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ABSTRACT
We prove the applicability of the Weighted Energy-Dissipation (WED)
variational principle to nonlinear parabolic stochastic partial differen-
tial equations in abstract form. The WED principle consists in the
minimization of a parameter-dependent convex functional on entire
trajectories. Its unique minimizers correspond to elliptic-in-time regu-
larizations of the stochastic differential problem. As the regularization
parameter tends to zero, solutions of the limiting problem are recov-
ered. This in particular provides a direct approach via convex opti-
mization to the approximation of nonlinear stochastic partial
differential equations.
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1. Introduction

This paper is concerned with stochastic quasilinear partial differential equations of the
form

du� div ðD/ðt,ruÞÞ dt þ Dwðt, uÞ dt� f ðtÞ dt þ BðtÞ dW, (1)

complemented with suitable boundary and initial conditions. Here, the real-valued func-

tion u is defined on X� ½0,T� � O, where ðX,F,PÞ is a probability space, O � R
d is

a smooth bounded domain, and T> 0 is a reference time. The functions /ðt, �Þ : Rd !
R and wðt, �Þ : R ! R are asked to be convex, the gradients and Dw are taken with
respect to the second variable only, and the time-dependent sources f and B are given.

In particular, Bð�Þ 2 L2ðU; L2ðOÞÞ (Hilbert-Schmidt operators) is stochastically inte-
grable with respect to W, a cylindrical Wiener process on a separable Hilbert space U.
Under different choices for the nonlinearities / and w, equation (1) may arise in con-

nection with various classical models, including the Allen-Cahn and the p-Laplace equa-
tion. Assume equation (1) to be complemented with homogeneous Dirichlet boundary
conditions, for notational simplicity, and with the initial condition uð0Þ ¼ u0, where u0
is some suitable initial datum. Letting /ðt, �Þ and wðt, �Þ be of p-growth, equation (1)
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can be weakly formulated in the dual of the space W1, p
0 ðOÞ, according to the classical

theory by Pardoux [1] and Krylov–Rozovski K% [2]. It is well-known that the solution u is
an Itô process, in the sense that it can be represented in the general form

u ¼ ud þ
ð�
0
usðrÞ dWðrÞ, (2)

where the process ud is differentiable in time and us is L2ðU; L2ðOÞÞ-valued and sto-
chastically integrable with respect to W. This decomposition into the deterministic part
ud and the stochastic part us is unique. With this notation, u is a solution to the original
problem (1) if and only if u satisfies the constraint (2) and the equations

@tu
d � div ðD/ð�,ruÞÞ þ Dwð�, uÞ� f , us ¼ B, udð0Þ ¼ u0:

The aim of this paper is to tackle the weak solvability of equation (1) via the
Weighted Energy-Dissipation (WED) variational approach. This hinges upon the mini-
mization of the parameter-dependent functional Ie on entire trajectories, the so-called
WED functional, given by

IeðuÞ ¼ E

ðT
0

ð
O
e�r=e e

2
j@tudðrÞj2 þ /ðr,ruðrÞÞ þ wðr, uðrÞÞ � f ðrÞ uðrÞ

� �
dx dr

þ E

ðT
0
e�r=e 1

2
kusðrÞ � BðrÞk2L2ðU , L2ðOÞÞ dr:

The convex WED functional Ie has to be minimized under two linear constraints,
namely the decomposition (2) and the initial condition uð0Þ ¼ u0: This results in a con-
vex minimization problem. Our main result, Theorem 2.1, states that, under suitable
assumptions on data,

for all e > 0 the minimizer ue of Ie uniquely exists. As e ! 0 we have that ue ! u where u
is the unique solution of the stochastic differential problem (1).

This provides a new variational approximation to the stochastic differential problem (1),
making it accessible to a direct optimization approach, and paving the way to the appli-
cation of the far-reaching tools of the calculus of variations [3–5].
The role of the exponential weight in Ie is revealed by computing the corresponding

Euler-Lagrange equation. In the current setting these formally read

�e@tð@tude Þd þ @tude � div ðD/ð�,rueÞÞ þ Dwð�, ueÞ ¼ f , use ¼ Bþ eð@tude Þs,
e@tude ðTÞ ¼ 0, ude ð0Þ ¼ u0,

where we have also included the initial condition, for completeness. In particular, the
minimizers ue solve an elliptic-in-time regularization of the stochastic differential prob-
lem (1), complemented by an extra Neumann boundary condition at T. Note that for
all e > 0 the problem is not causal and that causality is restored in the limit e ! 0:
Elliptic-regularization techniques for nonlinear PDEs are quite classical. Introduced

by Lions [6], they have been used by Kohn and Nirenberg [7], Olein K%k [8], and again
Lions [9, 10] in order to investigate regularity. An account on linear results can be
found the book by Lions & Magenes [11], whereas an early result on solvability in a
nonlinear setting is due to Barbu [12].
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The variational formulation of elliptic-regularization via WED functionals can be
traced back to Ilmanen [13], who used it in the context of Brakke mean-curvature flow
of varifolds, and to Hirano [14] in connection with periodic solutions of gradient flows.
A reference to WED functionals is already pointed out in the classical textbook by
Evans [15, Problem 3, p. 487].
The WED variational approach has been applied to a variety of different parabolic prob-

lems, including gradient flows [16–19], rate-independent flows [20, 21], crack propagation
[22], doubly-nonlinear flows [23–27], nonpotential perturbations [28, 29] and variational
approximations [30], curves of maximal slope in metric spaces [31–33], mean curvature
flow [13, 34], dynamic plasticity [35], and the incompressible Navier–Stokes system [36].
Motivated by a conjecture by De Giorgi [37], the WED variational approach has been

extended to semilinear wave equations [38,39]. Extensions to other classes of hyperbolic
problems including mixed hyperbolic-parabolic equations [40–43] and nonhomogeneous
equations [44,45] have also been addressed.
In the context of stochastic PDEs, the application of tools from calculus of variations

in order to characterize variational solutions is much less developed, and has been
employed so far mainly in connection with the Brezis-Ekeland principle. In this direc-
tion, we mention the pioneering works by Barbu and R€ockner [46, 47] dealing with
SPDEs with additive and linear multiplicative noise, and by Krylov [48]. More recently,
Boroushaki and Ghoussoub [49] generalized these results also to the case of multiplica-
tive noise, by characterizing solutions as minima of self-dual functionals.
This paper contributes to the first application of the WED principle in the stochastic set-

ting. Compared with the deterministic situation, the theory is here much more involved.
The first main difficulty arises in proving existence of minimizers for Ie: This requires

the characterization of the subdifferential of Ie in terms of the Euler-Lagrange problem.
In the stochastic setting, this e-regularized problem consist of a forward-backward sys-
tem of SPDEs. The identification of the Euler-Lagrange equation is more delicate com-
pared to the deterministic framework. In the deterministic case, it is well known that
the space of compactly-supported Ck test-functions Ck

c ð0,TÞ is dense in L2ð0,TÞ for all
k 2 N : this allows to identify the Euler-Lagrange equation pretty straightforwardly at
least in a weak sense. By contrast, due to the presence of nonzero martingales in
L2ðX; L2ð0,TÞÞ, the usual deterministic techniques do not apply here, and the Euler-
Lagrange equation has to be characterized using different tools, both on the analytical
side and the probabilistic side. As a matter of fact, on the one hand we need to intro-
duce suitable functional spaces of processes in Banach spaces (Itô processes), and on
the other hand we rely on the abstract variational theory for backward SPDEs and mar-
tingale representation theorems in infinite dimensional spaces.
The second main difficulty concerns proving the well-posedness of the Euler–Lagrange

problem. As we have pointed out above, the second-order Euler-Lagrange equation is non-
causal and corresponds to a system of a forward and a backward first-order stochastic
equation. The discussion of this forward-backward system calls for a further approximation
on the nonlinearity. Identifications of nonlinear limits are performed via lower semiconti-
nuity arguments, which in turn rely on specific Itô’s formulas, both at the approximate and
at the limit level.
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In the paper, we actually consider a general class of abstract equations, including (1).
Indeed, we frame the problem in the abstract variational setting of a Gelfand triple
ðV ,H,V�Þ and focus on

duþ Aðt, uÞ dt�B dW, uð0Þ ¼ u0,

where A is a time-dependent subdifferential-type operator from V to V�, V being a sep-
arable reflexive Banach space and H a separable Hilbert space. We collect all relevant
notation, list assumptions, and state Theorem 2.1, our main result, in Section 2. The
proof of Theorem 2.1 is then split into Section 3 (Euler-Lagrange problem), Section 4
(convergence as e ! 0), and Section 5 (existence of minimizers).

2. Main result

In the following, we directly focus on the abstract Cauchy problem

duþ @Uðt, uÞ dt�B dW, uð0Þ ¼ u0: (3)

The latter arises as variational formulation of an initial and boundary value problem for
equation (1) by choosing the convex map Uðt, �Þ as

Upðt, �Þ : W1, p
0 ðOÞ ! ð�1,1�, Upðt, uÞ :¼

ð
O
/ðt,ruÞ þ wðt, uÞð Þ dx:

Note that we have neglected the deterministic forcing f in (1) for the sake of notational
simplicity. Indeed, this could be included in the analysis with no specific difficulty.
In this section we introduce the necessary notation and assumptions to make the

meaning of problem (3) precise and we state our main result, Theorem 2.1. This is then
proved in Sections 3-5.
Let ðX,F,PÞ be a probability space endowed with a complete and right-continuous

filtration ðFtÞt2½0,T�, where T> 0 is a fixed final time. Let also W be a cylindrical

Wiener process on a separable Hilbert space U. We will assume that ðFtÞt2½0,T� is the

natural augmented filtration associated to W. The progressive r-algebra on X� ½0,T�
will be denoted by P: For any Banach space E, the norm in E will be denoted by k � kE:
For any r, s 2 ½1, þ1Þ we denote by LrPðX; Lsð0,T;EÞÞ the usual space of Bochner-
integrable functions which are strongly P-measurable from X� ½0,T� to E. When r> 1
and s ¼ þ 1, we explicitly define

LrPðX; L1ð0,T;E�ÞÞ :¼ v : X ! L1ð0,T;E�Þ weakly �meas: : EkvkrL1ð0, T;E�Þ < 1
n o

where for any f 2 L1ðXÞ we use the standard notation Ef :¼ ÐXf dP for the expected
value. Recall that by [50, Thm. 8.20.3] we have the identification

LrPðX; L1ð0,T;E�ÞÞ ¼ Lr=ðr�1Þ
P ðX; L1ð0,T;EÞÞ

� ��
:

Moreover, for any r � 1, the symbol LrðX;C0ð½0,T�;EÞÞ denotes the space of r-inte-
grable continuous adapted process (hence also progressively measurable) with values in
E. For any pair of separable Hilbert spaces E1 and E2, we will use the symbols
LðE1,E2Þ and L2ðE1,E2Þ for the spaces of linear continuous and Hilbert-Schmidt oper-
ators from E1 and E2, respectively.
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Let us fix now a useful notation in order to denote suitable spaces of Itô processes.
For every separable reflexive Banach space E1 and any Hilbert spaces E, E2, with
E1,E2 ,! E continuously, and for any r1, r2 2 ½1, þ1Þ, we use the notation

I r1, r2ðE1,E2Þ :¼ Lr1PðX;W1, r1ð0,T;E1ÞÞ� Lr2PðX; L2ð0,T;L2ðU ,E2ÞÞÞ �W
� �

,

where we have used the classical symbol �W to denote stochastic integration with
respect to W. Equivalently, we have the representation

I r1, r2ðE1,E2Þ ¼
n
z ¼ zd þ zs �W :

zd 2 Lr1PðX;W1, r1ð0,T;E1ÞÞ, zs 2 Lr2PðX; L2ð0,T;L2ðU,E2ÞÞÞ
o
:

The latter specifies that the two components zd and zs are uniquely determined from
the process z, see (2), so that the sum appearing above is actually a direct sum, and the
projections

Pd : I r1, r2ðE1,E2Þ ! Lr1PðX;W1, r1ð0,T;E1ÞÞ, z 7! zd,

Ps : I r1, r2ðE1, E2Þ ! Lr2PðX; L2ð0,T;L2ðU,E2ÞÞÞ, z 7! zs,

are well-defined, linear, and continuous. Let us also point out that the space
I r1, r2ðE1,E2Þ is a Banach space, and even a Hilbert space if r1 ¼ r2 ¼ 2 and E1 is a
Hilbert space. A natural norm on I r1, r2ðE1,E2Þ is given by

kzkI r1, r2 ðE1,E2Þ :¼ kzdkLr1
P
ðX;W1, r1 ð0,T;E1ÞÞ þ kzskLr2

P
ðX;L2ð0,T;L2ðU,E2ÞÞÞ, z 2 I r1, r2ðE1,E2Þ:

Throughout the paper, we assume the following setting.

H0: H and V0 are separable Hilbert spaces and V is a separable reflexive Banach space,
with V0 ,! V ,! H continuously and densely.

In the sequel, we will identify H with its dual H� in the canonical way, so that we have
the continuous and dense inclusions

V0 ,! V ,! H ,! V� ,! V�
0 :

The scalar product in H and the duality pairing between V� and V (and between V�
0

and V0) will be denoted by the symbols ð�, �Þ and h�, �i, respectively.
We assume the following hypotheses.

H1: U : X� ½0,T� � V ! ½0, þ1Þ is P	BðVÞ-measurable, and Uðx, t, �Þ : V !
½0, þ1Þ is convex and lower semicontinuous. We let Aðx, t, �Þ :¼ @Uðx, t, �Þ : V ! 2V for
almost every ðx, tÞ 2 X� ½0,T�: Moreover, we ask for constants cA,CA > 0 and p 2
½2, þ1Þ, and a P-measurable process fA 2 L1ðX� ð0,TÞÞ such that, setting
q :¼ p=ðp� 1Þ,

hv, zi � cakzkpV , kvkqV� 
 fAðx, tÞ þ CAkzkpV ,

for almost every ðx, tÞ 2 X� ½0,T�, for every z 2 V, and for every v 2 Aðx, t, zÞ:

H2: u0 2 L2ðX,F0;HÞ and B 2 L2PðX; L2ð0,T;L2ðU,HÞÞÞ:
Let us point out that the progressive measurability of U required in H1 implies that the
operator A is P	BðVÞ=BðV�Þ-Effros-measurable, in the sense of [51, 52].
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Before moving on, let us comment on the choice of the space V0. The introduction
of V0 will be needed in the paper since at some point we would have to rely on Itô’s
formula for the square of the V�-norm. However, this cannot be done in general if V is
a Banach space: indeed, in such case the duality mapping of V� is nonlinear and pos-
sibly not twice Fr�echet-differentiable, hence the required Itô formula is not trivial and
not known in general, even in the extended framework of stochastic integration in
UMD Banach spaces (see [53–55]). The introduction of the space V0 is then employed
to bypass this problem by exploiting its structure as Hilbert space, and allows to write
an Itô formula in V�

0 : Clearly, if V is a Hilbert space itself, the optimal choice of V0 is
given by V0 ¼ V: In general, if V is only a Banach space, roughly speaking one should
ideally choose the space V0 as large as possible. For example, if V ¼ Ws, ‘ðOÞ for a cer-

tain domain O � R
d with Lipschitz boundary, with ‘ 2 ð2, þ1Þ and s> 0, one could

choose

V0 ¼ Hs0 ðOÞ, 8 s0 � sþ d
2
� d

‘
,

with the choice s0 ¼ sþ d=2� d=‘ being optimal in this sense.
The classical variational theory on SPDEs (see [1, 2]) ensures that under the assump-

tions H0– H2 the Cauchy problem (3) admits a unique solution ðu, nÞ, with
u 2 L2ðX;C0ð 0,T½ �;HÞÞ \ LpPðX; Lpð0,T;VÞÞ n 2 LqPðX; Lqð0,T;V�ÞÞ, (4)

such that

nðx, tÞ 2 Aðx, t, uðx, tÞÞ for a:e: ðx, tÞ 2 X� ð0, TÞ, (5)

and

uðtÞ þ
ðt
0
nðsÞ ds ¼ u0 þ

ðt
0
BðsÞ dWðsÞ in V�, 8 t 2 0,T½ �, P-a:s: (6)

Let us reformulate this solution concept in a different fashion. We introduce the
space

U :¼ z 2 L2ðX;C0ð 0,T½ �;HÞÞ \ LpPðX; Lpð0,T;VÞÞ : z ¼ zd þ zs �W,
n

zd 2 LqPðX;W1, qð0,T;V�ÞÞ, zs 2 L2PðX; L2ð0,T;L2ðU,HÞÞÞ
o
:

Note that U can be written in compact form as

U ¼ L2ðX;C0ð 0,T½ �;HÞÞ \ LpPðX; Lpð0,T;VÞÞ \ Iq, 2ðV�,HÞ,
so that in particular U is a Banach space.
With this notation, the process u solves the problem (4)–(6) if and only if

u 2 U ,
@tud þ AðuÞ� 0,

udð0Þ ¼ u0,

us ¼ B:

8><
>: (7)

In such a case, (4)–(6) are satisfied with the choice n :¼ �@tud:
As mentioned, the WED approach consists in minimizing an e-dependent functional

over entire trajectories and passing to the limit in the parameter e. This procedure
results in an elliptic regularization in time, hence delivering regular approximations. In
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particular, the differential problem (3) is reformulated as a linearly constrained convex
minimization. In the abstract setting of (4)-(6), letting e > 0 we introduce the WED
functional

Ie : L
p
PðX; Lpð0,T;VÞÞ \ I 2, 2ðH,HÞ ¼: V ! 0, þ1½ �,

as

IeðuÞ :¼

E
Ð T
0 e�t=e e

2
k@tudðtÞk2H þ Uðt, uðtÞÞ þ 1

2
kðus � BÞðtÞk2L2ðU ,HÞ

� 	
dt

if udð0Þ ¼ u0, e,

þ1
if udð0Þ 6¼ u0, e:

8>>>>>><
>>>>>>:

We qualify the e-dependent initial data ðu0, eÞe above by requiring that the sequence

ðu0, eÞe>0 � LpðX,F0;V0Þ (8)

is well-prepared, in the sense that, as e & 0,

u0, e ! u0 in L2ðX,F0;HÞ, eku0, ekpLpðX,F0;V0Þ ! 0: (9)

The existence of sequences fulfilling (8)–(9) follows directly from H2 and the density of
V0 ,! H, by standard regularization techniques.
Minimizers of Ie will be proved to belong to the space

Ureg :¼ fz 2 L2ðX;C0ð 0,T½ �;HÞÞ \ LpPðX; Lpð0,T;VÞÞ : z ¼ zd þ zs �W,

zd 2 LqPðX;C1ð 0,T½ �;V�
0 ÞÞ \ L2PðX;H1ð0,T;HÞÞ,

zs 2 L2PðX; L2ð0,T;L2ðU,HÞÞÞ,
@tzd ¼ ð@tzdÞd þ ð@tzdÞs �W,

ð@tzdÞd 2 LqPðX;W1, qð0,T;V�ÞÞ, ð@tzdÞs 2 L2PðX; L2ð0,T;L2ðU,HÞÞÞg:
Again, note that a more compact notation for Ureg reads

Ureg ¼ fz 2 LpPðX; Lpð0,T;VÞÞ \ I 2, 2ðH,HÞ : @tzd 2 Iq, 2ðV�,HÞg:
Let us point out in particular that Ureg ,! V ,! U with continuous inclusions.
The Euler-Lagrange equation for functional Ie corresponds to the e-regularized prob-

lem

ue 2 Ureg ,

�e@tð@tude Þd þ @tude þ AðueÞ� 0,

e@tude ðTÞ ¼ 0,

ude ð0Þ ¼ u0, e,

use ¼ Bþ eð@tude Þs:

8>>>><
>>>>:

(10)

Note that the second-order problem (10) can be seen as a system of two equations of
first order in time, one forward and one backward, by using the classical substitution
ve :¼ @tude : Indeed, with this notation (10) is equivalent to

due ¼ ve dt þ ðBþ eGeÞ dW,

ueð0Þ ¼ u0, e,

�edve þ ve dt þ AðueÞ dt� � eGe dW,

eveðTÞ ¼ 0:

((
(11)

Note that the variables of the forward-backward system (11) are three, namely ue, ve,

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 7



and Ge: Indeed, while the forward equation has a unique variable (ue), the concept of
solution for the backward stochastic equation requires the two variables ve and Ge due
to the need of representation theorems for martingales. In particular, we have that Ge ¼
vse is uniquely determined by the backward stochastic equation.
The main result of the paper reads as follows.

Theorem 2.1 (Weighted Energy-Dissipation approach). Assume H0–H2. Then:

i) (Minimization) For all e > 0 the functional Ie admits a unique global mim-
izer ue 2 V:

ii) (Euler-Lagrange equation) The minimizer also satisfies ue 2 Ureg and it is the unique
solution to the problem (10). Namely, there exists a unique triplet ðne, ve,GeÞ with

ne 2 LqPðX; Lqð0,T;V�ÞÞ,
ve 2 LqðX;C0ð 0,T½ �;V�

0 ÞÞ \ L2PðX; L2ð0,T;HÞÞ,
Ge 2 LqPðX; L2ð0,T;L2ðU,V�

0 ÞÞÞ,
such that

neðx, tÞ 2 Aðx, t, ueðx, tÞÞ for a:e: ðx, tÞ 2 X� ð0,TÞ,
and

ueðtÞ ¼ u0, e þ
ðt
0
veðsÞ dsþ

ðt
0
ðBþ eGeÞðsÞ dWðsÞ,

eveðtÞ þ
ðT
t
veðsÞ dsþ

ðT
t
neðsÞ ds ¼ �e

ðT
t
GeðsÞ dWðsÞ,

for every t 2 ½0,T�, P-almost surely. In particular, it holds that @tude ¼ ve, use ¼
Bþ eGe, and vse ¼ Ge:

iii) (Convergence) As e ! 0 it holds that

ue * u in LpPðX; Lpð0,T;VÞÞ \ LqPðX;Ws, qð0,T;V�
0 ÞÞ 8 s 2 ð0, 1=2Þ,

ve * �n in LqPðX; Lqð0,T;V�
0 ÞÞ,

ne * n in LqPðX; Lqð0,T;V�ÞÞ,
eve ! 0 in LqðX;C0ð 0,T½ �;V�

0 ÞÞ \ L2PðX; L2ð0,T;HÞÞ,
eGe ! 0 in LqPðX; L2ð0,T;L2ðU ,V�

0 ÞÞÞ,
where ðu, nÞ is the unique solution to the problem (7) in the sense of (4)-(6).
Furthermore, if V ,! H compactly and p< 4, it also holds that

ue ! u in LrPðX; Lpð0,T;HÞÞ 8r 2 1, pÞ:�
The proof of Theorem 2.1 is recorded in the coming Sections 3-5. In particular, Part ii
of the theorem is proved in Section 3, where we focus on the well-posedness of the for-
ward-backward regularized problem (10). Then, the convergence Part iii of Theorem 2.1
is proved in Section 4. Eventually, the existence of minimizers is checked in Section 5.
This counterintuitive structuring of the proof of Theorem 2.1 is motivated by the fact

that the existence of minimizers of Ie follows from proving that the corresponding
Euler-Lagrange problem has a unique solution. One hence has to check the well-posed-
ness of problem (10) first.
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3. The forward-backward regularized problem

This section is devoted to proof of the well-posedness of the e-regularized problem (10)
in the sense of Theorem 2.1.ii. Throughout the section, e > 0 is fixed.
First of all, let AH be the random and time-dependent unbounded operator on H

defined as

AH : X� 0,T½ � � H ! 2H , AHðx, t, zÞ :¼ Aðx, t, zÞ \ H, ðx, tÞ 2 X� 0,T½ �, z 2 H:

It is not difficult to show that, for every ðx, tÞ 2 X� ½0,T�, the unbounded operator
AHðx, t, �Þ is maximal monotone on H. Indeed, the monotonicity is an immediate con-
sequence of the monotonicity of A. As for the maximality, note that the operator I þ
Aðx, t, �Þ : V ! V�, where I is the identity in H (namely, hIv,wi ¼ ðv,wÞ8v,w 2 H), is
maximal monotone and coercive by assumption on A, hence it is surjective, which
yields the maximality of AHðx, t, �Þ: Furthermore, since A is P	BðVÞ=BðV�Þ-Effros-
measurable, it follows that AH is P	BðHÞ=BðHÞ-Effros-measurable as well.

3.1. The approximation

Since AH is maximal monotone on H in its last component, for any k > 0 its resolvent
and its Yosida approximation are well defined, respectively, as

Jk : X� 0,T½ � � H ! H, Jkðx, t, zÞ :¼ ðI þ kAHðx, t, �ÞÞ�1ðzÞ, ðx, t, zÞ 2 X� 0,T½ � �H,

and

Ak : X� 0,T½ � �H ! H, Akðx, t, zÞ :¼ z � Jkðx, t, zÞ
k

, ðx, t, zÞ 2 X� 0,T½ � � H:

It is well-known that Jk and Ak are 1- and 1=k-Lipschitz-continuous in their third com-
ponent, respectively, uniformly in X� ½0,T�: Moreover, the Effros-measurability of AH

implies that Jk and Ak are P	BðHÞ=BðHÞ-measurable (see for example [56,
Prop. 3.12]).
For any k > 0, we consider the approximated problem

duek ¼ vek dt þ ðBþ eGekÞ dW,

uekð0Þ ¼ u0, e,

�edvek þ vek dt þ AkðuekÞ dt ¼ �eGek dW,

evekðTÞ ¼ 0:

((

(12)

We say that a triplet ðuek, vek,GekÞ is a solution to the approximated problem (12) if

ðuek, vek,GekÞ 2 L2ðX;C0ð 0,T½ �;HÞÞ � L2ðX;C0ð 0,T½ �;HÞÞ � L2PðX; L2ð0,T;L2ðU,HÞÞ
and it holds that

uekðtÞ ¼ u0, e þ
ðt
0
vekðsÞ dsþ

ðt
0
ðBþ eGekÞðsÞ dWðsÞ,

evekðtÞ þ
ðT
t
vekðsÞ dsþ

ðT
t
Akðs, uekðsÞÞ ds ¼ �e

ðT
t
GekðsÞ dWðsÞ,

for every t 2 ½0,T�,P-almost surely.
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3.2. Existence of solutions to the approximated problem

We prove here that the approximated problem (12) admits a solution ðuek, vek,GekÞ: To
this end, we characterize the unique solution ðuek, vek,GekÞ as the unique minimizer of a
suitable approximated WED functional.
Let us first introduce some preliminary notation. Note that we have the representation

Ie ¼ I1e þ Se þ I2e ,

where

I1e : I 2, 2 H,Hð Þ ! 0, þ1½ Þ, I2e : L
p
P X; Lp 0,T;Vð Þ
 �! 0, þ1½ Þ,

I1e zð Þ :¼ E

ðT
0
e�t=e e

2
k@tzd tð Þk2H þ 1

2
k zs � Bð Þ tð Þk2L2 U ,Hð Þ

� 	
dt, z 2 I 2, 2 H,Hð Þ,

I2e zð Þ :¼ E

ðT
0
e�t=eU t, z tð Þð Þ dt, z 2 LpP X; Lp 0,T;Vð Þ
 �

,

and

Se : I 2, 2 H,Hð Þ ! 0, þ1½ �, Se zð Þ :¼ 0 if zd 0ð Þ ¼ u0, e,
þ1 otherwise:

�

Moreover, it will be useful to introduce the notation

I 2, 2
0 H,Hð Þ :¼ h 2 I 2, 2 H,Hð Þ : hd 0ð Þ ¼ 0

 �
:

The natural candidate as WED functional related to the approximated problem (12) is clearly

Iek : I 2, 2 H,Hð Þ ! 0, þ1½ Þ, Iek :¼ I1e þ Se þ I2ek,

with

I2ek : I 2, 2ðH,HÞ ! ½0, þ1Þ,
I2ekðzÞ :¼ E

ðT
0
e�t=eUkðt, zðtÞÞdt, z 2 I 2, 2ðH,HÞ,

where Uk is the Moreau-Yosida regularization of U, i.e.

Uk : X� 0,T½ � � H ! 0, þ1½ Þ,
Uk x, t, zð Þ :¼ U x, t, Jk zð Þð Þ þ 1

2k
kz � Jk zð Þk2H , x, t, zð Þ 2 X� 0,T½ � �H:

It is well known that Uk x, t, �ð Þ is Gâteaux-differentiable on H with derivative
Ak x, t, �ð Þ, for every x, tð Þ 2 X� 0,T½ �:
We now show that the approximated problem (12) is equivalent to the minimization

of Iek: In this direction, we aim now at characterizing the subdifferential of Iek: This will
follow after some intermediate steps.
First of all, we characterize the subdifferential of the sum I1e þ Se:

Lemma 3.1. The subdifferential of I1e þ Se : I 2, 2 H,Hð Þ ! 0, þ1½ � is the operator
@ I1e þ Se

 �

: I 2, 2 H,Hð Þ ! 2I
2, 2 H,Hð Þ�

defined in the following way:
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D @ I1e þ Se

 �
 �

:¼ fz 2 I 2, 2 H,Hð Þ : zd 0ð Þ ¼ u0, eg,
and, for every z 2 D @ I1e þ Se


 �
 �
and w 2 I 2, 2 H,Hð Þ�,
w 2 @ I1e þ Se


 �
zð Þ

if and only if there exists ~w 2 I 2, 2
0 H,Hð Þ? such that

hw, hiI 2, 2 H,Hð Þ

¼ E

ðT
0
e�t=e e @tz

d tð Þ, @thd tð Þ

 �

þ zs � Bð Þ tð Þ, hs tð Þ

 �

L2 U,Hð Þ
h i

dt þ h~w , hiI2, 2 H,Hð Þ

for every h 2 I 2, 2 H,Hð Þ:
Proof. First of all, it is clear that I1e is proper, convex, and lower semicontinuous on
I 2, 2 H,Hð Þ: Moreover, we have that I1e is actually Gâteaux-differentiable. Indeed, for
every z, h 2 I 2, 2 H,Hð Þ and d 6¼ 0 we have

I1e z þ dhð Þ � I1e zð Þ
d

¼ E

ðT
0
e�t=e e @tz

d tð Þ, @thd tð Þ

 �

þ zs � Bð Þ tð Þ, hs tð Þ

 �

L2 U ,Hð Þ
h i

dt

þ dE
ðT
0
e�t=e e

2
k@thd tð Þk2H þ 1

2
khs tð Þk2L2 U,Hð Þ

� 	
dt,

where the second term on the right-hand side converges to 0 as d ! 0 since h 2
I 2, 2 H,Hð Þ: Hence, I1e is Gâteaux-differentiable, its Gâteaux-differential coincides with
its subdifferential and it is given by

@I1e : I 2, 2 H,Hð Þ ! I 2, 2 H,Hð Þ�,

h@I1e zð Þ, hiI2, 2 H,Hð Þ ¼ E

ðT
0
e�t=e e @tz

d tð Þ, @thd tð Þ

 �

þ zs � Bð Þ tð Þ, hs tð Þ

 �

L2 U ,Hð Þ
h i

dt,

z, h 2 I 2, 2 H,Hð Þ:
Secondly, Se is proper, convex, and lower semicontinuous on I 2, 2 H,Hð Þ: Moreover, its
subdifferential is given by

@Se : I 2, 2 H;Hð Þ ! 2I
2, 2 H,Hð Þ� ,

@Se zð Þ :¼ w 2 I 2, 2 H;Hð Þ : hw, hiI2, 2 H,Hð Þ ¼ 0 8h 2 I 2, 2 H,Hð Þ, hd 0ð Þ ¼ 0
n o

z 2 D @Seð Þ :¼ z 2 I2, 2 H,Hð Þ : zd 0ð Þ ¼ u0, e
 �

:

In other words, we have that

@Se zð Þ ¼ I 2, 2
0 H,Hð Þ?, z 2 D @Seð Þ:

Consequently, since @I1e and @Se are maximal monotone on I 2, 2 H,Hð Þ, and
Int D I1e


 �
 � \ D Seð Þ ¼ I 2, 2 H,Hð Þ \ z 2 I 2, 2 H,Hð Þ : zd 0ð Þ ¼ u0, e
 �

6¼ ;,
a classical result on convex analysis (see [57, Thm. 2.10]) ensures that

@ I1e þ Se

 � ¼ @I1e þ @Se,
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with

D @ I1e þ Se

 �
 � ¼ D @I1e


 � \ D @Seð Þ ¼ D @Seð Þ:
This implies that, for every z 2 D @ I1e þ Se


 �
 �
and w 2 @ I1e þ Se


 �
, we have

w ¼ @I1e zð Þ þ ~w

for a certain ~w 2 I 2, 2
0 H,Hð Þ?, as required. w

Now, we characterize the subdifferential of I2ek:

Lemma 3.2. The subdifferential of I2ek : I 2, 2 H,Hð Þ ! 0, þ1½ Þ is the single-valued oper-
ator

@Iek : I 2, 2 H,Hð Þ ! I 2, 2 H,Hð Þ�,

h@I2ek zð Þ, hiI 2, 2 H,Hð Þ ¼ E

ðT
0
e�t=e Ak t, z tð Þð Þ, h tð Þð Þ dt, z, h 2 I 2, 2 H,Hð Þ:

In particular, it holds that D @I2ek

 � ¼ I 2, 2 H,Hð Þ:

Proof. The proof is consequence of a classical computation: see for example [58, Prop.
1.1]. w

We are now able to characterize the subdifferential of the functional Iek:

Lemma 3.3. The subdifferential of Iek : I 2, 2 H,Hð Þ ! 0, þ1½ � is the operator
@Iek : I 2, 2 H,Hð Þ ! 2I

2, 2 H,Hð Þ�

defined in the following way:

D @Iekð Þ :¼ fz 2 I 2, 2 H,Hð Þ : zd 0ð Þ ¼ u0, eg,
and, for every z 2 D @Iekð Þ and w 2 I 2, 2 H,Hð Þ�,

w 2 @Iek zð Þ
if and only if there exists ~w 2 I 2, 2

0 H,Hð Þ? such that, for every h 2 I 2, 2 H,Hð Þ,

hw, hiI2, 2 H,Hð Þ ¼ E

ðT
0
e�t=e e @tz

d tð Þ, @thd tð Þ

 �

þ Ak t, z tð Þð Þ, h tð Þð Þ
�

þ zs � Bð Þ tð Þ, hs tð Þ

 �

L2 U,Hð Þ
i
dt þ h~w , hiI2, 2 H,Hð Þ:

In particular, for every z 2 I 2, 2 H,Hð Þ with zd 0ð Þ ¼ u0, e and w 2 @Iek zð Þ it holds that
hw, hiI 2, 2 H,Hð Þ

¼ E

ðT
0
e�t=e e @tz

d tð Þ, @thd tð Þ

 �

þ Ak t, z tð Þð Þ, h tð Þð Þ þ zs � Bð Þ tð Þ, hs tð Þ

 �

L2 U ,Hð Þ
h i

dt

for every h 2 I 2, 2
0 H,Hð Þ:

Proof. Since D I1e þ Se

 � ¼ fz 2 I 2, 2 H,Hð Þ : zd 0ð Þ ¼ u0, eg and D I2ek


 � ¼ I 2, 2 H,Hð Þ, we
have
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D I1e þ Se

 � \ Int D I2ek


 �
 � ¼ fz 2 I 2, 2 H,Hð Þ : zd 0ð Þ ¼ u0, eg 6¼ ;:
Hence, by the classical result [57, Thm. 2.10], we infer that

@Iek ¼ @ I1e þ Se

 �þ @I2ek, D @Iekð Þ ¼ D @ I1e þ Se


 �
 � \ D @I2ek

 �

:

The thesis follows then directly from Lemma 3.1 and Lemma 3.2. w

We have now all the tools in order to show existence of solutions to the approxi-
mated problem (12) via minimization of the regularized functional Iek: Namely, we have
the following result.

Proposition 3.4 (Well-posedness of the approximated problem). For every k > 0, the
functional Iek admits a unique global minimizer

zek 2 I 2, 2 H,Hð Þ:

Moreover, the triplet zek, @tzdek, @tzdek

 �s� �

is a solution of the approximated problem (12).

Proof. We note first that the functional I1e þ Se is strictly convex and coercive on
I 2, 2 H,Hð Þ, hence so is the functional Iek since Uk is convex and bounded from below.
Since I 2, 2 H,Hð Þ is reflexive, this ensures the existence and uniqueness of a global min-
imizer zek 2 I 2, 2 H,Hð Þ for Iek: Clearly, we have that zek 2 D Iekð Þ, so that zdek 0ð Þ ¼ u0, e:
Moreover, by definition of minimizer we have that

0 2 @Iek zekð Þ:
By virtue of Lemma 3.3, we deduce that

E

ðT
0
e�t=e e @tz

d
ek tð Þ, @thd tð Þ

� �
þ Ak t, zek tð Þð Þ, h tð Þð Þ

h i
dt

þ E

ðT
0
e�t=e zsek � B


 �
tð Þ, hs tð Þ
 �

L2 U ,Hð Þ dt ¼ 0

(13)

for every h 2 I 2, 2 H,Hð Þ with h 0ð Þ ¼ 0: Now, since zek 2 L2 X;C0 0,T½ �;Hð Þ
 �
and Ak is

uniformly Lipschitz-continuous in its third variable, it is clear thatð�
0
e�s=eAk s, zek sð Þð Þ ds 2 L2 X;C1 0,T½ �;Hð Þ
 �

:

Hence, by Itô’s formula we have, in differential (formal) form, that

d
ðt
0
e�s=eAk s, zek sð Þð Þ ds, h tð Þ

 !

¼ e�t=eA t, zekð Þ, h tð Þ
� �

dt þ
ðt
0
e�s=eAk s, zek sð Þð Þ ds, @th

d tð Þ
 !

dt

þ
ðt
0
e�r=eAk r, zek rð Þð Þ dr, hs tð Þ dW tð Þ

 !
:

Integrating on 0,T½ � and taking expectations we infer that
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E

ðT
0
e�s=eAk s, zek sð Þð Þ ds, h Tð Þ

 !
¼ E

ðT
0
e�t=e A t, zek tð Þð Þ, h tð Þð Þ dt

þ E

ðT
0

ðt
0
e�s=eAk s, zek sð Þð Þ ds, @th

d tð Þ
 !

dt:

Noting that the first term on the right-hand side appears in (13) as well, by substitution
we infer then that

E

ðT
0

ee�t=e@tz
d
ek tð Þ �

ðt
0
e�s=eAk s, zek sð Þð Þ ds, @th

d tð Þ
 !

dt

þ E

ðT
0
e�t=e zsek � B


 �
tð Þ, hs tð Þ
 �

L2 U,Hð Þ dt

þ E

ðT
0
e�s=eAk s, zek sð Þð Þ ds, h Tð Þ

 !
¼ 0

(14)

for every h 2 I 2, 2 H,Hð Þ such that h 0ð Þ ¼ 0: Now, note that for any such h, we have
that

h Tð Þ ¼ hd Tð Þ þ
ðT
0
hs rð Þ dW rð Þ ¼

ðT
0
@th

d sð Þ dsþ
ðT
0
hs rð Þ dW rð Þ,

which yields in turn that

E

ðT
0
e�s=eAk s, zek sð Þð Þ ds, h Tð Þ

 !
¼ E

ðT
0

ðT
0
e�r=eAk r, zek rð Þð Þ dr, @th

d sð Þ
 !

ds

þ E

ðT
0
e�s=eAk s, zek sð Þð Þ ds,

ðT
0
hs rð Þ dW rð Þ

 !
:

Using this equality for the last term of (14) we obtain that

E

ðT
0

ee�t=e@tz
d
ek tð Þ �

ðt
0
e�s=eAk s, zek sð Þð Þ dr þ

ðT
0
e�s=eAk s, zek sð Þð Þ ds, @th

d tð Þ
 !

dt

þ E

ðT
0
e�t=e zsek � B


 �
tð Þ dW tð Þ þ

ðT
0
e�s=eAk s, zek sð Þð Þ ds,

ðT
0
hs tð Þ dW tð Þ

 !
¼ 0

(15)

for every h 2 I 2, 2 H,Hð Þ with hd 0ð Þ ¼ 0: Now, for any arbitrary K 2 L2P X; L2 0,T;Hð Þ
 �
,

note that the process

hK :¼
ð�
0
K sð Þ ds 2 I 2, 2 H,Hð Þ

satisfies hK 0ð Þ ¼ 0, hence it is a possible test in equation (15). Since hsK ¼ 0, we deduce that

E

ðT
0

ee�t=e@tz
d
ek tð Þ �

ðt
0
e�s=eAk s, zek sð Þð Þ dsþ

ðT
0
e�s=eAk s, zek sð Þð Þ ds,K tð Þ

 !
dt ¼ 0
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for every K 2 L2P X; L2 0,T;Hð Þ
 �
: Let us stress that the first component of the scalar

product appearing in this equality is not progressively measurable, hence one cannot
simply deduce that it vanishes by arbitrariness of K. Nonetheless, note that by definition
of conditional expectation and by the adaptedness of K, we have

E

ðT
0

ðT
0
e�s=eAk s, zek sð Þð Þ ds,K tð Þ

 !
dt

¼ E

ðT
0

E

ðT
0
e�s=eAk s, zek sð Þð Þ ds

��� Ft

" #
,K tð Þ

 !
dt:

Since Ftð Þt2 0,T½ � is the filtration generated by W andðT
0
e�s=eAk s, zek sð Þð Þ ds 2 L2 X,FT ;Hð Þ,

the process

t 7! E

ðT
0
e�s=eAk s, zek sð Þð Þ ds

��� Ft

" #

is an H-valued continuous square-integrable martingale, and in particular is progres-
sively measurable. We deduce then that the variational equality reads equivalently

E

ðT
0

ee�t=e@tz
d
ek tð Þ �

ðt
0
e�s=eAk s, zek sð Þð Þ dsþ E

ðT
0
e�s=eAk s, zek sð Þð Þ ds

���Ft

" #
,K tð Þ

 !
dt

¼ 0 8 K 2 L2P X; L2 0,T;Hð Þ

 �

:

At this point, since the process appearing on the left term of the scalar product belongs
to the space L2P X; L2 0,T;Hð Þ
 �

, by arbitrariness of K we have that

ee�t=e@tz
d
ek tð Þ �

ðt
0
e�s=eAk s, zek sð Þð Þ dsþ E

ðT
0
e�s=eAk s, zek sð Þð Þ ds

��� Ft

" #
¼ 0

almost everywhere in X� 0,T½ �: We deduce that there is a dP	 dt-version of @tzdek
(which will be denoted with the same symbol for brevity of notation) such that

@tz
d
ek 2 L2 X;C0 0,T½ �;Hð Þ
 �

: (16)

Furthermore, by the classical martingale representation theorem in Hilbert spaces (see
e.g. [59, Prop. 4.1] and [60]), there exists a process Gek 2 L2P X; L2 0,T;L2 U,Hð Þ
 �
 �
such that

E

ðT
0
e�s=eAk s, zek sð Þð Þ ds

��� Ft

" #
¼
ðT
0
e�s=eAk s, zek sð Þð Þ dsþ e

ðT
t
e�s=eGek sð Þ dW sð Þ

for every t 2 0,T½ �, from which it follows that

ee�t=e@tz
d
ek tð Þ þ

ðT
t
e�s=eAk s, zek sð Þð Þ ds ¼ �e

ðT
t
e�s=eGek sð Þ dW sð Þ 8t 2 0,T½ �:
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It follows in particular that

@tz
d
ek 2 I 2, 2 H,Hð Þ, @tz

d
ek Tð Þ ¼ 0, (17)

and

ed @tz
d
ek

� �
¼ ed et=ee�t=e@tz

d
ek

� �
¼ et=e e�t=e@tz

d
ek

� �
dt þ eet=ed e�t=e@tz

d
ek

� �
¼ @tz

d
ek

� �
dt þ Ak �, zekð Þ dt þ eGek dW,

which reads, equivalently,

�ed @tz
d
ek

� �
þ @tz

d
ek

� �
dt þ Ak �, zekð Þ dt ¼ �eGek dW: (18)

Now, we go back to the variational formulation (15) and take hL :¼ L �W 2 I 2, 2 H,Hð Þ
as test process for any arbitrary L 2 L2P X; L2 0,T;L2 U,Hð Þ
 �
 �

: Clearly, the process hL sat-
isfies hL 0ð Þ ¼ 0 and is hence a possible test in (15). Since @thdL ¼ 0, we infer that

E

ðT
0
e�t=e zsek � B


 �
tð Þ dW tð Þ þ

ðT
0
e�s=eAk s, zek sð Þð Þ ds, L �Wð Þ Tð Þ

 !
¼ 0

for every L 2 L2P X; L2 0,T;L2 U,Hð Þ
 �
 �
: Now, note that by arbitrariness of L, by the

usual martingale representation theorems, the random variable L �W Tð Þ is arbitrary in
the subspace L20 X,FT ;Hð Þ of elements with null mean. It follows in particular that the
process on the left-term is constant and equal to its mean, i.e.ðT

0
e�t=e zsek � B


 �
tð Þ dW tð Þ þ

ðT
0
e�s=eAk s, zek sð Þð Þ ds

¼ E

ðT
0
e�t=e zsek � B


 �
tð Þ dW tð Þ þ

ðT
0
e�s=eAk s, zek sð Þð Þ ds

" #

¼ E

ðT
0
e�s=eAk s, zek sð Þð Þ ds

" #
:

Recalling the definition of Gek, we have that

E

ðT
0
e�s=eAk s, zek sð Þð Þ ds

" #
¼
ðT
0
e�s=eAk s, zek sð Þð Þ dsþ e

ðT
0
e�s=eGek sð Þ dW sð Þ,

so that by comparison we obtain thatðT
0
e�t=e zsek � B


 �
tð Þ dW tð Þ ¼ e

ðT
0
e�s=eGek sð Þ dW sð Þ P-a:s:,

yielding

zsek ¼ Bþ eGek: (19)

It is then clear now from (16), (17), (18), and (19), that zek, @tzdek,Gek


 �
is a solution

to the approximated problem (12). w
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3.3. Uniform estimates

We want to pass now to the limit as k & 0 in (12). To this end, let us show some uni-
form estimates in k, still with e > 0 fixed.
Itô’s formula for the square of the H-norm yields

1
2
Ekuek Tð Þk2H ¼ 1

2
Eku0, ek2H þ E

ðT
0

vek sð Þ, uek sð Þð Þ dsþ 1
2
E

ðT
0
kB sð Þk2L2 U,Hð Þ ds

þ e2

2
E

ðT
0
kGek sð Þk2L2 U,Hð Þ dsþ eE

ðT
0

B sð Þ,Gek sð Þð ÞL2 U;Hð Þ ds:

(20)

Note now that

d evek, uekð Þ ¼ evek duek þ uekedvek þ ed Gek,Bþ eGek½ �,
which yields, taking (12) into account,

d evek, uekð Þ ¼ ekvekk2H dt þ evek, Bþ eGekð Þ dWð Þ þ vek, uekð Þ dt þ Ak uekð Þ, uek
 �
dt

þ e uek,Gek dWð Þ þ e B,Gekð ÞL2 U,Hð Þ dt þ e2kGekk2L2 U,Hð Þ dt:

Recalling that eve Tð Þ ¼ 0, we deduce then that

eE
ðT
0
kvek sð Þk2H dsþ E

ðT
0

vek sð Þ, uek sð Þð Þ dsþ E

ðT
0

Ak uek sð Þð Þ, uek sð Þð Þ ds

þ e2E
ðT
0
kGek sð Þk2L2 U,Hð Þ dsþ eE

ðT
0

B sð Þ,Gek sð Þð ÞL2 U;Hð Þds ¼ �eE vek 0ð Þ, u0, e

 �

:

(21)

Now, noting that I � Jk ¼ kAk, recalling that Ak �ð Þ 2 A Jk �ð Þð Þ, the coercivity of A entails

Ak uekð Þ, uek

 � ¼ Ak ukð Þ, Jk uekð Þ
 �þ Ak uekð Þ, uek � Jk uekð Þ
 �

¼ Ak ukð Þ, Jk uekð Þ
 �þ kkAk uekð Þk2H
� cAkJk uekð ÞkpV þ kkAk uekð Þk2H:

Hence, by comparing (20) and (21) we obtain

1
2
Ekuek Tð Þk2H þ eE

ðT
0
kvek sð Þk2H dsþ cAE

ðT
0
kJk uek sð Þð ÞkpV ds

þ kE
ðT
0
kAk uek sð Þð Þk2H dsþ e2

2
E

ðT
0
kGek sð Þk2L2 U ,Hð Þ ds


 1
2
Eku0, ek2H � eE vek 0ð Þ, u0, e


 �þ 1
2
E

ðT
0
kB sð Þk2L2 U;Hð Þ ds:

(22)

Next, denoting by R0 : V0 ! V�
0 the duality mapping, Itô’s formula for the square of

the V�
0 -norm of vek yields, by (12),

e
2
kvek tð Þk2V�

0
þ
ðT
t
kvek sð Þk2V�

0
dsþ e

2

ðT
t
kGek sð Þk2L2 U ,V�

0ð Þ ds

¼ �
ðT
t

Ak uek sð Þð Þ,R�1
0 vek sð Þð Þ


 �
ds� e

ðT
t

R�1
0 vek sð Þ,Gek sð Þ dW sð Þð Þ



for every t 2 0,T½ �,P-almost surely. We would like to write Itô’s formula for the
q-power of the V�

0 -norm of vek: Clearly, if p¼ 2 then also q¼ 2 and nothing has to be
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done. If p> 2 then we have q 2 1, 2ð Þ and this can be achieved by writing Itô’s formula

for the real function j � jq=2: However, since q 2 1, 2ð Þ the function j � jq=2 is not of class
C2, and this cannot be done straightaway. We need then to rely on a suitable approxi-

mation of the function j � jq=2: Let us introduce to this end the approximations

cd : 0, þ1½ Þ ! R, cd rð Þ :¼ r2 þ d2ð Þq=4, r � 0, d > 0:

Clearly, we have that cd 2 C1 0, þ1½ Þð Þ, with

c0d rð Þ ¼
q
2 r2 þ d2ð Þq�4

4 r if r > 0,

0 if r ¼ 0,

8<
:

and

c0d0 rð Þ ¼
q
2 r2 þ d2ð Þq�4

4 þ q q�4ð Þ
4 r2 þ d2ð Þq�8

4 r2 if r > 0,

0 if r ¼ 0:

8<
:

Consequently, for every r � 0 it holds that

lim
d&0

cd rð Þ ¼ rq=2, lim
d&0

c0d rð Þ ¼ q
2
rq=2�11fr>0g, lim

d&0
c00d rð Þ ¼ q

2
q� 2
2

rq=2�21fr>0g:

Since cd is of class C2, we can use the classical finite dimensional Itô’s formula (see, e.g.
[61]) and infer that

cd
e
2
kvek tð Þk2V�

0

� �
þ
ðT
t
c0d

e
2
kvek sð Þk2V�

0

� �
kvek sð Þk2V�

0
þ e
2
kGek sð Þk2L2 U,V�

0ð Þ
� �

ds

þ e2

2

ðT
t
c00d

e
2
kvek sð Þk2V�

0

� �
k R�1

0 vek sð Þ,Gek sð Þ

 �k2L2 U ,Rð Þ ds

¼ �
ðT
t
c0d

e
2
kvek sð Þk2V�

0

� �
Ak uek sð Þð Þ,R�1

0 vek sð Þð Þ

 �

ds

� e
ðT
t
c0d

e
2
kvek sð Þk2V�

0

� �
R�1
0 vek sð Þ,Gek sð Þ dW sð Þð Þ:



Now, letting d & 0 it follows by the Dominated Convergence Theorem that

e
2

� �q=2

kvek tð ÞkqV�
0
þ q
2

e
2

� �q=2�1 ðT
t
kvek sð ÞkqV�

0
ds

þ q
2

e
2

� �q=2�1 ðT
t

e
2
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0
kGek sð Þk2L2 U,V�

0ð Þ ds

þ q
2
q� 2
2

e2

2
e
2

� �q=2�2 ðT
t
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�4

V� k R�1
0 vek sð Þ,Gek sð Þ


 �k2L2 U,Rð Þ ds

¼ � q
2

e
2

� �q=2�1 ðT
t
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0

Ak uek sð Þð Þ,R�1
0 vek sð Þð Þ


 �
ds

� e
q
2

e
2

� �q=2�1 ðT
t
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0

R�1
0 vek sð Þ,Gek sð Þ dW sð Þð Þ:
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Multiplying by e
2


 �1�q
2, taking expectations, and using the Young inequality yields

e
2
Ekvek tð ÞkqV�

0
þ q
2
E

ðT
t

kvek sð ÞkqV�
0
þ e
2
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0
kGek sð Þk2L2 U,V�

0ð Þ
� �

ds

þ q q� 2ð Þ
4

eE
ðT
t
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�4

V�
0
k R�1

0 vek sð Þ,Gek sð Þ

 �k2L2 U ,Rð Þ ds


 q
2
E

ðT
t
kR�1

0 vek sð Þkq�1
V kAk uek sð Þð ÞkV� ds


 c0q
2

E

ðT
t
kR�1

0 vek sð Þkq�1
V0

kAk uek sð Þð ÞkV� ds


 q
2p

E

ðT
t
kvek sð ÞkqV�

0
dsþ cq0

2
E

ðT
t
kAk uek sð Þð ÞkqV� ds,

where c0 denotes the norm of the continuous inclusion V0 ,! V: Since

q
2
� q
2p

¼ q
2

1� 1
p

� �
¼ 1

2
,

by rearranging the terms and using the boundedness of A we deduce that

e
2
Ekvek tð ÞkqV�

0
þ 1
2
E

ðT
t
kvek sð ÞkqV�

0
ds

þ e
q
4
E

ðT
t
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0
kGek sð Þk2L2 U,V�

0ð Þ ds


 cq0
2
kf kL1 X� 0,Tð Þð Þ þ

CAc
q
0

2
E

ðT
t
kJk uek sð Þð ÞkpV ds

(23)

for every t 2 0,T½ �,P-almost surely. Now, since 0 < q=2 < 1, its conjugate exponent
�q= 2� qð Þ is negative: the reverse Young’s inequality implies then that

E

ðT
t
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0
kGek sð Þk2L2 U,V�

0ð Þ ds

� 2
q
E

ðT
t
kGek sð Þkq

L2 U,V�
0ð Þ ds� q

2� q
E

ðT
t
kvek sð ÞkqV�

0
ds

Taking this information into account we deduce from (23) that

e
2
Ekvek tð ÞkqV�

0
þ 1
2
E

ðT
t
kvek sð ÞkqV�

0
dsþ e

2
E

ðT
t
kGek sð Þkq

L2 U ,V�
0ð Þ ds


 cq0
2
kf kL1 X� 0,Tð Þð Þ þ

CAc
q
0

2
E

ðT
0
kJk uek sð Þð ÞkpV dsþ q2

4 2� qð Þ eE
ðT
t
kvek sð ÞkqV�

0
ds,

yielding, by the Gronwall lemma,

e
2

sup
t2 0,T½ �

Ekvek tð ÞkqV�
0
þ 1
2
E

ðT
0
kvek sð ÞkqV�

0
dsþ e

2
E

ðT
0
kGek sð Þkq

L2 U ,V�
0ð Þ ds


 e
Tq2

2 2�qð Þ
cq0
2
kf kL1 X� 0,Tð Þð Þ þ

CAc
q
0

2
E

ðT
0
kJk uek sð Þð ÞkpV ds

 !
:

(24)
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Now, by multiplying the inequality (24) by e�
Tq2

2 2�qð Þ cA
CAc

q
0
and summing it with inequality

(22), the last term on the right-hand side of (24) can be incorporated into the corre-
sponding term on the left-hand side of (22): rearranging the terms, we obtain

1
2
Ekuek Tð Þk2H

þ E

ðT
0

ekvek sð Þk2H dsþ cA
2
kJk uek sð Þð ÞkpV þ kkAk uek sð Þð Þk2H þ e2

2
kGek sð Þk2L2 U ,Hð Þ

� �
ds

þ e�
Tq2

2 2�qð ÞcA
2CAc

q
0

e sup
t2 0,T½ �

Ekvek tð ÞkqV�
0
þ E

ðT
0
kvek sð ÞkqV�

0
dsþ eE

ðT
0
kGek sð Þkq

L2 U ,V�
0ð Þ ds

 !


 1
2
Eku0, ek2H � eE vek 0ð Þ, u0, e


 �þ 1
2
E

ðT
0
kB sð Þk2L2 U;Hð Þ dsþ cA

2CA
kf kL1 X� 0,Tð Þð Þ:

At this point, note the second term on the right-hand side above can be handled using
the averaged Young inequality: indeed, we infer that, for every r > 0,

�eE vek 0ð Þ, u0, e

 � 
 eE kvek 0ð ÞkV�

0
ku0, ekV0

h i

 rq

q
e sup
t2 0,T½ �

kvek tð Þkq
Lq X,F0;V�

0ð Þ þ
e

rpp
ku0, ekpLp X,F0;V0ð Þ:

Choosing and fixing r sufficiently small, independent of k and e, for example

r :¼ e�
Tq2

2 2�qð Þ
qcA

4CAc
q
0

� �1=q

,

rearranging the terms we deduce that there exists a positive constant M ¼
M cA,CA, c0, q,Tð Þ, independent of both k and e, such that

Ekuek Tð Þk2H þ eE
ðT
0
kvek sð Þk2H dsþ E

ðT
0
kJk uek sð Þð ÞkpV ds

þ kE
ðT
0
kAk uek sð Þð Þk2H dsþ e2E

ðT
0
kGek sð Þk2L2 U,Hð Þ ds

þ e sup
t2 0,T½ �

Ekvek tð ÞkqV�
0
þ E

ðT
0
kvek sð ÞkqV�

0
dsþ eE

ðT
0
kGek sð Þkq

L2 U ,V�
0ð Þ ds


 ME ku0, ek2H þ eku0, ekpV0
þ kBk2L2 0,T;L2 U;Hð Þð Þ

� �
:

At this point, note that by the assumption (9) on u0, eð Þe, we have that the right-hand

side is uniformly bounded in e and k.
Then, we deduce that, by updating the value of the constant M (here below and the

following possibly changing from line to line),

ekvekk2L2 X;L2 0,T;Hð Þð Þ þ kJk uekð ÞkpLp X;Lp 0,T;Vð Þð Þ þ kkAk uekð Þk2L2 X;L2 0,T;Hð Þð Þ 
 M, (25)

ekvekkqC0 0,T½ �;Lq X;V�
0ð Þð Þ þ kvekkqLq X;Lq 0,T;V�

0ð Þð Þ 
 M, (26)

e2kGekk2L2 X;L2 0,T;L2 U,Hð Þð Þð Þ þ ekGekkqLq X;Lq 0,T;L2 U,V�
0ð Þð Þð Þ 
 M: (27)
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In particular, since vekð Þ is uniformly bounded in LqP X; Lq 0,T;V�
0ð Þð Þ by (26) and

Bþ eGekð Þ is uniformly bounded in L2P X; L2 0,T;L2 U,Hð Þ
 �
 �
by (27), it follows from

the definition of uek itself in (12) that

kuekkqLq X;C0 0,T½ �;V�
0ð Þð Þ 
 M: (28)

The boundedness of the operator A yields also

kAk uekð ÞkqLq X;Lq 0,T;V�ð Þð Þ 
 M: (29)

Furthermore, following a classical argument employed in backward SPDEs, we can
refine the estimate on vekð Þ: Indeed, let us recall the already obtained Itô’s formula for
vek in V�

0 , which reads

e
2
kvek tð ÞkqV�

0
þ q
2

ðT
t

kvek sð ÞkqV�
0
þ e
2
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0
kGek sð Þk2L2 U,V�

0ð Þ
� �

ds

þ q
2
q� 2
2

e
ðT
t
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�4

V�
0
k R�1

0 vek sð Þ,Gek sð Þ

 �k2L2 U,Rð Þ ds

¼ � q
2

ðT
t
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0

Ak uek sð Þð Þ,R�1
0 vek sð Þð Þ


 �
ds

� q
2
e
ðT
t
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0

R�1
0 vek sð Þ,Gek sð Þ dW sð Þð Þ:



Instead of taking expectations at t fixed, we can now take supremum in time and then
expectations. The first term on the right-hand side can be easily bounded using the
H€older inequality and the estimates (26) and (29) as

E

ðT
0
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0

Ak uek sð Þð Þ,R�1
0 vek sð Þð Þ


 �
ds


 c0E
ðT
0
kvek sð Þkq�1

V�
0
kAk uek sð Þð ÞkV� ds


 c0kvekkq�1
Lq X;Lq 0,T;V�

0ð Þð ÞkAk uekð ÞkLq X;Lq 0,T;V�ð Þð Þ 
 M:

The second term on the right-hand side can be bounded, thanks to Burkholder-Davis-
Gundy and Young inequalities, as

E sup
t2 0,T½ �

����
ðT
t
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0
ðR�1

0 vek sð Þ,Gek sð Þ dW sð Þð Þ
����


 ME

ðT
0
1fkvek sð ÞkV�

0
>0gkvek sð Þk2 q�2ð Þ

V�
0

kðR�1
0 vek sð Þ,Gek sð Þð Þk2L2 U ,Rð Þ ds

 !1=2


 ME kvekkq=2C0 0,T½ �;V�
0ð Þ
ðT
0
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�4

V�
0
kðR�1

0 vek sð Þ,Gek sð Þð Þk2L2 U,Rð Þ ds

 !1=2
2
4

3
5


 rEkvekkqC0 0,T½ �;V�
0ð Þ

þM2

4r
E

ðT
0
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�4

V�
0
k R�1

0 vek sð Þð Þ,Gek sð Þ

 �k2L2 U,Rð Þ ds
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for every r > 0 (independent of k and e). Hence, choosing r sufficiently small (for
example r :¼ q=2), rearranging the terms, and using the H€older inequality yields

eEkvekkqC0 0,T½ �;V�
0ð Þ 
 M 1þ eE

ðT
0
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0
kGek sð Þk2L2 U,V�

0ð Þ ds

 !
:

Now, note that the right-hand side is uniformly bounded in k and e thanks to the
inequality (23) and the already proved estimate (25). Consequently, we deduce that

ekvekkqLq X;C0 0,T½ �;V�
0ð Þð Þ 
 M: (30)

Moreover, from inequality (23), since the function r 7! jrjq�2, r> 0, is decreasing, using
again the reverse Young inequality and the estimate (25) we deduce that

M � eE
ðT
0
1fkvek sð ÞkV�

0
>0gkvek sð Þkq�2

V�
0
kGek sð Þk2L2 U,V�

0ð Þ ds

� eE
���1fkvekkV�

0
>0gvek

���q�2

C0 0,T½ �;V�
0ð ÞkGekk2L2 0,T;L2 U,V�

0ð Þð Þ
� 	

� 2
q
eEkGekkqL2 0,T;L2 U,V�

0ð Þð Þ �
q

2� q
eEkvekkqC0 0,T½ �;V�

0ð Þ:

Hence, estimate (30) readily implies also

ekGekkqLq X;L2 0,T;L2 U ,V�
0ð Þð Þð Þ 
 M: (31)

3.4. Passage to the limit as k & 0

We pass now to the limit as k & 0, keeping e > 0 fixed, and deduce existence of solu-
tions for the regularized problem (11).
The estimates (25)–(31) imply that there exist ue, ûe, ve, ne,Geð Þ such that, as k & 0,

uek*
�
ue in Lq X; L1 0,T;V�

0


 �
 �
,

Jk uekð Þ * ûe in Lp X; Lp 0,T;Vð Þ
 �
,

vek*
�
ve in Lq X; L1 0,T;V�

0


 �
 � \ L2 X; L2 0,T;Hð Þ

 �

,

Ak uekð Þ * ne in Lq X; Lq 0,T;V�ð Þð Þ,
Gek * Ge in L2 X; L2 0,T;L2 U ,Hð Þ
 �
 �

:

Note that by the definition of Yosida approximation and estimate (25) we have

kuek � Jk uekð ÞkL2 X;L2 0,T;Hð Þð Þ ¼ kkAk uekð ÞkL2 X;L2 0,T;Hð Þð Þ 
 Mk1=2 ! 0,

which implies that ûe ¼ ue: Moreover, by letting k & 0 in the forward equation in (12),
we get

ue ¼ u0, e þ
ð�
0
ve sð Þ dsþ

ð�
0
Bþ eGeð Þ sð Þ dW sð Þ,

yielding, a posteriori, also that ue 2 L2 X;C0 0,T½ �;Hð Þ
 �
: Similarly, letting k & 0 in the

backward equation in (12) we obtain, by the weak convergences above,
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eve þ
ðT
�
ve sð Þ dsþ

ðT
�
ne sð Þ ds ¼ e

ðT
�
Ge sð Þ dW sð Þ,

which yields a posteriori that ve 2 Lq X;C0 0,T½ �;V�
0


 �
 �
: Furthermore, by comparison in

the equation (12) it follows in particular that

uek Tð Þ * ue Tð Þ in L2 X,FT ;Hð Þ, vek 0ð Þ * ve 0ð Þ in Lq X,F0;V
�
0


 �
:

It only remains to show that ne 2 A �, ueð Þ almost everywhere. To this end, we recall
that by comparison of (20) and (21) we have

1
2
Ekuek Tð Þk2H þ eE

ðT
0
kvek sð Þk2H ds

þ E

ðT
0

Ak uek sð Þð Þ, uek sð Þð Þ dsþ e2

2
E

ðT
0
kGek sð Þk2L2 U,Hð Þ ds


 1
2
Eku0, ek2H � eE vek 0ð Þ, u0, e


 �þ 1
2
E

ðT
0
kB sð Þk2L2 U;Hð Þ ds:

By the weak lower semicontinuity of the norms and the regularities of the data Be and
u0, e in condition (8) we infer then that

lim sup
k&0

E

ðT
0

Ak uek sð Þð Þ, uek sð Þð Þds

¼ 1
2
Eku0, ek2H � eE ve 0ð Þ, u0, e


 �þ 1
2
E

ðT
0
kB sð Þk2L2 U;Hð Þ ds

� 1
2
lim inf
k&0

Ekuek Tð Þk2H � e lim inf
k&0

E

ðT
0
kvek sð Þk2H ds

� e2

2
lim inf
k&0

E

ðT
0
kGek sð Þk2L2 U,Hð Þ ds


 1
2
Eku0, ek2H � eE ve 0ð Þ, u0, e


 �þ 1
2
E

ðT
0
kB sð Þk2L2 U;Hð Þ ds

� 1
2
Ekue Tð Þk2H � eE

ðT
0
kve sð Þk2H ds� e2

2
E

ðT
0
kGe sð Þk2L2 U,Hð Þ ds:

(32)

We claim now that the right-hand side of inequality (32) coincides with

E

ðT
0
hne sð Þ, ue sð Þi ds:

In order to show this, we replicate in the limit k¼ 0 the Itô’s formulas obtained for k >

0 in (20) and (21).
Indeed, the Itô formula for the square of the H-norm of ue yields

1
2
Ekue Tð Þk2H ¼ 1

2
Eku0, ek2H þ E

ðT
0

ve sð Þ, ue sð Þð Þ dsþ 1
2
E

ðT
0
k Bþ eGeð Þ sð Þk2L2 U,Hð Þ ds,

while Itô’s formula for ue, eveð Þ yields
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eE
ðT
0
kve sð Þk2H dsþ E

ðT
0

ve sð Þ, ue sð Þð Þ dsþ E

ðT
0
hne sð Þ, ue sð Þi ds

¼ e2E
ðT
0
kGe sð Þk2L2 U ,Hð Þ dsþ eE

ðT
0

B sð Þ,Ge sð Þð ÞL2 U;Hð Þds� eEhve 0ð Þ, u0, ei:

By comparison we infer exactly that

1
2
Ekue Tð Þk2H þ eE

ðT
0
kve sð Þk2H dsþ E

ðT
0
hne sð Þ, ue sð Þi dsþ e2

2
E

ðT
0
kGe sð Þk2L2 U,Hð Þ ds

¼ 1
2
Eku0, ek2H � eEhve 0ð Þ, u0, ei þ 1

2
E

ðT
0
kB sð Þk2L2 U;Hð Þ ds,

(33)

as required. Substituting now this expression in the inequality (32), we get

lim sup
k&0

E

ðT
0

Ak uek sð Þð Þ, uek sð Þ

 �

ds 
 E

ðT
0
hne sð Þ, ue sð Þi ds:

The maximal monotonicity of A implies then that ne 2 A �, ueð Þ almost everywhere, see
[62, Prop. 2.5, p. 27]. Hence, ue, ne, ve,Geð Þ is a solution to (11) in the sense of
Theorem 2.1.ii.

3.5. Uniqueness

Let us check that the quadruplet ue, ne, ve,Geð Þ is unique. Assume that uie, n
i
e, v

i
e,G

i
e


 �
,

for i¼ 1, 2, solve (11) in the sense of Theorem 2.1.ii. Then, we have

d u1e � u2e

 � ¼ v1e � v2e


 �
dt þ e G1

e � G2
e


 �
dW

u1e � u2e

 �

0ð Þ ¼ 0,

(

and

�ed v1e � v2e

 �þ v1e � v2e


 �
dt þ n1e � n2e


 �
dt ¼ �e G1

e � G2
e


 �
dW

v1e � v2e

 �

Tð Þ ¼ 0:

(

Using the same argument employed to deduce (33), we infer that

1
2
Ek u1e � u2e

 �

Tð Þk2H þ eE
ðT
0
k v1e � v2e

 �

sð Þk2H ds

þ E

ðT
0
h n1e � n2e

 �

sð Þ, ue sð Þi dsþ e2

2
E

ðT
0
k G1

e � G2
e


 �
sð Þk2L2 U,Hð Þ ds ¼ 0,

which implies that v1e � v2e ¼ 0 and G1
e � G2

e ¼ 0 by the monotonicity of A. From the
forward equation we deduce that u1e � u2e ¼ 0: By comparison in the backward equation

we find that n1e � n2e ¼ 0, as required. This completes the proof of well-posedness in
Theorem 2.1.ii.
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4. The asymptotics as e & 0 of the forward-backward problem

The aim of this section is to show that the solution of the e-regularized forward-back-
ward problem (11) converges to the solution of the nonregularized problem (3).
First of all, note that the estimates (25)–(31) are independent of e. Hence, by weak

lower semicontinuity we deduce that

kuekqLq X;C0 0,T½ �;V�
0ð Þð Þ þ kuekpLp X;Lp 0,T;Vð Þð Þ 
 M,

ekvekqLq X;C0 0,T½ �;V�
0ð Þð Þ þ ekvek2L2 X;L2 0,T;Hð Þð Þ þ kvekqLq X;Lq 0,T;V�

0ð Þð Þ 
 M,

knekqLq X;Lq 0,T;V�ð Þð Þ 
 M,

e2kGek2L2 X;L2 0,T;L2 U,Hð Þð Þð Þ þ ekGekqLq X;L2 0,T;L2 U,V�
0ð Þð Þð Þ 
 M:

Moreover, thanks also to assumption (9) and [63, Lem. 2.1], we have that

kuekLq
P

X;Ws, q 0,T;V�
0ð Þð Þ 
 Ms 8 s 2 0, 1=2ð Þ:

We deduce that there exist

u 2 Lq X;Ws, q 0,T;V�
0


 �
 � \ LqP X; L1 0,T;V�
0


 �
 � \ LpP X; Lp 0,T;Vð Þ
 �
,

v 2 LqP X; Lq 0,T;V�
0


 �
 �
, n 2 LqP X; Lq 0,T;V�ð Þð Þ

such that, as e & 0,

ue *
�
u in Lq X;Ws, q 0,T;V�

0


 �
 � \ Lq X; L1 0,T;Hð Þð Þ \ Lp X; Lp 0,T;Vð Þ
 �
,

ve * v in Lq X; Lq 0,T;V�
0


 �
 �
,

ne * n in Lq X; Lq 0,T;V�ð Þð Þ:
Moreover, note that

kevekLq X;C0 0,T½ �;V�
0ð Þð Þ ¼ e1=pe1=qkvekLq X;C0 0,T½ �;V�

0ð Þð Þ 
 e1=pM1=q ! 0,

keGekLq X;L2 0,T;L2 U ,V�
0ð Þð Þð Þ ¼ e1=pe1=qkGekLq X;L2 0,T;L2 U,V�

0ð Þð Þð Þ 
 e1=pM1=q ! 0,

so that, by the Burkholder-Davis-Gaundy inequality,

eve ! 0 in Lq X;C0 0,T½ �;V�
0


 �� �
,

eGe ! 0 in Lq X; L2 0,T;L2 U,V�
0


 �� �� �
,

eGe �W ! 0 in Lq X;C0 0,T½ �;V�
0


 �� �
:

Then, by passing to the weak limit as e & 0 in the backward equation in (11) yieldsðT
t
v sð Þ dsþ

ðT
t
n sð Þ ds ¼ 0 8t 2 0,T½ �, P-a:s:,

from which vþ n ¼ 0 almost everywhere in X� 0,Tð Þ: In particular, we have that

v ¼ �n 2 LqP X; Lq 0,T;V�ð Þð Þ:
Furthermore, recalling the convergences (9) on the data and passing to the weak limit
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in the forward equation in (11) we have that

u ¼ u0 þ
ð�
0
v sð Þ dsþ

ð�
0
B sð Þ dW sð Þ:

In particular, since v 2 LqP X; Lq 0,T;V�ð Þð Þ and u 2 LpP X; Lp 0,T;Vð Þð Þ, by the classical

Itô’s formula (see [64]) we deduce by comparison that u 2 L2 X;C0 0,T½ �;Hð Þ
 �
, while

from (33) we have

ue Tð Þ * u Tð Þ in L2 X;Hð Þ:
Eventually, let us show that n 2 A �, uð Þ almost everywhere. This follows again by

lower-semicontinuity arguments. In particular, from (33), the weak lower semicontinuity
of the norms, and the convergences (9) we have that

lim sup
e&0

E

ðT
0
hne sð Þ, ue sð Þi ds


 � 1
2
lim inf

e&0
Ekue Tð Þk2H þ 1

2
Eku0k2H þ 1

2
E

ðT
0
kB sð Þk2L2 U;Hð Þ ds� lim sup

e!0
eE ve 0ð Þ, u0, e

 �


 � 1
2
Eku Tð Þk2H þ 1

2
Eku0k2H þ 1

2
E

ðT
0
kB sð Þk2L2 U;Hð Þ ds

þ lim sup
e&0

ekve 0ð ÞkLq X;V�
0ð Þku0, ekLp X;V0ð Þ:

The last term on the right-hand side can be handled using the estimates above and the
condition (9) as

ekve 0ð ÞkLq X;V�
0ð Þku0, ekLp X;V0ð Þ 
 M1=qe1=pku0, ekLp X;V0ð Þ ! 0:

Hence, we infer that

lim sup
e&0

E

ðT
0
hne sð Þ, ue sð Þi ds 
 � 1

2
Eku Tð Þk2H þ 1

2
Eku0k2H þ 1

2
E

ðT
0
kB sð Þk2L2 U;Hð Þ ds:

Now, since by the Itô formula for u and the fact that n ¼ �v we know that

1
2
Eku Tð Þk2H þ E

ðT
0
hn sð Þ, u sð Þi ds ¼ 1

2
Eku0k2H þ 1

2
E

ðT
0
kB sð Þk2L2 U;Hð Þ ds,

we obtain

lim sup
e&0

E

ðT
0
hne sð Þ, ue sð Þi ds 
 E

ðT
0
hn sð Þ, u sð Þi ds:

This yields n 2 A �, uð Þ almost everywhere in X� 0,Tð Þ, and the first part of Theorem
2.1.iii is proved.
We only need to show the strong convergences in the last assertion of Theorem

2.1.iii, under the extra assumption that V ,! H is compact and p< 4. The idea is to use
the following classical result by Gy€ongy and Krylov [65, Lem. 1.1].
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Lemma 4.1. Let X be a Polish space and Znð Þn be a sequence of X -valued random varia-
bles. Then Znð Þn converges in probability if and only if for any pair of subsequences
Znkð Þk and Znj


 �
j
, there exists a joint sub-subsequence Znki

,Znji


 �
i
converging in law to a

probability measure � on X � X such that � f z1, z2ð Þ 2 X � X : z1 ¼ z2g

 � ¼ 1:

Let then uekð Þk and uejð Þj be arbitrary subsequences of ueð Þ: By the compactness result

[66, Cor. 5, p. 86] we have the compact inclusion

Lp 0,T;Vð Þ \Ws, q 0,T;V�
0


 �
,!c Lp 0,T;Hð Þ

provided that s > 1=q� 1=p ¼ 1� 2=p: Since p< 4 by assumption, an easy computa-
tion shows that 1� 2=p < 1=2 : hence there exists �s 2 0, 1=2ð Þ such that the compact
inclusion holds. Now, from the estimates we know that

kuekLp X;Lp 0,T;Vð Þ\W�s, q 0,T;V�
0ð Þð Þ 
 M,

which implies, using a standard argument based on the Markov inequality, that the
family of laws of ueð Þe on Lp 0,T;Hð Þ is tight. By the Skorokhod theorem [67, Thm.

2.7], there exists a probability space X0,F0,P0ð Þ and measurable functions /e :

X0,F0ð Þ ! X,Fð Þ such that P0 � /�1
e ¼ P for all e > 0 and

u0eki :¼ ueki � /eki
! u01 in Lp 0,T;Hð Þ, P0-a:s:,

u0eji :¼ ueji � /eji
! u02 in Lp 0,T;Hð Þ, P0-a:s::

Relying on the uniform estimates proved above and on the uniqueness of the limit
problem, it is not difficult to show that

P0fu01 tð Þ ¼ u02 tð Þ8 t 2 0,T½ �g ¼ 1,

which is exactly the condition of Lemma 4.1. For further details we refer for example to
[68, § 5] and [69]. Hence, the Lemma implies that, on the original probability space, we
have

ue ! u in Lp 0,T;Hð Þ, P-a:s:

As ueð Þe is bounded in Lp X; Lp 0,T;Hð Þð Þ, this yields
ue ! u in Lr X; Lp 0,T;Hð Þ
 � 8 r 2 1, p½ Þ:

This completes the proof of Theorem 2.1.iii.

5. Equivalence between regularized equation and minimization problem

This section is devoted to check that Ie admits a unique minimizer in V, and that this
coincides with the unique solution to the e-regularized problem. This proves Theorem
2.1.i. In all of this section e > 0 is kept fixed.
A natural idea would be to identify the subdifferential of Ie in terms of @ I1e þ Se


 �
and @I2e : However, let us point out that the domain of I2e , i.e. the space

LpP X; Lp 0,T;Vð Þð Þ, may have empty interior in the topology of I 2, 2 H,Hð Þ: For this rea-
son, the analogous of [57, Thm. 2.10] is not applicable in this case, and we need to rely
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again on a further approximation, obtained by replacing U with its Moreau-Yosida
approximation Uk, for k > 0:
We follow the following strategy instead. First of all, we show that the unique solu-

tion ue to problem (10) is a minimizer for Ie: This ensures in particular that Ie admits
at least a minimizer. Secondly, we note that actually Ie admits at most one minimizer.
This eventually entails that minimizing Ie is equivalent to solving (10).

Proposition 5.1. The unique solution ue to (10) is a minimizer for Ie:

Proof. From Section 3 we know that ue can be constructed as limit in suitable topologies
of a sequence uekð Þk>0, where uek is the unique first solution component of (12). By

Proposition 3.4 we also know that such uek is the unique global minimizer of Iek for all
k > 0, so that

Iek uekð Þ 
 Iek zð Þ 8 z 2 I 2, 2 H,Hð Þ: (34)

Let us now consider z 2 D Ieð Þ ¼ V : since Uk 
 U, we immediately have

Iek zð Þ 
 Ie zð Þ 8 z 2 V:
Furthermore, by Section 3 we know that

Jk uekð Þ * ue in Lp X; Lp 0,T;Vð Þ
 �
,

vek * ve in L2 X; L2 0,T;Hð Þ

 �

:

Hence, by the definition of Uk, the weak lower semicontinuity of U, and by the Fatou
lemma, we have

E

ðT
0
e�t=eU t, ue tð Þð Þ dt 
 lim inf

k&0
E

ðT
0
e�t=eU t, Jk uek tð Þð Þð Þ dt


 lim inf
k&0

E

ðT
0
e�t=eUk t, uek tð Þð Þ dt

and

E

ðT
0
e�t=e e

2
kve tð Þk2 dt 
 lim inf

k&0
E

ðT
0
e�t=e e

2
kvek tð Þk2 dt:

Taking these remarks into account, and recalling that vek ¼ @tudek, ve ¼ @tude , and usek ¼
use ¼ Be, we have

Ie ueð Þ ¼ E

ðT
0
e�t=e e

2
kve tð Þk2 þ U t, ue tð Þð Þ

� 	
dt


 lim inf
k&0

E

ðT
0
e�t=e e

2
kvek tð Þk2 þ Uk t, uek tð Þð Þ

� 	
dt ¼ lim inf

k&0
Iek uekð Þ:

Passing then to the lim inf in (34) yields then

Ie ueð Þ 
 Ie zð Þ 8 z 2 V,
hence ue is a global mininimizer of Ie, as required. w
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In order to conclude the proof of Theorem 2.1.i, note that the functional I1e þ Se is

strictly convex and coercive on I 2, 2 H,Hð Þ, hence so is Ie on V since U is convex and
bounded from below. Since V is reflexive, we deduce that Ie admits a unique global
minimizer ze 2 V: Moreover, by virtue of Proposition 5.1, we know that the unique
solution ue 2 Ureg to (10) is a global minimizer of Ie: By uniqueness of ze, we infer that
ze ¼ ue 2 Ureg : This concludes the proof of Theorem 2.1.i.
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