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DISSERTATION ABSTRACT

Stephanie Alyssa Labasan

Doctor of Philosophy

Department of Computer and Information Science

March 2019

Title: Optimizing Visualization Performance on Power-Constrained Supercomputers

Power consumption is widely regarded as one of the biggest challenges to

reaching the next generation of high performance computing (HPC). On future

supercomputers, power will be a limited resource. This constraint will affect the

performance of both simulation and visualization workloads. Understanding how

a particular application behaves under a power limit is critical to making better

use of the limited power. In this research, we focus specifically on visualization and

analysis applications, which are an important component in HPC. Visualization

algorithms merit special consideration, since they are more data intensive in

nature than traditional HPC programs, such as simulation codes. We explore the

power and performance tradeoffs for several common algorithms under different

configurations, and understand how power constraints will affect execution

behaviors. We then demonstrate that we can gain additional performance

by redistributing power based on performance predictions provided by the

visualization algorithm.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Power is a key challenge in achieving the next generation of high

performance computing (HPC). At the start of this decade, scaling current

technologies to higher concurrency would have produced a machine requiring

gigawatts or more [12, 14, 63]. Such a power-hungry machine results in unfeasible

operational costs. As a result, power has become a severely limited resource moving

forward. One major change in response to this limitation was a shift towards

many-core architectures, which have higher efficiency. That said, the premise of

this research is that hardware changes are not enough, i.e., achieving an exaflop

within specified power constraints will require innovation across all aspects of HPC,

including runtime infrastructures, simulation, and visualization codes.

Current supercomputer designs assume sufficient power will be available to

run all compute nodes concurrently at their maximum thermal design point (TDP).

Said another way, TDP is the theoretical maximum power a given node will ever

consume. As power requirements for supercomputers move into the range of dozens

of megawatts, the strategy of allocating power for all nodes to run at TDP becomes

untenable. Very few applications run at TDP, and provisioning very large systems

as if most did both wastes power capacity and unnecessarily constrains the size of

the supercomputer.

Overprovisioning [57], short for hardware overprovisioning, is one solution

to improve power utilization. In such a design, we increase the compute capacity

(i.e., number of nodes) of the system, but, in order to not exceed the system power

allocation, not every node will be able to run at TDP simultaneously.
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Consider the example of the Vulcan supercomputer at Lawrence Livermore

National Laboratory. It was allocated for 2.4 MW assuming all 24,576 nodes

consumed TDP, but the vast majority of applications running on that machine

did not exceed 60% of the allocated power (1.47 MW average system power

consumption) [58]. Thus, the strategy of allocating TDP to every node failed to

take advantage of nearly 1 MW of power on average. An overprovisioned approach

system would contain about 34,000 nodes (40% increase) consuming some amount

of power less than TDP. With such a system, the machine consumes all allocated

power and reduces trapped capacity [69].

For overprovisioning to be a success, it must be complemented with a

scheme to limit nodes’ power usage, to ensure the total provisioned power is never

exceeded. One way to accomplish this is to uniformly cap the power available

to each node, e.g., each node can use only up to 60% of its TDP. The result of

applying such a power cap is that the processor operating frequency is reduced.

The effect of reduced CPU frequency is variable; applications dominated by

computation will slow down proportionally, while applications dominated by

memory accesses may be unaffected. Despite the performance degradation for

individual jobs, this strategy would lead to better power utilization and greater

overall throughput.

Uniform power allocations per node, however, is a sub-optimal strategy.

The runtime behaviors of distributed applications can be highly variable across

nodes. The nodes assigned the largest amount of work become a bottleneck and

determine the overall performance of the application. On the other hand, nodes

that are assigned the smallest amount of work finish quickly and sit idle until the

other nodes have completed execution. A better strategy is to dynamically assign
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power to where it will do the most good. This is a non-trivial problem. In an ideal

scenario, we would assign the power such that all nodes finish executing at the

same time despite varying workloads.

Overprovisioned systems lend themselves to multiple levels of optimization.

At the job scheduling level, individual job power bounds are allocated to optimize

throughput and/or turn-around time [58]. Alternatively, there are dynamic

optimizations to individual jobs that may be realized by rebalancing power and

changing node configuration at runtime [2, 22, 47].

While much previous research has studied adapting power usage for

simulations, this dissertation considers how visualization routines will need to

adapt to a power-limited environment, where compute nodes will be limited

in their power usage. The motivation for studying visualization is two-fold.

First, visualization is a critical component in the scientific discovery process.

Additionally, visualization is moving to an in situ workflow, where the visualization

will run concurrently with the simulation. Therefore, optimizing the performance of

the visualization component is beneficial, since the visualization can use significant

resources on the HPC system. Second, visualization workloads are different

than the typically HPC applications like simulation codes, since they are more

data intensive. For both of these reasons, visualization workloads merit special

considering in this power-limited environment.

1.2 Research Goals and Approaches

The central question that this dissertation addresses is: How can we

optimize the performance of scientific visualization algorithms in a power-

constrained environment?” This main idea can be further broken down into the

following research goals.
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The first research goal is to explore how tunable input parameters within

visualization algorithms impact performance, energy, and power usage. On future

supercomputers, visualization routines will need to adapt to the power-limited

environment, where compute nodes will be limited in their power usage. Current

strategies for power management are not aware of what phase (e.g., computational,

memory, I/O, etc.) the application is in. Understanding the impacts of particular

input parameters is critical in making a decision between optimizing performance

and staying under a specified power limit. Since the space of tunable parameters

can grow exponentially large, this information forms the basis for generating

performance models relating execution time, energy usage, and power consumption.

Understanding the specific execution behaviors of visualization algorithms will

enable us to develop better power-aware strategies for optimal performance and

power usage.

The second research goal is to improve performance by exploiting the

variation in visualization workloads when dynamically reallocating power The

scientific visualization community is moving towards in situ, where data is

processed alongside the simulation (as opposed to processed post hoc). For in

situ strategies, power will need to be shared in some fashion between the scientific

simulation and visualization [61]. Exploring power management strategies for

visualization routines will be critical in improving the overall turn-around time

for in situ workflows. Visualization workloads can be imbalanced, and allocating

power relative to the amount of work each compute node has is a good strategy

for improving performance. We use an existing visualization-specific performance

model to determine how best to share the power across nodes in order to optimize

4



performance. This shows the need for additional performance models to improve

performance of other visualization algorithms.

1.3 Dissertation Outline

Putting it all together, scientific visualization is a key component of the

scientific discovery process. It enables the exploration and analysis of scientific

data, and the ability to communicate findings through a comprehensible image.

Visualization at exascale will be challenging due to constraints in power usage.

Under this power-limited environment, visualization algorithms merit special

consideration, since they are more data intensive in nature than typical HPC

applications like simulation codes.

At present, there is a very limited set of work addressing the challenges of

visualization and analysis with respect to power constraints on future architectures.

The goal of my dissertation is to explore this field uniquely positioned at the

intersection of power-constrained HPC and visualization in order to provide

understanding of the tradeoffs between power and performance specifically

for visualization routines. Understanding the specific execution behaviors of

visualization algorithms will enable us to develop better power-aware strategies

for optimal performance and power usage.

This dissertation is organized as follows:

– Chapters II and III: We evaluate the tradeoffs between performance and

power usage when varying different input parameters for a representative set

of visualization algorithms.

– Chapter IV: We develop a power-aware visualization framework that

incorporates prediction to dynamically reallocate power within a job and

improve performance of a visualization algorithm.
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– Chapter V: We evaluate a predictive and adaptive scheduling strategy for

dynamically reallocating power within a job.

– Chapter VI: We discuss ideas for future research directions in the area of

visualization and power usage.

1.4 Co-Authored Material

Much of the work in this dissertation is from previously published co-

authored material. Below is a listing connecting the chapters with the publications

and authors that contributed. Further detail on the division of labor is provided

at the beginning of each chapter. That said, for each of these publications, I

was not only the first author of the paper, but also the primary contributor for

implementing systems, conducting studies, and writing manuscripts.

– Chapter II: [35] was a collaboration between Matthew Larsen (LLNL), Hank

Childs (UO), and myself.

– Chapter III: [36] was a collaboration between Matthew Larsen (LLNL), Hank

Childs (UO), Barry Rountree (LLNL), and myself.

– Chapter IV: [38] was a collaboration between Matthew Larsen (LLNL), Hank

Childs (UO), Barry Rountree (LLNL), and myself.

– Chapter V: [37] was a collaboration between Matthew Larsen (LLNL), Hank

Childs (UO), Barry Rountree (LLNL), and myself.
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CHAPTER II

POWER AND PERFORMANCE TRADEOFFS UNDER REDUCED CLOCK

FREQUENCIES

Most of the text in this chapter comes from [35], which was a collaboration

between Matthew Larsen (LLNL), Hank Childs (UO), and myself. The writing of

this paper was a collaboration between Hank Childs and myself, and I performed

the lead role on all writing, especially including the description of experiments

and results. Matthew Larsen and I wrote the benchmark tests. Hank Childs and

Matthew Larsen provided the data sets in different sizes and layouts. Hank Childs

and I developed the algorithm implementations. I developed the performance

monitoring infrastructure, designed and executed the study, and contributed to

the majority of the other sections.

This chapter explores the power and performance tradeoffs for one common

visualization routines. In this chapter, we focus specifically on isosurfacing, a

canonical visualization algorithm, where the output is a three-dimensional surface

containing points of a constant value. We ran an extensive study to understand

changes in execution behaviors when the CPU clock frequency is reduced. Findings

from this study begin to inform how we can tune algorithmic-level knobs to

optimize energy and power usage.

2.1 Motivation

Power is a central issue for achieving future breakthroughs in high

performance computing (HPC). As today’s leading edge supercomputers require

between 5 and 18 MegaWatts to power, and as the cost of one MegaWatt-year is

approximately one million US dollars, supercomputing centers regularly spend over

five million US dollars per year, and sometimes exceed ten million US dollars per
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year. Worse, power usage is proportional to the size of the machine; scaling up to

even larger machines will cause power usage (and associated costs) to grow even

larger. Applying today’s designs to exascale computing would cost hundreds of

millions of US dollars to power. As a result, the HPC community has made power

efficiency a central issue, and all parts of the HPC ecosystem are being re-evaluated

in the search for power savings.

Supercomputers require a varying amount of power. When running

programs that stay within the machine’s normal operating limits, the amount of

power often matches the usage for when the machine is idle. However, programs

that engage more of the hardware — whether it is caches, additional floating point

units, etc. — use more power. HPL (High Performance Linpack), a benchmark

program that is computationally intensive, has been known to triple power usage,

since HPL has been highly optimized and makes intense use of the hardware.

However, many visualization programs have not undergone the same level of

optimization, and thus only require power near the machine’s idle rate. That said,

alternate approaches exist that do create opportunities for data-intensive programs

— i.e., visualization programs — to achieve energy savings.

As power usage is highly dependent on clock frequency, reductions in

frequency can lead to significant power savings. On the face of it, reducing the

clock frequency seems like, at best, a break-even strategy — i.e., running at half

the speed should take twice as long to execute. However, visualization programs

are different than traditional HPC workloads, since many visualization algorithms

are data-intensive. So, while HPC workloads engage floating point units (and thus

drive up power), visualization workloads make heavier use of cache.
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The data-intensive nature of visualization algorithms creates an opportunity:

newer architectures have controls for slowing down the clock frequency, but keeping

the cache operating at a normal speed. In this case, power is being devoted to

the cache at the same rate (which is good because cache is often a bottleneck),

but power is devoted to the CPU at a lower rate (which is also good because the

CPU is being under-utilized). As the extreme outcome, then, it is conceivable

that slowing down the clock frequency (and keeping the caches operating at full

speed) could lead to a scenario where the execution time is the same (since the

cache performance dominates), but the power usage drops.

With this study, we explore the efficacy of varying clock speed to achieve

energy savings. The achieved effects vary based on myriad factors, and we

endeavor to understand those factors and their impacts. Our study focuses on

a representative visualization algorithm (isosurfacing), and looks at how that

algorithm performs under a variety of configurations seen in HPC settings. We

find that these configurations have real impacts on power-performance tradeoffs,

and that some approaches lend themselves to better energy efficiency than others.

2.2 Related Work

2.2.1 Power. Power is widely viewed as the central challenge for

exascale computing, and that challenge is expected to impact exascale software [21],

including visualization software [8]. Outside of visualization, many HPC researchers

have looked at how to reduce energy usage at different levels ranging from the

processor to the full system, including tradeoffs between power and performance.

Porterfield et al. [59] looked into the variability in the performance to energy usage

at the processor level using OpenMP and MPI. Other research has been dedicated

to reduce the total power usage of the system [25, 26, 42, 59]. Ge et al. [28]
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developed compute-bound and memory-bound synthetic workload to demonstrate

that power-performance characteristics are determined by various characteristics in

the application.

The study closest to the one described in this chapter was by Gamell et

al. [27]. In this work, they investigated the power-performance relationship for

visualization workloads. However, our studies are complementary, as they looked

at behaviors across nodes and we aim to illuminate the behavior within a node. A

second noteworthy study was by Johnsson et al. [31]. In this study, the authors

studied power usage on a GPU when different rendering features were enabled

and disabled. Our study is different in nature, as we are studying a visualization

algorithm, and also we are studying impacts of programming model, data set, and

architectural features, rather than changing the (OpenGL) rendering algorithm

itself.

2.2.2 Visualization. Our study focuses on a traditional isosurfacing

algorithm using Marching Cubes [44]. While our study does not preclude using

an acceleration structure to quickly identify only the cells that contain the

isosurface [18], we did not employ this optimization since we wanted the data loads

and stores to follow a more controlled pattern.

Most of our experiments were run using our own implementation of an

isosurface algorithm. However, some experiments were run using the isosurfacing

algorithm in the Visualization ToolKit (VTK) [64]. Further, we believe that

the corresponding results are representative of the class of general frameworks,

e.g., OpenDX [6] and AVS [66], and of the end-user tools built on top of such

frameworks (i.e., VTK-based ParaView [10] and VisIt [17]).
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2.3 Benchmark Tests

One goal for this study is to identify situations where the clock frequency

can be reduced, but the execution time does not increase proportionally. In such

cases, energy savings are possible. However, we should only expect the execution

time to be maintained if the computation is data-bound. This situation occurs

when data load and store requests exceed what the memory infrastructure can

deliver.

To get a sense of when programs are data-bound and when they are

compute-bound, we created four micro-benchmarks. These benchmarks will also

inform the spectrum of outcomes we can expect. The benchmarks are:

– computeBound : A compute-bound workload performing several multiplication

operations on one variable.

– computeBoundILP : The above compute-bound benchmark with instruction-

level parallelism. This enables pipelining of multiple instructions.

– memoryBound : A memory-bound benchmark that accesses an element in an

array and then writes it to another array based on an index.

– memoryBoundCacheThrash: The above memory-bound benchmark, but

the indices that map the output value have been randomized, removing any

benefit of locality.

Figure 1 shows the performance results of our micro-benchmarks

with varying CPU clock frequencies. Our original hypothesis was that the

computeBound workload would double in execution time if run at half the speed,

the memoryBoundCacheThrash application would have the most consistent runtime

across all frequencies, and the computeBoundILP and memoryBound workloads
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Figure 1. Performance results of our micro-benchmarks with varying frequencies.
The computeBound workload is directly proportional to the clock speed, while the
memoryBoundCacheThrash is independent of the change in clock frequency.

would have changes in runtime that fall between the two extremes. From the

figure, we find that the computeBound workload follows our initial premise. The

memoryBoundCacheThrash workload stays relatively consistent, but there is a

slight increase in runtime when run at the lowest frequency. Even with a synthetic

data-bound workload, we are not able to achieve perfect consistency in runtime

over varying frequencies. This means that we should not expect visualization

workloads to achieve perfect consistency in runtime, since they have significantly

more computations than the synthetic workload, and since they use cache in a more

coherent way.

2.4 Experimental Setup

The following section details the various parameters in our experiments.

2.4.1 Factors Studied. We considered the following factors:

12



Benchmark
Time

Ratio
2.4 GHz 1.2 GHz

computeBound 24.59s 49.17s 2X
computeBoundILP 1.32s 2.58s 2X
memoryBound 5.25s 7.63s 1.4X
memoryBoundCacheThrash 79.78s 84.22s 1.1X

Table 1. Increase in runtime for the four micro-benchmarks when slowing down
the clock frequency by a factor of 2X. Though memoryBoundCacheThrash is
synthetically designed to be the most data-intensive workload, it still does not
hold constant in runtime across frequencies, i.e., achieve a ratio of exactly 1X.

– Hardware architecture. Architecture is important, since each architecture

has different power requirements at varying clock frequencies, and also

different caching characteristics.

– CPU clock frequency. As the clock speed slows down, the data-intensive

workloads may not slow down proportionally, creating opportunities for power

savings.

– Data set. Data set dictates how the algorithm must traverse memory. While

structured data accesses memory in a regular pattern, unstructured data may

have more random arrangements in memory, increasing the data intensity.

– Parallel programming model. The programming model affects how

multi-core nodes access data and the necessary memory bandwidth for the

algorithm. Specifically, coordinated accesses across cores can reduce cache

thrashing, while uncoordinated accesses can increase cache thrashing.

– Concurrency. Concurrency affects the demands placed on the cache: more

cores are more likely to hit the memory infrastructure’s bandwidth limit,

while fewer cores are less likely.
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– Algorithm implementation. The algorithm implementation dictates the

balance of computations and data loads and stores. Across implementations,

the total number of instructions and the ratios of instruction types will

change, which in turn could affect power-performance tradeoffs.

2.4.2 Configurations. Our study consisted of six phases and 277

total tests. It varied six factors:

– Hardware architecture: 2 options

– CPU clock frequency: 7 or 11 options, depending on hardware architecture

– Data set: 8 options

– Parallel programming model (OpenMP vs. MPI): 2 options

– Concurrency: 4 options

– Algorithm implementation: 2 options

2.4.2.1 Hardware Architecture. We studied two architectures:

– CPU1: A Haswell Intel i7 4770K with 4 hyper-threaded cores running at 3.5

GHz, and 32 GB of memory operating at 1600 MHz. Each core has a private

L1 and L2 cache running with a bandwidth of 25.6 Gbytes/s.

– CPU2: A single node of NERSC’s Edison machine. Each node contains two

Intel Ivy Bridge processors, and each processor contains 12 cores, running at

2.4 GHz. Each node contains 64 GB of memory operating at 1866 MHz. Each

core has a private L1 and L2 cache, with 64 KB and 256 KB, respectively.

A 30 MB L3 cache is shared between the 12 cores. The cache bandwidth for

L1/L2/L3 is 100/40/23 Gbytes/s.
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Both CPUs enable users to set a fixed CPU clock frequency as part of launching

the application. CPU1 uses the Linux cpufreq-utils tool, while CPU2 uses an

aprun command line argument to specify the frequency of a submitted job. Both

CPUs are also capable of reporting total energy usage and power consumed (see

Section 2.4.3).

Finally, it is important to note that Intel Haswell processors (i.e., CPU1) do

not tie cache speeds to clock frequency, but Intel Ivy Bridge processors (i.e., CPU2)

do force their caches to match clock frequency, and thus their caches slow down

when clock frequency is reduced.

2.4.2.2 CPU Clock Frequency. For CPU1, we were able to set

the clock frequency at 11 different options, from 1.6 GHz to 3.5 GHz (nominal

frequency). For CPU2, the hardware controls only allowed for 7 options, from 1.2

GHz to 2.6 GHz (nominal frequency).

2.4.2.3 Data Set. In this study, we consider only unstructured

meshes, although we consider different sizes, and different cache coherency

characteristics. Our study used the following eight data sets:

– Enzo-1M: a cosmology data set from the Enzo [55] simulation code originally

mapped on a rectilinear grid. We decomposed the data set into 1.13 million

tetrahedrons.

– Enzo-10M: a 10.5 million tetrahedron version of Enzo-1M.

– Enzo-80M: an 83.9 million tetrahedron version of Enzo-1M.

– Nek5000: a 50 million tetrahedron unstructured mesh from a Nek5000 [24]

thermal hydraulics simulation. Nek5000’s native mesh is unstructured, but
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composed of hexahedrons. For this study, we divided these hexahedrons into

tetrahedrons.

– REnzo-1M, REnzo-10M, REnzo-80M, RNek5000: Altered versions of

the above data sets. We randomize the point indices such that accesses are

irregular and locality is not maintained.

We selected an isovalue of 170 for the Enzo data sets, and 0.3 for Nek5000.

While “isovalue” could have served as another parameter for our study, we found

that varying it did not significantly affect results.

Figure 2. Visualizations of the two data sets used in this study. The Enzo data set
is on the left and Nek5000 is on the right.

2.4.2.4 Parallel Programming Model. We implemented our

algorithms using both the OpenMP [16] and MPI [65] parallelism approaches

within a node.

With the OpenMP approach, all cores operated on a common data set,

meaning that cache accesses can be done in a coordinated way. Our OpenMP

implementation used default thread scheduling. With this method, the chunk size

is determined by the number of iterations in the loop divided by the number of

OpenMP threads. That said, we experimented with many chunking strategies and

were not able to locate any that significantly outperformed the default.
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With the MPI approach, each core operated on an exact local copy of the

data in its own space. As a result, the cores were operating independently, creating

uncoordinated cache accesses.

Whatever the parallel programming model, the tests operated on the same

data size. Given C cores and N cells total, the OpenMP approach would have all

cores operate on the N cells together, and perform the operation C times, while

the MPI approach would have each core operate on N ∗ C cells. Further, in order

to obtain reliable measurements, we had each algorithm execute ten times, and the

reported measurements are for all ten executions.

2.4.2.5 Concurrency. For CPU1, we ran tests using 1, 2, 3, and 4

cores. For CPU2, no tests of this nature were run.

2.4.2.6 Algorithm Implementation. We implemented two different

versions of isosurfacing for our study:

– BaselineImplementation: We implemented our own isosurfacing algorithm.

This algorithm could only perform tetrahedral Marching Cubes (Marching

Tets), and so it was efficient for that purpose, especially in terms of minimal

numbers of instructions. We implemented versions of our code to work with

both MPI and OpenMP.

– GeneralImplementation: Isosurface implemented using a general-purpose

visualization software library (VTK), specifically the vtkContourFilter.

Generalized frameworks like VTK sacrifice performance to ensure that their

code works on a wide variety of configurations and data types. As a result,

the performance characteristics of such a framework are different (specifically

having an increased number of instructions), and thus the opportunities for

power-performance tradeoffs may also be different. The vtkContourFilter
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does not work with OpenMP, so our only supported programming model for

this implementation was with MPI (via our own custom MPI program that

incorporated this module).

2.4.3 Performance Measurements. We enabled PAPI [52]

performance counters to gather measurements for each phase of the algorithm.

Specifically, we capture PAPI_TOT_INS, PAPI_TOT_CYC, PAPI_L3_TCM, PAPI_L3_TCA,

and PAPI_STL_ICY. (Note that PAPI_TOT_CYC counts all instructions executed,

which can vary from run to run due to CPU branch speculation. Unfortunately, we

were not able to count instructions retired, which would be consistent across runs.)

We then derive additional metrics from the PAPI counters:

– instructions executed per cycle (IPC) = PAPI_TOT_INS / PAPI_TOT_CYC

– L3 cache miss rate = PAPI_L3_TCM / PAPI_TOT_CYC

On CPU1, we used Intel’s Running Average Power Limit (RAPL) [19]

to obtain access to energy measurements. This instrumentation provides a per

socket measurement, aggregating across cores. On CPU2, we took power and

energy measurements using the Cray XC30 power management system [48]. This

instrumentation provides a per node measurement, again aggregating across cores.

2.4.4 Methodology. Our study consisted of six phases. The first

phase studied a base case, and the subsequent phases varied additional dimensions

from our test factors, and analyzed the impacts of those factors.

2.4.4.1 Phase 1: Base Case. Our base case varied the CPU clock

frequency. It held the remaining factors constant: CPU1, Enzo-10M, four cores

(maximum concurrency available on CPU1), the BaselineImplementation, and the
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OpenMP parallel programming model. The motivation for this phase was to build

a baseline understanding of performance.

Configuration: (CPU1, 4 cores, Enzo-10M, BaselineImplementation,

OpenMP) × 11 CPU clock frequencies

2.4.4.2 Phase 2: Data Set. In this phase, we continued varying

clock frequency and added variation in data set. It consisted of 88 tests, of which

11 were studied in Phase 1 (the 11 tests for Enzo-10M).

Configuration: (CPU1, 4 cores, BaselineImplementation, OpenMP) × 11

CPU clock frequencies × 8 data sets

2.4.4.3 Phase 3: Parallel Programming Models. In this phase,

we continued varying clock frequency and data set and added variation in parallel

programming model. It consisted of 176 tests, of which 88 were studied in Phase 2

(the OpenMP tests).

Configuration: (CPU1, 4 cores, BaselineImplementation) × 11 CPU clock

frequencies × 8 data sets × 2 parallel programming models

2.4.4.4 Phase 4: Concurrency. In this phase, we went back to

the Phase 1 configuration, and added variation in concurrency and programming

model. It consisted of 88 tests, of which 11 were studied in Phase 1 (the OpenMP

configurations using all 4 cores) and 11 were studied in Phase 3 (the MPI

configurations using all 4 cores).

Configuration: (CPU1, Enzo-10M, BaselineImplementation) × 11 CPU

clock frequencies × 4 concurrency levels × 2 parallel programming models

2.4.4.5 Phase 5: Algorithm Implementation. In this phase, we

studied variation in algorithm implementation. Since the GeneralImplementation

was only available with the MPI parallel programming model, we could not go back
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to Phase 1. Instead, we compared 11 new tests with 11 tests first performed in

Phase 3.

Configuration: (CPU1, 4 cores, Enzo-10M, MPI) × 11 CPU clock

frequencies × 2 algorithm implementations

2.4.4.6 Phase 6: Hardware Architecture. With this test, we

went to a new hardware architecture, CPU2. We kept many factors constant —

BaselineImplementation, Enzo-10M, 24 cores — and varied CPU clock frequency

and parallel programming model. All 14 tests for this phase were new.

Configuration: (CPU2, 24 cores, Enzo-10M, BaselineImplementation) × 7

CPU clock frequencies × 2 parallel programming models

2.5 Results

In this section, we describe results from the six phases detailed in

Section 2.4.4. Before doing so, we consider an abstract case, as the analysis of this

abstract case is common to the analysis of each phase. We also define terms that

we use throughout this section.

Assume a visualization algorithm, when running at the default clock

frequency of FD, takes time TD seconds to run, consumes a total energy of ED

Joules, and requires an average power of PD Watts (with PD = ED/TD). Further

assume that same visualization algorithm, when reducing the clock frequency to

FR, takes TR seconds, consumes a total of ER Joules, and requires an average of PR

Watts (once again with PR = ER/TR). We then define the following terms:

– Frat = FD/FR. This is the ratio of the clock frequencies. If the clock

frequency was slowed down by a factor of two, then Frat = 2.

– Trat = TR/TD. This is the ratio of elapsed time. If the algorithm runs twice as

slow, then Trat = 2.
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– Erat = ED/ER. This is the ratio of energy consumed. If the energy consumed

is reduced by a factor of two, then Erat = 2.

– Prat = PD/PR. This is the ratio of power usage. If the power usage is reduced

by a factor of two, then Prat = 2.

Note that three of the terms have the value for the default clock frequency

in the numerator and the value for the reduced clock frequency in the denominator,

but that Trat flips them. This flip simplifies comparison across terms, since it makes

all ratios be greater than 1.

We then find these three pairs of terms noteworthy:

– Frat and Trat: When Trat is less than Frat, the data-intensive nature of the

visualization algorithm enabled the program to slow down at a rate less than

the reduction in clock frequency.

– Trat and Erat: This pair represents a proposition for visualization consumers

(i.e., visualization scientists or simulation scientists who use visualization

software): “if you are willing to run the visualization (Trat) times slower, then

you can use (Erat) times less energy.”

– Trat and Prat: This pair represents a related proposition for visualization

consumers: “if you are willing to run the visualization (Trat) times slower,

then you can use (Prat) times less power when doing so.” This power

proposition would be useful for those that want to run a computing cluster

at a fixed power rate.

2.5.1 Phase 1: Base Case. Phase 1 fixed all factors except clock

frequency, to provide a baseline for future phases. The factors held constant were:
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BaselineImplementation, OpenMP, 4 cores on CPU1, and the Enzo-10M data set.

Table 2 contains the results.

In terms of our three ratios:

– Frat and Trat: At the slowest clock speed (1.6 GHz), Frat was 2.2X, but Trat

was 1.84X, meaning that the program was not slowing down proportionally.

A purely compute-intensive program that took 1.29s at 3.5 GHz would have

taken 2.82s at 1.6 GHz, while our isosurfacing program took 2.40s (i.e., 17%

faster).

– Trat and Erat: Energy savings of up to 1.44X can be gained by accepting

slowdowns of up to 1.84X. Clock frequencies in between the extremes offer

propositions with less energy savings, but also less impact on runtime.

– Trat and Prat: Power savings of up to 2.7X can be gained by accepting

slowdowns of up to 1.84X. The power savings are greater than the energy

savings since the energy accounts for reduced runtime, while the power only

speaks to instantaneous usage. Regardless, such power savings could be useful

when running complex systems with a fixed power budget.

2.5.2 Phase 2: Data Set. Phase 2 extended Phase 1 by varying

over data set. Table 3 shows specific results for the REnzo-10M data set (which

compares with the Enzo-10M data set in Table 2 of Section 2.5.1), and Figure 3

shows aggregate results over all data sets.

In terms of our three ratios:

– Frat and Trat: The right sub-figure of Figure 3 shows that the slowdown

factor varies over data set. In the worst case, for the Enzo-1M data set, the

slowdown factor is at 2.2X — i.e., exactly 3.5 GHz over 1.6 GHz — meaning
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that it is performing like a computationally-intensive workload. This makes

sense, however, since Enzo-1M is our smallest data set, and it has a regular

data access pattern.

– Trat and Erat: This tradeoff varies based on data set. The data sets with

randomized access patterns (REnzo, RNek) have better propositions, as do

large data sets. Also, when comparing Table 3 and Table 2, we can see that

the tradeoffs got more favorable with REnzo-10M, with energy savings of

1.7X against slowdowns of 1.4X (where it was 1.44X and 1.84X for Enzo-

10M).

– Trat and Prat: Table 3 shows us that the power tradeoff for REnzo-10M is

slightly worse than Enzo-10M. We attribute the increase in instantaneous

power to increased data intensity (see Table 4).

F Frat T Trat E Erat P Prat

3.5GHz 1X 1.29s 1X 74.3J 1X 57.4W 1X
3.3GHz 1.1X 1.32s 1X 69.4J 1.1X 52.6W 1.1X
3.1GHz 1.1X 1.38s 1.1X 66.7J 1.1X 48.2W 1.2X
2.9GHz 1.2X 1.42s 1.1X 63.4J 1.2X 44.8W 1.3X
2.7GHz 1.3X 1.50s 1.2X 61.5J 1.2X 40.9W 1.4X
2.5GHz 1.4X 1.62s 1.3X 60.9J 1.2X 37.5W 1.6X
2.3GHz 1.5X 1.78s 1.4X 53.7J 1.4X 30.1W 1.9X
2.1GHz 1.7X 1.93s 1.5X 53.8J 1.4X 27.9W 2.1X
2.0GHz 1.8X 1.95s 1.5X 52.1J 1.4X 26.8W 2.2X
1.8GHz 1.9X 2.13s 1.7X 51.1J 1.4X 24.1W 2.4X
1.6GHz 2.2X 2.40s 1.9X 51.4J 1.4X 21.4W 2.7X

Table 2. Experiment results for Phase 1, which uses OpenMP and the
BaselineImplementation.

The performance measurements listed in Table 4 help explain the differences

between the data sets. Specifically, the L3 miss rate (unsurprisingly) goes up when

data sets get larger and their accesses become randomized. This in turn pushes
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F Frat T Trat E Erat P Prat

3.5GHz 1X 2.95s 1X 142.7J 1X 48.4W 1X
3.3GHz 1.1X 3.05s 1X 134.8J 1.1X 44.2W 1.1X
3.1GHz 1.1X 3.01s 1X 124.3J 1.1X 41.3W 1.2X
2.9GHz 1.2X 3.33s 1.1X 122.3J 1.2X 36.8W 1.3X
2.7GHz 1.3X 3.23s 1.1X 109.3J 1.3X 33.8W 1.4X
2.5GHz 1.4X 3.22s 1.1X 99.6J 1.4X 30.9W 1.6X
2.3GHz 1.5X 3.48s 1.3X 93.4J 1.5X 26.8W 1.8X
2.1GHz 1.7X 3.49s 1.3X 88.0J 1.6X 25.2W 1.9X
2.0GHz 1.8X 3.79s 1.3X 88.3J 1.6X 23.3W 2.1X
1.8GHz 1.9X 3.79s 1.3X 82.2J 1.7X 21.7W 2.2X
1.6GHz 2.2X 4.19s 1.4X 82.1J 1.7X 19.6W 2.5X

Table 3. Experiment results for the REnzo-10M data set in Phase 2, which uses
OpenMP and the BaselineImplementation.

down the number of instructions per cycle (a surrogate for capturing how many

stalls are occurring in the pipeline, which is difficult to measure).

Data Set Time Cycles IPC L3 Miss Rate
Enzo-1M 0.39s 614M 1.42 597
Enzo-10M 2.40s 3.0B 1.89 1027
Enzo-80M 13.2s 18B 2.24 1422
Nek5000 14.3s 20B 1.54 949

REnzo-1M 0.44s 700M 1.17 5420
REnzo-10M 4.2s 6.0B 0.94 10913
REnzo-80M 33.9s 51B 0.78 12543
RNek5000 27.2s 38B 0.81 11593

Table 4. Performance measurements for the 1.6 GHz experiments from Phase 2.
IPC is short for Instructions Per Cycle, and the L3 Miss Rate is the number of L3
cache misses per one million cycles.

2.5.3 Phase 3: Parallel Programming Models. Phase 3 extended

Phase 2 by varying over parallel programming model. Figure 4 shows the overall

results for all eight data sets using MPI; it can be compared with Figure 3 of

Section 2.5.2, which did the same analysis with OpenMP. Tables 5 and 6 show

the results using MPI on the Enzo-10M and REnzo-10M data sets, respectively.
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Figure 3. Results from Phase 2, which uses four cores of CPU1 with OpenMP and
the BaselineImplementation and varies over data set and clock frequency. The plots
are of energy (left) and runtime (middle), as a function of CPU clock frequency.
The right figure is a scatter plot of the 1.6GHz slowdown factor versus energy
savings for the eight data sets.
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Figure 4. Results from Phase 3, which uses four cores of CPU1 with MPI and the
BaselineImplementation and varies over data set and clock frequency. The plots are
of energy (left) and runtime (middle), as a function of CPU clock frequency. The
right figure is a scatter plot of the 1.6GHz slowdown factor versus energy savings
for the eight data sets.
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Figure 5. Results from Phase 4’s tests with OpenMP, studying Enzo-10M using
CPU1 and the BaselineImplementation and varying over clock frequency and
concurrency. The plots are of energy (left) and runtime (middle), as a function
of CPU clock frequency. The right figure is a scatter plot of the 1.6GHz slowdown
factor versus energy savings for the four concurrencies.
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Figure 6. Results from Phase 4’s tests with MPI, studying Enzo-10M using CPU1
and the BaselineImplementation and varying over clock frequency and concurrency.
The plots are of energy (left) and runtime (middle), as a function of CPU clock
frequency. The right figure is a scatter plot of the 1.6GHz slowdown factor versus
energy savings for the four concurrencies.
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F Frat T Trat E Erat P Prat

3.5GHz 1X 1.08s 1X 74.5J 1X 69.2W 1X
3.3GHz 1.1X 1.12s 1X 70.4J 1.1X 62.7W 1.1X
3.1GHz 1.1X 1.18s 1.1X 67.3J 1.1X 57.0W 1.2X
2.9GHz 1.2X 1.20s 1.1X 66.2J 1.1X 55.0W 1.3X
2.7GHz 1.3X 1.35s 1.3X 63.5J 1.2X 47.1W 1.5X
2.5GHz 1.4X 1.36s 1.3X 59.8J 1.2X 43.9W 1.6X
2.3GHz 1.5X 1.46s 1.4X 55.3J 1.3X 37.8W 1.8X
2.1GHz 1.7X 1.59s 1.4X 51.7J 1.4X 32.6W 2.1X
2.0GHz 1.8X 1.80s 1.7X 55.4J 1.3X 30.8W 2.2X
1.8GHz 1.9X 1.92s 1.7X 52.6J 1.4X 27.4W 2.5X
1.6GHz 2.2X 2.08s 2X 51.8J 1.4X 24.9W 2.8X

Table 5. Experiment results from Phase 3 for the Enzo-10M data set, which uses
MPI and the BaselineImplementation.

F Frat T Trat E Erat P Prat

3.5GHz 1X 3.46s 1X 179.5J 1X 51.9W 1X
3.3GHz 1.1X 3.48s 1X 166.8J 1.1X 47.9W 1.1X
3.1GHz 1.1X 3.59s 1X 158.9J 1.1X 44.2W 1.2X
2.9GHz 1.2X 3.62s 1X 147.7J 1.2X 40.8W 1.3X
2.7GHz 1.3X 3.78s 1.1X 143.0J 1.3X 37.9W 1.4X
2.5GHz 1.4X 3.88s 1.1X 135.4J 1.3X 34.9W 1.5X
2.3GHz 1.5X 4.00s 1.1X 116.2J 1.5X 29.1W 1.8X
2.1GHz 1.7X 4.18s 1.3X 108.0J 1.7X 25.8W 2X
2.0GHz 1.8X 4.29s 1.3X 109.8J 1.6X 25.6W 2X
1.8GHz 1.9X 4.52s 1.3X 105.0J 1.7X 23.2W 2.2X
1.6GHz 2.2X 4.62s 1.4X 95.5J 1.9X 20.7W 2.5X

Table 6. Experiment results from Phase 3 for the REnzo-10M data set, which uses
MPI and the BaselineImplementation.

Table 2 of Section 2.5.1 and Table 3 of Section 2.5.2 are also useful for comparison,

as they showed the results for these same data sets using OpenMP.

In terms of our three ratios:

– Frat and Trat: The right sub-figure of Figure 4 shows two clusters: one

grouping (made up of the randomized data sets) slows down only by a factor

of ˜1.4, while the other grouping (made up of the non-randomized data
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sets) slows down in near proportion with the clock frequency reduction.

This contrasts with the OpenMP tests seen in Figure 3, which showed more

spread over these two extremes. We conclude that the randomized data sets

create significantly more memory activity for MPI than for OpenMP, which

is supported by our performance measurements. Taking REnzo-80M as an

example, the MPI test had over 48,000 L3 cache misses per million cycles,

while the OpenMP test had less than 12,500.

– Trat and Erat: Renzo-10M with MPI gave the largest energy savings of any

test we ran, going from 179.5J to 95.5J. That said, its starting point was

higher than OpenMP, which went from 142.7J to 82.1J. Overall, energy

savings were harder to predict with MPI, but were generally better than the

savings with OpenMP (again because it was using more energy to start with).

– Trat and Prat: the MPI tests used more power, but saw greater reduction

when dropping the clock frequency. For the Enzo-10M data set, the MPI

test dropped from 72.2W (3.5GHz) to 25.3W (1.6GHz), while OpenMP

dropped from 57.4W to 21.4W. MPI’s increased power usage likely derives

from activity with the memory system, and increased L3 cache misses.

Summarizing, our performance measurements show that the MPI approach

uses the memory infrastructure less efficiently, leading to increased energy and

power usage, but also creating improved propositions for reducing energy and

power when reducing clock frequencies.

2.5.4 Phase 4: Concurrency. Phase 4 did not build on Phase 3, but

rather went back to Phase 1 and extended it by considering multiple concurrency

levels and programming models. Figure 5 shows plots of our results with OpenMP
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and Figure 6 shows the results with MPI. Table 7 contains data that complements

the figures.

Higher levels of concurrency issue more memory requests, leading to

saturation of the memory infrastructure. As a result, runtimes steadily increase.

Because some processes may have to wait for the memory infrastructure to

satisfy requests, we observed energy savings by slowing down the clock frequency,

making waiting processes consume less power and having their memory requests

satisfied more quickly (relative to the number of cycles, since cycles lasted longer).

Table 7 shows this trend, in particular that the four core configurations overwhelm

their memory (as seen in the increase in L3 cache misses and in the reduction in

instructions per cycle), while the one core configurations fare better.

In terms of our three ratios:

– Frat and Trat: The right sub-figures of Figures 5 and 6 show that the

slowdown factor varies over concurrency. Lower concurrencies (which have

faster runtimes) have higher slowdowns, because their memory accesses are

being supported by the caching system. Higher concurrencies (which have

longer runtimes) have lower slowdowns, because the cache was not keeping

up as well at high clock frequencies (since more processors were issuing

competing requests).

– Trat and Erat: The tradeoff between slowdown and energy varies quite a bit

over concurrency. With OpenMP, a single core suffers over a 2X slowdown to

receive a 1.2X energy savings. But, with four cores, the slowdown improves

to 1.86X and the energy savings improve to 1.45X. With MPI, the trends are

similar, but less pronounced.
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– Trat and Prat: As seen in Table 7, the power savings get better as more cores

are used, but not dramatically so. With one core, both OpenMP and MPI

provide 2.5X power improvements by dropping the clock frequency. Going

up to four cores raises this power improvement to 2.85 (MPI) and 2.68

(OpenMP).

Configuration Time Energy Power IPC L3 Miss Rate
MPI/1/3.5 GHz 0.90s 24.4J 26.9W 2.37 5652
MPI/1/1.6 GHz 2.0s 21.1J 10.8W 2.41 3788

OpenMP/1/3.5 GHz 0.83s 19.9J 23.9W 2.06 1697
OpenMP/1/1.6 GHz 1.74s 16.7J 9.6W 2.11 931

MPI/4/3.5 GHz 0.96s 69.5J 72.2W 2.07 10476
MPI/4/1.6 GHz 2.02s 51.2J 25.3W 2.37 3456

OpenMP/4/3.5 GHz 1.29s 74.3J 57.4W 1.51 3351
OpenMP/4/1.6 GHz 2.40s 51.1J 21.4W 1.89 1027

Table 7. Experiment results from Phase 4. IPC is short for Instructions Per Cycle,
and L3 is the number of L3 cache misses per one million cycles.

2.5.5 Phase 5: Algorithm Implementation. Phase 5 once again

went back to Phase 1 as a starting point, this time extending the experiments

to consider multiple algorithm implementations. The factors held constant were:

OpenMP, 4 cores on CPU1, and the Enzo-10M data set. Table 8 contains the

results.

With GeneralImplementation, runtime and clock frequency are highly

correlated, i.e., reducing the clock frequency by 2.2 causes the workload to

take 2.1X longer to run. This relationship between frequency and runtime is

characteristic of a compute-intensive workload, depicted by our computeBound

micro-benchmark. In contrast, the BaselineImplementation exhibited behavior

closer to data-intensive in our previous phases.
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F Frat T Trat E Erat P Prat

3.5GHz 1X 16.06s 1X 1056J 1X 65.8W 1X
3.3GHz 1.1X 16.57s 1X 992J 1.1X 59.9W 1.1X
3.1GHz 1.1X 17.64s 1.1X 950J 1.1X 53.9W 1.2X
2.9GHz 1.2X 19.00s 1.3X 928J 1.1X 48.8W 1.3X
2.7GHz 1.3X 20.85s 1.3X 914J 1.2X 43.9W 1.5X
2.5GHz 1.4X 21.82s 1.4X 876J 1.2X 40.1W 1.6X
2.3GHz 1.5X 24.01s 1.4X 784J 1.3X 32.7W 2X
2.1GHz 1.7X 26.09s 1.7X 763J 1.4X 29.3W 2.2X
2.0GHz 1.8X 27.43s 1.7X 768J 1.4X 28.0W 2.4X
1.8GHz 1.9X 30.67s 1.9X 764J 1.4X 24.9W 2.6X
1.6GHz 2.2X 34.17s 2.1X 756J 1.4X 22.1W 3X

Table 8. Experiment results for GeneralImplementation of Phase 5. These results
compare with BaselineImplementation, whose corresponding results are in Table 2.

The explanation for the difference between the two implementations is

in the number of instructions. While both issue the same number of loads and

stores, the GeneralImplementation issues 102 billion instructions, while the

BaselineImplementation issues only 7 billion. These additional instructions change

the nature of the computation (from somewhat data-intensive to almost entirely

compute intensive), as well as making the overall runtimes and energy consumption

much higher. Of course, these instructions add value for general toolkits, in terms

of supporting more data models and algorithms. The takeaway from this study is

that the approach from general toolkits appears to tilt the instruction mix (at least

for isosurfacing).

Interestingly, the Erat and Prat ratios are still favorable, at 1.4X and 3X,

respectively. This is because the relationship between clock frequency and energy

consumed is not strictly linear. As a result, even compute-intensive workloads can

benefit from clock frequency reductions, although their Trat’s will still match the

clock frequency reduction.
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2.5.6 Phase 6: Architecture. Phase 6 did not build on any previous

phases. Instead, it explored CPU2, whose results do not translate to any of the

previous CPU1 experiments. The factors held constant were: MPI, 24 cores on

CPU2, Enzo-10M, and the BaselineImplementation. Table 9 contains the results.

F Frat T Trat E Erat P Prat

2.4GHz 1X 2.265s 1X 549J 1X 242.4W 1X
2.2GHz 1.1X 2.479s 1.1X 558J 1X 225W 1.1X
2.0GHz 1.2X 2.695s 1.2X 571J 1X 211.9W 1.1X
1.8GHz 1.3X 3.024s 1.3X 573J 1X 189.5W 1.3X
1.6GHz 1.5X 3.385s 1.5X 631J 0.9X 186.4W 1.3X
1.4GHz 1.7X 3.836s 1.7X 668J 0.8X 174.1W 1.4X
1.2GHz 2X 4.466s 2X 697J 0.8X 156W 1.6X

Table 9. Experiment results from Phase 6, which uses CPU2 with MPI and the
BaselineImplementation.

CPU2 is significantly different than CPU1 in that it contains Ivy Bridge

processors, while CPU1 contains Haswell processors. On Haswells, the core

(compute units, private L1 and L2 caches) and uncore (shared L3 cache) are on

separate clock domains, so slowing down the frequency only applies to the speed

of the executing instructions and accessing L1 and L2 caches. On Ivy Bridge, core

and uncore share the same clock frequency, and so data-intensive workloads cannot

benefit with respect to Trat.

Table 9 shows that, while Prat is better at lower clock frequencies, Erat is

worse. Restated, while the power dropped, its drop was not steep enough to offset

the increases in runtime, and so overall energy usage goes up. This does not match

the results in Phase 5, where a compute-bound workload created a similar “Trat

equals Frat” situation. As explanation, we again note the non-linear relationship

between power and clock frequency (which varies over architecture).
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2.6 Summary

We conducted a study exploring the tradeoffs between power and

performance when reducing clock frequencies. As a result of this initial study,

we identified that favorable power and performance tradeoffs are possible for

a common visualization algorithm when the CPU clock frequency is reduced.

More specifically, the isosurfacing algorithm exposes variation, and can be

sufficiently data intensive to avoid a performance slowdown with energy savings.

We summarize the results of our findings by phase:

– Phase 1 confirmed our basic hypotheses about reducing clock frequencies: (i)

Isosurfacing is sufficiently data-intensive to slow the impact from reduced

clock frequencies. (ii) Clock frequency reductions can create options for

visualization consumers to choose between finishing an algorithm quickly

using more energy, or slowly using less energy. (iii) Clock frequency

reductions decrease power usage, creating options for visualization consumers

wanting to balance system-wide power usage.

– Phase 2 showed that the tradeoffs between energy and runtime get

increasingly favorable as data complexity goes up (either due to size of

increased irregularity in data access).

– Phase 3 showed that MPI’s less coordinated memory accesses affect energy

and power tradeoffs compared to OpenMP.

– Phase 4 showed that the tradeoffs between execution time and energy are

most favorable when the memory infrastructure is being stressed, and that

this scenario exists at higher concurrencies (or, alternatively, is less likely to

exist when some of a node’s cores are not being used).
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– Phase 5 showed that general-purpose implementations of visualization

algorithms shift the instruction mix such that the tradeoffs between execution

time and energy are less favorable.

– Phase 6 showed the importance of having an architecture where the memory

infrastructure can be controlled separately from the CPU.

In terms of future work, we want to explore the variation in a wider set

of visualization workloads. While we feel isosurfacing is representative of many

visualization algorithms — i.e., those characterized by iterating on cells one-by-

one and producing a new output — other algorithms have different properties. In

particular, particle advection problems perform data-dependent memory accesses,

which may produce even more favorable propositions for energy and power savings.

Further, algorithms like volume rendering require both significant computation and

irregular memory accesses (especially for unstructured grids), making it unclear

how it would be affected by changes in clock frequency. We investigate the power

and performance tradeoffs of other visualization workloads in Chapter III.
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CHAPTER III

POWER AND PERFORMANCE TRADEOFFS UNDER POWER LIMITS

Most of the text in this chapter comes from [36], which was a collaboration

between Matthew Larsen (LLNL), Hank Childs (UO), Barry Rountree (LLNL),

and myself. This paper has been accepted for publication at the 2019 IEEE

International Parallel and Distributed Processing Symposium (IPDPS).

The writing of this paper was a collaboration between Hank Childs,

Matthew Larsen, Barry Rountree, and myself. I was the primary contributor to the

writing of the overall paper. Additionally, I developed the performance monitoring

infrastructure, and designed and executed the study. The overview of power usage

in high performance computing was a collaboration between Barry Rountree and

myself. Hank Childs and Matthew Larsen provided guidance on organization and

also provided edits to the final paper.

This chapter explores the power and performance tradeoffs for a

representative set of visualization algorithms. An important premise of this work

is that power will be a limited resource on future supercomputers, necessitating an

understanding of how applications behave under a power limit. This is a follow-up

study to the work presented in Chapter II, which demonstrated opportunities for

power and energy savings in a visualization workload. With this more thorough

study, we investigate the power and performance tradeoffs for a larger set of

visualization algorithms. Whereas Chapter II explored the variation under reduced

clock frequencies, this chapter explores the variation under reduced power limits

(ultimately, reducing the CPU frequency). The result of this study provides the

core of the research presented in this dissertation. We provide a set of recipes that
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can better inform scientists and tool developers on the effects of visualization-

specific input parameters on power usage and performance.

3.1 Motivation

Power is one of the major challenges in reaching the next generation of

supercomputers. Scaling current technologies to exascale may result in untenable

power costs. Thus, the entire HPC ecosystem, including hardware and software, is

being re-designed with power efficiency in mind.

The premise of this research is that simulations and visualization routines

(and other components of the HPC ecosystem) will operate in a power-limited

environment. The Tokyo Institute of Technology in Japan is one example of a

facility that has deployed power-limited production systems [45]. Two of their

systems — TSUBAME2 and TSUBAME3 — must share the facility-level power

budget (i.e., inter-system power capping). Additionally, due to extreme heat during

the summer months, the resource manager may dynamically turn off nodes to stay

under a specified power cap.

At exascale, it is expected that visualization routines will need to be

run simultaneously with simulations (i.e., in situ processing), due to decreasing

I/O performance relative to floating point operations. Further, power-limited

environments will greatly impact the overall time-to-solution. Efforts to optimize

performance under a power bound has typically focused on traditional HPC

workloads rather than visualization, which can be a significant portion of the

overall execution time. Furter, visualization applications are more data intensive

than traditional HPC workloads.

For any simulation, the amount of time dedicated to in situ visualization

can vary. It is dependent on a myriad of factors including the type of analysis to
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be completed and the number of operations in the visualization pipeline. From

experience, visualization may account for 10%–20% of the overall execution time

spent running the simulation and the visualization.

The main contribution of this work is providing the foundation for future

research in this area, which has very few efforts exploring the performance

behaviors of visualization algorithms in a power-limited environment. We believe a

study focusing on visualization applications is needed for three main reasons. First,

visualization is a key phase in the scientific discovery process, transforming abstract

data into a comprehensible image useful for communication and exploration.

Second, the time to do visualization is often a significant portion of the overall

execution time. Third, visualization algorithms are more data intensive than HPC

applications.

We selected eight common visualization algorithms, which we believe are

representative of the execution behaviors of the hundreds of existing visualization

algorithms. We also selected four data set sizes and varied the processor-level power

cap to understand how the changes affect power and performance properties.

The results of this study identify two classes of algorithms. The first

class contains compute-bound algorithms (power sensitive). The performance

of these algorithms is sensitive to the processor-level power cap, so limiting its

available power significantly degrades the performance. The second class contains

memory-bound algorithms, which provide a unique opportunity for power savings

without sacrificing execution time (power opportunity). Our findings may be

integrated into a runtime system that assigns power between a simulation and

visualization application running concurrently under a power budget, such that

overall performance is maximized.
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The rest of this chapter is organized as follows. Section 3.2 discusses

previous work. Section 3.2 provides an overview of power in HPC and the

algorithms explored. The details of the experimental setup and methodology are

presented in Section 3.4. We define the metrics and variables used in Section 3.5.

Results are discussed in Section 3.6. We summarize our findings in Section 3.7 and

identify ideas for future work in Section 3.8.

(a) Contour (b) Threshold (c) Spherical
Clip

(d) Isovolume

(e) Slice (f) Particle
Advection

(g) Ray Tracing (h) Volume
Rendering

Figure 7. Renderings of the eight visualization algorithms explored in this study.
We believe this set of algorithms is representative of the execution behaviors of the
hundreds of existing visualization algorithms. The images show the energy field at
the 200th time step of the CloverLeaf hydrodynamics proxy application.

3.2 Related Work

Prior works at the intersection of power and performance can be seen in

Section 2.2. This chapter builds on the work described in Chapter II [35], where

we studied a single visualization algorithm (isosurfacing) and considered explicit

setting of the CPU frequency (which is less favorable for managing power usage
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on exascale systems than more recent power capping technologies such as Intel’s

Running Average Power Limit (RAPL) [19], AMD’s TDP PowerCap [20], and

IBM’s EnergyScale [30]). In our current study, we consider eight algorithms —

chosen to be representative of most visualization algorithms — and use the more

current technique of power capping. Therefore, while the initial study [35] showed

that a visualization algorithm has unique power and performance tradeoffs, the

current study is considerably more comprehensive and also more relevant to

exascale computing (i.e., power capping versus setting CPU frequencies). Further,

this study contains a series of findings that allow us to extrapolate behavior to

other visualization algorithms.

3.3 Overview of Visualization Algorithms

We explored eight algorithms for this study. We believe this set of

algorithms is representative of the behaviors and characteristics commonly found

across all visualization algorithms. We provide a brief description of each of the

eight algorithms in the following subsections (see Figure 7 for a rendered image of

each algorithm).

3.3.1 Contour. For a three-dimensional scalar volume, the output

of a contour is a surface representing points of a constant value (i.e., isovalue).

For this study, the data set consisted of hexahedrons and the algorithm used was

Marching Cubes [44]. The contour algorithm iterates over each cell in the data set,

identifying cells that contain the constant value. The algorithm uses pre-computed

lookup tables in combination with interpolation to generate triangles that represent

the surface, and the resulting geometry is combined into the output data set. We

used 10 different isovalues for a single visualization cycle.
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3.3.2 Threshold. The threshold algorithm iterates over every cell

in the data set and compares it to a specified value or range of values. Cells

containing the value are included in the output data set, while cells not containing

the value are removed.

3.3.3 Spherical Clip. Spherical clip culls geometry within a sphere

specified by an origin and a radius. The algorithm iterates over each cell and finds

the distance of that cell from the center of the sphere. Cells completely inside

the sphere are omitted from the output data set, while cells completely outside

the sphere are retained in entirety, and passed directly to the output. If the cell

contains the surface of the sphere, then the cell is subdivided into two parts, with

one part inside the sphere and the other part outside the sphere, and each part is

handled as before.

3.3.4 Isovolume. Isovolume and clip are similar algorithms. Instead

of an implicit function (e.g., sphere), an isovolume evaluates each cell within a

scalar range. Cells completely inside the scalar range are passed directly to the

output, and cells completely outside the scalar range are removed from the output.

If the cell lies partially inside and outside the scalar range, the cell is subdivided

and the part outside the range is removed.

3.3.5 Slice. A slice cuts the data set on a plane, resulting in a two-

dimensional data set. In order to create the slice, a new field is created on the data

set representing the signed distance field from the plane (e.g., if the signed distance

is 0, then the point is on the plane). Then, the contour algorithm evaluates the

field at an isovalue of 0, resulting in a topologically two-dimensional plane. In this

study, we evaluated three slices on the x-y, y-z, and x-z planes, resulting in a three-

dimensional data set.
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3.3.6 Particle Advection. The particle advection algorithm advects

massless particles through a vector field. Particles are seeded throughout the data

set, and advected for a user-specified number of steps. For this study, we advected

the particles through a steady state (i.e., a single time step). The algorithm

outputs a data set representing the path of each particle through the number of

steps in the form of lines (i.e., streamlines).

3.3.7 Ray Tracing. Ray tracing is a rendering method that iterates

over pixels in the image. Rays are intersected with the data set to find the nearest

intersection. Ray tracing uses a spatial acceleration structure to minimize the

amount of intersection tests that are performed on the data set. If an intersection is

found, then a color is determined by the scalar field. The output of the ray tracing

algorithm is an image. For this study, we created an image database consisting of

50 images per visualization cycle generated from different camera positions around

the data set.

3.3.8 Volume Rendering. Volume rendering is another rendering

method that iterates over pixels in the image. Rays step through the volume

and sample scalar values at regular intervals. Each sample is mapped to a color

containing a transparency component, and all samples along the ray are blended

together to form the final color. For this study, we created an image database

consisting of 50 images per visualization cycle generated from different camera

positions around the data set.

3.4 Experimental Overview

In the following subsections, we discuss the study overview and methodology

for our experiments.
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3.4.1 Software Framework. Our software infrastructure included

VTK-m and Ascent. VTK-m [49] is an open-source library of scientific visualization

algorithms designed for shared-memory parallelism. Its algorithms are implemented

using a layer of abstraction enabling portable performance across different

architectures. It is an extension of the Visualization ToolKit (VTK) [64], a well-

established open-source library of visualization algorithms that form the basis of

VisIt [17] and ParaView [10]. For this study, we configured VTK-m with Intel’s

Thread Building Blocks (TBB) [60] for thread-level parallelism.

The Ascent [39, 40] in situ framework is part of the multi-institutional

project known as ALPINE. Ascent is a flyweight, open-source in situ visualization

framework designed to support VisIt’s LibSim [68] and ParaView’s Catalyst [23].

Of the three included multi-physics proxy applications, we used CloverLeaf [4, 46],

a hydrodynamics simulation, tightly coupled with the visualization. That is to say,

the simulation and visualization alternate while using the same resources.

3.4.2 Hardware Architecture. We used the RZTopaz

supercomputer at Lawrence Livermore National Laboratory to conduct our

experiments. Each node contains 128 GB of memory and two Intel Xeon E5-2695

v4 dual-socket processors executing at a base clock frequency of 2.1 GHz (120W

thermal design power, or TDP). The Turbo Boost clock frequencies range from 2.6

GHz to 3.3 GHz. Each hyper-threaded processor has 18 physical cores.

On LLNL systems, the msr-safe [3] driver provides an interface for

sampling and controlling processor power usage, among other performance

counters, via 64-bit model-specific registers. On this Broadwell processor, the power

can be capped from 120W (TDP) down to 40W using Intel’s Running Average
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Power Limit technology (RAPL) [19]. Then, the processor adjusts the operating

frequency to guarantee the desired power cap.

3.4.3 Study Factors. Our study consisted of three phases and 288

total test configurations. Each test was launched using a single node and a single

MPI process for maximum memory allocation. Shared-memory parallelism was

enabled with VTK-m. We varied the following parameters for this study:

– Processor power cap (9 options): Enforce a processor-level (cores, cache)

power cap ranging from 120W (TDP) down to 40W in increments of 10W

using Intel’s RAPL.

– Visualization algorithm (8 options): The representative set of algorithms

explored are contour, threshold, spherical clip, isovolume, slice, particle

advection, ray tracing, and volume rendering.

– Data set size (4 options): The CloverLeaf data set sizes used per node are

323, 643, 1283, and 2563. The total number of cells ranged from 32, 768 to

16, 777, 216.

3.4.4 Methodology. This study consisted of three phases. Phase 1

studied a base case, and subsequent phases studied the impacts of varying one of

the study factors listed in Subsection 3.4.3.

3.4.4.1 Phase 1: Processor-Level Power Cap. Phase 1 varied

the processor-level power caps and studied the behavior of the contour algorithm

implemented in VTK-m. With this phase, we extended a previous finding [35],

which determined baseline performance for isosurfacing by explicitly setting CPU

frequencies. This phase consisted of nine tests.
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Test Configuration : (Contour algorithm, 1283 data set size) × 9 processor power

caps

3.4.4.2 Phase 2: Visualization Algorithm. In this phase, we

continued varying processor-level power caps, and added variation in visualization

algorithm. It consisted of 72 tests, nine of which were studied in Phase 1.

Test Configuration : (1283 data set size) × 9 processor power caps × 8

visualization algorithms

3.4.4.3 Phase 3: Data Set Size. In this phase, we add variation in

data set size. It consisted of 288 tests, of which nine were studied in Phase 1 and

63 were studied in Phase 2.

Test Configuration : 9 processor power caps × 8 visualization algorithms × 4

data set sizes

3.5 Definition of Metrics

This section defines the variables and metrics that will be used in the

following results section.

3.5.1 Abstract Case. Assume a visualization algorithm takes TD

seconds to run at the default power (TDP) of PD watts. As the power cap is

reduced, the same visualization algorithm now takes TR seconds to run with a

power cap of PR watts. The following derived terms are used to explain our results:

– Pratio = PD/PR: This is the ratio of power caps. If the processor-level power

cap is reduced by a factor of 2, then Pratio = 2.

– Tratio = TR/TD: This is the ratio of execution times. If the algorithm takes

twice as long to run, then Tratio = 2.
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– Fratio = FD/FR: This is the ratio of CPU frequencies. If the frequency was

twice as slow, then Fratio = 2.

These terms have been defined such that all ratios will be greater than 1. To

accomplish this, Pratio and Fratio have the default value in the numerator and the

reduced value in the denominator, while Tratio has them reversed. Inverting the

ratio simplifies our comparisons.

Using our three ratios, we can make the following conclusions. First, if

Tratio is less than Pratio, then the algorithm was sufficiently data intensive to avoid

a slowdown equal to the reduction in power cap. In addition, users can make

a tradeoff between running their algorithm Tratio times slower and using Pratio

less times power. Alternatively, this ratio enables us to optimize performance

under a given power cap. Second, the relationships between Fratio and Pratio and

Tratio and Fratio will be architecture-specific. Enforcing a power cap will lower the

CPU frequency, however, the reduction in frequency will be determined by the

processor itself. The reduction in clock frequency may slowdown the application

proportionally (if the application is compute-bound) or not at all (if the application

is memory-bound). The results in Section 3.6 present the ratios for a particular

Intel processor (i.e., Broadwell), but this relationship may change across other

architectures.

3.5.2 Performance Measurements. To collect power usage

information, the energy usage of each processor in the node is sampled every

100 ms throughout the application (i.e., simulation and visualization) execution.

The power usage for each processor is calculated by dividing the energy usage

(contained in a 64-bit register) by the elapsed time between samples. In addition

to energy and power counters, we also sample fixed counters, frequency-related
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counters, and two programmable counters — last level cache misses and references.

From these counters, we can derive the following metrics. We show the derivation

of these metrics using the Intel-specific performance counter event names [5], where

applicable.

– Effective CPU frequency = APERF/MPERF

– Instructions per cycle (IPC) = INST_RET.ANY/CPU_CLK_UNHALT.REF_TSC

– Last level cache miss rate = LONG_LAT_CACHE.MISS/LONG_LAT_CACHE.REF

3.5.3 Efficiency Metric. We leverage a rate in terms of the size of

the input (i.e., data set size) rather than speedup for comparing the efficiency of

one visualization algorithm to another. If the speedup of a parallel algorithm is

defined as Tn,1

Tn,p
, then one must know the serial execution time of the algorithm.

This is challenging with increasingly complex simulations running at higher

concurrency levels. Instead, we assess speedup using a rate originally proposed by

Moreland and Oldfield [32, 51]. They express the rate in terms of the data set size,

n, as follows: n
Tn,p

.

The higher the resulting rate, the more efficient the algorithm. Because the

rate is computed using the size of the data set, we only compare those algorithms

that iterate over each cell in the data set (e.g., contour, spherical clip, isovolume,

threshold, and slice). At higher concurrencies, an algorithm with good scaling

will show an upward incline, then will gradually flatten from the perfect efficiency

curve.

3.6 Results

In this section, we describe the results from the phases detailed in

Section 3.4.4.
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Contour
P Pratio T Tratio F Fratio

120W 1.0X 33.477s 1.00X 2.55GHz 1.00X
110W 1.1X 33.543s 1.00X 2.41GHz 1.06X
100W 1.2X 33.579s 1.00X 2.55GHz 1.00X
90W 1.3X 33.519s 1.00X 2.55GHz 1.00X
80W 1.5X 33.617s 1.00X 2.54GHz 1.01X
70W 1.7X 30.371s 0.91X 2.54GHz 1.00X
60W 2.0X 30.394s 0.91X 2.50GHz 1.02X
50W 2.4X 31.066s 0.93X 2.52GHz 1.01X
40W 3.0X 39.198s 1.17X 2.07GHz 1.23X

Table 10. The slowdown for the contour algorithm as the processor power cap is
reduced. The configuration used for this algorithm is a data set size of 1283. P is
the enforced processor power cap. T is the total execution time in seconds for the
contour algorithm over all visualization cycles. F is the effective CPU frequency
given the power cap P . A 10% slowdown (denoted in red) does not occur for this
algorithm until the lowest power cap.

3.6.1 Phase 1: Processor-Level Power Cap. In this phase, we

fix all study factors while varying the power cap in order to achieve a baseline

performance for subsequent phases. Specifically, we use the following configuration:

contour algorithm and a data set size of 1283. We present the results in Table 10.

When the default power cap of 120W is applied to each processor, the

simulation spends a total of 33.477 seconds executing a contour filter and the

total power usage of both processors is 120W (88% of total node power). As

we gradually reduce the processor-level power cap, the execution time remains

constant (e.g., Tratio is 1X). Since the algorithm is data intensive, it does not use

a lot of power. Applying a more stringent power cap does not affect the overall

performance as it is not using power equivalent to the desired power cap, so the

underlying frequency does not need to slowdown.

Once the power cap is reduced by a factor of 3X (from 120W down to 40W),

we see a change in the execution time and CPU frequency by a factor of 1.17X and
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1.23X, respectively. At 40W, the algorithm takes longer to run (since the frequency

is also reduced to maintain the desired power usage), but the algorithm did not

slowdown proportionally to the reduction in power by a factor of 3. This confirms

our finding in [35], where we determined that the contour algorithm was sufficiently

data intensive to avoid slowing down proportional to the CPU clock frequency.

Running with the lowest power cap does not impact the performance

for contour. If doing a contour post hoc, the user can request the lowest power,

leaving power for other applications that are competing for the same compute

resources. If doing a contour in situ, the runtime system may leverage the low

power characteristic and dynamically allocate less power to the visualization phase,

allowing more power to be dedicated to the simulation.

3.6.2 Phase 2: Visualization Algorithm. In Phase 1, we

determined that the contour algorithm is sufficiently memory-bound to avoid a

change in execution time until a severe power cap. In Phase 2, we want to explore

if this data intensive trend is common across other algorithms, so we extend the

previous phase and vary the visualization algorithm. We continue to focus on a

data set size of 1283. We identify two clear groupings: those algorithms that are

insensitive to changes in power (power opportunity), and those algorithms that are

sensitive to changes in power (power sensitive). We will discuss the two categories

in more detail below.

3.6.2.1 Power Opportunity Algorithms. The algorithms that

fall into the power opportunity category are contour (discussed in the previous

section), spherical clip, isovolume, threshold, slice, and ray tracing. Table 11 shows

the slowdown in execution time and CPU frequency for all algorithms. The power

opportunity algorithms do not see a significant slowdown (of 10%, denoted in

48



P 120W 110W 100W 90W 80W 70W 60W 50W 40W
Prat 1X 1.1X 1.2X 1.3X 1.5X 1.7X 2X 2.4X 3X

1
Trat 1X 1X 1X 1X 1X 0.91X 0.91X 0.93X 1.17X
Frat 1X 1.06X 1X 1X 1.01X 1X 1.02X 1.01X 1.23X

2
Trat 1X 1.01X 1.03X 1.02X 1X 1.05X 1.02X 1.18X 1.48X
Frat 1X 1.21X 1X 1.02X 1X 1X 1.03X 1.11X 1.48X

3
Trat 1X 1.01X 0.99X 1.04X 1.02X 1.06X 1.14X 1.30X 1.81X
Frat 1X 1X 1X 1X 1.03X 1.13X 1.31X 1.61X 2.55X

4
Trat 1X 0.98X 0.98X 1X 0.99X 0.99X 1.02X 1.08X 1.31X
Frat 1X 0.99X 1X 0.99X 0.99X 1X 1X 1.12X 1.38X

5
Trat 1X 0.98X 1X 0.99X 0.98X 1.02X 1.04X 1.03X 1.26X
Frat 1X 0.98X 0.99X 1.03X 1.04X 1.01X 1.03X 1.01X 1.22X

6
Trat 1X 1X 0.99X 0.99X 1X 1.01X 1.10X 1.31X 1.75X
Frat 1X 1X 1X 1X 1X 1.01X 1.11X 1.32X 1.73X

7
Trat 1X 1X 1.01X 1.05X 1.11X 1.21X 1.34X 1.57X 3.12X
Frat 1X 1X 1X 1.04X 1.10X 1.18X 1.31X 1.51X 2.69X

8
Trat 1X 1X 0.99X 1X 1.04X 1.12X 1.23X 1.46X 1.86X
Frat 1X 1X 1X 1X 1.04X 1.12X 1.23X 1.45X 1.84X

Table 11. Slowdown factor for all algorithms with a data set size of 1283. The
mapping between number and algorithm is defined as follows: (1) Contour,
(2) Spherical Clip, (3) Isovolume, (4) Threshold, (5) Slice, (6) Ray Tracing, (7)
Particle Advection, and (8) Volume Rendering. Slowdown is calculated by dividing
execution time at 40W by execution time at 120W. Numbers highlighted in red
indicate the first time a 10% slowdown in execution time or frequency occurs due to
the processor power cap P .
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Figure 8. Effective frequency (GHz), instructions per cycle (IPC), and last level
cache miss rate for all algorithms as the processor power cap is reduced. For each
algorithm, we use a data set size of 1283.

red) until Pratio is at least 2X or higher. These algorithms are data-bound — the

bottleneck is the memory subsystem, not the processor — so reducing the power

cap does not significantly impact the overall performance. This is confirmed since

Tratio is less than Pratio.

When looking at the CPU operating frequency in Figure 8a, we see that

all algorithms, regardless of whether it is in the power opportunity or power

sensitive class, run at the same frequency of 2.6 GHz at a 120W power cap, which

is the maximum turbo frequency for this architecture when all cores are active.

The differences across the algorithms are seen in the rate at which the frequency

declines because of the enforced power cap and the power usage of the algorithms.

The default power usage varies across visualization algorithms, ranging from

as low as 55W up to 90W per processor. For algorithms that do not consume
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TDP, the processor decides it can run in turbo mode (i.e., above 2.1 GHz base

clock frequency) to maximize performance. Once the power cap is at or below the

power usage of the algorithm, the operating frequency begins to drop because the

processor can no longer maintain a high frequency without exceeding the power

cap. For algorithms with a high power usage, the frequency will start dropping at

power caps close to TDP. For algorithms with a low power usage (e.g., contour,

described previously), the processor runs in turbo mode for most power caps to

maximize performance. It is not until the lowest power cap of 40W that we see a

reduction in the clock frequency for contour.

Figure 8b shows the average instructions per cycle (IPC) for all algorithms.

The dotted line drawn at an IPC of 1 shows the divide between compute-bound

algorithms (IPC > 1) and memory-bound algorithms (IPC < 1). Spherical clip,

contour, isovolume, and threshold make up one class of algorithms. Their IPC is

characteristic of a data-bound algorithm, and their power usage is also very low,

so the decrease in IPC is not seen until the lowest power cap of 40W. Threshold

is dominated by loads and stores of the data, so it has a low IPC value. Contour

and isovolume have higher IPC values (out of this group of algorithms) because it

calculates interpolations.

Another class of algorithms (with respect to IPC) consists of ray tracing and

slice, which have an IPC that falls into compute-bound range. Although they have

an IPC larger than 1, they have low power usage and their performance remains

unchanged until low power caps. For this study, we created an image database of

50 rendered images (either with volume rendering or ray tracing) per visualization

cycle to increase algorithm time. Investigating ray tracing further, we discover that

the execution time includes the time to gather triangles and find external faces,
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build a spatial acceleration structure, and trace the rays. Tracing the rays is the

most compute intensive operation within ray tracing, but it is being dominated

by the data intensive operations of gathering triangles and building the spatial

acceleration structure. As such, ray tracing behaves similarly to the cell-centered

algorithms in this category: spherical clip, threshold, contour, isovolume, and slice.

It also has the best slowdown factor.

Slice has a higher IPC than contour, which is expected since it is doing a

contour three times. Three-slice creates three slice planes on x-y, y-z, and z-x

intersecting the origin. Consequently, the output size is fixed for any given time

step. Three-slice under the hood uses contour, but differs in the fact that each

slice plane calculates the signed distance field for each node on the mesh, which

is compute intensive.

Figure 8c shows the last level cache miss rate for all algorithms, and is the

inverse of Figure 8b. Isovolume has the highest last level cache miss rate, indicating

that a high percentage of its instruction mix is memory-related. Because of the

high miss rate, the isovolume algorithm spends a lot of time waiting for memory

requests to be satisfied. Memory access instructions have a longer latency than

compute instructions. Therefore, it cannot issue as many instructions per cycle, and

has a low IPC.

Another interesting metric to investigate is shown in Figure 9, which is the

number of elements (in millions) processed per second. Because the power usage

of these algorithms is low, the denominator (e.g., seconds) stays constant for most

power caps, yielding a near constant rate for each algorithm. At severe power caps,

the number of elements processed per second declines because the algorithm incurs
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slowdown. Algorithms with very fast execution times will have a high rate, while

algorithms with a longer execution time will have a low rate.

3.6.2.2 Power Sensitive Algorithms. The power sensitive

algorithms are volume rendering and particle advection. They consume the most

power at roughly 85W per processor. When the power cap drops below 85W,

the frequency starts dropping as it can no longer maintain the desired power

cap at the 2.6 GHz frequency. Thus, there are slowdowns of 10% at 70W and

80W, respectively, which is at a higher power cap than the power opportunity

algorithms. These algorithms not only have the highest IPC values overall as shown

in Figure 8b (peak IPC of 2.68, highly compute-bound), but also have the biggest

change in IPC as the power cap is reduced. Such algorithms are dominated by the

CPU, so a reduction in power greatly impacts the number of cycles it takes to issue

the same set of instructions (i.e., slows down the algorithm).

Figure 8b coupled with Figure 8c shows volume rendering and particle

advection with a high IPC because they have the lowest last level cache miss

rate (i.e., better memory performance). Additionally, more instructions can be

retired per cycle because the processor is not stalled waiting on memory requests

to be satisfied (i.e., high IPC). Everything fit into cache, and IPC was changing

drastically with changing power caps, so we can infer that IPC behavior was

dominated by compute instructions.

3.6.2.3 Key Takeaways. For most of the algorithms explored in this

chapter, the power cap has little effect on performance. This is because the power

usage of visualization algorithms is low compared to typical HPC applications.

For similar algorithms, we can run them with the lowest power cap without

impacting performance. In a larger scheme where we are running the simulation
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Figure 9. Elements processed per second for cell-centered algorithms using 1283

data set size.

and visualization on the same resources, we can more intelligently allocate power

between the two, rather than using a näıve scheme of evenly distributing the

power. Said another way, we can allocate most of the power to the power-hungry

simulation, leaving minimal power to the visualization, since it does not need it.

Additionally, we find two of the algorithms explored (volume rendering and particle

advection) have high power usage, consistent with typical HPC applications. These

algorithms have a poor tradeoff between power and performance. There may be

other algorithms that behave similarly.

3.6.3 Phase 3: Data Set Size. Phase 3 extended Phase 2 by varying

over data set size. Table 12 shows the results for all algorithms using a data set size

of 2563. This table can be compared to Table 11 in Section 3.6.2.
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P 120W 110W 100W 90W 80W 70W 60W 50W 40W
Prat 1X 1.1X 1.2X 1.3X 1.5X 1.7X 2X 2.4X 3X

Contour
Trat 1X 1X 1X 1X 1X 1X 1.05X 1.19X 1.71X
Frat 1X 1X 1X 1X 1.01X 0.99X 1.07X 1.18X 1.52X

Spherical
Clip

Trat 1X 1.01X 1.01X 1.05X 1.01X 1.10X 1.16X 1.41X 2.13X
Frat 1X 1X 1X 1X 1.01X 1.05X 1.17X 1.42X 1.95X

Isovolume
Trat 1X 0.98X 0.97X 1.01X 1.01X 1.01X 1.17X 1.33X 1.76X
Frat 1X 1X 0.97X 1X 1X 1.05X 1.11X 1.32X 1.79X

Threshold
Trat 1X 1.02X 0.99X 0.99X 0.98X 1.09X 1.16X 1.30X 1.53X
Frat 1X 1.01X 1.02X 1.02X 1.02X 1.05X 1.17X 1.38X 1.66X

Slice
Trat 1X 1X 0.99X 0.99X 1X 1X 0.99X 1.33X 1.69X
Frat 1X 0.98X 1.01X 0.93X 1.01X 0.98X 1.01X 1.24X 1.44X

Ray
Tracing

Trat 1X 1X 1X 1.01X 1X 1.02X 1.10X 1.28X 2X
Frat 1X 1X 1X 1X 1X 1.01X 1.10X 1.29X 2.05X

Particle
Advection

Trat 1X 1X 1.03X 1.07X 1.14X 1.39X 1.64X 2.13X 2.67X
Frat 1X 1X 1.02X 1.06X 1.13X 1.35X 1.57X 2.05X 2.56X

Volume
Rendering

Trat 1X 1X 1X 1X 1.06X 1.13X 1.24X 1.45X 1.81X
Frat 1X 1X 1X 1X 1.06X 1.13X 1.23X 1.45X 1.82X

Table 12. Slowdown factor for all algorithms with a data set size of 2563. Slowdown
is calculated by dividing execution time at 40W by execution time at 120W.
Numbers highlighted in red indicate the first time a 10% slowdown in execution
time or frequency occurs due to the processor power cap P .
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Figure 10. This category of algorithms sees an increase in IPC as the data set
size increases. Algorithms that fall into this category are slice, contour, isovolume,
threshold, and spherical clip.

As the data set size is increased from 1283 in Table 11 to 2563 in Table 12,

Tratio changes across algorithms. For the power opportunity algorithms identified in

Phase 2, Tratio exceeds 1.1X at higher power caps with larger data set sizes. As an

example, spherical clip did not have significant slowdowns until 50W with a data

set size of 1283, but now has similar slowdowns at 70W. Other algorithms in this

category, such as contour, threshold, slice, and ray tracing, now slowdown at 60W

and 50W with a data set size of 2563 instead of slowing down at 40W with a data

set size of 1283.

Depending on the algorithm, the IPC may increase or decrease as the data

set size is increased. Figure 10, Figure 11, and Figure 12 show the IPC for three

different algorithms over all power caps and data set sizes. The IPC of the three

different algorithms shown in the figures represent three categories.
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Figure 11. This category of algorithms sees an increase in IPC as the data set size
decreases. Volume rendering is the only algorithm exhibiting this behavior.
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Figure 12. This category of algorithms see no change in IPC as the data set size
changes. Algorithms exhibiting this behavior are particle advection and ray tracing.
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The first category consists of slice, contour, isovolume, threshold, and

spherical clip. As the data set size increases, the IPC also increases for these

algorithms as shown in Figure 10. Particularly for slice and spherical clip, the

number of instructions increases with a larger number of elements (i.e., bigger data

set size) because for each cell, the algorithm computes the signed distance. The

other algorithms in this category — contour, isovolume, and threshold — iterate

over each cell, so the number of comparisons will also increase (i.e., for threshold,

keep this cell if it meets some criteria, else discard). Algorithms in this category

tend to have lower IPC values. These algorithms contain simple computations, so

the loads and stores of the data (i.e., memory instructions) dominate the execution

time.

The second category contains volume rendering, which shows an inverse

relationship between data set size and IPC as shown in Figure 11. Here, the

IPC increases as the data set size decreases. As an example, as the data set size

increases from 1283 to 2563 (8X bigger), the IPC only drops by 20% going from 2.5

down to 2. On average, the IPC of volume rendering is higher than any of the other

algorithms explored in this chapter. Volume rendering is an image-order algorithm

and has a high number of floating point instructions resulting in high power and

high IPC.

The third category consists of algorithms whose IPC does not change with

increases in data set sizes as illustrated in Figure 12. The algorithms identified here

are particle advection and ray tracing. For particle advection, we held the following

constant regardless of the data set size: the same number of seed particles, step

length, and number of steps. Because we chose to keep these parameters consistent,

particles may get displaced outside the bounding box depending on the data set
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size. When particles are displaced outside the bounding box, they terminate, and

there is no more work to do for that particle.

Particle advection has a high IPC value, and a high power consumption.

The advection implementation uses the Runge-Kutta, which is the 4th order

method to solve ordinary differential equations. This method is computationally

very efficient and has a large number of high power instructions.

The ray tracing algorithm consists of three steps: building a spatial

acceleration structure, triangulation, and tracing the rays. The amount of

computation does not scale at the same rate as the data set size. An increase in the

data set size by a factor of 8 (going from 1283 to 2563) results in only a 4X increase

in the number of faces encountered.

3.7 Summary of Findings

One of the key goals of this chapter was to identify the impacts of various

factors on power usage and performance of visualization algorithms in order to

better inform scientists and tool developers. This chapter is an extension of the

work in Chapter II, which performed an initial exploration of the feasibility of

achieving energy and power savings with reduced clock frequencies. With this

chapter, we performed a more in-depth study of the power and performance

tradeoffs for a representative set of visualization algorithms. Specifically, this

chapter identifies the environment in which variation occurs in visualization. We

summarize the findings from the previous sections here.

On varying processor power caps (Section 3.6.1):

– The VTK-m implementation of contour is sufficiently data intensive to avoid

a significant slowdown from reducing the power cap. This extends a previous

finding [35] which set CPU frequencies and used a custom implementation,
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and is additionally noteworthy since our study uses a general toolkit designed

to support a wide variety of algorithms and data types.

– The execution time remains unaffected until an extreme power cap of 40W,

creating opportunities for redistributing power throughout the system to more

critical phases or applications.

On comparing different visualization algorithms (Section 3.6.2):

– Most of the visualization algorithms studied in this chapter consume low

amounts of power, so they can be run under a low power cap without

impacting performance. These algorithms have lower IPC values,

characteristic of data-bound workloads.

– Two of the explored algorithms consume higher power, similar to what we

commonly see of traditional compute-bound benchmarks, such as Linpack.

These algorithms will see significant slowdown from being run at a lower

power cap, up to 3.2X. As such, the slowdown begins around 80W, roughly

67% of TDP. These algorithms have high IPC values, which are characteristic

of compute-bound workloads.

On varying the input data set size (Section 3.6.3):

– Larger data set sizes result in poorer tradeoffs for performance. With a higher

data set size, these algorithms start to slowdown at higher power caps. So

instead of seeing a 10% slowdown at 50W with a data set size of 1283, the

slowdown begins at 70W for a data set size of 2563.

– For the algorithms that were significantly compute-bound (and consuming

high amounts of power), the change in data set size does not impact the

power usage.
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These recipes can be applied to two use cases in the context of a power-

constrained environment. First, when doing post hoc visualization and data

analysis on a shared cluster, requesting the lowest amount of power will leave more

for other power-hungry applications. Second, when doing in situ visualization,

appropriately provisioning power for visualization can either leave more power

for the simulation or improve turn-around time for the visualization pipeline.

These results can be integrated into a job-level runtime system, like PaViz [38] or

GEOPM [2, 22], to dynamically reallocate the power to the various components

within the job. By providing more tailored information about the particular

visualization routine, the runtime system may result in better overall performance.

3.8 Conclusion

Our study explored the impacts of power constraints on scientific

visualization algorithms. We considered a set of eight representative algorithms,

nine different processor-level power caps, and four data set sizes, totaling 288

total test configurations. We believe the results of the study provide insights on

the behavior of visualization algorithms on future exascale supercomputers. In

particular, this study showed that visualization algorithms use little power, so

applying an extremely low power cap will not impact the performance. (Refer

back to Section 3.7 for specific findings.) We believe these findings can be used to

dynamically reallocate power between competing applications (i.e., simulation and

visualization) when operating under a power budget. The runtime system would

identify visualization workflows that are compute- or data-bound and allocate

power accordingly, such that the scarce power is used wisely.

This study suggests several interesting directions for future work. Our

results identified two different classes of algorithms. These findings can be
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applied to other visualization algorithms in making informed decisions about

how to allocate power for visualization workflows. While most of the algorithms

explored in this chapter consumed low power and were data-bound, we did find

two algorithms (particle advection and volume rendering) that did not fall into

this category. This indicates there may be other visualization algorithms that

might fall into the category of high power usage and compute intensity. Another

extension of this work is to explore how the power and performance tradeoffs for

visualization algorithms compare across other architectures that provide power

capping mechanisms. Other architectures may exhibit different responses to

power limits, and so it is unclear how the underlying architecture will affect the

algorithms.
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CHAPTER IV

POWER-AWARE RUNTIME SYSTEM FOR VISUALIZATION

Most of the text in this chapter comes from [38], which was a collaboration

between Matthew Larsen (LLNL), Hank Childs (UO), Barry Rountree (LLNL),

and myself. Barry Rountree primarily wrote the overview of power in high

performance computing, although I provided some contributions as well. The

related work section on volume rendering was written by Matthew Larsen, while

I wrote the sections on power and the intersection of scientific visualization and

power. Matthew Larsen provided guidance on the software integration between

performance predictions and the runtime system. I developed the power-aware

runtime system, decision strategies, and necessary monitoring infrastructure,

designed and executed the study, and was the primary contributor to the writing

of the overall paper.

This chapter demonstrates how we can exploit the variation in visualization

workloads by dynamically reallocating power. By exposing application-level

information from the visualization routine to a central manager, additional

performance can be realized. We implemented a runtime system that uses an

existing performance model to dynamically reallocate power across nodes within

a job. This study shows that using prediction to adapt power across nodes is an

effective strategy for optimizing performance for visualization applications, which

can be more unpredictable and irregular in nature.

4.1 Motivation

Power is a critical challenge in achieving the next generation of high

performance computing (HPC) systems. Specifically, scaling today’s technologies

to higher concurrency may lead to excessive power consumption costs. As a result,
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the entire HPC environment — from processors to software applications to runtime

systems — is being re-evaluated for power efficiency.

For this research, an important premise is that simulations and visualization

routines need to adapt to a power-limited environment, meaning nodes will

have their power usage capped. Motivation for this premise can be found in

Section 4.2. The main contribution of this chapter is PaViz, a power-adaptive

visualization framework that enables performance improvements when power is a

scarce resource. To understand its efficacy, we ran PaViz on a rendering algorithm

that incorporated runtime predictions based on an accurate performance model.

Our study focuses on rendering for two reasons. First, rendering is a ubiquitous

operation for visualization. Second, rendering is a particularly interesting algorithm

to study, since its workloads are highly variable depending on input parameters. In

terms of findings, we found that, in limited power budget environments, adapting

power based on performance model predictions led to speedups of up to 33% while

using the same power overall.

The rest of this chapter is organized as follows. We present an overview

of power with respect to HPC in Section 4.2. The related work is detailed in

Section 4.3. The contributions of the PaViz framework and power scheduling

strategies are discussed in Section 4.4. Section 4.5 identifies the study parameters.

We evaluate the benefits of PaViz in Section 4.6. In Section 4.7, we summarize our

findings and present some ideas for future exploration in this space.

4.2 HPC and Power Overview

Current cluster designs assume sufficient power will be available to

simultaneously run all compute nodes at their maximum thermal design point

(TDP). Said another way, TDP is the maximum power a given node will ever
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consume. As power requirements for clusters move into the range of dozens of

MegaWatts, the strategy of allocating power for all nodes to run at TDP becomes

untenable. Very few applications run at TDP, and provisioning very large systems

as if most did both wastes power capacity and unnecessarily constrains the size of

the cluster.

Overprovisioning [57], short for hardware overprovisioning, is one solution

to improve power utilization. In such a design, we increase the compute capacity

(i.e., number of nodes) of the system, but, in order to not exceed the system

power allocation, not every node will be able to run at TDP simultaneously. For

example, the Vulcan supercomputer at Lawrence Livermore National Laboratory

was allocated for 2.4 MW at TDP, but the vast majority of applications that run

on that machine did not exceed 60% of the allocated power (1.47 MW average

power consumption). Thus, the strategy of allocating TDP to every node fails to

take advantage of nearly 1 MW of power on average. An overprovisioned approach

would use 40% more nodes, consuming all allocated power and reducing trapped

capacity [69].

For overprovisioning to be successful, it must be complemented with a

scheme to limit nodes’ power usage, to ensure the total allocated power is never

exceeded. One way to accomplish this is to uniformly cap the power available

to each node, e.g., each node can use only up to 60% of its TDP. The result of

applying such a power cap is that the processor operating frequency is reduced.

The effect of reduced CPU frequency is variable; programs dominated by compute

will slow down proportionally, while programs dominated by memory accesses may

be unaffected altogether. Despite the slowdown in execution time for individual
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jobs, this strategy would lead to better power utilization and greater overall

throughput.

The strategy of allocating power uniformly across nodes, however, is sub-

optimal. This is because the runtime behaviors of distributed applications can

be highly variable across nodes. The nodes assigned the largest amount of work

become a bottleneck and determine the overall performance of the application. On

the other hand, nodes that are assigned the smallest amount of work finish quickly

and sit idle until the other nodes have completed execution.

A better strategy is to actively assign power to where it will do the most

good. This is the direction we pursue with this study. In an ideal scenario, we

can assign the power such that all nodes finish executing at the same time despite

varying workloads.

Overprovisioned systems lend themselves to multiple levels of optimization.

At the job scheduling level, per job power bounds are allocated to optimize

throughput and/or turn-around time [58]. Alternatively, there are dynamic

optimizations to individual jobs that may be realized by rebalancing power and

changing node configuration at runtime [2, 22, 47]. While our work fits into

this runtime level, our primary contribution is demonstrating that additional

performance may be realized by giving the runtime system deeper knowledge of

the unique execution behaviors for visualization routines. Specifically, we use a

performance model for volume rendering to better estimate the runtime behaviors,

and show that we can improve performance on less predictable workloads.

4.3 Related Work

In the following subsections, we survey related work.
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4.3.1 Volume Rendering. Volume rendering is an important set

of rendering algorithms that enables visualization of an entire three dimensional

scalar field, and volume rendering is widely used because it is capable of analyzing

a large amount of data from many scientific disciplines. Volumetric ray casting [43]

traces rays from the camera through a scalar field, sampling the volume at

regular intervals, and accumulating color and opacity via a transfer function. This

algorithm is embarrassingly parallel and is used in community driven visualization

tools (e.g., VisIt [17] and ParaView [10]) and packages from hardware vendors

(e.g., Intel’s OSPRay [67] and NVIDIA’s IndeX [1]). For our study, we chose

volumetric ray casting because of its widespread use, and also because of its

existing performance model [41].

4.3.2 Power. Some of the earliest solutions in addressing energy use

in HPC were CPU MISER [29], Jitter [25], and Adagio [62]. These approaches

used dynamic voltage and frequency scaling (DVFS) to make decisions between

performance and energy at varying granularities. All three approaches were aimed

at minimizing energy use with varying tolerances for increases in runtime. CPU

MISER made CPU frequency decisions based on time intervals, and did not

perform well when application behavior was less predictable. Jitter used iterations

to identify the processor with the most work in order to slow down remaining

processors, and this led to sub-optimal performance on applications where the

critical path moved across processors within an iteration. Adagio’s solution used

task-based granularity to identify the critical path, thus minimizing performance

degradation. For our study, we focus on the rendering work prior to MPI (i.e., prior

to compositing), so we make decisions at an iteration-based granularity.
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Processor manufacturer technologies for enforcing power caps (Intel’s

Running Average Power Limit (RAPL) [19], AMD TDP PowerCap [20], and IBM

EnergyScale [30]) enable more recent efforts to focus on optimizing performance

under a power bound. Conductor [47] used initial iterations to determine an ideal

schedule of per-node power caps, thread concurrency, and per-core operating

frequency. GEOPM [2, 22] is a production-grade runtime framework for optimizing

performance under resource constraints. GEOPM, Conductor, and Adagio share

similar goals and are collaborating to integrate technologies. GEOPM supports

manual application markup as well as automated phase detection to dynamically

reallocate power. Its architecture supports multiple plugins, but currently it does

not support any particular policy targeted at in situ visualization.

Neither Conductor nor GEOPM can use application inputs to optimize

performance. To the best of our knowledge, PaViz is the first runtime system to

use visualization workloads, which behave differently than typical benchmarks than

those used by Conductor and GEOPM. Specifically, we use rendering workload

parameters — number of active pixels, camera position, image resolution — to

predict execution time and optimize performance under a power bound.

4.3.3 Scientific Visualization and Power. Due to the I/O

bandwidth limitations at exascale, visualization is moving away from a traditional

post-processing method to in situ. In the post-processing method, the simulation

writes out data to disk at regular time steps. Once the simulation has completed,

the data is read back from disk for post-processing analysis and visualization

using tools, such as VisIt [17] or ParaView [10]. As simulations increase in

complexity, the amount of data they can write out increases exponentially, making

it unsustainable to write out data with high temporal frequency. The critical
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challenge is saving enough data from the simulation without impacting fidelity or

losing notable areas of interest.

In the in situ model, visualization and analysis occur alongside the

simulation to mitigate the impacts of reduced I/O bandwidth. The data from

the simulation is analyzed and visualized and the resulting images are written to

disk, vastly reducing the total amount of data written to disk. Since power is a

critical challenge to reaching the next generation of computing, research efforts

have been dedicated to understanding the power profiles of this new analysis

strategy, particularly with respect to how data is moved through the storage

hierarchy [7, 61]. These works compared the power profiles of each pipeline,

concluding that in situ drastically reduces energy usage by reducing the total

runtime to complete the simulation and analysis.

Labasan et al. [35] provided an initial exploration of the various factors

that may impact power and performance trade-offs for an isosurfacing algorithm

implemented in two frameworks. This work studied the performance impacts

of various parameters as the CPU operating frequency was gradually reduced.

Similarly, work by Gamell et al. [27] also looked at the power-performance trade-

offs of various parameters at scale.

4.4 Our Approach for Adaptive Power Scheduling

In an overprovisioned environment, the total power allocated to the machine

is not enough to run all nodes at peak power simultaneously. The default strategy

for handling this reduction in power is to uniformly assigned reduced power —

if the total power is 50% of peak, then each node would be capped at 50% of its

maximum power. The performance effects of this power cap will vary from node

to node. In cases where the node was approaching maximum power, the slowdown
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would be greater, while in cases where the node was already using less than the

power cap, there would be no effect in runtime. Therefore, since the rendering task

is only as fast as the slowest processor, the choice of uniform reduction is poor.

A better choice is to adapt the power assigned to each node based on how much

work it has to do — nodes with lots of work get higher power caps and nodes with

less work get lower power caps. In an ideal scenario, each node would complete

rendering at the same time.

Adaptively assigning power is a non-trivial task. At its essence, it involves

assessing how much work each processor needs to do. For our approach, we

incorporate an existing rendering performance model [41]. When the performance

model predicts a high rendering time, we assign more power, and when it predicts

low rendering time, we assign less. In terms of specifics, we consider a family of

strategies, detailed in the next subsection.

For volume rendering, the performance model predicts the rendering time

by considering the camera configuration and data set size. The model is based

on the observation that there are two distinct types of operations in volumetric

ray casting, each with a cost determined by the hardware architectural factors.

Operations that are associated with entering a new cell (e.g., loading nodal scalar

values) occur with a frequency influenced by the size of the data set and the

distance between samples relative to cell size, and operations that are associated

with each sample (e.g., interpolating scalars and compositing colors) occur with

a frequency influenced by the total data set spatial extents and sample distance.

The combination of these operations represent the total amount of work per

ray, and with an estimate of the number of rays that intersect the volume using

camera parameters, a total amount of work for the entire image can be predicted.
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Parameter Description
n Number of MPI tasks
pownode min Minimum node power needed to execute job
powavail Available power to allocate
reni Predicted render time for task i
renmin Global minimum predicted render time among all n tasks
renmean Global mean predicted render time among all n tasks
renmed Global median predicted render time among all n tasks
renmax Global maximum predicted render time among all n tasks

Table 13. Power scheduling strategy parameters.

Architectural costs for each of the two operations were calculated using multiple

linear regression data gathered on the architecture on which the model was

used [41]. In all, given a camera position, data set size, and sampling parameters,

the time to render on a node could be predicted with high accuracy.

4.4.1 Power Scheduling Strategies. In this section, we describe

the power scheduling strategies used in this study. For this exploratory work, we

implemented a handful of simple strategies, and evaluate their ability to improve

performance.

Each scheduling strategy produces a scalar factor, which we use to assign

a portion of the “available power” (denoted as powavail) to each node. This

guarantees that the allocated job power budget is not exceeded as per-node power

assignments are being made. The powavail is calculated by taking the difference

between the specified power budget and the minimum power required to execute

the job reliably (i.e., the minimum power needed to operate all nodes sufficiently).

4.4.1.1 Min Scheduling Strategy. This strategy uses the difference

from the minimum estimated render time to determine the power allocation. For

each predicted rendering runtime, the node power cap is determined as follows:

pownode min +
|renmin − reni|∑n−1
i=0 |renmin − reni|

∗ powavail
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We speculate that this strategy will produce the best speedups of all the strategies

described in this section. Nodes that are furthest away from the minimum (i.e.,

highest render time, most work to be done) will be allocated a high amount of

power, and this should produce the highest speedups in a balanced and imbalanced

workload configuration, since the rendering task is only as fast as the slowest

processor.

4.4.1.2 Normalized Scheduling Strategy. This strategy calculates

node power assignments by the value of the predicted render time:

pownode min +
reni∑n−1
i=0 reni

∗ powavail

This strategy behaves similarly to Min, since power assignments correlate with the

render times. It assigns less aggressive power caps, since the computation does not

take into account the global minimum of the predicted render times.

4.4.1.3 Mean Scheduling Strategy. This strategy uses the distance

from the average estimated render time to assign power allocations.

pownode min +
|renmean − reni|∑n−1
i=0 |renmean − reni|

∗ powavail

The intuition is that this strategy has no impact on performance when the

rendering workload is evenly balanced. If the rendering workload is imbalanced,

the Mean strategy may provide some benefits, but we speculate it will not produce

as aggressive of a power schedule as the Min strategy, since the mean falls between

all estimates.

4.4.1.4 Median Scheduling Strategy. This strategy uses the

distance from the median estimated render time in making its power decision.

pownode min +
|renmed − reni|∑n−1
i=0 |renmed − reni|

∗ powavail
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We speculate that the Median strategy will perform similarly to the Mean

strategy, since the median and mean will not differ significantly in our rendering

configurations. We envision cases where the median is better for assigning more

aggressive power caps than the mean, producing better speedups than the Mean

strategy.

4.4.1.5 Max Scheduling Strategy. This scheduling strategy uses

the difference from the maximum estimated render time to determine the power

allocation. For each predicted rendering runtime, the node power cap is determined

as follows:

pownode min +
|renmax − reni|∑n−1
i=0 |renmax − reni|

∗ powavail

Intuitively, this scheduling strategy will perform the worst of all implemented

strategies as it rebalances power in a sub-optimal manner. It allocates higher power

to nodes with only a small amount of work to complete (i.e., fast render time), and

low power to nodes with long render times, only increasing the overall runtime.

4.5 Study Overview

The following section provides an overview of the methodology.

4.5.1 Software Infrastructure. For our software infrastructure, we

used Strawman [40], an open-source in situ framework containing three physics

proxy applications. Of these three proxy applications, we used Cloverleaf3D [4,

46], a hydrodynamics mini-app on a three-dimensional structured grid. Strawman

also includes a rendering infrastructure, which combines node-level rendering using

VTK-m [49], configured with Intel’s Thread Building Blocks [60], and distributed

memory image compositing using IceT [50]. For our study, we integrated PaViz

into Strawman and added infrastructure to calculate per node rendering estimates

based on the performance model.

73



4.5.2 Hardware Architecture. We ran tests on Catalyst, an Intel

Ivy Bridge cluster at Lawrence Livermore National Laboratory. Each node contains

two hyper-threaded Intel Xeon E5-2695 v2 CPUs containing 12 physical cores.

The processor operates at a base frequency of 2.4 GHz, and has a maximum

TurboBoost frequency of 3.2 GHz. Each node contains 128 GB of memory. Access

to socket-level power capping and monitoring is done through model-specific

registers (MSRs), specifically through the msr-safe kernel driver [3]. Using Intel’s

Running Average Power Limit (RAPL) technology [19], we can power cap each

processor in the node between 115W (i.e., thermal design power (TDP)) and

64W, and the processor will adjust the CPU operating frequency to guarantee the

specified power cap.

4.5.3 Study Parameters. We varied the following parameters as part

of this study:

– Rendering Workload (4 options)

– MPI Task Concurrency (2 options)

– Power Scheduling Strategy (5 options)

– Job Power Budget (12 options)

We ran the cross product of the study parameters for a total of 480 tests.

We detail each of the parameters listed above in the following subsections.

4.5.3.1 Rendering Workload. We selected four representative

configurations varying in the size of the data set, image resolution, and camera

position. These configurations spanned commonly used values for each parameter,

and yet each configuration differed in terms of the amount of work per task. The

configurations used in this study are enumerated in Table 16. Images of the data
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(a) Rendering Workloads
A and C (camera positioned
inside the data set)

(b) Rendering Workload
B (camera positioned near
the data set)

(c) Rendering Workload D
(camera positioned far from
the data set)

Figure 13. Rendered images of the data set from the three camera positions used in
this study — inside, near, and far. The renderings show a pressure wave expanding
from the corner of the data set where the initial energy was deposited.

from the three camera positions used — inside the data set, near the data set, and

far away from the data set — are shown in Figure 18.

4.5.3.2 MPI Task Concurrency. We varied the number of MPI

tasks to explore the effects of concurrency on the number of active pixels per task.

For the architecture previously described in Section 4.5.2, the number of MPI tasks

used were 8 and 64, mapping one task to each node. On this hardware architecture,

there are 24 cores per node, so our experiments used a total of 192 and 1,472 cores,

for 8 and 64 nodes, respectively. We ran this as a weak scaling study, i.e., the data

set size per task was held constant with each level of concurrency.

4.5.3.3 Power Scheduling Strategy. We explore the performance

improvements of the five power scheduling strategies defined in Section 4.4.1 to

rebalance power based on need. Some strategies are more aggressive in terms

of assigning socket power caps, while others are less aggressive, but risk leaving

further performance to be reclaimed. In addition to exploring the benefit of
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Wkld Data Set Image Res Cam Pos IFact
A 2403 28802 inside 1.57
B 4703 10802 near 1.16
C 1283 19202 inside 1.58
D 3203 20482 far 1.12

Table 14. Selected rendering workloads for this study. The configurations use
1000 samples per ray and render 100 images per cycle. IFact is a quantitative
representation of the work imbalance, derived by taking the maximum estimated
render time over the average of all estimates.

rebalancing power based on a performance model, we wanted to explore the

benefits of using different power scheduling strategies.

4.5.3.4 Job Power Budget. We vary the power budget by assuming

a uniform node power cap (ranging from 230W down to 128W per node, 115W to

64W per processor). In this study, we only consider the power consumption of the

socket domain. For example, assume there are eight nodes in the job. The range

of job power budgets ranges from 1840W (per node power cap of 230W) down to

1024W (per node power cap of 128W). By enforcing lower node power caps, we

arbitrarily limit the job power budget, and can compare the performance of PaViz

to a uniform power distribution under a power-limited environment.

4.5.4 Efficacy Metrics. We define two efficacy metrics quantifying

the benefits of adaptively rebalancing power based on a performance model. We

explain these metrics in more detail in the following subsections.

4.5.4.1 Speedup Over Uniform Power Caps. The speedup metric

compares the runtime of PaViz to a uniform power distribution computed by

job power budget
nnodes

. This scenario is currently implemented in practice. With PaViz,

each node may be running at a different power cap, but the aggregate sum of the

power caps is less than or equal to the job power budget. A speedup greater than

1 indicates better performance with PaViz in adapting power caps relative to the
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predicted render time. A speedup less than 1 indicates degraded performance with

PaViz, and a speedup equal to 1 indicates no change in performance.

To see the impacts of RAPL’s power capping mechanism, the workload must

be long enough to overcome the delay between when the new power cap is set and

when the processor recognizes (and begins operating at) the new cap. Rendering

a single image can be a very quick operation, less than a fraction of a second.

However, it is not uncommon to create several images per time step, and on the

extreme side, image-based in situ [11], where hundreds of images are rendered per

time step. This use case increases overall render time and amortizes out the RAPL

delay.

4.5.4.2 Unused Job Power. The second metric compares the job

power allocated by PaViz to the original power budget. PaViz rebalances power

based on a predicted rendering estimate generated by a performance model, such

that the original power budget is not exceeded. The percentage of unused job

power is computed by taking the difference between the job power budget and

the job power allocated by PaViz divided by the job power budget. We observed

the best performance when the entire job power budget is allocated by PaViz,

particularly in a power-constrained environment, where some nodes may not be

able to execute at TDP.

4.6 Results

We organized our study into four phases. We first look at a base case, which

uses eight nodes and a single power scheduling strategy detailed in Section 4.4.1.

Subsequent sections evaluate the benefits of PaViz when varying the power

scheduling strategy, workload configuration, and concurrency under different power
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budgets. These factors were previously described in Section 4.5.3. In each phase,

we vary the job power budget, and analyzed its impact.

4.6.1 Phase 1: Base Case. In this phase, we compare the speedups

of the Min scheduling strategy under various job power budgets. The x-axis has

been reversed, such that the job power budgets are decreasing, as would be the case

with a power-constrained environment. The results are for an imbalanced rendering

workload configuration (labeled as “A” and defined in Table 16) and are shown in

Figure 14.

The performance degradation is minimal for job power budgets between

1800W and 1600W. This is because the allocated power exceeds the observed (i.e.,

actual) power consumption of the application. The dotted line, which represents

the unused job power, shows the same execution time can be achieved by using up

to 12% − 20% less than the allocated job power budget. If the job power budget

is extremely constrained to 1024W, we similarly see no benefit as there is a small

amount of job power available to reallocate between the nodes.

In this configuration, PaViz produces up to 10% speedup over the current

practice for job power budgets between 1400W and 1100W. For these speedups,

PaViz reallocates all of the job power budget, such that there is 0% unused job

power. At a job power budget of 1500W, PaViz achieves about 4% speedup in this

configuration by using 3% less than the job power budget. If we assume the job

power budget is the actual power consumption of the job, then PaViz can also save

energy by having a faster runtime than the current practice. For example, with a

job power budget of 1360W, PaViz produces a speedup of 10% by using the entire

power budget (i.e., 0% unused power). This produces an energy savings of about

9% as compared to the current practice.
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Figure 14. Speedups and allocated power for Rendering Workload A using the Min
power scheduling strategy. The solid line shows the resulting speedups as compared
to uniform power caps (right y-axis). The black dotted line identifies where the
speedup is 1, indicating no change in performance. The dotted line shows the
percentage of unused job power budget that resulted in a particular speedup (left y-
axis). A percentage of 0% means that the entire job power budget was reallocated
across the nodes.
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4.6.2 Phase 2: Vary Scheduling Strategy. In this phase, we

compare the speedups and unused job power of the five power scheduling strategies

(see Figure 15). The Min strategy performed the best of all strategies in this

configuration, since it assigns the highest power limit to those nodes with high

estimated render times and vice versa.

On the other hand, the Max strategy performed the worst of all strategies.

This strategy assigns high power caps to those nodes with low predicted render

times, while assigning low power caps to those with high predicted render times.

With this strategy, performance degrades significantly since the node with the most

work to do (e.g., the bottleneck node) will execute at a lower power cap.

The Normalized strategy has a similar behavior to the Min strategy. This is

because power caps are scaled directly by the estimated render time, which will

assign high power caps to high render times and low power caps to low render

times. For this configuration, the Normalized strategy does not achieve as high a

speedup as the Min strategy because it is unaware of the fastest render time, and

will assign a less aggressive power cap.

The Mean strategy performs as well as the current practice for this

configuration with the camera positioned inside the data set. With an imbalanced

workload, some nodes will be higher than the mean and others will be lower than

the mean, and will average out to the same performance as running all nodes at the

same power cap.

The Median strategy degrades performance slightly. Depending on the

distribution of estimated render times, the median may cause the non-ideal

assignment of power caps to predicted render times.
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Figure 15. Comparing speedups and unused job power budget for Rendering
Workload A across all five power scheduling strategies.
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Figure 16. Comparing speedups and unused job power for Rendering Workloads
B, C, and D at 8 node concurrency using all five power scheduling strategies. The
solid lines show the resulting speedups as compared to uniform power caps (right y-
axis). The black dotted line identifies where the speedup is 1, indicating no change
in performance. The dotted lines show the percentage of unused job power that
resulted in a particular speedup (left y-axis).

4.6.3 Phase 3: Vary Workload Configuration. We vary the

workload configuration to demonstrate how rendering parameters may impact the

potential for performance improvements. With the camera positioned inside the

data set (Rendering Workloads A and C), there is greater work imbalance (i.e.,

wider distribution of predicted render times) between the nodes because some

nodes will have no geometry in the field of view of their cameras, and thus will

perform no rendering. Moving the camera position far away from the data set, such

as in Rendering Workloads B and D, creates a more even distribution of predicted

render times, and this balance limits the ability of PaViz to achieve significant

speedups.

Figure 16 shows the speedups and unused job power for the remaining

workload configurations — B, C, and D. Rendering Workload C has a maximum
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speedup of 10% that is comparable to Rendering Workload A, which was previously

shown in Figure 15. This is because there is significant imbalance when the

camera is positioned inside the data set, providing more benefit from adaptively

rebalancing power. However, we note that Rendering Workload A provides

speedups with the Min and Normalized strategies over more job power budgets

than Rendering Workload C. The range of raw render estimates is far greater in

Rendering Workload A (0.3 sec to 1.4 sec) than Rendering Workload C (0.15 sec

to 0.64 sec) due to the data set size per node. The increased distance between

the minimum and maximum predicted runtime gives Rendering Workload A more

opportunity for benefits with PaViz.

We achieve little to no speedup on Rendering Workloads B and D because

the render estimates are balanced when the camera is positioned further away

from the data set, which matched our initial intuition. For these configurations,

the render estimates ranged from 0.10 sec to 0.14 sec for workload B, and 0.12 sec

to 0.16 sec for workload D, which did not provide much room for adapting power

(in several cases, all nodes were assigned the same uniform power cap). The Min

strategy results in a 4% speedup on Rendering Workload D, but we attribute this

to performance variability when the processor is under a power cap.

4.6.4 Phase 4: Vary Concurrency. In this phase, we increase the

node concurrency from 8 nodes to 64 nodes to understand the potential benefits

at scale. The initial intuition was that a higher concurrency would lead to better

performance since there would be a larger work imbalance per node and a larger

job power budget that can be reallocated between nodes. Figure 17 shows the

speedups and unused job power for all rendering configurations enumerated in
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Table 16 using 64 nodes. We weak scale the data size to maintain the same work

per node.

For these configurations, PaViz achieves up to 33% speedup over uniform

distribution of power. At 64 nodes, we see the render predictions change in two

ways. First, the range of predictions between the minimum and maximum render

value is much smaller. Secondly, a larger percentage of nodes have very little,

or even no, geometry to render. In the imbalanced configurations A and C, the

scheduling strategies in PaViz assign these nodes low power caps, enabling nodes

with lots of work to operate at a high power cap. We suspect that imbalanced

workloads at even higher concurrencies will achieve even greater speedups. In the

balanced configurations B and D, the performance estimates were extremely fast

(less than 0.08 sec), the range of estimates was much closer to one another that

they were with eight nodes (ranging from 0.06 sec to 0.07 sec), and the scheduling

policies assigned uniform power caps across all nodes.

4.7 Conclusion

In this chapter, we explored the viability of using prediction to improve

the performance of visualization workloads. Specifically, we considered parallel

rendering in the context of overprovisioned supercomputers. Like other HPC

research on overprovisioning, we set per-node power caps in an effort to allocate

power to the nodes that needed it most. However, since visualization workloads

are highly variable, they required a new approach for deciding how to assign power

caps. This new approach leverages prediction of execution times. We incorporated

an existing performance model, and considered five strategies that make use of per-

node workload estimates. The resulting study demonstrated that our approach is

beneficial, with results as much as 33% faster than a uniform distribution strategy
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Figure 17. Comparing speedups and unused job power for all rendering workloads
at 64 node concurrency using the five power scheduling strategies. The solid lines
show the resulting speedups as compared to uniform power caps (right y-axis).
The black dotted line identifies where the speedup is 1, indicating no change
in performance. The dotted lines show the percentage of unused job power that
resulted in a particular speedup (left y-axis).
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while using the same power. In terms of future work, we would like to explore how

PaViz can be adapted to additional predictive models for visualization algorithms.
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CHAPTER V

EVALUATING TECHNIQUES FOR SCHEDULING POWER

Most of the text in this chapter comes from [37], which is a collaboration

between Matthew Larsen (LLNL), Hank Childs (UO), Barry Rountree (LLNL), and

myself. This journal paper is currently in progress.

Hank Childs and Matthew Larsen provided feedback on the overall

organization of the manuscript. Barry Rountree contributed to the related work on

power research in HPC. I developed the predictive runtime system. The comparator

runtime system is developed by Intel and uses adaptation of progress to assign

power allocations across nodes. I designed and executed the study, and was the

primary contributor to the writing of the overall paper.

This chapter compares the methodologies of using prediction and adaptation

to make decisions on allocating power as a resource to nodes within a job.

Some runtime systems use adaptation, and extrapolate the execution behavior

of the first few iterations of a loop to the subsequent iterations. Our runtime

system introduced in Chapter IV uses prediction, which may be better suited

for visualization routines which are data dependent and can be highly irregular.

Findings from this study inform which methodology is best suited for managing

power resources for visualization applications.

5.1 Introduction

One of the key challenges in achieving an exascale system is power usage.

At the beginning of this decade, scaling current technologies to higher concurrency

would lead to excessive power consumption costs. High power costs are expensive

and unsustainable, so the entire HPC environment, is being re-evaluated with

power efficiency in mind.
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Due to the imbalance between computational and I/O performance of

future systems, the visualization community is transitioning from post hoc

processing to in situ processing. With the in situ paradigm, visualization and

analysis occur while the simulation is running, making it unnecessary to store the

simulations state to disk and read it afterwards. Running the simulation with the

visualization means that the overall time-to-solution will increase by some factor.

The magnitude of this factor is dependent on the desired quantity of visualization.

The percentage of time spent doing visualization is highly variable, sometimes

taking as much as 10% or 20% of the overall turn-around time. For this study, the

visualization component contributes up to 14% of the overall time. We assume an

in situ workflow for this work and explore two strategies for optimizing performance

of the visualization pipeline, thus reducing the overall execution time.

Both scientific simulations and visualization routines need to adapt to a

power-limited environment, meaning compute nodes will have their power usage

capped. Based on current practices, a lower power cap would uniformly be applied

across all compute nodes in the system. However, a uniform power cap is a sub-

optimal strategy since the runtime behaviors of distributed applications can be

highly variable across nodes. The nodes assigned the largest amount of work

become a bottleneck and determine the overall performance of the application. On

the other hand, nodes that are assigned the smallest amount of work finish quickly

and wait until the other nodes have finished execution. A more intelligent strategy

is to assign power to where it will result in the most benefit. Ideally, we can assign

the power such that all nodes finish executing at the same time despite varying

workloads.
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The main contribution of this paper is an evaluation that compares adaptive

and predictive power management schemes for visualization workloads. As part

of this research, we used two existing power-aware runtime systems, GEOPM and

PaViz, on a ray tracing workload. GEOPM leveraged an online method of adapting

to current execution behaviors, while PaViz incorporated runtime predictions based

on an accurate performance model. In terms of findings, we found that, in limited

power budget environments, using a power-aware runtime system with performance

model predictions led to better speedups than an adaptive model.

The rest of this chapter is organized as follows. The related work is detailed

in Section 5.2. An overview of the GEOPM and PaViz runtime systems and

their respective adaptive and predictive power scheduling strategies are discussed

in Section 5.3. Section 5.4 identifies the study parameters. We evaluate the

effectiveness of adaptive and predictive scheduling strategies in Section 5.5. Lastly,

Section 5.6 summarizes our findings and presents some ideas for future research.

5.2 Background and Related Work

5.2.1 Power. Energy use has been a long-term challenge in

HPC. Early solutions used dynamic frequency and voltage scaling (DVFS) to

make tradeoff decisions between performance and energy savings at varying

granularities [25, 29, 62]. The common goal of these approaches was to minimize

energy usage by incurring a small performance degradation.

Vendor technologies for applying power caps have enabled more recent

research focusing on performance under a power bound. Some of these technologies

include Intel’s Running Average Power Limit [19], AMD’s Application Power

Management [20], IBM EnergyScale [30], NVIDIA’s NVML [53]. Conductor [47]

used initial iterations to determine an ideal schedule of per-node power caps,
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thread concurrency, and per-core operating frequency. GEOPM [2, 22] is a

production-grade runtime framework for optimizing performance under resource

constraints. GEOPM supports manual application markup as well as automated

phase detection to dynamically reallocate power. Its architecture supports multiple

plugins, but currently it does not support any particular policy targeted at in situ

visualization.

5.2.2 Ray Tracing. Ray tracing is a common method for rendering

images. With ray tracing, rays are traced from the viewpoint through pixels,

and intersect with the geometry to be rendered. The process of tracing rays is

embarrassingly parallel, however, scaling the algorithm to render millions of pixels

is challenging. Previous efforts have implemented a parallel ray tracer [15, 56]. For

our study, we chose ray tracing because of its widespread use and because of its

existing performance model [41].

5.2.3 Visualization and Power. Due to the I/O bandwidth

limitations at exascale, visualization is moving away from a traditional post-

processing method to in situ. In the post-processing method, the simulation writes

out data to disk at regular time steps. Once the simulation has completed, the data

is read back from disk for post-processing analysis and visualization using tools,

such as VisIt [17] or ParaView [10]. As simulations increase in complexity, the

amount of data they can write out increases exponentially, making it unsustainable

to write out data with high temporal frequency. The critical challenge is saving

enough data from the simulation without impacting fidelity or losing notable areas

of interest.

In the in situ model, visualization and analysis occur alongside the

simulation to mitigate the impacts of reduced I/O bandwidth. The data from
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the simulation is visualized and the resulting images are written to disk, vastly

reducing the total amount of data written out. Since power is a critical challenge to

reaching the next generation of computing, research efforts have been dedicated to

understanding the power profiles of this new workflow, particularly with respect to

how data is moved through the storage hierarchy [7, 61]. These works compared the

power profiles of each pipeline, concluding that in situ drastically reduces energy

usage by reducing the total runtime to complete the simulation and analysis.

Labasan et al. [35] provided an initial exploration of the various factors

that may impact power and performance tradeoffs for an isosurfacing algorithm

implemented in two frameworks. This work studied the performance impacts

of various parameters as the CPU operating frequency was gradually reduced.

Similarly, work by Gamell et al. [27] also looked at the power-performance tradeoffs

of various parameters at scale.

5.3 Power-Aware Runtime Systems

The following subsections detail the two different power scheduling strategies

being evaluated in this paper. The strategies are implemented in two runtime

systems, known as GEOPM and PaViz, which we explain here. Both share a

common goal to improve performance in a power-limited environment, but do so

in their own ways.

In an overprovisioned system, not all nodes can run at full power

simultaneously. In order to run all nodes at the same time, a uniform power cap

is applied at a reduced limit. In a load imbalanced workload, like visualization, this

strategy is a suboptimal choice, since the performance is ultimately determined by

the last processor to finish its work. A more performant strategy is to assign power
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to where it is needed (e.g., the critical path), speeding up the processors that are

behind and slowing down the processors that are further ahead.

The other key challenge for these runtime systems to be successful is to

redistribute the power, such that the systemwide power limit is not exceeded.

Exceeding the given power limit will cause electrical issues at the system level,

which may cause failures or breakage.

5.3.1 GEOPM: Adaptive Runtime System. GEOPM [2, 22] is

an open-source framework for power and energy research on future HPC systems.

GEOPM is a collaborative project, started and supported by Intel. It is designed to

target Intel platforms, but can be extended to support other hardware platforms

that provide power management capabilities. It leverages a tree design to be

portable at high concurrencies. GEOPM is also designed to support the different

power and energy management requirements across computing facilities through an

agent plugin architecture.

The GEOPM runtime system analyzes execution behaviors within the

application, then optimizes performance by coordinating decisions to hardware

or software control knobs across compute nodes. Some control knobs are per-core

clock frequencies and processor-level power limits. By tuning control knobs during

an application’s execution, GEOPM may improve performance despite workload

imbalances and manufacturing variations across nodes.

GEOPM’s runtime system uses a balanced tree to provide hierarchical

feedback about the application’s performance. There is a controller running on a

single thread per node to handle different roles and tasks. One of the controllers

is the root node, and will make the final decision based on feedback from the leaf

nodes. This hierarchical design allows GEOPM to be performant at high levels of
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concurrency. For this study, we use the Power Balancer plugin, which is discussed

in Section 5.4.

5.3.2 PaViz: Predictive Runtime System. PaViz [38] uses

prediction to dynamically allocate power across nodes in a job. For our approach,

we incorporate an existing rendering performance model [41] into our runtime

system. If the performance model predicts a long rendering time due to a high

volume of work, then we allocate more power to that node. Alternatively, we

allocate less power if the performance model predicts a short rendering time due

to less work being assigned.

Larsen et. al [41] created and validated performance models for scientific

visualization workloads. The performance model makes a prediction based on

camera position and data set size. These performance models have easily calculable

inputs. The performance models are semi-empirical, meaning that they are both

based on algorithmic characteristics and observed execution behaviors on specific

hardware architectures. In order to leverage these models, the models must be

fitted to a particular hardware architecture.

When it comes to deciding how much power should be allocated to each

node, we implemented multiple power scheduling strategies and previously

evaluated them [38]. The best scheduling strategy is most aggressive in assigning

power caps to the longest and shortest running nodes.

Specifically for rendering, the amount of work per rank is highly variable

from one timestep to another depending many factors, such as the visualization

operation and resulting output. Being able to predict the amount of work before

execution is ideal in this case since you cannot assume behavior will be constant

between timesteps.
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(a) Workload A (b) Workload B (c) Workload C (d) Workload D

Figure 18. Ray traced images of CloverLeaf at the 200th simulation cycle. The
figure shows a contour of the pressure at various values after it has expanded from
the initial position where the energy was deposited.

5.4 Experimental Overview

The following subsections detail the experimental setup and methodology.

5.4.1 Software Infrastructure. We used VTK-m and Ascent

to provide visualization and analysis capabilities. VTK-m [49] is a library of

scientific visualization algorithms optimized for shared-memory parallelism. The

algorithms use data parallel primitives to provide portable performance across

many different hardware architectures. VTK-m is an extension of the Visualization

ToolKit [64], a library of visualization algorithms. VTK is the basis for VisIt [17]

and ParaView [10].

Ascent is a flyweight in situ visualization and analysis runtime system for

scientific simulations. It aims for portable performance on future many-core CPU

and GPU architectures [39]. It is designed to support other in situ visualization

tools, such as VisIt’s LibSim [68] and ParaView’s Catalyst [13]. Ascent depends on

VTK-m for inter-node parallelism and OpenMP for intra-node parallelism. Ascent’s

framework includes three proxy simulations — Kripke [34], Lulesh [33], and

CloverLeaf [4, 46]. For the scientific simulation in this study, we used CloverLeaf,

a hydrodynamics proxy application on a three-dimensional structured grid.
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5.4.2 Hardware Architecture. We conduct our experiments on

the Quartz supercomputer at Lawrence Livermore National Laboratory, which

is a 2,634 node Broadwell system (Intel E5-2695). Each node contains two

hyperthreaded processors and 18 physical cores per processor. The base clock

frequency is 2.10 GHz and the processor is rated at 120W TDP.

The msr-safe [3] kernel module enables power monitoring and control

from user space. We enforce a processor-level power limit using Intel’s Running

Average Power Limit (RAPL) interfaces [19]. Under a more severe power limit, the

processor operates at a lower CPU frequency to guarantee that the average power

usage does not exceed the specified limit. For this particular architecture, we can

enforce a processor-level power cap ranging from 120W down to 40W.

5.4.3 Study Parameters. This study was designed to evaluate two

power-aware runtime systems (PaViz and GEOPM) under a variety of rendering

workloads. We varied the following parameters in order to study a representative

set of configurations:

– Job Power Budget (9 options)

– Rendering Workload (4 options)

– MPI Tasks (5 options)

– Power Scheduling Strategy (2 options)

We ran the cross product of the aforementioned parameters totaling

104 tests configurations. Each of the parameters are discussed in the following

subsections.

5.4.3.1 Job Power Budget. Both GEOPM and PaViz assume a

specified job power budget. Individual compute nodes may be allocated varying
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amounts of power, but at no given moment can the aggregate sum of the allocated

power across all nodes exceed the specified job power budget. To simplify this

study, both runtime systems are only concerned with the power usage of the

processors within the node. Table 15 shows the power limits for each runtime

system.

GEOPM
(Per-Node)

PaViz
(Per-Processor)

% TDP

260W 120W 100%
200W 100W 83.3%
180W 90W 75%
160W 80W 66.7%
140W 70W 58.3%
136W 68W 56.7%
120W 60W 50%
100W 50W 41.7%
80W 40W 33.3%

Table 15. Enumerating the user-specified power budgets used in each runtime
system. The GEOPM power budget is node-level (split evenly across all processors
within the node). The PaViz power budget is processor-level (scale by the number
of processors within the node to derive node power budget). Scaling the power
budgets by the number of nodes will determine the total job power budget.

5.4.3.2 Rendering Workload. We selected four workloads that

varied in the size of the data set, the isovalues used for the contour, the number of

images generated per visualization cycle, and the image resolution. The rendering

workloads and their parameters are listed in Table 16 and an image of the resulting

contour is shown in Figure 18. These configurations span commonly used values for

each parameter, and each workload exhibits a different amount of work imbalance.

Figure 19 shows the imbalance in the total rendering times across all visualization

cycles per rank.
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0 1 2 3 4 5 6 7
MPI Rank

To
ta

l R
en

de
rin

g 
T

im
e 

(s
ec

)
0

5
10

15
20

(b) Rendering Workload B
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(d) Rendering Workload D

Figure 19. For each rank, we aggregate the time spent rendering across all
visualization cycles. If the workload was perfectly balanced, each rank would have
the same execution time. However, rendering is a highly imbalanced workload, so
there are significant differences in execution time across ranks. We aim to address
the imbalance by shifting power away from the ranks with low execution times, and
shifting power to the ranks with high execution times.
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The amount of time spent doing rendering can vary greatly depending on

different user-specified parameters, such as the camera position and the image

resolution. Typically, rendering is a very quick operation and is a small fraction

of the total time doing visualization operations. Reducing the amount of data

saved to disk is a common strategy for mitigating the I/O challenges of future

supercomputers. One method of reducing the amount of data is rendering hundreds

to thousands of images per timestep of the resulting analysis (i.e., cinema) and save

them to disk, which is significantly smaller than the original data set.

Our rendering infrastructure used cinema-based in situ [11, 54], where an

interactive database is generated by taking many pictures from various camera

positions around the data set. In this paradigm, the cost of rendering can become

a significantly large percentage of the overall visualization and analysis pipeline.

Selecting the number of images to be generated during each visualization cycle is

another user-specified parameter that can greatly impact overall execution time.

Thus, understanding how to improve the performance of this operation is critical.

Wkld Data Set Isoval Res Phi Theta IFact

A 2403 0.4 28802 17 10 1.32
B 1903 0.6 10802 18 9 1.26
C 1283 0.9 19202 17 10 1.18
D 3203 1, 3.4, 5.2 20482 17 10 1.56

Table 16. Selected rendering workloads for this study. The data set size is per rank.
It is multiplied by the cube root of the number of nodes to get the total data set
size. The number of images rendered per cycle is determined by Phi × Theta. The
simulation ran for a total of 300 cycles. Visualization occurred every 50 cycles.
IFact is a quantitative representation of the work imbalance, derived by taking
the maximum aggregate sum of the predicted render time over the median of all
estimates.

5.4.3.3 MPI Tasks. We varied the number of MPI tasks to study the

scaling behaviors of adaptive and predictive strategies at higher concurrencies. We
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used a single MPI task per node (OpenMP threaded), and selected the number of

tasks such that the data set size was constant per task. The number of nodes used

were 8, 125, 216, 343, and 512.

5.4.3.4 GEOPM Power Balancer Policy. We used the Power

Balancer policy included in GEOPM for dynamically varying the power limit

of individual nodes to optimize performance. The Power Balancer monitors the

performance of the application and regularly redistributes power between the

nodes. Similar to PaViz, more power is given to the nodes on the critical path,

enabling them to run at a higher power limit, while power is taken away from

nodes not on the critical path. With this mode, power allocations to each node are

non-uniform, inversely proportional to the load imbalance. The Power Balancer

measures the loop execution time on each node and compares execution times

across nodes to identify critical path nodes and how much correction is needed.

The power redistribution occurs in a hierarchical tree. The average power

cap is passed to all compute nodes. Each node reports their performance under

this power cap up the tree. The root node aggregates the performance per-node,

and passes back the worst performance. Each node reduces its power limit until

its performance matches that of the worst node, passing back its extra unneeded

power. This pool of unused power is redistributed across the nodes to improve

overall performance.

5.4.3.5 PaViz Power Scheduling Strategy. We used the Min

power scheduling strategy, which resulted in the best performance of all the

strategies explored in [38]. The Min strategy uses the difference from the fastest

predicted render time to determine the power allocation. Using the per-node
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predicted rendering execution times, the node power cap is computed as follows:

pownode min +
|renmin − reni|∑n−1
i=0 |renmin − reni|

∗ powavail,

where pownode min is the hardware-specified minimum node power needed to execute

the job, renmin is the global minimum predicted render time among all n MPI

tasks, reni is the predicted render execution time for rank i, and powavail is the

available power to allocate to the job. Nodes that are furthest away from the

minimum (i.e., highest render time, most work to be done) are allocated a large

amount of power, resulting in the highest speedups in a balanced and imbalanced

workload configuration, since the rendering task is only as fast as the slowest

processor.

5.5 Results

PaViz Power Decisions

Rank
Cycle

0 1 2 3 4 5

0 70W 70W 69W 63W 60W 58W
1 58W 58W 59W 58W 59W 61W
2 52W 50W 48W 40W 40W 40W
3 76W 77W 75W 70W 66W 65W
4 58W 58W 62W 66W 67W 65W
5 61W 62W 62W 58W 60W 65W
6 40W 40W 40W 58W 61W 60W
7 65W 65W 66W 68W 67W 66W

Table 17. Comparing GEOPM and PaViz specified power limits for each node
across all visualization cycles for Rendering Workload A. The job power limit
assumes a processor-level power cap of 60W.

We organize the results into several phases. The first phase studies a base

case. Subsequent phases varied additional study parameters. In each phase, we vary

the processor power cap and analyze its impacts.
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To evaluate the power scheduling strategies, we normalize the performance

of our adaptive and predictive strategies to the performance at a uniform power

distribution of 120W per processor, which is the maximum power draw for this

processor architecture. The uniform power allocation strategy is currently used

in practice. With the GEOPM and PaViz runtime systems, each node may be

assigned a different power cap, but the sum total of the power caps is less than

or equal to the job power budget.

We focus on the scaled performance at the power caps in the region of

interest. Power caps towards the low-end of the range are limited power scenarios

and power caps towards the high-end are the unconstrained power consumption of

the application.

5.5.1 Base Case. In this phase, we focus on Rendering Workload

A running on 8 nodes. We sweep over all processor power caps, ranging from

120W down to 40W, and compare the performance of the adaptive and predictive

strategies. The left figure in Figure 20 shows the scaled performance for the

adaptive strategy in GEOPM’s Power Balancer and the predictive strategy in

PaViz. The performance of the scheduling strategies is compared to the Baseline

performance at a uniform power cap of 120W per processor. The right figure shows

the imbalanced rendering execution times per visualization cycle across all ranks.

As the simulation iterates across time steps, the rendering time increases and the

work per rank varies.

At higher power caps, the Baseline, adaptive strategy, and predictive

strategy have the same performance because there is unlimited power, and not

much room for improvement by shifting power. Similarly at a severe power cap

of 40W, all three configurations have the same performance because there is a
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(b) Workload Distribution

Figure 20. The left figure shows the scaled performance of the adaptive strategy
in GEOPM’s Power Balancer and the predictive strategy in PaViz to the Baseline
for Rendering Workload A. We normalize the performance to that of the Baseline,
which applies a uniform power cap of 120W, which is 3X higher than the lowest
power cap of 40W. The second y-axis shows the raw rendering times at each power
cap, since the scaled performance value does not provide this context. The right
figure shows the distribution in rendering execution times (i.e., work) per rank at
each visualization cycle. The input data at each cycle impacts the amount of time
spent rendering by each rank, as well as the execution time at each cycle.
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minimum power cap and CPU frequency for safe and reliable operation of the

processor.

At power caps ranging between 80W and 50W, we start to see the

differences in using adaptation versus prediction on the highly irregular

visualization workload. This is the range where the application is consuming all

the available power and benefits from shifting power intelligently.

At a processor power cap of 60W, we compare the power decisions made by

the adaptive and predictive strategy across all visualization cycles in Table 17. For

the first few cycles, GEOPM keeps all ranks at this power cap, since it uses the first

few iterations to identify the most and least effective nodes. In the first cycle, the

predictive strategy identifies rank 6 with having no work to do, and reduces the

power cap to the minimum for reliable operation. At later visualization cycles, the

adaptive strategy has identified the least efficient ranks, and shifts power such that

these nodes receive more power.

The distribution of render times in Figure 19 shows rank 3 being assigned

the most work, so it is expected that both strategies will assign it the highest power

cap. In doing so, the adaptive and predictive strategies reduce overall execution

time and perform better than the baseline.

5.5.2 Vary Workload Configuration. In this set of tests, we

vary across the remaining three rendering workload configurations outlined in

Table 16, using the same number of nodes as in Section 5.5.1. The goal of this

study is to demonstrate how rendering parameters may impact the potential for

performance improvements. If the visualization operation results in a high variance

in the number of active pixels to be rendered by each rank, there is more room to

exploit the imbalance by shifting power. On the other hand, if there is an evenly
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distributed number of active pixels to be rendered by each rank, this may inhibit

the benefits of shifting power to improve performance.

Figure 21, Figure 22, and Figure 23 compare the results of the adaptive

strategy and predictive strategy to the Baseline as well as the distribution of

predicted execution times over all visualization cycles. These figures can be

compared with Figure 20, which did the same analysis for Rendering Workload A.

Compared to the previous Rendering Configuration A, the distribution of execution

times are more evenly balanced.

For these workload configurations, using prediction sees more benefit than

using adaptation in a similar range of power caps as before. The prediction model

identifies which ranks will have no work to do before the visualization occurs.

Reducing the power of those ranks to the minimum enables more power to be

given to the ranks with lots of work to. This allows them to run faster, complete

their work in less time, and reduce overall performance. An adaptive strategy will

also identify which ranks have less work to do, but spends the first set of iterations

performing the necessary analysis.

5.5.3 Vary Concurrency. In this phase, we vary the node

concurrency to compare the impacts of using adaptation and prediction at scale.

The intuition is that at higher concurrency, there is a bigger work imbalance per

node as well as a larger job level power budget that can be reallocated between

nodes. This phase focuses on Rendering Workload C, which is defined in Table 16.

We sweep over processor power caps ranging between 50W and 70W, since previous

phases identified this range as the region of interest. We weak scale the data size

to maintain the same work per node. Figure 24 shows the scaled performance for
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Figure 21. The left figure shows the scaled performance of the adaptive strategy
in GEOPM’s Power Balancer and the predictive strategy in PaViz to the Baseline
for Rendering Workload B. We normalize the performance to that of the Baseline,
which applies a uniform power cap of 120W, which is 3X higher than the lowest
power cap of 40W. The second y-axis shows the raw rendering times at each power
cap, since the scaled performance value does not provide this context. The right
figure shows the distribution in rendering execution times (i.e., work) per rank at
each visualization cycle. The input data at each cycle impacts the amount of time
spent rendering by each rank, as well as the execution time at each cycle.
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Figure 22. The left figure shows the scaled performance of the adaptive strategy
in GEOPM’s Power Balancer and the predictive strategy in PaViz to the Baseline
for Rendering Workload C. We normalize the performance to that of the Baseline,
which applies a uniform power cap of 120W, which is 3X higher than the lowest
power cap of 40W. The second y-axis shows the raw rendering times at each power
cap, since the scaled performance value does not provide this context. The right
figure shows the distribution in rendering execution times (i.e., work) per rank at
each visualization cycle. The input data at each cycle impacts the amount of time
spent rendering by each rank, as well as the execution time at each cycle.

106



●●●

●

●

●

●

●

●

40 60 80 100 120

0.
6

0.
7

0.
8

0.
9

1.
0

Performance of Rendering Workload D

Processor Power Cap (W)

S
ca

le
d 

P
er

fo
rm

an
ce

●
●

●

●

●
●

●

●

●

●●●●
●

●

●

●

● 60
55

50
45

40
35

To
ta

l R
en

de
r 

T
im

e 
(s

ec
)

●

●

●

Baseline
Adaptive
Predictive

(a) Scaled Performance

0 1 2 3 4 5

0
1

2
3

4
5

6
7

Rendering Distribution Across Timesteps

Visualization Cycle

R
en

de
rin

g 
T

im
e 

P
er

 R
an

k 
(s

ec
)

(b) Workload Distribution

Figure 23. The left figure shows the scaled performance of the adaptive strategy
in GEOPM’s Power Balancer and the predictive strategy in PaViz to the Baseline
for Rendering Workload D. We normalize the performance to that of the Baseline,
which applies a uniform power cap of 120W, which is 3X higher than the lowest
power cap of 40W. The second y-axis shows the raw rendering times at each power
cap, since the scaled performance value does not provide this context. The right
figure shows the distribution in rendering execution times (i.e., work) per rank at
each visualization cycle. The input data at each cycle impacts the amount of time
spent rendering by each rank, as well as the execution time at each cycle.
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the adaptive strategy in GEOPM and the predictive strategy in PaViz at different

levels of concurrency.

For this rendering configuration, using a predictive strategy results in 27%

improvement over an adaptive strategy. As the concurrency increases, an increasing

percentage of the nodes have very little, or even no, geometry to render. Figure 25

shows the difference in scaled performance between PaViz and GEOPM. The

smallest differences in speedups occur at the highest processor power cap of 120W,

since power is unlimited (i.e., the application is not consuming this amount of

power). The difference is inversely related to the processor power cap. That is to

say, the difference grows as the power cap is reduced. This is a result of efficiently

reallocating the limited power to the nodes that need it most.

The highest concurrency of 512 nodes shows the largest difference of 28%

at the lowest node power cap of 100W (i.e., 50W per processor). The predictive

strategy identifies the nodes with no work to do, setting the lowest power cap,

enabling some nodes with lots of work to do to run at 200W. The adaptation

strategy is not able to fully exploit the level of imbalance across the nodes.

5.6 Conclusion and Future Work

In this chapter, we compared the effectiveness of two different approaches in

dynamically scheduling power to improve the performance of scientific visualization

workloads in a power-limited environment. Specifically, we considered an adaptive

and predictive approach and focused on parallel ray tracing, which is a highly

variable workload. Like other HPC research on overprovisioning, both strategies

determine per-node power caps in an effort to allocate power to the nodes that

needed it most. The adaptive method is online and adapts power based on current

workload execution behaviors. This method can be well-suited for predictable
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(c) 343 Nodes

●

●

●

●

50 60 70 80 90 100 120

0.
70

0.
80

0.
90

1.
00

Performance of Rendering Workload C
512 Nodes

Processor Power Cap (W)

S
ca

le
d 

P
er

fo
rm

an
ce

●

●

●

●

●●
●

●

19
18

17
16

15
14

13
To

ta
l R

en
de

r 
T

im
e 

(s
ec

)
●

●

●

Baseline
Adaptive
Predictive

(d) 512 Nodes

Figure 24. The scaled performance of the adaptive strategy in GEOPM’s Power
Balancer and the predictive strategy in PaViz to the Baseline for Rendering
Workload C at higher levels of concurrency. We normalize the performance to
that of the Baseline, which applies a uniform power cap of 120W. The second y-axis
shows the raw rendering times at each power cap, since the scaled performance
value does not provide this context.
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Figure 25. Difference in speedup between the adaptive and predictive strategies at
different levels of node concurrency.

workloads whose iterations are regular from one to the next. The predictive method

introduced in Chapter IV uses an existing performance model to assign power

based on a prediction of execution time. While this method is well-suited for

irregular workloads (e.g., visualization), there is a high overhead cost (i.e., human

time) to create the performance models. The resulting study demonstrated that the

predictive approach is beneficial for irregular visualization workloads, with results

as much as 27% faster than an adaptive strategy.

In terms of future work, we would like to understand which scenarios are

beneficial for prediction and which scenarios are beneficial for adaptation. One of

the downsides of using prediction is the effort in creating and validating accurate

performance models. On the other hand, one of the downsides of using adaptation

is needing time at the beginning of the routine to identify the most and least
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efficient nodes. We want to explore if prediction is possible with minimal overhead

costs, and identify cost effective scenarios for using adaptation.
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CHAPTER VI

CONCLUSION AND FUTURE DIRECTIONS

6.1 Synthesis

Scientific visualization is a key component in the scientific discovery

process. It enables the exploration and analysis of scientific data, and the ability

to communicate findings through a comprehensible image. Visualization at exascale

will be challenging due to constraints in power usage. Under this power-limited

environment, visualization algorithms merit special consideration, since they

are more data intensive in nature than typical HPC applications like simulation

codes. At present, there is a very limited set of work addressing the challenges of

visualization and analysis with respect to power constraints on future architectures.

The central question of this thesis is: How can we optimize the performance of

scientific visualization workloads in a power-limited environment?

The research presented in this dissertation explored this field uniquely

positioned at the intersection of power-constrained HPC and scientific visualization.

This dissertation first provided an in-depth exploration of the variation in

visualization routines. We found that most visualization algorithms are data

intensive and have favorable power and performance tradeoffs when the clock

frequency is slowed whether directly or indirectly through lower power limits

enforced on Intel architectures. Then, we exploited the variation present in

visualization algorithms and showed performance improvements. We used existing

performance models for parallel rendering to develop a power-aware resource

manager called PaViz. PaViz dynamically allocates power based on a prediction of

execution times. We compare this predictive approach with an adaptive approach

in a runtime system known as GEOPM, which automatically adapts power to the
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current execution behaviors. This piece of the dissertation found that prediction

performs better than adaptation on irregular visualization workloads.

Looking forward, the HPC community is moving towards heterogeneous

computing for improved power efficiency and performance. This new

supercomputing architecture will significantly challenge the way we have

traditionally designed our software. The research in this dissertation specifically

targeted Intel x86 architectures, since Intel was one of the early architectures

to expose power capping on their processors. Additional vendors have since

exposed similar power capping mechanisms on their platforms. The granularity

of control as well as the range of available power limits may vary across vendor

architectures. For example, Intel’s power capping technology controls the processor

and DRAM domain through a register interface. The underlying clock frequencies

are modulated to adjust to the specified power limit. IBM’s power capping

technology applies the limit at the server-level specified through a platform

management interface. The server power limit will affect the power limit allowed to

each component contained within the server. NVIDIA’s power capping technology

affects the accelerator itself by modulating clock frequencies similar to Intel.

Each architecture may expose a different range of acceptable power limits.

The range will depend on the minimum and maximum power limits that allow

for reliable operation. If the power limit is too low, then the components will not

operate, and if the power limit is too high, then the components will overheat due

to excessive power. Depending on the range of power limits (and the range of clock

frequencies), this may enable favorable opportunities for power and energy savings.

However, for heterogeneous platforms containing CPU and GPU architectures, it

may not be a flexible solution to set power limits per device. Instead, it may be
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better to expose a ratio that informs how node power should be shared between the

two central components.

VTK-m has enabled the development of visualization algorithms portable

across many different types of platforms. This dissertation provided a thorough

exploration of the opportunities for power and energy savings for a representative

set of VTK-m algorithms as a more severe power limit is applied to an Intel

processor. Heterogeneous GPU and CPU architectures are becoming prominent in

supercomputer architectures. Visualization workloads targeting GPU architectures

may expose different tradeoffs, since users may decide to run the workload on

the GPU instead of the CPU. GPUs have a higher power usage, since they are

designed for highly computational algorithms. The ability to slow down the GPU

may not result in favorable energy and power savings as we have seen with CPU

architectures.

The existing performance models for parallel rendering use rendering specific

input variables, which will not be impacted as we move from one architecture to

another. What will change as we move to a different architecture are the model

coefficients, since these are determined by gathering runtime performance data

across a range of configurations representing in situ rendering use cases. At present,

the coefficients are obtained offline, but a more advanced infrastructure may

determine and adjust the coefficients online.

Developing performance models for each visualization operation is

untenable. One solution is to develop performance models for classes of algorithms.

Alternatively, another solution is to develop feedback infrastructure where

algorithms expose application-level information to an adaptive framework (like
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GEOPM), enabling the framework to make more informed decisions on where the

power should be allocated to do the most good.

6.2 Future Directions

There are four areas of future research that can build on the work presented

in this dissertation. We detail them in the following subsections.

6.2.1 Exploring Tradeoffs on Different Hardware Architectures.

The majority of this research targeted Intel processors, which have provided fine-

grained power capping technologies since the Sandy Bridge processor family. Future

exascale architectures are moving to heterogeneous computing, meaning we will

need to understand how the power and performance tradeoffs change when moving

to different hardware platforms, such as accelerators and other CPUs. Every vendor

has a different implementation of power capping, ranging from the granularity at

which the power cap is applied (e.g., socket, motherboard, node) to how reactive

the system is to the power cap. This is traditionally an operation limited to a set

of privileged users. Exploring how the power and performance tradeoffs change

when moving to a different architecture will impact how we develop future power

scheduling strategies. Should future research explore the tradeoffs at large scale, a

driver must be developed for each architecture to enable setting of power caps from

user space.

6.2.2 Evaluating When to Use Prediction or Adaptation.

Chapter IV and Chapter V showed that additional performance for a distributed

visualization application can be realized by leveraging a performance model or

using adaptation to determine how to schedule power across nodes within a job.

This area of research is two-fold. First, determining a theoretical upper bound

for improved performance is critical in determining the effectiveness of such a
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runtime system. Once the theoretical bound has been identified, we can evaluate

the efficacy of the adaptive or predictive approaches on performance.

Determining when to use prediction and when to use adaptation is a key

area of future research. Prediction has high overhead costs (i.e., human time)

to create the models, and may not be feasible if a performance model cannot be

generated for the workload. But, prediction is also well-suited for irregular and

unpredictable workloads, like visualization. On the other hand, adaptation is an

online approach, minimizing the overhead costs of needing to do setup. For regular

workloads, the online approach can spend the first few iterations learning the

unique execution behaviors, and then apply the optimum strategy to the remaining

iterations to improve performance. For irregular workloads, using adaptation may

be a suboptimal strategy as the decisions may never converge on a solution.

6.2.3 Creating Additional Performance Models. This research

used an existing performance model specifically for rendering, and showed it

resulted in better performance improvements than the adaptive strategy. However,

establishing models for other visualization algorithms is a challenging task, and

may not be possible for all available visualization workloads. There are hundreds

of different visualization algorithms; some will be straight-forward to create

an accurate performance model, while others will be more difficult to estimate

performance based on their input parameters. Depending on the number of

visualization operations chained together in the pipeline, it may be less overhead

for similar performance gains to use adaptation rather than create a performance

model for each operation.

6.2.4 Integration into Production Resource Manager. If

we want to make a significant impact on the mission-critical applications doing
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visualization, then the power-aware runtime system should be integrated into a

production manager, like SLURM. In this model, SLURM would be extended

to assign power budgets to each job [9], then it would be the duty of the job to

manage the budget between the nodes it has been allocated. The power-aware

resource manager could use the entirety of the power budget it has been given to

complete its job. Alternatively, since findings in Chapter III identified that a large

set of visualization algorithms consume very little power, the resource manager may

choose to use a subset of the original budget, letting SLURM re-allocate the extra

power to another job.

One of the challenges to improving performance with power reallocation

is having a visualization pipeline that has a long enough execution time to see

the impacts of a change in the power limit. Another challenge when considering

power shifting is ensuring that the larger system does not exceed its system-wide

power budget. Exceeding the system-wide power budget can cause damage to the

underlying hardware and limit its lifespan.
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