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ORIGINAL ARTICLE

Model reduction for the forming process of fibrous composites structures via
second gradient enriched continuum models

Gabriele Barbagalloa , Marco Valerio d’Agostinoa , Alexios Aivaliotisa, Ali Daouadjia , Ahmed Makradib ,
Gaetano Giuntab , Philippe Boissea , Salim Belouettarb , and Angela Madeoa

aINSA-Lyon, Universitit�e de Lyon, Villeurbanne cedex, France; bLuxembourg Institute of Science and Technology, Esch-sur-Alzette,
Luxembourg

ABSTRACT
This paper describes phenomena associated to the microstructure, such as the local bending stiff-
ness of the yarns, with a second gradient parameter associated to terms in the energy with higher
order derivatives. The results obtained with this enriched continuous model are presented and it
is shown how the main deformation mode can be controlled to reproduce experimental evidence.
In particular, increasing the second gradient parameter, the deformation mode switches from
shear to one with a constant curvature along the specimen. Two fibrous composite reinforcements
with two different geometries are modeled: composite airframe for aeronautic industry and an
automotive leaf-spring for automotive industry. The two application cases are described as homo-
geneous second gradient continua with an energy depending on the in-plane and out-of-plane
curvature of the yarns. This addition allows to take into account the effects of the local bending
stiffness of the yarns at the mesoscale in a homogenized way.
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1. Introduction

Modeling and simulation of composite material and structures
and related manufacturing processes could reduce drastically the
resources needed to improve/reinvent the production chain. To
obtain this admittedly optimistic goal, we need to develop and
integrate models for the reliable prediction of material behavior
at different scales, as well as deriving efficient material-process-
ing-property relationships. The current material selection proc-
esses (MSPs) in the field of composites (and, thus, composites
structural design) don’t usually include material models, while
relying on experience and/or empirical methods. The reasons for
this shortcoming of the industry are several, the increased com-
plexity of the products, the global economic competition pres-
suring the industry to give short term results, the investments
needed initially for R&D and much more. However, modeling
and simulation for MSP and production could give a boost to
efficiency and revenue through shorter lead-time, better product
quality, more competitive cost, and higher customer satisfaction.
A key-point of such MSP process is the integration of material
models that account for a wide set of materials and structures
performance indicators such stiffness, failure or instability.
Developments and improvements have been taking place for dif-
ferent types of models and phenomena on several different
length scales, with advancements in the so-called multiscale
approaches, multi-disciplinary design optimization, and visual-
ization. Important links within a hierarchy of processing, nano/

microstructure properties, and expected performance are cur-
rently available. Nevertheless, they are far from being sufficient
for materials design and selection, and suffer from a lack of inte-
gration across different types of models and related communities
(especially discrete/continuum and modeling/experimental cou-
pling and validation). In this perspective and for complex struc-
tural materials, there is a particular need in industry for
chemistry/physics-based material models and modeling work-
flows for the MSP that fulfill the following requirements: (i) pre-
diction of relevant properties and key performance indicators
(KPIs) that capture the performance of materials and finished
pieces, accounting for the internal microstructure and effects of
processing [1] and (ii) accuracy/validation of predicted data and
relevant management of uncertainty [2]. To be reliable, such
decision-making process must be built upon physical and engin-
eering frameworks and based on methods that are systematic,
effective and efficient in modeling complex, hierarchical materi-
als. For material design and selection, understanding and quanti-
fying the links between material structure at the nano- and
micro-scale and their macroscopic effects is, therefore, essential
(e.g. see [3]). Moreover, having macroscopic models that can
effectively describe the all the micro-structure related phenom-
enon is of paramount importance. However, the complexity of
the analyzed materials combined with the lack of a continued
and solid connection between industry and academia tends to
prevent the adoption and usage of innovative models that better
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describe the thermo-mechanical/chemical behavior of complex
materials. A clearcut example of materials whose conventional
models fail to thoroughly describe the macroscopic characteristic
of microstructured materials are the dry fibrous composite rein-
forcements (i.e. without resin). To model the preforming of
woven composites, the most widespread macroscopic mechanical
models are based on classical Cauchy continuum mechanics.
Such models account accurately only for the deformation modes
that can be effectively measured via the first derivatives of the dis-
placement, so neglecting additional behavior related, for example,
to the bending of yarns and fibers, see [4, 5]. On the other hand,
enriched continuum theories can account for the mechanical
properties of yarns and fibers in a homogenized matter, including
the macroscopic effects of local phenomena. For this reason, our
approach has been to implement a second gradient material that
describes the energy related to micro-structural properties such
as the bending of the fibers. In previous contributions, second
gradient models have already been proposed and validated to
describe the mechanical behavior of fibrous composite reinforce-
ments (see [6–11]). In particular in [8], it was proven how the
insertion of a second gradient energy can control the onset and
evolution of wrinkling during the deep-drawing simulation, while
increasing the numerical stability of the simulation.

The aim of this paper is to present additional properties of
this model, while framing it inside modeling workflows for
MSPs of fibrous composite reinforcements. The second gradi-
ent model is implemented in COMSOLVR looking for solutions
that are continuous, as it is usual in FEM, but that also grant
continuity of the first derivatives of the displacement field. The
effects of the second gradient on the results and to propose
how to best choose the parameters to describe the properties
of the resulting composite is demonstrated. The preliminary
results obtained for case studies pertaining to the two aero-
nautical/automotive application cases is presented.

2. Second gradient modeling of 3D fibrous
composite reinforcements

We define the Lagrangian configuration BL � R
3 and the

kinematical field vðX; tÞ which links to any material point
X 2 BL its present position x at time t, so describing the
deformation of the continuum. Since they will be used in
the following, we also introduce the displacement field
uðX; tÞ :¼ vðX; tÞ�X; the tensor F :¼ rv and the Right
Cauchy-Green deformation tensor C. Furthermore, the
directions D1 and D2 indicate the direction of the warp and
weft yarns in the Lagrangian configuration and D3 ¼
D1 � D2 indicates the normal to the plane containing them.
Finally, the first gradient kinematics of the continuum must
be complemented via a second order tensor field rC which
includes the microstructural effects in a homogenized way.
The strain energy density WðC;rCÞ implemented in this
paper will assume a decomposition of the form:

W C;rCð Þ ¼ WI Cð Þ þWII rCð Þ (1)

In the next subsections, we will define the first and
second gradient energies WIðCÞ and WIIðrCÞ and present
the associated constitutive parameters.

2.1. Hyperelastic first gradient model

In the literature, isotropic strain energies for the behavior of
isotropic materials are available even at finite strains (see
e.g. [12, 13]). On the other hand, strain energies are harder
to find for orthotropic materials. Some examples are given
in [14], where some polyconvex energies are proposed for
rubbers in uniaxial tests. Other cases of polyconvex energies
for anisotropic solids are available in [15]. Despite the stud-
ies of polyconvexity, which surely present a thorough basis
for the investigation of hyperelastic materials, their use is
frequently limited by the unclear attribution of physical
meaning to the constitutive parameters which are included
in the model. The approach embraced here is to introduce
the minimum conceivable number of physically sensible
constitutive parameters which are expected to capture the
analyzed behavior.

In this subsection, we will present the constitutive equa-
tion for the first gradient strain energy density WIðCÞ;
which will be used to describe the fibrous composite
reinforcement. A first gradient orthotropic energy can be
completely defined with an expression of the kind (see e.g.
[16] and the A where a theorem for the complete represen-
tation is presented):

WI Cð Þ ¼ WI i11; i22; i33; i12; i13; i23ð Þ; (2)

where iii ¼ Di � C � Di; i ¼ f1; 2; 3g are the elongation strains
in the direction Di and iij ¼ Di � C � Dj are shear strains
between the directions Di and Dj with i; j 2 f1; 2; 3g
and i 6¼ j:

We could define complex non-linear energies that catch
every mechanical non-linearity of the experimental eviden-
ces, as done in [5, 17, 18], however this isn’t one of the
goals of the present work. Rather, using a straightforward
quadratic first gradient energy, we can study the impact of
the extra second gradient terms on the performed numerical
simulations. Therefore, the chosen constitutive expression
for the first gradient energy is:

WI Cð Þ ¼ 1
2
K11

ffiffiffiffiffi
i11

p �1
� �2 þ 1

2
K22

ffiffiffiffiffi
i22

p �1
� �2 þ 1

2
K33

ffiffiffiffiffi
i33

p �1
� �2

þ 1
2
K12i

2
12 þ

1
2
K13i

2
13 þ

1
2
K23i

2
23;

(3)

where Kii are the extensional stiffnesses of the material in
the direction of the yarns and in the orthogonal direction,
while Kij with i 6¼ j are the in-plane and out-of plane shear
stiffnesses. Woven composite reinforcements are materials in
which the extensional stiffness is significantly higher than
the shear one, and the in-plane shear stiffness is bigger than
the out-of-plane one. In addition, the extensional stiffness in
the normal plane is much lower than the in-plane ones,
because no yarns woven through the thickness of the inter-
lock. Regardless of whether more refined hyperelastic laws
could be presented as in [5, 17, 18], the proposed expression
for the first gradient energy density reflects the fundamental
deformation modes of fibrous interlocks. For the choice of
the parameters, the same principles assumed in [8] were
followed and therefore the same values were chosen, see
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Table 1. The only difference is the value of the out-of-plane
shear rigidities in the first application case that, given the
limited thickness and the absence of weaving on the third
direction, was increased to 50 kPa.

2.2. Hyperelastic orthotropic second gradient strain
energy density

Considering woven fabrics, the fundamental micro-struc-
ture-related deformation mechanism is the bending stiffness
of the yarns that occurs at the mesoscopic level. The bend-
ing stiffness of the yarns is crucial for the reproduction of
some particular effects, such as shear transition layers in 2D
experimental tests and wrinkling during the deep-drawing of
dry woven fabrics. Therefore, we will only introduce second
energy terms that describe the consequent effects. A second
gradient theory would be rich enough to account for other
micro-structural related phenomena, but being not pivotal
for the material analyzed they will not be included.

The second gradient energy considered is, accordingly,
defined on the derivatives of the invariants iij (i 6¼ j),
accounting approximately for the curvatures of the two sets
of yarns of the fabric. Given the family of yarns in the direc-
tion D1, i12;1 can be considered to be a measure of their in-
plane bending1 (see also [7, 9–11]). Similarly, i12;2 describes
the in-plane bending of the other set of yarns. On the other
hand, i13;1 and i23;2 account for the out-of-plane bending of
the first and second set of yarns, respectively. The quantities
i13;3 and i23;3 are not included here since we assume that
there are no yarns in the out-of-plane direction. Due to
these considerations, the second gradient strain energy dens-
ity is of the form:

WII rCð Þ ¼ 1
2

a1 i212;1 þ
1
2

a2 i212;2 þ
1
2

b1 i213;1 þ
1
2

b2 i223;2;

(4)

where a1, a2 and b1, b2 are the in-plane and out-of-plane
bending stiffnesses of the two families of yarns, respectively.
In the rest of the paper, we will consider the in-plane and
out-of-plane bending stiffnesses of the two families of yarns
to be equal (a ¼ a1 ¼ a2 ¼ b1 ¼ b2), i.e.:

WII rCð Þ ¼ 1
2

a i212;1 þ i212;2 þ i213;1 þ i223;2
� �

: (5)

Additional work is needed to define a connection
between the microstructure and the energy presented: the
second gradient parameters must be related to a characteris-
tic length Lc which depends on the scale of the microstruc-
ture of the material. Numerous identification strategies have
been proposed to link the macroscopic second gradient par-
ameter to the microscopic properties, e.g. see [19–21].
Therefore, some multi-scale methods may be applied in the
future to case of woven composite reinforcements.

In the simulations, we will consider the tentative values
a ¼ 0; 1; 10; 100 [N]. If we consider a relation of the type

a ¼ K12L2c ; we can have an estimate of the resulting charac-
teristic lengths Lc ’ 0; 4; 14; 45 [mm].2 These values, in par-
ticular the last one, are very high but they are chosen to
clearly show the effects of their introduction.

2.3. Augmented continuity shape functions

In the finite element method, the solution of the problem is
searched among a subset of functions approximating the
space of configurations. As explained in [22], it is implicitly
assumed in the derivation of the equations in the finite
element model that no contribution to the virtual work
arises at element interfaces. Therefore, it is necessary to
choose displacement functions such that the strains at the
interface between elements are finite (even though they may
be discontinuous). In the first gradient models, the strain is
defined by first derivatives and, therefore, the displacements
only have to be continuous. If, however, the strains depend
on the second derivatives, as in the second gradient model,
the continuity of the first derivatives must also be granted.

Therefore, it is important to choose one class of shape func-
tions fit for the analysis of a second gradient model. In the
one dimensional case, there would be various possible choices
to be made. For instance, the Hermitian polynomials were
born to evaluate problems such as the beam, in which the
second derivatives of the displacement (the curvature of the
beam in particular) play an important role. A different possi-
bility are the Spline functions which guarantee a higher level of
continuity (class Cn�1 for polynomials of degree n) between
elements and would therefore be fit for this application.

In the case of 2D and 3D solids the problem becomes
even more complicated: instead of having to consider one
derivative we have to face the full gradient of the displace-
ments ru: As a matter of fact, the 2D and 3D Hermite
functions have continuous derivatives between mesh ele-
ments, but only at the mesh vertices. In the 2D case, the
Argyris functions (5th order polynomials) or B-splines
would assure the continuity in the entire edge of the elem-
ent (for the use of B-Splines in high continuity 2D problems
see for example [23, 24]). Considering the complete 3D
case, the only existing compatible elements (C1 continuity)
are of at least 9th order [25] based on the �Zeni�sek element
[26]. Unfortunately those kind of elements imply such a
high order of polynomials that are not currently imple-
mented in the most widespread finite element softwares.

However, the need for continuity is due to the absence of
contribution to the virtual work at element interfaces. As
done in [8], we chose to implement third order Lagrangian
polynomials with augmented continuity adding an a posteri-
ori penalty energy related to the discontinuity of the

Table 1. Parameters of the first gradient energy.

K11 K22 K33 K12 K Case 1
13 K Case 1

23 K Case 2
13 K Case 2

23

5MPa 5MPa 0.5MPa 50 kPa 50 kPa 50 kPa 0.5 kPa 0.5 kPa

1Here and in the sequel, the term ð�Þ;i indicates the partial derivative of the
quantity ð�Þ with respect to the variable ni of a reference frame oriented
along the directions Di.

2On the other hand, if we considered a relation of the type a ¼ K11L2c ; we would
have a much lower estimation of the resulting characteristic lengths Lc ’
0; 0:04; 0:14; 0:45 [mm].
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deformations i12, i13, and i23 at the element interfaces of the
type3:

WInterface ¼ KPenalty i12½ �½ �2 þ i13½ �½ �2 þ i23½ �½ �2
� �

: (6)

This energy depends only on the discontinuity of the in-
plane and out-of-plane shear deformations i12, i13, and i23
and it is, therefore, not sufficient to render the entire ru
continuous. Nonetheless, the derivatives of the deformations
i12, i13, and i23 are the only ones appearing in the presented
second gradient energy and, therefore, are the only ones on
which the continuity has to be imposed.

3. Application cases

In the following subsection, two application cases proposed are
presented: the first given by a material manufacturer, while the
second by an end-user. Considering the two presented applica-
tion cases, the prediction of the performance KPIs will be
made through material modeling workflow (MODA), see [27],
as the ones in Figure 1. The number and type of models could
change depending on the scale of initial input (micro/meso/
macro) and on the required detail (some properties can be
assumed to shorten the process). A Multi-Physics Integration
Platform (MuPIF) is used in this context to facilitate the imple-
mentation of multi-physics and multi-level simulations built
from independently developed components, see [1, 28]. The

main role of the platform will be to steer individual compo-
nents (applications) and to provide high-level data exchange
services. Each application will implement an interface that
allows to steer application and execute data requests. The
design supports various coupling strategies, discretization tech-
niques, and also distributed applications. Furthermore, high
performance materials design not only requires comprehensive
material properties modeling but also understanding of risks,
costs, and business opportunities for a range of decisions, from
material selection to designing functional structural compo-
nents and systems and process optimization.

3.1. First use-case: thermoplastic airframe

The thermoplastic airframe is a suitable application case to evalu-
ate the capabilities of the developed reduced order technology to
provide with formability KPI. The object of our investigation is a
thermoplastic fuselage frame made with a high strength carbon
fiber system. The woven composite is made with 12 superposed
plies of carbon for a total thickness of around 2.5mm and the
simplified geometry presented in Figure 2. The rest of the tech-
nical data is confidential and is, therefore, not reported here.

3.2. Second use-case: automotive leaf spring

The second application case concerns the material selection
for a composite leaf spring at a conceptual design stage
(Figure 3). Composite leaf springs serve as the elastic

Figure 1. Modeling Data (MODA) for the Leaf spring and Airframe application case.

3½½��� denotes the jump at the interface of the quantity.
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elements and guiding mechanism of the suspension in auto-
motive design and are, therefore, some of the parts that
need higher strength in the automobiles. Hence, static and
dynamic mechanical properties, fatigue reliability and resist-
ance to impact play a significant role in the material selec-
tion. In this application case, performance (stiffness, fatigue,
damping), weight, time cycle, processing, material usage,
cost, and recyclability are the KPIs.

The dimensions of the existing conventional middle leaf
(spring) of a commercial vehicle were chosen for the design and
manufacture of the die needed to mold the composite leaf-
spring, see Figure 3. The cross sectional area of the leaf spring is
1.8 cm thick and 7 cm wide. Given the relevant thickness we
will assume that a 2.5D woven composite is used, granting the
integrity via a weave on the out-of-plane direction.

The simulation of the fiber reinforcement forming is
necessary to simulate the impregnation process, giving fun-
damental data such as the local permeability and fiber direc-
tion, but also to give information on the final composite part.
If the positioning and direction of fibers changes, both the
directions and entity of maximum stiffness and strength will
change drastically. Moreover, there is a threshold level of shear
deformation before the reinforcement starts to dissociate, lead-
ing to a low quality of the final piece. For this reason, extensive
studies regarding the modeling of raw fibrous composite mate-
rials can be found in the literature (e.g. [29–35]).

The difficulties to model the forming are due to local
relative movements between the fibers that occur in dry
composites. The resulting tensile stiffness of the homogen-
ized material in the fiber direction is comparable to the

Figure 2. Geometry of the thermoplastic airframe application case.

Figure 3. Transverse Rear Leaf springs (top) and assumed geometry (bottom).

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 5



stiffness of the material composing the fibers and, therefore, it
is much larger than all the others rigidities (shear, bending,
compaction). This quasi-inextensibility implies that the shear
angle between warp and weft yarns can change without any
relevant extension of the yarns. Furthermore, the coupling
between the relatively low shear stiffness and the presence of
slippages in the fabric makes it possible to have local bending
of the yarns. The local curvature can significantly differ from
the global one assumed by the whole piece, so giving a non-
conventional influence to the local bending stiffness of the
yarns with effects at the macroscopic level. Even considering
the local slippages, fibrous composites can be (and generally
are) considered continuous media with a reasonable accuracy.
However, a classical model cannot account for phenomena
related to the local bending stiffness of the yarns and it can
mispredict the presence (or lack thereof) of defects in the
material. On the other hand, a second gradient model can
account directly for the curvature of the yarns at the meso-
scopic level giving a more accurate description of the forming
of dry fibrous composite reinforcements (see [6–11]).

4. Numerical results and effects of the second
gradient parameter

4.1. Deformed shape

The model here presented implements the augmented continu-
ity shape functions in a COMSOLVR finite element model. The
energy considered was the sum of the first gradient energy pre-
sented in Eq. (3) and of the second gradient one given in Eq.
(5), for which the directions of the fibers D1 and D2 were
chosen to be parallel to the edges of the specimen. The first
gradient parameters are the ones shown in the Table 1, while
various values of the second gradient parameter a were consid-
ered. It must be noted that, in the case a¼ 0, the model
reduces to a first gradient model with the energy of Eq. (3).

First, we analyze the thermoplastic airframe application
case, whose slight double curvature and cut geometry give

rise to some additional transversal effects. The results,
obtained for a ¼ 0; 1; 10; 100 N; are shown in Figure 4 for
an imposed displacement of around 85% of the final one
(30 cm). In contrast to the case of the deep drawing pre-
sented in [8], there is no significant wrinkling phenomenon
both with and without the second gradient energy.
Moreover, there is no significant influence of the second
gradient parameter on the deformed shape either, leading to
question the usefulness of a more complex model for this
application case. Nonetheless, we will show in the following
that the second gradient parameter has an influence on the
deformation modes and it can be necessary to thoroughly
describe the mechanical behavior of the woven composites.
Even if it appears small, the effect could drastically change
the results in terms of strain and porosity, leading to an
accurate prediction of the curing process.

For the automotive leaf spring, there is some more visible
difference between the displacements obtained for various
second gradient parameters, see Figure 5. When the second
gradient parameter increases, the central part of the speci-
men lifts and tends to have a constant curvature. As we will
see in the following, a change in the deformation mode
causes the difference in shape: a pure shear mode allows for
higher curvatures than a constant curvature bending. As a
matter of fact, this change reflects in the strain of the central
part and proves how the deformation mode can be con-
trolled and tuned with a second gradient model.

4.2. Deformation modes

A higher bending stiffness of the yarns changes the inner
workings of the material in terms of deformation modes.
Composite reinforcements have a very low shear stiffness,
therefore the main deformation modes are the in-plane
shear deformation, measured as i12 ¼ D1 � C � D2; and the
out-of-plane one, measured as i13 ¼ D1 � C � D3 and i23 ¼
D2 � C � D3: The stiffness of the yarns in elongation, associ-
ated to the deformations ijj ¼ Dj � C � Dj; has a different

Figure 4. Case 1: dependence of the solution on the second gradient parameter a.
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order of magnitude than the shear one, consequently the
specimen tends to deform accordingly. For this reason, the
chosen second gradient energy acts on the derivatives of the
shear deformation to model the local bending stiffness of
the yarns and to avoid unrealistic concentrations of shear
deformation that would not be allowed by the micro-

structure of the woven composite. If this second gradient
energy is high enough, the derivative of the shear (curvature
of the yarn) is reduced spreading the effects of a concen-
trated external action. The usefulness of a second gradient
energy is to control such effects with a limited set of param-
eters (only one with our assumptions). For very high

Figure 6. Cut planes for the analysis of the deformation modes (case 1 on the left and case 2 on the right). The green and blue areas will be used to show
local effects.

Figure 5. Case 2: dependence of the solution on the second gradient parameter a.

Figure 7. Case 1: dependence of the deformation i13 on the second gradient parameter a.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 7



bending stiffness (and second gradient parameter), the speci-
men assumes a constant minimum curvature that reduces
the maximum value assumed by the shear deformation by
spreading it on a larger area of the specimen.

To study these effects, we define one 2D cut-plane for
each of the application cases on which we will plot the
resulting strains, see Figure 6.

In the first application case, the increase of the second
gradient parameter both decreases the shear deformation
and distributes it, see Figure 7. We start by remarking that
the results are not exactly symmetric due to the holes in the
geometry (on the left in the cut-plane representation) but
the behavior is still similar on the two sides of the specimen.
The general qualitative behavior that we expected
is confirmed:

� in the first gradient case, the shear deformation is sub-
stantial in the high-curvature-zones of the specimen
and it decreases rapidly in the area near the con-
tact points;

� increasing the second gradient parameter, the maximum
value of the shear deformation drops and the area with
relevant shear deformation around the contact
point increases;

� when we reach the highest second gradient parameter
considered, the shear deformation is spread on a relevant
area reaching also the edges of the specimen, the max-
imum value of the shear deformation dropped to a
fourth of the original one and the deformed shape has
an almost constant small curvature on a relevant area
around the contact points.

Also in the leaf spring case, the shear deformation
decreases in maximum value and is redistributed in a larger
area, see Figure 8: the deformation mode is of pure shear in
the first gradient model, while increasing the second gradi-
ent parameter it becomes one of almost constant pure bend-
ing. Furthermore, the constant curvature is much more
recognizable in this case due to the much simpler geometry.
In the first gradient model, the geometry follows the mold

Figure 8. Case 2: dependence of the deformation i13 on the second gradient parameter a.

Figure 9. Case 1: dependence of the deformation i11 on the second gradient parameter a (green area in Figure 6).
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even in the areas with relevant curvature. When we consider
the limiting case of a ¼ 100N; the maximum curvature of
the specimen is much lower than the one of the mold and
the central part of the specimen lifts from the mold. Of
course, the limiting case would happen only with extremely
stiff yarns, but there are intermediate cases in which a small
detachment could be observed experimentally.

The change in the shear distribution and magnitude leads
to a classical bending deformation: the upper yarns tend to
elongate while the lower yarns tend to compress. Therefore,
penalizing the shear mode implies a reduction in shear
deformation and also an increase in the extension of the
yarns. To better show this behavior, we zoom in the area
around the contact point of the thermoplastic airframe
(green area in Figure 6) and we plot the elongation i11 of
the yarns, see Figure 9. Due to the reduction of the shear,
the specimen tends to behave more like an homogeneous

solid with a higher shear stiffness. Increasing the second gra-
dient parameter, the upper yarns tend to elongate more with
an increase of the compression of the lower yarns. This
effect is due by the fictive increase of shear stiffness given
by the spreading effect of the second gradient: penalizing
the shear deformation, the elongation has to augment.
Considering the second application case, in the central area
of the specimen (blue area in Figure 6), the described effect
on the deformation i11 is even more visible, see Figure 10.
Here, we notice how the second gradient energy induces the
constant curvature and the lift of the central part.
Furthermore, the consequent increase on the elongation of
the yarns is much more significant than the first case. When
the second gradient parameter a reaches the maximum value
the constant-curvature-behavior is clearly visible and the
upper part and lower part of the specimen have relevant
and opposite elongational behaviors. This effect could be

Figure 10. Case 2: dependence of the deformation i11 on the second gradient parameter a (blue area in Figure 6).

Figure 11. Case 1: dependence of the deformation i23 on the second gradient parameter a.
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used to tune the second gradient parameter with experimen-
tal results, since both the lift from the mold and the strains
are observable quantities. Moreover, the proposed geometry
has no relevant transverse effect, rendering the separate
description of the effect of the two sets of yarns simpler.

Analyzing the thermoplastic airframe case, the area with
most of the transverse effects is concentrated around the
contact point, therefore we will plot the shear deformation
i23 zooming in the relevant area, see Figure 11. Some pos-
sible remarks on the transverse shear deformation i23 are
analogous to the longitudinal case:

� for the first gradient model, the value of the shear
deformation around the contact point is very high;

� increasing the second gradient parameter the maximum
value of the shear deformation drops.

However, there is one important difference to point out.
The shear deformation decreases in magnitude but it is not
spread more in the considered section. The reason for this
effect is that the second gradient energy describes the bend-
ing stiffness of the yarns and, therefore, it spreads the shear
deformation along the direction of the bent yarns. Having
considered the transverse curvature, the redistribution of the
shear will have to happen on the transverse direction, thus
it will not be visible here. We refrain to show plots on the
transverse direction since, the transverse curvature being
constant, no interesting phenomena occur.

Since there is no transverse curvature in the leaf spring,
there are no transverse effects and we will not show any
transverse characteristics.

5. Conclusions

This paper shows how the use of a second gradient energy
influences the deformation modes of a woven composite. In
particular, two real geometries, taken from the
COMPOSELECTOR project, are considered: an airframe for
aeronautic industry and an automotive leaf spring used. The
second gradient energy considered takes into account the
in-plane and out-of-plane bending stiffness of the carbon
yarns by means of a homogenized energy. The results are
analyzed in terms of strains to show the influence of the
second gradient parameter. Both examples show the same
qualitative effects, the deformation mode switches from a
shear one to one with a constant curvature along the speci-
men. This characteristic could be used to fit the proposed
second gradient energy with real experiments, increasing the
possibilities already provided in previous contributions
(boundary layers, wrinkling, curvature of the bound-
ary, etc.).
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Appendix A: A representation theorems for
hyperelastic materials

The main issue when defining a constitutive law is the choice of the
deformation descriptors. In the literature, we find different theo-
rems that ensure the minimum number of parameters needed to
correctly represent the functional dependence of W on C. All of
these results define a minimum number of invariants for any spe-
cific symmetry in the considered medium. For what follows the uni-
tary vector along the preferred directions, namely the fiber
directions in the case of the fabrics, will be denoted by m1 and m2

and the unitary vector m3 is defined as m3 :¼ m1 �m2: The invari-
ants considered in the following and a brief description of their
meaning are listed in Table A1.

Considering an isotropic symmetry, various hyperelastic constitutive
energy densities, which are suitable to describe the mechanical behavior
even at finite strains, have been proposed in the literature (see e.g. [12,
13]). For orthotropic materials, constitutive hyperelastic equations are
harder to be found in the literature. Plenty of authors try to generalize
the representation theorems valid for isotropic and transversely iso-
tropic media, but often there is no apparent agreement between the
different proposed versions.

The most diffused version of the representation theorem for ortho-
tropic materials (see e.g. [36–38]) states that only seven independent
scalar invariants of the Cauchy-Green tensor C are sufficient to cor-
rectly represent the functional dependence of Worth on C. In other
words, for an orthotropic material, it is sufficient to consider an energy
such as:

Table A1. Invariants of deformation.

Invariant Expression Meaning in terms of deformation

i1 trðCÞ Changes of length
i2 trðdetðCÞC�TÞ Changes of area
i3 detðCÞ Changes of volume
i4 ¼ i11 m1 � C �m1 Local stretch in the direction m1

i5 m1 � C2 � m1 Shear and stretch strain in m1

i6 ¼ i22 m2 � C �m2 Local stretch in the direction m2

i7 m2 � C2 � m2 Shear and stretch strain in m2

i8 ¼ i12 m1 � C �m2 Shear strain between the directions ðm1;m2Þ
i9 ¼ i13 m1 � C �m3 Shear strain between the directions ðm1;m3Þ
i10 ¼ i23 m2 � C �m3 Shear strain between the directions ðm2;m3Þ
i�11 ¼ i33 m3 � C �m3 Local stretch in the direction m3
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Worth Cð Þ ¼ W i1; i2; i3; i4; i5; i6; i7ð Þ (A1)

Nevertheless, only six independent scalar invariants are sufficient to
completely describe the behavior of an orthotropic material (see the elegant
proof given in [16]), so that, even if seven scalar invariants are considered,
not all of them are truly independent functions of C: In particular, we

introduce the set of six invariants iO :¼ fi11; i22; i33; i12; i13; i23g to repre-
sent the functional dependence of W on C :

Worth Cð Þ ¼ W i11; i22; i33; i12; i13; i23ð Þ (A2)

Indeed, all the other invariants can be expressed in terms of
such six.
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