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Abstract 

Since the late 1990s an investigation of cause (IOC) study at Irving Pulp and Paper Ltd 

(IPP), a bleached kraft mill in Saint John, NB, Canada, has successfully identified an in-mill 

th 

waste stream (5 effect evaporator condensates) as containing endocrine disrupting substances 

(EDSs). These EDSs affect levels of reproductive steroids in a native estuarine fish, the 

mummichog {Fundulus heteroclitus). To confirm the minimal concentration at which whole 

condensates impact reproductive endpoints, adult mummichog were exposed to 2% and 4% (v/v) 

whole condensates for 14 days. Plasma testosterone was significantly depressed in males in the 

4% (v/v) treatment, confirming previous work done with IPP condensates. Also, significant 

induction of hepatic cytochrome P450 genes 1 and 3 were found in female fish exposed to both 

condensate concentrations. To chemically isolate suspect EDSs, a solid phase extraction protocol 

was developed by collaborating researchers. The protocol generates four chemically-distinct 

fractions, along with residual condensates. Fractionation was completed using 4% (v/v) whole 

condensates and the resultant fractions, and 4% (v/v) whole condensates, were exposed to adult 

mummichog in the reproductive endocrine bioassay. There was no significant response in fish 

exposed to 4% (v/v) whole condensates, making interpretation of specific fraction treatments 

difficult. While fish were in different reproductive periods in the two bioassays, which may 

account for some of the differences between the experiments, a more compelling explanation is 

the variability in the chemical make-up of the condensates. Chemical fingerprinting of both 

condensate batches by collaborating researchers found a higher androgenic potency in the 

fractionation condensates. Mummichog were then exposed to model androgens 

methyltestosterone (100 and 1000 ng/L; MT) and dihydrotestosterone (10 and 100 ug/L; DHT) 

to determine if androgenic responses paralleled condensate responses. Plasma testosterone was 

ii 



significantly depressed by 10 \ig/L DHT in males. Females had significant depression of plasma 

estradiol when exposed to both DHT concentrations and 1000 ng/L MT. Female mummichog 

had lower thresholds of effects than males and were more responsive to androgen exposure. 

Comparison of effects seen in fish exposed to pulp mill condensates and those exposed to model 

androgens indicate androgens in the condensates may not be the source of reproductive 

endocrine effects in the condensate-exposed mummichog. 

in 
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1.1 Effects of pulp mill effluents on fish reproductive status 

Canada is the world's premier exporter of wood pulp and manufacturer of newsprint 

(Natural Resources Canada, 2002). Over 250 pulp and paper mills are located in Canada, 

producing 17 million tonnes of paper and 23 million tonnes of pulp annually (Langlois et al, 

1997; Munkittrick, 2004). Production of pulp and paper has been a major Canadian economic 

activity for over 100 years, with discharge of industrial effluents into aquatic receiving 

environments as a major by-product of this industry for the same period. Fish exposed to final 

effluents experience multiple adverse reproductive effects including increased age to sexual 

maturity (Kovacs et al, 1995; McMaster et al, 2006), reduced gonad size (Leblanc et al, 1997; 

Janz et al, 2001), skewed sex ratio (Orn et al, 2006), altered secondary sexual characteristics 

(Larson and Forlin, 2002; Parrott et al, 2004), reduced egg production (Borton et al, 2000; 

Rickwood et al, 2006), and depressed reproductive steroid levels (Dube and MacLatchy, 2000; 

van den Heuvel and Ellis 2002; Sepulveda et al, 2003). Effluent toxicity was not regulated in 

Canada prior to 1971, resulting in discharge of untreated waste effluent directly into the 

environment. Environments downstream of effluent discharge suffered extensive habitat 

degradation and fish populations were subjected to massive die-offs (McLeay, 1987). The 

Canadian Pulp and Paper Effluent Regulation of the Fisheries Act was introduced in 1971 

(Sinclair, 1990), requiring all new mills to monitor and limit a number of final effluent factors 

including biochemical oxygen demand (BOD), total suspended solids (TSS) and acute lethality 

(McLeay, 1987). These regulations helped improve final effluent quality and lessen impacts in 

receiving environments, however, this Act covered less than 10% of all Canadian mills, resulting 

in a majority of mills still discharging untreated effluent into Canadian receiving waters. 
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Studies done in Sweden in the late 1980's found significant impacts on body size, rate of 

growth, metabolic disorders, suppressed immune function and physiological deformities in wild 

fish exposed to bleached kraft pulp mill (BKPM) effluent (Andersson et al, 1988). Additionally, 

ethoxyresorufin-O-deethylase enzyme (EROD) was induced (Andersson et al, 1988). EROD, 

measured as hepatic induced mixed function oxygenase (MFO) enzyme activity, is an indication 

of exposure to a wide array of organic contaminants and is an extremely sensitive indicator of 

contaminant uptake in fish (Munkittrick et al, 1994). Effects were seen in fish 10 km 

downstream of mill discharge and were hypothesized to occur due to impairment of hormonal 

control, especially during sexual maturation (Andersson et al, 1988). 

Similar Canadian studies investigated effects on fish of mill discharge downstream of a 

BKPM in Jackfish Bay, ON in the early 1990's (McMaster et al, 1991; Munkittrick et al, 1991; 

1998). Observed effects paralleled those found in the Swedish studies and included increased age 

to sexual maturity, alteration of secondary sexual characteristics, significant MFO induction and 

depressions of reproductive hormones (McMaster et al, 1991, Servos et al, 1996). Based on 

these studies, typical effects of many pulp mill effluents were confirmed, including smaller egg 

sizes, decreased gonad size, increased age to maturation and depressed levels of reproductive 

hormones (Munkittrick et al, 1998). These contaminants, collectively termed endocrine 

disrupting substances (EDSs), elicit effects via endocrine-mediated pathways. Specific EDSs in 

PME have not been identified due to the complex nature of PME (Hewitt et al, 2002) and the 

varied responses offish species exposed to PME (Munkittrick, 2004). Identification of 

mechanisms of interaction of the causative compounds is difficult due to this variation (Van Der 

Kraak et al, 1998). Mechanistic bioassays have been established to identify endocrine-active 

compounds in PME and methods of interaction(s) of EDSs with the hypothalamo-pituitary-
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gonad (HPG) axis in fish (MacLatchy et al, 2005). Chemical fractionation and characterization 

techniques have also been developed to identify causative compounds (Hewitt et al, 2002; 

Belknap et al, 2006). 

Estrogenic effects of PME have been observed in multiple studies, however, the 

consistency of these findings has been irregular, even within a single effluent (van den Heuvel 

and Ellis, 2002). Evidence of estrogenic effects in PME include the induction of vitellogenin in 

male fish (Hornug et al, 2003), a yolk-precursor protein normally expressed only in female fish. 

Estrogenic responses, including vitellogenin induction, have been observed in rainbow trout 

(Oncorhynchus mykiss) caged downstream of a bleached kraft mill in Chile (Orrego et al. 2005; 

2006). Specific flavonoids identified within PME are estrogenic (Belknap et al, 2006) and may 

result in vitellogenin induction. Further work with Chilean bleached kraft mill effluent found 

that rainbow trout injected with effluent extract had elevated plasma testosterone and 17p-

estradiol, as well as significant aromatase induction (Orrego et al, 2010). These estrogenic 

effects could be related to specific compounds within the effluent acting as estrogen receptor 

agonists (Orrego et al, 2010). Studies at North American pulp and paper mills have found fewer 

estrogenic responses in exposed fish. A study done in North Carolina exposed bluegill (Lepomis 

macrochirus) to effluent from a bleached kraft mill for eight months and found no estrogenic 

responses (Cheek et al, 2004). Similarly, largemouth bass (Micropterus salmoides) exposed to 

bleached kraft mill effluent in Florida had no estrogenic responses (Sepulveda et al, 2003). 

However, estrogenic responses have been observed at some North American mills. Canadian 

mills of several process types induced vitellogenin in rainbow trout hepatocytes after exposure to 

effluent extracts (Marlatt et al, 2006). Currently, more consistent North American findings have 

been linked to androgenic compounds within PME. 
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Androgenic effects in fish exposed to PME have been reported since the mid-1980's 

(Denton et al, 1985). Evidence for androgenic disruption include male-skewed sex ratios (Forlin 

et al, 2004), masculinisation of female fish (Orlando et al, 2007), down-regulation of aromatase 

activity (Li et al, 2006) and increased plasma testosterone levels (Palowski et al, 2004). A 

recent study on Swedish PME found that 37 identified compounds had the ability to bind with 

ovarian androgen receptors and cause androgenic effects in Atlantic croaker (Micropogonias 

undulatus; Larsson et al, 2006). Progesterone, androstenedione and androstadienedione have 

been identified in water and sediment downstream of a BK.PM (Carson et al, 2008). These 

potent androgens are precursors to testosterone in the steroidogenic pathway and may be present 

in PME due to bacterial degradation of plant sterols (Carson et al, 2008). 

An amendment to the 1971 Canadian Pulp and Paper Effluent Regulations was made in 

1992, making the regulations applicable to all Canadian mills. The industry made significant 

changes in mill operation to eliminate use of molecular chlorine, a suspected inducer of 

reproductive problems in fish; this resulted in the elimination of furans and polychlorinated 

dioxins from mill effluent (Hewitt et al, 2008). Concurrently, secondary effluent treatment 

systems were installed at most mills, in which microorganisms detoxify and degrade organic 

material through cellular respiration (Smook, 1994). This resulted in a reduction in BOD, 

chemical oxygen demand (COD), TSS, concentration of chlorinated organic compounds, acute 

lethality of effluent on fish and an overall improvement of effluent quality (Stromberg et al, 

1996; Rickwood et al, 2006). The bleaching process was originally suspected as the source of 

EDSs in PME, however, despite implementation of new treatment technologies, there are 

continued reports of effects on fish reproduction downstream of Canadian mills (Hewitt et al, 

2008). This implies that EDSs are not linked to the bleaching process and are not eliminated 
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through secondary effluent treatment systems. The effects observed after the installation of 

effluent treatment systems indicated that current regulations do not completely protect aquatic 

receiving environments (Courtenay et al, 2002) and a national monitoring program was needed 

to aid in the long-term goal of improving effluent quality via science-based policy. 

1.2 Environmental effects monitoring program 

Within the 1992 amendments of the Canadian Pulp and Paper Effluent Regulation, the 

environmental effects monitoring (EEM) program was enacted. This program requires all mills 

to monitor receiving water quality, total effluent toxicity and fish and benthos populations on a 

cyclical basis (Munkittrick, 2004). EEM was the first regulatory program in Canada requiring 

field biomonitoring on a national scale (Walker et al, 2002). The EEM program aims to 

determine if regulations implemented in 1992 were sufficient to protect Canadian aquatic 

environments. Integration of analyses from different regions of Canada requires standardization 

of methodologies and sampling techniques and the EEM program provides these with respect to 

long-term monitoring of aquatic community structures (Munkittrick, 2004). 

In early 1996, the first EEM cycle was completed, with over 115 individual studies 

incorporated (Munkittrick, 2004). A review of these results led to specific recommendations 

which allowed for greater site flexibility and specificity during the second cycle (Environment 

Canada, 1997). Pulp mills located on estuarine receiving environments were found to be lacking 

in adequate surveys, due to insufficient numbers offish caught and problems determining the 

degree to which fish were exposed to effluent in these locations (Courtenay et al, 2002). 
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Recommendations for Cycle 2 suggested one possibility was the use of a sedentary, small-bodied 

fish in on-site mesocosm studies to alleviate these concerns (Courtenay et al, 2002). 

Analysis of results collected during following cycles indicate that effects on fish habitats 

range from eutrophication to food limitation; with decreases in gonad size and increases in 

condition factor, liver size, and size-at-age (all signs of metabolic disruption) being the 

consistent overall national trend in exposed fish (Munkittrick et al, 2002). Currently in its sixth 

cycle, which began in 2010, the EEM has shown a national pattern of eutrophication responses in 

fish concomitant with metabolic or endocrine disruption. This natural response pattern of 

Canadian pulp mills on aquatic receiving environments has reinforced the need for investigation 

of cause (IOC) research to identify the sources of these effects and to support process changes 

that will eliminate causative compounds from release. 

1.3 Reproductive controls in fish 

The hypothalamo-pituitary-gonadal (HPG) axis has evolved in fish to maintain 

reproductive capacities (McMaster et al, 1995). Integration of internal and external cues trigger 

mechanisms within the HPG axis to maximize reproductive capacity during times of variable 

environmental conditions (McMaster et al, 1995). EDSs are exogenous substances or mixtures 

that alter the function(s) of the endocrine system through HPG interaction and can cause adverse 

effects in an organism, its progeny or subpopulations (Vos et al, 2000). Exposure of sexually-

mature adults to EDSs can result in reduced reproductive capacity and lower population 

recruitment (McMaster et al, 1995). EDSs may affect an organism by mimicking or blocking 

endogenous hormones, disrupting the natural pathway of hormone synthesis, altering the 
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expression of hormone receptors, or antagonizing naturally-synthesized hormones (Sonnenschein 

and Soto, 1998). 

Integration of external and internal cues to trigger responses in the HPG axis is a 

multiple- step process which begins in the brain offish. Receptors in the brain interpret 

environmental cues and stimulate the release of gonadotropin releasing hormone (GnRH) from 

the hypothalamus (Lethimonier et al, 2004). The pituitary gland is the target of GnRH, which 

stimulates the production and release of follicle stimulating hormone (FSH) and luteinizing 

hormone (LH; Ohkubo et al, 2010). These two gonadotropins interact with the gonadal tissue to 

stimulate growth or steroid production (Mateos et al, 2002). Initiation of gametogenesis and 

steroidogenesis is controlled by FSH, while LH aids in the maturation of gametes (Mateos et al, 

2002). The steroidogenic pathway within fish gonadal cells is a multi-step enzymatic path with 

the synthesis of testosterone, the dominant sex steroid, as a final product (Nagahama, 1994). 

Cholesterol is the precursor to testosterone and is mobilized into the mitochondrion via 

steroidogenic acute regulatory protein (StAR) and hydroxycholesterol analogues (Kim etal, 

1997). Conversion of cholesterol to testosterone involves intermediates such as pregnenolone, 

progesterone and androstenedione, facilitated by the enzymes 3p-hydroxysteroid dehydrogenase 

(3p-HSD), 17a-hydroxylase (P450cl7) and C17,20-lyase (P450cl7) respectively (Figure 1.1). 

Testosterone is a precursor for 17p-estradiol (via aromatase) in both male and female fish, and 

for 11-ketotestosterone (via 1 ip-hydroxysteroid dehydrogenase) in males (Figure 1.1). 11-

Ketotestosterone controls expression of secondary sexual characteristics, spawning behaviour 

and sperm cell maturation. Production of vitellogenin in the liver of female fish is controlled by 

17p-estradiol binding to cellular receptors (Ankley et al, 2001). Feedback loops, both positive 

and negative, within the HPG axis maintain homeostatic conditions for hormone production 
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levels by: 1) limiting of synthesis and release of sex steroids; 2) timing of gamete production; 3) 

control of gonad growth and maintenance; and 4) environmental cues triggering spawning 

behaviour (Kumar and Trant, 2001; Mateos et al, 2002; Yaron et al, 2003). 

Figure 1.1 The steroidogenic pathway within gonadal cells (modified from Nagahama, 1994; 
Leusch and MacLatchy, 2003). StAR = steroidogenic acute regulatory protein; 1 = cytochrome 
P450 side-chain cleavage; 2 = 3p-hydroxysteroid dehydrogenase; 3 = 17a-hydroxylase; 4 = 
C17,20-lyase (P450cl7); 5 = 17p-hydroxysteroid dehydrogenase; 6 = cytochrome P450 
aromatase; 7/8 = 1 ip-hydroxysteroid dehydrogenase. 
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1.4 PME effects on fish reproduction 

Interference with the HPG axis from effluent originating at BKPMs has induced 

reproductive effects in fish (Van Der Kraak et al, 1992). Lower levels of LH have been found in 

white sucker (Catostomus commersonii) living downstream of a BKPM in Jackfish Bay, ON 

(Van Der Kraak et al, 1992). This indicates altered function of the pituitary, and exposed fish 

also had reduced levels of testosterone production compared to control fish (McMaster et al, 

1995). The steroidogenic pathway is influenced downstream of cholesterol, and the reduced 

production of steroid hormones was attributed to the inhibition of specific enzymes responsible 

for the conversion of intermediates to testosterone, or lower availability of endogenous 

cholesterol substrate (McMaster et al, 1995). Recent work on the impact of effluents on 

steroidogenic activity has shown (via alteration of aromatase expression) that aromatase is 

affected in fish exposed to PME (Orrego et al, 2010). 

In order to test effects of pulp mill effluents on a broad scale, standardized fish bioassays 

were developed using the fathead minnow {Pimephaluspromelas; Parrot and Wood, 2002). This 

model species is used to test pulp mill effluent discharge into freshwater environments, however, 

the EEM program also called for use of a species offish inhabiting estuarine environments to 

address the difficulties encountered during the first cycle in determining effects of pulp mills 

discharging into coastal receiving environments (Courtenay et al, 2002). The mummichog 

{Fundulus heteroclitus) is an Atlantic coast species inhabiting estuarine environments, and a 

validated endocrine fish bioassay was developed for this species in 2003 (MacLatchy et al, 

2003; 2005). This bioassay provides the foundation for work in this thesis. 
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1.5 Mummichog reproduction 

The mummichog {Fundulus heteroclitus) is a species of killifish inhabiting the coastal 

estuaries of eastern North America. It is abundant in salt marshes, and readily available for 

laboratory study. Mummichog physiology, reproductive cycles and embryological development 

are well studied (Hsiao et al, 1994; Burnett et al, 2007). Their natural range, size and 

adaptability make laboratory holding and manipulation possible (MacLatchy et al, 2003). 

Mummichog have been shown to be sensitive to hormonally-active substances (MacLatchy et 

al, 2003; Sharpe et al, 2004; Peters et al, 2007) making this species a good candidate to study 

EDSs (MacLatchy et al, 2003). This species has been used in many artificial stream (Dube and 

MacLatchy, 2000), field (Courtenay et al, 2002) and laboratory (Shaughnessy et al, 2007; 

Melvin et al, 2009) studies aimed at determining effects of pulp and paper mill effluent on fish 

reproductive endocrine status. This species has been suggested as a model estuarine species for 

researching EDSs (MacLatchy et al, 2005). 

The mummichog is a hardy fish, tolerant of a broad range of temperatures (-1.5°C to 

36°C), dissolved oxygen concentrations and salinities (0.0 ppt- 120 ppt; Scott and Scott, 1988). 

Environmental and endogenous cues regulate spawning events, which can number from one to 

eight times per year, depending on environmental conditions (Taylor, 1986; McMullin et al, 

2009). Two distinct subspecies of mummichog, the southern Fundulus heteroclitus heteroclitus 

and the northern Fundulus heteroclitus macrolepidotus, have variable spawning events 

(McMullin et al, 2009). The northern subspecies, used in this thesis, typically experience a 

single spawning per year, triggered by water temperature and photoperiod (McMullin et al, 

2009). Southern mummichog are repeat spawners and usually begin to breed in March (early 

spring), and end in September (early autumn; Kneib, 1986). 
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In certain populations lunar cycling patterns are observed (Hsiao et al, 1994), but in 

other populations some females are continually gravid for the duration of the reproductive 

season, lacking lunar controls (Taylor, 1986). Lunar control of spawning in the southern 

subspecies is stronger than in northern counterparts (McMullin et al, 2009). Laboratory-held 

mummichog have been shown to be daily spawners with a weak lunar pattern (Bosker et al, 

2009). A lunar pattern of cycling has not been observed in the northern subspecies, and 

researchers believe that photoperiod and water temperature are responsible for synchronizing 

reproductive cycles in these populations (Shimizu, 1997; McMullin et al, 2009). Laboratory 

control of reproductive cycling is possible through the manipulation of photoperiod and water 

temperature. 

1.6 Irving Pulp and Paper Ltd. processing and condensate generation 

The three main components of wood are cellulose, hemicellulose and lignin. These 

chemical structures are present in both softwood (derived from gymnosperms) and hardwood 

(derived from angiosperms) trees. Other components of wood include resin, fatty acids, phenols, 

plant sterols and terpenes, all of which are present in small quantities and are extracted during 

the pulping process (Smook, 1994; Biermann, 1996). The overall goal of the pulping process is 

to convert wood chips into a fibrous solution termed pulp. The successful separation of cellulose 

and hemicellulose fibers from all other wood components, with a minimum of fiber loss, is the 

primary objective of the pulping process (LaFleur, 1996). To achieve this in the kraft process, 

lignin is dissolved by a chemical mixture of sodium sulphide (Na2S) and hot caustic soda 

(NaOH) called white liquor (Biermann, 1996). Wood chips are placed in a digester and heated at 

temperatures between 160°C and 180°C and pressure of 90-100 psi. White liquor is then added 
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to dissolve lignin and some hemicellulose, leaving the less soluble cellulose behind. Digested 

pulp (termed brownstock) remaining in the digester is then washed and screened to remove 

residual chemical compounds used in lignin dissolution. These washed chemicals become weak 

black liquor (WBL) which consists mainly of cooking chemicals, residual lignin and wood 

extractives (Biermann, 1996). Oxygen delignification and/or chlorine dioxide (CIO2) bleaching 

then remove residual lignin from the brownstock. This kraft process is the most commonly used 

method for pulping in Canada. 

WBL is then subjected to a recovery phase to recoup up to 99.5% of the spent cooking 

chemicals, as these are of economic value. A series of six multiple effect evaporators (MEE) are 

used at the Irving Pulp and Paper Ltd. (IPP) mill in New Brunswick, Canada, to heat WBL and 

evaporate water, producing strong black liquor. Original WBL consists of-15-20% solids while 

strong black liquor is -50-70% solids. Strong black liquor is then sent to a recovery boiler for 

further chemical recovery (McLeay, 1987). The six MEEs use a counter-current steam flow to 

carry vaporized components in sequence. Each MEE operates at a different temperature, 

increasing as the evaporation progresses. Vapours produced in each evaporator consist mainly of 

volatile and semi-volatile organic black liquor compounds, and are used to heat the liquor in the 

next MEE. The vapour condenses as it heats up the liquor in the next step as it loses energy to 

exert this effect. The condensates differ among the evaporators due to the varying temperatures 

of evaporation; however, vapours generally consist of low molecular weight volatile compounds 

such as terpenes, ketones, aldehydes, dissolved gases, phenolics and alcohols (mainly methanol; 

Blackwell etal, 1979; LaFleur, 1996). 

To reduce boiling points of chemicals during recovery, vacuums are used at the 3 r , 4 l , 

5th and 6th evaporators. For example, the 5th multiple effect evaporator has an inlet temperature of 
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90°C and an outlet temperature of 78°C. Chemicals with a boiling point of 90°C are therefore 

present in the vapour of the 5th MEE, however, chemicals with a higher boiling point are also 

present due to the use of a vacuum. Therefore the temperature of each MEE is only an estimate 

of the boiling points of the compounds included in their respective condensate. Vapour from the 

6 MEE is condensed and sent to a foul condensate container, where it is steam stripped and then 

sent to the mixed chemical sewer. 

Prior to 1997, condensates from the 5th and 6th MEEs were recycled within the mill for 

use as wash water. This permitted chemical mixing between the condensates and the bleaching 

chemicals, influencing final effluent quality. High BOD and COD were identified within 5th 

effect condensates and the bleaching plant, leading to implementation of a within-mill 

condensate waste treatment system (Dube and MacLatchy, 2000). To meet EEM regulations 

established in 1992, IPP enacted a pollution prevention policy with the installation of in-plant 

technology, without the use of secondary effluent treatment, to meet environmental regulations 

on effluent quality. A reverse-osmosis (RO) system was installed in 1998 for treating 5 effect 

evaporator condensates prior to reuse within the mill as wash water (Dube and MacLatchy, 

2000). 

1.7 Reverse osmosis system 

Typically used to treat and purify water, the reverse osmosis system removes small 

particles (< 0.001 urn) and dissolved salts using an osmotic gradient. Pressure is placed on the 

solute side of a semi-permeable membrane, with the solvent flowing on the opposite side. IPP is 

the only mill in the world to employ this treatment system on its condensates. Currently, the 5l 
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effect evaporator (RO feed) condensates are subjected to pressure and forced through the semi

permeable membrane to remove contaminants at a rate of 4164 L/min. Two distinct waste 

streams are generated from this technique: the RO permeate (-99% of flow) is clean condensates 

which passed through the membrane; and the RO concentrate (-1% of the flow) which is 

composed of chemicals that did not cross the membrane. The RO permeate is used as wash water 

within the mill before ultimately being discharged into the mixed chemical sewer, where it 

combines with the other in-mill waste streams. The RO concentrate is incinerated in the bark 

boiler (Dube and MacLatchy, 2000). The installation of the RO treatment system has eliminated 

the need for a secondary effluent treatment system on the full final effluent waste stream because 

it reduces COD, total carbon and BOD to meet effluent quality regulations (Dube et ai, 2000). 

Installation of the RO system gave researchers the ability to study effluent impacts on fish 

populations before and after installation, which had never been investigated before (Dube and 

MacLatchy, 2000). Effects on fish reproduction were no longer apparent in effluent treated by 

RO, indicating that EDSs may be eliminated through this wastestream treatment system (Dube 

and MacLatchy, 2000). 

1.8 Investigation of cause (IOC) at IPP 

Since the late 1990's investigation of cause (IOC) studies at IPP have been implemented 

as part of the EEM program. The goals of IOC are focused on identifying where within the mill 

process potential EDSs originate (Hewitt et ai, 2002), identifying the suspected EDSs and 

developing appropriate process changes to eliminate the sources of EDSs (MacLatchy et ai, 

2010). 
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Assessment of in-mill waste streams for potential EDSs was first accomplished at IPP 

using a mesocosm (artificial stream) study in which mummichog were exposed to 

environmentally-relevant concentrations (0.5%-5% v/v) of multiple in-mill waste streams prior 

to RO installation (Dube and MacLatchy, 2001). Females exposed to the condensate waste 

stream had depressed in vitro 17P-estradiol production and increased liver size, indicating that 

this waste stream was responsible for nonlethal mummichog responses (Dube and MacLatchy, 

2001). At 1% (v/v) final effluent concentration both male and female mummichog had 

significantly depressed plasma testosterone levels. 

After RO installation in 1998, 1% (v/v) combined effluent no longer caused depression of 

plasma testosterone in mummichog (Dube and MacLatchy, 2000), indicating that RO treatment 

had improved final effluent quality. EDSs were still present in the effluent, as mummichog 

exposed to 5% (v/v) concentration of combined effluent still exhibited decreased plasma 

testosterone levels. This indicates that the RO treatment does not completely remove EDSs from 

the final effluent (Dube and MacLatchy, 2000). The results of this study confirm that the 5th 

effect chemical recovery condensates (RO feed) is a source of EDSs at IPP. These were the first 

studies to successfully identify an EDS source within a mill capable of causing endocrine 

disruption in fish. 

Isolation and identification of specific EDSs within PME is hindered due to high 

concentrations of lignin, which make studying small biologically-active molecules difficult 

(Hewitt et al, 2008). Condensates are less chemically complex than PME and do not contain 

lignin, making them easier to chemically isolate. Efforts to analyze biological and chemical 

effects of condensates has been the primary focus of the IOC since 2000. MacLatchy et al. 
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(2001) confirmed bioactivity of whole condensates and RO concentrate stream, but not the RO 

permeate stream. 

A two-stage solid phase extraction (SPE) method was developed to isolate compounds 

from 5 effect chemical recovery condensates into chemically-distinct fractions (Hewitt et ah, 

2002). A seven-day adult mummichog endocrine bioassay tested the ability of these distinct 

fractions to impact steroid hormones. Treatments were whole condensates, extracts from 

suspended solids (> lum), SPE-1 methanol, SPE-1 ethyl acetate (both from the first SPE, styrene 

divinylbenzene), SPE-2 extract (from second SPE, reversible graphitized carbon), and residual 

condensates. Fish exposed to suspended solids, SPE-1 methanol, SPE-2 extract had depressed 

plasma testosterone levels. Fish exposed to residual condensates had no significant changes 

compared to control, indicating that all bioactive compounds were recovered during SPE (Hewitt 

etai, 2002). 

To isolate and identify the EDSs responsible for depression of plasma testosterone, a 

reverse-phase high pressure liquid chromatography (HPLC) process was developed to fractionate 

the most potent fraction (SPE-2). A seven-day adult mummichog exposure was conducted with 

six HPLC fractions of SPE-2, at 1% (v/v) condensate equivalents. The unfractionated SPE-2 

(positive control; whole condensates) response in mummichog was not as pronounced as the 

response seen in earlier bioassays. To test consistency of responses, the bioassay was repeated 

with 1.5% (v/v) condensate equivalents. Results proved inconsistent with previous studies as 

well (Shaughnessy et al, 2007). 

To confirm that the SPE-2 fraction did contain EDSs, mummichog were exposed to a 

range of SPE-2 concentrations (0.5 %, 1 %, 2% and 4%). Significant plasma testosterone 
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depression in males exposed to 4% (v/v) condensates was observed, but no response in females 

was found. The male findings confirmed that EDSs were present in the SPE-2 fraction. A new 

bioassay was conducted at 4% (v/v) condensate equivalents of HPLC SPE-2 fractions. There was 

no depression of plasma testosterone in any fraction compared to control. In two fractions there 

was an increase in plasma testosterone. Mummichog response to positive control (4% (v/v) 

whole condensates) returned a significant decrease in plasma testosterone in males, indicating 

loss of activity during the fractionation protocol (Shaughnessy et al, 2007). 

Using a set of predetermined criteria based on previous experiments where RO feed and 

RO concentrate depressed plasma steroids, candidate compounds associated with plasma 

testosterone depressions were identified (Dube and MacLatchy, 2001; MacLatchy et al, 2001; 

Belknap et al, 2006; MacLatchy et al, 2010). A total of 39 compounds associated with hormone 

activity were identified in the SPE extracts (Belknap et al, 2006), six of which were identified as 

potential EDSs. Of the six potential EDSs, three chemical compounds (hydroxylated 

diterpenoids, sesquiterpenois, and a lignin-derived stilbene) were hypothesized to be associated 

with plasma testosterone depression. 

To ascertain why SPE-2 exhibited endocrine-disrupting abilities but the HPLC fractions 

did not, examination of the fractionation protocol was undertaken. EDSs were lost during 

evaporation of the mobile phase (a mixture of acetontitrile and water) in preparation of solvent 

exchange. Most of the known compounds in condensates are partially volatized in conditions 

similar to those required to evaporate water. Also, samples dried using nitrogen showed 

decreased levels of phenolics and diterpenes (such as manool; MacLatchy et al, 2010). This 

work was carried out by Dr. Craig Milestone. 
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To eliminate the evaporation of the mobile phase and subsequent loss of compounds, 

normal phase HPLC replaced reverse phase HPLC. This allowed a non-aqueous method for the 

fractionation of SPE-2, but the results were unsuccessful. Elution of the graphitized carbon SPE-

2 cartridge with solvents of decreasing polarity resulted in a washing effect, still not resolving 

the loss of bioactivity. That the graphitized carbon had the ability to irreversibly bind organic 

compounds (Hennion, 2000) also affected results. Focus was then shifted to the SPE-1 cartridge, 

with experimentation revealing many compounds being left on this cartridge and thus not 

included in the mummichog in vivo testing. With this information, a new fractionation protocol 

was developed to eliminate residual compounds on the cartridges (C. Milestone in Scott, 2010). 

Reduced recoveries of condensate extracts were addressed with the replacement of the 

Biotage ENV+ cartridge, used in the original SPE protocol, with the Waters Oasis HLB 

cartridge. This new cartridge contains a mixed mode resin to encompass both hydrophilic and 

lipophilic extraction capabilities, and is tolerant of a broader range of pHs and potential solvents 

compared to the original Biotage ENV+ cartridge. These properties generate higher recovery of 

compounds present in IPP condensates. Due to this increased extraction capability, the 

breakthrough volume for the current protocol is now less than half of the volume required for the 

previous protocol using the Biotage ENV+ cartridge. Accordingly, the loading and eluting rates 

for this new cartridge have been slowed to maximize the Waters Oasis HLB extraction 

properties. Another modification from the previous protocol was the eluting solvents. Originally, 

the presence of specific chemical compounds (such as geranyl linalool) in all fractions prevented 

the generation of chemically-distinct fractions. Four solvents of differing polarity 

(dichloromethane (DCM), hexane, methanol (MeOH) and ethyl acetate) were tested for their 

ability to elute known compounds and it was found only DCM and MeOH were required to elute 
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all compounds from the new cartridge. From these modifications by C. Milestone, a new 

protocol generating four chemically-distinct fractions was created for in vivo testing with 

mummichog. 

1.9 Thesis research as "integrative biology" 

The present work attempts to integrate changes in function at the molecular, tissue, and 

whole-organism levels of biological organization as a method to understand the point(s) in the 

reproductive endocrine system that EDSs alter. Previous work within the MacLatchy lab has 

exposed mummichog to model anti-/androgens, anti-/estrogens and effluents from various pulp 

mills in efforts to identify the mechanistic locations of impact these compounds have on 

mummichog reproduction and development. The current thesis adds knowledge to this research 

area by focusing on responses of mummichog to one particular waste stream (condensates) and 

to model androgens, and by applying molecular tools to determine effects on gene expression. 

The work within this thesis also integrates biology and chemistry in an effort to identify 

compounds with the ability to alter the reproductive status of mummichog. Bioassay-driven 

fractionation of whole condensates involves a chemistry lab at Environment Canada in 

Burlington, ON and a biology lab at Wilfrid Laurier University working together to identify 

EDSs within IPP condensates. Gene expression analysis was completed in collaboration with Dr. 

Glen Van Der Kraak's lab at the University of Guelph. This lab works to determine whole 

organism and mechanistic responses in zebrafish (Danio rerio) to a variety of EDSs, 

pharmaceuticals and model compounds. In the past, collaborations between MacLatchy and Van 

Der Kraak labs have compared species responses to effluent from a bleached kraft pulp mill. 
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1.10 Objectives 

Working in collaboration with another Laurier graduate student (Phillip Scott) and 

research scientist Dr. Mark Hewitt at Environment Canada in Burlington, ON, the primary 

objective of this thesis is to test the potential of refined condensate fractions from Irving Pulp 

and Paper Ltd. to depress sex steroid levels in mummichog. Mechanistic effects of condensate 

exposure will be investigated using gene expression analysis to determine where EDSs are 

impacting the steroidogenic pathway. Successful identification of EDSs within the condensates 

will continue the IOC process begun at IPP in 1997. Cause and effect relationships have been 

difficult to establish due to species-specific response patterns (Van Der Kraak et al, 1998) and 

effluent variability (Hewitt et al, 2008). In chapter two, in vivo testing of whole condensates and 

fractions generated from the new protocol are tested in mummichog for their ability to alter 

reproductive endpoints. In chapter three, the focus is on the reproductive responses of 

mummichog exposed to the model androgens methyltestosterone and dihydrotestosterone. In 

chapter four (general discussion) the results from chapters two and three are compared to 

determine whether the major bioactive compounds of condensates are androgenic in nature; the 

results are also put into perspective with our current understanding of the chemical make-up of 

condensates and their bioactivity in fish, and the field of integrative biology. 
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Chapter Two: Bioactivity in the mummichog of endocrine-active compounds in kraft mill 

condensates 



2.1 Abstract 

In the mid 1990s, investigation of cause studies began at a bleached kraft pulp mill 

located in Saint John, NB, Canada with the goal to identify waste stream(s) in the mill containing 

endocrine-active contaminants. Linking of the 5th effect chemical recovery condensate stream to 

endocrine effects led to a development of a solid phase extraction (SPE) technique to isolate 

EDSs in the condensate stream. To determine if the condensates continue to be endocrine-active 

in exposed mummichog {Fundulus heteroclitus), a 14-day concentration-response experiment 

demonstrated that a 4% (v/v) concentration of whole condensates significantly depressed 

circulating plasma testosterone in male mummichog, with no effects on other plasma steroid 

hormones measured. Hepatic CYP1A and CYP3A were also significantly induced in exposed 

fish. A follow-up exposure returned inconsistent results. The 4% (v/v) concentrations did not 

alter plasma steroid levels and neither did SPE fractions derived from the condensates. While 

fish were in different reproductive periods, which may account for some of the differences 

between the experiments, a more compelling explanation is the variability in the chemical make

up of the condensates. 
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2.2 Introduction 

In Canada, federal government regulations for pulp and paper mill effluent toxicity were 

implemented in 1992 through the environmental effects monitoring (EEM) program. In many 

cases, effluent treatment systems were installed to satisfy regulations which required mills to 

monitor total effluent toxicity and fish and benthos populations (Munkittrick, 2004). Effluent 

treatment protocols were designed to reduce biological oxygen demand (BOD), total suspended 

solids and chemical oxygen demand (COD), and to create an overall improvement of effluent 

quality (Stromberg et al, 1996; Rickwood et al, 2006). Despite the improvements observed in 

effluent lethal and sub-lethal toxicity during the past 10-15 years, reports of effects on fish 

reproduction downstream of Canadian mills have continued throughout this period (Hewitt et al, 

2008). These effects are attributed to endocrine disrupting substances (EDSs) within the effluent, 

though the responsible compounds are currently unknown (Hewitt et al, 2008). Endocrine 

disruption in fish exposed to pulp mill effluent (PME) has been identified in countries other than 

Canada (Larson et al, 2000; Parks et al, 2001; Van Der Kraak et al., 2001; Goksoyr, 2006). 

An investigation of cause (IOC) study began in 1997 at Irving Pulp and Paper (IPP), a 

bleached kraft mill in Saint John, New Brunswick. The goal was to investigate the reproductive 

impairments in fish downstream of effluent discharge (MacLatchy et al, 2010). A mesocosm 

study exposed mummichog {Fundulus heteroclitus), an estuarine killifish residing in the 

discharge environment, to 1% concentrations of multiple in-mill waste streams and found 

increased liver size, decreased plasma testosterone (T) levels and decreased in vitro production 

of 17p-estradiol (E2) in females exposed to the condensate waste stream (Dube and MacLatchy, 

2000), indicating this waste stream as the possible source of EDSs within IPP (Dube, 2000). 
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Installation of a reverse osmosis (RO) treatment system of the 5 effect evaporator waste 

stream condensates in 1998 permitted studies to determine if this treatment system removed 

endocrine impacts of the final effluent on the fish. Mummichog exposed to an environmentally-

relevant concentration of final effluent (1% v/v) following RO installation had no plasma 

testosterone (T) depression (Dube and MacLatchy, 2000), however mummichog exposed to a 

5% concentration of RO- treated final effluent had significantly depressed plasma T, indicating 

that RO treatment reduced, but did not eliminate, potential EDSs from the effluent. The results 

from these mesocosm studies indicated that the chemical recovery condensates were a possible 

source of EDSs at 1PP, and that RO treatment improves effluent quality through the removal of 

some EDSs from final effluent (Dube and MacLatchy, 2000; MacLatchy et al, 2010). 

Laboratory follow-up studies confirmed chemical recovery condensates as the primary 

EDS source at IPP. Mummichog exposed for seven days to RO feed (condensates prior to RO 

filtration) had significant depression of plasma testosterone (Dube and MacLatchy, 2001). 

Removal of EDSs by RO treatment was tested with a 21-d bioassay, exposing mummichog to 

either RO feed or RO permeate (condensates post RO) streams. Fish exposed to RO permeate 

had no significant effects on reproductive status, while fish exposed to RO feed had significant 

reduction of plasma T (Dube and MacLatchy, 2001). These studies were the first to determine a 

linkage between reproductive endocrine effects and an in-mill waste stream source, and to 

demonstrate reduction of potential EDSs by an effluent treatment system. Further laboratory 

studies confirmed that the EDSs were removed by the RO into what is known as the concentrate 

waste stream (burned in bark boiler) and were not present in the permeate (MacLatchy et al, 

2001). 
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Development of a solid-phase extraction technique was completed to fraction RO feed 

condensates and to test each fraction for the ability to impact hormonal activity in fish (Hewitt et 

al, 2002). Mummichog exposed for seven days to these fractions showed significant plasma T 

depression. This study was one of the first to isolate chemicals from pulp mill condensates that 

are associated with reproductive impairment in fish (Hewitt et al, 2002). 

Based on the findings of this study, a reverse-phase high pressure liquid chromatography 

(HPLC) technique was developed to further fractionate RO feed condensates (Belknap et al, 

2006). Testing of six fractions generated through the HPLC protocol in the mummichog 14-day 

endocrine bioassay resulted in inconsistent findings at a 1% (v/v) concentration with previous 

studies (Shaughnessy et al, 2007). A wider range of fraction concentrations were tested and 

reproductive endocrine effects observed in male mummichog at a 4% (v/v) concentration. A 

mummichog endocrine bioassay was run using the six HPLC fractions at 4% (v/v), however, 

there were no significant responses in mummichog (Shaughnessy et al, 2007). The 4% (v/v) 

whole condensate treatment caused significant plasma T depression compared to control, 

indicating that there was a loss of bioactivity during the fractionation protocol (Shaughnessy et 

al, 2007). Bioactivity loss was later shown to happen during evaporation of the mobile phase in 

preparation for solvent exchange (Scott, 2010). 

A new SPE protocol was recently created by Dr. Craig Milestone (Scott, 2010), 

eliminating problems from the first protocol (Belknap et al, 2006). A total of four distinct 

chemical fractions are generated (Figure 2.1; Scott, 2010) in the new protocol. Each fraction 

contains chemically-distinct compounds and is eluted based on compound size and polarity. 

Residual condensates are collected as the final fraction. The goal of the present research was to 

test these fractions for bioactivity using the mummichog endocrine bioassay. Prior to testing the 
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fractions, a whole condensate exposure was undertaken to determine the present-day 

concentration at which IPP condensates are bioactive. Depression of plasma T is an indicator of 

endocrine disruption in fish, and the concentration response bioassay would confirm the lowest 

concentration at which this response is observed. To extend our understanding of potential 

mechanisms of bioactivity, the following endpoints were assessed: liver somatic and gonad 

somatic indices, plasma T, 11-ketotestosterone (11-KT) and E2 (whole organism endpoints); 

gonadal steroid production of T, 11-KT and E2 (tissue-level endpoints); and gonadal 

steroidogenic acute regulatory protein (StAR) and aromatase gene expression, and hepatic 

cytochrome P450 genes 1 (CYPIA) and 3 (CYP3A) gene expression (molecular-level 

endpoints). StAR and aromatase are key steps in the steroidogenic pathway (Stocco and Clark, 

1996; Rasheeda et al, 2010) while CYPIA and CYP3A are indications of contaminant exposure 

in fish (Stegeman and Hahn, 1994). C YP3 A is responsible for the facilitated excretion of 

contaminants through the addition of a hydroxyl group to the chemical structure, increasing the 

hydrophilic state of the molecule, thus ensuring removal from the organism (Danielson, 2002). 

This is the first time this full suite of endpoints has been assessed in mummichog exposed to 

pulp mill condensates and furthers previous work focused on identifying the source of EDSs in 

IPP condensates (MacLatchy et al, 2010). 
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2.3 Materials and Methods 

2.3.1 Condensate collection 

1PP alternates between hardwood (maple and birch) and softwood (pine, fir, spruce) 

furnish using a five-stage DiooEopDED bleaching sequence (Di0o= chlorine dioxide, oxygen 

bleaching; Eop = caustic, peroxide, and oxygen extraction; D = chlorine dioxide bleaching; E = 

caustic extraction) to produce approximately 990 air dried tonnes of pulp daily. Condensates 

were collected during softwood production runs, allowing at least five days of softwood 

manufacture to occur before condensate collection to ensure no contamination with residual 

hardwood furnish (J. Krstic, IPP, personal communication). On April 22, 2009, 130L of 

condensates were collected in a solvent-rinsed barrel from the RO feed. The condensates were 

shipped overnight to Wilfrid Laurier University, Waterloo ON, Canada for the concentration-

response bioassay. Condensates were stored at 4°C to prevent potential breakdown of chemical 

compounds. Condensates for the fractionation bioassay were collected July 27th, 2009, from the 

RO feed and shipped overnight to Environment Canada (Burlington, ON) for fractionation. 

Extraction of the condensates occurred upon arrival, to reduce risk of chemical modification 

(Scott, 2010). 

2.3.2 Fractionation regime for condensates 

Condensate fractionation was conducted as per Scott (2010; Figure 2.1). Briefly, whole 

condensates had pH adjusted, were fortified with 2% (v/v) methanol and passed through 1 urn 

glass fibre filters (Whatman, Clifton, NJ, USA). Filters were then air-dried and non-polar 

compounds extracted using dichloromethane via a Soxhiet apparatus for 24h (Figure 2.1, fraction 

1; filter paper non-polar (FP-NP)). To recover polar compounds, methanol was then used on the 
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filters (Figure 2.1, fraction 2; FP polar (FP-P)). Oasis HLB cartridges (Waters Ltd., Mississauga, 

ON) were then conditioned (two bed volumes each of water, methane and dichloromethane) and 

then loaded at a rate of 100 mL condensate/500 mg packing material. Flow rate was 5 mL/min 

for this solid-phase extraction (SPE) phase. Condensates that passed through the SPE cartridges 

were collected for in vivo testing (Figure 2.1, fraction 5; residual condensate (RC)). Cartridges 

were dried with an air vacuum (20 mm Hg for 1 h/g) and then washed with dichloromethane (40 

mL/g) to elute the non-polar fraction (Figure 2.1, fraction 3; SPE non-polar (SPE-NP)). Finally 

the cartridges were washed with methanol (40 mL/g) to isolate the polar fraction (Figure 2.1, 

fraction 4; SPE polar (SPE-P)). 
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5* Effect Evaporator 
Condensate 

pH and Filtration S&xhfct 

<1 urn Filtrate 

Solid Phase Extraction 

Residual 
Condensate © 

FP Non Polar © 
FP Polar © 

SPE Non Polar © 
SPE Polar © 

Figure 2.1 Protocol for condensate fractionation as developed by C. Milestone (Scott, 2010). 
Five distinct chemical fractions are generated for biological testing. FP = filter paper, SPE = 
solid phase extraction. 
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2.3.3 Mummichog collection 

Mummichog were collected in April, 2009 from an uncontaminated reference estuary in 

Miramichi, NB (N 47° 02, W 65° 09) by seine netting and transferred to Wilfrid Laurier 

University in aerated plastic totes. Fish were housed in recirculating, 425L holding tanks from 

Aquabiotech (Coaticook, QC, Canada) at natural photoperiod, 16 parts per thousand (ppt) 

salinity (City of Waterloo well water mixed with Crystal Sea Salts; Marine Enterprise 

International, Inc., Baltimore, MD, USA) and dissolved oxygen (DO) > 80%. Fish were fed 

crushed commercial trout pellets (Corey Feed Mills, Fredericton, NB) daily to satiation. 

Standardized conditions for ammonia (< 0.5 ppm), nitrite (< 0.1 mg/L), nitrate (<0.1 mg/L), 

salinity (15.5-16.5 ppt), temperature (16-18°C) and DO were maintained by routine water quality 

tests. Partial water changes were done as needed to keep recirculating tanks within parameters. 

Minimal mortalities occurred in stock tanks (< 5%). Fish were acclimitized to lab conditions for 

a minimum of two weeks before each experiment. 

2.3.4 Concentration-response bioassay 

A short-term bioassay designed for mummichog (MacLatchy et ah, 2003) was used for 

exposures. Prior to commencing the concentration-response bioassay, four adult mummichog of 

each sex were weighed (to 0.0lg) and randomly allocated to 24 glass aquaria, each containing 

16L of 16ppt water. Each glass aquarium was randomly assigned an experimental treatment 

group, consisting of n=8 aquaria for each of control, 2% (v/v) condensates or 4% (v/v) 

condensates. Sample sizes (replicate aquaria) of n=8 have been shown to decrease variability and 

increase power in the standardized adult fish reproductive test (Bosker et al, 2010). Fish were 

allowed to acclimate to the experimental aquaria for one week before beginning treatments. 
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Water quality measurements (salinity, DO, temperature, conductivity) were recorded 

daily using a YSI meter (Yellow Springs Instruments, Yellow Springs, OH, USA). Fish were fed 

crushed commercial trout pellets (approximately 1% of total body weight), and each aquarium 

was aerated to maintain DO levels above 80%. Tank temperatures were 17°C ± 1.5 °C for both 

bioassays. Photoperiod for all bioassays was maintained at 14h L:10h D (late spring conditions). 

On May 1st 2009 treatments began under static conditions with 24h water and effluent 

renewal. Treatments were run for 14 consecutive days. 

2.3.5 Fractionation bioassay 

A 14-day adult mummichog bioassay was conducted beginning August 5th 2009. Prior to 

commencement, three adult mummichog of each sex were weighed (nearest 0.01 g) and 

randomly allocated to 56 20L glass aquaria. Fish were acclimated to the experimental aquaria for 

one week prior to the exposure. The protocol for the fractionation bioassay was identical to the 

protocol for the concentration-response bioassay. Treatments were all 4% (v/v) concentration 

and consisted of a negative control (methanol), five distinct chemical fractions (FP-NP, FP-P, 

SPE-NP, SPE-P, RC) and a positive control (4% whole condensates). Half of the aquaria began 

treatment on August 5th 2009 and were sampled August 19th, while the remaining aquaria began 

treatment on August 6th and were sampled August 20th. Sampling protocol and reproductive 

endpoints measured were similar to those described for the concentration-response bioassay. 

2.3.6 Sampling protocol 

Upon completion of the bioassay, fish were anaesthetized with 0.05% tricaine methane 

sulfonate (Sigma-Aldrich, Oakville, ON), weighed (g) and measured for length (mm). Blood was 

collected from caudal vasculature using heparinised 26 3/8 gauge needles (Beckton-Dickenson, 
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Franklin Lakes, NJ, USA). Blood was centrifuged (4000 x g, 12 min, 4°C) to isolate plasma. 

Plasma was frozen at -20°C until later ether extraction and radioimmunoassay (RIA) for plasma 

steroid determination (Dube and MacLatchy, 2001). Following blood collection, fish were killed 

by spinal severance and the liver and gonads excised and weighed (0.0 lg) for determination of 

somatic indices. Gonadosomatic and liversomatic indices were calculated as GSI or LSI = (tissue 

weight (g)/ [total weight (g)- tissue weight (g)])*100 (McMaster et al, 1995). Condition factor 

(CF) was calculated as CF= (total weight (g)/ standard length3)* 100. Ovarian tissue and female 

livers were snap frozen with liquid nitrogen for gene expression analysis. Testes were placed in 

Medium 199 (Sigma-Aldrich) for in vitro gonadal steroid production (McMaster et al,. 1995). 

Full details of the sampling protocol are available in MacLatchy et al. (2005). 

2.3.7 Radioimmunoassay 

Circulating plasma T, E2 and 11-KT hormone levels were determined by RIA. Plasma 

was thawed and steroid hormones were isolated from blood proteins using ether extraction 

(McMaster et al., 1992). A triple extraction was done to ensure maximum hormone recovery. 

Steroid hormones were re-suspended in 1 mL of phosgel buffer and frozen at -20°C until 

analyzed by RIA. Protocols from MacLatchy et al. (2005) were followed for RIA determination 

of steroid hormones. 3H-Labelled testosterone and 3H-labelled estradiol were purchased from 

Amersham Pharmacia Biotech (Baie d'Urfe, QC). 3H-Labelled 11-KT was purchased from M. 

McMaster's lab (Environment Canada, Burlington, ON). Unlabelled T, E2 and 11-KT were 

purchased from Sigma-Aldrich. Testosterone and estradiol antibodies were purchased from MP 

Biomedicals (Solon, OH, USA). 11-KT antibody was purchased from AssayPro (St. Charles, 

MO, USA). All antibodies had less than 0.1% cross-reactivity with closely-related steroids. 
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Intra-assay and inter-assay variability were minimal (all intra-assay variability < 6%, all inter-

assay variability <10%). 

2.3.8 In vitro analysis 

Following the method developed by McMaster et al. (1995) and optimized by MacLatchy 

et al. (2003), testes tissue was minced with a scalpel. A minimum of two gonad pieces from the 

same fish were placed in each incubation well, already containing Medium 199 (Sigma-Aldrich). 

A total of 18-22mg of gonad tissue was added to each well. Depending on the size of the gonad 

upon dissection, 1-3 replicate wells per fish were run. Immediately prior to beginning of 

incubation, old Medium 199 was removed from the tissue samples and 1 mL of fresh medium 

added. Samples were incubated at 18°C for 24h. Following incubation, tissue and medium were 

separated using a pipette, and the medium was frozen at -20°C until RIAs were run for T, E2 , 

and 11-KT. 

2.3.9 Gene expression 

Total RNA from ovarian and liver tissue was extracted using TRIzol solution (Invitrogen, 

Carlsbad, CA, USA). Manufacturer's instructions were followed with minor modifications. 

Sections of tissue (50-100mg pieces) were added to 800 uL TRIzol and homogenized. 

Homogenized samples were incubated at room temperature for 10 min and then had 160 uL 

chloroform added. Samples were then shaken vigorously for 15 s, and incubated at room 

temperature for 3 min. Following incubation, samples were centrifuged (12,000 xg, 15 min, 4°C) 

followed by transfer of the upper phase into a new tube containing 400 uL isopropyl alcohol. 

Samples were shaken, incubated at room temperature for 10 min, then centrifuged (12,000 xg, 

10 min, 4°C). Supernatant was removed and the RNA pellet washed with 800 uL 75% ethanol, 
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followed by a final centrifugation (12,000 xg, 5 min, 4°C). Ethanol was then removed, the RNA 

pellet allowed to air dry and then reconstituted in 30-50 uL GIBCO water depending on pellet 

size. Samples were stored at -80°C. 

Samples were thawed and 3 uL of each total RNA sample were added to 147 uL GIBCO 

water for RNA quantification (Ings and Van Der Kraak, 2006). Quality was determined from 

absorbance at 260nm and 280nm (ideal ratio = 2.0, Ings and Van Der Kraak, 2006). Following 

quantification, 5 uL of each total RNA sample was combined with GIBCO water to standardize 

all samples to a concentration of 1 ng/uU. Standardized samples were then quantified at 

absorbance of 260nm to confirm concentration. 

A total volume of 2 uL of standardized total RNA was then combined with 1 uU lOx 

reaction buffer (Invitrogen, Carlsbad, CA, USA), 1 uL AMP-D1 (Sigma, St. Louis, MO) and 6 

|j.L GIBCO water for DNase treatment. Samples were incubated for 15 min at room temperature, 

and then 1 uL of stop solution was added to halt the reactions. Samples were then incubated at 

70°C for 5 min, and then buried in ice until cool. Random primers were then added (0.2 ng; 

Promega, Madison, WI, USA) and samples were incubated at 70°C for 5 min then buried in ice 

until cool. A total volume of 25 uL for each sample was achieved through the addition of 

(concentrations represent final values): 5x RT buffer (50mM Tris-HCL, 75 mM KC1, 3 mM 

MgCl2; Invitrogen), RNasin (25U; Promega), dNTPs (0.5mM; Roche Molecular Biochemicals, 

Laval, QC), DDT (lOmM; Invitrogen), M-MLV reverse transcriptase (200U; Invitrogen), and 

GIBCO water (Ings and Van Der Kraak, 2006). Reverse transcription (RT) reaction was 

completed by sample incubation at 37°C for 60 min, followed by 5 min at 90°C to inactivate the 

enzymes (Ings and Van Der Kraak, 2006). Resulting cDNA product was stored at -20°C until 

Real Time PCR amplification. To ensure no discrepancies within tissues, all ovarian 
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samples were processed in the RT simultaneously, and all liver samples were processed 

simultaneously in the next batch. This avoids inappropriate comparisons between treatments in 

the event there were discrepancies during the two RT reaction batches (Lister and Van Der 

Kraak, 2009). 

Genes of interest were ovarian steroidogenic acute regulatory protein (StAR) and 

aromatase (Aroma), and liver cytochrome P450 genes 1 (CYP1 A) and 3 (CYP3A). Primer 

Express software v. 2.0 (Applied Biosystems, Forster City, CA, USA) was used to design 

primers which span exon-exon boundaries in the mRNA to prevent genomic DNA amplification 

(Ings and Van Der Kraak, 2006). Accession numbers and primer sequences are shown in Table 

2.1. 
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Table 2.1 List of primers and their sequences used in this study (Fwd = forward primer, Rev = reverse primer) 

Gene Sequence 5' - 3' Accession Number 

StAR 

EFla 

Aromatase A 
(CYP19A1- Ovarian) 

CYP3A30 

CYP1A1 

Fwd 

Rev 

Fwd 

Rev 

Fwd 

Rev 

Fwd 

Rev 

Fwd 

Rev 

CAGAGCTGAGAACGGGCCTAC 

CTTTGGGATCCAGCCCTTC 

ACCAGAAAGTACTACGTGACCATC 

TCAGCCTGGGAGGTACCG 

TGCCCCTCGACGAGAAAG 

GTAGATGTCGGGTTTGATCAGCA 

GAACAACCCATCAGACCCGTT 

AAGCGACGGCGAGGAAG 

GAGGACCGGAAGCTCGATG 

ACCAGCTCCGAAGAGGTCGT 

CN983145.1 

AY430091 

AY713118.1 

AF105068 

AF026800.1 
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The relative standard curve/SYBR green method was used with primer pair efficiency 

being determined through the creation of a standard curve by a serial dilution of RT product in 

50ng/mL yeast RNA (Ings and Van Der Kraak, 2006). Each PCR reaction well was composed 

of: 5 uL RT product (5X diluted in GIBCO water), 2.5 \iL forward and reverse primers (0.4 

uM), and 10 uL SYBR green PCR Master Mix (SYBR green dye, dNTPs, Passive Reference I, 

AmpliTaq®Gold DNA polymerase; Applied Biosystems; Ings and Van Der Kraak, 2006). 

cDNA product was amplified using ABI Prism 7000 sequence detection system (Applied 

Biosystems) with the following cycling conditions for all genes: 10 min at 95°C, followed by 40 

cycles of 15 sec at 95°C and 1 min at 60°C (Ings and Van Der Kraak, 2006). Duplicate reactions 

were performed for each sample and then averaged. 

To proceed with gene expression comparison, genes of interest were normalized to 

elongation factor 1-a (efla) an endogenous control gene with steady expression regardless of 

treatments (Lister and Van Der Kraak, 2009). 

2.3.10 Data analysis 

Sexes were separated for statistical analysis. Prior to statistical analysis, Dixon tests for 

the presence or absence of outliers were conducted (MacLatchy et al, 2005) and outliers were 

removed from further analysis. Statistical analysis was performed using Statistica© 6.0 (Statsoft 

INC, Tulsa, OK, USA) and Sigmaplot 11.0 (Systat Software INC, Chicago, IL, USA). 

Assumptions of normality and homogeneity of variance were tested using Levene's test prior to 

parametric analysis. A one-way ANOVA (p < 0.05) was used to test for differences among 

treatments. A Dunnett's post hoc test was conducted if applicable to determine treatment 

differences. If data did not fit the assumption of normality, log transformations were conducted 
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and data were re-tested. Comparisons of liver weight and gonad weight were done using 

ANCOVA, with total fish weight as the co-variate. ANCOVAs for total body weight were 

conducted with standard length as the co-variate to evaluate condition. 
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2.4 Results 

2.4.1 Concentration response 

Fish had naturally recrudescing gonads during the bioassay. No significant treatment 

differences were found for liver weight, gonad weight, body weight, length or condition factor 

for this bioassay (Table 2.2). 

Mean plasma testosterone was significantly depressed in male mummichog exposed to 

4% (v/v) whole condensates compared to control (p=0.045; Figure 2.2). There was no significant 

change in plasma testosterone in females (p=0.20; Figure 2.3). No change in plasma estradiol 

occurred in either males (Figure 2.2) or females (Figure 2.3) at any treatment concentration 

compared to control (p=0.71 and p=0.28 for males and females, respectively). Mean plasma 11-

KT was not changed (p=0.65; Figure 2.2) nor was in vitro production of T (p=0.14), E2 (p=0.23) 

or 11-KT (p=0.53) in male mummichog (Figure 2.4). Expression of StAR and aromatase in 

ovarian tissue was not significantly impacted compared to controls (p= 0.82 and p=0.45, 

respectively; Figure 2.5). Expression of CYP1A in female liver was significantly increased 

compared to control for both 2% and 4% treatments (p=0.0025). CYP3A expression was also 

significantly increased in 2% and 4% treatments compared to control (p=0.006; Figure 2.5). 
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Table 2.2 Mean (± 1 SE) length, weight, gonadosomatic indices (GSI) and liversomatic indices 
(LSI) of male and female mummichog (Fundulus heteroclitus) exposed to various concentrations 
(v/v) of whole condensates collected from 5th effect evaporators at IPP. No significant 
differences were detected within variables (p< 0.05). 

Treatment 
Sex 
M 

F 

Variable 
Length (mm) 
Weight (g) 
GSI (%) 
LSI (%) 

Length (mm) 
Weight (g) 
GSI (%) 
LSI (%) 

Control 
73 ± 0.8 
4.4 ±0.1 
1.4± 0.1 
4.4 ± 0.2 

83 ± 0.9 
6.8 ±0.5 
4.7 ±0.8 
5.9 ±0.7 

2% 
74.8 ±1.3 
4.5 ± 0.3 
1.1 ±0.1 
4.2 ± 0.2 

80 ± 1.0 
5.7 ±0.2 
3.9 ±0.4 
5.2 ±0.2 

4% 
74.2 ±1.2 
4.3 ± 0.2 
1±0.1 

3.9 ±0.2 

80 ±1.2 
5.6 ±0.3 
4.5 ± 0.7 
5.2 ±0.3 
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Figure 2.2 Mean (± ISE) plasma testosterone (A), plasma 17P-estradiol (B) and 11-ketotestosterone (C) levels 
(ng/ml) in male mummichog exposed to 0% (control), 2% or 4% (v/v) whole condensates for 14 days in May 2009. 
Bar with an asterisk (*) is significantly different from control group (p< 0.05). 

65 



1.2 ••. 

3 1 •! 
j 
& 0.8 -

© 

5 0.6 
© 

« 0.4 . 
S 
* 
E 0.2 | 

n ..i...._ 

T 

Control 

A 
5 1 

4.5 -| 

H 4 ! 
J3 ^ ! 
g, 3.5 | 
* n .1 

is 2.5 • 
o-

ea. 2 •• 

« 1.5 •• 

£ 1 -
0.5 •• 

T 

u 
Control 

B 

p = 0.20 

T 

2% 4% 

Treatment (v/v) 

p = 0.28 

1 

2% 4% 

Treatment (v/v) 

Figure 2.3 Mean (± ISE) plasma testosterone (A) and plasma 17P-estradiol (B) levels (ng/ml) in female 
mummichog exposed to 0% (control), 2% or 4% (v/v) whole condensates for 14 days in May 2009. 

66 



5 a 
o S 

l l 

A 
& 
o 

•3 p 

2 S 

B 

9 

8 

7 

6 

5 
-4 

3 

2 

1 

-j 

T p = 0.14 
T 

T 

1.8 
1.6 
1.4 
1.2 

1 
0.8 
0.6 
0.4 
0.2 

0 

Control 2% 
Treatment (v/v) 

4 % 

p = 0.23 

l _ 

Control 2% 

Treatment (y/v) 

4% 

c 

3 -. 

- * J 

o 
4> 
© 

• 
*"H 
C*. 

•fcs 
»•»• 

JS 
>-~c 

^J. 

W> 

,s 
e 

o 
"C 
53 

T3 
p 
a . 

2.5 

2 

1.5 

1 

0.5 

O 

Control 2% 

Treatment (v/v) 

4% 

Figure 2.4 Mean (± ISE) gonadal in vitro production of testosterone (A), 17P-estradiol (B) and 11-ketotestosterone 
(C) levels (ng/mg/h) in male mummichog exposed to 0% (control), 2% and 4% (v/v) whole condensates for 14 days 
in May 2009. Gonads incubated for 24h at 18°C. 

67 



fa © 

A 

s 
5fi 

a. 
a. 
e 

x.o 

1 

O.S 

0 

P = 0.82 
T 

o 
fa 

B 

5 S. 2 

I P" 

fa 

c 
0 

*- £M a 
g> U .2 
K £ 5P 
^- l * <b 

•S .a t-
2 « * 
© g * 

fe S 0.5 

3 

2.5 

2 

1.5 

1 

D 
0 

Control 2% 

Treatment 

4% 

35 

a .2 
S £ 
™ a . 

TT *» 
B l < 

5 3 
2 3 

1.4 
1.2 

1 -
0.8 
0.6 -
0.4 
0.2 

0 • 

P = 0.45 

T 

-

Control 

Treatment 

p = 0.0025 

Control 2% 

Treatment (v'v) 

4% 

p = 0.006 
X 

Control 2% 
Treatment (v.'v) 

%% 

Figure 2.5 Ovarian expression of steroidogenic acute regulatory protein (StAR) (A) and aromatase (AromA) (B) and 
hepatic expression of cytochrome P450 genes 1 (CYPl A) (C) and 3 (CYP3A) (D) in female mummichog exposed to 

0% (control), 2% or 4% (v/v) whole condensates for 14 days in May 2009. Expression levels were normalized to 
elongation factor 1-tx (efla). Bars with an asterisk (*) are significantly different from the control group. 
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2.4.2 Fractionation bioassay 

Fish gonads were naturally regressing during the bioassay. No significant treatment 

differences were found in liver weight, gonad weight, body weight, length or condition factor 

among treatments in this bioassay (Table 2.3). 

No significant responses in plasma T levels were observed in males (p=0.12; Figure 2.6) 

or females (p=0.064; Figure 2.7). Responses of plasma E2 were not significantly different in 

either male (Figure 2.6) or female (Figure 2.7) cohorts (p= 0.11 and p = 0.63, respectively). 

Plasma 11-KT in males was not significantly different compared to control (p = 0.69; Figure 

2.6). 

In vitro analysis was confined to comparing the 4% (v/v) whole condensates and control 

treatments based on the results in the prior concentration-response exposure. No significant 

responses were observed in either mean in vitro T or E2 in male mummichog (p = 0.16 and p = 

0.78 respectively; Figure 2.8). 
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Table 2.3 Mean (± ISE) length (mm), weight (g), gonadosomatic indices (GSI) and liversomatic indices (LSI) of male and female 
mummichog {Fundulus heteroclitus) exposed to various treatments for 14 days in August 2009. No significant differences were 
detected within variables. Control is the reference treatment (4% methanol), 4% treatment represents positive control of 4% (v/v) 
whole condensates. All other treatments are chemically-distinct fractions isolated from whole condensates (FP-NP = filter paper non-
polar, FP-P = filter paper polar, SPE-NP = solid phase extraction non-polar, SPE-P = solid phase extraction polar, RC = residual 
condensates) 

Treatment 
Sex 

M 

F 

Variable 

Length(mm) 
Weight (g) 

GSI (%) 

LSI (%) 

Length(mm) 

Weight(g) 

GSI (%) 

LSI (%) 

Control 

80.3 ±1.3 
6.2 ± 0.4 

0.68 ± 0.06 
6.5 ± 0.3 

80.5 ± 2.4 

6.6 ± 0.7 

1.8±0.1 

7.1 ±0.3 

4% 

78.8 ±1.1 
5.2 ±0.2 

0.62 ± 0.04 

6.2 ± 0.3 

77.7 ±1.5 
5.0 ±0.4 

1.8 ±0.1 

6.4 ± 0.3 

FP-NP 

79.4 ±1.5 
5.6 ±0.4 

0.84 ±0.06 

6.7 ± 0.3 

79.5 ±1.8 
5.9 ±0.5 
1.8 ±0.05 

6.9 ± 0.3 

FP-P 

83.3 ±1.5 
6.3 ± 0.5 

0.69 ± 0.07 

5.9 ±0.3 

75 ± 1.3 
4.7 ± 0.3 
1.9±0.1 

6.7 ± 0.3 

SPE-NP 

80.2 ± 0.9 
5.6 ±0.2 

0.71 ±0.04 

6.2 ± 0.3 

76.1 ± 1.8 
5.2 ±0.4 

1.9 ±0.05 

6.3 ± 0.3 

SPE-P 

82.3 ±1.3 
5.7 ±0.3 

0.60 ± 0.04 
6 ±0.4 

76.9 ±1.5 
4.9 ± 0.3 

1.8 ±0.1 

6.2 ± 0.3 

RC 

82 ±1.3 
6.2 ± 0.3 

0.84 ± 0.05 

6.7 ± 0.3 

76.9 ±1.8 
5.2 ± 0.4 

1.9 ±0.1 

6.4 ± 0.3 
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Figure 2.6 Mean (± 1SE) plasma testosterone (A), 17P-estradiol (B) and 11-ketotestosterone (11-KT; C) levels 
(ng/ml) in male mummichog exposed to 5th effect evaporator condensates or condensate fractions for 14 days in 
August 2009. Control is the reference treatment (4% methanol), 4% treatment represents positive control of 4% 
(v/v) whole condensates. All other treatments are chemically-distinct fractions isolated from whole condensates (FP-
NP = filter paper non-polar, FP-P = filter paper polar, SPE-NP = solid phase extraction non-polar, SPE-P = solid 
phase extraction polar). 
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Figure 2.8 Mean (± ISE) gonadal in vitro production of testosterone (A) and 17|3-estradiol (B) levels (ng/mg/h) in 
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2.5 Discussion 

These studies were focused on furthering previous work that showed condensates from a 

bleached kraft pulp mill in Saint John, New Brunswick, caused depression of plasma and in vitro 

steroid hormones. The concentration-response experiment exposed adult mummichog of both 

sexes to multiple concentrations of RO feed condensates to determine plasma and in vitro 

hormonal responses. This study confirmed significant plasma testosterone depression in 

mummichog exposed to 4% (v/v) whole condensates as shown previously (Shaughnessy et al, 

2007). The application of real-time polymerase chain reaction (RT-PCR) to investigate gene 

expression of enzymes of interest is a novel tool used in this study to examine potential 

mechanisms of action of condensates. Induction of hepatic CYP1A and CYP3A genes indicate 

that compounds in whole condensates may require detoxifying. The fractionation study used a 

more robust fractionation protocol compared to past studies. However, the positive control (4% 

(v/v) RO feed) failed to elicit a significant response in plasma reproductive hormones and no 

effects of the fractions were observed. 

Depression of plasma testosterone in male mummichog exposed to 4% (v/v) RO feed was 

found in the concentration-response bioassay. In concert with previous work on the condensates, 

endocrine-active compounds are present in the RO feed. Depression of plasma testosterone is a 

common response in fish exposed to pulp mill effluent discharge (Munkittrick et al, 1994, 

McMaster et al, 1996, Rickwood et al, 2006) as well as in exposures offish to the IPP 

condensates (Dube and MacLatchy, 2000; Hewitt et al, 2002; Shaughnessy et al, 2007). 

Previous studies on the condensates showed a 1% (v/v) concentration was capable of depressing 

circulating plasma testosterone levels by up to 58% (Dube and MacLatchy, 2000; Hewitt et al, 

2002). However, a more recent study by Shaughnessy et al (2007) returned results more 
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comparable to the current study, as a concentration of 4% (v/v) RO feed caused testosterone 

depression in males. There are no known mill changes in the years between the studies to 

account for the differences in endocrine activity of the condensates. It has been proposed that the 

potency of condensates at IPP have decreased since studies conducted prior to 2001 (Hewitt et 

al, 2002; Shaughnessy et al, 2007). 

Female mummichog in the concentration-response experiment showed no significant 

plasma testosterone depression at any concentration compared to control, which confirms 

findings in Shaughnessy et al. (2007) of sex-based differences in responses. Based on results 

from Dube and MacLatchy (2001) and Hewitt et al. (2002) in which both male and female 

mummichog exposed to the IPP 5th effect condensates had plasma testosterone depression, it 

appears that while IPP condensate potency has decreased since studies done in the late 1990's/ 

early 2000's, it is currently of the same potency and make-up as the condensates used in the 2007 

Shaughnessy study. Based on this confirmation, future fractionation experiments were conducted 

with a 4% (v/v) concentration of chemically-distinct fractions to test for ability to depress plasma 

testosterone and other steroid hormones. 

Gene expression analysis was used to identify potential locations of interactions between 

the gonad and endocrine-active compounds in the RO feed. There was no significant response in 

either StAR or aromatase expression, indicating that if alteration of the steroidogenic pathway is 

occurring, it is not through changes in gene expression at either of these two loci. StAR is one of 

the proteins responsible for the mobilization of cholesterol through the mitochondrial membrane 

(Stocco and Clark, 1996), is highly conserved across vertebrate classes (Bauer et al, 2000) and 

is hypothesized to be the rate-limiting step in the steroidogenic pathway in mammals (Sugawara 

et al, 1997). Studies on the effects of EDSs, such as the pesticide methoxychlor and 
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ethinylestradiol, on StAR expression in fish gonads, report decreased expression (Vang et al, 

2007; Blum et al, 2008), however, impacts on StAR expression in fish exposed to pulp mill 

effluent has not been reported. Aromatase is responsible for the conversion of androgens (mainly 

testosterone) to estrogens (mainly 17p-estradiol; Rasheeda et al, 2010). Fish exposed to EDSs in 

pulp mill effluent exhibit a range of responses in aromatase expression, from induction (Orrego 

et al, 2010) to reduction (Kortner et al, 2009a, Kortner et al, 2009b). 

Hepatic cytochrome P4501A (CYPlA) and cytochrome P4503A (CYP3A) were 

significantly induced in both the 2% and 4% RO feed treatments. CYPl A has been 

comprehensively characterized due to its sensitive induction in fish exposed to environmentally-

relevant concentrations of a host of contaminants including dioxins, furans and polycyclic 

aromatic hydrocarbon (PAHs; Stegeman and Hahn, 1994). In the concentration-response 

bioassay C YP1A was significantly induced, a three-fold increase for both 2% and 4% (v/v) RO 

feed. Previous studies done with mummichog have also noted a higher expression of CYPl A in 

fish exposed to creosote-contaminated sediments (Meyer et al, 2002) and waters polluted with 

polychlorinated biphenyls and halogenated aromatic hydrocarbons (Oleksiak, 2008). Similarly, 

CYP3A was significantly induced in both RO feed treatments compared to control. This specific 

family of genes is responsible for hepatic drug metabolism and detoxification (Danielson, 2002). 

The increases in CYPl A and CYP3A expression indicate that whole condensates contain certain 

chemical compounds that the liver identifies as harmful and attempts to detoxify. 

The fractionation regime made improvements on previous work done to develop a 

fractionation protocol for IPP condensates, so as to optimize chemical compound recovery from 

the SPE cartridges (Scott, 2010). This new protocol included improvements in the solid phase 

cartridges, elution solvent and solvent order, eluting methods and loading capacity (Scott, 2010). 
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The fractions derived from this more robust protocol, as well as a positive control of 4% (v/v) 

RO feed condensates, demonstrated no effects on plasma reproductive steroid levels. 

In the concentration-response experiment, a 4% (v/v) RO feed concentration caused 

49.7% and 26.4% decreases in mean plasma testosterone in males and females, respectively. 

Similar testosterone depression has been reported in mummichog at the same RO feed 

concentration (Shaughnessy et al., 2007). In the fractionation exposure, however, the same 4% 

(v/v) RO feed concentration returned mean plasma testosterone responses of 24.6% depression in 

males and a 13.0% increase in females, although neither of these were significant. This lack of 

response makes interpretation of specific fraction bioactivity difficult. 

The discrepancy in 4% RO feed condensate effects between the two studies may be 

attributed to a variety of factors, including: i) the different gonadal state of the fish during the 

two bioassays, and ii) temporal fluctuations in the active substances themselves. Comparison of 

GSI and reproductive state between the bioassays reveals that in the concentration-response 

experiment gonads were more mature. Mean plasma testosterone levels were comparable 

between the two bioassays. In male mummichog, the average plasma testosterone levels were 1.4 

ng/mL and 1.5 ng/mL for the concentration-response and fractionation bioassays, respectively. In 

female fish, mean plasma testosterone was 0.91 ng/mL and 1.4 ng/mL for the two assays, with 

the fractionation exposure having the greater mean value. Previous work with mummichog has 

revealed that regressed fish (such as those in the fractionation exposure) still typically respond 

with plasma testosterone depression when exposed to IPP condensates although the effects may 

be on a reduced scale (Hewitt et al., 2002; MacLatchy et al, 2005). Seasonal fluctuations in 

mummichog hormones have been reported (Shimizu, 1997), with most mummichog 

reproductively active from mid-March to mid-August and regressed by September. Laboratory 
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manipulation of reproductive cycles in mummichog can help to lessen the fluctuations seen in 

wild populations (MacLatchy et al, 2003) and facilitate experiments outside of the spring and 

summer periods. 

While alteration of the chemical constituents and the potential loss of bioactive 

compounds from the condensates over the duration of the bioassay may be one reason results 

differed between the two exposures, this is not likely. Work done by Shaughnessy et al (2007) 

involving daily sampling of the RO feed at IPP with comparison to a single RO feed batch 

sampling found that potential compound degradation did not have an impact on reproductive 

endpoints examined in the study. Plasma testosterone was significantly depressed at the 4% (v/v) 

level in both daily RO feed sampling and single RO feed sampling (Shaughnessy et al, 2007). 

As well, the fractions have been chemically tested over time to ensure that they remain stable (C. 

Milestone, personal communication). 

Historically, effluent and condensate composition has been shown to change depending 

on tree species harvested, time of year of harvesting, soil composition and a host of other factors 

(Christianson-Heiska et al, 2008). Studies done across mills have found variability between 

mills and within mills in effluent composition depending on timing of effluent sampling, with 

some finding that effluent composition varies on a weekly basis (Rickwood et al, 2006a; 

Rickwood et al, 2006b). Analysis of IPP condensate variability has found that conductivity of 

condensates (an indicator of likeness between effluent samplings) is variable, and that 

condensate composition is not temporally consistent (Belknap et al, 2006). Chemical analysis of 

condensates used in the concentration-response and fractionation studies was completed by P. 

Scott at Environment Canada (Scott, 2010). Differences in compounds previously confirmed to 

be in condensates was ascertained by gas chromatography mass spectrometry. Minor variations 
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were found in manool, 4-ethylguaiacol, squalene and isoeugenol concentrations. Geranyl linalool 

levels were 5.9 mg/L and 9 mg/L for the concentration-response and fractionation condensates, 

respectively. Androgen equivalents were also determined within the two condensates, as past 

studies with condensates have indicated possible links between androgen levels and steroid 

hormone impacts in mummichog (MacLatchy et al, 2004). Testosterone equivalents (TEQ) is a 

measure of androgenicity, a theoretical testosterone equivalency concentration within a sample. 

Larger TEQ values indicate a larger concentration of androgen equivalents, thus samples with a 

high TEQ are more androgenic than those with a low TEQ. Condensates from both bioassays 

were separated into five distinct fractions (the same as the treatments in the fractionation 

bioassay) and androgenicity measured in each fraction using an androgen receptor (AR) binding 

assay (Scott, 2010). Residual condensates were not tested for androgenicity as they were not 

compatible with the AR binding assay due to their reconstitution in water. In both condensate 

batches, the FP-NP and SPE-NP were the most androgenic of the fractions. FP-NP and SPE-NP 

from the concentration-response condensates were approximately six and 2.5 times lower in 

TEQ, respectively, compared to the equivalent fraction in the fractionation condensates (Scott, 

2010). 

Overall the concentration-response bioassay confirmed that 4% (v/v) RO feed depressed 

plasma testosterone in adult mummichog. Hepatic CYP1A and CYP3A induction indicates that 

the RO feed does contain compounds requiring biotransformation and perhaps detoxification, 

although whether these contaminants are the endocrine-active constituents remain unknown. 

Variability between RO feed condensates in the bioassays was detected through the lack of 

response in the fractionation bioassay of the 4% (v/v) treatment compared to control. AR binding 

ligands revealed a difference in androgen strength between the two condensate batches (Scott, 
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2010), leading to questions regarding the potential role of androgens as the source of bioactivity 

in condensates. 
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Chapter Three: Model androgen effects in the mummichog (Fundulus heteroditus) 
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3.1 Abstract 

Mummichog (Fundulus heteroclitus) were exposed to 100 ng/L or 1000 ng/L of the 

aromatizable androgen methyltestosterone (MT) or to 10 ng/L or 100 ng/L of the non-

aromatizable androgen dihydrotestosterone (DHT) in a static, 24-h exposure to assess the impact 

of androgens on plasma hormones and gene expression of key proteins in the steroidogenic 

pathway. Female mummichog had lower thresholds of effects than males and were more 

responsive to androgen exposure. Plasma testosterone was significantly depressed by 10 (xg/L 

DHT in males. Females had significant depression of plasma 17p-estradiol (E2) when exposed to 

both DHT concentrations and 1000 ng/L MT. In vitro production of E2was depressed in females 

exposed to 100 ng/L DHT and both MT concentrations. A 2.5-fold increase in ovarian aromatase 

expression was detected in the 1000 ng/L MT treatment. DHT altered plasma steroid levels more 

than MT, however, MT decreased in vitro production of hormones in more treatments than DHT. 

The expression of aromatase was not reduced compared to control in any treatment of either 

androgen, leading to speculation that other genes in the steroidogenic pathway are changed by 

androgen exposure and responsible for the variation in steroid hormone responses. 

86 



3.2 Introduction 

Androgenic compounds are discharged into the aquatic environment from various 

sources, including agricultural runoff and pulp mill effluent (Ellis et al, 2003). Binding of 

exogenous compounds to androgen receptors (ARs) may induce functional or organizational 

changes in fish (Gray etal., 1997). Fish exposed to androgenic substances exhibit intersex 

gonads (Arlsan et al, 2009), male-skewed sex ratios in eggs and fry exposed during 

development (Forlin et al, 2004), expression of male secondary sexual characteristics in females 

(Orlando etal, 2007), and complete masculinisation of females (Li etal, 2006). Evidence for 

direct receptor-mediated androgenic effects includes the mechanisms by which 

methyltestosterone (MT) exposure in the Atlantic croaker (Micropogonias undulatus) increases 

testosterone production in gonadal tissue (Khan et al, 1999). Species-specific isoforms of 

androgen receptors have been found in goldfish (Carassius auratus), rainbow trout 

(Oncorhynchus mykiss) and some other fish species (Wells and Van Der Kraak, 2000). These 

isoforms can result in varied responses to androgenic compounds between species, making 

speculation of direct receptor-mediated effects difficult in fish where AR binding has not been 

specifically studied (Sharpe et al, 2004). 

Aromatase depression in fish exposed to model androgens is widely reported (Kitano et 

al, 2000; Fenske and Segner, 2004; Hornug etal, 2004; Li etal, 2006). It is hypothesized as 

the main point of interaction between androgenic compounds and the steroidogenic pathway (Li 

etal, 2006). Aromatase converts testosterone to 17P-estradiol (E2) in steroidogenic tissue in both 

male and female fish. Decreased ability to aromatize testosterone may result in increased plasma 

testosterone levels, decreased plasma E2, and expression of male secondary sexual characteristics 

in female fish (Palowski et al, 2004; Li et al, 2006). Reduction of aromatase inhibits the ability 
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of endogenous estrogens to be synthesized and thus can result in masculinisation offish over 

time through the accumulation of testosterone (Kitano et al, 2000; Hoffman et al, 2008). Other 

enzymes of the steroidogenic pathway are upregulated due to androgenic exposure including 

11 P-hydroxysteroid dehydrogenase, 17p-hydroxysteroid dehydrogenase and 3p-hydroxysteroid 

dehydrogenase (Hoffman et al, 2008). In zebrafish (Danio rerio), these enzymes were each 

increased at least 2.5 times above control expression during waterborne exposure to 

dihydrotestosterone (DHT; Hoffman et al, 2008). The increased expression of these enzymes 

results in faster metabolism of cholesterol to synthesize testosterone and leads to increased levels 

of plasma testosterone. 

Some androgenic compounds, such as MT, have the ability to exert both estrogenic and 

androgenic responses (Ankley et al, 2000). Aromatization of these androgens can lead to 

estrogenic responses such as elevated plasma E2 levels and induction of the vitellogenin 1 gene 

expression in male liver. Non-aromatizable androgens, such as DHT, can be converted to 11-

ketotestosterone (11-KT) in male fish, and propagate male secondary sexual characteristics 

(Howell etal, 1980). Appearance of these traits (such as elongated anal fins) in females is 

evidence of androgen interaction (Orlando et al, 2007). 

Androgenic effects of pulp mill effluent (PME) have been reported in Canada, Sweden, 

New Zealand and the USA (Sodergren 1992; Parks et al, 2001; van den Heuvel and Ellis, 2002; 

Hewitt et al, 2005). Identification of androgenic effects due to PME exposure began in the 

1980's when it was shown that several species offish living downstream of discharge of a 

bleached kraft mill (BKM) were masculinised (Denton et al, 1985). Male-skewed sex ratios 

have been reported in fish embryos downstream of BKM discharge in Sweden (Forlin et al, 

2004). After a temporary mill shutdown in 1999, sex bias disappeared and was restablished when 
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operation of the mill commenced in 2000 (Larsson and Forlin, 2002), indicating that effects were 

not bioaccumulative. Female mosquitofish {Gambusia holbrooki) collected from a PME-

contaminated section of the Fenholloway River in Florida displayed masculinisation with an 

elongated male-like anal fin and rudimentary gonopodium development (Orlando et al, 2007). 

PME from the Fenholloway River contains chemical mixtures which bind androgen receptors 

and induce in vitro androgen-dependant gene expression, the presumed mechanism of action of 

masculinisation of female mosquitofish found in this river (Parks et al, 2001) 

Larsson et al. (2006) tested a Swedish PME for the presence of fish gonadal AR ligands. 

Competitive binding assays for AR were done with ovaries of Atlantic croaker (Micropogonias 

undulatus) and 37 compounds with potential AR binding capabilities were found. A majority of 

these were polar compounds. Progesterone was present in the primary effluent, but was removed 

with biological treatment. Similarly progesterone and androstenedione were detected 

downstream of a different mill (Carson et al, 2008). The presence of androgens and other 

steroids may be due to bacterial metabolization of P-sitosterol (a plant sterol) commonly found in 

PME (Carson et al, 2008). Progesterone and androstenedione are precursors to testosterone in 

the steroidogenic pathway, and the presence of these precursors could cause endocrine disruption 

in fish living downstream of pulp mills. Similarly, fish exposed to PME from three separate 

Canadian pulp mills showed androgenic responses (Hewitt et al, 2005). Liver extracts of 

exposed fish were tested in the goldfish AR assay and found to contain ligands for these 

receptors. Primary treated effluent showed greater androgenic ligand concentration than final 

effluent, however, both still elicited androgenic responses in fish (Hewitt et al, 2005). Recently, 

androgenic activities of 11 pulp and paper mills in Canada, Brazil and New Zealand were 

compared, with two Canadian mills having the highest androgen activities (Scott, 2010). 
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Androgen activity was not linked to effluent treatment type, mill location or mill process (Scott, 

2010). 

Because androgenic compounds in PME have been identified as a potential cause of 

endocrine-mediated effects on fish living downstream, research is needed to better understand 

the effects and modes of action of model androgen compounds in mummichog. Previous 

androgen studies with mummichog have shown this species to be responsive to androgen 

exposure at a range of concentrations (Sharpe et al, 2004). A short-term adult mummichog 

reproductive endocrine bioassay was used to test the effects and mechanisms of action of 

exposure to an aromatizable (methyltestosterone) and a non-aromatizable (dihydrotestosterone) 

androgen. Gene expression analysis was undertaken to provide information on the role of 

aromatase in mummichog during exposure to model androgens. This study extends previous 

work in mummichog to elucidate the potential effects and mechanisms of action of endocrine-

active compounds in estuarine environments. 

90 



3.3 Materials and Methods 

3.3.1 Model androgen concentrations 

Dihydrotestoterone and methyltestosterone were purchased from Steraloids (Newport, 

Rhode Island, USA). Nominal concentrations were selected which had elicited reproductive 

responses in fish in previous studies (Panter et al, 2004, Sharpe et al., 2004). Treatments 

included control (100 uL ethanol), 10 ng/L DHT, 100 ng/L DHT, 100 ng/L MT and 1000 ng/L 

MT. Stock solutions of each androgen were created by dissolving in ethanol. Concentrations of 

stock solutions were created so that addition of 100 uL ethanol solution to a 15L aquarium gave 

desired nominal concentrations. 

3.3.2 Mummichog collection 

Mummichog were collected in April 2010 from an uncontaminated reference estuary in 

Miramichi, NB (N 47°02, W 65°09) by seine netting and transferred to Wilfrid Laurier 

University in aerated plastic totes. Fish were housed in recirculating, 425L holding tanks from 

Aquabiotech (Coaticook, QC, Canada) at natural photoperiod, 16 ppt salinity (City of Waterloo 

well water mixed with Crystal Sea Salts; Marine Enterprise International, Inc., Baltimore, MD) 

and dissolved oxygen (DO) > 80%. Fish were fed crushed commercial trout pellets (Corey Feed 

Mills, Fredericton, NB) daily to satiation. Standardized conditions for ammonia (< 0.5 ppm), 

nitrite (< 0.1 mg/L), nitrate (<0.1 mg/L), salinity (15.5-16.5 ppt), temperature (16-18°C) and DO 

were maintained by routine water quality tests. Partial water changes were done as needed to 

keep recirculating tanks within standardized parameters. Minimal mortalities occurred in stock 

tanks (< 5%). Fish were housed in holding tanks for two weeks before experimentation. 
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3.3.3 Model androgen bioassay 

One week prior to treatment commencement, three adult mummichog of each sex were 

removed from stock tanks, weighed (nearest 0.01 g) and randomly allocated into one of 30, 20L 

glass aquaria to acclimate. Each glass aquarium held 15 L of 16 ppt water. Experimental 

treatment groups of control (ethanol), 10 ug/L DHT, 100 ng/L DHT, 100 ng/L MT and 1000 

ng/L MT were randomly assigned to each aquarium. Each treatment was composed of six 

replicate aquaria. During the acclimation period, water renewal was done every 24h to fully 

acclimate fish to experimental conditions. 

Water quality measurements (salinity, DO, temperature, conductivity) were recorded 

daily using a YSI meter (Yellow Springs Instruments, Yellow Springs, OH, USA). Fish were fed 

crushed commercial trout pellets (approximately 1% of total body weight), and each aquarium 

was aerated to maintain dissolved oxygen levels above 80%. Tank temperatures were 18°C ± 

1°C. Photoperiod was maintained at 14h L:10h D (late spring conditions). 

Treatments began on May 12th 2010 and continued for 15 consecutive days. 

3.3.4 Sampling protocol 

At the conclusion of the bioassay fish were anaesthetized with 0.05% tricaine methane 

sulfonate (Sigma-Aldrich, Oakville, ON, Canada), weighed (g) and measured for length (mm). 

Blood was collected from the caudal blood vessels using a heparinised syringe fitted with a 26 

3/8 gauge needle (Beckton-Dickenson). Blood was centrifuged (4000 x g, 12 min, 4°C) to isolate 

plasma. Plasma was frozen at -20°C until later ether extraction and radioimmunoassay (RIA) for 

plasma steroid determination (Dube and MacLatchy, 2001). After blood collection fish, were 

killed by spinal severance and the liver and gonads excised and weighed (0.0lg) for 

92 



determination of somatic indices. Gonadosomatic and liversomatic indices were calculated as 

GSI or LSI = (tissue weight (g)/ [total weight (g)- tissue weight (g)])*100. Condition factor (CF) 

was calculated as CF^ (total weight (g)/ standard length3)* 100. Gonadal tissue from one fish of 

each sex from each aquarium was placed into 1 mL of Medium 199 (Sigma-Aldrich) for in vitro 

analysis of steroid production (McMaster et al. 1995). The gonads from the four remaining fish 

were snap frozen with liquid nitrogen for gene expression analysis. Full details of the sampling 

protocol are available in MacLatchy et al. (2005). 

3.3.5 Radioimmunoassay (RIA) 

Circulating plasma testosterone (T), 17p-Estradiol (E2) and 11 -ketotestosterone (11-KT) 

levels were determined by RIA. Plasma was thawed and steroid hormones were isolated from 

blood proteins using a triplicate ether extraction method (McMaster et al. 1992). Steroid 

hormones were resuspended in 1 mL of phosgel buffer and frozen at -20°C until measured by 

RIA (MacLatchy et al, 2005). H-Labelled testosterone and H-labelled estradiol were 

purchased from Amersham Pharmacia Biotech (Baie d'Urfe, QC). 3H-Labelled 11-KT was 

purchased from M. McMaster's lab (Environment Canada, Burlington, ON). Unlabelled T, E2 

and 11-KT were purchased from Sigma-Aldrich. Testosterone and estradiol antibodies were 

purchased from MP Biomedicals (Solon, OH, USA). 11 -KT antibody was purchased from 

AssayPro (St. Charles, MO, USA). All antibodies had less than 0.1% cross-reactivity with 

closely-related steroids. Intra-assay and inter-assay variabilities were minimal in all hormones in 

both bioassays (all intra-assay variability < 6%, all inter-assay variability <10%), falling within 

acceptable levels (MacLatchy et al, 2003). 
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3.3.6 In vitro analysis 

Following the method developed by McMaster et al. (1995) and optimized in MacLatchy 

et al. (2003), gonadal tissue was minced with a scalpel. A minimum of two gonad pieces from 

the same fish were placed in each incubation well, already containing Medium 199 (Sigma-

Aldrich). A total of 18-22mg of gonad tissue was added to each well. Depending on the size of 

the gonad upon dissection, 1-3 replicate wells per fish were run. Immediately prior to beginning 

the incubation, old Medium 199 was removed from the tissue samples and 1 mL of fresh 

medium added. Samples were incubated at 18°C for 24h. Following incubation, tissue and 

medium were separated using a pipette, and the medium was frozen at -20°C until RJAs were run 

forT,E2,and 11-KT. 

3.3.7 Gene expression 

Total RNA from gonadal and liver tissue was extracted using TRlzol solution 

(Invitrogen, Carlsbad, CA, USA). Manufacturer's instructions were followed with minor 

modifications. Tissue (50-1 OOmg) was added to 800 uL TRlzol and homogenized. Homogenized 

samples were incubated at room temperature for 10 min and then 160 uL of chloroform was 

added. Samples were shaken vigorously for 15 sec, then incubated at room temperature for 3 

min. Samples were then centrifuged (12,000 x g, 15 min, 4°C) followed by transfer of the upper 

phase into a new tube containing 400 uL isopropyl alcohol. Samples were shaken, incubated at 

room temperature for 10 min, then centrifuged (12,000 x g, 10 min, 4°C). Supernatant was 

removed and the RNA pellet washed with 800 uL of 75% ethanol, followed by a final 

centrifugation (12,000 x g, 5 min, 4°C). Ethanol was then removed, the RNA pellet allowed to air 
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dry and then reconstituted in 30-50 uL GIBCO water depending on pellet size. Samples were 

stored at -80°C. 

Samples were thawed and 3 uL of each total RNA sample was added to 147 uL GIBCO 

water for RNA quantification (Ings and Van Der Kraak, 2006). Quality was determined from 

absorbance at 260 nm and 280 nm (ideal ratio = 2.0, Ings and Van Der Kraak, 2006). Following 

quantification, 5 uL of each total RMA sample were combined with GIBCO water to standardize 

all samples to a concentration of lug/uL. Standardized samples were then quantified at 

absorbance of 260 nm to confirm concentration. 

Standardized total RNA (2 uL) was then combined with 1 \iL lOx reaction buffer 

(Invitrogen, Carlsbad, CA, USA), 1 uL AMP-D1 (Sigma Aldrich) and 6 uL GIBCO water for 

DNase treatment. Samples were incubated for 15 minutes at room temperature, and then 1 uU of 

stop solution was added to halt the reaction. Samples were then incubated at 70°C for 5 min, and 

then buried in ice until cool. Random primers were then added (0.2 ng; Promega, Madison, WI, 

USA) and samples were incubated at 70°C for 5 min then buried in ice until cool. A total volume 

of 25 uL for each sample was achieved through the addition of (concentrations represent final 

values): 5x RT buffer (50mM Tris-HCL, 75 mM KC1, 3 mM MgCl2; Invitrogen), RNasin (25U; 

Promega), dNTPs (0.5mM; Roche Molecular Biochemicals, Laval, QC), DDT (lOmM; 

Invitrogen), M-MLV reverse transcriptase (200U; Invitrogen), and GIBCO water (Ings and Van 

Der Kraak, 2006). The reverse transcription (RT) reaction was completed by sample incubation 

at 37°C for 60 min, followed by 5 min at 90°C to inactivate the enzymes (Ings and Van Der 

Kraak, 2006). Resulting cDNA product was stored at -20°C until Real Time PCR amplification. 

To ensure no discrepancies within tissues, all ovarian samples were processed in the RT 

simultaneously, all testes processed simultaneously in the next batch and all liver samples were 

95 



processed simultaneously in the next batch. This avoids inappropriate comparisons between 

treatments in the event there were discrepancies during the two RT reaction batches (Lister and 

Van Der Kraak, 2009). 

Levels of expression for gonadal steroidogenic acute regulatory protein (StAR) and 

aromatase, hepatic cytochrome P450 genes 1 (CYPIA) and 3 (CYP3A) and hepatic vitellogenin 

1 (VTG1) were measured. Primer Express software v. 2.0 (Applied Biosystems, Forster City, 

CA) was used to design primers which span exon-exon boundaries in the mRNA to prevent 

genomic DNA amplification (Ings and Van Der Kraak, 2006). Accession numbers and primer 

sequences are shown in Table 3.1. 
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Table 3.1 List of primers and their sequences used in this study (Fwd = forward primer, Rev = reverse primer) 

Gene Sequence 5' - 3" 
Accession 
Number 

Vitellogenin 1 

StAR 

EFla 

Aromatase A 
(CYP19A1- Ovarian) 

CYP3A30 

CYP1A1 

Fwd 

Rev 

Fwd 

Rev 

Fwd 

Rev 

Fwd 

Rev 

Fwd 

Rev 

Fwd 

Rev 

GACAACGTCACTGTGAAGGTCAAC 

CCTCTCCGCTTTGTCTTGATCT 

CAGAGCTGAGAACGGGCCTAC 

CTTTGGGATCCAGCCCTTC 

ACCAGAAAGTACTACGTGACCATC 

TCAGCCTGGGAGGTACCG 

TGCCCCTCGACGAGAAAG 

GTAGATGTCGGGTTTGATCAGCA 

GAACAACCCATCAGACCCGTT 

AAGCGACGGCGAGGAAG 

GAGGACCGGAAGCTCGATG 

ACCAGCTCCGAAGAGGTCGT 

UO7055.2 

CN983145.1 

AY430091 

AY713118.1 

AF105068 

AF026800.1 
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The relative standard curve/SYBR green method was used with primer pair efficiency being 

determined through the creation of a standard curve by a serial dilution of RT product in 

50ng/mL yeast RNA (Ings and Van Der Kraak, 2006). Each PCR reaction well was composed 

of: 5 uL of RT product (5X diluted in GIBCO water), 2.5 uT of forward and reverse primers 

(0.4 uM), and 10 uL of SYBR green PCR Master Mix (SYBR green dye, dNTPs, Passive 

Reference I, AmpliTaq®Gold DNA polymerase; Applied Biosystems; Ings and Van Der Kraak, 

2006). cDNA product was amplified using ABI Prism 7000 sequence detection system (Applied 

Biosystems) with the following cycling conditions for all genes: 10 min at 95°C, followed by 40 

cycles of 15 sec at 95°C and 1 min at 60°C (Ings and Van Der Kraak, 2006). Duplicate reactions 

were performed for each sample and then averaged. 

To proceed with gene expression comparison, genes of interest were normalized to an 

endogenous control gene with steady expression regardless of treatments (Lister and Van Der 

Kraak, 2009). Elongation factor 1-a (EFla; Table 3.1) expression levels were examined and all 

other genes normalized to it. 

3.3.8 Data analysis 

Sexes were separated for statistical analysis. Prior to statistical analysis, Dixon tests for 

the presence or absence of outliers were conducted (MacLatchy et al, 2005) and outliers were 

removed from further analysis. Statistical analysis was performed using Statistica© 6.0 (Statsoft 

INC, Tulsa, OK, USA) and Sigmaplot 11.0 (Systat Software INC, Chicago, IL, USA). 

Assumptions of normality and homogeneity of variance were tested using Levene's test prior to 

parametric analysis. A one-way ANOVA (p < 0.05) was used to test for differences among 

treatments. A Dunnett's post hoc test was conducted if applicable to determine treatment 
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differences. If data did not fit the assumption of normality, log transformation was conducted 

and data were re-tested. Comparisons of liver weight and gonad weight were done using 

ANCOVA, with total fish weight as the co-variate. An ANCOVA for total body weight was 

conducted with standard length as the co-variate to evaluate condition. 
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3.4 Results 

There were no significant differences among treatments in fish length, body weight, 

gonad weight, condition factor or liver weight for this bioassay (Table 3.2). Fish were naturally 

recrudescing during the bioassay. 

Significant depression of mean plasma testosterone occurred in males in the DHT 10 

treatment (p = 0.038; Figure 3.1). There was a significant increase in mean plasma testosterone 

in females in the DHT 100 treatment (p = 0.031; Figure 3.2). There was no effect on plasma E2 in 

males (p = 0.51; Figure 3.1). Female fish had significant depressions in plasma E2 in DHT 10, 

DHT 100 and MT 1000, three of four treatment groups (p = 0.0006; Figure 3.2). Male mean 

plasma 11-KT was not changed in any treatment (p = 0.28; Figure 3.1). 

In vitro testosterone production was not significantly depressed in either males or females 

(p = 0.17, 0.29, Figures 3.3 and 3.4, respectively). Gonadal E2 production was not significantly 

impacted in males (p = 0.51; Figure 3.3). Female E2 production was depressed in all treatments 

except for DHT 10 (p = 0.0017; Figure 3.4). Production of 11-KT in male gonads was 

significantly depressed in DHT 10, MT 100 and MT 1000 (p = 0.0089; Figure 3.3). 

StAR expression levels did not change in either male or female gonad tissue across any 

treatment (p = 0.12, 0.5, Figures 3.5 and 3.6; respectively). Aromatase expression was not altered 

in any treatment for males (p = 0.46; Figure 3.5), however, in ovarian tissue aromatase 

expression experienced a 2.5 fold increase in MT 1000 compared to control (p = 0.044; Figure 

3.6). 

In both males and females, expression levels of hepatic CYP1A did not differ 

significantly from control (p = 0.22, 0.17, Figures 3.5 and 3.6; respectively). Similar results were 
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seen for hepatic CYP3A expression (p = 0.14, 0.19, Figures 3.5 and 3.6; respectively). VTGl 

expression levels were significantly induced in male DHT 100 treatment compared to control (p 

< 0.001; Figure 3.5). Conversely in female mummichog DHT 100 caused a significant reduction 

in expression (p = 0.022; Figure 3.6). No other treatments had significant impacts on hepatic 

VTGl expression. 
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Table 3.2 Mean (± ISE) length, weight, gonadosomatic indices (GSI) and liversomatic indices (LSI) of male and female mummichog 
{Fundulus heteroclitus) exposed to either the non-aromatizable androgen dihydrotestosterone (DHT) or the aromatizable androgen 
methyltestosterone (MT). Treatments are DHT 10 ng/L (DHT 10) and 100 ng/L (DHT 100) and MT 100 ng/L (MT 100) and 1000 
ng/L (MT 1000). No significant differences were detected within variables (p< 0.05). 

Treatment 
Sex 

M 

F 

Variable 

Length (mm) 
Weight (g) 
GSI (%) 
LSI (%) 

Length (mm) 
Weight (g) 
GSI (%) 
LSI (%) 

Control 

83.8 ±4.9 
6.5 ±0.41 
2.3 ±0.16 
3.3 ±0.26 

91.7 ±2.4 
8.2 ± 0.64 
8.1 ±0.58 
5.1 ±0.38 

DHT 10 

84.3 ±1.5 
5.8 ±0.24 
2.4 ±0.19 
3.4 ±0.22 

90.6 ± 2.2 
7.9 ± 0.63 
8.1 ±0.57 
5.5 ±0.49 

DHT 100 

86.4 ± 2.2 
6.3 ± 0.45 
2.4 ±0.21 
3.7 ±0.31 

91.3 ±2.5 
7.6 ±0.51 
7.4 ± 0.49 
5 ± 0.35 

MT100 

88.4 ±2 
6.8 ± 0.5 
2.1 ±0.2 
3.3 ± 0.4 

94.9 ± 2.8 
8.2 ±0.88 
8.2 ± 0.49 
5.2 ±0.41 

MT 1000 

87.6 ± 2.3 
6.2 ± 0.38 

2.4 ±±0.13 
3.8 ±2.7 

90 ±1.4 
7.5 ±1.3 
7.7 ±0.9 
5.3 ±0.36 
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Figure 3.1 Mean (± ISE) plasma testosterone (A), 17P-estradiol (B) and 1 l-ketotestosterone (C) levels (ng/ml) in 
male mummichog exposed to control (ethanol), non-aromatizable androgen dihydrotestosterone (concentrations of 
10 ug/L (DHT 10) and 100 ng/L (DHT 100)) and aromatizable androgen methyltestosterone (concentrations of 100 
ng/L (MT 100) and 1000 ng/L (MT 1000)). Bars with an asterisk (*) are significantly different from control group. 
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Figure 3.2 Mean (± ISE) plasma testosterone (A) and 17P-estradiol (B) levels (ng/ml) in female mummichog 
exposed to control (ethanol), non-aromatizable androgen dihydrotestosterone (concentrations of 10 |j.g/L (DHT 10) 
and 100 ng/L (DHT 100)) and aromatizable androgen methyltestosterone (concentrations of 100 ng/L (MT 100) and 
1000 ng/L (MT 1000)). Bars with an asterisk (*) are significantly different from control group. 
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Figure 3.3 Mean (± ISE) gonadal in vitro production of testosterone (A), 17P-estradiol (B) and 11-ketotestosterone 
(C) (ng/ml) in male mummichog exposed to control (ethanol), non-aromatizable androgen dihydrotestosterone 
(concentrations of 10 ng/L (DHT 10) and 100 ug/L (DHT 100)) and aromatizable androgen methyltestosterone 
(concentrations of 100 ng/L (MT 100) and 1000 ng/L (MT 1000)). Bars with an asterisk (*) are significantly 
different from control group. 
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Figure 3.4 Mean (± ISE) gonadal in vitro production of testosterone (A) and 17P-estradiol (B) (ng/ml) in female 
mummichog exposed to control (ethanol), non-aromatizable androgen dihydrotestosterone (concentrations of 10 
Hg/L (DHT 10) and 100 ng/L (DHT 100)) and aromatizable androgen methyltestosterone (concentrations of 100 
ng/L (MT 100) and 1000 ng/L (MT 1000)). Bars with an asterisk (*) are significantly different from control group. 
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Figure 3.5 Gonadal expression (± ISE) of steroidogenic acute regulatory protein (StAR) (A) and aromatase (B) and 
hepatic expression of cytochrome P4501A (CYPl A) (C), cytochrome P4503A (CYP3A) (D) and vitellogenin 1 
(VTG1) (E) in male mummichog exposed to control (ethanol), non-aromatizable androgen dihydrotestosterone 
(concentrations of 10 ug/L (DHT 10) and 100 ng/L (DHT 100)) and aromatizable androgen methyltestosterone 
(concentrations of 100 ng/L (MT 100) and 1000 ng/L (MT 1000)). Expression levels were normalized to elongation 
factor 1-a (EFla). Bars with an asterisk (*) are significantly different from control group. 
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Figure 3.6 Gonadal expression (± ISE) of steroidogenic acute regulatory protein (StAR) (A) and aromatase (B) and 
hepatic expression of cytochrome P4501A (CYP1A) (C), cytochrome P4503A (CYP3A) (D) and vitellogenin 1 
(VTGl) (E) in female mummichog exposed to control (ethanol), non-aromatizable androgen dihydrotestosterone 
(concentrations of 10 ug/L (DHT 10) and 100 ng/L (DHT 100)) and aromatizable androgen methyltestosterone 
(concentrations of 100 ng/L (MT 100) and 1000 ng/L (MT 1000)). Expression levels were normalized to elongation 
factor 1-a (EFla). Bars with an asterisk (*) are significantly different from control group. 
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3.5 Discussion 

Mummichog responses to model androgens varied depending on androgen concentration 

and type (aromatizable vs. non-aromatizable). Fish exposed to DHT had greater responses than 

those exposed to MT. The potential aromatization of MT means that both potential estrogenic 

and androgenic effects could result from exposure. Female responses were more pronounced 

than male responses across all treatments, indicating that female mummichog are more 

susceptible to androgen perturbation compared to males. Gene expression was used to identify 

the potential mechanism of effect in the steroidogenic pathway. Significant induction of 

aromatase was found in ovarian tissue from fish exposed to MT 1000 treatment, contrary to 

reports in other fish species where androgen exposure causes a decrease in aromatase expression. 

Hepatic gene expression of vitellogenin 1 (VTG1) was increased in males and decreased in 

females exposed to DHT. 

DHT was more potent than MT in causing changes in plasma steroid levels (Table 3.3). 

Plasma T in males was significantly depressed upon exposure to 10 ug/L DHT although there 

was no effect on plasma T levels in males exposed to 100 ug/L DHT. In females exposed to 

DHT there was a significant increase in plasma testosterone at a concentration of 100 ug/L. 

Findings from a study which exposed female zebrafish {Danio rerio) to various low 

concentrations of waterborne DHT (ranging from 0.1 to 4.9 ug/L) showed an increase in plasma 

testosterone production (Hoffman et ah, 2008), similar to what was seen in the current exposure. 

It was hypothesized that this increase was due to the reduction of expression of P450aromatase 

levels caused by DHT exposure (Li et ah, 2006). Both DHT treatments also depressed plasma 

17P-estradiol levels in females in the current study. This depression of E2 in female mummichog 
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exposed to DHT in the current study has been documented previously in zebrafish (Hoffman et 

al, 2008). 

Exposure to methyltestosterone did not significantly affect plasma testosterone in either 

sex (Table 3.3). Exposure of mummichog to high levels of waterborne MT (250 and 1000 ng/L) 

for seven days showed depressed plasma T and E2 in females (Sharpe et al, 2004). A follow-up 

study exposing fish to lower concentrations (1-100 ng/L) of MT for a longer duration (14 days) 

found significant depression of plasma T in females at concentrations of 10 ng/L and higher, 

however, only the bioassay of longer duration found significant impacts on male plasma steroids 

(Sharpe et al, 2004). The reason for the lack of response from the current study compared to the 

work done by Sharpe et al (2004) has not been identified, as in both experiments fish were 

naturally recrudescing, and method of exposure and exposure length were identical. Exposure 

concentrations for the current study were higher (100 and 1000 ng/L) than those used in the 14-

day exposure by Sharpe et al. (2004) so it is unlikely it is related to exposure length, 

concentration or the bioassay protocol. Differences in the photoperiod between the current 

bioassay and Sharpe et al. (2004) may account for the differential responses. The current 

bioassay used 14 h L: 10 h D, whereas Sharpe (2004) had a photoperiod of 16 h L: 8 h D. The 

longer light period may have impacted gonadal state of mummichog, keeping them more 

developed compared to the current bioassay, which may impact results. Additionally stock 

solutions differed between the bioassays, with the current exposure dosing tanks with 100 JJ.1 of 

solution to achieve desired concentrations and Sharpe et al. adding 35 u.1 of stock to achieve 

treatment concentration. Fish were fed to satiation in the current exposure, but fed 3% of daily 

body weight in the previous study. These minor differences may account for some differential 

responses seen between the bioassays. The effect of potential degradation or loss of MT within 
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the aquaria, causing lack of responses, is unknown. The lack of response of plasma steroids in 

fish exposed to either concentration of MT may be due to the length of time the bioassay was 

conducted. The modes of action of this androgen on the hypothalamo-pituitary-gonadal (HPG) 

axis have been postulated to include receptor binding mechanisms, alteration of steroidogenesis 

or interference with endogenous hormone transport (Lister and Van Der Kraak, 2001; Sharpe et 

al, 2004; Denny et al, 2005), each of which are time-sensitive interactions. Identifying the 

length of exposure most appropriate for measuring changes in the reproductive endocrine system 

is challenging, especially as it is possible that compensatory mechanisms may be capable of 

resetting homeostatic levels of plasma steroids (Sharpe et al, 2004). 

Gonadal in vitro production of T and E2 was not impacted by either MT or DHT 

exposure in male mummichog (Table 3.3). A concentration of 100 ng/L MT was sufficient to 

cause in vitro depression of T in male mummichog previously (Sharpe et al, 2004). In the 

present study, 11-KT production was decreased at both concentrations of MT, and DHT 10. This 

confirms findings by Sharpe et al. (2004) that 100 ng/L MT depresses gonadal production of 11-

KT. In the current study, in vitro incubations were done without the use of 3-isobutyl 1-

methylxanthine (IBMX), a phosphodiesterase inhibitor. IBMX prevents cAMP breakdown, 

resulting in increased basal steroid production (McMaster et al, 1995). IBMX was used in 

incubations for Sharpe et al (2004), possibly enhancing basal steroid production. This may 

account for some differences in responses between the studies. 

Contrary to other studies, in vitro testosterone production was not depressed in any 

treatment in female mummichog (Table 3.3). Female gonadal production of E2 was depressed in 

both MT treatments, and DHT 100. Depression of E2 production has been found in female 
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mummichog exposed to 100 ng/L MT (Sharpe et al, 2004) and this study confirms this 

concentration as capable of depressing E2. 

Overall, whole organism endpoints were more influenced from exposure to DHT, while 

mechanistic endpoints were more altered by MT. Interaction between DHT and the HPG may be 

outside the gonads, while MT has demonstrated effects within gonadal cells. When sea bass 

(Dicentrarchus labrax) were implanted with DHT, the levels of follicle stimulating hormone 

(FSH) decreased 4- to 15-fold compared to control fish (Mateos et al, 2001). Increased levels of 

luteinizing hormone (LH) within the pituitary, indicated that LH synthesis was under partial 

androgen control (Mateos et al, 2001). With the depression of FSH, a key hormone controlling 

steroidogenesis, possible plasma steroid fluctuations may not necessarily be reflected in gonadal 

incubations due to feedback controls external to the gonad. 

In the current study, there were no effects on StAR expression in any treatment (Table 

3.3). This lack of response implies that cholesterol is mobilized at the same rate in fish exposed 

to androgens as in control fish although other proteins also mobilize cholesterol across the 

mitochondria in gonads (e.g., peripheral-type benzodiazepine receptor; Hauet et al, 2002). 

Injection of the physiological androgen 11-KT into Atlantic cod (Gadus morhua) caused a dose-

dependant response in StAR expression. Lower doses (0.05-0.5 mg/kg) caused a decrease in 

StAR expression, whereas higher doses (> 5 mg/kg) had no effect on StAR expression compared 

to control (Kortner et al, 2009). This suggests induction of negative feedback loops with higher 

androgen doses (Kortner et al, 2009). Disruption of StAR may represent the first event in a 

series of event cascades associated with EDS-induced depressions of plasma hormones (Arukwe, 

2008), however, the lack of response in StAR in the current study indicates other interactions 

with androgens are responsible for altering hormone levels. 
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Induction of VTG1 protein in male fish has been reported in other species exposed to 

androgens (Blum et al, 2004) and is an indication that male fish are experiencing estrogenic 

endocrine disruption (Riley et al, 2002). Estrogenic responses from androgenic substances are 

possible through aromatization of the androgen. In the current study, MT appears to be 

confirmed as an aromatizable androgen. Increases in plasma E2, decreased 11-KT production and 

increased VTG1 expression in males exposed to MT is evidence for aromatization of MT. 

Depression of plasma E2 in females is another indication of MT aromatization. These 

simultaneous estrogenic and androgenic effects are reported in other studies (Ankley et al, 2000; 

Parrot and Wood, 2002) and are attributed to the successful aromatization of MT to 17a-

methylestradiol (ME2; Simpson et al, 1994). Increased plasma ME2 levels have been reported 

in fathead minnow (Pimephales promelas) exposed to MT for 7 days (Hornug et al, 2004), with 

estrogenic effects being due to ME2 synthesis. As MT aromatization to ME2 has not been 

confirmed in mummichog, future exposures to MT should measure plasma ME2 levels. 

In the current study, VTG1 was induced in males exposed to DHT 100 (Table 3.3). The 

cause of VTG1 induction in this treatment is unknown, as DHT is presumed to be non-

aromatizable. There were no impacts on gonadal T or E2 production for males in this treatment, 

and plasma steroid levels were unaltered compared to the control. Female mummichog exposed 

to DHT 100 concentrations had a significant reduction of VTG1 expression (Table 3.3), which 

can be an early indication of masculinisation (Li et al, 2006). Females exposed to DHT 100 also 

had lower plasma and gonadal production levels of E2, indicating that DHT is non-aromatizable. 

Induction of aromatase occurred in ovarian tissue from the MT 1000 treatment (Table 

3.3). A 2.5-fold increase over control was observed in this treatment. DHT exposure caused 

1.75-fold and 1.5-fold increases in ovarian aromatase expression for the lower and higher 
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concentrations, respectively, although these were not significant. Aromatase induction after 

exposure to model androgens has not been previously reported (Kitano et al, 2000; Li et al, 

2006). There was no significant depression of aromatase in ovarian tissue in any treatment, 

contrary to many previous studies. Aromatase expression in testes was down-regulated by 60% 

in MT 100 and 70% in DHT 100 treatments, however, high variability in the control group meant 

these were not significant. The differential responses in aromatase expression between sexes may 

be due to gender-specific mode(s) of interaction of the androgens. 

There is no correlation in the current study between aromatase expression and plasma or 

in vitro T or E2 levels (Table 3.3). The upregulation of aromatase found in ovarian tissue from 

the MT 1000 treatment did not coincide with increased E2 plasma levels or in vitro production. 

Levels of E2 were actually significantly decreased in both of these endpoints. Additionally, levels 

of plasma and in vitro T were not altered in the MT 1000 group. These findings suggest that 

aromatase may not be the sole location of interaction in the steroidogenic pathway of exogenous 

androgens in mummichog. Exposure of fathead minnow {Pimephales promelas) to the model 

androgen flutamide induced 11 P-hydroxysteroid dehydrogenase (1 lp-HSD), responsible for 

synthesis of 11-KT, indicating that androgens may have an inhibitory action on negative 

feedback pathways (Filby et al, 2007). Additionally, MT exposure has induced expression of 

17P-hydroxysteroid dehydrogenase (17P-HSD) and 3P-hydroxysteroid dehydrogenase (3p-HSD) 

in zebrafish (Danio rerio) (Hoffman et al, 2008). Increased expression of these genes may 

account for the unaltered level of in vitro testosterone production, as cholesterol is being 

metabolized to testosterone, and ultimately 11-KT, at a faster rate than it is metabolized to E2. 

Future studies may wish to measure 11-KT in female gonadal cells as an indicator of early 

masculinisation. 
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There was no effect on CYP1A or CYP3A expression in fish exposed to either androgen 

(Table 3.3). The lack of response in these genes, responsible for hepatic drug metabolism and 

detoxification (Danielson, 2002), indicate that neither exogenous androgen was identified as 

requiring detoxification. The induction of both CYP genes has been found in mummichog 

exposed to waters polluted with polychlorinated biphenyls and halogenated aromatic 

hydrocarbons (Oleksiak, 2008), and is a sensitive indicator when fish are exposed to a range of 

environmental contaminants (Stegeman and Hahn, 1994). 

115 



Table 3.3 Summary of mummichog response to model androgens dihydrotestosterone (DHT) and methyltestosterone (MT). Symbols 
include: no observed effects (-), significant depression (j) or significant induction (|) compared to control. Endpoints measured 
include: testosterone (T), 17p-estradiol (E2), 11-ketotestosterone (11-K.T), gonadal steroidogenic acute regulatory protein (StAR), 
aromatase and hepatic cytochrome P450 genes 1 (CYPIA) and 3 (CYP3A) and vitellogenin 1 (VTG 1). 11-KT endpoints were not 
measured in females. 

Sex 

Male 

Female 

Treatment 

DHT 10 ug/L 

DHT 100 ug/L 

MT 100 ng/L 

MT 1000 ng/L 

DHT 10 ug/L 

DHT 100 ug/L 

MT 100 ng/L 

MT 1000 ng/L 

Plasma 
T 

4 

T 

Plasma 
E2 

-

4 

4 

4 

Plasma 
11-KT 

-

In vitro 
T 

-

-

In vitro 
E2 

-

4 

4 

4 

In vitro 
11-KT 

4 

4 

4 

StAR 

-

-

Aromatase 

-

T 

CYPIA 

-

-

CYP3A 

-

-

VTG1 

t 

4 
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Overall, female mummichog had greater responses in more endpoints than male 

mummichog when exposed to both model androgens. Plasma T and E2, in vitro E2 and VTG1 

expression were all significantly decreased through exposure to specific androgens. Previous 

work in mummichog has shown that females are more responsive than males when exposed to 

MT, and have generally lower threshold levels for effects (Sharpe et al., 2004). Higher threshold 

levels for males may make them more resistant to changes in endpoints when exposed to the 

same concentrations as female mummichog. 

In summary, exposure to DHT and MT in a short-term bioassay altered steroid 

production in mummichog. Data indicate that aromatization of MT caused estrogenic as well as 

androgenic effects. Threshold levels of effects are much lower in females, possibly due to sex-

specific modes of interaction between androgens and the reproductive endocrine system in 

mummichog. Gene expression analysis shows that aromatase was not significantly altered in 

most treatments and that other areas of the steroidogenic pathway or HPG axis must be impacted 

by androgen exposure to account for observed effects in plasma steroids. Future work should 

incorporate potential effects on gonadal enzyme activity and/or gene expression of genes such as 

1 lp-HSD, 17P-HSD and 3P-HSD. Bioassay duration should be both shortened and extended to 

further elucidate time-sensitive endpoints such as altered plasma steroid levels and gene 

expression. The increased understanding about the effects of model androgens in the 

mummichog endocrine bioassay developed here provides valuable information to better 

understand the potential effects of more complex effluents that may contain androgenic 

compounds, such as agricultural runoff and PME. 
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4.1 Summary of results 

Identification of specific endocrine-active chemicals or chemical compounds in pulp mill 

effluent (PME) has been hindered for numerous reasons. Variation of chemical constituents can 

occur on a weekly basis, and is influenced by tree species harvested, time of year of harvesting, 

soil composition during tree growth and many other factors (Christianson-Heiska et al, 2008; 

Hewitt et al, 2008). Effluent mixtures are highly complex and contain high levels of lignin, 

making isolation of small molecules difficult. Additionally, bioavailability of endocrine-active 

compounds, as well as specific uptake and metabolism of these compounds in fish, is not well 

understood (Munkittrick, 2004). A major challenge hindering this area of research is that fish 

responses are inconsistent after exposure to endocrine-disrupting substances (EDSs) within PME 

(Munkittrick, 2004). Despite these difficulties, many of which affected the studies in this thesis, 

progress was made in the goal of identifying bioactive compounds in Irving Pulp and Paper 

th 

Ltd.'s 5 effect evaporator condensate waste stream. 

The investigation of cause (IOC) studies at Irving Pulp and Paper Ltd. (IPP), a bleached 

kraft pulp mill in Saint John, New Brunswick, Canada, has been one of the first and most 

intensive studies to link an in-mill waste stream (5th effect evaporator condensates) with steroid 

depression in fish (Dube and MacLatchy, 2001). Subsequent development of a two-stage solid 

phase recovery (SPE) method to isolate different fractions has been helpful in identifying 

chemical constituents of the condensates (Belknap et al, 2006; Scott, 2010). In vivo bioassays 

using the early fractions derived from this SPE protocol found loss of bioactivity of the fractions 

during the fractionation process (Shaughnessy et al, 2007). Development of a novel 

fractionation regime was then completed by C. Milestone, eliminating the steps in which 

bioactivity was lost in the previous protocol (Scott, 2010). As part of this thesis, two exposures 
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were conducted in 2009, a concentration-response bioassay (Exposure 1) and a fractionation 

bioassay (Exposure 2). Exposure 1 exposed mummichog to varying concentrations of whole 

condensates to confirm the minimal concentration at which reproductive responses were 

observed. This bioassay confirmed previous work that 4% (v/v) concentration of whole 

condensates elicited responses in mummichog (Shaughnessy et al, 2007). Males exposed to this 

volume had depressed plasma testosterone, while females showed no response (Tables 4.1 and 

4.2, respectively). Gene expression analysis was used to determine the potential locations of 

interactions between the gonad and the endocrine-active compounds in the RO feed. Lack of 

response in StAR and aromatase indicate that active compounds within the condensates interact 

at other loci within the steroidogenic pathway. Additionally, induction of both hepatic CYP1A 

and CYP3A in females (Table 4.2) at 2% and 4% (v/v) whole condensates, indicates that 

condensates contain certain chemical compounds that are identified as harmful and which the 

liver attempts to detoxify. From these findings, Exposure 2 was conducted with five chemically-

distinct fractions derived from the new fractionation protocol (Scott, 2010) and a positive control 

of 4% (v/v) concentration of whole condensates. None of the fractions depressed plasma 

testosterone in either sex, however, the whole condensate treatment also had no effect on the 

reproductive steroids, making interpretation of biological activity in each fraction impossible. 

The discrepancy between Exposure 1 and Exposure 2 responses to 4% (v/v) whole 

condensates could be attributed to either the different gonadal states of the fish during exposure 

or temporal fluctuations in the active substances themselves. Comparison of gonadosomatic 

indices between the exposures revealed that fish from Exposure 1 had more mature gonads. 

However, average plasma testosterone levels from control fish in Exposure 1 were comparable to 

control fish from Exposure 2. Additionally, past studies done with regressed mummichog have 
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found them to be responsive (Hewitt et al, 2002; MacLatchy et al, 2005). Previous work done 

with condensates has shown them to resist chemical degradation over a short period of time, so 

loss of activity is likely not due to chemical degradation during exposure (Shaughnessy et al, 

2007). Chemical fingerprinting was completed for condensates from both exposures, and minor 

variations in a number of chemical compounds were detected (Scott, 2010). Androgenic 

constituents of the two condensate batches also differed (Table 4.3; Scott, 2010). Condensate 

batches from both bioassays were fractionated according to the newly-developed protocol (Scott, 

2010), and each fraction subjected to goldfish (Carassius auratus) androgen receptor (AR) 

binding assays to determine androgenic potential. Testosterone equivalents (TEQ), a measure of 

androgenic potency, was found to be highest in the fractionation bioassays condensate filter 

paper non-polar (FP-NP) fraction (Table 4.3). This was approximately seven times more 

androgenic than the same fraction in the concentration-response bioassay. Manool, one of the 

chemical compounds with detectable differences between the two exposures, was found to 

account for approximately 22-30% of total androgenic activity (Scott, 2010). Because variability 

in the chemical make-up of the condensates was linked to differences in bioactivity (binding to 

androgen receptors in vitro), it was determined that studies on model androgen effects in 

mummichog were warranted at this stage in the condensate IOC studies. 

In May 2010, a third reproductive endocrine bioassay was undertaken to assess the 

effects of the model androgens methyltestosterone (MT) and dihydrotestosterone (DHT). The 

objectives of this bioassay were to determine mummichog responsiveness to androgen exposure, 

determine if aromatizable androgens elicit different effects than nonaromatizable androgens, and 

compare responses seen in fish exposed to model androgens with those exposed to pulp mill 

condensates. Mummichog responses were varied, with DHT eliciting more reproductive impacts 
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than MT. The most impacted steroid was 17P-estradiol in both plasma and in vitro analysis 

(Table 4.2). Female mummichog were more sensitive to androgen exposure than males, 

confirming the hypothesis that females have a lower effects-threshold to androgens (Sharpe et 

al, 2004). Mechanistic investigations found that aromatase was not altered after exposure to 

either androgen, indicating that interaction between the steroidogenic pathway and androgens 

must be at another location (Table 4.1 for males, 4.2 for females). Neither CYP1A nor CYP3A 

were induced in any treatment compared to control, indicating that exogenous androgens are not 

identified as requiring detoxification (Table 4.1 for males, 4.2 for females). 

Comparison of whole condensates and model androgens is hampered due to the potential 

of interaction between chemicals within condensates, which may enhance or mask effects which 

would be observed during exposure to model compounds. However, responses to key 

reproductive endpoints allow preliminary comparison between mummichog exposed to whole 

condensates and those exposed to model androgens. Plasma testosterone depression is the major 

indication of exposure to whole condensates in mummichog, however exposure to model 

androgens primarily impacts plasma and in vitro 17p-estradiol. The induction of CYP1A and 

CYP3A occurred in fish exposed to whole condensates, but no induction was found in fish 

exposed to model androgens. This indicates that the chemical compounds within condensates 

require transformation and detoxification, while model androgens are not similarly identified. 

Additionally, male mummichog are affected by condensate exposure, while females have greater 

sensitivity to androgens than males. 

Overall, as shown through androgen receptor binding assays, condensates do possess 

androgenic compounds (Scott, 2010), but these compounds may not be the bioactive compounds 

responsible for endocrine effects in mummichog exposed to condensates. Two pieces of 
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evidence support this: (1) the condensates and model androgen responses in mummichog do not 

parallel each other (Tables 4.1 and 4.2); and (2) the condensates with greater androgenicity 

content (Scott, 2010; Exposure 2) did not cause reproductive endocrine effects in fish, while the 

exposure with lesser androgen content (Exposure 1) did (Table 4.3). 
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Table 4.1 Summary of reproductive responses of male mummichog exposed to whole condensates (WC), chemically distinct fractions 
isolated from whole condensates (FP-NP = filter paper non-polar, FP-P = filter paper polar, SPE-NP = solid phase extraction non-
polar, SPE-P = solid phase extraction polar) or model androgens dihydrotestosterone (DHT) and methyltestosterone (MT). Symbols 
include: no observed effects (-), significant depression (J,) or significant induction (|) compared to control. Endpoints measured 
include: testosterone (T), 17P-estradiol (E2), 11-ketotestosterone (11-KT), gonadal steroidogenic acute regulatory protein (StAR), 
aromatase and hepatic cytochrome P450 genes 1 (CYP1A) and 3 (CYP3A) and vitellogenin 1 (VTG 1). Original data from 
Shaughnessy et al. (2007) and Chapters two and three of this thesis. Shaded grey areas indicate endpoints for which there is no data. 
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Bioassay 
Shaughnessy et al. (2007) 

0.5 % WC 

1%WC 
2% WC 

4% WC 
Concentration-response (Ch. 2) 

2% WC 

4% WC 
Fractionation (Ch. 2) 

4% WC 
FP-NP 
FP-P 

SPE-NP 
SPE-P 

RC 
Model Androgen (Ch. 3) 

DHT 10 ug/L 

DHT 100 ug/L 

MTlOOng/L 

MT 1000 ng/L 

Plasma 
T 

4 

4 

; 

i 

Plasma 
E 

-

-

-

Plasma 
11 -KT 

-

-

-

In vitro 
T 

-

-

In vitro 
E 

-

-

In vitro 
11-KT 

-

1 

i 
1 

StAR 

-

Aromatase 

-

CYP1A 

-

CYP3A 

-

VTG 
1 

t 
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Table 4.2 Summary of reproductive responses of female mummichog exposed to whole condensates (WC), chemically distinct 
fractions isolated from whole condensates (FP-NP = filter paper non-polar, FP-P = filter paper polar, SPE-NP = solid phase extraction 
non-polar, SPE-P = solid phase extraction polar) or model androgens dihydrotestosterone (DHT) and methyltestosterone (MT). 
Symbols include: no observed effects (-), significant depression (J.) or significant induction (|) compared to control. Endpoints 
measured include: testosterone (T), 17p-estradiol (E2), gonadal steroidogenic acute regulatory protein (StAR), aromatase and hepatic 
cytochrome P450 genes 1 (CYPIA) and 3 (CYP3A) and vitellogenin 1 (VTG 1). Original data from Shaughnessy etal. (2007) and 
Chapters two and three of this thesis. Shaded grey areas indicate endpoints for which there are no data. 

131 



Bioassay 
Shaughnessy et al. (2007) 

0.5 % WC 
1%WC 
2% WC 
4% WC 

Concentration-response (Ch. 
2) 

2% WC 

4% WC 
Fractionation (Ch. 2) 

4% WC 
FP-NP 
FP-P 

SPE-NP 
SPE-P 

RC 
Model Androgen (Ch. 3) 

DHT 10 ug/L 

DHT 100 ug/L 

MT 100 ng/L 

MTlOOOng/L 

Plasma 
T 

-

-

-

t 

Plasma 
E 

-

-

4 
4 

4 

In vitro 
T 

-

In vitro 
E 

4 
4 
4 

StAR 

-

-

Aromatase 

-

T 

CYP1A 

T 
T 

-

CYP3A 

t 
T 

-

VTG 1 

i 
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Table 4.3 Summary of endocrine-related responses in mummichog from concentration-response and fractionation bioassays conducted 
in this thesis. Comparison of androgenic equivalents (testosterone equivalents (TEQ)) of condensates achieved through AR binding 
assay (Scott, 2010). Symbols include no observed effect (-) and significant depression (j) compared to control. 

Bioassay 
Concentration-response 

FP-NP 
FP-P 

SPE-NP 
SPE-P 

Fractionation 
FP-NP 
FP-P 

SPE-NP 
SPE-P 

Current Thesis 
Effects on plasma testosterone endpoints 

Male 

i 
Female 

Scott (2010) 

TEQ (ng/L) 

~ 100,000 

~ 4,200 

~ 700,000 

~ 10,500 
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4.2 Future Work 

Future work can focus on two distinct objectives: 1) furthering bioassay-directed 

fractionation to isolate and characterize endocrine-active compounds from IPP condensates and 

2) increasing knowledge of impacts of model androgens on mummichog. 

To pursue objective one, reconfirmation of the minimum concentration of whole 

condensates required to elicit reproductive changes in mummichog may be required. Past work 

has shown that IPP condensates decreased in potency between the late 1990's and the mid 

2000's (Shaughnessy et al, 2007). In the months between the current concentration-response 

bioassay, which confirmed 4% (v/v) whole condensates as capable of depressing plasma 

testosterone, and the fractionation bioassay, a decrease in potency occurred confirming that 

temporal variability in the condensate constituents continues to be a challenge with identifying 

the endocrine-active compounds. However, variability could be a valuable investigative tool 

going forward as it allows testing of condensates with differences. Future work should aim to 

undertake biological studies with condensates of known chemical constituents. 

Objective two can be furthered by varying exposure lengths (< 14 days and > 14 days) to 

fully encompass all possible changes within the hypothalamo-pituitary-gonadal axis. 

Determination of manool effects on the mummichog reproductive endocrine system should be 

undertaken to determine if this androgen is a possible endocrine-active component of pulp mill 

condensates. Manool was shown in Scott (2010) to be responsible for up to 33% of the 

androgenicity of IPP condensates. A bioassay exposing mummichog to varying concentrations of 

manool will help elucidate if the androgenic properties of manool are linked to reproductive 

effects in fish. Additionally, the linkage between steroid hormone depression in mummichog and 
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the in vitro goldfish AR binding assay results have not yet been substantiated. Development of 

an AR binding assay for mummichog would aid in establishing links between androgenic 

compounds and in vivo hormone depression in mummichog. 

4.3 Reflections on thesis as "integrative biology" 

Measured endpoints incorporated multiple levels of biological organization, from the 

molecular (gene expression) to the whole organism (e.g., plasma steroids, gonad size), involving 

a broad spectrum of protocols and tools designed to elucidate mechanistic responses in 

mummichog exposed to condensates or model compounds. The thesis included collaboration 

with a chemistry lab at Environment Canada, and with another reproductive physiology lab at 

University of Guelph. The findings within this thesis can be integrated into the broader fields of 

toxicology, reproductive biology and conservation biology for future collaborations aimed at 

improving the health of Canadian water systems. 
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