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ABSTRACT ARTICLE HISTORY

Two common approximations to the full Shallow Water Equations Received 27 October 2019
(SWEs) are non-divergence and quasi-geostrophy, and the degreeto ~ Accepted 30 January 2020
which these approximations lead to biases in numerical solutions are KEYWORDS

explo.red using the test t_)_ed of barotropic instability. Speqﬂ(_:ally, we Barotropic instability; shear
examine the linear stability of strong polar and equatorial jets and instability; spherical shallow
compare the growth rates obtained from the SWEs along with those water equations
obtained from the Non-Divergent barotropic vorticity (ND) equation

and the Quasi-Geostrophic (QG) equation. The main result of this

paper is that the depth over which a layer is barotropically unstable

is a crucial parameter in controlling the growth rate of small ampli-

tude perturbations and this dependence is completely lost in the ND

equation and is overly weak in the QG system. Only for depths of

30km or more are the growth rates predicted by the ND and QG

systems a good approximation to those of the SWEs, and such a

convergence for deep layers can be explained using theoretical con-

siderations. However, for smaller depths, the growth rates predicted

by the SWEs become smaller than those of the ND and QG systems

and for depths of between 5 and 10 km they can be smaller by more

than 50%. For polar jets, and for depths below 2 km the mean height

in geostrophic balance with the strong zonal jet becomes negative

and hence the barotropic instability problem is ill-defined. While in

the SWEs an equatorial jet becomes stable for layer depths smaller

than 3-4 km, in the QG and ND approximations it is unstable for layer

depths down to 1km. These result may have implications for the

importance of barotropicinstability in Earth’s upper stratosphere and

perhaps also other planets such as Venus.

1. Introduction

The theory of barotropic instability has its roots over half a century ago in the pioneer-
ing works of Kuo (1949, 1973) in which he studied the exponential temporal growth of
small wavelike perturbations added to a zonal westerly jet in a zonal channel on the g-
plane. Kuo based his theory on the Non-Divergent (ND) vorticity equation, which was also
the basis of many barotropic instability studies throughout the second half of the twenti-
eth century. These studies were aimed at differentiating between stable and unstable mean
flows in order to identify states that are expected to change rapidly due to the exponential
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temporal growth of small amplitude perturbations. Later studies examined settings that
are more complex than the ND vorticity equation, such as the Quasi-Geostrophic (QG)
equation (e.g. Hartmann 1983) and the Shallow Water Equations (SWEs) (e.g. Paldor and
Dvorkin 2006).

The ND and QG approximations, that together constitute the primary approximate sys-
tems used in the development of Geophysical Fluid Dynamics (GFD) for 70 years, can
be derived as asymptotic limits of the SWEs at small Rossby number when the length
and velocity scales are determined either by initial conditions or inhomogeneous (forc-
ing) terms (e.g. Reznik et al. 2001, Rostami and Zeitlin 2019). Such auxiliary scales do
not exist in a linear boundary (eigenvalue) problem on a sphere where the only boundary
conditions are regularity of the solutions at the (singular) poles. Alternate derivations of
the approximate QG and ND systems require either setting to zero a derived quantity (e.g.
divergence, in the case of the ND system) or by limiting the values of several parameters and
(yet unknown) variables (i.e. deviation of velocity from the geostrophic velocity, B-term,
frequency, the length scale of the flow, in the case of the QG system). In this, latter, way
of deriving the approximate ND and QG systems it is important to establish the regimes
where their solutions can be expected to provide acceptable approximations to solutions
of the SWEs.

In this work we compare the growth rates of barotropic instability on a zonal jet in the
ND, QG, and SWEs systems when each system is linearised about the same mean wind pro-
file. The use of the same basic state in the three systems clarifies how the assumptions made
in formulating the perturbation equation affect the subsequent growth rates in each system.
As discussed above, the QG and ND equations can be derived from the SWEs by imple-
menting a series of approximations. More restrictive approximations are implemented in
the ND system (including non-divergence of the two-dimensional velocity field) compared
to the QG system. The more general SWEs with no approximations can be related to the
underlying primitive equations that govern atmospheric motion (Vallis 2006, Zeitlin 2018),
and for the case of a sufficiently simple temperature profile barotropic instability in the
atmosphere is identical to that in the SWEs (Chapman and Lindzen 1970, Andrews
et al. 1987).

We solve for unstable modes of both strong polar and equatorial jets on the sphere for a
range of layer depths typical to Earth, and find that, for depths of about 10 km or less, jets
reminiscent of the one observed in the Southern Hemisphere polar stratosphere and in the
Quasi Biennial Oscillation are more stable when using the SWEs or QG equation than in
the non-divergent equation. The degree to which the growth rates are smaller depends on
the depth for a given mean state wind profile, and for depths of less than 5km e-folding
times exceed 10 days for the SWEs. Only for layer depths exceeding 30 km are the growth
rates derived from the SWEs similar to those of the non-divergent equation. This difference
in e-folding time scale is due to rather subtle differences in the eigenfunctions of the normal
modes. The implication of this result is that the depth over which a jet is barotropically
unstable is a crucial parameter in controlling its growth rate. We focus here on relatively
simple barotropic wind profiles and focus exclusively on barotropic instability. However,
we acknowledge that a thin layer of potential vorticity reversal may grow even faster if
baroclinic instability is also present, as in Earth’s upper stratosphere or lower mesosphere,
but a detailed consideration of this effect is beyond the scope of the present work which
focuses on barotropic instability only.



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS e 3

In section 2 we introduce the governing equations of the three systems and derive the
corresponding equations for the basic state and linear response with respect to a zonal
mean flow. Section 3 provides a more detailed discussion with regard to the relations
between the three system and the conditions under which they can be expected to converge.
In section 4 we demonstrate the differences between the three systems in the particular
case of barotropic instability of a zonal jet on the sphere. The results are summarised and
discussed in section 5.

2. Governing equations and methods of solution

In order to study the effects of divergence on the growth rates of barotropic instability we
compare the growth rates obtained from the rotating spherical Shallow Water Equations
(SWEs) with those from the non-divergent barotropic vorticity equation, and with those
from the Quasi-Geostrophic (QG) equation. In this section we present the equations in the
three systems and the methods of solution used in calculating the growth rates.

2.1. Shallow water system

The SWEs on the rotating spherical Earth are given by (see e.g. Gill 1982)
ou u Jdu vou

282

E-’-acosd)a-’_aagb
v u v vov |:
2

u i g oh
vsing = — —, (1a)
acos¢ acos¢ A
u ) g oh
using = —=—
¢]

acos adgo

o+ , (1b)

g—i_acosqﬁak ado
oh u 0h voh h ou 9d(vcoso)
— + —+t-=—++ —+—| =0,
ot acos¢p dA ad¢p acos¢|dA ¢

(1c)

where X, ¢ and ¢ are the longitude, latitude and time, respectively; u, v and h are the
zonal velocity, meridional velocity and layer’s thickness (measured here from a flat bot-
tom), respectively; and a, g and Q2 denote Earth’s mean radius, gravitational acceleration
and angular frequency, respectively. As discussed in detail in Chapman and Lindzen (1970)
and Zeitlin (2018), the SWEs can be derived from the full primitive equations if the vertical
structure of the background zonal wind and temperature is separable from the horizontal
structure, or if a vertical average is performed between two atmospheric layers.

Since we are interested in the linear stability of small perturbations with respect to a
zonal mean flow, in what follows we assume the following decomposition for u, v and h:

u = ljl((b) + u/()") ¢’ t)) (za)
v = V(o0 (2b)
h = H+17(®)+n' (¢, 1), (2¢)
‘_‘,—J
h

where |/, |v/| < |#| and |n/| < |h]|, and where the constant H is the layer’s thickness in a
motionless basic-state, i.e. when # = 0. The zero- and first-order terms (i.e. terms contain-
ing zero and first powers of /, v/ and n’) describe the (steady) basic-state and the linear
response of the perturbations, respectively, and are discussed below separately.
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2.1.1. Basic-state
Substituting (2) into (1) and retaining only zero-order terms it follows that # and 1 must
satisfy a (spherical) geostrophic balance (see, e.g. Andrews et al. 1987)

_gdn
adp’

|:29+ u ]ﬁsinqﬁ: (3)

acos ¢

In this work we assume a given (specified) zonal wind profile, u(¢), in which case the
corresponding mean height profile is given by

i(¢) = i(—ir) =2 ’ 22+ —" |asing dg' )
n@) = n(—3m <§/ |: acos¢/:|u51n¢ ¢ .

In addition to the zonal wind, a complete specification of the basic-state requires also the
determination of the value of the mean height at a certain reference latitude, chosen here
to be the south pole for convenience. In order to specify /7(—/2) in a meaningful way we
further assume conservation of mass with respect to changes in the zonal wind. Specifically,
we assume that the layer’s total mass (or volume) equals its mass (or volume) in a motionless
basic state, i.e. when # = 0. Such a choice leads to the desired property that the layer’s
thickness in a motionless basic state, H, is approximately equal to the mean thickness after
u is introduced, i.e. that the latitudinal average of 7 is approximately zero (see Appendix).
This condition together with the geostrophic wind balance yields the following expression
for the mean height field at the south pole (see Appendix)

_( 1 ) a [7[/2 d¢ ¢ ¢ |:29+ Ijl }_ . ¢/d¢/ (5)
n\—57m x — COS usim .
g 28 ) z2p —n/2 acos ¢’

2.1.2. Linear perturbations
The first-order equations of system (1) are

8u’+ i Bu/_l_v’dit 20+ u /sin g on (60)
— —+——- Vising = — —, a
ot acosg oA a d¢ acos¢ acosg oA
v u 9 21 an’
W 2% o+ |Weng = 82T (6b)
ot  acos¢ A acos¢ adg
an’ u 9y’ Vvdp H+n[ou 93V cos
o on  vidn  HAndw  dWcosd)| (60)
ot acos¢p 0L  ad¢p acos¢| oA ¢
The substitution of zonally propagating wave solutions of the form
WV, 0} = {ia(g), —i¥(¢), (¢} expli(kr — wb)], (7)

where k and w are the zonal wavenumber and frequency of the wave, respectively, yields
the following eigenvalue problem for the latitude-dependent amplitudes {#(¢), ¥(¢), 71($)}
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in which o is the eigenvalue

R uk it 2o+ u 1 dul. . b+ gk . (82)
= — — [Psin — 7,
@u acoscj)u acos¢ asing do v acosgbi7 :
. u 1. . uk .,  gdn
= |20 s —, 8b
v [ +acos¢:|usm¢+acos¢)v+ad¢ (85)
N (H+mk. H+17dWcose) 1dﬁA+ uk (80)
wn = u— -9 . C
L acos ¢ acos¢p  do ado acos¢>)7

In section 4 we solve this system using both a Chebyshev collocation method and a shoot-
ing method in order to substantiate the results. For the shooting method it is convenient
to re-write system (8) as a second-order system in ¥ and 7 by using the first row in (8) to
eliminate # form the second and third rows. The resulting second-order system is

& 2 e
(0 — w)cos¢d——|:k(f+§) wd"} [kZ w] 7, (9a)

do H+ d¢ H+
A o~ 2 - -
(w — @) cosd)j:; [% — <1 + %)@}V [(1 + —>kf:|n, (9b)

where V = 7 cos ¢, @ = kii/(acos $), f = 282 sin ¢ is the Coriolis parameter, and where

1  d(ucos¢)

- _acos¢ do (10

Ll

is the relative vorticity of the mean zonal flow.

2.2. The non-divergent system

The non-divergent (ND) model reduces the order of the shallow water model from third-
order in time to first-order in time by replacing the horizontal momentum equations with
the vorticity-divergence ones and setting the divergence equal to zero. The resulting sys-
tem consists of a single equation for the vorticity, namely the non-divergent barotropic
vorticity equation, and two constraints: A boundary value problem, referred to as the ‘bal-
ance equation’, which relates the vorticity, horizontal velocity and free-surface height, and
a constant (with respect to time) free-surface height. The resulting system after setting the
divergence equal to zero is

9
&? acos¢8_k; + —ﬁ(f +f) = (11a)
kV x [ +fHu] — V*[ju-u+gh] =0, (11b)

h = h(h @), (11¢c)
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where u = (u,v) is the horizontal velocity vector, k is the unit vector in the vertical
direction and

B 1 [ﬂ_a(ucosqb)]

(12)
acos¢ [ I ¢

is the relative vorticity. Note that the ND model in (11) is obtained from the SWEs model
by taking the curl and divergence of the momentum equations and neglecting 1’ and 7
compared to H, which implies that the two models can be expected to converge in the
asymptotic limit 1/H — 0 (see also Cho and Polvani 1996).

2.2.1. Basic-state

Assuming the same decomposition (2) as in the previous section it follows that h = h(¢) =
H + 71(¢p) + n’ (1), where 7)(¢) is related to the mean zonal wind through the zero-order
terms in the second row of (11). Upon assuming that d7)/d¢ is regular at the poles, it follows
that 77(¢) is related to u(¢) through the same geostrophic balance as in (3). However, unlike
the horizontal momentum equations, the vorticity equation (11a) is unaffected by 7 when
the divergence equals zero and can therefore be solved for any u(¢).

2.2.2. Linear perturbations
To first-order with respect to the decomposition (2) the ND model reduces to

ac’ u 9 vd -
9 @ ra —0, 13
ot +acos¢ oA + cqub(§ +h (132)

kV x [(C +Nu +¢'u] -V [wd +gn'] = 0. (13b)
The number of unknowns in (13a) can be reduced to one by defining a stream function
as follows

u=kxVy. (14)

Using the relation ¢ = V21, the vorticity equation in terms of v is

(3+ i i)[ 1 32¢’+ 19 axp/}
9t  acosg A ) [ acos2¢p A2  acos¢ d¢ <COS¢ ¢ )
1 oy’ d

2cosd On @(5 +f) =0. (15)

Seeking a zonally propagating wave solution of the form v’ = 1 (¢) expli(k) — wt)] yields

5 A
(w—@)%—(w—c&)tand)j—z— |:(a)—cb)

k? n k d
cos’p  cos¢ do

(@ +f)} =0, (16)

where @ = 1(a cos ¢) ! is the angular velocity of the mean flow. This equation is identical
to equation (3) of Hartmann (1983).
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2.3. The quasi-geostrophic system

For the QG model we use the equation derived in Schubert et al. (2009) (their equation
(2.12)), which in our notation reads

<a 1 3y 9 1 81#1)

a azcosqbﬁa_)»—i_azcosqﬁa_)naqﬁ
1 3%y 19 Y Q)? 7
X |:a2 cos2g 912 + s cos¢>£ (cosqS%) - g—Hsm o+ 282 smq&]_o, (17)

where, again, the definition of the stream function ¥ is the same as in the ND model in (14).
Substituting ¥ = ¥ (¢) + ¥’ (A, ¢, t), using the definition of ¥ to replace 3y /d¢ with @,
and using the relation gh = 242 sin ¢/, established within the QG assumptions, to replace
¥ (¢) with 77(¢) yields the following equation for the linear response

9 1 9y 9
<& a2 cos¢ %87)
X |: Loy + L (cosrbaw/) - @2)’
a?cos’¢p 0A2  a?cos¢ A 0¢ gH

1 oy’ 8
+ <a2cos¢ W%)

1 d 31/} (29)2 ) B .
) |:a2 cos¢ A (COS¢£> T TeH sin’¢ ¥ + 282 smqb} =0. (18)

sin?¢ 1//]

Seeking zonally propagating wave solutions of the form ¢’ = lﬁ(qb) expli(kA — wt)] yields

_ &y ) dvr
(0w — @) _d¢2 (w — o) tangb—dd)
_ K k d - QRa? 5 2kQ2) 1.
—[(w—w) C052¢+m@(é +f)—o sin"¢ + — n]l/f—O- (19)

This equation is identical to the ND system in equation (16), except for the last two terms
in the square brackets. For finite 7, these two terms vanish as 1/H — 0, so the resulting
QG system is expected to converge to those of the non-divergent system in this limit.

2.4. Methods of solution

In section 4 we solve equations (8), (16) and (19) in order to compare the growth rates
obtained using the SWEs, ND and QG systems of equations in response to the basic-state
in (24). In order to solve these equations we use the Chebyshev collocation method in
which the derivatives are replaced by a Chebyshev differentiation matrix and the result-
ing (algebraic) eigenvalue problem is solved to find the eigenvalues (frequencies) and
eigenfunctions (meridional structure) (see, e.g. Trefethen 2000). The Chebyshev collo-
cation method was successfully applied to rotating shallow water equations for both real
(e.g. De-Leon and Paldor 2011, Paldor et al. 2013) and imaginary (e.g. Ribstein et al. 2014)
eigenvalue problems. This method yields a plethora of normal modes all at once and can
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therefore be used to sweep through different parameters values and perform sensitiv-
ity tests. In order to validate the results we repeat a subset of the calculations using the
shooting-to-a-fitting-point method in which the equations are integrated from the singu-
lar poles starting with the regular solutions into an arbitrary matching point (taken here
to be ¢ = 0.1 radians) where the solutions are required to be continuous (see, e.g. Press
et al. 1992). For the SWEs the shooting method is applied to system (9) instead of (8).
The shooting method was successfully employed in a variety of instability studies in GFD
problems (e.g. Killworth et al. 1984, Cohen et al. 2016).

3. General considerations of the approximation of SWEs by the QG and ND
systems

The SWEs are Euler equations of fluid mechanics in a thin layer where the horizontal veloc-
ity is independent of height when the Coriolis force is added to the pressure-gradient force
in driving the temporal changes in velocity. In contrast, the QG and ND equations are sim-
plifications of the basic SWEs system that approximate the fluid dynamics in some limits
e.g. small Rossby number and/or low frequency (Vallis 2006, Pedlosky 2013). In this section
we examine the intricate relationships between these three systems using coordinate free
forms of the equations and identify the ranges of parameters where solutions of the QG
and ND equations can be expected to yield acceptable approximations to solutions of the
SWEs. Our approach follows that employed in Paldor (2008) in the study of the relation
between Rossby wave solutions in the SWEs and the ND systems. To simplify the analy-
sis the examination is carried out on the free linearised systems which is the most widely
employed set-up in analytic theories.

Using the notation employed above the vectorial form of the linearised SWEs (where
velocity is linearised about 0 and height deviation about a mean constant height H) is

ou

rrialie fkxu—gVn, (20a)
0
9 HV., (20b)
ot

where again, # = (u, v) is the horizontal velocity vector, 7 is the free surface height anomaly
with respect to H, f = 262 sin ¢ is the Coriolis parameter, g is the gravitational acceleration,
and k is the unit vector in the vertical direction.

Application of the k-V x and V. operators on the momentum equation yields two scalar
equations for the vorticity, { = k-V X u, and the divergence, § = V-u (and modifies the
height deviation, 7). They are

3
a—i +f8+pv =0, (21a)
a8 5
o, Ffe+ButgVin =0, (21b)
an
— +H§ =0, 21
o T (21c)

where f is the rate of change of Coriolis parameter with latitude (i.e. in Cartesian coor-
dinates f = fo + By). No assumption was made in deriving this (¢,4,n) system so its
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solutions are identical to those of the original linearised SWEs (20). The assumptions
imposed on this set in order to derive the approximate ND and QG systems are detailed
next.

ND: The assumption of non-divergence implies that § = 0 has to be substituted in sys-
tem (21). Under this assumption, the continuity equation (21c) implies that dn/dt = 0
while the vorticity equation (21a) implies 3¢ /9t = —Bv. The latter condition, 9¢/dt =
—pBv, implies that v is time-dependent and therefore so must be u. Setting § = 0 in the
divergence equation (21b) and considering the time dependence of ¢ and u and the time-
independence of 1 then yields a diagnostic equation in which f¢ + Bu is time-dependent
while gV27 is independent of time. The implications of this unusual diagnostic relation are
ignored in ND theories. However, regardless of these implications, for not-too-fast time
variations, i.e. when d/dt = O(1), the continuity equation implies § = O(H ~1) so the ND
solutions can be expected to provide acceptable approximations to solutions of the SWEs
at large values of H.

QG: A key assumption in the formulation of the QG equation is that the system is
“near” the steady geostrophic balance which is non-divergent only on the f-plane. Though
the slow time variation is only one of several additional approximations that have to be
imposed to fully justify the QG approximation (Vallis 2006, Pedlosky 2013) its application
to SWEs implies that while the velocity and n variables, as well as the parameters, are O(1),
time variations are, in some sense, small, i.e.

0
3 = O(e), where e« 1. (22)

(The small parameter € can be thought of as the absolute value of the frequency.)
Under the low frequency assumption (while H is O(1)) the continuity equation implies
that

S_f_o 1 23
0o H T (6) K 1. (23)
Accordingly, the first two terms on the left-hand side of the vorticity equation, ¢ /9t and
f8, are both O(¢) so for consistency, on the S-plane, the third term, v, must also be O(e).
This limitation, which is commonly employed in traditional derivations of the QG sys-
tem, limits the approximation of the SWEs by the QG system to small meridional velocity
(or domain). The O(1) terms in the divergence equation, fo¢ + gV, simply reflect the
non-divergent geostrophic balance on the f-plane about which the QG approximation
is constructed while the 8(¢y + u) terms are the O(e) correction to this balance. The
time dependent, d5/dt, term is O(€?) only. Clearly, (23) implies that for fixed €, § — 0
in the limit when H~! — 0 so, as is found in the ND equation, solutions of the QG
equation should also provide an accurate approximation of solutions of the SWEs only at
large H.

Having established that solutions of both ND and QG equations can be expected to
accurately approximate the primordial SWEs at large values of H there are three questions
that need to be addressed:
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(i) Isthis expectation verified by numerical solutions in a particular set-up?
(ii) Are the values of H where each of the ND and QG solutions approximate the SWEs
solutions identical/similar?
(iii) How do the values of H where the ND and QG solutions approximate the SWEs
compare with values of the realistic atmosphere/ocean.

In the next section we calculate the linear instabilities of a zonal jet on a sphere using the
QG and SWEs systems and compare these instabilities to instabilities that were calculated
in the 1980s using the ND equations.

4. Results

The particular set-up employed here to examine the relation between the ND, QG and
SWEs systems is the linear instability of a zonal jet on a sphere. This problem was already
analyzed in the ND system by Hartmann (1983) for polar jets. Here we extend the calcu-
lation to the QG and SWEs systems and consider both polar (section 4.1) and equatorial
(section 4.2) jets. We choose these cases to test the difference between the three systems
since the limitations of the ND and QG equations are most applicable for strong jets, and
the shear of the wind surrounding a strong jet can lead to a reversal of the mean potential
vorticity gradient and hence to barotropic instability. Specifically, the analytic wind profile
used in Hartmann (1983) that provides a convenient base of comparison between the three
systems is given by

u(¢p) = ugsech[2(¢ — ¢o)/B] cos ¢, (24)

where 1, ¢ and B are free parameters that characterise the chosen jet’s amplitude, cen-
tral latitude and width, respectively. A consistent specification of the basic-state requires
also that 0 < h = H + 7 (where 7] is given by (4) and (5)) at all ¢. This condition restricts
the values of ug, ¢o and B. Figure 1 presents contour plots of the global minimum over all
latitudes of 4 (i.e. ming h) in geostrophic balance with the zonal wind in (24) for different
ranges of ug, ¢p and B. Indeed, it can be seen that for reasonable values of the parame-
ters considered in Hartmann (1983) the imposition of the spherical geostrophy relation
between 7 and u leads to negative ming h for some values of H between 1 and 6 km.

4.1. Polar jets

We begin the comparison between the SWEs, ND and QG systems by exploring the sensi-
tivity of the growth rates of barotropic instability of linear perturbations on the zonal mean
jet of (24) to the layer depth (H in (2c)). Figure 2(a) shows the growth rates of the most
unstable mode as a function of H for zonal wavenumber 1 for a mean wind profile with
up = 180 m/sec, g = 60° and B = 10° in equation (24). We choose these parameter values
in order to compare our results with those of the non-divergent model employed in Hart-
mann (1983). Note that for the meridional structure in (24), the maximal wind of the jet for
the above values is 91 m/sec, a speed similar to that observed in the Southern Hemisphere
upper stratosphere. For values of H smaller than about 2 km (2032 m), the height field / in
geostrophic balance with the strong zonal wind is negative at the North Pole (i.e. 7 < —H
there), and hence the basic state is unphysical (see section 2.1). For layer depths slightly
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Figure 1. Minimum over all latitudes of the normalised mean height profile (i.e. min h/H) in (spheri-
cal) geostrophic balance with the zonal wind specified in equation (24). Red-shaded, white-shaded and
blue-shaded contours correspond to positive, zero and negative values of ming h/H. Accordingly a value

of ming h/H = +0.25, for example, is indicated by a light red colour. In practice, it is unlikely that the

value of h would deviate from H by more than 50%. Thus, the 0.5 contour is indicated by a black dashed
lines in order to mark the feasible regions of the parameters (above the 0.5 contour). Note, that formally
ming h/H is bounded from above by 1 and unbounded from below so the lower contour range in this
figure was set to —1 arbitrarily. The contours are shown on planes where the ordinate is H (in the range
1 < H < 6km) and the abscissa is one of the following zonal jet parameters: (a) ug for ¢ = 60° and
B = 10°. (b) ¢ for ug = 180 m sec™ " and B = 10°. (c) B for ug = 180 m sec™" and ¢y = 60° (colour
online).

larger than this threshold, the growth rate of instabilities in the SWEs (shown in blue and
black dots for the two numerical methods) is at least an order of magnitude smaller than
the growth rate in the ND system (dashed red line). Likewise, for layer depths slightly larger
than the threshold the growth rates in the QG system are significantly smaller than those
of the ND system, but are somewhat larger than the growth rates in the SWEs. At layer
depths that are an order of magnitude larger (e.g. 30 km) there is little difference between
the growth rates in the three systems, which is consistent with the convergence of the equa-
tions for the three systems in the limit 1/H — 0. Hence the depth of the layer is a crucial
parameter for approximating the growth rate of the SWEs system by either the ND or the
QG systems, but this limitation is completely ignored in the solution of the ND system that
has no height perturbations whatsoever. Results are similar for zonal wavenumbers 2 and
3 shown in the panels (b) and (c) of figure 2: only for a layer depth that exceeds 10 km do
the results of the ND system agree to within 20%, and only at depths larger than 30 km (i.e.
exceeding the thickness of the ocean or the Troposphere) the differences can be considered
negligible.

The growth rates of the jet in the SWEs in panels (a) and (b) of figure 2 appear to reach
a cut-off at about H = 3-5km, below which the growth rates become zero and the jet
becomes stable. Usually this transition occurs in the form of a bifurcation where two stable
wave-modes coalesce in the w, — k plane and an unstable mode appears in the w; — k (as
a conjugate pair). As indicated by the lack of black dots in the vicinity of these potential
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Figure 2. Growth rate (in units of 1/day) of the most unstable mode of the zonal wind specified in (24)
with ug = 180 m/sec, ¢o = 60° and B = 10° as a function of H fork = 1, 2, 3 panels (a), (b), (c), respec-
tively. Note that for the meridional structure in (24), the maximal wind of the jet for the above values
is only 91 m/sec. The gray shaded portion corresponds to values of H for which ming h < 0. Blue dots:
growth rates of the shallow water model obtained using the Chebyshev collocation method. Red dashed
line: growth rate of the non-divergent model. Green dots: growth rates of the QG model obtained using
the Chebyshev collocation method. Black dots: growth rates obtained using the shooting method (colour
online).

bifurcations, our numerical calculations are insufficiently accurate to describe these tran-
sitions smoothly. However, these considerations are beyond the scope of the present work
that focuses on the difference between the three systems and not a full fledged stability
analysis.

Though the growth rates of the most unstable modes are substantially smaller in the
shallow water and QG systems, the structure of the most unstable mode differs only slightly
in the three systems. Figure 3 shows the structure of the most unstable mode of the zonal
wind specified in (24) with uy = 180 m/sec, ¢ = 60°, B = 15° and zonal wavenumber
1, obtained using the SWEs (a) and (d), the QG system (b) and (e) and the ND system
(c) and (f). The solutions of the shallow water and QG system are shown for H = 10 km.
In all solutions the fields’ amplitudes are normalised on maxg |¥| in order to provide a
consistent baseline for comparison. Even though the structure of the wind fields are qual-
itatively similar, the magnitude of the zonal wind component is stronger in the QG and
SWEs systems.

Having demonstrated the differences in the resulting growth rates between the three
system, and shown that they belong to the same unstable mode, we now examine the
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Figure 3. Latitude-longitude maps v’ and v’ of most unstable mode of the zonal wind specified in (24)
with up = 180 m/sec, ¢o = 60° and B = 10°, obtained using the SWEs (a,d), the QG system (b,e) and
the ND system (c,f). The solutions of the shallow water and QG system are shown for H = 10 km. In all
solutions the fields’ amplitudes are normalised on maxg |V in order to provide a consistent baseline for
comparison (colour online).

sensitivity of the above differences to the three parameters governing the zonal wind pro-
file. Figure 4 shows the growth rates of the most unstable mode for k = 2 as a function of
the jet's magnitude ug (a), its peak latitude ¢ (b) and its width B (c), obtained using the
ND (red), QG (green) and SWEs (blue) systems. In all cases, the growth rates are lowest in
the SWEs system and highest in the ND system, and can be as large as 90% different (for
B = 15°). For wavenumber 1, the growth rates of the QG model become larger than the
ND system as the jet strengthens.

4.2. Equatorial jets

In the previous section we demonstrated the difference between the SWEs, QG and ND
systems in terms of the linear stability of a polar jets. However, the results can be rather
different for equatorial jets. Most notably, the mean height profile in geostrophic balance
with an equatorial jet decays over a shorter interval, and hence the requirement & > 0 is
less restrictive. Indeed, as indicated by figure 1, for up = 180 m/sec, B = 10° and ¢ =
0, ming h /H remains positive for all values of H between 1 to 6 kilometers. Thus in this
section we repeat the analysis of section 4.1 for ¢ = 0.

Figure 5 shows the growth rates of the most unstable mode as a function of H for the
same zonal wind profile as in figure 2 with uy = 180 m/sec and B = 10° but ¢y = 0°. For
¢o = 0, the maximal wind of the jet in (24) equals uy. Thus, the maximal wind of the jet
in figure 5 equals 180 m/sec. Despite the stronger winds of the jet in this case, compared to
the polar jet in figure 2, the height field in geostrophic balance with the zonal jet remains
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Figure 4. Growth rates sensitivity to changes in the zonal wind parameters ug (a), ¢o (b) and B (c) for
wavenumber k = 2. (a) while holding ¢9 = 60° and B = 10° fixed. (b) while holding up = 180 m/sec
and B = 10° fixed. (c) while holding ug = 180 m/secand ¢y = 60° fixed. Blue: shallow water model with
H = 10km. Red: non-divergent model. Green: quasi-geostrophic model with H = 10 km. Black dots:
growth rates obtained using the shooting method (colour online).
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Figure 5. Same as figure 2, but for 9 = 0 (colour online).

positive at all latitudes for all values of H down to 1 km. Furthermore, despite the stronger
winds of the jet in this case, the growth rates are generally similar to those of the polar
jet in figure 2. However, the differences between the SWEs and its ND and QG approxi-
mate system are more pronounced in this case even though, as in the case of the polar jet
in figure 2, the differences between the three systems approach zero with the increase in
the layer depth. Specifically, in the SWEs system the jet becomes stable for layer depths of
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between 3 and 4 km, while in the ND and QG systems the jet remains unstable for layer
depths down to 1 km. For layer depths of around 10-15km (i.e. approximately the depth
of similar-signed zonal winds associated with the Quasi-Biennial Oscillation), the growth
rates for the SWE are around 3/4 of that for the ND and QG approximate systems. Fur-
thermore, as opposed to the polar jet, where the QG approximation is closer to the SWEs,
in the equatorial jet the QG approximation is closer to the ND approximation. This result
can be expected considering the fact that the geostrophic balance becomes less accurate in
the vicinity of the equator (since the rate of change of sin ¢ is fastest at small ¢). Hence,
for equatorial jets, the QG equation provides accurate approximation of the SWEs only for
large values of H where the ND equation provides accurate approximation of the SWEs.
With regard to the validity of the approximation in the vicinity of the equator it should
also be noted that all three systems considered in this work neglect the contribution of
the Coriolis force due to vertical motions. In the primitive equations, this contribution
appears as wcos ¢ in the u-momentum equation (with a plus sign when written on the
left-hand side of the equation), where w is the vertical velocity. Clearly, at the equator this
term cannot be neglected compared to the v sin ¢ (with a minus sign when written on the
left-hand side of the equation) contribution of the Coriolis force, regardless of the magni-
tudes of v and w. Recently, it has been recognised that the inclusion of the this term can
influence the properties and stability of the equatorial jets (Gerkema et al. 2008), and a
system of SWEs accounting for this term has been derived (Tort et al. 2014). However, in
the present work we are concerned with the differences between the SWEs and the QG and
ND approximations and, therefore, consider these systems in their ‘traditional’ forms.

Figure 6 shows the structure of the most unstable mode of the zonal wind specified
in (24) with up = 180 m/sec, ¢y = 0°, B = 15° and zonal wavenumber 1, obtained using
the SWEs (a) and (d), the QG system (b) and (e) and the ND system (c) and (f). The
solutions of the shallow water and QG system are shown for H = 10 km. In all solutions
the fields’ amplitudes are normalised on maxg |¥| in order to provide a consistent baseline
for comparison. As in the case of the polar jet, the structure of the most unstable mode
in all three systems corresponds to the same mode. However, unlike the polar jet where
the maximal zonal wind in the mid-latitudes was about twice larger than the maximal
meridional wind, in the equatorial jet the maximal zonal wind in the vicinity of the equator
is about 10 times larger than the maximal meridional wind.

Figure 7 shows the growth rates of the most unstable mode for k = 2 as a function of
the jet's magnitude ug (a), its peak latitude ¢ (b) and its width B (c), obtained using the
ND (red), QG (green) and SWEs (blue) systems. Considering panel (b) of this figure, it
seems that the growth rates in the SWEs and ND are almost independent of ¢g between
0° and 40°, and that the QG approximation is closer to the ND approximation than to the
SWEs for ¢ between 0° and 30°. Wider tropical jets are more stable (figure 7(c)) for all
three systems, but are most stable for the SWEs system regardless of the width.

5. Summary and discussion

The effects of divergence on the growth rates of barotropic instabilities are studied by
examining the linear stability of both a strong polar jet and a strong equatorial one and
comparing the growth rates obtained from the Shallow Water Equations (SWEs) with those
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Figure 6. Same as figure 3, but for ¢9 = 0 (colour online).

"(C)quasi-geostrophic
non-divergent
shallow water

3 \
0 1 1 1 1 1 1 1 Y D n n
120 150 180 210 0 10 20 30 40 15 20 25 30
u, (m/sec) qbo (degrees) B (degrees)

Figure 7. Same as figure 4, but for ¢ = 0 in panels (a) and (c) and ¢ spanning the interval 0° to 40°
in panel (b) (colour online).

from the non-divergent barotropic vorticity (ND) equation and the QG vorticity equation.
We choose these test cases for two reasons:

(i) The limitations of the ND system are most applicable for strong jets.
(ii) Meridional gradients of speed in strong zonal jets can lead to a reversal of the potential
vorticity gradient making the jets susceptible to barotropic instability.

The shallow water equations can be related back to the primitive equations if the tem-
perature and wind profiles are sufficiently simple or if a specific atmospheric layer is chosen
(Zeitlin 2018), and hence this system employs the least number of approximations of the
three systems. The non-divergent system, on the other hand, assumes non-divergence
which severely limits its accuracy.
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In terms of growth rates, the effects of divergence depend on the chosen depth H (that
determines the layer depth in a motionless basic state), with smaller H generally leading to
smaller growth rates. Depending on the specific application or the interpretation assigned
to it, this parameter can vary by several orders of magnitude. The shallow water depth of the
barotropic mode, for example, can be interpreted as either the ‘entire column’ depth, which
is about 30 km for the stratosphere, or as the ‘equivalent height’ of the barotropic mode in a
multi-layer model, which is only about 5-10 km (De-Leon et al. 2020). In baroclinic cases,
the equivalent depth in the atmosphere was shown to be on the order of 100 m (Wheeler
and Kiladis 1999, Kiladis et al. 2009, De-Leon et al. 2020). By examining the stability of
the mean zonal wind profiles as a function of H it is found that for H > 30 km the non-
divergent system may provide a sufficiently good approximation. However for H between
5 and 10 km the growth rates of the shallow water system can be more than 50% smaller
than those of the non-divergent model. This result is consistent with that of Paldor and
Dvorkin (2006), who compared the instabilities arising from a Kuo type cosine jet in a
channel obtained using the non-divergent vorticity equation with those obtained using the
SWEs. As was found in this study, they too show that for realistic values of the ocean depth
the maximal growth rates are smaller in the SWEs than in the former. Thus, the importance
of divergence to the growth rates of barotropic instabilities of strong polar jets depends
on the specific application and the relevant value of H. The similarity of the growth rates
for large H is consistent with theoretical expectations, though the specific convergence of
the growth rates for H > 30 km cannot be predicted from analytic considerations in the
absence of numerical results.

Islinear growth of barotropic instability relevant for the stratosphere? The Potential Vor-
ticity (PV) gradient on the poleward flank of the Southern Hemisphere vortex reverses for
up to half the time during austral winter, and occasionally reverses for several consecutive
days (Rodas and Pulido 2017). We have examined the growth rates for the stratospheric
jet during the period July 11 through 15 2008 (a period considered in section 3.2 of Rodas
and Pulido 2017), and found values of w; that are generally similar to those shown here
for the idealised jet profile (details not shown). The values of w; approach 1 day~! even for
depths less than 10 km, and hence over the course of 4 days any pre-existing perturbation
can grow by more than 400%. That being said, instability depends not only on the depth
of the layer over which the PV gradient is reversed, but also upon the rate at which the
PV reversal is restored by other processes as the resulting instability removes the reversal.
The relevance of the instability also depends on the asymmetry of the jet, as the zonal aver-
age may obscure the fact that the PV gradient may be strongly reversed on one side of the
vortex and not the other. The nonlinear growth of perturbations may differ from the lin-
ear growth of perturbations if finite amplitude effects become important. Finally, the polar
vortex may also become baroclinically unstable in the lower mesosphere, and this baro-
clinic instability may enhance growth rates. Several studies have noted the possibility that
the westerly phase of the Quasi-Biennial Oscillation may feature barotropic instability in
the subtropical shear zone (Shuckburgh et al. 2001, Hitchman and Huesmann 2009, Garcia
and Richter 2019). For layer depths of 10 km, the growth rate of barotropic instability of an
identical equatorial jet is around 25% smaller in the SWE system than in the ND and QG
systems (figure 7). In all cases e-folding timescales are between 1 and 5 days, and hence in
monthly mean data one should expect signatures of barotropic instability if the mean state
potential vorticity gradient reverses.
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While we have focused on the barotropic instability of Earthly jets, our results might also
be applicable to other planets such as Venus where barotropic instability is believed to play a
role in supporting supperrotation (Sanchez-Lavega et al. 2017, Read and Lebonnois 2018).
In considering this possibility it is necessary to consider the planets physical parameters,
i.e. its mean radius, gravitational acceleration and angular frequency, in addition to the
layer’s depth. In fact, if the system is non-dimensionalised as in Paldor et al. (2013) the
only non-dimensional parameter, excluding the basic state parameters, isa = gH/(22a)>.
Following the arguments of section 3, it follows that the three systems converge in the limit
of large «, so that the large H limit considered here is also relevant if a or €2 are small. In
Venus’ case, its mean radius and gravitational acceleration are of the same order of Earth’s,
but its angular frequency is about 2 orders of magnitude smaller. Thus, for the same range
of layer depths considered here o on Venus is 4 orders of magnitude larger than on Earth,
so the results of the present study suggest that the ND and QG approximations might be
more reasonable on Venus than on Earth. On the other hand, on the equator, the w cos ¢
contribution of the Coriolis force to the #-momentum equation cannot be neglected and
(as discussed in Gerkema et al. 2008, Tort et al. 2014) its inclusion can influence the stability
properties of the jets.

Overall this study clarifies the effects of the system of equations chosen has on barotropic
instability. We find that the non-divergent system overestimates growth rates, and this
overestimation is particularly acute if the depth of the barotropically unstable layer is small.
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Appendix. Choice of reference mean height

In addition to the zonal wind, a complete determination of the basic-state requires also the specifi-
cation of the mean height at a certain reference latitude. In the present work we found it convenient
to use ¢ = —m /2 (the south pole) as the point where the mean height is specified. In order to spec-
ify 7(—7/2) in a meaningful way we further assume that the total mass (volume) in the layer (e.g.
atmosphere or ocean) is unchanged by the mean zonal wind. Specifically, we assume that the layer’s
total mass (volume) equals its mass (volume) in a motionless basic state (i.e. when u = 0), which
implies

2n pr/2  patH+i(P) 2r pm/2  pat+H
/ f / 12 cos ¢ dr dep da :/ / / r? cos¢ drdg da. (A1)
0 —n/2Ja 0 —n/2Ja

Carrying out the integrations yields

/2
[ [(a+H+1ii(¢)’ —a’]cospdp = 2[(a+H)’ —a’]. (A2)

—m/2

Re-arranging and dividing by a> yields

2 pm/2 = /2 /= 2
3(14—5) / Mcos<z§d¢ +3(1+E>/ <M> cos¢ d¢
a —xj2 @ a —n/2 a

/2 /= 3
+ / <M) cos¢pd¢ = 0. (A3)
—/2 a
To leading (first) order in 1/a, we have
/2
/ (@) cos¢dgp ~ 0. (A4)
—1/2
Multiplying (4) by cos ¢, integrating from — /2 to 7 /2 and using the last expression yields (5), i.e.
i(—in) ~ /m R [29+ u ]ﬁs'mp’dq&’ (A5)
ni—» ~ — —_— 1 .
2 2g —m/2 —m/2 acos ¢’



	1. Introduction
	2. Governing equations and methods of solution
	2.1. Shallow water system
	2.1.1. Basic-state
	2.1.2. Linear perturbations

	2.2. The non-divergent system
	2.2.1. Basic-state
	2.2.2. Linear perturbations

	2.3. The quasi-geostrophic system
	2.4. Methods of solution

	3. General considerations of the approximation of SWEs by the QG and ND systems
	4. Results
	4.1. Polar jets
	4.2. Equatorial jets

	5. Summary and discussion
	Disclosure statement
	ORCID
	Funding
	References

