
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2014 

Effects of Salinity and Dissolved Organic Matter on Cu Toxicity to Effects of Salinity and Dissolved Organic Matter on Cu Toxicity to 

Americamysis bahia in Estuarine Environments Americamysis bahia in Estuarine Environments 

Rabia Nasir 
Wilfrid Laurier University, nasi2450@mylaurier.ca 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Biology Commons, Environmental Indicators and Impact Assessment Commons, 

Environmental Monitoring Commons, Geochemistry Commons, Marine Biology Commons, Other 

Pharmacology, Toxicology and Environmental Health Commons, and the Toxicology Commons 

Recommended Citation Recommended Citation 
Nasir, Rabia, "Effects of Salinity and Dissolved Organic Matter on Cu Toxicity to Americamysis bahia in 
Estuarine Environments" (2014). Theses and Dissertations (Comprehensive). 1631. 
https://scholars.wlu.ca/etd/1631 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholars.wlu.ca%2Fetd%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1015?utm_source=scholars.wlu.ca%2Fetd%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=scholars.wlu.ca%2Fetd%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/157?utm_source=scholars.wlu.ca%2Fetd%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholars.wlu.ca%2Fetd%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/68?utm_source=scholars.wlu.ca%2Fetd%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/68?utm_source=scholars.wlu.ca%2Fetd%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/67?utm_source=scholars.wlu.ca%2Fetd%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/1631?utm_source=scholars.wlu.ca%2Fetd%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


 

 
 

 

Effects of Salinity and Dissolved Organic Matter on Cu Toxicity to Americamysis 

bahia in Estuarine Environments 

By 

 

Rabia Nasir 

Bachelor of Science Honours, Ryerson University, 2011 

THESIS  

Submitted to the Department of Biology  

Faculty of Science 

In partial fulfilment of the requirements for  

Master of Science in Integrative Biology 

Wilfrid Laurier University  

     

    © Rabia Nasir 2014 

 

 



 

i 
 

Abstract    

As salinity increases the geochemical speciation of Cu is altered as a result of 

organic/inorganic complexation/competition. Such salinity changes may further challenge 

the osmoregulatory capabilities of euryhaline organisms. This chemical-biological 

interaction complicates the understanding of the impacts of Cu in estuarine waters. 

Dissolved organic matter (DOM) has been widely established to be an important modifier 

of Cu toxicity in freshwaters however its effectiveness in modulating Cu toxicity across 

the range of salinities that occur in estuarine conditions has not been studied in a 

systematic manner. Site to site differences in DOM quality with respect to the potential 

for toxicity mitigation are also not well understood. The purpose of this study was to 

examine the mitigating effects of salinity and DOM on acute/chronic Cu toxicity to 

mysids (Americamysis bahia) using EPA-standardized 96h and 7d toxicity tests. An array 

of Cu concentrations (0 – 800 µg/L) were tested in duplicate (acute) and quadruplicate 

(7d) exposure over a wide range of salinities (5 – 40 ppt) with DOM from 4 different 

sources (at 0-4 mg C/L). A protective effect of salinity on acute Cu toxicity was observed 

however the organism was found to be more sensitive to Cu at salinity extremes. A 

protective effect of salinity was observed only for biomass and minimal effect was 

observed for other chronic end-points. The presence of DOC resulted in a protective 

effect to A. bahia against Cu toxicity at both 15 and 25 ppt. This protection was variable 

among sources, with some sources imparting greater protective effects than others and 

this difference could not be explained by optical characteristics of DOM. There was little 

variation among sources and resultant toxicity suggesting that DOM quality may not be 

as important in predicting Cu toxicity in estuarine environments. Overall, the results of 
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this study suggest that toxicity prediction in estuarine environments may not only be 

dependent on Cu geochemistry but the physiological capabilities of the organisms. Future 

estuarine toxicity prediction models for estuarine systems therefore need to account for 

the variability in physiology of estuarine organisms to develop models that accurately 

predict Cu toxicity. This project helps towards improving the understanding of Cu 

toxicity in estuarine systems and contributes data towards development of toxicity 

prediction models which may contribute to guidelines/criteria development for protection 

of aquatic biota. 
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1.0 Introduction 

1.1 Copper 

 

Copper (Cu) is an essential trace element found in a variety of tissues.  It acts as a 

cofactor for enzymes, such as cytochrome c oxidase and tyrosinase and assists in 

biological processes involved in growth, development, maintenance and survival (Uauy 

et al., 1998; Gaetke et al., 2003). It is also a component of hemocyanin thereby helping in 

oxygen transport and it has a role in the formation of myelin for the central nervous 

system (Gaetke et al., 2003; Flemming et al., 1989). Being an essential metal, Cu is 

actively taken up and excreted by all organisms, however, increased ambient levels in 

aquatic systems can result in increased Cu accumulation in the organisms resulting in 

toxicity (Bambang et al., 1995; Pinho et al., 2010; Martins et al., 2011).  

Copper is present in all aquatic systems as a result of both natural and 

anthropogenic activities (Canadian Council of Ministers of the Environment, 1999; 

United States Environmental Protection agency, 2007). As a component of earth’s crust 

Cu is generally present in all waters and natural processes such as weathering contribute 

to further input into surface water (Georgopoulous et al., 2001). Natural background 

concentrations of Cu range from 0.2 to 30 µg/L in fresh water systems and 0.06 to 17 

µg/L in coastal regions (USEPA, 2007). Elevated Cu concentration in aquatic systems 

can also be attributed to anthropogenic activities. Sources of contamination include fossil 

fuel burning, anti-fouling paints, mining processes, manure, fertilizers, the leather 

industry (tanneries), electrical equipment and municipal waste, but are not limited to such 

(Georgopoulous et al., 2001). Increased Cu concentrations, of up to 200,000 µg/L have 



 

2 
 

been reported in surface waters surrounding mining areas (USEPA, 2007). Despite the 

essentiality of Cu, elevated levels due to both natural and anthropogenic activities in 

surface waters have been known to result in toxicity of aquatic biota (Lauer et al., 2010; 

Bianchini et al., 2004). 

1.2 Water Quality Guidelines and Criteria 

 

 Water quality criteria and guidelines for environmental contaminants are used to 

ensure protection of fresh water and marine organisms. The Canadian Council of 

Ministers of Environment (CCME) as well as Unites States Environmental Protection 

Agency (USEPA) have developed guidelines and criteria (respectively) that can be used 

for many purposes, including as benchmarks in assessing risk. CCME guidelines are 

intended to provide protection from anthropogenic stressors and toxicity of the 

contaminant is determined to a variety of species to produce a numerical value that will 

allow for protection of all forms of aquatic life. The numerical values provide a 

consistent nationally accepted guideline for aquatic life in Canada (CCME, 2003). For 

fresh water the Canadian water quality guideline values for many metals are adjusted 

based on water hardness and therefore are site specific. The CCME water quality 

guidelines for Cu input into surface waters are based on water hardness and can be 

calculated using the following equation:  

Copper concentration = e
0.8545[ln(hardness)]-1.465 * 0.2 µg/L                         Equation 1 

 

and this provides a value of 2 µg/L at a hardness of 0-120 mg/L CaCO3 (CCME,1999).  

No values are currently in place for estuarine or marine waters.  
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USEPA publishes ambient water quality criteria both fresh and marine conditions.  

They include both acute and chronic criteria. The acute criteria is given as the criterion 

maximum concentrations (CMC), a concentration to which the organism was briefly 

exposed not resulting in a toxic lethal effect. The chronic criteria are given as criterion 

continuous concentrations (CCC), a concentration to which organisms can be exposed 

long term without a toxic effect. The fresh water CMC is based on application of the 

biotic ligand model (BLM) (USEPA, 2007). The BLM is a tool developed to predict 

acute metal toxicity based on the effects of water chemistry parameters (Santore et al., 

2001) and it discussed in detail in section 1.4. A marine BLM has been proposed but at 

this time single criterion concentration values are still used. The marine CCC for 

dissolved Cu is 3.1 µg/L while the CMC is 4.8 µg/L (USEPA, 2007).  

Current water quality guidelines/criteria for estuarine conditions are generated 

using both fresh water and marine values as the CCME freshwater guidelines are for 

water of 1ppt salinity or less while USEPA criteria is set for marine systems. The use of 

both fresh and marine models to formulate guidelines/criteria for estuarine conditions 

introduces uncertainty in setting values. Increasing salinity and other changes in water 

chemistry as fresh water flows into salt water will alter the toxicity of metals and 

therefore neither fresh water models calibrated for very low salinity nor ones for full 

strength sea water may accurately predict toxicity thresholds in estuarine conditions. The 

lack of an estuarine specific toxicity prediction models that account for a wide range of 

salinities represents a gap in the understanding of the impacts of metals. 
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1.3 Cu toxicity 

1.3.1 Cu toxicity in marine environments    

 

Copper toxicity in marine environments has been found to vary considerably. 

Seawater usually ranges from 30ppt to 37ppt and the increased Cl
-
 content of seawater 

has been found to provide a protective effect for toxicity through complexation with Cu 

ions. A study looking at effects of salinity on marine invertebrate species showed an LC50 

of 6.3, 11.2, 18.9 and 14.8 µg Cu/L for Mytilus galloprovincialis (mussel), Crassostrea 

virginica (Atlantic oyster), Dendraster excentricus (sand dollar), and Strongylocentrotus 

purpuratus (sea urchin)  respectively at salinities ranging from 29-32ppt (Arnold et al., 

2010). An LC50 of 181 µg/L for Cu was observed for Americamysis bahia (mysid) at a 

salinity of 30ppt (Lussier et al., 1985). In another test at pH of 8.0 the LC50 was 

calculated to be 250 µg/L for A. bahia at 30ppt (Ho et al., 1998). In the same study by Ho 

et al. (1998) Ampelisca abdit, a marine amphipod was found to be more sensitive to Cu 

with an LC50 of 90 µg/L. In toy shrimp, Heptacarpus futilirostrisa an LC50 was 

determined to be 131 µg/L in seawater in comparison to an LC50 of 84.4 µg/L found in 

red sea bream (Mochida et al., 2006). At the extreme end, Penaeus japonicas, a prawn, 

exhibits a very high tolerance for Cu as at full strength sea water a 96h LC50 is observed 

at 2050 µg/L of Cu (Bambang et al., 1995). 

1.3.2 Cu toxicity in estuarine environments 

 

Estuarine environments range in salinity from 1ppt up to full strength sea water 

and this changing salinity can have a dramatic effect on Cu toxicity. Several studies have 

demonstrated the protective effects of salinity in estuarine systems over a wide range of 

salinities. Protective effects of salinity on acute Cu toxicity have been observed in the 
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estuarine copepod Acartia tonsa as a 1.8 fold increase in 48h EC50 values as salinities 

increased from 5 and 15ppt (Pinho et al., 2010). For sheepshead minnow (Cyprinodon 

variegates) a 4 fold increase in percent survival was observed as the salinity was 

increased from 2.5ppt to 18.5ppt and this was associated with a decrease in whole body 

Cu from 200 µg/g at 2.5ppt to 75 µg/g (Adeyemi et al., 2012). Pinho et al. (2010) showed 

a threefold increase in toxicity of Cu to Acartia tonsa as the 48h LC50 decreased from 110 

ug/L at 30ppt to 30 µg/L at 5ppt. Brachionus plicatilis, a euryhaline rotifer, showed a 

salinity dependent increase in its 24h Cu LC50 (from 38.2 µg/L to 78.4 µg/L) moving 

across a salinity gradient from 6-29ppt (Arnold et al., 2010). Similarly acute dissolved Cu 

toxicity (96h LC50) to Callinectes sapidus (blue crab) was higher at a salinity of 2ppt (5.3 

µM Cu) than at 30ppt (53 µM) of Cu (Martins et al., 2011). EC50 values for egg 

production in A. tonsa after Cu exposure were 9.9, 36.8, and 48.8 mg/L (dissolved Cu) at 

salinities of 5, 15, and 30ppt, respectively (Lauer et al., 2010). A protective effect on Cu 

toxicity was also observed for mysid (Neomysis integer) as a decrease in Cu toxicity was 

observed at 25ppt as the LC50 doubled from 41 µg/L at 5ppt to 83 µg/L at 25ppt 

(Verslycke et al., 2003). 

This protective effect of salinity on Cu toxicity, however, is not consistent across 

the salinity gradient that occurs in estuarine environments. While increased salinity 

reduces toxicity (see above) this only occurs up to a certain threshold after which 

protective effects can be reduced. Killifish for example were found to be very tolerant of 

Cu at intermediate salinities, with the highest EC50 value exhibited at 10ppt (EC50 of 

1000 µg/L, Blanchard et al., 2006) and were most sensitive in both FW (EC50 of 18 µg/L) 

and full strength SW (EC50 of 294) (Grosell et al., 2007). Although Pinho et al. (2010) 
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found a significant change in the 48h EC50 of Cu to A. tonsa in salinities from 5- 15ppt 

(see above), EC50 was reduced when it was further increased to 30ppt. Acute Cu toxicity 

to E. affinis was reduced at 5ppt (104 µg/L) in comparison to 15ppt (67.6 µg/L) and 

25ppt (58.1 µg/L; Hall et al., 2008). At a low range of salinity there appears to be a direct 

relation between EC50 and salinity however this protective effect of salinity plateaus as 

the organism reaches its iso-osmotic point (a point at which the external salinity of 

medium/water matches the internal salinity of the organism) and at salinities past the 

osmoregulatory threshold an increased in Cu sensitivity is observed (Blanchard et al. 

2006; Grosell et al., 2007; Adeyemi et al., 2012). Cu toxicity in estuarine waters therefore 

may be dependent on the reduced uptake of metal associated with Na
+
 and Cl

-
 effects and 

on the physiological capabilities of the organisms at different salinities. 

1.3.3 Physiological Stresses vs Cu Stress 

 

In estuarine waters, osmo-regulatory capabilities of euryhaline organisms may 

determine the extent of Cu toxicity. The mechanism of toxicity for Cu has now been 

widely established to be disruption of ion (Na
+
) regulation, which leads to disruption of 

osmoregulation resulting in mortality (Grosell et al., 2007). At iso-osmotic, a salinity 

disruption of osmoregulatory capabilities may have minimal effects because internal and 

external Na
+
 concentrations are similar and this was demonstrated as at an approximate 

iso-osmotic point of 10ppt, a decrease in Cu toxicity in killifish was observed (see above) 

(Grosell et al., 2007). In full strength sea water (37ppt), Penaeus japonicas, completely 

lost their ability to maintain internal Na
+
 concentrations at Cu concentrations of 1000 and 

1500 µg Cu/L while a 73% reduction in internal Na
+
 was observed at low concentrations 

(500 µg Cu/L) (Bambang et al., 1995). When salinity was lower (17ppt) the same Cu 
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exposure concentration had a much smaller disruptive effect on Na
+
 balance (Bambang et 

al., 1995). Reduced Cu toxicity was observed for sheepshead minnow at 10.5ppt, their 

iso-osmotic point and no net increase or decrease in whole body Na
+
 levels was found 

(Adeyemi et al., 2012). Osmo-regulation stress was similarly measured for A. bahia 

without addition of Cu and increased survival was observed at salinities 23-25ppt as their 

iso-osmotic point is understood to be 25ppt as seen in Figure 1 (De Lisle et al., 1986, 

1987). 

Whereas a disturbance in ionoregulation is generally believed to occur as a result 

of Cu exposure in marine and euryhaline organisms, as confirmed by experiments 

conducted with rainbow trout (Wilson et al., 1993), gulf toadfish (Grosell et al., 2004) as 

well as seawater-adapted flounder (Stagg et al., 1982), it is not always found to be the 

main cause of mortality. An expected increase in plasma Na
+
 levels in killifish was not 

observed, but instead a disturbance in ammonia excretion was found to be the primary 

cause of toxicity for Cu at low (120 µg/L Cu) concentrations in salt water (Blanchard et 

al., 2006). A general increase in the expression of Na
+
/K

+
-ATPase was observed in 

rainbow trout which counteracted the inhibition of the enzyme (Stagg et al., 1982). A 

lack of ionic disruption due to Cu toxicity has been shown to be a result of an increased 

expression of Na
+
/K

+
-ATPase as well as production of different isoforms for the enzyme 

that might not be inhibited through the same mechanism (Richards et al., 2003, Grosell et 

al., 2004). For cod, Gadus morhua, disturbances in acid-base balance as well as problems 

with ammonia excretion resulted in mortality (Larsen et al., 1997). Ammonia has been 

found to the main component of nitrogenous waste excretion for mysids and an increase 



 

8 
 

in ammonia elimination in mysids was observed as the Cu concentration and exposure 

time were increased (Garnacho et al., 2001).  

1.3.4  Cu toxicity in relation to Dissolved Organic Matter (DOM) 

 

In marine waters complexation of Cu with dissolved organic matter can further 

reduce Cu toxicity (Arnold, 2005). Arnold (2005) found that at 30ppt, DOM (measured 

as dissolved organic carbon ;DOC); provided a strong protective effect as an 8 fold 

increase was observed in EC50s for Mytilus galloprovincialis (6 µg C/L at 0.6 mg C/L to 

50.5 µg/L at 9 mg C/L). A decrease in toxicity for M. galloprovincialis was also observed 

by De Palma et al. (2011) when the DOC concentrations were increased from 0.8 mg C/L 

to 8.7 mg C/L. A 4.8 fold increase in measured EC50s for Mytilus sp. was observed when 

DOC was increased from 2.9 mg/L to 8.6 mg/L (Arnold et al., 2006). Nadella et al. 

(2009) found a 4 fold increase in EC50 for Cu in seawater when 20 mg/L of DOC was 

added, changing the EC50 from 9.6 µg/L to 39 µg/L for M. galloprovincialis. While 

protective effects of DOM have been studied in marine conditions, a limited number of 

studies are available that test the potential changes in the protective effect of DOC over a 

range of salinities. In Eurytemora affinis Cu became less toxic as DOC concentrations 

increased from 2 mgC/l (EC50 of 76.2 µg/L) to 8 mgC/L (EC50 of 166 µg/L) at 10 ppt 

(Hall et al., 2008).  For Brachionus plicatilis at 7ppt, an 8 fold increase was observed in 

LC50 at 4 mg C/L (393 µg Cu/L) in comparison to an LC50 of 43 µg Cu/L in 0.6 mg C/L 

at 6ppt (Arnold et al., 2010). Further research is required to build an understanding of the 

interactive effects of salinity and DOC in estuarine waters. 

Dissolved organic matter concentrations can vary across the salinity gradient. An 

overall decrease in DOC concentrations is observed as salinity is increased. McCallister 
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et al. (2006) found that an increase in salinity from 0 to 20ppt decreased DOC 

concentration from 424 µM to 263 µM. Using carbon and nitrogen as characterizing 

parameters of DOM a net decrease was observed in C:N ratio as the salinity was 

increased going from the mouth of the estuary to the river (McCallister et al., 2006). 

Gerringa et al. (1998) found a net decrease in both dissolved Cu (13.8 nM to 7.6 nM) as 

well as DOC concentrations (378 µM to 155 µM) as salinity increased from 11ppt to 

30ppt. In a study conducted on Cape Fear (North Carolina), estuarine transects can 

increase in salinity from 3.3ppt to a downstream salinity of 33ppt exhibited a 6 fold 

decrease in DOC concentration, 1286 µM to 214 µM (Shank et al., 2004). Samples 

collected at San Jose station in San Francisco Bay estuary at a 5ppt exhibited a DOC 

content of 5.5 mg C/L in comparison to Red Rock station for the same estuary where a 

DOC concentration of 1.5 mg C/L was measured at 25ppt (Ndung’u et al., 2003).  

1.4 The Biotic Ligand Model 

 

The Biotic Ligand Model (BLM) is a model that predicts the toxicity of a metal 

based on its bioavailability and uptake as determined via estimations of geochemical 

speciation (Di Toro et al., 2001). The BLM incorporates the biology (the biotic ligand) 

with the water chemistry (both inorganic and organic (i.e. DOM)) to determine the 

toxicity of metals in a variety of organisms (see Figure 2; Arnold et al., 2005; Paquin et 

al., 2000). It takes into account the competition for uptake among metal ions and cations, 

the complexation with anions as well as DOM to predict site-specific metal accumulation 

at the biotic ligand (Di Toro et al., 2001; Santore et al., 2001; Niyogi et al., 2004 Arnold 
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et al., 2010). The BLM has successfully been implemented for Cu and other metals in 

fresh water but marine and estuarine BLM models have yet to be established. 

1.4.1  Cu speciation 

 

The environmental and chemical factors influencing Cu speciation define its 

bioavailability and therefore its toxicity, at the site of toxic action (biotic ligand) in the 

organism (Georgopoulus et al., 2001; Arnold et al., 2005). Copper in water is not always 

available in its most toxic form, the free cupric ion (Cu
2+

, Blanchard et al., 2006; Paquin 

et al., 2002; USEPA, 2007; Hall et al., 2008), because it interacts with inorganic anions 

as well as DOM (Arnold et al., 2010; USGS, 1997; CCME, 1997).  Species such as OH
-
, 

Cl
-
 , CO3

2- 
as well as S

2-
 represent species that form complexes with Cu (Figure 3) and 

work as ligands rendering Cu less bio-available resulting in lowered toxicity (Flemming 

et al., 1989; Arnold et al., 2005; Arnold et al., 2010). Ions such as Mg
2+

, Ca
2+

 and K
+ 

also 

interact with Cu but here acting as competitors to replace Cu as the ion being absorbed at 

the site of uptake and/or the site of toxic action, resulting in a lowered toxicity (Figure 2) 

(Allen et al., 1996; Arnold et al., 2005; Blanchard et al., 2006; Arnold et al., 2010: Pinho 

et al., 2010; Martins et al., 2011). Furthermore, Cu can also bind to DOM resulting in a 

limited concentration of available free copper ion (Cu
2+

) in water and hence increased Cu 

concentrations are required to result in toxicity (Kramer et al., 2004; De Schamphelaere 

et al., 2004; Hall et al., 2008; Arnold et al., 2010; Erickson et al., 1996).   

1.4.2 Dissolved Organic Matter 

 

DOM can be produced through decomposition of plant and animal matter in the 

terrestrial system and is then transported and deposited into the surface waters or within 
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the water column. It consists of dissolved form of carbons, nitrates as well as acids 

(humic and fulvic) (Hansell et al., 2009). There are two types of organic matter (Figure 

4), allochthonous (i.e., terrigenous) and autochthonous (i.e., plankton, photosynthetic 

organisms in water) (McCallister et al., 2006). The allochthonous component of DOM 

consists (50-90%) of humic and fulvic acids (Al-Reasi et al., 2011) and is the DOM 

produced in terrestrial environments, which is then transported to surface waters 

(Lozovick et al., 2005; Wood et al., 2011). Autochthonous DOM is composed of 

nitrogenous compounds as well as carbohydrates and is comprised of detritus from 

degradation of organism i.e. phytoplankton, bacteria, algae (Lozovick et al., 2005; Wood 

et al., 2011). 

DOM in aquatic systems presents itself as the ligand to which free metal ions 

readily bind resulting in their decreased bioavailability and therefore reduced toxicity 

(Kramer et al., 2004; Arnold et al., 2005; Al-Reasi et al., 2011). DOM entering estuaries 

can be modified in several ways such as photolytic reactions, homogenization between 

different sources of DOM, production of autochthonous material as well as further 

degradation through UV (McCallister et al., 2006) and this may alter the quality of DOM 

and its capacity to protect against metal toxicity. Given the large variability in DOM 

sources and composition, it might be reasonable to assume that different sources of DOM 

might provide different degrees of protections. This variability in DOM composition can 

be analyzed using various optical techniques which will allow for better understanding of 

metal binding to DOM and therefore its availability and toxicity. 
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Optical Characterization of DOM can be accomplished to understand the 

components that have previously been shown to provide a protective effect (Hicks, 2009; 

De Shamphelaere et al., 2004). Absorbance at varying UV lengths can be used to 

characterize components of DOM and distinguish among DOMs from different sources 

(Murphy et al., 2008). Optical techniques including specific absorbance at 340 nm 

(aromaticity index) as well as a fluorescence excitation at 370 nm wavelengths have been 

successful in distinguishing DOM sources and composition (Al-Reasi et al., 2011). 

Relationships between fluroesence index (FI) and toxicity have also been demonstrated 

(McKnight et al., 2001; Brooks et al., 2007; Hicks, 2009) but this relationship is not 

considered to be a universal measure of DOM composition. Fluorescence excitation 

emission matrix spectroscopy (EEM) can also help distinguish DOM of a variety of 

composition and from a range of sources (Murphy et al., 2008). DOM fractions have the 

ability to fluoresce under UV and blue light and these EEMs can then be interpreted 

using multivariate analysis techniques such as parallel factor analysis (PARAFAC) to 

distinguish the components of a DOM source in contour plots (Stedmon et al., 2003, 

2005).  

1.5 Americamysis bahia  

 

Invertebrates are commonly used as indicator organisms in toxicology. A. Bahia 

is a euryhaline organism from the order of mysida and has been established as an 

indicator organism by the USEPA for standardized acute and chronic toxicity testing (De 

Lisle et al., 1986; USEPA, 1990). When investigating contaminant impacts in estuarine 

conditions, organisms that tolerate a wide array of salinities and have the ability to iono-
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regulate successfully are required. The optimal salinity for A. bahia is at 25ppt. The study 

of De Lisle et al. (1987) found that mysids have well defined osmoregulatory abilities 

and can rapidly adjust their haemolymph to hyper or hypo-osmotic condition within 95 

minutes.  

Mysids are crustaceans most commonly found in estuaries and marine waters all 

over the world (Verslycke, 2003). The size of Americamysis bahia is approximately 5 to 

10 mm and they have a transparent body with a slight yellow tint (Lussier et al., 1988). 

Mysids do not have gills and obtain oxygen through the cuticle (Garnacho et al., 2001). 

They are omnivorous and in culture will feed on brine shrimp Artemia sp. Ongoing 

cultures require a sufficient dark period are required in culturing as reproduction occurs 

during this time (Lussier et al., 1988). The reason for selecting A. bahia in these studies is 

because they are easy to culture, have a short life span, abundant in estuaries around the 

world and they are intermediate in their sensitivity to metals (Figure 5) and they tolerate a 

wide range of salinities. These characteristics in addition to salinity tolerance makes them 

an ideal species to conduct both acute and chronic species for biological monitoring 

studies (Lussier et al., 1988; De Lisle et al., 1987).  

1.6 Objectives  

 

The overall aim of this project was to develop an understanding of how DOM and 

salinity influence the toxicity of Cu to Americamysis bahia. This project focused on 96h 

and 7-day toxicity tests to determine Cu toxicity. The results of this study will contribute 

to the development of an estuarine BLM for estimating Cu toxicity. The objectives were 

met through four studies, each with a specific goal: 
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1.  Determine the effect of salinity on Cu toxicity (acute and chronic). This was achieved by 

conducting acute toxicity tests across a salinity gradient, ranging from 5ppt to 40ppt 

(Chapter 2) and 7-day short term chronic toxicity tests (Chapter 3). 

2. Identify the physiological effects of salinity change in mysids in relation to Cu toxicity. 

This was carried out by culturing organisms at different salinities (e.g. 15 and 25ppt) and 

then conducting acute toxicity tests as in objective 1 for each of the cultures (Chapter 2).  

3. Understand the influence of DOM on the toxicity of Cu (acute and chronic). Possible 

protective effects were investigated across different salinities.  

4. Assess and characterize various sources of DOM to determine if there are site specific 

differences in DOM quality in relation to Cu toxicity. This characterization was carried 

out through optical and chemical analyses.  

Hypotheses linked to each of the short term goals were as follows:  

1. Salinity will have a protective effect on acute as well as chronic Cu toxicity however this 

protective effect will be lost at very low and high salinities (5 or 40ppt).    

2. Acclimation to test salinities will lower Cu toxicity and prevent stress during salinity 

changes (Figure 1).  

3. DOM will exhibit a protective effect on Cu toxicity and higher protective effect will be 

observed at lower salinities. 

4. There will exist both optical as well as chemical differences in DOM from different 

collection sites and these will be reflected in differences in toxicity mitigation capacity.  
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1.7 Figures  

 

 

Figure 1: Fitted response of estimated percent survival at different salinities for 

Americamysis bahia (Figure 2; De Lisle et al., 1986). The survival increases as the 

salinity increases to peak around 22-25ppt as 25ppt is the iso-osmotic point for A. bahia 

and then decreases as the salinity threshold is crossed. 
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Figure 2: Schematic representation of the BLM framework for Cu speciation (Di Toro et 

al., 2001). Competing cations, organic and inorganic complexations reduce Cu
2+

 uptake 

and availability (respectively) therefore altering its interaction at the biotic ligand.
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Figure 3: Schematic diagram showing Cu cycling in San Diego Bay as developed by 

Tetra Tech, 1999.  The diagram shows different bioavailable forms of Cu that can be 

taken up biota as well as bio-accumulation through the food chain. The diagram 

illustrates abiotic cycling as well as the physiological mechanism through which Cu is 

cycled through organisms  



 

18 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: There are two different forms of DOM found in surface waters. Allochthonous 

DOM is humic in nature and of terrigenous origin whereas autochthonous DOM is 

produced within the water body itself (Wood et al., 2011; Lozovick et al., 2005). DOM 

concentrations are found to decrease in marine waters, but are usually highly variable in 

estuarine waters due to potential direct input from anthropogenic sources. 
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Figure 5: Species sensitivity distribution by USEPA with saltwater copper criteria genus 

mean acute values. The plot shows species most sensitive (Mytilus), intermediate 

(Mysidospis) and tolerant (Fundulus) to Copper (Arnold, 2005). 
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Chapter 2 

Acute Toxicity of Cu to Americamysis bahia: Mitigating Effects 

of Salinity and Dissolved Organic Matter 
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2.1 Introduction 
 

 Cu is an essential element, actively taken up and regulated in all organisms 

(Uauy et al., 1998; Gaetke et al., 2003), however increased ambient levels in surface 

waters can result in toxicity to aquatic biota (Bambang et al., 1995; Pinho et al., 2010; 

Martins et al., 2011; Lauer et al., 2010; Bianchini et al., 2004). Cu is present in all aquatic 

systems as a result of both natural and anthropogenic activities (Canadian Council of 

Ministers of the Environment, 1999; United States Environmental Protection Agency, 

2007). Estuarine environments are of specific interest as they are the hub of 

anthropogenic activity and as a result are exposed to various contaminants. Cu 

concentrations have particularly been shown to increase in the aquatic system as a result 

of extensive use of anti-fouling paints. Furthermore, the geochemistry of these 

environments complicates the speciation of Cu and understanding of its toxicity.  

The environmental and chemical factors influencing Cu speciation define its 

bioavailability therefore its toxicity at the biotic ligand in an organism (Georgopoulus et 

al., 2001; Arnold et al., 2005). In aquatic systems the most toxic form of Cu is the free 

cupric ion Cu
2+

 (Blanchard et al., 2006; Paquin et al., 2002; USEPA, 2007; Hall et al., 

2008).  Cu
2+

 not only reacts at the biotic ligand but also interacts with inorganic/organic 

anions and as a result becomes less bioavailable (Flemming et al., 1989; Arnold et al., 

2010; Allen et al., 1996; Blanchard et al., 2006). Anions such as OH
-
, HCO3

-
, NH3 and 

Cl
-
 act as competitors actively binding to Cu while limiting the concentration of bio-

available Cu
2+

 and increase the dissolved concentration of Cu (as total) required to result 

in toxicity (Kramer et al., 2004; De Schamphelaere et al., 2004; Hall et al., 2008; Arnold 
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et al., 2010; Erickson et al., 1996, USGS, 1997; CCME, 1997). Similarly cations like 

Ca
2+

, H
+
 and Na

+ 
compete with the free metal for uptake at the biotic ligand thereby 

reducing toxicity (Paquin et al., 2000; Blanchard et al., 2006; Flemming et al., 1989). 

Increasing salinity and hence the Na
+
 and Cl

-
 concentration had been shown to 

result in decreased Cu toxicity (Arnold et al., 2010, Mochida et al., 2006 and Bambang et 

al., 1995, Pinho et al., 2010, Lussier et al., 1985 and Ho et al., 1998). Protective effects of 

salinity on acute Cu toxicity have been observed in the estuarine copepod Acartia tonsa 

as a 1.8-fold increase in 48h EC50 values as salinities increased from 5 and 15ppt (Pinho 

et al., 2010) and Neomysis integer as a decrease in Cu toxicity was observed at 25ppt as 

the LC50 doubled from 41µg/L at 5ppt to 83 µg/L at 25ppt (Verslycke et al., 2003). For 

sheepshead minnow (Cyprinodon variegates) a 4-fold increase in percent survival was 

observed as the salinity was increased from 2.5ppt to 18.5ppt and this was associated 

with a decrease in whole body Cu from 200 µg/g at 2.5ppt to 75 µg/g (Adeyemi et al., 

2012). Similar protective effects were observed in Callinectes sapidus (Martins et al., 

2011), Acartia tonsa (Lauer et al., 2010) and Branchinous plicatilis (Cooper et al., 2014). 

This protective effect of salinity, however, is not consistent across the salinity gradient 

that occurs in estuarine environments.  

Estuarine environments range in salinity from 1ppt up to full strength sea water 

and this changing salinity can have a dramatic effect on Cu toxicity. The mechanism of 

toxicity for Cu has now been widely established to be disruption of ion (Na
+
) regulation, 

which leads to disruption of osmoregulation resulting in mortality (Grosell et al., 2007). 

In estuarine waters, osmo-regulatory capabilities of euryhaline organisms therefore may 

also determine the extent of Cu toxicity. Once a certain threshold of salinity is reached by 
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an organism the protective effects have been shown to be reduced (Blanchard et al., 2006, 

Grosell et al., 2007, Pinho et al., 2010 and Hall et al., 2008). At low range of salinity 

there appears to be a direct relation between EC50 and salinity (Grosell et al., 2007) 

however this protective effect of salinity plateaus as the organism reaches its iso-osmotic 

point and at salinities past the osmoregulatory threshold an increased in Cu sensitivity is 

observed (Blanchard et al. 2006; Grosell et al., 2007; Adeymi et al.,2012). In killifish at 

the iso-osmotic salinity, disruption of osmoregulation capabilities will have minimal 

effects because internal and external Na concentrations are similar (Grosell et al., 2007). 

The inability of the organism to regulate internal Na, Cl concentrations therefore results 

in death of the organism, past the osmoregulatory threshold (Bambang et al., 1995, 

Adeyemi et al., 2012, Grosell et al., 2007 and De Lisle et al., 1986, 1987). Cu toxicity in 

estuarine waters may therefore be dependent on the reduced uptake of metal associated 

with Na
+
 and Cl

-
 effects and on the physiological capabilities of the organisms at 

different salinities. 

In marine waters complexation of Cu with dissolved organic matter can further 

reduce Cu toxicity (Arnold, 2005; De Palma et al., 2011; Arnold et al., 2006; Nadella et 

al., 2009). A limited number of studies, such as Hall et al. (2008) and Arnold et al. 

(2010), have tested the potential changes in the protective effect of DOC over a range of 

salinities. DOM entering estuaries can be modified in several ways such as photolytic 

reactions (Amon and Benner, 1996), production of autochthonous material (Raymond 

and Bauer, 2001) as well as further degradation and homogenization of DOM from 

different sources (McCallister et al., 2006). This may alter the quality of DOM and its 

capacity to protect against metal toxicity. Characterizing techniques such as  absorbance 
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at 340 nm as well as Fluorescence excitation emission matrix spectroscopy (EEM) can 

also help distinguish DOM of a variety of composition and from a range of sources 

(Murphy et al., 2008;  Al-Reasi et al., 2011). Furthermore, dissolved organic matter 

concentrations can vary across the salinity gradient. An overall decrease in DOC 

concentrations is observed as salinity is increased (McCallister et al., 2006, Gerringa et 

al., 1998, Shank et al., 2004 and Ndung’u et al., 2003). Currently DOM is used as a 

homogenous entity in toxicity predictions and is assumed to have the same Cu-

complexation characteristics, regardless of source and composition however, different 

source and quality differences of DOM have been reported to provide unique site-specific 

protection from metal toxicity (Ryan et al., 2004; McKnight et al., 1983; De 

Schemphelaere et al., 2004; Shwartz et al., 2004; Brooks et al., 2007).  Further research is 

required to build an understanding of the interactive effects of salinity and DOM (both 

source and quality) in estuarine waters. 

The USEPA publishes ambient water quality criteria for both fresh and marine 

conditions. The fresh water criteria are based on application of the BLM (USEPA, 2007). 

The Biotic Ligand Model is a model that predicts the toxicity of a metal based on its 

bioavailability and geochemical speciation (Di Toro et al., 2001). The BLM incorporates 

the biology (the biotic ligand) with the water chemistry (both inorganic and organic (i.e. 

DOM)) to determine the toxicity of metals in a variety of organisms (Arnold et al., 2005; 

Paquin et al., 2000). A marine BLM has been proposed but at this time single values for 

criteria are still used.  

Water quality guidelines and criteria for estuarine conditions are often generated 

using both fresh water and marine guidelines. For example, the CCME freshwater 
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guideline is applied to waters up to 1ppt salinity and no marine and estuarine guideline is 

currently available. USEPA criteria defines marine waters as having salinity higher than 

5ppt and the saltwater acute dissolved copper criterion is 4.8 µg/L, while chronic value is 

defined as 3.1 µg/L (USEPA, 2007). Therefore there appears to be little recognition of 

the variability in toxicity responses for estuarine conditions and this introduces 

uncertainty in toxicity prediction and setting WQ guidelines/criteria. Increasing salinity 

and other changes in water chemistry as fresh water flows into salt water will alter the 

toxicity of metals and therefore neither fresh water criteria/guidelines nor ones for full 

strength sea water assess the potential for impacts in estuarine conditions. The lack of 

estuarine specific criteria/guidelines that account for a wide range of salinities represents 

a gap in the understanding of the potential environmental impacts of metals.  At least in 

part, the lack of water quality guidelines and criteria for estuarine waters results from the 

fact that toxicity prediction model are lacking.  Models such as the BLM have been 

successfully applied to establish site specific thresholds for Cu in fresh waters (EPA 

2007) and are being developed for marine waters (Aquatic Life Ambient Freshwater 

Quality Criteria—Copper 2007 Revision). 

The purpose of this study was to build an improved understanding of the acute 

toxicity of Cu in estuarine conditions. The toxicity mitigating effects of both salinity and 

DOM (source and concentration) were studied using Americamysis bahia. A bahia is a 

euryhaline invertebrate organism from the order of mysida and has been established as an 

indicator organism by the USEPA for standardized acute and chronic toxicity testing (De 

Lisle et al., 1986; USEPA, 1990). They are tolerant of a wide array of salinities and have 

the ability to iono-regulate successfully (Lussier et al., 1988; De Lisle et al., 1987). The 
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data developed through this research will contribute to broader interdisciplinary efforts to 

develop prediction models for application to environmental protection of estuarine 

ecosystems. 

2.2 Methodology 

2.2.1 Americamysis bahia culturing   

Culturing of mysids was carried out following Standard EPA Methods (EPA-

505/8-90-006b) using organisms purchased from a commercial supplier (Aquatic 

Research Organisms, Hampton, New Hampshire, USA) and held in 10 L aquaria with 

synthetic (reconstituted) water at 25°C. Cultures were establish at salinities, either 15 or 

25ppt, made by reconsituting sea salts (Kent Marine Reef Salt Mix, Big Als Canada Inc, 

Kitchener ON). Culture water was prepared in 400 L batches and aged over at least 5 

days before use.  Salinity and temperature were monitored daily using a salinity meter 

(YSI 30, YSI Inc., Yellow Springs, OH). A 16:8 (light:dark) photoperiod was used and 

freshly hatched Artemia nauplii (Brine Shrimp Direct, Ogden, UT) were fed at a rate of 

150 per A. bahia per day.  Culture water was renewed (80%) daily at which time neonates 

were collected to maintain broodstock and for subsequent testing. 

2.2.2 DOM Collection 

 

DOM collections were carried out in November of 2011 and May of 2012 at 

coastal locations in New Brunswick and Prince Edward Island Canada (Table 1). 

Collection was by reverse osmosis concentration (see below), which can only be done in 

fresh water, and to provide maximum similarity to natural DOC in estuaries collection 

sites  were selected from sources with no anthropogenic influences upstream that flowed 

directly into salt water. As much as possible collection sites were in close proximity to an 
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estuary. All DOM sources were collected and stored following the methods described by 

Schwartz et al. (2004) with 200 to 500 L reduced to approx. 8 L of concentrate using a 

custom built portable reverse osmosis system. DOM concentrates were resinated to pH of 

2 using a cationic exchange resin to remove all residual metals and cations and stored at 

4°C (Schwartz et al., 2004). 

2.2.3 A. bahia Toxicity Tests 

 

96 h toxicity tests were carried out to assess the acute toxicity of Cu. Synthetic sea 

water (Kent Marine Reef Salt Mix) used for mysid cultures was also used for all test 

solutions to maintain consistency in test medium. All tests were carried out following 

USEPA Standard Test Methods (EPA 712-C-96-136). Tests were static renewal in nature 

and were carried out at a temperature of 25
o
C ± 0.5. The tests were carried out in 350 mL 

crystallizing dishes (Pyrex, Fisher Scientific, Ottawa, ON, Canada) with 250 mL of test 

solution. Test solutions were prepared to allow for a 48 hour test solution renewal using 

synthetic Kent sea salt mixed with appropriate AAS standard Cu stock solution 

(TraceCERT, Sigma-Aldrich Co., Oakville, ON, Canada). All test solutions were 

prepared 24h prior to the start of the test to allow the solution to reach equilibrium. pH, 

salinity and temperature were recorded at the beginning and end of each test. The tests 

were done in duplicate with 10 neonates per replicate and included unexposed controls. 

The end point for all 96h acute toxicity tests was chosen to be mortality. Water samples 

were collected at 0, 48 and 96 hours in scintillation vials. All dissolved Cu samples were 

collected using a 0.45µM Acrodisc (Pall Co.) syringe filter (VWR, Missisauga, ON, 

Canada) in falcon tubes. Mysids were fed Artemia nauplii daily for the duration of all 
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testing and dead artemia and debris were removed daily as well as during the 48h 

solution renewal. 

Effects of Acclimation 

 

The test acclimation salinities were chosen to be 5, 15, 25 and 35ppt, however due 

to a lack of reproduction at 5 and 35ppt all cultures were acclimated to 15 and 25ppt for 

the duration of all testing. The neonates were collected from both in lab cultures and used 

in testing. Individuals from all salinities were tested at salinities of 5, 15 and 25ppt. The 

tests were 96h acute toxicity tests and were carried out using standard EPA test methods 

(listed above). The salinity was monitored carefully throughout the tests for accuracy of 

any salinity effects on toxicity testing. The results for each salinity were compared to 

those of other acclimation salinities to examine if acclimation had an effect on metal (Cu) 

toxicity.  

Effect of Salinity on Cu 

 

The chosen test salinities were 5, 10, 15, 20, 25, 30 and 40ppt to allow for a 

complete understanding of how salinity affects Cu toxicity in estuaries. AAS standards 

(TraceCERT, Sigma-Aldrich Co., Oakville, ON, Canada) for Cu (1g/L) were used to 

make standard and test solutions. Cu test concentrations were chosen to be 0, 50, 100, 

200, 400, 600, and 800 µg/L. 2 L of each test solution was made using a volumetric flask 

and the remainder of the solution after start of the test was stored in nalgene bottles for 

48h test solution renewals. Salinity and temperature were measured at 24h intervals and 

recorded. Any mortality was recorded at both 48 and 96h intervals and dead individuals 

were removed. The tests were done in duplicate and water samples from all replicates 
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were collected at 0, 48 and 96h intervals. All collected samples were stored in the fridge 

until further analysis. 

 Effects of DOC 

 

For DOM 96 h acute toxicity tests the DOC concentrations tested to determine 

any protective effect of DOC ranged from 2 to 10mg/L. The effect of DOC concentration 

was tested at 15, 25 and 35ppt while salinities of 15 and 25ppt were used to test site-

specific differences in DOC. DOC was measured on a TOC analyzer to determine the 

concentration of the collected concentrate. Diluted samples of the concentrates were then 

obtained to get the required concentration. A Cu negative control was used, with no 

added metal to the salt water as well as DOC positive control where the DOC 

concentration being tested was added without any input of metal to see any toxic effects 

of DOC alone. Cu concentrations used ranged from 100 µg/L to approximately 2 mg/L. 

The mysids were fed throughout the duration of the 96h acute toxicity test and the debris 

was removed during the 24h test solution renewal. Dissolved and total Cu water samples 

as well as DOC samples for each concentration were collected at 0, 48 and 96h intervals. 

2.2.4 Statistical Analysis and measurements 

LC 50 

Lethal Concentrations 50 (LC50) values were calculated using mortality data 

representative of each acute test. The LC50s as well as the 95% confidence limits for all 

tests were determined using Spearman Karber method using a commercial software 

package (CETIS; Comprehensive Environmental Toxicity Information System™). The 

generated data was plotted using SigmaPlot™ (ver.11) to determine dose response curve 

and mortality trends. Data was considered significant if the 95% confidence intervals did 
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not overlap; if the confidence intervals overlapped significance was determined using 

Litchfield-Wilcoxon statistical analysis method (Environment Canada, 2005). 

Cu Measurements and Analysis 

 

Water samples taken at 0h, 48h and 96h were measured to determine total and 

dissolved Cu concentrations. Since most equipment does not provide an accurate 

measurement of Cu in salt water an extraction process is required to eliminate the effect 

of salt on Cu readings. Water samples were prepared using lanthanum oxide precipitation 

(Nandella et al., 2009; Toyota at ela., 1982). 10 mL of each sample was mixed with 10 

µL of Lanthanum oxide and Sodium carbonate. The pH for all samples was adjusted to 

9.8 using sodium hydroxide. The samples were then placed in a water bath for 30 min 

and subsequently centrifuged for 15 min. The supernatant was discarded and the 

precipitate re-suspended in 1N nitric acid. The samples were then vortexed and 

subsequently measured by flame atomic absorption spectrometry (SpectraAA 880 with 

GTA100, Varian Inc., Palo Alto, CA).  

DOC measurements and characterization 

 

50 mL filtered DOC samples were taken from the test solutions prior to the start 

and end of the tests for DOC analysis. The samples were taken from controls as well as 

each test concentration. DOC concentrations were measured using a total carbon analyzer 

(TOC) analyzer (Shimadzu TOC-LCPH/CPN, Shimadzu Corporation, Kyoto Japan). TOC 

standards at 5 and 10 mg C/L concentrations were used as reference and were prepared 

using a 1g/L stock of potassium hydrogen phthalate which was added to artificial sea 

water. All the samples and standards were brought to room temperature, transferred to 
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TOC vials and spiked with 2-3 drops of concentrated Hydrochloric acid (Sigma-Aldrich, 

Oakville, ON, Canada).  

Optical characterization of DOC was carried out by EEMS using a fluorescence 

spectrometer (Cary Eclipse, Varian, Victoria, Australia). The samples were measured 

using a quartz cuvette (Hellman Canada Ltd., Concord Canada). The measurements were 

done using the excitation wavelength range of 200-450 nm with 10 nm increments while 

the emission was measured from 250- 600 nm. The generated data was then analyzed 

using PARAFAC analysis as implemented in MATLAB
TM

 to distinguish any differences 

between sources. 

Calculations and Statistics 

 

EEMS was used to conduct optical characterization of the DOM sources. The 

generated data was sub sequentially analyzed using PARAFAC analysis through 

Eigenvector Research Inc. PLS toolbox 
 
(The MathWorks, MA, USA) to derive and 

quantify the relative amounts of the four major fluorescent components, humic acid-like, 

fulvic acid-like, tryptophan and tyrosine, to understand any quantitative DOM 

characteristics (De Palma et al, 2011). The concentrations for all components were added 

together to allow for the calculation of the relative percent of each component found 

within each source of DOM using in house MATLAB scripts. MATLAB
TM

 was also used 

to create two-dimensional contour plots to visualize any fluorescence differences between 

the sources, after removal of any Rayleigh-Tyndall scattering. Both the quantitative and 

qualitative data were then used to form any linkages between biological toxicity (LC50s) 

and chemical and optical properties of DOM.  
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DOM quality was further assessed by measuring the absorbance of each source at 

340 nm and 370 nm in order to examine the aromaticity (darkly colored DOM) and origin 

of DOM (terrigenous and autochthonous) consecutively of each source. Absorbance 

measurement at 340 nm for each DOM source was converted into specific absorption 

coefficient values (SAC340) as described by Schwartz et al (2004) as per Equation 2.1:  

SAC340 = [2303 x (Abs340)]/DOC)    Equation 2.1 

Where Abs340 is the absorbance at 340 nm and DOC is the measured DOC concentrations 

(mg C/L).  The FI was also calculated according to Equation 2: 

                        FI = (EI450 / EI500) at 370 nm    Equation 2.2 

Where EI is the emission intensity at either 450 or 500nm after excitation at a wavelength 

of 370 nm.   

The EEMS data was evaluated using PARAFAC analysis through MATLAB PLS 

toolbox 
 
(The MathWorks, MA, USA) to derive and quantify the relative amounts of the 

four major fluorescent components, humic acid-like, fulvic acid-like, tryptophan and 

tyrosine (Al-Reasi et al., 2011; De Palma et al. 2011; Stedmon et al., 2003, 2005).  The 

concentrations of these components within each sample were determined using the 

resolved component concentrations from the daily standards. MATLAB
TM

 was also used 

to create two-dimensional contour plots to visualize presence of different fluorophores in 

the DOC samples to distinguish between the sources.  

Optical characteristic (SAC340, FI and 4 fluorophores) were then correlated to 

96h LC50 values to determine any links between DOM protective capabilities and 
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toxicity (Ryan et al., 2004). Correlation coefficients (r) were determined by the Pearson 

product moment method (n=4) and significance was determined at p<0.05.   

2.3 Results 

Toxicity tests met the EPA standard method for a valid test. Acute Cu toxicity 

tests at each salinity were repeated 3 times over the course of this study and demonstrated 

that A. bahia were relatively consistent in their response, the difference between LC50 

values from all replicates for each test was around 15%. 

Samples collected, from each replicate of each concentration before during and 

after all tests, were subsequently measured for both total and dissolved Cu concentration.  

In general nominal values were close to measured values. Dissolved Cu concentrations 

were 80 % of total Cu (n = 528).  The measured DOC concentration in test solutions 

without added DOM was 0.8 ± 0.5 mg C/L. The reported LC50 values were calculated 

from measured dissolved Cu concentrations. 

2.3.1 Effect of salinity on acute Cu toxicity 

 

The LC50 values varied significantly over the salinity range tested (5-40ppt) with 

a protective effect observed up to 30ppt (Figure 1). There was a significant increase in 

LC50 values from 5 to 15ppt and while there was a continuing trend for reduced toxicity 

up to 25ppt it was not significant. This protective effect was lost as the salinity continued 

to increase to 35ppt. Tests were also conducted at 40 ppt and inconsistent results were 

observed as majority (5 out of 6) of the test failed to meet the acceptability criteria due to 

high mortalities in controls and therefore an LC50 value could not be calculated.  
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 In the second test series A.bahia neonates from cultures acclimated to either 15 or 

25ppt were tested at salinities of 5, 15 and 25ppt to investigate whether culturing salinity 

influenced responses. The protective effect of salinity was observed with significant 

increases in LC50 values between 5 and 15ppt (Fig. 2) but there was little difference 

between acclimation salinities (Fig. 2).   

2.3.2 Effect of DOM Cu Toxicity 

 

DOM provided a variable site dependent protective effect (Figure 3). In tests at 

25ppt the DOM from Rankin Brook provided the highest protection while Cape Enrage 

provided no protection compared to test with no added DOM (Figure 3).  The sources 

from Northlake and Kelly’s Bog provided an intermediate mitigation of acute Cu 

toxicity. At 15ppt the variation among sources was less distinct however Kelly’s Bog and 

Rankin Brook provided a significant protective effect compared to tests with no added 

DOM (Figure 3). Significant protection was provided by some DOM sources (at 15 and 

25ppt with 4 mg C/L) compared to controls with no added DOC, whereas minimal 

significant differences (Northlake vs. Rankin Brook at 25ppt) in LC50 values were found 

among the sources at either salinity. A final comparison was conducted to determine any 

differences among the 4 DOM sources. At 25ppt, Cape Enrage was determined to 

provide a significantly different protection from Kelly’s Bog as well as Rankin Brook 

while Northlake was determined to be significantly different from Rankin Brook. No 

difference in protection were found between the three DOM sources at 15ppt.  
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2.3.3 Optical Characterization of DOM 

 

EEMS data analysis through PARAFAC was used to derive humic acid-like, 

fulvic acid-like, tryptophan-like and tyrosine-like fluorophores (Table 2).  These four 

components accounted for 97% of the data. Sources had very similar fluorescence 

profiles and there was very little variation among sources (Table 2). Two-dimensional 

contour plots were created using EMMS data to visualize the fluorophores and determine 

any site-specific differences (Figure 6). SAC340 and fluorescence index (FI) values were 

calculated for the 4 DOM sources. Cape Enrage had the lowest SAC340 value at 19.5 

(higher SAC340 values signify lighter DOM) while Kelly’s bog has the highest. Northlake 

and Rankin Brook provided median values of FI, Cape Enrage the highest and Kelly’s 

Bog provided the lowest FI at 1.06 . 

2.3.4 Correlation of LC50 values to DOM Optical Characteristics   

 

Correlation coefficients (calculated using Pearson Product Moment) for all 

variables tested were used to determine any relationships between toxicity and protective 

capacity of DOM. A positive correlation (r = 0.78, 0.86; 15, 25ppt) was found between 

the SAC340 (Figure 4) and the calculated 96h LC50 values. Similarly, a negative 

correlation was found (r = 0.75, 0.75; 15, 25ppt) between FI and the LC50 values (Figure 

5). The four optically derived components (humic acid, fulvic acid, tryptophan and 

tyrosine) were also analyzed to determine any correlation to toxicity. At 25ppt no 

correlation was found between humic and fulvic acid contents, however a negative 

correlation was found for both tryptophan (r = 0.66) and tyrosine (r = 0.75) with the 96h 

LC50 values. At 15ppt, a positive correlation was found between fulvic-acid content (r = 
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0.95) for acute toxicity while negative correlations (r= 0.95) were found for tryptophan 

and humic-acid.   

2.4 Discussion 

 

The toxicity of Cu can be influenced by salinity as a result of complexation and 

the presence of competing cations (Allen et al., 1996; Arnold et al., 2005; Blanchard et 

al., 2006; Arnold et al., 2010: Pinho et al., 2010; Martins et al., 2011). In estuarine 

waters, osmo-regulatory capabilities of euryhaline organisms may determine the extent of 

Cu toxicity. The mechanism of toxicity for Cu has now been widely established to be 

disruption of ion (Na
+
) regulation, which leads to disruption of osmoregulation resulting 

in mortality (Grosell et al., 2007). A. bahia is an osmoregulator and is able to adjust to 

salinity changes within 95 min of transfer (De Lisle et al., 1987). It is therefore the model 

organism to test toxicity of contaminants in estuarine environments, where such salinity 

changes are common. Tests were conducted at 3 different salinities: 5, 15 and 25ppt to 

determine if culturing acclimation salinity had any effect on Cu toxicity at different test 

salinities. Neonates cultured at both 15 and 25ppt were directly transferred to the required 

test salinity at the start of each test and 96h LC50s were recorded. The results were unable 

to reject the null hypothesis as the results showed that acclimation salinity had no 

significant difference on Cu toxicity (Figure 1). The neonates were able to successfully 

adjust to abrupt salinity changes and therefore no differences were seen in toxicity of Cu 

whether the neonates were cultured at 15 or 25ppt.  LC50 values, however, showed a 

linear protective effect of salinity as salinity was increased from 5 ppt to 25ppt. The 

results found in this study were in agreement with the literature where the authors showed 
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that acclimation salinity has minimal effect on Cu toxicity at intermediate salinities (10.5-

18.5ppt),  however, a strong effect is observed at either extremes of the salinity tolerance 

limit of the sheepshead minnow (Adeyemi et al., 2012). Culturing acclimation of 5ppt 

and 35ppt was also conducted, however, due to low survival and poor reproduction 

functioning mysid cultures were not possible and therefore no neonates were derived to 

conduct further testing. 

Salinity provided a protective effect on acute Cu toxicity as it was increased from 

5ppt to 30ppt (Figure 2). This protective effect has been associated with a decreased 

bioavailability of Cu
2+

 as a result of increased competition due to Na
+
 ions at the site of 

toxic actions as well as binding to Cl
-
 ions as the salinity increases (Arnold et al., 2005 

and 2010 and Blanchard et al., 2006). Similar protective effects of salinity on acute Cu 

toxicity have also been observed in the estuarine copepod Acartia tonsa as a 1.8 fold 

increase in 48h EC50 values as salinities increased from 5 and 15ppt (Pinho et al., 2010). 

For sheepshead minnow (Cyprinodon variegates) a 4 fold increase in percent survival 

was observed as the salinity was increased from 2.5ppt to 18.5ppt and this was associated 

with a decrease in whole body Cu from 200 µg/g at 2.5 ppt to 75 µg/g (Adeyemi et al., 

2012). Brachionus plicatilis showed a salinity dependent increase in its 24 h Cu LC50 

(from 38.2 µg/L to 78.4 µg/L) moving across a salinity gradient from 6-29ppt (Arnold et 

al., 2010). Similarly acute dissolved copper toxicity to Callinectes sapidus was higher at 

a salinity of 2ppt (5.3 µM Cu) than at 30ppt (53 µM) of Cu (Martins et al., 2011). 

Increased protective effect was observed for salinities between 15 to 25ppt which is 

considered to be the optimal range of salinity for A. bahia.  



 

49 
 

As A. bahia exhibited sensitivity to Cu at both high as well as low salinities 

(Figure 2), our results agreed with previous literature (Grosell et al., 2007; Pinho et al., 

2010). At an approximate iso-osmotic point of 10ppt a decrease in Cu toxicity in killifish 

was observed as there was minimal disruption of osmoregulation because internal and 

external Na concentrations were similar (Grosell et al., 2007). When salinity was lower 

(17ppt) and closer to the iso-osmotic point the same Cu exposure concentration had a 

much smaller disruptive effect on Na balance due to minimal osmoregulation required for 

survival by the organism (Bambang et al., 1995). Reduced Cu toxicity was also observed 

for sheepshead minnow at 10.5ppt, their iso-osmotic point and no net increase or 

decrease in whole body Na levels was found (Adeyemi et al., 2012). However, this 

protective effect of salinity was lost at salinity extremes (5, 10, 35 and 40ppt) as A.bahia 

exhibited increased sensitivity to Cu which was attributed to the inability of the organism 

to maintain its homeostasis and death resulted due to osmoregulatory failure (Figure 2). A 

similar trend has been shown in the literature for several different species and mortality 

has been linked to osmoregulatory stress in addition to contaminant which ultimately 

collapses the regulatory system. In full strength sea water (37ppt), Penaeus japonicas, 

completely lost their ability to maintain internal Na concentrations at Cu concentrations 

of 1000 and 1500 µg Cu/L while a 73% reduction in internal Na was observed at low 

concentrations (500 µg Cu/L) (Bambang et al., 1995). Pinho et al. (2010) also found a 

significant change in the 48h EC50 of Cu to A. tonsa in salinities from 5-15ppt (see 

above), EC50 was reduced when it was further increased to 30ppt. Acute Cu toxicity to E. 

Affinis was reduced at 5ppt (104 µg/L) in comparison to 15ppt (67.6 µg/L) and 25ppt 

(58.1 µg/L, Hall et al., 2008). 
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Dissolved organic matter acts as a modifying agent in aqueous systems by binding 

free metal ions, generally considered to be the most toxic form of metal to biota (De 

Schamphelaere et al., 2004). DOM composition varies between sites and this variability 

may result in differences in its protective capacity, subsequently influencing Cu toxicity. 

DOM sources were strategically collected from various sources of fresh water that flowed 

right into salt water; to have environmentally relevant conditions and composition of 

DOM. Currently in toxicity predictions models, DOM is used as a single homogenous 

value, however several studies have shown site-specific protective capacities of DOM 

(See above). A protective effect was observed for three of the four DOM sources at a 

concentration of 4 mg C/L (Fig. 6). Up to a 2 fold difference in LC50 was observed for Cu 

as DOM concentrations increased from 0-4 mg C/L at 25ppt (Fig. 4). No salinity 

differences in protection were observed, however, Kelly’s bog and Rankin Brook DOM 

were determined to be more protective than other sources. Site-specific protective effect 

of DOM have been demonstrated in freshwater for rainbow trout (Richards et al., 2001; 

Schwartz et al., 2004), Daphnia (De Schamphelaere et al., 2004; Glover et al., 2005) and 

fathead minnows (Ryan et al., 2004, Sciera et al., 2004 ; VanGenderen et al., 2003), 

although there are very little data available to show such source dependent protection of 

DOM in estuarine and sea water. Nadella et al. (2009) showed a DOM based site specific 

difference in toxicity of Cu, Zn, Ni and Cd, when freshwater DOM sources (similar to 

this study) were used to determine toxicity at different salinities, however the results from 

the present study were equivocal. This study helps further the understanding of source 

dependent differences in protective capacity of DOM. All tests were conducted at 4 mg 

C/L concentrations at either 15 or 25ppt, further tests incorporating a matrix of different 
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salinities, concentrations and sources will be extremely beneficial in better understanding 

DOM interactions in toxicity mitigation of all metals in estuarine and marine 

environments. 

DOM samples were also optically characterized to determine any 

source/composition dependent differences, similar characterization has previously been 

done to show relationships between DOM quality/source and toxicity (Al-Reasi et al., 

2011, De Palma et al., 2011; Hicks, 2009; De Shamphelaere et al., 2004). SAC340 values 

were measured for all four DOM sources (Table 2) as well as FI. The FI exhibited a 

negative correlation (r = -0.8324) to LC50 values, the lower the FI the higher the binding 

capacity of Cu which in turn results in a higher protective capacity, however this 

relationship was not significant. Similar relationships between FI and toxicity have been 

demonstrated (McKnight et al., 2001; Brooks et al., 2007; Hicks, 2009) but this 

relationship is not considered to be a universal measure of DOM composition. A positive 

correlation was observed between toxicity and SAC340 values (r = 0.8614). SAC340 is a 

measure of the color and the light is usually absorbed by the aromatic components of the 

DOM. Darker DOM sources (Kelly’s Bog) provided a higher SAC340 value as well as a 

higher LC50. The results from this research show some support of SAC340 a very good 

indicator of protective capacity of different DOM sources but were not significant.  

PARAFAC analysis was performed on all the samples and 97 % the data was 

summed up in to four fluorophores (HA-like, FA-like, Tyr and Trp). All sources 

exhibited a high humic acid-like content but very low tryptophan and tyrosine content. 

Correlation coefficients were calculated to determine any relationships between 

protective capabilities of DOM and measured toxicity.  Negative correlations were found 
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between tryptophan and tyrosine concentrations and the calculated LC50s for 25ppt, 

however no correlation was observed for 15ppt. No differences in fluorescence of the 

four fluorophores was determined when 2-D contour plots were created. No correlations 

were found between humic and fulvic acid content and toxicity differences for various 

DOM sources. Previously, differences in the concentrations of the four fluorophores, 

particularly humic acid-like substances, have been associated to differences in protection 

derived from each unique source (Schwartz et al., 2004; Al-Reasi et al., 2012; Ryan et al., 

2004), however this was not found in our study.  

2.5 Conclusion 

 

The results from this study show that Cu toxicity varies considerably across the 

salinity gradient found in estuaries. Salinity acclimation prior to testing had no effect on 

Cu toxicity within the salinity tolerance limit of A. bahia. Cu toxicity decreased with 

increasing salinity up to 30 ppt. A. bahia was found to be more sensitive to Cu at higher 

and lower salinities and that was attributed to the organism reaching a critical 

osmoregulatory threshold. This threshold is essentially defined as the salinity at which 

the internal and external ion concentration is equivalent, resulting in minimal requirement 

for ionoregulation which reduces Cu toxicity. Salinity change below or above this 

osmotic threshold result in increased physiological stress in addition to Cu induced result 

and the inability to maintain an ionic balance by the organism results in toxicity. DOM 

was determined to provide a protective effect but no significant site-specific difference 

could be found as some sources imparted greater protective effect than others and the 

results were variable. This protective capacity of DOM was not always salinity 
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dependent. The optical characteristics of DOM (SAC340 and FI) were correlated with test 

LC50 values but the relationships were not significant and could not be deemed accurate 

predictors of DOM capacity in estuarine systems. 

Overall, as salinity increases the geochemical speciation of Cu is altered as a 

result of organic/inorganic complexation  and is further challenged due to the wide array 

of osmoregulatory capabilities of euryhaline organisms. This chemical-biological 

interaction complicates the understanding of the impacts of Cu in estuarine waters. More 

research is required to better understand metal toxicity in estuarine systems to move 

towards developing an estuarine Biotic Ligand Model. 
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2.6 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Comparison of acute Cu LC50 values for test salinities of 5, 15 and 25ppt in 

mysids acclimated to 15 or 25ppt. A * represents a significant difference from 25ppt. 
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Figure 2: The 96 h LC50 values (µg Cu/L) for A. bahia tested at different salinities. The 

error bars show the upper 95% confidence limit, toxicity values are given for measured 

dissolved Cu and * indicates a significant difference in other LC50 values than that 

calculated for 25 ppt. 
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Figure 3: Site-specific differences of DOM in 96h acute Cu toxicity to A. bahia at 15 and 

25ppt with a DOC concentration of 4 mg C/L. Rankin Brook and Kelly’s Bog DOM 

provided a significant protective effect from Cu toxicity at 15 (“a” significant difference 

from no added DOC) and 25ppt (“b” significant difference from no added DOC). 

Northlake was significantly different from Rankin Brook (“c”) while Cape Enrage was 

different from both Rankin Brook and Kelly’s Bog (“cd”) 
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Figure 4: Linear correlation of 96 h LC50 values for various DOM sources at 25ppt 

(white fill) and 15ppt (black fill) in increasing order of protective capability with 4 mg 

DOC/L added and specific absorption coefficient (SAC) at 340 nm for DOM sources.  
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y = -308.64x + 611.43 
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Figure 5:  Negative correlation of 96h LC50 values for various DOM sources in 

decreasing order of protective capability with 4 mg DOC/L added at 25ppt (white fills) 

and 15ppt (black fills) and fluorescence index (FI) at excitation wavelength of 370 nm for 

DOM sources.  
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Figure 6: Fluorescence excitation-emission contour plots for A) Cape Enrage, (B) North 

Lake, (C) Kelly’s Bog and (D) Rankin Brook.  
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2.7 Tables  

 

Table 1: Sampling location information for the collected DOM sources. 

 

 

Source name Location Date Coordinates 
Additional site 

details 

Cape Enrage 

(CE) 

Cape Enrage Road, 

Cape Enrage, NB 

Nov. 

2011 

 45° 37' 26"  

 

 -64° 47' 13" 

 

Un-named creek 

draining into salt 

marsh. 

Northlake 

(NL) 

Northside Road, 

Northlake, PEI 
2011 

46° 27' 30" 

 -62° 05' 50" 

From freshwater 

lense at upper 

end of North 

Lake 

Kelly’s Bog 

(KB) 

Kouchibouguac 

National Park, NB 

May 

2012 

46° 48' 53" 

 

-64° 54' 58" 

un-named stream 

draining Kelly’s 

Bog 

Rankin Brook 

(RB) 

NB highway 117, 

Kouchibouguac 

National Park, NB 

May 

2012 

46° 49' 13"  

-64° 55' 5"  

downstream of 

Rankin Bog 
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Table 2: Correlation between 96 h LC50s and optical characteristics of 4 DOM sources. 

Four components of the DOM sources were determined by PARAFAC analysis. %HA is 

humic acid component, %FA is fulvic acid, %trp tryptophan, and %tyr is the tyrosine 

component.  These four components account for 97% of data variability.  

 

   

 

LC50 (µg/L) 

DOM Source 
15 

(ppt) 

25 

(ppt) 

% HA % FA % trp % tyr SAC340 FI 

Cape Enrage N/A 248 72 23 2 0.1 19.6 1.31 

North Lake 217 316 73 23 1.5 0 22.8 1.28 

Kelly’s Bog 315 348 70 27 1.3 0 27.9 1.07 

Rankin Brook 248 441 73 23 1.5 0 27.5 1.07 

15ppt -0.95* 0.95* -0.95* N/A 0.78 -0.75 
Correlation 

Coefficient 
25ppt 0.18 0.08 0.66 0.75 0.86 -0.83 
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 Table 3: Lethal concentration 50 for 96h acute toxicity tests over a wide range of 

estuarine salinities. LC50 values and CI were calculated using the Trimmed Spearman-

Karber method. LC50s are given as µg Cu/L and are based on measured dissolved (0.45 

µM) Cu concentrations.  

Test 

Salinity 

(ppt) 

 Measured 

Salinity (ppt) 

Temperature 

(
o
C) 

pH 96h LC50 96h CI 

5 5.0 ± 0.2  24.8 ± 0.3 7.8 ± 0.2 67.46 45.8-99.4 

10 10.0 ± 0.3 25.1 ± 0.2 7.9 ± 0.1 121.6 101-146.4 

15 15.0 ±0.5 24.9 ± 0.2 8 ± 0.0 197.8 160.8-243.2 

20 20.0 ± 0.1 25.0 ± 0.2 8.0 ±  0.1 198.4 162.3-242.7 

25 25.0 ± 0.5 25.0 ± 0.1 8.2 ± 0.4 252 210.7-301.3 

30 30.0 ± 0.3 24.9 ± 0.2 8.0 ± 0.3 291.9 247.6-344.3 

35 35.0 ± 0.3 25.2 ± 0.3 7.9 ± 0.2 121.3 102.9-142.9 

40 40.0 ± 0.4 25.0 ± 0.2 8.0 ± 0.1 CND CND 

*CND = could not be determined; CI =  Confidence Intervals 
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Table 4 – Water chemistry parameters at culturing salinities of 15 and 25ppt. Effect of culturing salinity on Cu toxicity was 

tested at three different test estuarine salinities (5, 15 and 25ppt). Test exposure concentrations are given as measured dissolved 

Cu concentration 

Culture 

Salinity 
15ppt 

25ppt 

Test 

Salinity 

(ppt) 

 Measured 

Salinity 

(ppt) 

T (
o
C) pH 

Nominal 

Cu 

(µg/L) 

Dissolved 

Cu (µg/L) 

 Measured 

Salinity 

(ppt) 

T (
o
C) pH 

Nominal 

Cu 

(µg/L) 

Dissolved 

(µg/L) 

0 13 ± 2 0 10 ± 2 

50 31 ± 7 50 33 ± 3 

100 62 ± 12 100 67 ± 9 

200 182 ± 19 200 159 ± 18 

5 5.0 ± 0.4  24.7 ± 0.3 7.8 ± 0.1 

300 269 ± 20 

5.0 ± 0.2 24.7 ± 0.3 7.8 ± 0.1 

300 250 ± 24 

0 0.8 ± 0.2 0 3.5 ± 3  

100 86.3 ± 12 50 48 ± 9 

200 193 ± 21 100 98 ± 35 

300 261 ± 8 200 181 ± 13  

400 351 ± 13 400 347 ± 15 

15 15.0 ± 0.2 25.1 ± 0.1 8.1 ± 0.4 

600 531 ± 85  

15.0 ± 0.3 25.1 ± 0.1 8.1 ± 0.4 

800 678 ± 31  

0 1.5 ± 0.5 0 8 ± 5 

100 102 ± 7 100 73.7 ± 9 

200 192.7 ± 5 200 152 ± 13  

300 304 ± 14 400 420 ± 29 

400 379.7 ± 30  600 564 ± 37  

25 25.0 ±0.1 24.9 ± 0.3 7.9 ± 0.3 

600 585.3 ± 45  

25.0 ±0.4 24.9 ± 0.3 7.9 ± 0.3 

800 771 ± 73  
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Chapter 3 

Short-Term Chronic Cu Toxicity to Americamysis bahia in 

Estuarine Environments: Effects on Growth, Survival and 

Sexual Maturation 
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3.1 Introduction 

 

Estuaries and coastal regions are areas of interest as they are frequently impacted 

by anthropogenic activities. One of the main concerns in these areas is the presence of 

metals, such as copper which are of concern in these environments, particularly in boat 

basins as a result of the use Cu as a biocide in anti-fouling paints (De Polo et al., 2012; 

Matthiessen et al., 1999). Cu is an essential element (Gaetke et al., 2003) actively taken 

up by organisms, but inreased levels in ambient waters can result in toxicity to aquatic 

biota (Pinho et al., 2010; Martins et al., 2011). The most bioavailable form of Cu is the 

free ion (Cu
2+

; Paquin et al., 2002) and it induces acute toxicity by disrupting internal 

ionic balance, particularly Na and Cl (Grosell et al., 2002, 2004). The proportion of Cu
2+

 

in surface waters can vary tremendously, dependent on the geochemical speciation of the 

source waters. Interactions with inorganic ions (Blanchard et al., 2006; Flemming et al., 

1989) and organic compounds (Arnold, 2005; McGeer et al., 2002; Santore et al., 2001) 

alter the geochemical speciation of dissolved Cu through complexation and thereby alter 

bioavailability and toxicity.  As well, the impacts of Cu
2+

 can be altered via competition 

with cations at sites of uptake/toxicity.  

Increased competition with Na
+  

and complexation to Cl
-
 occurring as a result of 

increasing salinity have the potential to provide protection against Cu toxicity across the 

salinity gradient that occurs in estuarine waters (Grosell et al., 2007; Blanchard et al., 

2006; Grosell et al., 2004). For example, Cyprinodon variegatus (Adeyemi et al., 2012), 

Brachionus plicatilis (Arnold et al., 2010), Callinectes sapidus (Martins et al., 2011), 

Acartia tonsa (Pinho et al, 2010; Lauer et al., 2010) and Neomysis integer (Verslycke et 
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al., 2003) all showed decreased sensitivity to Cu at increased salinity in acute toxicity 

assays. Toxicity-salinity relationships are also partially related to the ability of Cu
2+

 to 

induce ionic imbalances and osmoregulatory disruption.  The toxic nature of Cu
2+

 is 

reduced when organism are in an iso-osmotic environment while at higher and lower 

salinities the potential for osmoregulatory disruption and thus sensitivity to Cu
2+

 

increases (Grosell et al., 2007; Blanchard et al., 2006). Cu toxicity in estuarine waters 

therefore may be dependent on complexation of Cu
2+

, cationic competition and the 

capacity to cause osmoregulatory disruption as it relates to internal (organism) vs external 

(environment) salinity with Na and Cl effects. 

As mentioned previously, dissolved organic matter (DOM) has been established 

as an important modifier for Cu toxicity (Arnold et al., 2010; Nadella et al., 2009; Arnold 

et al., 2005). As DOM enters estuaries, it’s quality and capacity to protect against metal 

toxicity can be modified in several ways (McCallister et al., 2006) to better understand its 

function and structure to determine any toxicity mitigating qualities (Murphy et al., 2008; 

Brooks et al., 2007; Stedmon et al., 2003, 2005; McKnight et al., 2001). While sufficient 

data is available to understand the effects of DOM in sea-water (Arnold, 2005; De Palma 

et al., 2011; Arnold et al., 2006; Nadella et al., 2009), relatively few studies have 

examined the protective effects of Cu over a range of estuarine salinities (Hall et al., 

2008; Arnold et al., 2010).  

Estuaries are usually defined with having a wide variability in composition and 

concentration of DOM. Furthermore, as salinity increases a general decrease in DOM 

concentration has been observed (McCallister et al., 2006, Gerringa et al., 1998, Shank et 

al., 2004 and Ndung’u et al., 2003). DOM has also been established to exhibit source 
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(Ryan et al., 2004; McKnight et al., 1983; De Schemphelaere et al., 2004; Shwartz et al., 

2004; Brooks et al., 2007) and concentration (Arnold, W.R., 2005, 2006 and 2010; De 

Palma et al., 2011; Nadella et al., 2009; Hall et al., 2008) dependent protection from Cu 

toxicity, however it is currently being used as a singular numerical value in toxicity 

prediction. Further research is required to build an understanding of the interactive effects 

of salinity and DOM (both source and quality) in estuarine waters to better establish 

water quality guidelines/criteria. 

Americamysis bahia are small arthropods commonly found in estuaries and 

marine waters at salinities ranging from 15 to 30ppt, with an iso-osmotic point of 25ppt 

(De Lisle and Roberts, 1987). They were chosen for this study because they tolerate a 

wide range of salinities and are moderativelysensitive to metals (Lussier et al., 1988; De 

Lisle et al., 1987). A bahia are established as an indicator organism and there are 

standardized methodologies for culturing the organisms (EPA-505/8-0-006b) and toxicity 

testing (EPA 712-C-96-136; EPA 1007.0) (USEPA, 1990). 

While studies have looked at acute (96h) metal toxicity (Hunt et al., 2002; Lussier 

et al., 1985; Lussier et al., 1999; Toussaint et al., 1985) to Americamysis bahia there is a 

lack of data on chronic Cu toxicity. In addition to understanding Cu speciation in natural 

waters and metal bio-availability, effects of long-term Cu exposure on sub-lethal end-

points are critical to understanding the potential impact of Cu in estuarine systems. 

Standardized test methodologies for assessing chronic (lethal an sub-lethal) effects on A. 

bahia include the 28d (OPPTS 850.1350) life-cycle toxicity test (Ward et al., 2002; Hunt 

et al., 2002, Lussier et al., 1985; Breteler et al., 1982) and also the 7d growth and survival 

(EPA 1007.0).  The latter has been shown to provide comparable results to the longer test 



 

78 
 

and it provides greater flexibility and opportunities to test natural water and DOM 

(Lussier et al., 1999; Ward et al., 2002; Khan et al., 1992).  

The purpose of this research was to understand the effect of Cu on A. bahia at two 

salinities and the ameliorative effects of DOM on toxicity. All tests were conducted at 

salinities of 15 or 25 ppt as they were selected as the most representatives of estuarine 

environments and well within the tolerance limits of mysids. We used short-term (7d) 

tests with A. bahia to measure the effects of Cu on survival and growth as end-points 

following standard methods. We also developed an index of female sexual maturation 

based on relative brood sac size as it develops and applied this as a third endpoint. The 

overall objective of this study was to generate data towards developing an improved 

understanding of the potential impacts of Cu in estuarine waters. 

3.2 Methodology 

3.2.1 Test Organism   

Test organisms (A. bahia, 4d old) were obtained from Aquatic Research 

Organisms (Hampton, New Hampshire, USA) and acclimated to lab conditions following 

standard EPA method (EPA-505/8-0-006b) for 3d in reconstituted salt water using 

synthetic sea salt (Kent Marine Reef Salt Mix). Salinity and temperature was monitored 

daily using a handheld conductivity meter (YSI 30, YSI Inc., Yellow Springs) and kept 

constant at 25ppt and 26
o 

C (± 0.5). The mysids were fed Artemia nauplii (Brine Shrimp 

Direct, Ogden, UT, USA) at a density of 150 artemia/day/neonate. 
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3.2.2 DOM Collection  

(Refer to section 2.2.2 in Chapter 2) 

DOM collections were carried out in November of 2011 and May of 2012. The 

collection sites were selected to provide minimal anthropogenic influences and maximum 

similarity to natural DOC entering estuaries. The DOM sources were collected using a 

portable reverse osmosis system (Refer to Chapter 2) and stored following the methods 

described by Schwartz et al. (2004). Three DOM samples were chosen, Kelley’s Bog, 

Northlake and Rankin Brook, for all the testing (Refer to Chapter 2; Table 1) 

3.2.3 A. bahia Toxicity Tests  

 

Seven day toxicity tests were carried out to assess the short-term chronic toxicity 

of Cu following standard EPA method (EPA-821/R-02-014; 1007.0). All test solutions 

were prepared using Kent Marine Reef Salt Mix 24 h before test initiation to allow 

solutions to reach equilibrium. Tests were static renewal in nature with daily renewals. 

The tests were carried out in crystallizing dishes (Pyrex, Fisher Scientific, Ottawa, ON) 

with 250 mL of test solution. Test solutions were prepared to allow for a daily test 

solution renewal using synthetic Kent sea salt mixed with appropriate Atomic Absorption 

Spectroscopy (AAS) standard Cu stock solution (TraceCERT, Sigma-Aldrich Co., 

Oakville, ON). Salinity, pH and temperature were monitored and recorded on a daily 

basis. Each test consisted of four replicates with 10 neonates per replicate and included 

unexposed controls. Samples for total (unfiltered) and dissolved Cu (using 0.45 µM 

filters; Acrodisc HT tuffryn membranes, Pall Corp., Ann Arbor, MI) were collected on 

days 1, 3, 5 and 7 for Cu analysis in addition to DOC samples.   
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The end points were chosen to be mortality, growth as well as a new end-point 

sexual maturity. Observation for dead organisms was done daily until test completion and 

the dead individuals were removed. The final number of surviving mysids was used to 

calculate mortality LC50 values. Growth was measured as a second end-point and was 

determined both as percent body weight. It was also calculated as biomass (total dry 

weight for surviving mysids per concentration and replicat). Surviving organisms were 

individually weighed to the nearest µg using a Sartorius SE2 Ultra Microbalance 

(Sartorius Mechanatronics Corp., Bohemia, NY). Images of surviving mysids were taken 

using an inverted microscope to determine sex of the organism as well as to determine a 

sexual maturation score. Sexual maturity in females was quantified using a brood-sac 

scoring system that identifies the presence of clearly distinguished gonads, testis or 

brood-sac. The score ranges from 0 to 5, 0 being not sexually mature and 5 representing a 

fully mature female with eggs in the brood pouch (Figure 3.11).  

3.2.4 Effect of Salinity on Cu toxicity 

 

AAS standards (TraceCERT, Sigma-Aldrich Co., Oakville, ON, Canada) for Cu 

(1g/L) were used to make standards and test solutions. Tests were conducted ta 15 and 

25ppt and Cu concentrations ranged from 0 to 160 µg/L. 10 L of test solution was made 

for each test concentration and stored in plastic carboys until test renewal. Salinity, pH 

and temperature were measured at 24h intervals and recorded and mysids were fed after 

every water renewal. Any mortality was recorded daily and dead individuals were 

removed.  
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 3.2.5 Effects of DOC on Cu toxicity 

 

All tests were carried out with measured DOC concentration of either 0 or 4 mg 

C/L. The effect of DOM was tested at both salinities, 15 and 25ppt with three DOM 

sources to determine any site-specific differences. The test Cu concentrations ranged 

from 30 to 320 µg/L and were prepared using standard AAS Cu standards. DOM 

concentrates were diluted accordingly to obtain the desired DOC concentration. A Cu 

negative control was used, with no added metal to the salt water as well as DOC positive 

control where the DOC concentration being tested was added without any input of metal 

to see any toxic effects of DOC alone. All solutions were prepared 24h in advance to 

allow for a homogenous mixture to be made with Cu and DOC. The mysids were fed 

throughout the duration of the test with daily water renewals and the debris was removed. 

Dissolved and total Cu water samples as well as DOC samples for each concentration 

were collected for analysis. 

3.2.6 Measurements and Analysis 

 

3.2.6.1 LC 20 &50 

Lethal concentrations (LC50) values were calculated using mortality data 

representative of each short-term chronic test using Spearman Karber Analysis in CETIS. 

The 95% confidence limits for all samples were also determined. Dry weight was used on 

an average dry weight basis and all calculations were done as a percent of control to 

eliminate any differences in initial weights of the mysids. Effect concentrations 20 (EC20) 

and 50 (EC50) were also calculated for growth and sexual development data using CETIS. 

The generated data was plotted using SigmaPlot™ (ver.11) to determine dose response 

curve, growth and sexual maturity trends. Data was considered significant if the 95% 
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confidence intervals did not overlap; if the confidence intervals overlapped significance 

was determined using Litchfield-Wilcoxon statistical analysis method (Environment 

Canada, 2005). Data for growth, biomass as well as sexual maturation, also represented 

as a percent of control, was compared using one-way ANOVA, in SigmaPlot
TM 

(ver. 11), 

to determine significance differences within each test. T-tests were utilized to compare 

different salinity and DOM tests (p<0.05). 

3.2.6.2 Cu Measurements and Analysis 

 

Water samples were measured to determine total and dissolved Cu concentrations. 

A lanthanum oxide precipitation process to eliminate salt from sample (Toyota et al., 

1983) was used on all samples. The samples were subsequently measured by flame 

atomic absorption spectrometry (SpectraAA 880 with GTA100, Varian Inc., Palo Alto, 

CA).  

3.2.6.3 DOC measurements and characterization 

 

Filtered DOC samples from all concentrations and controls were used for all DOC 

reading using non-purge able organic carbon (NPOC) analysis. DOC concentrations were 

measured using a total carbon analyzer (TOC) analyzer (Shimadzu TOC-LCPH/CPN, 

Shimadzu Corporation, Kyoto Japan). All the samples and standards were brought to 

room temperature, transferred to TOC vials and spiked with 2-3 drops of concentrated 

Hydrochloric acid (Sigma-Aldrich, Oakville, ON, Canada) prior to sample analysis. 

Optical characterization of DOC was carried out by EEMS using a fluorescence 

spectrometer (Cary Eclipse, Varian, Victoria, Australia). The samples were measured in a 

quartz cuvette (Hellman Canada Ltd., Concord Canada). The measurements were done 
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using the excitation wavelength range of 200-450 nm with 10 nm increments while the 

emission was measured from 250- 600 nm. The generated data was then analyzed using 

MATLAB
TM

 through PARAFAC analysis to determine the four components to 

distinguish any differences between sources (Refer to 2.2.4). 

3.2.6.4 DOM source and quality analysis (Refer 2.2.4) 

 

EEMS was used to conduct optical characterization of the DOM sources. This 

data was analyzed using PARAFAC to determine components of the DOC samples and 

relative mounts of fluorophores were determined. The absorbances and scans were also 

used to form contour plots to determine any visual difference between DOM sources. 

Furthermore absorption coefficients at 340 nm (SAC340) and fluorescence index (FI) were 

determined to further optically characterize the DOM (Refer to Chapter 2). The 

distribution of the four components within each DOM source was then correlated to 

effect concentrations for survival, growth and sexual maturation to determine toxicity. 

Finally, the SAC340 values as well as FI were examined in conjunction with LC/EC 

values to observe potential relationships between DOM source quality and corresponding 

protective capacity (Refer to 2.2.4). The correlations were determined using Pearson 

Product Moment and were considered significant when p<0.05. 

3.3 Results  

 

3.3.1 Test Conditions/Water Samples Analysis 

 

Temperature, salinity and pH were monitored throughout the duration of each 

test. The temperature for all tests was 25.6 ± 0.3 (n =1536), pH was measured (n =240) to 
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average 7.9 ± 0.4 (Table 3.1). The salinity for all tests conducted at 15ppt was 15 ± 0.2 

ppt through the duration of the test; whereas salinity was 25 ± SEM 0.3 for tests 

conducted at 25ppt (n = 2304). Measured dissolved Cu concentrations were determined 

to be 97 ± 5% of the nominal Cu concentrations (n = 312) . To determine if there were 

changes in Cu concentration over the duration of the tests, samples were also collected at 

the termination of each test and dissolved Cu concentrations on Day 7 were measured to 

be 90 ± 5 % of those on Day 1 (n = 144). DOC measurements in tests with no added 

DOC provided a background level of 0.81-1.22 mg C/L and DOC additions for all three 

sources were determine to be within 100 ± 12 % (n = 280) of nominal DOC 

concentrations (Table 3.1)  

3.3.2 Short-term Chronic Toxicity 

 

3.3.2.1 Survival 

 

There was a concentration dependent effect of Cu, with higher concentrations 

causing increased mortality (Figure 3.1). Although not significant, higher mortality was 

observed at 15ppt (Figure 3.1). All three DOM sources provided a significant protective 

effect from Cu toxicity at 15ppt and LC50s ranged from 226-309 µg Cu/L (Figure 3.2). 

Kelly’s Bog provided the highest protection against toxicity while Northlake was least 

protective (Figure 3.2). The protective effects of DOM sources were variable at both 15 

and 25ppt and no significant source dependent differences were found. No significant 

protection of DOC on survival was found at 25 ppt as 50 % mortality was not reached in 

all the test and the LC50 values were determined through extrapolation. 
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3.3.2.2 Growth 

 

 In all experiments, except Kelly’s bog, increasing Cu concentrations resulted in a 

decrease in the average mysid dry weight (Table 3.2). No salinity differences were 

discovered for percent dry weight between 15 and 25ppt Cu only tests (Figure 3.3a). The 

results were equivocal for dry weight and neither of the three DOM sources provided any 

protection from Cu toxicity at 15 or 25ppt. Since no significant trends were determined 

using dry body weight as an indicator, biomass was chosen as a second growth end-point 

as it accounts for both survival and body weight. Biomass at 15ppt was significantly 

lower than at 25ppt therefore expressed as percent control (Figure 3.3b). There was a 

significant decrease in biomass between control and the highest Cu concentration for all 

tests. The results were equivocal for biomass at a salinity of 25ppt and neither of the three 

sources provided significant protection (Figure 3.5), however Kelly’s Bog had the highest 

EC20 at 140 µg Cu/L (Figure 3.6). At 15ppt, EC20 values for Kelly’s Bog and Rankin 

Brook were significantly different from those with no added DOC, while Northlake DOC 

provided no extra protection (Figure 3.4). EC50s for all sources could not be determined 

as at some sources a 50 percent reduction in body weight or biomass did not occur over 

the course of the tests and any EC50 values would have to be extrapolated. 

3.3.2.3 Sexual Maturation (Brook-sac Development Score) 

 

Sexual Maturation decreased with increasing Cu concentration (Table 3.2). There 

was a strong salinity difference between the brood-sac scores from mysids acclimated to 

15 and 25ppt independent of Cu (Figure 3.7). Brood-sac differences were therefore 

calculated within 15 and 25ppt as a percent of control to eliminate any starting 
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differences for each test. No source-dependent protective effect of DOM was found on 

brood-sac development score at either 15ppt (Figure 3.8) or 25ppt (Figure 3.9). EC20s 

also failed to exhibit any differences in protective ability of the three DOM sources at 

either salinity (Figure 3.10).  

3.3.2.4 DOM Quality vs Toxicity 

 

Several correlations were found between EC/LC values and optical characteristics 

for both 15 and 25ppt (Table 3.3). A significant negative correlation was found between 

humic acid, tryptophan content and the LC50 and both EC20 and EC50 values for growth at 

15ppt and a positive correlation was found with the fulvic acid for the same three values. 

Similarly for 25ppt, a positive correlation was determined between fulvic acid content an 

EC20 biomass while negative correlations were determined between humic and 

tryptophan. No correlation was found between sexual maturation EC50 concentrations and 

any of the optical properties. While positive correlations were found between SAC340 and 

FI values and effect concentrations, none of these correlations were statistically 

significant.  

3.4 Discussion 

  

 This study examined the toxicity ameliorating effects of salinity and DOM on Cu 

toxicity to Americamysis bahia in estuarine environments. Both DOM and salinity 

provided a protective effect from Cu toxicity during the 7-day toxicity tests. The three 

DOM sources were protective to varying degrees, however there was no conclusive 

evidence of site-dependent protection from Cu toxicity at either salinity. Optical 
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characteristics were also unable to provide adequate explanation for observed differences 

in toxicity among various sources. 

 As mentioned previously, there are plenty of studies examining acute Cu toxicity 

in sea water, however there is a lack of chronic studies looking at survival and sub-lethal 

effects of Cu in estuarine environments. The present study was designed to better 

understand short-term chronic toxicity of Cu and demonstrated deleterious effects of a 

chronic Cu exposure. An appropriate comparison between 7-day toxicity tests to 28 day 

life cycle tests could not be carried out due to a lack of sufficient available 7-day test data 

examining Cu toxicity in estuarine environments. 

Overall a decrease in survival was observed as Cu concentrations were increased 

as has been observed in literature (Morrison et al. 1989; Chen et al., 2001). Two estuarine 

salinities were used to determine the effects of salinity on short-term chronic exposures 

of Cu. Overall the organisms were approximately 1.5 times more sensitive during the 

chronic exposure (115 µg Cu/L)  in comparison to acute Cu exposures (178 µg Cu/L), 

very similar to what was observed by Lussier et al. (1985). In general A. bahia was 

determined to be more sensitive to Cu toxicity at 15ppt in comparison to 25ppt, a trend 

very similar to what was found for tiger shrimp (Chen et al. 2001) as well as acute Cu 

toxicity due to stress on its osmoregulatory system (Refer to chapter 2). Blanchard et al. 

(2006) and Grosell et al. (2007) observed an increased sensitivity of the organisms to 

metal toxicity below or above the iso-osmotic point as well (25ppt for A. bahia; De Lisle 

et al., 1986, 1987). However, there was no statistical difference between the LC50 values 

at 15ppt, 116 µg/L CI (64-214) or 25ppt, 186 µg/L CI (121-444). One of the few studies 

to test the chronic effect of Cu on A. bahia (Lussier et al., 1985) tested effects of Cu at 
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30ppt using a 28-day toxicity test and an LC50 value of 104 (77-144) µg/L Cu was 

calculated. Morrison et al. (2007) also tested the effects of Cu at 30ppt using the same 7d 

test and calculated an LC50 of 169 (137-196) µg/L. The results obtained from this study 

were in agreement with the LC50 values obtained by Morrison et al. (2007) and Lussier et 

al. (1985) as no significant differences were found between the LC50 values.  

Effects of Cu were also tested on growth (measured as body weight as a % of 

control) and no salinity difference was observed, which demonstrates that even though 

fewer mysids survived at 15ppt, the ones that did survive appeared to grow at the same 

rate as those at 25ppt. To better illicit the differences that may be present in growth total, 

biomass was calculated at each exposure concentration. Biomass is a better end-point 

representing growth to exhibit differences as it accounts for both survival as well as body 

weight. This end-point revealed that biomass at both 15 and 25ppt was significantly 

lower at the highest Cu concentrations in comparison to controls. A similar pattern was 

observed in a studies by Chen et al. (2001) on shrimp, Erickson et al. (1996), in fat head 

minnows, Munari et al. (2007) for clams and Lorenzo et al. (2002) for sea urchins all of 

which observed a decreased biomass with increasing Cu concentrations. A significant 

protective effect of salinity was observed as the salinity was increased from 15 to 25ppt, 

similar to literature (Riedel et al., 1995). EC20 values were determined for growth based 

on biomass and A.bahia exhibited a significantly lowered sensitivity to Cu at 25ppt in 

comparison to 15ppt with no addition of DOC.  

Finally, brood-sac development score was determined to exhibit a very strong 

salinity dependence, independent of Cu exposure, as there was a significant difference 

between the control group at both 15 and 25 ppt. Values calculated to be significantly 
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different from control from this test ( > 80 µg Cu/L) were compared to those (for delay of 

reproduction; > 70 µg Cu/L) by Lussier et al. (1985) and were determined to not be 

significantly different. Brood-sac development was therefore deemed unsuitable as an 

end-point to determine between salinities, however it was determined to be an 

appropriate end-point to use amongst different treatments within a salinity.  

 In addition to salinity, effects of DOM (source and concentration) on short-term 

chronic Cu toxicity were also determined. A protective effect of DOM similar to that on 

acute toxicity was observed for short-term chronic toxicity. Additions of DOM added at 

both 15 and 25ppt resulted in increased LC50 values, hence providing protection from Cu 

toxicity. This effect of DOM on toxicity mitigation is similar to the effect observed in M. 

galloprovincials (Nadella et al., 2009; Arnold et al., 2005), E. affinis (Hall et al., 2008) 

and B. plicatilis (Arnold et al., 2010). All tests with DOM added at a measured 

concentration of 4 mg C/L were significantly protective at 15ppt as up to a 2.5 fold 

difference in LC50 values was observed. The results were equivocal at 25ppt and a linear 

increase in protective capacity of DOM with increasing salinity was not observed. The 

reason for this lack of increase in protective capacity is suggested to be attributed to the 

formation of salt induced colloid formation (Cooper et al. 2014; Wood et al., 2011). It is 

proposed that at high ionic strength a decrease in Van der Wall forces and results in inter-

particle attraction resulting in colloid formation (Cooper et al., 2013). It can also be as a 

result of the fact that 15 to 25ppt is the optimal range of salinities and thus requires 

minimal active osmotic gradient changes. 

 Minimal protective effects on dry weight of mysids were observed after the 

addition of DOM, however no statistical differences were calculated between no added 
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DOC tests and three DOM sources for dry weight as a percent of control at both 15 and 

25ppt. To further understand any differences that may be present, bio-mass as a percent 

of control, was also calculated. Rankin Brook and Kelly’s bog were shown to provide a 

significant protection from Cu toxicity at 15ppt while Northlake provided no protection. 

There were no significant differences in Cu toxicity at 25ppt for any of the sources.  

  The final end-point measured was sexual maturation (as measured by brood-sac 

development score) and the comparison amongst tests was only conducted within each 

salinity to avoid strong salinity effects. Broods-sac development score was also 

calculated as a percent of control to eliminate differences between controls. The average 

brood-sac development score calculated at 15ppt for all controls in the tests (no added 

DOC and DOM sources at 4mg C/L) was 1.5 and DOM did not provide any source-

dependent protection from toxicity. Similarly, at 25ppt DOM did not mitigate Cu toxicity 

in a source-dependent manner after addition of 4 mg C/L DOC and the average score for 

the controls was calculated to be 3.  

The lack of effect of DOC on sexual maturation is consistent with what Lorenzo 

et al. (2002) found. Growth was determined to be a more sensitive end-point than 

embryogenisis and a protective effect was observed on growth at much lower DOC 

concentrations than those required to result in reduced toxicity on embrogenisis. The 

EC20 values in this experiments also exhibit a similar trend where the growth is shown to 

be a much more sensitive end-point than sexual maturation and DOM provides a 

significant reduction in toxicity whereas no protective effect of DOM is observed on 

sexual maturation. 
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 Calculated effect concentrations for survival, growth and sexual maturation values 

were then compared to determine correlation between toxicity and optical characteristics 

of DOM. All sources exhibited a high humic-acid and fulvic acid content, which has 

previously been linked to protective capacities of DOM (Cooper et al., 2014; Arnold et 

al., 2010; Nadella et al., 2009; Zitko et al., 1973, Schwartz et al., 2004). A general 

protective effect of DOM was observed as higher Cu concentrations were required to 

result in the same mortality. Unlike freshwater it has been proposed that higher fulvic 

content of DOM results in increased protective effect (Nadella et al., 2009; Lorenzo et al., 

2006). Negative correlations were determined between LC/EC50 or 20 values and humic 

acid and tryptophan, while a positive correlation was observed between the same 

parameters and fulvic acid exhibiting a protective effect of fulvic acid, similar to that of 

Nadella et al. (2009) however these correlations were not deemed significant. Strong 

correlation were found between acute LC50 values and SAC340 (i.e the color of DOM) as 

well as FI (i.e DOM origin; terrigenous vs autochthonous), while no strong correlation 

were determined for chronic values. These relationships were deemed insignificant as all 

sources exhibited very similar SAC340 values as well as FI values despite the 

geographical separation and these values covered a very small range of values associated 

with each index (SAC340: 3 – >80, Al-Reasi et al., 2011; FI: 1-1.9, McKnight et al., 

2001).  

Overall this study found that DOC is a good predictive measure of Cu toxicity in 

estuarine systems independent of source, a result very similar to that found by DePalma 

(2009).  Further research is required to clarify the interactions of Cu with DOM in salt 
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water environments and a wider array of optical techniques are required better 

differentiate any potential source dependent differences.  

3.5 Conclusions 

 

 Overall 7-day short-term chronic tests proved to be an efficient and effective 

means of measuring Cu toxicity and DOC was established a good predictive measure of 

Cu toxicity. It is evident from this study that examining survival, growth and sexual 

maturation together provides a clearer and more robust understanding of the toxicity of 

metals in estuarine systems. Increasing salinity provided a protective effect from Cu 

toxicity similar to the literature (Grosell et al., 2007; Hall et al., 2008), but this effect is 

not as clear with the addition of DOM. DOM proved to be much more protective at 15ppt 

than at 25ppt, this can be attributed to the organism already being at its iso-osmotic point 

at 25ppt as well as the potential of colloid formation of DOM with increasing salinity. 

Biomass was determined to be a much more effective means of determining differences 

in body weight in comparison to dry weight as it accounts of survival as well as weight. 

Biomass, similar to survival was a more sensitive end-point at 15ppt where a significant 

change in Cu toxicity was observed. Sexual maturation was deemed unsuitable as an end-

point in predicting toxicity across salinities due to a significant salinity difference in 

controls. No source-dependent protection was observed for sexual maturation at either 

salinity. 

No relevant and significant correlation could be made to optical characteristics 

and toxicity parameters. All sites were almost identical in chemical composition and 

optical characteristics despite the geographical distance and thus any differences 



 

93 
 

observed in toxicity tests could not be accurately understood and explained. The results 

from this study in agreement with literature (Al-reasi et al., 2011; De Palma et al., 2011) 

suggest that DOM quality does not need to be considered when developing an estuarine 

biotic ligand model. Further testing and analyses is warranted given the limited sources of 

DOM and limited sample size of current study to better understand effects of DOM 

quality on toxicity in estuarine conditions. More sources of DOM (from disturbed vs 

undisturbed sites) and salinities (representatives of estuaries), perhaps with a wide array 

of DOC concentrations need to be tested to gain a full understanding of interactive effects 

of DOM and salinity on metal toxicity. 
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3. 6 Tables and Figure 

  

Table 3.1: Measured water chemistry parameters for 7-day short-term chronic toxicity 

tests at 15 and 25ppt. Salinity, temperature and measured background DOC values and 

additions of DOC are given as mean ± SEM for each test. Cu exposure concentrations are 

given as measured dissolved Cu concentrations (mean ± SEM; µg/L). 

Test 

Salinit

y (ppt) 

Exposure 
Temperatur

e (
o
C) 

Salinity      

(ppt) 

Nomina

l Cu 

(µg/L) 

Dissolved 

Cu 

(µg/L) 

Measured 

DOC (mg 

C/L) 

0 4 ± 2.1 

20 13 ± 5.3 

40 27 ± 7.8 

80 73 ± 4.5 

120 113 ± 10 

Cu Only 25.6 ± 0.3 
15.0 ± 

0.2 

160 158 ± 13 

1.22 ± 

0.12 

 

0 3 ± 4.1 

30 27 ± 6.3 

60 61 ± 9.8 

120 118 ± 19 

200 203 ± 8.5 

Northlake 25.5 ± 0.1 
15.0 ± 

0.5 

280 280 ± 3.3 

3.94 ± 

0.21 

0 12 ± 5.6 

40 37 ± 7.2 

80 75 ± 4.6 

160 155 ± 9.1 

240 219 ± 15 

Rankin 

Brook 
25.6 ± 0.4 

15.0 ± 

0.4 

320 318 ± 7 

4.27 ± 

0.081 

0 8 ± 3 

40 44 ± 2.5 

80 80 ± 10 

160 
140 ± 

14.6 

240 230 ± 9.5 

15 

Kelly's Bog 25.6 ± 0.2 
15.0 ± 

0.1 

320 308 ± 6.2 

3.71 ± 

0.15 
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0 2 ± 5.6 

20 17 ± 2.4 

40 35 ± 3.6 

80 67 ± 6.7 

120 116 ± 11 

Cu Only 25.6 ± 0.3 25 ± 0.1 

160 168 ± 9.6 

0.81 ± 0.05 

0 6 ±  6.2 

30 30 ± 7.1 

60 59 ± 5.8 

120 118 ± 4.4 

200 188 ± 15.7 

Northlake 25.5 ± 0.1 25 ± 0.1 

280 289 ± 10.9 

3.87 ± 0.06 

0 6 ± 3.3 

40 40 ± 6.9 

80 78 ± 15.2 

160 140 ± 12.4 

240 228 ± 20.3 

Rankin Brook 25.6 ± 0.4  25.0 ±0.5 

320 314 ± 8.4 

4.48 ± 0.33 

0 6 ± 1.6 

40 23 ± 3.9 

80 73 ± 3.8 

160 157 ± 10.1 

240 255 ± 11.7 

25 

Kelly's Bog 25.5 ± 0.2 25.0 ± 0.4 

320 326 ± 8.6 

4.05 ± 0.09 
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Table 3.2: 7-day short-term chronic toxicity end-points: survival, growth (dry weight and biomass) as well sexual maturation 

measured as brood-sac development score. Dry weight and brood-sac development are shown as mean ± SEM individual 

weight/score of surviving mysids. Biomass is given as the mean ± SEM total biomass for each exposure concentration 

Exposure concentration are given as mean measured dissolved Cu concentrations for both salinities (15 and 25ppt). An * 

indicates a significant difference from controls (ANOVA P<0.05). 
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Salinity 

(ppt) 
Exposure 

Dissolved 

Cu (µg/L) 
Dry Weight   (mg) 

Biomass                   

(mg) 

Brood-sac  

Development Score n 

   4 ± 2.1 0.189 ± 0.012  1.65 ± 0.143  1.143 ± 0.378 35 

13 ± 5.3 0.179 ± 0.009  1.462 ± 0.247  0.714 ± 0.267* 31 

27 ± 7.8 0.183 ± 0.023  1.198 ± 0.231*  0.667 ± 0.258* 26 

73 ± 4.5 0.162 ± 0.018  0.981 ± 0.265*  0.5 ± 0* 24 

113 ± 10 0.15 ± 0.019*  0.633 ± 0.142*  0 ± 0* 17 

Cu Only 

158 ± 13 0.142 ± 0.021*  0.487 ± 0.016*  0 ± 0* 14 

3 ± 4.1 0.283 ± 0.015  2.403 ± 0.115  2.318 ± 0.929 34 

27 ± 6.3 0.214 ± 0.019*  1.773 ± 0.116*  1.278 ± 0.441* 33 

61 ± 9.8 0.205 ± 0.044*  1.727 ± 0.295*  1.278 ± 0.363* 34 

118 ± 19 0.196 ± 0.017*  1.375 ± 0.12*  0.857 ± 0.556* 28 

203 ± 8.5 0.156 ± 0.018*  0.78 ± 0.088*  0.75 ± 0.274* 20 

Northlake 

280 ± 3.3 0.147 ± 0.02*  0.442 ± 0.061*  0 ± 0* 12 

12 ± 5.6 0.178 ± 0.022  1.694 ± 0.279  1.5 ± 0.632 38 

37 ± 7.2 0.161 ± 0.02  1.434 ± 0.076  1.167 ± 0.764 36 

75 ± 4.6 0.145 ± 0.008  1.163 ± 0.18*  0.7 ± 0.274* 32 

155 ± 9.1 0.132 ± 0.019*  0.915 ± 0.04*  0.5 ± 0* 28 

219 ± 15 0.125 ± 0.022*  0.625 ± 0.109*  0.5 ± 0* 20 

Rankin 

Brook 

318 ± 7 0.12 ± 0.024*  0.277 ± 0.145*  0.5 ± 0* 9 

8 ± 0.231 ± 0.062  1.847 ± 0.498  1.577 ± 0.572 32 

44 ± 0.222 ± 0.062  1.661 ± 0.425  1.045 ± 0.416* 30 

80 ± 0.198 ± 0.024  1.683 ± 0.205  0.8 ± 0.274* 34 

140 ± 0.196 ± 0.025  1.565 ± 0.196  0.7 ± 0.274* 32 

230 ± 0.177 ± 0.019  1.012 ± 0.081*  0.5 ± 0* 23 

15 

Kelly's Bog 

308 ± 0.163 ± 0.017  0.614 ± 0.116*  0.25 ± 0* 15 
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2 ± 5.6 0.322 ± 0.016  2.898 ± 0.223  3.5 ± 0.972 36 

17 ± 2.4 0.322 ± 0.032  2.881 ± 0.186  3.219 ± 0.816 36 

35 ± 3.6 0.318 ± 0.031  3.017 ± 0.224  3.22 ± 0.778 38 

67 ± 6.7 0.278 ± 0.038  2.419 ± 0.469  2.188 ± 0.704* 35 

116 ± 11 0.252 ± 0.037*  1.831 ± 0.328*  1.778 ± 0.905* 29 

Cu Only 

168 ± 9.6 0.226 ± 0.031*  1.191 ± 0.242*  1.071 ± 0.432* 21 

6 ±  6.2 0.234 ± 0.008  2.218 ± 0.125  2.625 ± 0.582 38 

30 ± 7.1 0.209 ± 0.026  1.878 ± 0.298  1.75 ± 0.463* 35 

59 ± 5.8 0.194 ± 0.02*  1.738 ± 0.122*  1.778 ± 0.264* 37 

118 ± 4.4 0.171 ± 0.015*  1.562 ± 0.126*  1.357 ± 0.378* 37 

188 ± 15.7 0.15 ± 0.014*  0.907 ± 0.186*  1 ± 0.612* 24 

Northlake 

289 ± 10.9 0.144 ± 0.026*  0.609 ± 0.118*  0.583 ± 0.204* 17 

6 ± 3.3 0.238 ± 0.026  2.142 ± 0.238  2.5 ± 1.354 36 

40 ± 6.9 0.209 ± 0.026  1.726 ± 0.213*  1.167 ± 1.155 33 

78 ± 15.2 0.188 ± 0.024*  1.544 ± 0.18*  0.833 ± 0.577* 33 

140 ± 12.4 0.161 ± 0.025*  1.289 ± 0.202*  0.7 ± 0.274* 32 

228 ± 20.3 0.156 ± 0.017*  1.166 ± 0.112*  0.625 ± 0.25* 30 

Rankin 

Brook 

314 ± 8.4 0.145 ± 0.021*  0.942 ± 0.189*  0.583 ± 0.204* 29 

6 ± 1.6 0.182 ± 0.004  1.64 ± 0.187  2.079 ± 0.731 36 

23 ± 3.9 0.169 ± 0.006  1.435 ± 0.091  2.4 ± 0.615 34 

73 ± 3.8 0.167 ± 0.012  1.414 ± 0.176  2.25 ± 0.5 34 

157 ± 10.1 0.166 ± 0.013  1.372 ± 0.284  1 ± 0.447* 33 

255 ± 11.7 0.164 ± 0.012  1.179 ± 0.268*  0.667 ± 0.258* 29 

25 

Kelly's Bog 

326 ± 8.6 0.154 ± 0.02  0.769 ± 0.101*  0.5 ± 0* 20 
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Table 3.3: Correlation coefficients (r) calculated with Pearson Product Moment for optical characteristics of DOM with 

measured 7-day short-term chronic toxicity end-points. * denotes significance in relation to toxicity parameters. 

 

 End Point EC/LC SAC340 FI HA FA Trp Tyr 

Survival Day 7 LC50      (µg C/L) 0.65 (-)0.62 (-)0.99* 0.99* (-)0.99* N/A 

Day 7 EC20    (µg C/L) 0.75 (-)0.72 (-)0.96* 0.96* (-)0.96* N/A 

Biomass 

Day 7 EC50    (µg C/L) 0.72 (-)0.69 (-)0.98* 0.98* (-)0.98* N/A 

15 

Sexual Maturation Day 7 EC50    (µg C/L) 0.92 (-)0.90 (-)0.83 0.83 (-)0.83 N/A 

Survival Day 7 LC50      (µg C/L) 0.72 (-)0.75 0.18 (-)0.18 0.18 N/A 

Day 7 EC20    (µg C/L) 0.37 (-)0.33 (-)0.98* 0.98* (-)0.98* N/A 

Biomass 

Day 7 EC50    (µg C/L) 0.92 (-)0.89 (-)0.84 0.84 (-)0.84 N/A 

25 

Sexual Maturation Day 7 EC50    (µg C/L) (-)0.21 0.25 (-)0.69 0.69 (-)0.69 N/A 
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Figure 3.1: Exposure response relationship for survival of A.bahia exposed to Cu for 7-d 

at either 15 (filled circles) or 25ppt (open circles). Mean ± SEM are shown and n=40 for 

each test. A * indicates a significant difference from mean survival with no added Cu 

(p<0.05).  
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Figure 3.2: Effect of 4 mg DOC/L on 7-d LC50. DOM sources were tested at 15 and 

25ppt. A* indicates difference from no added DOC at 15ppt. 
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Figure 3.3: Effects of salinity on Cu toxicity as measured by growth on Americamysis 

bahia: A) body weight as a percent of control B) biomass as percent of control, at 15 

(solid) and 25 (dashed) ppt.  
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Figure 3.4: Comparison between three DOM sources (at 4 mg C/L) and no added DOC 

on biomass on day 7 at 15 ppt for short-term chronic Cu exposure. Rankin Brook and 

Northlake were determined to be significantly different from Kelly’s Bog.
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Figure 3.5: Growth dose response curve (represented as biomass as a percent of control) 

after 7-day short-term chronic Cu exposures at 25ppt. All DOM tests were conducted at a 

measured concentration of 4 mg C/L. No significant difference were found among the 

DOC sources. 
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Figure 3.6: A comparison of 7-d Cu EC20 values for biomass at 15 and 25ppt. * Denotes 

a significant difference in toxicity compared to 15ppt (no added DOC) while ** 

represents a significant difference between 15 and 25ppt, Cu only exposures.
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Figure 3.7: Effect of salinity on sexual maturation (calculated as brood-sac development) 

at 15 (dashed) and 25ppt (solid). The brood-sac score ranged from 0 (immature mysid) – 

5 (fully mature female with eggs in brood-pouch). 
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Figure 3.8: Intra-specific comparison of brood-sac development score at 15ppt. DOM 

was added at a measured concentration of 4 ± 0.5 mg C/L with a background level of 0.5 

mg C/L.
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Figure 3.9: Interactive effect of salinity (25ppt) and DOM (4 mg C/L) on sexual 

maturation score. Brood-sac development is illustrated as a % of control.
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Figure 3.10: Effects of salinity and DOM (source) on effect concentration 20 for sexual 

maturation.   
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Figure 3.11: Brood-sac development score (as a measurement of sexual maturation 

score). Brood sacs are rated on a scale from 0 (immature) to 5 (fully mature female with 

eggs in the brood sac). 
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Chapter 4 

Establishing a Provisional BLM for Cu in Estuaries: Influence of 

Salinity and DOM Quality 
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4.1. Cu Toxicity: The Relative Importance of Cu bioavailability vs Osmoregulatory Demands in 

Changing Salinities 

 

A wide range of salinities ranging from near fresh water (5 ppt) to marine (40 ppt) were 

tested in this thesis to gain a complete and thorough understanding of the impacts of Cu toxicity 

across different salinities. As salinity was increased from 5 ppt to 15 ppt a strong protective 

effect of salinity was observed against Cu toxicity. This protective effect was attributed to an 

increased in the Na
+
 and Cl

-
 ion concentrations (Blanchard et al., 2006; Arnold et al., 2005, 

2010). An increase in salinity results in a decrease in Cu bioavailability as high Na
+
 

concentrations provide an increased competition to the labile Cu
2+

 for uptake at the biotic ligand. 

Cu
2+

 is further rendered un-available due to complexation with Cl
-
 ions and overall higher Cu 

concentrations are required to result in a toxic action. The protective effect of salinity, however, 

was not linear, as a plateau (20-30 ppt) and then a decrease was observed in protection at higher 

salinities (>30 ppt). This plateau and tje increase in Cu sensitivity observed in the results from 

this study may have resulted from increased physiological stress and disruption of 

osmoregulation, as described previously in Killifish (Grosell et al., 2007), where increased 

sensitivity was observed at salinities lower and higher than its iso-osmotic point (10ppt), the 

same effect was observed for the copepods E. affinis (Hall et al. 2008) and A. tonsa (Pinho et al., 

2010).  

While many details regarding osmoregulation are worked out for different estuarine fish 

species (e.g. Marshall and Edwards, 2013; Wood et al., 2011). There remains a need to study the 

physiological mechanisms required to maintain internal osmotic balance by different invertebrate 

organisms across estuarine salinities. It is well established that Cu toxicity occurs through 

disruption of Na
+
/K

+
 ATPase and an overall disruption of ion regulation (Grosell et al., 2007). At 
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salinities below the iso-osmotic point, A. bahia would experience a loss of Na
+
 ions to the 

external environment due to diffusion as well as a disruption of Na
+
/K

+
 ATPase, resulting in a 

decrease of Na
+
 ions causing death. Above the iso-osmotic gradient, an influx of Na

+
 ions would 

occur inhibiting of Na
+
/K

+
 ATPase resulting in a toxic effect. However, at iso-osmotic point, 

where minimal ion-regulation is required, a plateauing effect was observed for A. bahia around 

20-30 ppt (iso-osmotic point at 25 ppt) illustrating decreased toxicity.  

To further explore effects of salinity on organism physiology and acclimation 

experiments were conducted at 15 and 25 ppt. Acclimation to a salinity prior to testing has been 

shown to decrease toxic effects of Cu (Adeyemi et al., 2012), however, no such effects of 

acclimation on toxicity were found in this study. Acclimation to lower or higher salinities is 

supposed to result in an increased tolerance for Cu exposure as a result of increased expression 

of Na
+/

K
+
 ATPase (Adeyemi et al., 2012), but  this phenomenon was not observed as acclimation 

to 15 ppt did not significantly affect survival at test salinities. This lack of change might be due 

to the fact that 15-25 ppt is the optimal salinity tolerance limit for A. bahia, so acclimation at 

either salinity will result in similar toxicity. 

Short-term chronic tests were conducted at only 15 and 25 ppt, as higher and lower 

salinities negatively affect reproduction and growth in controls. Biomass as well as brood-sac 

development score were determined to be more sensitive end-points than survival, for the 7-day 

toxicity tests, as an increase in salinity provided a significant protective effect from Cu toxicity. 

This increased sensitivity to salinity at 15 ppt may be attributed to greater energy demands for 

maintenance of internal ionic-osmotic balance, which would divert energy resources from 

processes related to sexual maturation and growth. 
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 According to the current fresh water BLM, toxicity prediction is simply a factor of metal 

speciation in aquatic systems (Paquin et al., 2000; Di Toro et al., 2001; Santore et al., 2001).  

However, a key findings in this study is hat the same does not hold true for Cu toxicity in 

estuarine and marine systems. In conclusion, toxicity in dynamic environments, such as 

estuaries, may be primarily governed by physiology in comparison to Cu geochemistry. Future 

estuarine toxicity prediction models need to incorporate the wide array of physiological 

differences present in estuarine organisms.  

4.2 DOM Quality: Spatial Considerations in the Development of a Cu BLM in Estuaries  

 

DOM is a well-established toxicity modifying factor in both fresh and marine 

environments (De Shamphelaere et al., 2004; Arnold et al., 2005). However, its protective 

capacity in estuarine system has not been completely studied, which was the basis of this 

research. Environmentally relevant salinities (15 and 25 ppt) for A.bahia were selected to test 

protective effects of DOM sources/quality on acute and chronic Cu toxicity. To accomplish these 

objectives optical characterization of DOM was completed. Fluorescence analysis was carried 

out to determine the four fluorescent components (humic-like, fulvic like, tryp and tyr). SAC340 

and FI were also calculated to determine the origin of DOM sources and finally all these quality 

indices were related back to toxicity end-points. During acute exposures, addition of 4 mg C/L 

provided significant protection from Cu toxicity for some DOM sources (15 and 25 ppt: Kelly’s 

Bog and Rankin Brook) while others did not provide any protection. A similar trend was 

observed for the chronic exposures, but no significant source dependent protection was observed 

for survival, growth or sexual maturation at 25 ppt.  
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Increasing salinity from 15 to 25 ppt did not provide significant protection of DOM at 4 

mg C/L for 96 h acute Cu toxicity. Overall, DOM was much more protective at 15 ppt for both 

acute and chronic exposures than a higher salinity of 25 ppt, a trend similar to what has 

previously been observed (Nadella et al., 2013; Cooper et al., 2013). The lack of a linear increase 

in protective capacity of DOM as salinity is increased from 15 to 25 ppt could be due to salt-

induced colloid formation. As DOM-DOM interactions increase with increasing salinity, this 

decreases the overall Cu-binding capacity of DOM molecules for Cu. This results in a plateauing 

effecting and prevents a linear increase in protection offered by DOM (Figure 4.1). Similarly, 

this plateauing effect has also been observed when DOM concentrations are increased at higher 

salinities (Nadella et al., 2013; Cooper et al., 2013). This result is important for a better 

understanding of DOM speciation and metal-DOM interactions across the salinity gradient, as 

this defines the toxicity prediction of Cu when DOM is present in aquatic systems. When 

considering an estuarine BLM, this salinity-DOM interaction will allow for a more accurate 

prediction of Cu toxicity and combined protective effects of salinity as well as DOM at higher 

salinities.  

Since DOM is a strong ligand for Cu and an effective toxicity modulator, another 

relationship between DOM concentrations and predicted/expected LC50 can be extrapolated 

from the data. This relationship was determined to relate LC50 values obtained in this study to 

DOC concentrations where LC50 (µg L
-1

) = 319.19DOC
0.1026

. Similar relationships between LC50 

and DOC have been observed in other marine organisms (Arnold 2005; Arnold et al., 2006, 

Arnold et al., 2010; DePalma et al., 2011) and provide reasonably accurate predictions of metal 

toxicity based only on DOM concentrations. This has important implications, as toxicity can 

simply be predicted for a species based on the DOM concentrations for the environmental site. A 
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wider range of DOC concentrations need to be studied using A. bahia to determine a robust 

equation, representative of the relationship between toxicity and DOC concentrations.  

Correlations were also calculated between quality indices and toxicity end-points. All 

four sources of DOM were determined to be of similar composition as they exhibited a very 

similar fluorescence profile. Significant correlations were found between LC50 values and HA 

and FA (acute: r = 0.95; chronic: r = 0.99; p<0.05) concentrations. A strong positive correlation 

was found between acute LC50 values and SAC340 (color of DOM; 19.6-27.5) values, indicating 

that SAC340 is a good measure in predicting toxicity. A strong negative correlation was also 

determined between acute LC50 values and FI (origin of DOM; 1.06-1.31) indicating that FI may 

be used to determine the origin of DOM sources. Correlations between SAC340 and FI were also 

present for chronic toxicity tests, however, these were not as strong as acute toxicity. The optical 

quality index correlations while strong were not significant as they cover a very narrow range of 

possible values for each index (SAC340: 3 – 80 (Al-Reasi et al., 2011); FI: 1-1.9 (McKnight et al., 

2001)) and the same was true for fluorescence data as humic, fulvic and proteinaceous content of 

the four sources was 95 percent similar. All sources were collected from un-disturbed sites, 

representative of DOM entering estuaries, but the optical similarity of all DOM sources was 

unexpected given the geographical distances between sampling locations with in eastern Canada. 

Tait et al. (2013) found similar results when a wide variety of sampling locations comprising of 

both disturbed and undisturbed sites from the same geographical location (eastern Canada) were 

tested for their protective effects on Cu toxicity to rotifers. This suggests that at least on eastern 

Canada shores the DOM entering estuaries may relatively homogenous. In order to determine if 

quality of DOM really affects Cu toxicity, a wider range of DOM sources, that have been 

confirmed to be optically different, need to be tested.  
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Overall, the results from this study in conjunction with previous literature suggest that 

while protection warranted by DOM is a good predictive measure of metal toxicity, it may not 

source dependent in estuarine systems. This means that toxicity prediction models for estuarine 

environments may not need to incorporate a DOM quality factor into an estuarine-Cu-BLM for 

Cu toxicity predictions.  

4.3 An Overview of an Estuarine BLM for Determining Cu Toxicity. 

 

 A thorough understanding of Cu interactions with inorganic and organic ligands in 

estuaries, and an understanding of the physiology of euryhaline organisms is necessary and is 

need to better understand how Cu adversely affects aquatic biota.  This is one of the first studies 

to examine how Cu toxicity varies across the full range of salinity gradient in osmoregulating 

invertebrate, the copepod A. bahia. With respect to estuarine organisms and their wide range of 

osmoregulatory capabilities, physiology is pivotal to understanding the effects of salinity on Cu 

toxicity for development of water quality guidelines and criteria. The data from this study also 

contributes towards updating the species sensitivity distribution curve for euryhaline organisms. 

A. bahia is an iono-regulator, similar to several fish as well as estuarine and marine invertebrates, 

and this data will help regulators and aquatic toxicologists estimate/predict toxicity for other 

iono-regulators for which toxicity has not yet been tested.  

 The prediction of Cu toxicity is further complicated by presence of DOM as 

demonstrated in this study. DOM collected from a wide range of geographical areas had a similar 

chemical composition and provided similar protection against Cu toxicity. This findings suggests 

that as far as estuaries are concerned total DOM concentration alone may be sufficient for future 

toxicity predictions and developing an estuarine Cu-BLM.  However, the interactive effects of 
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DOM and salinity also need to be understood when predicting toxicity in estuarine and marine 

systems because as salinity increases, colloid DOM may in fact increase Cu bioavailability. In 

other words, at higher salinities DOM exhibits a reduced protective effect, as a result of salt-

induced colloid formation. Such interactions between salinity and DOM are critical for 

development of toxicity prediction models.  

 Future research should focus on using a wider geographical range of DOM samples to 

determine difference in DOM across estuaries. Sources that exhibit optical differences in DOM 

composition, can be used to conduct toxicity tests to determine site/quality dependent effects of 

DOM. Tests should also be conducted with organisms spanning a wider range of osmoregulatory 

capacities, to determine how Cu toxicity differs amongst osmoconformers, osmoregulators etc. 

Finally, bioaccumulation of Cu at different salinities with different DOM sources and 

concentrations needs to be determined to relate critical accumulation (LA50) to toxicity (LC50 and 

EC50). All of these tests will contribute to a more robust understanding of Cu toxicity in estuaries 

and will help create more accurate toxicity prediction models for development of 

guidelines/criteria. 

 Figure 4.2 depicts a proposed schematic of an estuarine BLM for Cu toxicity. Cu
2+

 is 

centered as the most labile form resulting in toxicity. DOM interacts with Cu to form organic 

bonds rendering Cu less bioavailable, reducing toxicity. Salinity also affects Cu
2+

 bioavailability 

through complexation with Cl
-
 ions and more importantly through competition with Na

+
 ions, 

both of which result in reduced uptake of metal at the biotic ligand. Simultaneously a DOM and 

salinity interaction also occurs, resulting in salt induced colloid formation at higher salinities 

which also alters the concentrations of free Cu in surrounding system. Finally, changes in salinity 

result in critical alteration in the physiology (osmoregulatory changes). This results in a feedback 
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loop changing Cu uptake as a derivative of physiological reaction to the salinity (i.e 

osmoregulation). 

In conclusion, the aim of this study was to help improve the understanding of Cu toxicity 

in estuarine environments. As estuaries present a very dynamic environment it was determined 

that both the geochemistry and biology (osmoregulatory mechanisms) of the organisms 

determine toxicity. The study successfully explored and defined how salinity affects Cu toxicity 

in estuarine environments. Moreover, the interactive effects of salinity and DOM on toxicity 

were also examined over a range of estuarine salinities. The data from this study and future 

studies will assist with the development of estuarine toxicity prediction models such as BLM, 

which can be used to set guidelines/criteria. 
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Figure 4.1: A schematic diagram of DOM speciation across the salinity gradient in 

aquatic systems. Copper is used to illustrate how salinity changes DOM 

interactions/phases: metal bound and dissolved in fresh water to DOM aggregates and 

particulate as a result of induced colloid formation. This change in form, from dissolved 

to colloidal, result in increased Cu
2+

 bioavailability as a result of decreased metal-DOM 

binding and this increases metal toxicity. 
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Figure 4.2:  Schematic representation of a possible estuarine BLM. Toxicity is defined to 

be a derivative of metal speciation, which is altered by both inorganic and organic 

interactions, that results in changing metal bio-availability. In estuarine systems however, 

a wide array of physiological mechanisms (i.e osmoregulatory capabilities) play a major 

role in further altering metal toxicity. Therefore, physiology is proposed as a further 

component in addition to geochemistry (salinity and DOM) to consider when determining 

the extent of Cu toxicity in estuarine environments.  
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