in a typical in situ compression workflow, a compression operator is

inserted as the simulation saves its state, such that the operator is applied to single

time slices one by one. This compression can be quite effective, since neighboring

data points in a mesh are often coherent (very smooth) and many compression

operators perform best on coherent data. Simulation data is often temporally

coherent as well, and thus our research looks at compression across time as well

as space. This alternate approach, referred to as “spatiotemporal compression” in

this chapter, enables compression operators to exploit temporal coherency while

continuing to take advantage of spatial coherency.

Spatiotemporal approaches were not feasible previously on supercomputers,

since simulation codes have traditionally been memory-constrained and thus only

had room to operate on a single time slice. But burst buffers create opportunities

to temporarily store multiple time slices as a “window” and apply spatiotemporal
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compression on this window. With this chapter, we investigate how feasible and

effective spatiotemporal compression is on scientific data.

5.1.2 Spatiotemporal Compression Propositions. This chapter

explores the benefit of including the time dimension for wavelet-based compression.

While other techniques besides wavelets could be considered, we find wavelets to

be an excellent operator for our evaluation, since the reference point of spatial-

only compression is so well studied. Moreover, the feasibility of wavelet-based

spatiotemporal compression was previously impractical due to the relatively wide

temporal “window size” required. Our results show that spatiotemporal (4D)

wavelet compression is superior to spatial (3D) wavelet compression for each of

the following propositions:

– P1: Improve the accuracy, while maintaining temporal resolution and storage

costs.

– P2: Reduce storage costs, while maintaining temporal resolution and

accuracy.

– P3: Increase temporal resolution, while maintaining storage costs and

accuracy.

Our study consists of two phases. First, we evaluate the efficacy of the

approach with respect to our three propositions, as well as the performance impacts

of operating on multiple time slices jointly. This phase also includes the study of

multiple available parameters with particular relevance to wavelet transforms in

the time domain, and helps inform their best combinations in practice. Second, we

consider real-world visualization use cases which demonstrate how spatiotemporal

compression improves analyses by providing more information per byte.
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5.2 Related Work

5.2.1 Spatiotemporal Wavelet Compression. The benefits of

wavelet-based, spatiotemporal compression are not well explored for scientific

data, especially compared to studies considering only the spatial domain. Some

of the earliest work on spatiotemporal wavelets was performed by Villasenor

et al. (Villasenor, Ergas, & Donoho, 1996) and Trott et al. (Trott, Moorhead, &

McGinley, 1996), who both applied a one-dimensional wavelet filter bank over

all four dimensions on seismic reflection and fluid dynamics data, respectively.

Zeng et al. (Zeng, Jansen, Unser, & Hunziker, 2001; Zeng, Jansen, Marsch, Unser,

& Hunziker, 2002) established the feasibility of spatiotemporal wavelet compression

of time-varying echocardiography images. In their earlier work (Zeng et al.,

2001), the authors pointed out that the degree of coherence present may differ

between dimensions, and thus warranted different handling. Lalgudi et al. (Lalgudi,

Bilgin, Marcellin, & Nadar, 2005; Lalgudi, Bilgin, Marcellin, Tabesh, et al., 2005)

evaluated 4D spatiotemporal compression on functional MRI (fMRI) data obtained

as a time series of 3D images of the brain. Wang et al. (C. Wang, Gao, Li, & Shen,

2005) employed multi-resolution representations from 4D wavelet transforms in

their visualization framework for time-varying data.

In all of the preceding work the authors found significant, albeit varying,

benefit to 4D spatiotemporal compression over 3D spatial compression. Our work

differs in the following ways: 1) our application domain is floating point data

arising from numerical simulation; 2) we evaluate information loss with respect to

key visualization algorithms, including algorithms that are sensitive to cumulative

errors over time; 3) we evaluate the impact of various parameters of wavelet

transforms in the context of temporal compression; and 4) we provide an evaluation
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of how 4D compression works with Solid State Drives (SSDs) now found on HPC

systems. All these differences target simulation data on HPC systems, which is a

less studied space.

5.2.2 Other Temporal Compression Techniques. Motion

compensated prediction (MCP) is a family of techniques stemming from video

compression, such as the MPEG standard (Bosi et al., 1997). Researchers have

explored the use of MCP on time-varying scientific data, for example, in (Guthe

& Straßer, 2001; Ibarria, Lindstrom, Rossignac, & Szymczak, 2003; Sanchez,

Nasiopoulos, & Abugharbieh, 2008). In theory, MCP could be useful for Eulerian

type flow computations, since the fields move through the grid rather than the grid

following the flow. However, it is not well understood how MCP’s premise that

pixels are moving in groups affect its application on scientific data.

Recent visualization research has also looked at spatiotemporal compression

techniques specifically designed for scientific data. Ibarria et al. (Ibarria et al.,

2003) proposed a “Lorenzo predictor” that operates on arbitrary dimensions, and

a compression scheme based on it. Lakshminarasimhan et al. (Lakshminarasimhan

et al., 2011) introduced ISABELA as a lossy spatiotemporal compression technique.

ISABELA sorts data sequences in a window before performing B-Spline fitting to

reduce fitting errors. Lehmann et al. (Lehmann & Jung, 2014) extended ISABELA

by using a snapping mechanism to further improve the compression rate in certain

cases. Finally, Agranovsky et al. (Agranovsky et al., 2014) employed a Lagrangian

flow-based approach for vector field data that results in reduced file sizes and

increased accuracy over spatiotemporal intervals.

5.2.3 Burst Buffers. The idea of burst buffers has been proposed

to cope with the exploding data pressure from scientific applications. Scientific
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applications typically have well defined execution phases. For example, they

alternate between computation and I/O phases, which results in bursty and non-

overlapping I/O. This is one of the fundamental motivations for designing burst

buffers. The majority of research on burst buffer usage is recent. Liu et al. (Liu

et al., 2012) designed a simulator of the burst buffer for the IBM Blue Gene/P

architecture. Bing et al. (Xie et al., 2012) characterized output burst absorption

on Jaguar and furthered quantitative models of storage system performance

behaviors. BurstMem is a prototype burst buffer system developed by Teng Wang

et al. (T. Wang et al., 2014). It is built on top of Memcached which is an open

source, distributed caching system. BurstMem enhances Memcached by using a log-

structured data organization with AVL indexing for fast I/O absorption and low-

latency, semantic-rich data retrieval, coordinated data shuffling for efficient data

flushing, and CCI-based communication for high-speed data transfer. BurstMem

is able to speed up I/O performance of scientific applications by up to 8.5X on

leading supercomputers. In total, these works demonstrate that the burst buffer

is a viable element for spatiotemporal compression, especially since they are being

incorporated into many newer supercomputers.

5.3 Method

5.3.1 Processing in Windows. Incorporating spatiotemporal

compression into a simulation’s output process requires careful consideration of

memory. The length of the time dimension can vary widely from tens to thousands

depending on the application. For simulations that may already be memory

constrained, even with the availability of aforementioned, emerging deep memory

hierarchies, retaining large numbers of time steps in memory may be challenging-to-

impossible, thus limiting possibilities for temporal wavelet transform.
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Figure 19. Our spatiotemporal compression workflow with a buffer space. For a
window size of T , a simulation code writes T raw time slices to a buffer space.
Then, for each variable, a compressor reads in the variable from the T time slices
and applies spatiotemporal compression. The resulting compressed data is written
to permanent storage. The process then continues for the next temporal window.

To address this issue in our implementation, we partition all time slices into

“windows” and apply spatiotemporal compression on each window independently.

Figure 19 illustrates our workflow.

At its peak, a buffer space will contain T × S × N bytes, given a window

size T , a single variable of S bytes, and N variables computed by the numerical

simulation. We note that S reflects the number of grid points in this equation.

Since each of the N variables can be compressed one at a time, the required

available system memory is smaller, specifically T ×S. We believe many simulations

can spare this much memory provided T is small, since simulations often allocate

buffers for temporary usage, and these buffers can be used for our compression.

Wavelet transforms within each window involve two steps: first spatial and

second temporal. In the first step, the spatial transform is essentially the same

as what we described in Section 2.2.2. Here we specifically perform the “non-

standard decomposition” (Burrus et al., 1998; Stollnitz et al., 1996) along three

spatial dimensions: a single pass of the one-dimensional forward wavelet transform
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is applied first along the X axis, then Y, and then finally Z. The filter bank is

recursively applied up to J times, where allowable values of J are determined by

properties of the filter bank and signal length described later. The output of this

step is wavelet coefficients after spatial decorrelation.

In the second step, coefficients from the first step are first partitioned

temporally into chunks of fixed size that we term the window size. We then apply

a one-dimensional wavelet transform in time at each grid point location for each

window. For a N3 grid, N3 temporal wavelet transforms are applied per window.

We note that the relatively smaller window size, compared to the lengths of spatial

domains, limits the levels of wavelet transform that can be applied.

After a time window is spatially and temporally transformed, a third step

then takes place to compress the coefficients. Given a target compression ratio n :

1, (n > 1), we find the coefficient with the (num_of_coefficients)/n largest

magnitude, and discard coefficients with magnitudes smaller than the threshold

(i.e., they are treated as zeros in our study) to achieve a n : 1 compression ratio.

5.3.2 Temporal Domain Considerations. We consider two

spatiotemporal compression parameters that require extra care: the aforementioned

window size and wavelet kernel. The choice of window size is connected to the

wavelet kernel choice; they need to be reconsidered under the premise that the

window size is limited by the number of time slices that can fit in computer

memory.

Larger window sizes allow more levels of wavelet transform to be performed

before boundary conditions dominate the calculation. In turn, more levels of

wavelet transform are favorable because they can exploit coherence at multiple

scales. In our implementation, for a given window size, we set J , the number of
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levels of wavelet transform, using the following equation:

J = blog2
window_size
filter_size

c+ 1, (5.1)

where filter size is determined by the wavelet kernel. The two parameters, window

size and wavelet kernel, interact in such a way that a smaller window size limits

the available levels of wavelet transform to perform, while a wavelet kernel with a

smaller filter size can potentially increase the level of wavelet transforms possible.

In terms of wavelet kernel choices, the Cohen-Daubechies-Feauveau (CDF)

wavelet kernel (Cohen et al., 1992) has proven to be a suitable choice for scientific

data compression as well as virtually all compression applications involving

aperiodic data such as image compression (Li et al., 2015; Taubman, 2000; Unser

& Blu, 2003; Woodring et al., 2011). The CDF family of biorthogonal wavelets

are the only compactly supported wavelets besides the Haar kernel that preserve

symmetry across scales, and thus allow for a non-expansive transform of finite

signals when the signal boundaries are similarly symmetrically extended (Usevitch,

2001). A potential difficulty with the CDF 9/7, however, is that its relatively wide

filter size (nine) may limit the levels of transforms that are practical with small

window sizes. For example, with a window size of ten, CDF 9/7 is only able to do

one level of transform. Another kernel from the same wavelet family and having

satisfactory compression performance, the CDF 5/3 kernel, has a filter size five,

and thus permits two levels of transform. The best practice is thus not trivial.

Section 5.4.2.1 presents evaluation results on different combinations of wavelet

kernels and windows sizes.

5.4 Our Study

This section explores spatiotemporal wavelet compression, aiming to identify

best practices regarding various parameters, as well as to quantify benefits gained
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from exploiting temporal coherency. The baseline results we use for comparisons

are from 3D wavelet compression with CDF 9/7 wavelet kernels, which was found

to be a top choice for compression in Chapter II. CDF 9/7 is also what we used

for the spatial step of our spatiotemporal wavelet transform (see Section 5.3.1).

Section 5.4.1 describes the experiments, Section 5.4.2 describes the results, and

Section 5.4.3 describes performance impacts. Section 5.4.4 relates these results back

to our three propositions for domain scientists. Finally, Section 5.4.5 discusses the

limitations we observed regarding spatiotemporal compression.

5.4.1 Overview of Experiment Parameters. We varied five

parameters to study:

– Wavelet kernel: “CDF 9/7” and “CDF 5/3”;

– Window size in the time domain: 10, 20, and 40;

– Data set and variable: 7 variables from 3 simulations;

– Temporal resolution: 3 or 4 options for each variable;

– Compression ratio: 4 or 5 steps from 8:1 to 128:1.

5.4.1.1 Wavelet Kernel and Window Size. Wavelet kernel

and window size together determine how many levels of the wavelet transform

can be performed in the time dimension, which has a direct impact on the

compression result (see Section 5.3.2). We consider two wavelet kernel candidates

on the temporal domain: CDF 9/7 and CDF 5/3 with filter sizes nine and five,

respectively. Though CDF 9/7 yields better compression results in most settings,

the narrower width of CDF 5/3 is also compelling. We also consider three window

sizes: 10, 20, and 40. With these window sizes, CDF 9/7 is able to perform 1, 2,

and 3 levels of wavelet transform, respectively, and CDF 5/3 is able to perform one

more level at each window size (i.e., 2, 3, and 4 levels) due to a shorter filter size.
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5.4.1.2 Temporal Resolution. Compression in the time domain relies

on the data coherency between available time slices, which is a direct result of

available temporal resolution. A higher temporal resolution provides more data

coherency, and thus is more suitable for temporal compression. This experiment

quantifies how temporal resolution affects spatiotemporal compression accuracy.

We focus on results from a forced incompressible hydrodynamic turbulent

flow simulation from the Ghost (Mininni et al., 2006) simulation code to study

temporal resolution in this subsection. More details of the physics of a similar

Ghost simulation are given by Mininni et al. (Mininni, Alexakis, & Pouquet, 2008).

We ran the simulation and saved time slices at a base temporal resolution: every

100th simulation cycle. We denote this base resolution as “1.” When experimenting

with various temporal resolutions, we reduce this base resolution by using every

200th cycle and using every 400th cycle. We denote the lowered temporal resolution

as “1/2” and “1/4,” respectively.

These chosen temporal resolutions are required for certain analyses on the

finer structures in a turbulent flow. For example, the sampling frequency needs to

be high enough that a complete rotation of an eddy is captured by approximately

4 samples, otherwise the eddy may deform substantially. Smaller scale eddies take

less time to make a complete rotation, so they require the simulation code to save

time slices more frequently to enable a meaningful study.

5.4.1.3 Data Sets and Variables. In addition to the Ghost data set,

which simulates a homogeneous turbulent flow, we also used two other simulation

outputs in our evaluation: Tornado and CloverLeaf3D. Tornado (Orf et al., 2017;

Orf, Wilhelmson, & Wicker, 2016) simulates the dynamics of an F5 tornado, and

CloverLeaf3D (Mallinson et al., 2013) solves the compressible Euler equations in
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hydrodynamics settings. We focused our study on temporal regions of interest for

the simulations being carried out. In the case of Ghost and Tornado, we used only

the later portion of the simulation when interesting phenomena occur for both,

which actually imposes greater challenge for compression. For CloverLeaf3D, we

used the entire life span of this simulation.

We used two or three different data fields from each of these simulations.

For the CloverLeaf3D data sets, we used energy and the X-component of velocity,

since these are important, dynamic variables with distinct physical characteristics.

For the Ghost and Tornado data sets, we used enstrophy and again the X-

component of velocity, for the same reasons. We also used the cloud ratio scalar

for the Tornado data set, since this variable determines what the clouds look like

to human eyes. In terms of grid size, the two fields from Ghost are on 5123 grids;

the three fields from Tornado are on 4902 × 280 grids with 280 in the Z direction;

and CloverLeaf3D X-velocity has a size of 973 while CloverLeaf3D energy has a size

of 963, since the latter is a cell-centered field. We note that the tornado domain

analyzed in this paper is significantly smaller than the full model domain, and yet

is also typical of what tornado researchers would use. This is because for studies of

tornado morphology, features dozens of kilometers away from the tornado are not of

primary interest.

We ran our experiments on these variables using multiple temporal

resolutions with the same notations described in Section 5.4.1.2. The base

resolution (res=1) differs from simulation to simulation though: every simulation

cycle in CloverLeaf3D; every one simulation second in Tornado; and every 100th

simulation cycle in Ghost. We note that the twice coarser resolution (res=1/2) for
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the Tornado data is essentially the common practice of our collaborating scientist,

who normally uses every two simulation seconds in his research.

5.4.1.4 Compression Ratios. Our implementation of wavelet

compression works by retaining a portion of the wavelet coefficients and discarding

the rest. We refer to the parameter that determines the size of the retained

portion as compression ratio. With our notation, 8:1 means one eighth of the total

coefficients are retained, and so on.

When compressing multiple time slices, the process of discarding coefficients

happens on each time slice individually with spatial compression, and on the entire

group of time slices with spatiotemporal compression. Given a certain compression

ratio, the total number of retained coefficients stays the same no matter spatial or

spatiotemporal compression. We use compression ratios 8:1, 16:1, 32:1, 64:1, and

128:1 in most of the following tests.

5.4.2 Results. The results considered in this section are error

measurements from comparing a wavelet-compressed data set (either 3D or 4D)

with its original version in a point-wise fashion. We use two statistical metrics:

normalized root mean square error (NRMSE) and normalized L∞ norm. NRMSE

provides an average error across all vertices in the volume, while the normalized

L∞ norm captures the largest deviation introduced to a single data point.

To understand the effects of our study parameters, we ran experiments in

three phases, varying some factors and holding the rest constant for each phase.

The study results are reported in the following three subsections, and will be

revisited as we consider the three propositions for domain scientists in Section 5.4.4.

5.4.2.1 Wavelet Kernel and Window Size. This phase looks at

the relationship between wavelet kernels and window sizes, with a goal of finding
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(a) Variable: enstrophy.
Evaluation (Y-Axis): RMSE.

(b) Variable: enstrophy.
Evaluation (Y-Axis): L∞-norm.

(c) Variable: X-component of velocity.
Evaluation (Y-Axis): RMSE.

(d) Variable: X-component of velocity.
Evaluation (Y-Axis): L∞-norm.

Figure 20. Evaluation on data from the Ghost simulation. Error values are
normalized by the range of the data. Purple bars with line patterns represent
spatial-only compression (3D), and bars with solid colors represent spatiotemporal
compression (4D) with different parameters combinations for temporal compression.
Two wavelet kernels (CDF9/7, CDF5/3) and three window sizes (win=10, 20, 40)
are specifically examined here.
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favorable combinations of the two. The experiments run were on data from the

Ghost simulation, with the base temporal resolution.

Figure 20 plot the evaluation results. Compression ratios are grouped

together; spatial-only compression (3D) is leftmost within a group, and to its

right are spatiotemporal compression with different parameters. All evaluations

clearly show a decrease in error when comparing spatiotemporal to spatial-only

compression.

The CDF 9/7 and CDF 5/3 wavelet kernels perform differently with

different window sizes. CDF 9/7 yields lower errors than CDF 5/3 with window

sizes 20 and 40, but CDF 5/3 is superior with window size 10. This is because,

with a window size of 10, the CDF 9/7 kernel only permits one level of wavelet

transform, while the CDF 5/3 allows for two levels.

In terms of the window size, a larger window increases accuracy in almost

every test. That said, the expected improvement from a larger window size varies.

Errors drop more significantly when moving from window size 10 to 20 than moving

from 20 to 40. Given the potential limitation from available memory, we consider

the combination of windows size 20 and the CDF 9/7 wavelet kernel to be a “sweet-

spot.” A choice of CDF 5/3 and a window size of 10 for memory sparse situations

would also make sense.

5.4.2.2 Temporal Resolution. This phase looked at the effects of

temporal resolution. The experiments were run with the “sweet-spot” combination

of wavelet kernel and window size from Section 5.4.2.1, again on the Ghost

simulation.

Figure 21 plots the results from this phase’s experiments using NRMSE

and normalized L∞-norm metrics. Its 3D results are from all time slices at the
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(a) Variable: enstrophy.
Evaluation (Y-Axis): RMSE.

(b) Variable: enstrophy.
Evaluation (Y-Axis): L∞-norm.

(c) Variable: X-component of velocity.
Evaluation (Y-Axis): RMSE.

(d) Variable: X-component of velocity.
Evaluation (Y-Axis): L∞-norm.

Figure 21. Evaluation on data from the Ghost simulation. Error values are
normalized by the range of the data. Purple bars with line patterns represent
spatial-only compression (3D), and bars with solid colors represent spatiotemporal
compression (4D) with different parameters combinations for temporal compression.
Three temporal resolutions (res=1/4, 1/2, 1/1) are specifically examined here.
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base temporal resolution from the entire studied period of simulation. They serve

as a baseline result to compare with. The 4D results are from multiple temporal

resolutions (res=1, 1/2, 1/4). The 4D and 3D results cover the same period of

simulation in each test.

In terms of results, we see that the benefit of spatiotemporal compression

improves as temporal resolution increases. At the finest resolution tested (res=1),

spatiotemporal compression leads to substantial decrease in error compared to

spatial compression. In most cases, both NRMSE and normalized L∞-norm are

cut by half when incorporating temporal compression. However, at the coarsest

resolution tested (res=1/4), temporal compression brings modest benefit. In fact,

the normalized L∞-norm is even higher than the 3D baseline results in some cases

(Subfigure 21b). We believe this is partially due to a lack of temporal coherence,

and also partially due to the nature of L∞-norm being more sensitive to single

extreme values.

5.4.2.3 Results on Multiple Data Sets. This final phase of the

initial study looked at the effectiveness of spatiotemporal compression on multiple

data sets. The experiments were again run with the “sweet-spot” combination of

wavelet kernel and window size from Section 5.4.2.1. Varying in this phase were

both data set (see Section 5.4.1.3) and temporal resolution (see Section 5.4.1.2).

Figure 22 and Figure 23 plot the results from this phase’s experiments using

NRMSE and normalized L∞-norm metrics. The former uses two variables from the

CloverLeaf3D simulation, while the latter uses three variables from the Tornado

simulations. These results confirm the effectiveness of spatiotemporal compression

in most test cases, but also show that the amount of benefit relies on the temporal

frequency of the data.
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(a) Variable: X-component of velocity.
Evaluation (Y-Axis): RMSE.

(b) Variable: X-component of velocity.
Evaluation (Y-Axis): L∞-norm.

(c) Variable: energy.
Evaluation (Y-Axis): RMSE.

(d) Variable: energy.
Evaluation (Y-Axis): L∞-norm.

Figure 22. Evaluation results on variables from the CloverLeaf3D simulation (see
Section 5.4.1.3). Error values are normalized by the range of the data. The purple
bar with line patterns represents only spatial compression (3D), and the bars filled
with solid colors represent spatiotemporal compression (4D) with different temporal
resolutions.
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(a) Variable: X-component of velocity.
Evaluation (Y-Axis): RMSE.

(b) Variable: X-component of velocity.
Evaluation (Y-Axis): L∞-norm.

(c) Variable: enstrophy.
Evaluation (Y-Axis): RMSE.

(d) Variable: enstrophy.
Evaluation (Y-Axis): L∞-norm.

(e) Variable: cloud ratio.
Evaluation (Y-Axis): RMSE.

(f) Variable: cloud ratio.
Evaluation (Y-Axis): L∞-norm.

Figure 23. Evaluation on variables from the Tornado simulation (see
Section 5.4.1.3). Error values are normalized by the range of the data. The purple
bar with line patterns represents only spatial compression (3D), and the bars filled
with solid colors represent spatiotemporal compression (4D) with different temporal
resolutions.
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Table 9. Performance impacts of spatiotemporal compression (4D) and spatial-
only compression (3D) compared to no compression (Raw). The data set is the
enstrophy field from the Ghost simulation. Error values are indicated by NRMSE
that is reported in Subfigure 21a.

Tech. Buffer
W+R

Perm.
Write

Total
I/O

File
Size

Comp.
Time Error

4D 6.78+6.5s 1.20s 14.48s 625MB 57.49s 5.18e-5
3D 0 1.20s 1.20s 625MB 55.34s 1.47e-4

Raw 0 18.90s 18.90s 10GB 0 0

5.4.3 Performance Impacts. Table 9 reports on performance

impacts for spatiotemporal compression, as well as measurements for spatial-only

and no compression. The column “Buffer W+R” indicates writing and reading

time spent on the buffer space, “Perm. Write” indicates writing time spent on

the permanent storage, and “Total I/O” indicates the sum of the buffer and

permanent I/O costs. “Comp. Time” provides the computational cost. Our test

system was a compute node with 2 Xeon CPUs at 3.2GHz (16 cores in total),

256GB main memory, and a 2TB SSD serving as a buffer space. The test data is

20 time slices of the enstrophy field from the Ghost simulation at the base temporal

resolution (res=1/1). With each time slice at a 5123 resolution, the total data size

is approximately 10GB in raw format, and 625MB after a 16:1 compression (see

the “File Size” column). Spatiotemporal compression here used the “sweet-spot”

settings. Finally, note that for a specific grid resolution and number of time slices,

the buffer I/O and computation cost numbers are independent of the data set and

compression ratio — meaning that the results are applicable to data sets aside from

Ghost and compression ratios aside from 16:1.

Compared to spatial-only compression, spatiotemporal compression

introduces extra I/O time for buffer operations, and a modest amount of extra

computation. In return, it encodes more information per byte. Compared to no
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compression, spatiotemporal compression introduces reconstruction errors and

additional computational burden. In return, it significantly reduces the size of data

to save on permanent storage, and also saves on total I/O time (14.48s, compared

to 18.90s).

5.4.4 Examining the Three Propositions. Section 5.1.2 introduced

three propositions. These propositions are related, in that spatiotemporal

compression provides more information per byte. That said, they attract domain

scientists for different reasons. We examine each of these propositions separately

here.

P1: improve accuracy, while maintaining temporal resolution and storage

costs. P1 is supported by our experiment results. For example, take the grouping

for 128:1 compression in Subfigure 21c. In this grouping, the NRMSE for 3D

compression is 1.47e-3, while 4D compression with sparse temporal sampling has

NRMSE of 1.04e-3, and dense temporal sampling has NRMSE of 4.50e-4. In this

case, then, 4D compression is anywhere from 40% more accurate to 200% more

accurate for the same storage cost. The rest of our experiments provide similar

results, except for the Tornado data set (Figure 23), which shows that the most

sparse temporal sampling sometimes leads to slightly worse results (there is more

discussion on the effect of temporal coherence in Section 5.4.5).

P2: reduce storage costs, while maintaining temporal resolution and

accuracy. P2 is also supported by our experiment results. Again consider an

example from Subfigure 21c. The NRMSE with 64:1 compression with 3D

wavelets is comparable to the error with 128:1 compression with 4D wavelets

with “1/2” temporal resolution. In this case, a domain scientist could maintain

accuracy and temporal resolution, but use half the storage. Similar examples
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are visible throughout the table. However, the table is oriented around powers-

of-two compression ratios, and P2 does not always hold for 2X reductions in

storage. Sticking with the example from Subfigure 21c, the NRMSE with 64:1

compression with 3D wavelets is more accurate than the 128:1 compression with

“1/4” temporal resolution, which is coarser. In this case where time slices are

sampled less frequently, a 2X reduction in storage was not obtained, but a smaller

reduction (such as 1.5X) likely would be possible.

P3: increase temporal resolution, while maintaining storage costs and

accuracy. Proposition P3 follows directly from P2: if it is possible to reduce

storage costs and maintain accuracy, then it would also be possible to use the

difference in storage to increase the temporal resolution. Revisiting the comparison

between 3D+64:1 and 4D+128:1, a domain scientist could, instead of halving

storage costs, opt to keep storage costs constant and double temporal resolution.

5.4.5 Discussions and Limitations. While we saw “factor of two”

benefit in many cases (compared to spatial compression alone), other cases were

below this amount. We believe limitations stem from an inadequate amount of

temporal coherence between time slices to achieve good compression. On the one

hand, the physical model and simulation implementation dictate the amount of

coherence in the spatial domains. This means errors are lower in some applications,

but higher in others. On the other hand, the output data frequency also plays

an important role in temporal coherence. This means for the same application,

spatiotemporal compression is more beneficial if time slices are sampled more

frequently. Our tests across multiple data sets exhibit these limitations.

Among three tested simulations, we notice that Ghost and CloverLeaf3D

have significantly less errors with the same spatial compression settings. For
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example, looking at the X-velocity fields from three simulations, both Ghost and

CloverLeaf3D have NRMSE less than 5e-5 at 8:1 ratio with spatial compression,

but Tornado has NRMSE greater than 5e-4. That is one order of magnitude

difference. Tornado has significantly larger normalized L∞ norm values at all

spatial compression cases as well. Since there is no temporal compression involved,

we observe that it is the characteristic of the Tornado simulation that less

coherence is present. In this case, wavelet-based compression techniques perform

more poorly.

The accuracy increase from spatial to spatiotemporal compression also

differs in the three simulations. Ghost and CloverLeaf3D see more than 2X

accuracy increase (less than half of the error) at each compression level with

the base temporal resolution (res=1/1). However, none of the three fields from

Tornado see this amount of accuracy increase. We believe that this difference

in accuracy gain is due to the difference of available temporal coherence: Ghost

and CloverLeaf3D had enough temporal coherence to demonstrate a 2X accuracy

gain, while Tornado was too sparse to do so. In fact, Subfigure 23c and 23e reveal

that 4D compression even increases NRMSE errors at the coarsest resolution level

(res=1/4). We suspect this is because the benefit from spatiotemporal compression

is so modest in this instance that the floating point arithmetic errors from the

additional calculations begin to dominate. More discussions on this topic can be

found in (Keinert, 1995) and (Plonka, Schumacher, & Tasche, 2008). That said,

spatiotemporal still shows benefit over spatial compression; the extra accuracy

from spatiotemporal compression can still make a significant difference in real-world

analyses, as we demonstrate in Section 5.5.1.
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In terms of simulation scientists’ control over the spatial and temporal

coherence, we note that the spatial grid resolution is typically fixed by the

properties of governing numerical equations. Thus the nature of the problem to

be solved determines how strongly correlated samples are along a given spatial axis.

The simulation scientist, however, may often easily control the output sampling

rate — typically much coarser than the internal model time stepping — making the

degree of temporal data coherence a parameter that can be readily adjusted.

Lastly, random access to individual time slices is easily lost during

spatiotemporal compression. Specifically, during reconstruction of data from the

compressed form, in the first step where inverse wavelet transforms are performed

along the temporal domain, it needs to read in coefficients of other time slices that

also belong to the same window. One can regain the ability of random access by

employing smart coders on the resulting coefficients, for example, the one reported

in (Rodler, 1999).

5.5 Applications to Real-World Analyses

In this section, we compare spatiotemporal (4D) wavelet compression

with spatial-only (3D) wavelet compression on two real-world analyses. Both are

representatives of regularly performed analyses by domain scientists, and they both

operate on the Tornado simulation data set previously described in Section 5.4.1.3.

The first analysis studied compression effects on pathlines across multiple time

slices, while the second studied the effects on isosurfaces of a single time slice.

The mesh for the data set was a 490 × 490 × 280 rectilinear grid, covering a

geographic space of 14, 670×14, 670×8, 370 meters. The pathline analysis used data

from 220 time slices, each stored as its own file. These 220 time slices were from the

latter stages of the simulation when the tornado was most interesting to study.
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Each time slice advanced two seconds of simulation time past the previous one,

with the first time slice being 8502 seconds into the simulation — i.e., t0 = 8502s ,

t1 = 8504s, ..., t219 = 8940s. Note this temporal resolution corresponds to “res=1/2”

from Section 5.4.1.2), which is not the finest available. We used this resolution

since it is what our domain scientist collaborator uses in his own research.

5.5.1 Pathline Analysis.

5.5.1.1 Visualization. To better understand the tornado dynamics,

we placed particles at the base of the tornado so that their trajectories could be

observed. These particles are typically placed in a “rake” setting, i.e., densely

seeding along a line segment. In this example, three rakes with 48 particles each

were seeded, for a total of a 144 seed locations. The particles were advected using

Runge-Kutta 4, with a step size of 0.01s. Velocity values between time slices were

calculated using linear interpolation.

5.5.1.2 Compression. We worked with a total of nine versions of the

data: the original version and eight wavelet-compressed versions. The wavelet-

compressed versions included both spatiotemporal (4D) and spatial-only (3D)

wavelet transforms over four compression levels (8:1, 32:1, 64:1, and 128:1). Both

transforms used the CDF 9/7 wavelet kernel, and the spatiotemporal versions

used a window size of 18. The three components of velocity were individually

compressed for each wavelet version. We then generated a pathline for every

combination of the 144 seed points and nine data sets, or 1, 296 pathlines overall.

We set the baseline for each seed point as its pathline from the original version of

the data set.

5.5.1.3 Evaluation. We defined our evaluation metric incorporating

observations from visually comparing baseline pathlines with their versions from
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Figure 24. Each subfigure visualizes the pathlines for a single seed particle being
advected using the original version of the data, as well as 3D and 4D compressed
versions at 128:1 ratio. Black pathlines are from the original data set; red ones
are from the 128:1+4D compression; and blue ones are from the 128:1+3D
compression. The top two instances show that 4D (red) and 3D (blue) pathlines
have similar ending positions, but the 4D ones closely resemble the baseline (black)
for longer durations. The bottom two instances show a clear disadvantage of 3D
pathlines in terms of both early deviation and far apart final positions.
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Table 10. Our error metric for each wavelet-compressed data set, averaged over all
144 seed particles.

Data Set D=10 D=50 D=150 D=300 D=500
8:1, 3D 8.5% 2.3% 1.3% 1.1% 1.0%
8:1, 4D 3.4% 1.3% 1.1% 0.8% 0.6%
32:1, 3D 35.9% 10.3% 4.5% 3.1% 2.4%
32:1, 4D 24.4% 6.4% 3.2% 2.1% 1.6%
64:1, 3D 48.4% 17.3% 7.5% 5.3% 3.9%
64:1, 4D 35.7% 9.8% 5.1% 3.3% 2.7%
128:1, 3D 60.7% 27.8% 10.8% 6.7% 5.2%
128:1, 4D 45.8% 16.3% 7.5% 5.1% 3.9%

wavelet-compressed data sets. Figure 24 visualizes example pathlines. Each image

shows three pathlines generated by the advection of the same particle using

the original and 3D or 4D compressed data at 128:1. Some particle trajectories

would deviate midway through their courses, but then ultimately end up close

to the correct positions, as the left two subfigures illustrate. So we designed an

error metric that would value the case where a pathline stays close to its baseline

throughout its entire trajectory, over one that deviates early but later returns.

Specifically, let D be distance, let T be the total time of advection for a particle,

and let T0 be the first time that the pathline deviates distance D away from its

baseline. Then we defined error as a percentage: (1.0 - T0/T ) × 100. Taking an

example: if a particle first deviates distance D from its baseline after six seconds

and travels for a total of ten seconds, then we would score its error as 40%. We

asked our domain scientist collaborator to select a good value for D and he picked

a distance of 150 meters. We ran evaluations with that threshold, as well as bigger

and smaller thresholds for comparative purposes. Five values of D were tested in

our evaluation: D=10, 50, 150, 300, and 500.
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5.5.1.4 Results. Table 10 contains the results from our evaluation.

Each evaluation percentage is averaged from all 144 seed particles. This table shows

a clear advantage of spatiotemporal compression, and supports both proposition P1

and P2.

With respect to P1 (improving accuracy while maintaining temporal

resolution and storage costs), every combination of compression ratio and distance

threshold shows the spatiotemporal compressed data to have superior accuracy (i.e.,

less error).

With respect to P2 (reducing storage costs while maintaining temporal

resolution and accuracy), comparisons between different compression ratios support

this proposition. For example, for a distance threshold of 150, the 128:1+4D

compression has the same error as the 64:1+3D compression (both are 7.5%, shown

in bold font), meaning that the storage cost could be cut half. In fact, regardless of

the distance threshold D, the error from 128:1+4D is always comparable to that

from 64:1+3D, and the error from 64:1+4D is always comparable to that from

32:1+3D, supporting P2 in a roughly 2X factor.

5.5.2 Isosurface Analysis.

5.5.2.1 Visualization. Our domain scientist regularly studies

isosurfaces in the Tornado data set. He provided us with three scalar variables that

he often studies (pressure perturbation, cloud mixing ratio, and Z-component of

velocity) as well as key isovalues appropriate for each of those variables.

5.5.2.2 Compression. We worked with a total of 33 versions of the

data: the original version of three scalar fields as well as ten wavelet-compressed

versions of each. The wavelet-compressed versions included both spatiotemporal

(4D) and spatial-only (3D) wavelet transformations and five compression levels
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(a) Original data (b) Original data

(c) 128:1+3D compression (d) 128:1+4D compression

Figure 25. Renderings of isosurfaces of the z-component of velocity from a Tornado
data set. Subfigure (a) is the entire data set, while (b), (c), and (d) are the same
zoomed-in region. Dashed lines in (a) indicate this region.
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(8:1, 16:1, 32:1, 64:1, and 128:1). We again used the CDF 9/7 kernel, and again the

spatiotemporal versions used a window size of 18.

5.5.2.3 Evaluation. For each variable, we set the baseline isosurface to

be the one from the original data set. Inspecting the isosurfaces visually, we found

that the gross features from the baseline were well preserved within the wavelet-

compressed versions, as Figure 25 shows. So our task shifted to capturing difference

in fine details, and we opted to use the total surface area of the isosurfaces as our

accuracy metric. That is, let SAB be the surface area for the baseline isosurface

and SA be the surface area for an isosurface from a wavelet-compressed data set.

Then we defined our error metric again as a percentage: (1.0 - SA/SAB) × 100.

With this metric, 0% represents a perfect fit, with worse and worse fits moving

away from 0 (in either the positive or negative directions). This metric creates

the possibility for offsetting errors — compression may remove some features, but

introduce others — but we did not observe this phenomenon in practice. Further,

although we could have considered additional accuracy metrics (i.e., topological

measures), we found that this simple metric corroborated our findings based on

visual inspection, namely that 4D compression captures more surface details.

5.5.2.4 Results. Table 11 contains the results from our evaluation.

Like the analysis from Section 5.5.1, this table supports both propositions P1

and P2. With respect to P1 (improving accuracy while maintaining temporal

resolution and storage costs), the 4D compressed data had less error for every

variable and compression level, except for the 8:1 compressed version of pressure

perturbation (which had very small total error). As an example, for 32:1

compression on cloud mixing ratio, the isosurface with 3D compressed data was

4.72% too small (in terms of total surface area), but with 4D compressed data, the
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Table 11. Our error metric for isosurfaces of each wavelet-compressed data set,
comparing their surface area to the baseline surface area.

Variable Compression 3D Error 4D Error
8:1 -0.93% 0.35%

Cloud 16:1 -2.46% 0.59%
Mixing 32:1 -4.72% 0.47%
Ratio 64:1 -7.62% -0.16%

128:1 -11.24% -1.34%
8:1 -0.85% 0.31%
16:1 -2.23% 0.65%

Z-Velocity 32:1 -4.69% 0.75%
64:1 -8.85% 0.13%
128:1 -15.320% -1.66%
8:1 -2.4e-4% -6.3e-3%

Pressure 16:1 -2.2e-2% -1.8e-2%
Perturbation 32:1 -4.9e-2% -3.9e-2%

64:1 -0.25% -8.1e-2%
128:1 -0.38% 6.7e-2%

isosurface was only 0.47% too big. Similar disparities held with other combinations

of cloud mixing ratio and z-velocity. However, for pressure perturbation, both

techniques seem to capture the isosurface, even at high compression ratios, and

so neither seems superior to the other.

With respect to P2 (reducing storage cost while maintaining accuracy and

temporal resolution), this analysis and error metric strongly favor 4D wavelet

compression over 3D wavelet compression. For example, our error metric finds that

128:1 4D compressed data is more accurate than 16:1 3D compressed data for Z-

velocity.

5.6 Conclusions

Our study has considered the benefits, costs, and best practices for

spatiotemporal wavelet compression compared to the traditional spatial-

only approach. This direction is enabled by deeper memory hierarchies now
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increasingly available on leading-edge supercomputers. We studied the benefits

of spatiotemporal compression by looking at both differences in reconstructed

fields over a variety of settings and several real-world analyses in consultation

with domain scientists. In nearly all cases, we found that incorporating the time

dimension led to more “information per byte,” realized with a variety of error

metrics: NRMSE, normalized L∞, and custom metrics for real-world applications.

This property in turn enabled three propositions that can benefit domain scientists

with their visualization needs — improving on accuracy, reducing storage, and

increasing temporal frequency. While the magnitude of the benefit varies by

use case, many of the results demonstrated factor-of-two improvements for their

respective metrics.

Finally, unlike spatial coherence, temporal coherence is a function of how

frequently the data is output. Often output frequency is constrained by storage

space, and if too coarse, benefits from temporal compression may be small. That

said, there are many analyses where higher output cadence is required, and

spatiotemporal compression shows great promise when faced with constraints of

limited I/O bandwidth and storage capacity.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The growing discrepancy between I/O and computation on HPC systems

is one of the major challenges simulation scientists face today. As this trend

continues, simulation scientists will have to accept data reduction for part, if

not all, of the application scenarios. Though there are many data reduction

techniques available, few are studied thoroughly, especially their efficacy for real

visualization and analysis tasks. This dissertation has investigated one of the

lossy compression techniques, namely wavelet compression, in a high performance

computing environment. Specifically, there are three research questions this

dissertation has investigated with a “yes” answer: 1) whether the data integrity is

still acceptable after lossy compression; 2) whether wavelet compression is viable for

in situ compression; and 3) whether wavelet compression can adapt to emerging

HPC architectures. We also identified the most suitable wavelet parameters to

carry out compression tasks on scientific data sets along with our study. Findings

from this dissertation support that lossy wavelet compression can be used as an in

situ compressor on supercomputers to mitigate I/O bottlenecks.

6.2 Future Work

There are three interesting future directions from this dissertation.

The first direction is the integration of an in situ wavelet compressor with

real large-scale simulations in a production setting. This integration should be

performed together with domain scientists, in order to make sure their concerns

are properly identified and addressed. Looking at even larger simulations, for

example the ones on Exascale HPC systems, there are always challenges coming
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with the increased scale of problems. Some of these challenges are hard to predict

before actually running experiments. We would effectively explore these challenges

through large-scale experiment runs, and also address any integration issues for

Exascale applications.

The second direction is to keep improving the wavelet compressor itself.

There are a few possible improvements, including the use of advanced coders and

providing a mode for bounding error.

Advanced coders could eliminate the addressing cost of the coefficient

prioritization strategy, providing better compression results. Two such coders that

are promising for our use are SPECK and SPIHT, as discussed in Section 2.2.4.2.

With a potential introduction of these coders, additional work is then required to

understand their characteristics such as performance and adaptation to modern

architectures.

We also believe an error bound mode would provide important capability

for domain scientists, by guaranteeing an error tolerance, although not a storage

budget. This mode contrasts with the traditional approach, which guarantees a

storage budget but not an error tolerance. An error bound mode is desirable for

many scientists because it controls how far away each value can be from its original

value, allowing scientists to feel confident in the resulting analyses. As a transform-

based technique, wavelet compression does not natively support error bounding.

Special tweaks to the algorithms are required to make it happen, as Lindstrom

et al. demonstrated in the case of ZFP (Lindstrom, 2014; Lindstrom, Chen, & Lee,

2016), another transform-based compression technique. Again, additional work is

required to assess its viability.
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The third direction is to compare with other compressors and better

understand their advantages and disadvantages. We believe this is necessary to

deploy in situ compression across multiple applications, because a wide range of

applications may require compressors with diverse characteristics. For example,

wavelet compressor works well on “smooth” data while another might be more

suitable for data with another characteristic. It is even possible to automate the

process of selecting the most suitable compressor for any incoming data. This

goal is ambitious since it requires good understanding on not only one, but many,

compressor candidates. It is also rewarding since it has the potential to achieve

globally optimal compression results.
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