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ABSTRACT

The ability of a metal to cause toxicity in aquatic environments is highly
dependant upon the water chemistry, -which can influence metal bioavailability. Metal
bioavailability is affected by the concentration of the metal, complexation of the metal by
organic and inorganic ligands, and by the speciation of the metal. Predictive models of
metal toxicity, such as the biotic ligand model (BLM) have mainly focused upon
predicting the toxicity of individual metals rather than the toXicity of metals in mixtures,
which are more commonly found in contaminated waters. Two metals that are commonly
found together are Pb and Cd which can enter aquatic environments through
anthropogenic sources such as mining and smelting operations, or naturally through the
weathering of rock. The purpose of this research was to determine how low levels of Pb
and Cd (25-2400 nmolL™" and 6-24 nmolL" respectively) interacted with one another and
the gills of rainbow trout (Oncorhynchus mykiss). Speciﬁc goals were to determine how
acute (3-10 days) exposure influenced metal-gill binding and gill function, blood
electrolytes (N a’, Ca2+, CI), acid-base balance and survival in these fish. These
interactions were studied using repetitive blood sampling, unidirectional Na" flux
techniques, and gill Na'/K"-ATPase activity. Studies using a toxic unit approach (1TU of
exposure = LC50) were also used to determine if it was possible to predict the toxicity of
Pb plus Cd mixtures. The cannulation studies suggested that Pb plusv Cd mixtures resulted
in greater than additive reductions in plasma Ca®>" and Na* concentrations, but the
decreases in plasma Na were corrected within 5 d. Measurements of unidirectional Na"
fluxes using the radiotracer *Na" revealed that the decreases in Na* uptake caused by Pb

or Cd alone at low levels were temporary and not observed during exposure to Pb plus Cd



mixtures. This seemingly protective effect of Pb against Na” loss was explained by
competition between Pb and Cd for binding sites at the gill and accompanying increases
in Na'/K"-ATPase activity. To conclude, low levels of Pb plus Cd can cause greater than
additive reducﬁons to internal Ca** balance, but trout are able to acclimate to these low
concentrations. At higher concentrations, Pb appears to be protective against Cd toxicity.
These findings underscore the need to better understand the mechanisms of Pb and Cd
uptake by the gill alone and in mixtures, and when establishing water quality guidelines

for these metals and for site specific risk assessments.
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Chapter 1

Background on the Toxicity of Pb and Cd and the Development of the

BLM



Background

Due to the contamination of aquatic ecosystems by metals, considerable effort has
been invested in the development of water quality criteria and guidelines over the last 30
years (reviewed in Paquin et al., 2002). Furthermore, the evolution of the science behind
creating ambient water quality criteria (AWQC) and guidelines has become more precise
and considerate of site specific characteristics. Historically, AWQC were developed
solely from total metal concentrations in aquatic ecosystems, but this approach failed to
address the importance of other water chemistry parametérs (Niyogi and Wood, 2004).
However, many advances have been made about the critical importance that water
chemistry parameters such as-hardness, pH and dissolved organic carbon (DOC) play in
determining the bioavailability of the free (charged) metal ion, which is considered to be
the most toxic form in aquatic systems. Moreover, the development of models such as the
Biotic Ligand model (BLM) consider the mechanism of toxicity for specific metals based
on the specific affinity and interactions at the site of toxic action (i.e. the biotic ligand)
(Playle, 1998; Di Toro et al. 2001). Currently, BLMs developed for individual metals
such as copper and cadmium are being considered in the development of AWQC.
However, there is no such developed BLM that accounts for metal mixtures sﬁch as Pb
and Cd, which are more likely to be co-released into contaminated waters.

Both lead (Pb) and cadmium (Cd) are non-essential metéls that are introduced into
aquatic ecosystems thréugh both natural and anthropogenic sources. The majority of
anthropogenic inputs originate from activities that include the combustion of coal, mining
and smelting operations', and through vthe disposal of electronic equipment and

accessories (e.g. batteries, circuit boards) (Sorensen 1991; Zabel; 1993). Both Pb and Cd



are released into waters naturally as a result of volcanic activity (World Health
Organization, 1995; Zabel, 1993), but Cd is also released through the natural weathering
of rock (World Health Organization, 1992; Klassen et al. 2002). The levels of Cd and Pb
in the Great Lakes remain relatively low ranging from 3.2-11 ngL™" (0.01 — 0.05 nmolL™)
and 2.8 — 4.5 ngL™ (0.025 — 0.04 mﬁolL'l; Nriagu et al. 1996), respectively. However, |
many contaminated lakes in North America and parts of Scandinavia have Pb and Cd
concentrations that are substantially higher (0-250nmolL™" Pb and 10-50nmolL™" Cd)
(Campbell et al. 1985; Reader et al. 1989; USEPA, 1980; 2001). The ecotoxicological
effects that such metal contamination has on aquatic organisms have been elucidated in
fish exposed to both Pb and Cd individually (e.g. Hodson et al. 1982; Rogers et al. 2003,
2004; Chowdhury et al. 2004). However, fish and other aquatic organisms are more
likely to be exposed to mixtures of metals, rather individual metals, in metal

contaminated waters (Grippo and Dunson, 1996; Norwood et al. 2003).

Effects of Water Chemistry on Metal Bioavailability

The ability of a metal to cause toxicity in aquatic environments is highly
dependent on the water chemistry, which can influence metal bioavailability. Metal
bioavailability is affected by the concentration of the metal, complexation of the metal by
organic and inorganic ligandé, and by the speciation of the metal (Playle 1998; Niyogi
and Wood 2004). Factors such as water hardness, ionic strength, pH, temperature and
dissolved organic carbon (DOC) all influence metal bioavailability and toxicity. High
concentrations of ions such as Ca**, Na*and Mg can decrease the toxicity of certain
metals due to competition for binding sites on the gill (Figure 1.1). By influencing metal
solubility and speciation, changes in water pH and temperature may increase or decrease

3



metal bioavailability and toxicity (Grosell et al 2006). By complexing metals, both
inorganic matter and DOC can bind metals in the water column, making them less
available for uptake by aquatic organisms (Figure 1.1; Paquin et al. 2000; Playle 1998).

The effects that water chemistry has on metal speciation and bioavailability are
considered by the Free Ion Activity Model (FIAM), Gill Surface Interaction Model and
most recently the Biotic Ligand Model (BLM; Pagenkopf, 1983; Paquin ef al. 2003).
Along with previously established metal bioavailability models, the BLM is a tool used in
ecological risk assessment (ERA) and in the development of water quality criteria for
metals in some jurisdictions. Presently, Canadian ambient water Quality guidelines for
metals are based on water-hardness calculations that fail to consider how metal mixtures
or different sources of natural organic matter (NOM) affect aquatic biota (Norwood ef al.
2003; Niyogi and Wood, 2004; Playle, 2004). The BLM uses metal-gill stability
constants to predict how water metal concentrations, complexation with organic and
inorganic substances, and competition with similarly charged ions, affects metal-gill
binding to biolo;gical membranes such as the epithelium or gills (the biotic ligands) of
aquatic animals (Playle, 1993; Paquin ef al. 2003). The biotic ligand is a site(s) within an
organism that readily binds metals, and toxicity is considered to be directly proportional
to the amount of metal-gill binding (Playle, 2004). In BLM models it is assumed that the
amount of metal bound to a biologically sensitive membrane (fish gills) can accurately
determine the metal’s acute toxicity (Playle, 2004). |

Concentrations of different metals within the water column do not necessarily
have to be equal to induce similar toxicological effects on fish. This is because each

metal has a specific conditional binding co-efficient to the gill, a constant which



measures the strength (affinity) to which different metals binds to a particular ligand (i.e.
Ca”" channels on the gill). The binding co-efficient for the metal may reflect a metal’s
relative toxicity compared to other metals (Playle, 2004). For instance, the greater
binding co-efficient of Cd (LogKca-gin= 7.3; Hollis ef al. 2000) compared to Pb (LogKps.
gilt = 7.05; Birceanu et al. 2008) reflects the greater toxicity of Cd (Playle, 2004). The
BLM therefore considers how the affinity of metals for specific ligands ultimately
influences toxicity. The BLM is based on the assumption that the free metal ion (charged
state) is the metal species that causes toxicity to fish, by binding to their gills. However,
the bioavailability (the ability of metals té cause tdxicity) of the free metal ion is affected
by a variety of water chemistry parameters. Metals in their ionic state can form
complexes with organic and inorganic substances, rendering them less available to bind
to the gill therefore decreasing toxicity. Parameters such as pH and alkalinity can alter the
speciﬁtion of metals within the water, therefore also affecting fheir bioavailability. In
addition, metals compete for specific binding sites necessary for ionoregulation (i.e.
specific Ca**, Na” and Mg®* channels) therefore higher concentrations of these ions
within the water column can subsequently decrease the toxicity of metals (Niyogi and
Wood, 2004).

Water hardness is particularly important in predicting metal toxicity in the soft,
low pH (5.5-6.5) waters that are fdund in the Canadian Shield. These very soft waters
have low conductivity (< 50 pS), Ca®* and Mg?* (< 1mmolL™), alkalinity (<50 ueqL'l)‘
and DOC (<3 mg C L") (Neary et al. 1990; Spry and Weiner, 1991; Flik and Verbost,
1993). Soft, acidic waters are thought to be more prone to metal contamination because

for a given concentration of total metal (dissolved plus undissolved), bioavailability is



greater compared to harder, circumneutral pH waters (Campbell and Stokes, 1985; as
reviewed in Spry and Weiner, 1991). Metal toxicity in fishes is also thought to be higher
in soft water due to greater electrochemical gradients across the gills which favour Ca**
loss in water with low environmental calcium. The diffusive loss divalent ibns (e.g. Ca™
is thought to be inversely proportional to external Ca>* concentration (Rodgers and
Beamish, 1983), necessitating greater uptake of calcium to maintain ionic homeostasis
(Perry and Wood, 1985; as reviéwed in Evans et al. 2005), however it also increases the
amount of metal that crosses into the gill (Rodgers and Beamish, 1983; Spry and Weiner,

1991).

Predicting the Toxicity of Metal Mixtures

The BLM and other mathematical-based speciation programs (i.e. WHAM,
MINTEQAZ2) have been deve}oped to predict and model the toxicity of metals to aquatic
organisms. However, the development of different BLMs and the majority of metals
research have been conducted on individual metals and hot metai mixtures. It is therefore
imperative to better understand the complex interactions between different metals in
aquatic ecosystems, as well as their impacts on the health of fish (Playle, 1998, 2004;
Borgmann et al. 2008).

The combined effects of toxicants can generally be predicted using the addition
effects model (N orwood e? al. 2003; Playle 2004). Using this model, the toxicity of each
individual component of the mixture is expressed as a toxic unit (TU). Any standard end-
point (e.g. 96-h LC50, gill metal binding) can be used, but the end-point needs to be
identical for all components of the mixture, and each component must have the same
mechanism of action (Sprague, 1970; Norwood et al. 2003; Playle, 2004). Toxicity can
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then be predicted by determining the total TUs to which an organism is exposed to in

mixtures using the following equation:

Total Toxic Response 3 TU)=TU, + TU3 + TU; +..TU, (1)

Where > TU is the predicted total toxic response and TU, represent the toxicity of each
component of the mixture expressed in toxic units. The interactions can be either strictly
additive, in which Y TU equals the sum of the toxic responses for all the components in
the mixture; less than additive (antagonistic), where the > TU is less than that of sum of
the effects of all components, or greater than additive (synergistic) where the > TU is
greater than the sum of all the individual components added together (Playle, 2004;
Newman and Unger, 2002).

Playle (2004) modeled the combined effects of Pb plus Cd at the gill, and
predicted that the two would interact in a less than additive manner due to competition
for the same binding sites (Ca** channels) on the gills. However, Birceanu et al (2008)
measured actual Pb- and Cd-gill binding during 3 h exposures to Pb (0-125 nmolL™") plus
Cd (0-50nmolL™") mixtures , and observed that while metal-gill binding was less than
additive, the effects on gill mediated Na* and Ca®* uptake were greater than additive. It is
not known, however, if such ionic disturbances persist during longer-term (several days)
Pb plus Cd exposure and whether or not actual toxicity is exacerbated. These latter
findings suggested that toxicity of Pb plus Cd could also be greater than additive. Winter
(2008) examined metal-gill binding and toxicity in trout exposed to Pb plus Cd mixtures

in the presence or absence of DOC, and also found that the interactions with the gills



were complex, making it difficult to predict toxicity. There is therefore a need to
determine how combinations of Pb plus Cd affect the physiology and survival of fish
when they are exposed to Pb plus Cd mixtures for longer periods. One goal of my thesis
was to expose to trout to environmentally relevant concentrations of Pb plus Cd and
monitor blood and whole body ion status, and rates of ion exchange across the gills in

trout exposed to Pb plus Cd mixtures over several days.

The Gills: The Biotic Ligand in Fish

The gills of freshwater fish are a multi-functional organ that mediates not only gas.
exchange, but also nitrogenous waste excretion, acid-base balance and ionoregulation
(Wilson and Laurent, 2002; Evans et al. 2005). Due to their dilute surroundings,
freshwater fish continuously lose ions (e.g. Na*, CI, Ca®") across the gills down large
blood-water electrochemical gradients, as well as via the urine. Thes¢ ion losses are
countered by gill-mediated ion uptake, which is carried out by specialized cells known as
fnitochondria rich cells (MRC) or chloride cells. The MRCs have extensive tubular
networks and apical microvilli to increase the surface area for ion uptake, along with high
densities of mitochondria to produce the ATP needed to fuel active transport of ions by
the gill (Wilson and Laurent, 2002).

The MRCs are thought to mediate Na", Ca®* and CI uptake by primary and/or
secondary active transport. The uptake of Na' via ai)ical channels is coupled to H"
extrusion via nearby proton pumps (H'-ATPases), which along with basolateral Na'/K"
ATPase, generates thé electrochemical gradients down which Na" moves (Figure 1.2).
Similarly, Ca®> uptake is by secondary active transport via apical Ca**channels (eCac -
Shahsavarani ef al. 2006) down an inward gradient that is generated by basolateral Ca**-
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ATPases (Figure 1.2). Chloride-uptake is facilitated by apical CI/HCOj;" exchange
(Figure 1.2); Wilson and Laurent, 2002). Because the apical membrane of the MRC is
continually exposed to the ventilatory flow of water crossing the gills, it is also the target
for many toxicants, including metals, which are found in contaminated aquatic systems.

Due to the similar valences and ionic radii of many metals to Na" and Ca*", the
branchial uptake sites for these metals are particularly vulnerable. Both Pb** and Cd**,
and other divalent metals (e.g. Zn*") are thought to interfere with Ca®>* uptake due to their
+2 oxidation state (valence). Interference with Ca®" uptake can be d¢trimenta1 due to the
important role that Ca®* plays as a constituent of scales and bone, the requirement for
Ca®" to facilitate muscle twitches (contractions), and Ca?*’s role as aﬁ important
extracellular and intracellular chemical messenger for numerous processes critical to
vertebrate life (e.g. neurotransmitter release). Sodium is a critical ion needed to maintain
osmotic balance in the extracellular fluid, but it is also needed to drive the depolarization
of nerve cells undergoing action potentials in the body. Metals such as Cu’, Ag”, interfere
with Na* uptake by entering the gill via Na'-specific channels and interacting with the
basolateral Na'/K"-ATPase (Pelgrom ef al. 1995; Richards ef al. 1999; Schjolden et al.
2007). Recent research by Rogers et al (2004; 2005) suggests that Pb may also cause
interference with Na" and CI” balance, despite its divalent charge.

Although the toxicity of metals was once thought to be solely due to respiratory
impairment, recent research has proven that the competition between metals and ions
inhibits gill-mediated ion transport mechanisms (reviewed in Paquin et al. 2002). The
physiiological and toxic effects of individual metals have also been well documented, but

the mechanisms of how different metal mixture combinations exert their toxic effects



have not been studied in detail. Two metals that are commonly found together in
contaminated waters are Pb and Cd. Because each metal has a similar hydrated radius to
Ca®*, they are thought to compete with Ca?*" for apical binding sites on the gills.
Cadmium has been demonstrated to interfere with Ca”* uptake via the branchial Ca®*-
channels found on the gill MRCs (Verbost et al. 1987). Cadmium also inhibits th.e
movement of calcium through direct inhibition of basolateral Ca**-ATPases, which also
reduces the electrochemical gradient across the apical membrane of the MRCs (Verbost
et al. 1989).

Lead is also thought to compete with Ca®" jons at calcium channels on the apical
membrane of the fish gill (Rogers and Wood 2004). However, Pb*" is also believed to
affect Na™ and C1" homeostasis due to the disruption of Na'- K"-ATPase activity (Figure
1.2; Rogers et al. 2003; 2005). Although Pb significantly reduces the influx of Na* across
the gill, Na" channel blockers (Bafilomycin) caused no decline in Pb binding to the gill
(Rogers et al. 2005). However, Pb inhibits cytosolic carbonic anhydrase, which provides
H" and HCO;5 from the hydration of CO; for the Na'-H" transport system and CI7HCO5”
exchange at the apical membrane of the gill. As a result, Pb causes reductions in both CI’
and Na" influx (Figure 1.2; Morgan et al. 2004, Rogers et al. 2005, Wilson et al. 2000).

Although detailed research has been conducted on the effects of Pb and Cd on fish
exposed to these metals individually (Rogers et al. 2003; 2005; Grosell et al. 2006;
Verbost, 1987; 1989; Niyogi et al. 2004; Niyogi and Wood, 2004; Playle, 1993), metal
mixtures have not been as thoroughly studied (Winter, 2009; Birceanu et al. 2008). In
addition, many earlier studies conducted used high metal concentrations that are less

likely to occur in natural environments (e.g. Rogers et al, 2004, Chowdhury et al, 2004).
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Here, rainbow trout were exposed to mixtures of Pb and Cd, at more environmentally
relevant concentrations (Pb <500nmol L™ and Cd <100nmol L") in soft water, to
determine how these metal mixtures influence gill-metal accumulation, ionoregulation

and toxicity in these fish.

Objectives - Effects of Pb plus Cd mixtures on Fish
The objectives of my thesis were to test the following hypotheses that mixtures of Pb plus
Cd would cause:
1. Greater than additive decreases in plasma and whole body ions (i.e. Ca** and
Na") due to impaired ionoregulation at the gill (Chapter 2).
2. Persistent decreases of Na™ uptake at the gill, that explain Pb and Cd induqed
ionic disturbances during longer term metal exposure (Chapter 3).
3. Substantial metal-gill accumulation after 3h and that this accumulation would

be predictive of longer term toxicity (Chapter 4).

Short-term (3 h) exposure of trout to Pb and Cd mixtures inhibits Na" and Ca**
influx in a greater than additive manner (Birceanu et al. 2008). Because it is not clear if
such disturbances persist during longer-term Pb plus Cd exposure, it was predicted that
the total body ion pool would be decreased in trout exposed to these metals. To test this
hypothesis, rainbow trout were exposed to nominal concentrations of 250nmol L' and
125nmol L! Pb in combination with 10nmolL™" and 50nmolL™" Cd (along with Pb only,
Cd only and control fish) (Objective 1). Fish were then sampled at regular intervals to
measure the concentrations of total body ions after various exposure times (1, 3 and 5
days). Whole body digests were then completed and the ions (Ca®*,Na*, Cl"and K*)
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quantified. Fish were also fitted with surgically implanted dorsal aorta cannulas to permit
for repetitive measurement of plasma ion concentrations and osmolality as an index of
metal-induced ionic or osmotic disturbances. Haemoglobin and haematocrit was
determined to further define any ionic or osmotic disturbances that resulted from Pb plus
Cd exposure. Measurements of acid-base regulation such as the arterial partial pressure
of O; (Papy), arterial pH (pHa) and blood lactate were also made. Although Pb and Cd are
not known to impair gas exchange, these measurements were necessary to determine if
gas exchange or acid-base disturbances also contributed to toxicity during longer-term Pb
plus Cd exposure. Many toxicants including metals (i.e. Pb), are known to stimulate
increased mucous production as a protective measure, which could subsequently
compromise gas exchange and therefore acid-base balance by impairing CO, excretion or
O, uptake (Sorensen, 199 1).

To test the hypothesis that Pb plus Cd exposure would result in greater than
additive disturbances to gill mediated Na" uptake and to determine if this disturbance can
be corrected (Objective 2), the radiotracer >*Na" was used to track the unidirectional
(influx, efflux, net flux) movements of Na" movements across the gills of trout exposed
to metal mixtures for 72 h. Gill tissue was also sampled to relate gill metal binding
directly to changes in Na" movements, and branchial Na'/K"-ATPase activity was
measured to determine if this basolateral transporter was also a target of Pb and/or Cd at
the low concentrations of metals that were used.

Finally, to determine if gill-metal accumulation was predictive of toxicity,
interactions of Pb and Cd at the gills were modeled using methods previously developed

to predict and describe the toxicity of metals in mixtures as it relates to metal-gill
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accumulation (Objective 3) (Playle, 2004; Norwood et al 2004; Borgmann et al 2008).
Assuming concentration addition, a toxic unit approach was used to complete 3 h gill
accumulation exposures and subsequent 10 d LT50 exposures. This was completed to

relate 3 h gill accumulation during Pb plus Cd exposures to the 10 d LT50.
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Figure 1.1 The Pb and Cd gill-binding model depicting the competition for the same
binding site (i.e. apical Ca®" channels) on the biotic ligand (i.e. fish gill) and the

respective affinities (binding strength; LogK) of each metal for the ligand.
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Figure 1.2 Mechanisms of toxic action for Pb and Cd. Dashed lines indicate passive
mediated ion diffusion and solid lines indicate carrier mediated processes. A © indicates
a possible target for Pb and/or Cd. (A) Pb and Cd are both believed to enter voltage-
independant calcium channels on the apical membrane. (B) Pb and Cd both inhibit Ca**
ATPase on the basolateral membrane, thus reducing influx of Ca*". (C) Pb may also have
inhibitory effects on carbonic anhydrase which hydrates CO, to H" and HCOs™. By
decreasing H" and HCOs™ generation via carbonic anhydrase (CA), Pb is thought to
reduce Na" and CI” influx via the Na'™-H" transport system and CI'- HCO3™ exchanger
respectively. (D) Pb also disrupts Na'/K"-ATPase activity thus decreasing the Na" influx

due to a change in the electrochemical gradient of Na*. See text for further details.
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Chapter 2

Greater than Additive Effects of Pb plus Cd Mixtures in Rainbow

Trout: Effects on Blood & Tissue Ions, Osmotic and Acid-base Balance
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ABSTRACT

The physiological and toxicological effects of lead and cadmium alone have been
studied in depth in fishes, but at relatively high, non-environmentally relevant
concentrations. Little is known about how mixtures of these metals in soft (< 100pmolL"
Ca”") exert their toxic effects in fish living in slightly acidic (pH ~ 6) waters typical of
lakes in the Canadian Shield. Pb and Cd individually, are thought to disrupt homeostasis
by inhibiting ionic regulation leading to hypocalcaemia and eventual death. Birceanu et
al, (2008) suggested that exposure to Pb and Cd mixtures (’3 h) caused greater than
additive reductions of internal Ca*" and Na" balance. To assess the physiological and
toxicological effects of Pb and Cd mixtures over longer time periods (5 days) fish were
exposed to Cd alone, Pb alone and a Cd plus Pb mixture. Accordingly, measurements of
blood gases and acid-base regulation (PaO,, pH,), haematology (Ht, Hb, MCHC, and
Protein) and ionic composition (whole body ions and plasma Ca*, Na*, CI’, osmolality)
were made in trout fitted with dorsal aortic catheters. There were no effects on whole
body ions after 5 days of exposure, but there was a greater than additive reductions in
plasma Ca®*, Na* and osmolality in the Cd plus Pb mixture compared to Cd or Pb alone.
Osmolality and plasma Na" appeared to recover by 120 h to control levels. Further
investigation on the mechanisms of these effects is needed to fully understand the

interactions between Pb and Cd at the gill.
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INTRODUCTION
The effects of individual metéls on fish physiology and toxicity have been

thoroughly researched (Verbost ef al. 1987; Rogers ef al. 2003; 2004; MacDonald et al.
2002; Niyogi et al. 2008), but metal mixtures are usually more common in the natural
environment and in contaminated waters (Nriagu and Pacyna, 1988; Sayer et al. 1991).
Two metals that are co-released into the environment are Pb and Cd, which may be
present in effluents arising from mining and smelting operations, coal combustion, and
the disposal of electronic wastes (Nordic Council of Ministers, 2003; Nriagu and Pacyna,
1988). Both Pb and Cd are calcium analogs which compete with Ca*" for binding sites on
voltage independent calcium channels, which are found on the apical membranes of fish
gill mitochondria rich cells and possibly pavement cells (Shahsavarani et al. 2006). This

- competitive binding is thought to cause ionoregulatory disturbances characterized by
decreased rates of Ca’" influx, leading to net Ca®* losses that may eventually contribute to
fish death (Verbost ef al. 1989; Birceanu ef al. 2008). Many metals such as Pb, Cd and
Zn are more toxic in Ca**-poor soft water than in Ca®*-rich hard waters due to decreased
competition with Ca?* ions for binding sites on the gill (Hollis ef al. 2000; Niyogi et al.
2003; Birceanu et al. 2008). There remains a need, however, to learn more about the
effects of metals and metal-mixtures on aquatic organisms that live in the siightly acidic,
ioh—poor waters that are found in the Canadian Shield (Campbeli and Stokes, 1985). The
goal of this study was to therefore learn how Pb and Cd mixtures interacted with the fish
gill and caused toxicity in low pH (~6.0), soft (CazJr < 100uM) waters that have similar

composition to those of vulnerable Canadian Shield waters.
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The toxicity of metals can be predicted using models such as the Biotic Ligand
Model (BLM), which determines how water chemistry influences the bioavailability of
free metal ions (e.g. Cd**, Pb*"). Differences in water chemistry can influence metal
speciation, but also the availability of other cations (e.g. H”, Ca**, Na") which can
compete with metals for binding sites on the gill (e.g. the biotic ligand). The BLM also
considers metal-complexation by inorganic and organic matter in the water column (see
Playle 1998; Paquin et al. 2002; Niyogi and Wood 2004 for reviews). The BLM’s utility
in predicting the toxicity of single metals (e.g. Cu, Cd, Zn) to aquatic organisms is well
established, but it is unclear if the BLM can be used to effectively predict the toxicity to
metals in mixtures (Playle, 2004). Moreover, the BLM is based on the metal binding to
the biotic ligand during short-term exposures,‘ before any subsequent physiological
changes or acclimation take place at the biotic ligand or in the blood, tissues or organs of
target organisms (Niyogi and Wood, 2004).

By competing with cations for binding sites at the gill, the basis of fhe BLM is
that metal binding at the gill will result in reduced rafes of ion uptake (e.g. Ca®*, Na"),
culminating in internal ionic and osmotic disturbances that contribute to toxicity (Playle
2004). Because Pb and Cd compete with each other for access to Ca”*-binding sites on
the gill, it was predictéd that the combined effects on ion uptake by the gill would
exacerbate internal ionic disturbances and toxicity in trout.

The interactions of multiple toxicants such as metals at the site of toxic action (i.e.
biotic ligand) can be described as strictly additive, less than additive and greater than
additive, relative to the effects observed during exposure to each constituent toxicant

alone (Newman and Unger, 2000). These descriptions typically use the classical toxic
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unit approach in modeling the toxic effects of each constituent in a mixture (Newman and
| Unger, 2000; Playle, 2004). Using the toxic unit approach for metals, it is assumed that
the amount of each constituent metal bound to the biotic ligand determines acute toxicity
(Playle, 2004). Toxic units (TU) can be classified as a value of toxicity (i.e. 96 h LC50)
that is unique to a particular metal. When fish are exposed to 1 TU it is assumed that after
3 h that 50% of the gill sites for that metal will be filled thus killing 50% of the exposed
group (Paquin et al, 2002). The concentration addition model uses the assumption that for
metals in combination, any combination of concentrations (i.e. ¥2 TU + %2 TU) will cause
the same toxicity. Moreover, the effects of metal mixtures can behave in a strictly
additive fashion when the toxic effects of the metal mixture equal the sum of effects
caused by the metals alone (see example above), less than additive when the sum of the
effects seen in mixtures is less than the sum of the individuals; or greater than additive
where the sum of the effects seen in mixtures are greater than the sum of the individual
metal exposures. However, whether the assumptions of gill acéumulation and toxicity of
Pb and Cd can be predicted this way is uncertain. Moreover, it is not clear if the toxicity
predicted by the concentration addition model can be predictive of internal (non-lethal)
ionoregulatory disruption which is a more sensitive measure of toxicity especially in
lower, more environmentally relevant concentrations found in natural aquatic ecosystems
(Birceanu et al. 2008).
Birceanu et al. (2008) demonstrated that short-term (3 h) exposure of trout to Pb

plus Cd metal mixtures resulted in greater than additive inhibition of Na" and Ca®
uptake, but it was not clear if such disturbances lead to greater toxicity if the fish were

exposed to Pb-Cd mixtures over longer periods (days). A key objective of this research
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was to test the hypothesis that longer periods of Pb plus Cd mixture exposure resulted in
greater disturbances to internal ionic and osmotic balance, leading to greater toxicity in
fish. To test this hypothesis, rainbow trout were fitted with chronic, indweliing dorsal
aortic catheters to allow for the collection of blood samples at regular intervals during
longer-term (5 d) eprsure to Pb plus Cd mixtures at concentrations closer to those that
would be found in actual contaminated waters (0-250nmolL'1 Pb and 10-50nmolL™* Cd;
Beamish and Van Loon, 1977; Reader ez al. 1989; Nriagu and Pacyna, 1988, USEPA,
2001). Whole body and plasma ions, hematological parameters (haematocrit and
hemoglobin) and osmolality were measured to characterize any internal disturbances to
internal electrolyte ér osmotic balance. Arterial Po, (Pap;), pH (pHa) and blood lactate
were measured to determine if the combined effects of Pb plus Cd exposure interfered

with gas exchange or metabolic pathways.
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MATERIAL AND METHODS

Experimental Animals and Holding

Raiﬁbow trout (Oncorhynchus mykiss) were purchased from Rainbow Springs
Trout Farm, Thamesford, ON. Fingerling trout (3.2 £ 0.1g; n= 175) were used to quantify
how whole body ion concentrations changed during Pb plus Cd exposure, and larger trout
(236.9 =9 g; n = 85) were used for repetitive blood-sampling experiments. All fish were
held in 180 L tanks supplied with well-aerated flowing water. Initially, the fish were held
in 1:1 mixture of hard well watérl and soft water produced by reverse osmosis, resulting in
a water composition of ~ 1.6mmolL™" Ca?*, ~500umolL ™ Na*, ~500 pmolL™" CI,
conductivity of 400uS, at 9-11°C. The fish were gradually acclimated to softer water over
one week by increasing the ratio of soft water to well water resulting in water with the |
following chemical composition: ~100-200 umolL™ Ca®*, Na* ~ 200 pmolL™, pH ~ 6 and
8-14°C. The fish were left in this water for a minimum of 2 weeks prior to experiments.
Fish were fed commercial trout feed (Corey Mills Aquafeeds, Fredericton, New
Brunswick) 3-times per week until satiation, but were fasted 72 h prior to experiments.
All fish husbandry procedures and experiments were approved by the Wilfrid Laurier
Animal Care Committee and followed the Canadian Council of Animal Care (CCAC)

guidelines.

Experimental Protocols

Series I: Whole Body Ion Experiments
To test the hypothesis that exposure to Cd plus Pb mixtures caused greatér than

additive reductions to whole body ions, rainbow trout were exposed to a matrix of Cd
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plus Pb concentrations (0-250 nmolL™' Pb and 0-50 nmolL" Cd) and surviving fish were
terminally sampled at 24, 72 and 120 h of exposure for later measurement of whole body
ions. The fingerling trout were randomly distributed to experimental polyethylene
buckéts cnntaining 10L of ion-poor, slightly acidic water (Ca**=90.0 = 0.3 pmolL™", Na*
=137.3+ 7.2 umolL™, CI'=61.4 + 3.4 pmolL™, pH = 6.0 = 0.0, temperature =10-11 °C)
and left to acclimate to these conditions for 12-24 h prior to the addition of metals.
Separate groups of fish were subsequently exposed to Cd and/or Pb at nominal
concentrations of 0, 10, 50 nmolL"! Cd and 0, 125, 250 nmolL! Pb for 5 d (120 h)ina
static system. Water pH was monitored every 3 h for the first 24 h, and every 24 h
thereafter, to minimize increases in water pH that would result in the formation of PbCO;
(cerrusite), and subsequent reductions in Pb>* bioavailability. Surviving fish (target n = 8)
were sampled at 24, 72, and 120 h, after being killed by a blow to the head, wrapped in
aluminum foil, frozen in liquid nitrogen, and stored at -80 °C until processed for whole
body inn analysis.

Water samples (7mL) were taken at the beginning of each experiment and at 24 h
intervals thereafter. An additional water sample (7mL) was filtered by passing it through
a45um Supor® membrane (Pall Life Sciences, Ann Arbor, MI) to obtain water samples
for measurements of dissolved metal concentration. Filtered and unfiltered samples were
acidified to i% using 16N trace metal grade HNO; (Trace Metal Grade; EMD Chemicals
Inc, Germany) and stored until metal content was determined. Additional unacidified,
unfiltered samples (7mL) were used to measure water Cl and were stored in borosilicate
scintillation vials with no head spacefor measurement of dissolved organic carbon

(DOQ).
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Series II: Effects of Longer-Term Pb plus Cd Exposure on Blood Chemistry

Longer-term (5 d) exposures of larger trout to Pb plus Cd mixtures place in a re-
circulating system comprised of an over-head tank (head tank) which drained via a flow
splitter into individual fish-holding containers that were set-up within a large (32” x 577)
PVC tray. Water leaving the containers drained into the tray and then into a lower
reservoir from which the water was pumped via submersible pump back-up to the head
tank. Water pH was maintained using a PHMS82 pH meter (Radiometer-Copenhagen,
Copenhagen, Denmark), connected to an autotitrator (TTT80; Radiometer-Copenhagen,
>Copenhagen) which was activated when pH exceeded a set-point of 6.3. Activation of
the titrator led to the drop-wise addition of nitric acid (0.125 N HNOs) via a solenoid
valve (Cole Parmer Instrument Co., Quebec) into a well-aerated bucket contained within
the head tank (e.g. Wilkie and Wood, 1991). Approximately 1/3 of the exposure water
(~40 L) was replaced every 24 h to offset water loss due to evaporation, and to prevent
nitrogenous wastes (ammonia) from accumulating. Water samples (7mL) were collected
every 24 h for measurement of dissolved metals and ions throughout the exposure.

To determine if the 5 d exposure to Pb plus Cd mixtures disrupted plasma ion
balance, hematology, blood oxygen or acid-base balance, rainbow trout (~200-500g)
were fitted with surgically implanted dorsal aortic catheters. Prior to surgery, the fish
were anaesthetized in buffered tricaine methane sulfonate (0.1 g L™ buffered with 0.2 g
L NaHCO;; Syndel Labs, Vancouver, BC), at which time the catheters (PES0 tubing)
were implanted into the dorsal aorta of the fish according to Soivio and Nynolm (1975).

The catheters were filled with heparanized Cortland’s saline (Wolf, 1963) and the end of
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the catheter was plugged with a needle. The fish were carefully placed into their
individual PVC holding containers, and allowed to recover for 12-24 h, before initial
control (pre-exposure) blood samples were collected.

| Blood samples (500 uL) were collected under control conditions, and at regular
intervals (pre-exposure; 8, 24, 48, 72, 96, 120 h) during exposure to control (metal-free)
water, or water containing Cd alone (7.4 + 0.3 nmolL™ dissolved), Pb alone (26.1 + 1.6
nmolL™) or Cd plus Pb (6.9 + 0.4 nmolL" and 45.5 + 1.9 nmolL"! respectively,
dissolved) in the soft water ([Ca>*] ~ 100 pmolL™) and maintained at pH 6 using the pH-

stat set-up.

Blood Sampling

Blood samples (500uL) were collected from each fish before metal exposure (pre-
exposure) or after 8, 24, 48, 72, 96, 120 h from the dorsal aorta catheter using a
heparinized, ice cold, gas tight Hamilton syringe. Once the blood was sampled, arterial
pH (pHa) and partial pressure of oxygen (Pap;) was measured using a Blood Gas Meter
(Cameron Instrument Co. Texas, U.S.A). An aliquot of whole blood waS also transferred
into heparinized haematocrit tubes and centrifuged for five minutes at 10,000 x g for
haematocrit determination. A drop of plasma frorﬁ the haematocrit tubes was used to
determine total plasma protein using a clinical refractometer (Sper Scientific). Whole
blood was added to Drabkins reagent (20 puL in SmL Drabkins; Sigma Aldrich) for later
determination of hemoglobin concentration, and to 8% perchloric acid (25 uL in 50 pL
acid) and stored at -80°C for later measurement of blood lactate. The remaining whole

blood (~400uL) was centrifuged for 3 min at 10,000 x g, and the plasma frozen, and
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saved at -80 °C for later determination of plasma Caz".L, Na', and CI'. The remaining red
blood cell pellet was then gently re-suspended (by flicking the bottom of the centrifuge
tube lightly) in Cortland’s saline (unheparinized) back-up to a volume of approximately
500uL and re-injected back into the fish via the dorsal aortic cétheter to minimize
reductions in plasma haematocrit and haemoglobin that could take place as a result of the
repetitive blood sampling procedure. The cannula was then re-filled with heparinized
saline.

At the end of the exposure (120 h) the surviving fish were killed by overdose with
tricaine methane sulfonate (0.5gL™" buffered with 1gL™' NaHCO3) and the first gill arch
on the right hand side of the fish was removed, rinsed for ten seconds in de-ionized water,
snap-frozen in liquid N>, and stored at -80 °C for later determination of gill-metal

concentration.

Analytical Techniques

Tissue Processing

Whole fish from series I experiments were thawed, weighed and placed in 10 mL
centrifuge tubes containing IN HNO; at 5 times the fish’s mass, and then digested at
60°C for 48-72 h. The resulting homogenate was then vortexed and divided into 1.5 mL
aliquots that were centrifuged at 10,000 x g for 2 min. The supernatant was then diluted
600 times using E-Pure deionized water and then acidified to 1% HNO;. The Na"
concentrations in the supernatants were subsequently determined by flame atonﬁc
absorption (FAA) spectrophotometry (Spectra 880 Atomic Absorption, Varian,

Mississauga, ON.). The concentrations of Ca’* and K* were also determined by flame
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atomic absorption spectrophotometry (AAS), after first diluting the samples with 1%
LaCl; (Sigma-Aldrich) and 0.1% CsCl (Alfa Aesar, Ward Hill, MA) (Chowdhury, J. and
Nudella, S., personal communication). Whole body chloride concentration was
determined spectrophotometrically using the mercuric thiocyanate assay (Zall et al.,
1956).

Gills from series 11 experiments to be used for metal analysis were first thawed,
weighed and digested in 5 vtim’es their weight in 1N Trace Metal Grade HNO3, and then
baked for 3 h at 80°C. The resulting digests were vortexed and centrifuged for 2 min at 12
000 rpm, and the supernatant collected and diluted ~10 times (as appropriate) using 1%
HNO; (Trace Metal Grade; EMD Chemicals Inc, Germany) for subsequent Cd and Pb

analysis.

Metal and Ion Analysis

Water and gill Cd and Pb were quantified using a graphite furnace (GTA100
atomizer, SpectrAA 880, N, gas; Varian, Mississauga, ON), and concentrations were
validated using precision standards (TM28.3; Environment Canada). Total Ca®* and Na”
concentrations in the water were measured by flame AAS (see above), and water CI’
concentration determined spectrophotometrically using the mercuric thiocyanate assay
(Zall et al. 1956). Dissolved organic carbon was determined using a Shimadzu TOC
5050A Analyzer (Shimadzu Corporation, Kyoto, Japan).

" Blood hemoglobin concentration was determined using the cyanomethaemoglobin

method and sample absorbances were read on a plate spectrophotometer (SpectraMax
190, Molecular Devices, CA) at a wavelength of 540 nm. Whole blood lactate

concentrations were measured enzymatically [lactate dehydrogenase (Sigma-Aldrich)] on
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the supernatant of the PCA treated samples (Bergmeyer, 1983) using a plate
spectrophotometer set to a wavelength of »340 nm. Plasma Na®, Ca** were measured by
FAA (see above), Cl" was measured spectrophotometrically (see above) and plasma
‘osmolality was measured using a Vapor Pressure Osmometer (Vapro®, Wescor Inc, Utah,

US.A).

Calculatidns and Statistical Analysis A

All data is presented as the mean + one Standard Error of the Mean (SEM) (N).
Comparisons between control and experimental fish in Series I, experiments were
analyzed using one-tailed t-test comparing each group with their respective control. In
Series 11 exioeriments, in which the blood chemistry of the trout was followed over a 5
day exposure to Pb plus Cd mixtures, data where analyzed using one-way repeated-
measures ANOVA. In instances where significant variation was observed, the ANOVA
was followed by a Dunnett’s post-test to determine if thére were significant differences
between the pre-exposure and Pb plus Cd mixture treatment. Unpaired t-teéts were used
to compare treatment means at t = 0 to the simultaneous control (non-exposed fish)

means at t = 0. All significant differences were determined at the P < 0.05 level.
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RESULTS

Series I: Effects of Cd plus Cd Mixtures on Whole Body Ion Balance

To determine if mixttlxres of Pb and Cd have an impact on whole body ions,
rainbow trout were exposed to nominal Pb and Cd concentrations of 10 and 50 nmolL™
Cd, 125 and 250 nmolL" Pb alone and in combination for 120 h. Although the measured
Cd concentrations were comparable to nominal concentrations (Table 2.1), the measured
Pb concentrations were 50-80 % lower than the nominal values, ranging from
approximately 25-150 nmolL™ (Table 2.1). Regardless of the concentrations of Pb and/or
Cd, however, there were few differences in whole body calcium, sodium, chloride and
potassium measured after 24, 72 and 120 h of exposure compared to control fish held in
metal-free water (Table 2.2). There was a significant decrease in Ca”* after 24 h of |
exposure to10 nmolL™" of Cd only, but Ca** concentration rebounded and had returned to
control le§els by 5d (Table 2.2). Whole body sodium increased after 24 h in most
exposures (Table 2.2) bﬁt was not significantly different from controls at 120 h. Chloride
decreased significantly after 72 h of exposure to125 nmolL"’ Pb, but this trend was not
seen in ofher treatments.

Despite the absence of major changes in the whole body ion concentrations,
there were mortalities during exposure to Pb and Cd alone, and in mixtures. No moﬁality
was observed in the confrol (non-exposed) fish, 67 % survival was observed in fish
exposed to 50 nmolL™" Cd alone, and 96 % survival was observed in fish exposed to 10
nmolL™ Cd +250 nmolL" Pb. Survival was 41% in fish exposed to 50 nmolL™ Cd + 125
nmolL»'1 Pb, with slightly higher survival in the group of fish exposed to 50 nmolL™" Cd

plus 250 nmolL™ Pb (66%) (data not shown).
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Series I1: Effect of Pb plus Cd Exposure upon Blood Ion, Osmotic, and Acid-base
Balance

In these experiments, rainbow trout fitted with chronic, indwelling dorsal aoﬁic
catheters ‘were exposed to nominal concentrations of 10 nmolL™ Cd alone, 50 nmolL™’ Pb
alone and a 10 nmolL" Cd plus 50 nmolL" Pb mixture. Measured Cd concentrations
were more or less in agreement with the nomiﬁal values (Table 2.3), but the actual Pb
concentrations were about 50 % lower in the fish exposed to a nominal concentration of
50nmolL” (Table 2.3). However, in the fish exposed to mixtures of the metals, the
concentrations of Cd and Pb were slightly less than the target values of 10 nmolL™" and

50 nmolL™, respectively (Table 2.3).

Metal Accumulation on the Gills

Metal-gill accumulation was measured from gills of fish that had survived to 120
h of each experiment (Figure 2.1). In fish not exposed to metals, background gill-Cd and
gill-Pb remained low near 1.5 and 1.0 nmolg™ wet weight, respectively. There was
substantial Pb-gill accumulation in fish exposed to Pb alone and Pb‘plus Cd mixture,
which approached 25 nmol g wet weight in both cases, but there was no difference in
the gill-Pb accumulation between the two treatments (Figure 2.1). There was a significant
increase in Cd-gill accumulation in the Cd only,‘ and the Pb plus Cd exposed fish, but gill-
Cd accumulation was lower (~40%) in the fish exposed to Pb plus Cd compared to Cd

alone (Figure 2.1).
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Mortality

Fish were considered to have died as a result of metal exposure provided there
were no obvioﬁs mishaps with the cannula implanted in the dorsal aorta (i.e. pulled it out,
major mishaps with blood ré-injvection etc.). Based on these criteria, control fish
experienced 100% survival until 120 h, where one fish (out of twenty-four fish) died
unexpectedly (Figure 2.2). However, only 48 % of the fish exposed to Cd alone survived
for 120 h, compared to 85% that survived in the presence of Pb only. Survival was least,
however, in the fish exposed to the Pb plus Cd mixture, in which only 16 % of the fish

survived for the entire 120 h metal exposure period (Figure 2.2).

Cas Exchange and Acid-Base Balance

Exposure to Pb or Cd alone, or in combination, did not appear to cause any
respiratory distress at the exposure concentrations used. Rainbow trout exposed to Cd
alone, Pb alone, or the Cd plus Pb mixture had relatively stable Pag; values that
fluctuated around 100 mm Hg (Figure 2.3), and pHa remained near pH 7.7 to 7.8 (Figure
~ 2.4). Consistent with the lack of change in pH, was whole blood lactate, which was
unaffected by exposure to Pb only and Cd only (Figure 2.5A, B). There was a significant
increase in lactate at 48 h in the fish exposed to Pb plus Cd mixtures (Figure 2.5C).
However, the increase in lactate was slight, less than 1 mmolL™" compared to controls,
further suggesting the Pb or Cd alone, or in mixtures, had minimal impact on the

respiratory physiology of rainbow trout.
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Ion Balance

Exposure to Cd alone, and Pb plus Cd mixtures resulted in marked disturbances to
internal ion and osmotic balance. The fish exposed to Cd alone and to the Cd plus Pb
mixtures experienced signiﬁcént hypocalcaemia. In the fish exposed to Cd alone, plasma
Ca®" concentration began to decline 'immediately, and by 24 h it was significantly
r¢duced by 22 %, and then stabilized through 72 h of exposure (Figure 2.6A). By 120 h,
however, plasma Ca®" concentration appeared to recover slightly in the fish surviving the
Cd only exposure (Figure 2.4A). In contrast to Cd only, the Pb only exposure did not
significantly affect plasma Ca®" concentration (Figure 2.6B), but the presence of Pb
exacerbated Cd-induced reductions in plasma Ca®"; after 24 h, plasma Ca**
concentrations were reduced by approximately 20 %, and declined further as exposure to
the PB plus Cd mixture continued (Figure 2.6C). By 120 h, plasma Ca®* concentrations
were 28 % lower compared to pre-exposure concentrations (Figure 2.6C).

Plasma Na' was affected by Cd only exposures and the Cd plus Pb mixtures, but
not the Pb only exposure (Figure 2.7). Exposure to Cd alone resulted in a non-significant
25% decrease in plasma Na' after 72 h but for the most part was not different from the
control levels of approximately 120mmolL ' (Figures 2.7A, B). Exposure to Pb only
resulted in no change in plasma Na" concentration, which fluctuated around 120-130
mmolL" throughout the exposure period (Figure 2.7B). Plasma Na' concentrations were
significantly decreased by approximately 20 % after 24 h and 48 h of exposure to the Pb
plus Cd mixture, but had returned to pre-exposure levels by 72 h (Figure 2.7C).

Exposure to Cd alone resulted in a gradual decline in plasma CI', which was

significantly reduced by 25 % by 72 h (Figure 2.8 A), which coincided with a similar drop
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in Na" at the same time (Compare Figure 2.7A to 2.8A). In both cases, however, Na™ and
CI balance were restored by 120 h (Figure 2.7A, 2.8A). Exposure to Pb alone, however,
had no effect on plasma CI" (Figure 2.8 B), nor did exposure to Pb plus Cd, despite a
slight downward trend in plasma CI” over the course of the experiment (Figure 2.8C).

. In addition to the transient ionoregulatory disruption observed, plasma osmolality
was markedly reduced by 25% after 96 h of Cd only exposure (Figure 2.9A). Although
Pb alone caused no change in plasma osmolality, the Pb plus Cd mixture caused a
significant, persistent 10-15% decrease in plasma osmolality after 24 h of exposure

(Figure 2.9).

Haematological Parameters

Although haematocrit and haemoglobin concentrations dropped over the course of
exposure to Cd alone, Pb alone, énd Cci plus Pb, haematocrit and haemoglobin declined
in a similar manner in fish not exposed to metal but subjected to the same blood sampling
regimen (Table 2.4). Mean cell haemoglobin was not affected by exposure to any of the
metal treatments; however there was some variability in the control fish data (Table 2.4).
Similarly, plasma protein was unchanged compared to control and t = 0 during control
and all m‘etal exposures, fluctuating around values of 2.0 to 2.5 g dL" in all treatments

(Figure 2.10).
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DISCUSSION

Metal-Gill Binding, Toxicity and Water Chemistry

The present study indicates that exposure of trout to Pb plus Cd mixtures
exacerbates Cd-induced reductions to internal Caz% balance, causing hypocalcaemia that
likely contributes to greater mortality compared to fish exposed to Cd or Pb alone.
Disturbances to internal Na* balance, however, do not appear to result from exposure to
Pb alone. It should be noted, that there appears to be a transient reduction of plasma Na"
concentration during Pb plus Cd exposure. Because both Pb and Cd are known to be
Ca** analogues (Verbost ef al. 1989; Rogers ef al. 2004), the presence of Pb was expected
to exacerbate Cd-induced disturbances to internal Ca*" balance.

Decreases in both Cd-gill and Pb-gill accumulation due to competition with
calcium ions have been reported (Verbost et al. 1987; 1989; MacDonald, ef al. 2002;
Grosell et al. 2006; Niyogi et al. 2008). The decrease in Cd-gill accumulation observed in
this study in the presence of Pb suggests there was a competitive interaction between Pb
and Cd for a similar binding site on the gill (most probably the apical Ca®* channels).
However, the opposite was not true; the presence of Cd in the metal mixture did not
lower Pb—gill binding as expected if the two metals were competing for identical binding
sites. This finding was unexpected because Pb and Cd are both Ca®" analogs and are
thought to compete for the same binding site on the gill (Verbost er al. 1987; 1989;
Rogers et al. 2004). Therefore, a decrease in the accumulation of both metals was
expected (MacDonald ef al. 2002; Rogers et al. 2003). The lack of impact on gill-Pb

accumulation in the presence of Cd in this study may be explained by multiple binding
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sites for Pb as described by Birceanu et a/ (2008). They identified a high affinity, low
capacity population that was saturated at 18.2nmol g (Bpa). It could be possible that Pb
has an alternate site to which Cd does not bind Within the gill. In addition, the second
high capacity, low affinity popglation of Pb binding sites could not be saturated by
exposure water conéentrations up to 4000nmolL" (Birceanu et al. 2008). It is, therefore,
possible that if Pb is out competed by Cd for a common binding site (i.e. Ca®>" channels),
it may bind to its alternate lower affinity, high capacity population of binding sites
instead.

Despite the decrease in gill Cd accumulation during exposure to Pb plus Cd
mixtures, mortality was always greater in exposures to mixtures compared to either
individua‘l metal exposure. This finding was expected, based on the idea that more metal
should be more toxic or “the dose makes the poison”. In other words, because the total
metal (sum of Pb and Cd) was greater with metal mixture exposure, greater toxicity was
expected. Surprisingly, the increase in mortality in the Pb plus Cd mixtures (Figure 2.2)
was accompanied by no change in Pb-gill accurriulation and a decrease in Cd-gill
accumulation.

The combined effects of toxicants can be predicted using the concentration
addition model which uses the Toxic Unit (TU) approach to predict toxicity, provided
they have the same mechanism of action (Sprague 1970; Newman 1998; Norwood et al.
2003). For metals, 1 TU would be the metal concentration required to kill 50 % of the
fish over a defined period. Thus, if fish are exposed to two or more metals in a mixture,
toxicity could be quantitatively predicted by adding up the bindividual TUs for each metal.

If the sum of the effects of two metals equals 1 TU, the interaction is considered to be
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strictly additive, but if the total toxic effect is greater than 1 TU, toxicity is considered to
be greater than additive (“synergistic”). Effects are considered less than additive, if the
combined toxic effect is less than 1‘ TU (“antagonistic”) (Norwood et al. 2003; Playle,
2004). These assumptions were tested by Playie (2004), who used a mathematical
modeling program (MINEQL) to predict toxicity and metal accumulation of metals in
mixtures. With these assumptions it is predicted, that both Pb and Cd compete for the
same binding sites on the gill (i.e. Ca-channels), and that exposing fish to mixture
concentrations above one toxic unit (LC50) resultsvin metal-gill accumulation that is less
than additive (Playle, 2004). Thus, toxicity should also be less than additive if there was
competition for Ca®" binding sites on the gill between Pb and Cd.

Birceanu ef al. (2008) noted that short-term Pb plus.Cd exposure (3 h) did result
in Pb-gill and Cd gill-binding that was less than additive, but that disturbances to ion
uptake were greater than édditive. The present findings support those of Birceanu et al.
(2008), because Cd-induced reductions in plasma Ca>" observed in the present study were
Ca’" uptake greatly exacerbated in the presence of Pb, which is consistent with the
exacerbation of Cd-induced reductions reported by Birceanu ef a/ (2008). Similar to
Birceanu et al (2008), in this study gill-Cd accumulation was less than additive when fish
were exposed to Cd in the presence of Pb. However, in contrast, gill-Pb accumulation
remained unchanged in the presence of Cd compared to the levels measured in fish
exposed to Pb only. Despite the less than additive gill-metal accumulation in the presence
of Cd and Pb in combination, greater than additive reductions were seen in the plasma
Ca’*, Na" and osmolality of fish exposed to Pb and Cd mixtures compared to Pb or Cd

alone.

36



Effects of Pb plus Cd Mixtures on Whole Body and Blood Ion, Osmotic and Acid-
base Balance

For these experiments} rainbow trout were exposed to either Cd alone, Pb alone, or
Pb plus Cd mixtures, at environmentally relevant concentrations but within a range that
elicited physiological disturbances in the fish. The metal concentrations and the water
chemistry used in these experiments were similar to those reported by Birceanu et al.
(2008), who reported that short-term (3 h) exposure to Pb plus Cd mixtures had greater
than additive effects on Ca>" and Na' influx in trout. They reported that Ca?* influx was
inhibited by Cd, but not Pb, and that Pb, but not Cd, inhibited Na' influx. However, the
presence of Pb exacerbated the Cd-induced inhibition of Ca" influx in a greater than
additive manner, and the presence of Cd exacerbated Pb-induced reductions in Na"
influx. These results demonstrate that greater than additive ionoregulatory effects of Pb
plus Cci exposure observed during short-term metal exposure (3 h) persist during longer
term metal exposure and result in pronounced disturbances to internal ionic and osmotic
balance.

There were no definite trends of Pb plus Cd exposure on whole body ion
concentrations. There was a slight decrease in whole body Ca®" with subsequent recovery
(significant) during 10 nmolL" Cd exposure. Despite the lack of change in whole body
ions, there was significant mortality throughout the experiments, especially in the higher
concentrations of Pb and Cd mixtures. Cd and Pb have both been shown to be calcium
antagonists at the site of uptake on the gill. However, it is likely that a decrease in
calcium uptake and even i)lasma calcium may be too small to be reflected by changes in

whole body ion stores (Stubblefield et al. 1995). Fleming (1974; as cited in Pelgrom et al.
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1995) demonstrated that plasma calcium in teleosts comprises approximately 3-6% of the
whole body calcium reserves. Thus, even a large change in plasma calcium may not be
detectable in measurements of whole body calcium. Hollis ef al (2000) did not see an
effect on whole body calcium during chronic (30 day) exposure to Cd in both soft and
hard waters. Plasma Na" was significantly higher after 24 h during most exposures.
Grosell ef al. (2006) saw a similar trend in fathead minnows during a 10 day exposure to
2-5pmolL" dissolved Pb. It was suggested that a recovery of plasma ions could be caused
by a reduction in ion efflux due to a decrease in the gradient necessary for apical entry of
Na' or a reduction in gill epithelium permeability (Laurent and McDonald, 1987). In
addition, an up-regulation or increased transport capacity of active Na+ or Ca”" transport
mechanisms could explain a subsequent recovery from metal exposure (Laurent and
McDonald, 1987; 1987; Fu et al. 1990).

The observed constancy of PaO, and pH, seen during these mixture experiments
indicates that both Pb and Cd individually, and in combination do not cause toxicity via
respiratory disruption in contrast to other metals such as zinc and aluminum in acidic
water (Spry and Wood, 1983; Neville, 1985; Playle et al. 1989; Walker et al. 1991).
Rogers and Wood (2003) also showed that respiratory distress is not present during Pb
e*posure in moderately hard water. However, in the past it has been thought that the
production of excess mucus on the gill epithelium in the presence of low ambient water
calcium and metals (including Pb and Cd) may cause asphyxiation in fish (Sorenson,
1991). However, more recent work (Rogers and Wood, 2003; Chowdhury et al. 2004)
and the present study suggest that Pb, Cd or Pb plus Cd mixtufes have minimal effects on

respiration in trout.
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While parameters of respiratory and acid-base regulation remained stable through
out all metal exposures in this study, measurements of ionoregulatory disruption did not
show this same trend. Plasma Cl” remained at control levels; however plasma Ca®" and
Na+vwere differently impacted during the course of the individual exposures. Cd alone
caused a significant decrease in plasma Ca’" after 24 h of exposure but returned to control
levels. The effect on plasma Ca®* was expected, because Cd is a well known Ca”*-
channel antagonist (Niyogi and Wood, 2004; Rogers et al. 2003; Playle et al. 1993). Pb
was also thought to be a Ca*" antagonist (Playle 2004; Rogers and Wood, 2003; Grésell
et al. 2006; Rogers and Wood, 2004), but no time dependent effects on Ca®" balance with
Pb only exposure were observed at the concentrations used. This can be explained by the
low dissolved Pb concentration in the water (30-45 nmolL "), which was approximately 6
% of the observed LC50 of 482 nmolL ' for rainbow trout in waters of similar chemistry
(Birceanu et al. 2008). However, it should be noted that the Pb concentrations to which
these fish were exposed are more environmentally realistic than those reported in many
earlier studies (Nriagu et al. 1996).

The persistent and significant decrease (28 %) in plasma Ca**during Cd plus Pb
exposure was greater than expected given the low concentration of Pb that was used. In
other words, the presence of Pb exacerbated Cd-induced disturbances to plasma Ca**
balance, suggesting that the hypocalcaemic effects of the two metals were greater than
additive. The two metals also appeared to act in an additive fashion to lower plasma Na"
concentration during the early (first 48 h) stages of metal mixture exposure, but due to the
large reductions in plasma Na" that were observed in the presence of Cd alone, this effect

cannot be considered gréater than additive. Evidence of a greater than additive impact
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(the final outcome is more than the two individuals added together) on both Na™ and Ca**
influx was reported by Birceanu et al (2008) during 3 h exposures to Pb plus Cd mixtures
(10-50 nmolL" Cd and 25-110 nmolL™" Pb). The present work suggests that is likely that
the greater than additive effects on Ca®" balance persists over a much longer time frame -
(5 d) and likely contributes to toxicity. The short-term disturbance to Na" uptake
observed by Birceanu et a/ (2008) may be corrected over the longer time frame (5 d). It
will be necessary, however, to confirm thesé interpretations by performing longer-term

(5-10 d) measurements of Ca®" and Na" uptake in fish exposed to Pb plus Cd mixtures.

Mechanism of Toxicity at the Gill

The results seen in this study can be explained by Pb and Cd causing
hypocalcaemia via more than one mechanism. Toxicity caused by exposure to both Cd
and Pb is believed to be mainly caused by competition between Pb, Cd and Ca** for
entrance across the gill via apical calcium chanhels (Playle, 1998; 2004; Verbost et al,
1987, 1988). The mechanisms of toxic action for both Pb and Cd have been shown to be
more complex than the direct competition that is assumed in modeling parameters.
Research by Birceanu et al (2008) suggests that there are multiﬁle binding sites for Cd on
the fish gill. One population is believed to have a high affinity (high logKme.in) for each
respective metal, but a low binding capacity (low Bpnay) as there are for Pb (see above). It
is likely that these high affinity sites are saturated first during metal exposure, while the
low affinity high capacity sites are only occupied if the high affinity sites are unavailable.

Although these multiple binding sites have been identified for each metal individually, it
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is nét known whether they are similar for both metals. This further complicates matters in
trying to relate physiological disruption to toxicity.

In addition to binding at apical channels on the gill, it has been shown that metals
can have direct impacts on ATP dependent pumps on the basolateral membranes of the
gill and on cytosolic enzymes responsible for ion homeostasis. For example, Lionetto ef
al (2000) showed an inhibition of the cytosolic enzyme carbonic anhydrase (CA) and
basolateral Ca>*-ATPase in eel gill hémogenates after 1 h exposure to Cd. ATP
dependent processes such as the Na'/K'-ATPase and Ca’"-ATPase have been shown to
be inhibited in the gill and intestines by exposure to metals (Pb, Cd, Cu, Zn and Cr) in
both the mudskipper (Thaker et al. 1996) and freshwater Tilapia (Atli and Canli, 2007).
Impacts on gill energy dependent fransporters could reflect the greater than additive |
impacts on calcium ionoregulation as seen in this study.

The decrease in plasma Na* duting exposure to Pb plus Cd mixtures can be
explained by both direct competiﬁon of Pb and possibly Cd for binding to apical Na"
channels on the gill and by indirect inhibition of internal Na'/K*-ATPase. The inhibition
of Na'/K*-ATPase and the decrease of plasma Na" have been demonstrated for Pb by
Rogers et al (2003; 2005). In addition Rogers et al. (2005) demonstrated that Pb also
inhibits CA. A decrease in CA efficiency would also cause a decrease in Na' uptake due
to a decrease in the production of H", an ion that aids in the creation of an
electrochemical gradient (via H+-ATPase) that helps facilitate Na" uptake across the
apical membrane. However, in this study a subsequent recovery of plasma Na' back to
control levels was observed. This recovery could be due to up-regulation of certain

ionoregulatory processes (i.e. Na'/K'-ATPase) or a proliferation of chloride cells (Mallat,
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1985; McDonald and Wood, 1993). Kundu ef al, (1995) observed an initial stimulation of
Ca®" and Mg?" —ATPases in addition to Na'/K"-ATPase found in brain énd muscle tissue
of the mudskipper (Boleophthalmus dentatus) during exposures (3 d) to Chromium.
Further description of the possible mechanisms of »acclima_ltion is described in detail

below.

Possible Acclimation to Metals
Although there was a significant and persistent decrease in plasma Ca®" during the
metal mixture exposure, the decrease seen in the Cd only exposure was only trahsient,
and returned towards control levels in remaining fish by 120 h (Figure 2.6). The recovery
of plasma Ca”" levels seen in this study and “recovery” of plasma Na* during Pb plus Cd
mixture exposure may suggest a mechanism of acclimation to the metals or a stimulation
of subsequent damage-repair mechanisms by surviving fish. Acclimation to metals can
occur fairly quickly (as fast as 5-7 days). This has been seen in restored Na' influx across
the body during aluminum exposure in brook trout (Salvelinus fontinalis) (Mueller et al.
1991). One of the major causes of ionic loss due to metaﬂ exposure is physical damage to
gill lamellar cells, but this damage is more commonly seen during exposure to higher
concentrations of metals (as reviewed in Mallatt, 1985) and therefore may not play a
major role in this study. This type of damage can be repaired by the thickening of
lamellar and filament epithelia (McDonald and Wood, 1993). Alternate mechanisms of
acclimation to lower levels of metals (as used in this study) have been demonstrated. The
production of mucus on the gills of stressed or metal exposed fish has been observed in a

variety of studies (Part and Lock, 1983; Handy ef al. 1989). Mucus has been shown to
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have a capacity to bind metals without reducing the uptake rates of essential ions (i.e.
Na', Ca**, or CI) into fish (Marshall, 1978; Part and Lock, 1983). This mechanism of
acclimation has been shown in trout exposed to aluminum (Mueller et al. 1991;
McDonald et al. 1991; Reid er al 1991). If the metal concentrations used in this
experiment were sufficient to illicit mucus production, this mechanism could at least
partially explain the recovery of plasma Ca?* and Na* seen in this study. Further studies
including measurements of plasma Cd (initial attempts did not show any detectable
accumulation) or mucus production, or analysis of gill morphology are needed to
substantiate these hypotheses. This recovery effect occurred for plasma Na* and not
plasma Ca®" in the Pb plus Cd exposure. Perhaps fhe exposure concentrations in the
mixture exceeded a threshold necessary for response mechanisms for acclimation or
elicited more extensive gill damage (Mallat, 1985). This possibility too, requires further
investigation.

Another possible mechanism for the observed acclimation to metals seen here is a
possible up-regulation of active transport mechanisms within the gill (i.e. Na'/K"-ATPase
and Ca**-ATPase) or increases in the ion uptake capacity, through an increase in MRC
density (McDonald and Wood, 1993). Fu er al (1990) demonstrated such a trend in the
opercular epithelium of Cd exposed tilapia. Results indicated a two-fold increase in MRC
density was observed after 4 d of exposure to 10ugL™ Cd (~89 nmolL™). The
| proliferation of MRCs during metal or exposure to low calcium levels is hypothesized to
be responsible for increased active transport mechanisms in freshwater rainbow trout
therefore suggesting a mechanism of acclimation to ionoregulatory stressors (Perry and

Wood, 1985; Perry and Laurent, 1989). Based on this evidence it is possible that the
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recovery of plasma calcium and sodium (in the Cd alone and Cd plus Pb exposures
respectively) is initiated by an increase in MRC density and subsequent increases in
active ion transport across the gill. Moreover it is possible for these physiological

changes to occur in short periods of time <7 d, such as during the 5 d exposures examined
~ in the present study. However, measurements of unidirectional ion movements and

Na'/K*- ATPase activity are required to test this hypothests (See Chapter 3).
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Conclusions and Implications

The goal of this study was to determine how metals in combination act upon the
rainbow trout physiology. Toxicity of metal mixtures is typically modeled using the
predicted gill-metal accumulation in relation to exposure concentration. However,
prediction models often do not consider the direct and subsequent physiological
responses of aquatic organisms beyond competition at the site of action for individual
metals (Paquin et al. 2002). In this study, there were no effects on acid-base homeostasis
or haematological parameters caused by exposures to Pb or Cd individually or in
mixtures. However, ionoregulatory disruption, as demonstrated by decreases of plasma
Ca®* of Cd only exposed fish, was likely one mechanism of toxicity, despite the recovery
of calcium in surviving fish. The recovery from decreased plasma calcium could be a
result of increased mucus production at the gill, ultimately decreasing metal accumulation
while allowing the fish to maintain divalent cation uptake at the gill (Marshall, 1978).
The persistent decrease in plasma Ca”*, however, was not overcome by surviving fish
(only 3) during exposures to Pb and Cd in combination indicating a possible threshold
.concentration for acclimation of these fish to metals. Similarly, there was a greater
impact on plasma Na+ and osmolarity in fish exposed to the Pb and Cd mixture, which
did not reflect any trend seen in the individual metal exposures. This study underlines the
complexity of metals in mixtures on the physiology and toxicity of rainbow trout and the
difficulties in predicting specific physiological responses in fish. Furthermore, this
researeh may outline the necessity for more research on the physiological impacts of low
level contaminants and in mixtures, which are not considered in toxicity prediction

programs (BLM) (Paquin ef al. 2002). For example, exposure of fish to Pb plus Cd
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mixtures may have greater acute physiological impacts than can be predicted by gill
metal accumulation alone. Thus, it may be necessary to use physiological endpoints, in

addition to metal-gill binding assays, to predict toxicity in fish exposed to metal mixtures.
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Figure 2.1 Gill-metal accumulation of rainbow trout after 120 h of exposure to control,
Cd only (10nmolL'1), Pb only (50nmolL™), or a Cd plus Pb mixture (10nmolL" Cd plus
50nmolL" Pb). Background accumulation was measured in experiments with no
exposure to that particular metal. Data represented as mean + 1 S.E.M (N). Bars sharing
the same letter are not significantly different from each other (within measurements of

each metal).
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Figure 2.2 Percent survival of rainbow trout exposed to control and (a) 7.4 £ 0.3 nmolL"

Cd alone (b) 26.1 = 1.6 nmolL™ Pb alone or (¢) 6.9 + 0.4 nmolL" Cd plus 45.4 £1.9

nmolL™! Pb. Only mortality due to metal exposure was considered.
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Figure 2.3 Arterial Pao, from rainbow trout exposed to (a) 7.4 + 0.3 nmolL™" Cd alone (b)
26.1 + 1.6 nmolL"™" Pb alone or (¢) 6.9 + 0.4 nmolL™" Cd plus 45.4 £1.9 nmolL" Pb.
Shaded circles represent control fish not exposed to metals while open circles represent
fish exposed to metals. An asterisk (*) indicates significant differences from the pre-
exposure condition for that treatment (P < 0.05; Dunnett’s one way ANOVA). A cross

(+) indicates significant differences from controls (P < 0.05; unpaired t-test). N = 7-14

under pre-exposure conditions; N = 7-13 at 8 h; 6-14 at 24-72 h, and 3-5 at 96 and 120 h.
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Figure 2.4 Arterial pH (pHa) of rainbow trout exposed to control conditions or metal_s -
exposure. (a) 7.4 + 0.3 nmolL™" Cd alone (b) 26.1 % 1.6 nmolL"' Pb alone or (¢) 6.9 = 0.4
nmolL™ Cd plus 45.4 +1.9 nmolL"' Pb. Shaded circles represent control fish not exposed
to metals while open circles represent fish exposed to metals. There were no significant
differences (P < 0.05). N = 7-14 under pre-exposure conditions; N = 7-13 at 8 h; 6-14 at
24-72 h, and 3-5 at 96 and 120 h. |
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Figure 2.5 Lactate from rainbow trout exposed to control and (a) 7.4 = 0.3 nmolL" Cd
alone (b) 26.1 + 1.6 nmolL ™" Pb alone or (¢) 6.9 + 0.4 nmolL" Cd plus 45.4 1.9 nmolL"*
Pb. Shaded circles represent control fish not exposed to metals while open circles
represent fish exposed to metals. An asterisk (*) indicates significant differences from the
pre-exposure condition for that treatment (P < 0.05; Dunnett’s one way ANOVA). A
cross (+) indicates significant differences from control group at t =0 (P < 0.05; unpaired
t-test). N = 14-22 for pre-exposure conditions; N. =13-19 at 8 h, 12-17 at 24 h, 7-15 at 48
h, 7-14 at 72 h, 5-12 at 96 h and 3-13 at 120 h.
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Figure 2.6 Plasma Ca®" from rainbow trout exposed to (a) 7.4 = 0.3 nmolL" Cd alone (b)

26.1 = 1.6 nmolL™ Pb alone or (¢) 6.9 + 0.4 nmolL™" Cd plus 45.4 1.9 nmolL" Pb.
Shaded circles represent control fish not exposed to metals while open circles represent
fish exposed to metals. An asterisk (*) indicates significant differences from fhe pre-
exposure condition for that treatment (P < 0.05; Dunnett’s one way ANOVA). A cross
(+) indicates a significant difference from control group at t = 0 (P < 0.05; unpaired t-
test). N = 14-22 for pre-exposure conditions; N = 13-19 at 8 h, 12-17 at 24 h, 7-15 at 48
h, 7-14 at 72 h, 5-12 at 96 h and 3-13 at 120 h. |
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Figur¢ 2.7 Plasma Na" from rainbow trout exposed to control and (a) 7.4 + 0.3 nmolL!
Cd alone (b) 26.1 + 1.6 nmolL™" Pb alone or (¢) 6.9 + 0.4 nmolL™ Cd plus 45.4 +1.9
nmol‘L'1 Pb. Shaded circles represent control fish not exposed to metals while open circles
represent fish exposed to metals. An asterisk (*) indicates significant differences from the
pre-exposure condition for that treatment (P < 0.05; Dunnett’s one way ANOVA). A
cross (+) indicates significant differences from control group att =0 (P < 0.05; unpaired
t-test). N = 14-22 for pre-exposure conditions; N = 13-19 at 8 h, 12-17 at 24 h, 7-15 at 48
h, 7-14 at 72 h, 5-12 at 96 h and 3-13 at 120 h. |
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Figure 2.8 Plasma CI from rainbow trout exposed to control and (a) 7.4 + 0.3 nmolL"
Cd alone (b) 26.1 + 1.6 nmolL™" Pb alone or (c) 6.9 + 0.4 nmolL." Cd plus 45.4 +1.9
nmolL" Pb. Shaded circles represent control fish not exposed to metals while open
circles represent fish exposed to metals. An asterisk (*) indicates significant differences
from pre-exposure condition for that treatment (P < 0.05; Dunnett’s one way ANOVA).
A cross (+) indicates a significant difference from the control group at t =0 (P < 0;05;

unpaired t-test). N = 14-22 for pre-exposure conditions; N = 13-19 at 8 h, 12-17 at 24 h,
7-15at 48 h, 7-14 at 72 h, 5-12 at 96 h and 3-13 at 120 h.
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Figure 2.9 Plasma osmolality from rainbow trout exposed to control and (a) 7.4 £ 0.3
nmolL™" Cd alone (b)26.1 + 1.6 nmolL™ Pb alone or (¢) 6.9 + 0.4 nmolL™" Cd plus 45.4
+1.9 nmolL'1 Pb. Shaded circles represent control fish not exposed to metals while open
circles represent fish exposed to metals. An asterisk (*) indicates significant difference
from pre-exposure condition for that treatment (P < 0.05; Durmett’s one way ANOVA).
A cross (+) indicates significant differences from control group at t =0 (P < 0.05;

unpaired t-test). N = 7-14 for pre-exposure conditions; N = 7-13 at 8§ h, 6-12 at 24 h, 6-15
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at 48 h, 6-14 at 72 h, 3-12 at 96 h, and 2-13 at 120 h.
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Figure 2.10 Plasma protein from rainbow trout exposed to control and (a) 7.4 £ 0.3
nmolL™" Cd alone (b) 26.1 + 1.6 nmolL™ Pb alone or (¢) 6.9 + 0.4 nmolL" Cd plus 45.4
+1.9 nmolL™" Pb. Shaded circles represent control fish not exposed to metals while open
circles represent fish exposed to metals. An asterisk (*) indicates significant difference
from a pre-exposure condition for that treatment (P < 0.05; Dunnett’s one way ANOVA).
- A cross (1) indicates significant differences from control group at t =0 (P < 0.05;
unpaired t-test). N = 14-22 for pre-exposure conditions; N = 13-19 at 8 h, 12-17 at 24 h,
7-15 at 48 h, 7-14 at 72 h, 5-12 at 96 h and 3-13 at 120 h.
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- Chapter 3

Changes in Ion Uptake, Outflux and Net flux in Rainbow Trout

Exposed to Pb plus Cd Mixtures
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ABSTRACT

Exposure of fish to Pb and Cd individually is known to disrupt Ca2+ homeostasis
due to competition with Ca®" for binding sites on the apical membrane of fish gills and |
the subsequent inhibition of active Ca®* uptake mechanisms at the gill. Pb however is also
known to inhibit Na” uptake mechanisms. Little is known about combined Pb and Cd
interactions at the level of the gill. Indeed, fish are more likely to be exposed to metal
mixtures in contaminated aquatic sysfems. The purpose of this study was to monitor Na"
influx, net flux and outflux at the gills of rainbow trout in soft acidic water using the
radiotracer **Na* to describe how Pb plus Cd mixtures interfered with gill-mediated ion
uptake and loss. Exposure to either Pb alone (40nmolL™) and Cd alone (6nmolL™)
caused an immediate significant decrease (50% and 33% respectively) to Na" influx.
However this effect was not observed at higher Cd concentrations, or during Pb plus Cd
exposures. Branchial Na'/K'-ATPase activity was not inhibited by Pb, Cd, or Pb plus Cd
mixtures. Nevertheless, it remains likely that the inhibition of Na” influx by Cd was due
to inhibition of this protein (Na'/K"-ATPase) in vivo, while Pb-induced inhibition of
intracellular carbonic anhydrase inhibited Na* uptake. Decreased binding of Pb to high
affinity, low capacity binding sites due to competition with Cd may explain the lack of
impact on Na" uptake observed during Pb plus Cd éxposures. Moreover, the results
provided here suggest a protective effect of Pb and Cd in combination caused by the
possible differences in the affinity of physiological active Pb-gill and Cd-gill binding
sites within the gill and give further insights to the complex gill interactions of Pb and

Cd.
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INTRODUCTION

Lead and cadmium are two metals that are commonly co-released into aquatic
ecosystems. The majority of input is from anthropogenic sources such as mining and
smelting operations, and due the improper disposal of batteries and transistor boards
(Sorensen 1991). The weathering of rock and Vblcanic activity are natural sources of
these metals (World Health Organization, 1995; Zabel, 1993). The toxic mechanisms of
action of Pb and Cd have been studied thoroughly (Pb: MacDonald et al. 2002; Rogers et
al. 2003, 2004; Cd: Verbost 1987; Hollis et al. 1997, Chowdhury et al. 2004), with less
attention paid to understanding how these metals act in combination (c.f. Reader et al.
1989; Birceanu et al. 2008; Komjarova and Blust, 2009). In most metal contaminated
waters, aquatic organisms are more likely to be exposed to a mixture of metals, rather
than a single metal (see Norwood et al. 2003 for review).

Both Pb and Cd are thought to act as Ca>* antagonists which compete with Ca*
for apical calcium channel sites on the gill (Verbost ef al. 1989; Pratap and Wendelaar-
Bonga, 1993; McDonald et al. 2002; Playle et al. 1993; Niyogi and Wood, 2004; Niyogi
et al. 2008; Rogers et al. 2004). In rainbow trout (Oncorhynchus mykiss), Ca** uptake
takes place via epithelial Ca®* channels (eCaC) that may be found on both mitochondria
rich cells (MRCs) and possibly pavement cells in the gills (Shahsavarani et al. 2006).
Thus, both Pb and Cd would be expected to compete with Ca®* and inhibit active Ca®*
uptake to the blood causing hypocalcaemia and eventual death. This also involves the
impairment of Ca®>*-ATPases (Verbost e al. 1988; Rogers et al. 2004).

In addition to the disruption to calcium homeostasis, Pb is known to interfere with
Na" uptake via inhibition of the basolateral Na'/K*-ATPase (Rogers et al. 2003). This
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effect is compounded by reductions to both Na" and CI” uptake via Pb-induced inhibition
of the cytosolic carbonic anhydrase (Rogers et al. 2003, 2005), which decreases the rate
of intracellular CO, hydration and the subsequent H" and HCO;™ generation needed to
sustain apical Na" uptake via the Na™ channel-H"-ATPase system and C1” uptake via CI
/HCOs’exchange (see Marshall 2002, Evans et al. 2005 for reviews of branchial ion
uptake mechanisms).

Birceanu et al. (2008) reported that rainbow trout exposed to Pb alone
(approximately ~ 125nmolL™) experienced a significant decrease in Na' uptake, while
exposure to Cd alone (~ 50nmolL™") caused a significant decrease iﬁ Ca*" influx.
Furthermore, when the fish were exposed to Pb and Cd in combination, the respective Pb
and Cd induced effects on Na* and Ca®" uptake were greater than when exposed to each
metél individually. The purpose of this study was to determine if these greater than
additive effects on Na" influx seen during Pb and Cd exposure persist over longer periods
of time (~5 days) and to establish if the effects seen can be explaineci by gill-metal
accumulation. It was hypothesized that over longer periods of time that there would be a
persistent decrease of Ca®" and Na" influx in the presence of Pb and Cd mixtures, and that
a decrease in Na influx would be reflective of greater Pb and Cd gill binding.v

To determine how longer-term Pb plus Cd exposure affected ionoregulation in
fish, trout were exposed to Pb plus Cd mixtures and the rates of Na' influx, outflux
(efflux), and net flux was measured using the radio-tracer *Na’. This unidirectional ion
flux technique is a useful tool for quantifying the inward, outward and net movements of
ions across the gill. To mimic the waters found in the Canadian Shield, all e‘xperimentsb
were done in soft, slightly acidic (pH ~ 6.2) water.
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MATERIAL AND METHODS

Fish Husbandry

Juvenile rainbow trout (Oncorhynchus mykiss) (7.9 + 0.4g) purchased from
Rainbow Springs Trout Hatchery, Thamesford, ON, were initially held in a 180 L flow
through aerated tank supplied with well water (400-500mL min™) in which the measured
conductivity was ~1000uS. Over the course of 1 week the fish were acclimated to soft
water by increasing the ratio of reverse osmosis (RO) generated soft water to> well water.
At the end of one week, the trout were ultimately held in a combination of 400-500
mLmin! flowing RO water and 13-14 mLmin™ flowing well water to obtain holding
water with a conductivity of approximately 50uS. The final holding conditions were
approximately ~ 35-50pS (~100pmolL ™" Ca**), Na* ~ 200 umolL™, pH ~ 6-6.5, 8-14 °C.
The fish were allowed to acclimate under these conditions for at least 2 weeks prior to
experiments. Fish were fed to satiation three times per week with commercial trout feed
(Corey Mills Aquafeeds, Fredericton, New Brunswick) but were fasted 72 h prior to
experim_ents. All fish husbandry procédures and experiments were approved by the
Wilfrid Laurier Animal Care Committee, and followed Canadian Council of Animal Care

(CCAC) guidelines.

Unidifectional Fluxes

The unidirectional movements (influx, outflux, net flux) of Na" across the gills of
the trout during Pb, Cd, or Cd plus Pb mixture exposure were measured using the radio-
tracer 2*Na”. The radio-tracer **Ca** (2.5 uCi) was also added to each container because

an original objective of these experiments was to simultaneously measure Ca**
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unidirectional» flux movements across the gills. Unfortunately, due to unforeseen
technical problems, this was not possible. Accordingly, only unidirectional Na*
movements are reported in this thesis.

Approximately 12-24 h prior to an experiment, 8 fish were transferred into |
individual, acrated darkened plastic containers (approximate volume 450 mL) receiving
control water (62.5 + 2.0 pmolL™" Ca®", 185.3 = 1.7umolL" Na*, pH 6.2 + 0.01,
conductivity 47.7 + 0.7 uS and 13.7 £ 0.2 °C). The fish holding boxes were held within a
100 L recirculation system maintained at pH 6-6.2 using the same pH titration set-up
described in Chapter 2.

Rates of Na" influx, outflux and net flux were measured under control (nominally
metal-free) conditions and at regular intervals (0-3 h, 6-9 h, 22-25 h, 46-49 h, 70-73 h)
during Pb, Cd, or Pb plus Cd exposure. At the beginning of each 3 h flux period water
flow to the boxes (flux chamber) was stopped and the water volume adjusted to 250-300
mL in each flux chamber. This was followed by the addition of 2.5 uCi of *Ca and 2.5
nCi of **Na to each chamber. After a 10 minute mixing period, 15 mL water samples
were taken hourly using a 20 mL plastic disposable syringe during 3 h flux measurement
periods. At the end of each 3 h flux an additional 5 mL water sample was taken for
determination of dissolved metal concentrations, and water flow was re-established to
each container. At the end of the control flux, however, the boxes were not flushed, but
water volume re-adjusted to 250 mL, and extra isotope addéd to the container to
compensate for **Na" loss due to radioactive decay (the half-life of **Na" is 15 h) and
sampling. The boxes were then spiked with the appropriate metals (final measured

concentrations of 6.3 + 0.6nmolL " and 14.1 + 0.8nmolL " Cd alone, 40.2 + 2nmolL" Pb
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alone, 6.9 + 0.9nmolL™" Cd plus 57.3 + 8 nmolL" Pb and 17.6 + 0.7nmolL" Cd plus 45.6
+ 4 nmolL™" Pb) followed by the addition of the apbropriate metals to the remainder of
the system which was still in recirculation mode.
~ Water samples were then processed for determinaﬁon of total cpm (counts per

minute) of both **Ca and **Na by adding 4 mL of aqueous counting scintillant
(Amersham Biosciences, England) to 2 mL water samples. Total Beta cpms were counted
in triplicate using a Beckman-Coulter Multi Purpose Scintillation counter (Model
LS6500, USA). Due to the fact that **Ca and **Na produce radiation spectra within a
similar range, total counts were first measured immediately after the 3 hour flux period
and then the samples were left to allow the **Na to decay (8 days) before counts were
determined again for **Ca. Accordingly, **Na radioactivity was determined by subtracting
the cpm due to *’Ca from the total cpm measured immediately following the flux period.
To ensure that chemilumenescence was not affecting the measured cpm, trial samples |
that were radioactive (n = 3) were counted immediately after sampling (within 30 min)
and then measured again 24 h later in a preliminary ekperiment to ensure that the cpm did
not change. The remaining water sample was saved for quantification of non-radioactive
(“cold”) Na*, Ca?*, Pb and Cd.

At the end of the 72 h metal exposure period, surviving fish were euthanized by a
blow to the head and the whole gill basket was removed, rinsed in deionized water for 10
seconds and cut in half. Each half was placed in separately labeled micro centrifuge
tubes, frozen in liquid N; and stored at -80°C for later determination of Na'/K'-ATPase

activity and metal-gill accumulation.
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Analytical Techniques

Gill Na'/K'-ATPase Activity Determination

To determine the effects of Cd and/or Pb on branchial Na'/K"-ATPase activity,
gills were processed following the methods described by McCormick et al. (1993) in
which Na"/K"-ATPase activity was calculated based on the difference between total
branchial ATPase activity and ouabain inhibited branchial Na'/K"-ATPase activity. The
assay solutions consisted of 2.8 mmolL ™" phosphoenolpyruvate (PEP), 3.5 mmolL™" ATP,
0.495 mmolL" NADH, LDH (4 U mL™) pyruvate kinase (PK; 5 U mL™") in imidazole
buffer (50mmolL™) at pH 7.5. A salt solution containing 189 mmolL™" NaCl, 10.5
mmolL™" MgCl -6H20, 42mmolL" KCl prepared in de-ionized water was added to the
assay solution (containing enzymes) in a 3:1 ratio (with and without fhe addition of
0.5mmolL " ouabain the day of the experiment). The Na'"/K'-ATPase activity was then
determined on gill homogenates. |

The gills were first weighed (approximately 30mg of tissue) and homogenized in
a4:1 (400pL:100uL) ratio of SEI buffer (150mmolL" sucrose, 10mmolL" EDTA and
50mmolL" imidazole buffer) to SEID buffer (SEI with the addition of 0.1g sodium
deoxycholate), and homogenized on ice using a hand-held motorized pestle. Total
activity was then measured by monitoring ‘the decrease in absorbance (at 340 nm) over 10
min in the presence or absence of ouabain (0.5 mmolL™") when 10pL of sample was
added to micro-well plates with the addition of 200uL of salt solution. The protein
concentration in the homogenates was determined by the Bradford assay (Bradford,

1976).

68



Water and Gill Analysis

Gills used for metal analysis were first thawed, weighed and digested in 5 times
their weight in 1N Trace Metal'Grade HNOs3, and then baked for 3 h at 80°C. The
resulting digésts were vortexed and centrifuged for 2 minutes at 12 000 rpm, and the
supernatant collectéd and diluted ~10-100 times (as appfopriate) using 1% HNO; (Trace
Metal Grade; EMD Chemicals Inc, Germany) for subsequent Cd and Pb analysis. Total
Ca®" and Na" in the water was determined by flame atomic absorption (FAA)
spectrophotometry (Spectra 880 Atomic Absorption, Varian, Mississauga, ON.). Water
and gill Cd and Pb were quantified using graphite furnace (GTA100 atomizer, SpectrAA
880, N, gas; Varian, Mississauga, ON), and concenfrations validated using precision

standards (Environment Canada).

Calculations and Statistical Anglysis

To differentiate between the individual isotopes within the dual labeled water
samples, the total counts (cpm due to 2*Na"* plus cpm due to **Ca”") were measured
immediately after sampling. Because **Na has such a short half life (~15 h) the samplés
were counted again after the **Na cpms were fully exhausted (~14 d), which yielded the
radioactivity (cpm) due to *Ca. The **Ca counts were then subtracted from the total
counts to get the #*Na cpm.

To accountvfor decay of ** Na" (half-life = vl 5 h) between sampling and the time of
measurement, each sample was half-life corrected back to the time that each 3 h flux
period began (t = 0) using the following calculation:

A= A, x 0853012 )
69



Where A, is the activity (cpm/mL) at time t, A, is the activity at t = 0 h, t;; is the half-life
of *Na" in h, and t is the elapsed time in h.
The Na" influx rates were calculated using the following formula:

Na" influx rate = (initial CPM — final CPM)*V (2)
MSA * M * t

Where CPM is counts per minute per mL of sample, V is the volume of water in each
flux chamber, M is the mass of the fish in kg, t is the time elapsed during the flux period
(h), MSA is the mean specific activity in which:
MSA = ((cpm)/[Na']) 3)
where MSA is the respective cpm due to 2*Na" per umol of “cold” Na".
The net flux rates of Na* were determined using the following formula:

Net Flux = [([Na']; — [Na']) x V]
Mxt @

Where [Na'];and [Na s refer to the initial and final concentrations of **Na" in the
water, V, t, and M are as previously described (Wood 1992; Matsuo et al. 2004).
The outflux rates of Na" were calculated as the difference between net flux and
influx rates respectively using the formula:
| Outflux = (Net flux - Influx) (5)

Where the net flux and influx rates were calculated using formulas 2 and 4 above.
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All data is. presented as the mean + one S.E.M (N). Comparisons between control
aﬁd experimental fish were made using one-way ANOVA. Where siglniﬁcant variability
was observed, significant differences between the means were determined using a Tukey-
Kramer post-test for gill accumulation and Na'/K*-ATPase activity, and Dunnett’s poét-
test for flux measurements at the p<0.05 level. Where necessary, data was log

transformed prior to statistical analysis.
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RESULTS

Gill Cd and Pb Accumulation and Mortality

Control measurements of gill-metal accumulation were made on nine fish that
were held under the same low pH, soft water conditions as metal exposed fish.
Background gill-Pb and gill-Cd concentrations in control fish were near 1.8 nmolg™ wet
weight and 5 nmolg™ wet weight, respectively (Figure 3.1). There was substantial Pb-gill
accumulation in fish exposed to Pb alone, and the two Pb plus Cd mixtures, in which Pb-
gill concentrations approached 26 nmolg™ wet weight, but there were no significant
differences in Pb-gill binding between the two treatments (Figure 3.1A). Exposure to Cd
resulted in significantly greater Cd-gill accumulation in the low Cd exposure group
(nominal Cd = 6 nmolL™"), with slightly greater accumulation seen (~7 nmol g wet
weight) in fish exposed to low Cd plus Pb mixture (Figure 3.1B). Only one fish died
during exposure to high Cd (~ 17 nmolL™) plus Pb (~ 45 nmolL™") treatment after 48 h of

exposure. There were no other mortalities throughout the experiments.

Na® Influx, Net flux and Outflux

Measurements of Na"© influx, net flux and outflux were measured in rainbow trout
exposed to Cd alone (6.3 and 15 nmolL™), Pb alone (40 nmol™), and Cd plus Pb
mixtures. Low levels of Cd alone (6.3 nmolL™) significantly reduced Na' influx by 33%
after 6-9 h, and this inhibition worsened through to 70-73 h where Na" influx was
completely blocked. Despite the inhibited Na' influx, no significant net losses of Na"

were observed due to accompanying decreases in Na* outflux (Figure 3.2).
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Exposure to Pb alone (40nmolL™) significantly decreased Na* influx by 50%
after 0-3 h of exposure leading to an increase in net Na' loss at 46-49 h (Figure 3.3).
However, this net loss was corrected by 70-73 h due to a corresponding reduction in Na”
outflux at this time (not significant) (Figure 3.3)

Exposure to a mixture of low Cd plus Pb (6 and 57 nmolL'l, respectively) had no
significant effect on Na" inﬂux, but there was a slight change in net Na* flux from
negative to positive (not significant) after 70-73 h of exposure (Figure 3.4). The higher
concentration of Cd alone (14 nmolL™) also had no effect on Na" influx or net Na” flux,
and Na" outflux was significantly lower at 6-9 h compared to controls (Figure 3.5). This
was followed by a recovery of Na' influx to control levels by 22-25 h. The highest
mixture combiﬁation of 17nmolL"! Cd plus 40nmolL " Pb exposure also had no effect on

Na" influx, outflux or net flux (Figure 3.6).

Impact on Active Transport

Na'/K"-ATPase activity was measured in fish exposed to Cd and Pb individually
and in combination for 72 h. Total activity increased in all exposure groups compared to
controls after 72 h. Notably, the mean Na'/K'-ATPase activity was significantly (65%)

greater in the high Cd plus Pb mixture treatment compared to controls (Figure 3.7). -
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DISCUSSION

The present study demonstrates that exposure to Cd and Pb individually can
significantly inhibit gill-mediated Na'-uptake by fishes, but that the disturbances are less
pronounced when the fish are exposed to mixtures of these metals. These findings do not
support the hypothesis that mixtures of Cd plus Pb would have a greater than additive
impact on Na* and Ca®" influx in trout, or that this response would be concentration
dependent (i.e. the greater the total metal, the greater the effect). Thus, the greater than
additive decreases in Na’ uptake compared to Pb alone observed by Birceanu et al.
(2008) do not appear to persist beyond the first few hours of metal mixture exposure,

despite substantial Cd- and Pb-gill accumulation during the exposure period.

Gill-metal Accumulation

Decreases in both Cd-gill and Pb-gill accumulation due to competition with
calcium ions have been reported (Verbost ef al. 1987; Verbost et al. 1989; MacDonald, et
al. 2002; Grosell et al. 2006; Niyogi et al. 2008). The gill-Cd accumulation seen after 72
h of exposure to low (6.3 nmolL™) and high (15 nmolL™) Cd concentrations in this study
would suggest the saturation of only the high-affinity low-capacity binding population
(Bmax~1.73 nmolg™; Birceanu ef al. 2008). When “new” gill-Cd is calculated by
subtracting background metal from exposure metal, the highest Cd concentration causes
only ~ 4 nmol g wet weight of Cd-binding. The Bpax calculated by Birceanu et al
(2008) for the second low-affinity high capacity population of binding sites is ~ 13.7
nmol g'l, a level that is not reached in this study. Furthermore, Pb accumulation also

reaches the respective calculated Bpax for the high affinity low capacity binding sites
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(18.2 nmol g) (Birceanu et al. 2008). It is these low capacity high affinity binding sites
that are considered to represent the physiologically active sites within the gill such as
apical Ca®* channels and basolateral Ca**-ATPases (Niyogi and Wood. 2004a,b). The
second low affinity population of Pb and Cd binding sites is suggested to bind metals less
specifically and therefore accumulate metals slowly over longer exposure periods (Niyogi
and Wood, 2004; Niyogi et al. 2008). These high affinity sites are assumed to accumulate
metals quickly, and only after they are saturated do metals bind to the low affinity, high
capacity sites, which are considered to be less biologically active and contribute to the
gradual increase of metal burden over longef periods of exposure (Niyogi et al. 2008).
Us'ing the assumption that both Pb and Cd compete for similar binding sites on the
gill, the amount of Cd and Pb accumulation seen in this study (greater than the By for
Cd and the Bpx for Pb) should have been enough to elicit a physiological effect, but this

was not necessarily the case with Pb plus Cd mixtures.

Effécts of Pb-gill and Cd-gill Binding on Unidirectional Movements of Na* Across
the Gill

Unidirectional Na* fluxes were measured on rainbow trout exposed to low (~ 6
nmolL™") and high (~15 nmolL™) conéentrations of Cd alone, and in combination with Pb
(~ 40nmolL™) to study the interactions of more environmentally relevant metal
concentrations at the gill. Exposure to low Cd caused a significant decrease in Na" uptake
(33%) after 8 h of exposure (Figure 3.2). The effect was persistent and led to a complete
inhibition of Na" influx after 72 h of exposure. This result contradicts some studies that

have found Cd to have no effect on internal Na" balance or Na" uptake (Reid and
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McDonald, 1988; Verbost, 1989; Chowdhury et al. 2004). The lack of evidence
suggesting that Cd disturbs Na™ homeostasis could be because Cd is normally thought of
as a Ca’" antagonist, and therefore less attention has been given to its possible effects on
Na" uptake in aquatic organisms (Komjarova and Blust, 2009). Moreover, the majority of
studies have focused on high concentrations of Cd in fish acclimated to harder waters
(high Ca®*) that may not be representative of the situation in soft (low Ca*") more acidic
waters (e.g. pH 6-6.5).

It has been suggested that Na" uptake occurs via differing mechanisms in soft
compared to hard water situations (Boisen et al. 2003). Boisen et a/ (2003) observed that
the proton-ATPase inhibitor bafilomycin and Na'-channel blocker amiloride had no
effect on Na" influx in soft water acclimated zebrafish (Danio rerio) , but inhibited Na*
uptake in hard water acclimated zebrafish. This finding therefore raises the possibility
that the mechanism(s) of toxicity for metals, such as Cd or Pb, could differ in soft versus
hard water. Indeed thev possibility that lower concentrations of metals in soft water may
have differing mechanisms of toxicity has been raised previously (Wood, 1992). Further
evidence is provided by Komjarova and Blust (2009) who demonstrated a 50 % decrease
in Cd uptake rates with increasing external Na' levels in trout exposed to low Cd
concentration (12nmolL™) in soft water. These Cd/Na interactions at low Cd levels
outlined by Komjarova and Blust (2009), and the absence of Na" uptake inhibition at
higher levels seen in this study may suggest that low levels of Cd can cause unexpected
effects on Na™ uptake compared to higher Cd concentrations.

Cd is also known to affect intracellular enzymes and energy dependent ion

channels (Verbost ef al. 1989; Atli and Canli, 2007, Lionetto et al. 2000). A decrease in
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Na'/K"-ATPase activity caused by Cd has been demonstrated in different fish species
over a range of concentrations (0.1nmolL -5 pmolL™) (Atli and Canli, 2007; Pratap and
Wendelaar Bonga, 1993). Moreover, Atli and Canli (2007) observed a greater decrease in
gill Na"/K"-ATPase activity in tilapia (Oreochromis niloticus) exposed to lower
(5umolL™) Cd concentrations compared to higher concentrations (up to 20 pmolL™) in
freshwater, but no explanation was prQVided for this observation. Lionetto et al (2000)
alsQ observed a decrease in CA activity in eel (4dnguilla anguilla) gill homogenates
during exposure to Cd with a calculated IC50 (~9.97nmolL™) for branchial CA in hard
water. Cd-induced inhibition of intracellular CA in trout may therefore be an alternate or
additional mechanism to explain reduced Na" influx caused by low Cd in trout because
CA provides the H' needed to drive Na" uptake at the gill via the hydration of CO, into
HCO; and H' (see Perry, 1997 for a review). Such intracellular mechanisms may explain
why a divalent metal such as Cd** can inhibit the movements of a univalent ion such as
Na".
A variety of metals such as Cu®" (Reid and McDonald, 1988; Schjoiden etal
2007) and Hg" (Klinck ef al. 2005) interfere with Na' regulation through competitive
binding at the site of Na* uptake into the gill (i.e. Na'-channels). Most metals however,
do not have specific transporters associated with metal uptake such as the ones identified
for copper (Grosell and Wood, 2002). Like Cd**, Pb*" is also one of the metals that is
known to have an impact on Na'/Cl” regulation caused by its effects on Na'/K'-ATPase
and cytosolic CA (Rogers et al. 2004). Because of the additional impacts of Pb seen on

Ca’* homeostasis are due to interactions with apical Ca®*-channels and basolateral Ca*'-
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ATPase, Pb is considered to have characteristicé half-way between the Ca®" and Na*
inhibiting metals (Rogers et al. 2003; 2004; 2005; MacDonald et al. 2002).

The immediate decrease in Na" influx at the gill (after 3 h) in trout exposed to low
levels of Pb (40nmolL™") agrees with studies that have shown Pb to interfere with Na* and
CI homeostasis. For example, Rogers et al (2003, 2005) observed a decrease in Na"
influx accompanied by an increase in outflux in fish exposed to Pb (~0.5umolL™). This
was likely to be caused by interactions with cytosolic CA, which subsequently caused a
decrease in Na' uptake. In addition these metals have been shown to have effects on the
active uptake sites on the basolateral membrane (i.e. Na'/K*-ATPase) (Laurent and
McDonald, 1987; Atli and Canli, 2007).

Although the movements of Na* across the gill are clearly disturbed by both low
Pb and low Cd alone, similar disturbances were not observed when trout were exposed to
mixtures of these metals (Figures 3.4-3.6) despite significant Cd- and Pb-gill
accumulation. This result does not subport the hypothesis that Cd and Pb in combination
would have greéter than additive effects on Na" uptake at the gills as reported by
Birceanu et al (2008) during short term (3 h) Pb plus Cd exposures. However, Birceanu
et al (2008) only observed a significant decrease in Na" uptake (3 h) at higher Pb and Cd
concentrations (50nmolL" Cd and 30nmolL" Pb) and not the lower ones used in this
study. This difference may not, however, explain the reduction in toxicity seen during Pb
plus Cd exposures (addressed in Chapter 4).

Entrance of both Cd and Pb into the gill occurs via apical Ca**-channels (Rogers
et al. 2005; Verbost et al. 1987; 1988; 1989). Therefore, competition in the presence of
both metals at this site of entry is expected to cause a decrease in gill accumulation
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during acute exposures (Playle, 2004). However, greater accumulation of Cd in the
presence of Pb, and no change in Pb accumulation with the addition of Cd suggests that
instead of binding to the same site on the gill (i.e. high affinity, low capacity binding
sites) the metals also bind to different sites (i.e. higher capacity, lower affinity sites)
(Birceanu et al. 2008; Niyogi et al. 2008). The competition of Pb and Cd may explain the
lack of disruption to Na' uptake in this study. Because of the competition, Pb and Cd
cannot both enter the gill at the same rate, therefore delaying the effects caused by the
individual metals. Perhaps Pb is out competed by Cd due to the higher affinity of Cd for
binding sites on the gill (LogK Cd ~ 7.33; Pb ~7.05) (Birceanu et al. 2008). If Cd is not
as toxic internally (shown by the more gradual time to decrease Na* uptake compared to
Pb; compare Figures 3.2-3.3) thén perhaps this can also explain the lesser effects on Na"
uptake in the fish exposed to Pb plus Cd compared to Pb only.

As described above, both Pb and Cd inhibit CA activity thereby causing a
decrease in the electrochemical gradient necessary for Na" uptake (Rogers et al. 2005;
Lionetto et al. 2000). Norrﬁally, the Na" electrochemical gradient is generated by the
hydration of CO,, which produces H' that is ultimately pumped out of the gill via H'-
ATPases (see abO\}e). Although both Pb and Cd disrupt Na'/K"-ATPases (Rogers et
al.2004; Pratap and Wendelaar Bonga. 1993), there was a tendency to increase rates of
Na'/K"-ATPase activity in fish exposed to Pb plus Cd for 72 h (Figure 3.7). Observations
of increased Na'/K"-ATPase activity during Pb exposure is in accordance with studies
that have demonstrated an increase in Na'/K'-ATPase activity in the presence of external
or diet borne Pb (Atli and Canli, 2007; Alves and Wood, 2006). Atli and Canli (2007)

demonstrated increased branchial Na'/K'-ATPase activity in Tilapia exposed to
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20umolL™ Pb in hard water. In addition, Alves and Wood, (2006) observed an increase in
Na'/K*-ATPase activity in the anterior intestine of trout exposed to a diet high in Pb. A
Pb-induced increase of Na"/K ™-ATPase activity during Pb plus Cd exposure may have
maintained the electrochemical gradient needed to drive Na" uptake by the gill, and
therefore overcome the decreased CA activity caused by Pb and possibly Cd; This
mechanism of acclimation to Pb and Cd however may only be a temporary fix, because
CA is also necessary for acid-base regulation within the gill (Wood, 1992; Perry, 1997).
In both the individual exposures to low levels of Cd or Pb, there was a decrease in
outflux of Na" across the gill over time. This reduction may be explained by a decrease in
permeability of paracellular junctions (regulated by hormones such as prolactin and
cortisol), to regulate diffusive losses of ions, a process similarly seen in fish adapting to
low pH environments (McDonald ef al. 1991; Perry and Laurent, 1989). Ca*" is thought
to play an important role in stabilizing these tight junctions, thus reducing permeability
(McDonald et al. 1991). At higher concentrations (threshold), diffusive outflux can
" increase via displacement of Ca”" ions within tight junctions, however, an increase in

diffusive Na" loss over time was not evident in this study (Wood, 1992).

Conclusions and Implications

The Pb-induced disruption of Na* uptake seen in this study is in accordance with
studies that have identified Pb as having characteristics in between those metals which
interfere with Na* or Ca*" homeostasis. The Cd-induced disruption of calcium
homeostasis has been well documented, but the impacts of Cd on Na' regulation at the
gill have been for the most part neglected. This study has outlined how possible Cd**/Na*

interactions may be more important in soft acidic waters. One explanation is that is the
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mechanisms of Na* uptake could be different in soft vs. hard waters (Boisen et al. 2003)
but further investigation is needed. The lesser inhibitibn of Na" uptake by Cd in the
presence ‘of Pb might be explained by competition between Pb and Cd for gill binding
sit¢s. Further investigations using radiotracers of Cd and Pb and subsequent gill
morphology studies may help reconcile the exact location of metal accumulation within
the gill. In addition, the use of Ca”" and Na' channel blockers such as lanthanum and
amiloride, and determining how the éctivity or expression of other active uptake
mechanisms (i.e. Ca**-ATPase and CA) are affected by Pb and Cd, alone and in
combination, could also make possible differences in uptake mechanisms clearer.
Overall, the' mechanisms of Pb and Cd uptake and toxicity examined here are very

complex.
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Figure 3.1 Pb-gill accumulation (A; grey bars) and Cd-gill accumulation (B; black bars)
in rainbow trout exposed to Cd alone, Pb alone, and Cd plus Pb mixtures (nmolL™). All
data is represented as the mean + 1 S.E.M (n = 6-9). Lower case letters that are shared are

not significantly different from one another within the same panel (P < 0.05).
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Figure 3.2 Unidirectional flux measurements of Na* in rainbow trout exposed to 6
nmolL™" Cd (low Cd) for 72 h. Upward facing open bars denote ion influx (inward
movement), downward facing open bars represent ion outflux (outward movement), and
shaded bars indicate the net flux (sum of inward and outward movements). Error bars are
not shown for net flux data. All other data presented as the mean+ 1 S.E.M (n = 4-8). An

asterisk “*” indicates a significant difference from controls (P < 0.05).
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Figure 3.3 Unidirectional Na' flux of rainbow trout exposed to 40nmolL™" Pb alone for
72 h. Upward facing open bars denote ion influx (inward movement), downward facing
open bars represent ion outflux (outward movement), and shaded bars indicate the net
flux (sum of inward and outward movements). Error bars are not shown for net flux data.
All other data presented as the mean = 1 S.E.M (n = 6-8). An asterisk “*” indicates a

significant difference from controls (P < 0.05).
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Figure 3.4 Unidirectional Na" flux of rainbow trbut exposed to 6nmolL" Cd plus
57nmolL" Pb (low Cd plus Pb) for 72 h. Upward facing open bars denote ion influx
(inward movement), downward facing open bars represent ion outflux (outward
movement), and shaded bars indicate the net flux (sum of inward and outward
movements). Error bars are not shown for net flux data. All other data presented as the
mean £ 1 S.E.M (n = 8). An asterisk “*” indicates a significant difference from controls

(P < 0.05).
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Figure 3.5 Unidirectional Na* flux of rainbow trout exposed to 14nmolL™ Cd (high Cd)
for 72 h. Upward facing open bars denote ion influx (inward movement), downward
facing open bars represent ion outflux (outward movement), and shaded bars‘ind'icate the
net flux (sum of inward and outward movements). Error bars are not shbwn for net flux
data. All other data presented as the mean = 1 S.E.M (n = 7-8). An asterisk “*” indicates

a significant difference from controls (P< 0.05).
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Figure 3.6 Unidirgctional Na" flux of rainbow trout exposed to 17nmolL" Cd plus
45nmolL"" Pb (high Cd plus Pb) for 72 h. Upward facing open bars denote ion influx
(inward movement), downward facing open bars represent ion outflux (outward
movement), and shaded bars indicate the net flux (sum of inward and outward
movements). Erfor bars are not shown for net flux data. All other data presented as the
mean + 1 S.E.M (n = 7-8). An asterisk “*” indicates a significant difference from controls

(P <0.05).
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Figure 3.7 Na'/K"-ATPase activity measured in homogenates of rainbow trout gill
following 72 h exposure to low (6 nmolL™) and‘high (15 nmolL™") Cd concentrations
alone, Pb alone (40nmolL™"), and in Pb (40nmolL ™) plus Cd (15 nmolL'l) mixtures. All
data is represented as the mean = 1 S.E.M (N). An asterisk “*” indicates a significant

difference from controls (P<0.05).

88



Chapter 4

Using the Toxic Unit Approach to Predict Gill Accumulation and

‘Toxicity of Pb and Cd mixtures
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ABSTRACT

Biotic ligand models (BLM) in general are designed to predict acute toxicity in
aquatic organisms exposed to metals in the environment. The BLMs use site specific
water chemistry to predict the bioavailability and toxicity of metals to aquatic biota. To
date however, such models do not account for metals in mixtures, a situation most
commonly found in contaminated ecosystems. Predicting the toxicity of metals in
mixtures is difficult, but there have been attempts to predict patterns of metal-mixture
toxicity using the concentration addition model and the effects addition model. The
concentration addition model uses the toxic unit approach, where one toxic unit (TU)
represents the toxicity of each component in a mixture of toxicants (e.g. 96-h LC50). The
total number of toxic units exposed to the organism is used to predict the toxicity
(measured by gill accumulation) that the mixture will cause. The mixtures are assumed to
behave in either a strictly additive manner if the effects (i.e. gill accumulation) of
individual toxicants can be added together to produce the actual observed effect; less than
additive manner, where the effect of toxicants in combination does not equal the sum of
the effects caused by individual metals or greater than additive (synergistic), where the
effects observed in exposure to mixtures is greater than the sum of the effects caused by
toxicants. This research used the TU approach to describe the interactions between Pb
and Cd, which are commonly released together in contaminated waters, and are thought
to have a common site of toxic action on the gill (apical Ca®" channels; eCac). It was
hypothesized that exposure to a matrix of Pb plus Cd mixtures would result in less than
additive Cd-gill metal accumulation due to competition between Pb and Cd for binding
sites on the gills, and that toxicity would increase in a step-wise manner in accordance
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with the total TU to which the fish were exposed. Accordingly, gill accumulation (3 h)
and the 10 d LT50 were determined in rainbow trout (Oncorhynchus mykiss; 1-3g)
exposed to a matrix of Pb and Cd concentrations (~0-24 nmolL'lv Cd and ~0-2400nmolL"
Pb) in soft acidic water. Metal accumulation was not less than additive, however. Rather,
Pb accumulation was augmented by Cd at during exposure to the two highest
concentrations of Pb plus Cd while Cd accumulation was unchanged with the addition of
Pb. Moreover, determination of the LT50s for the different metal mixture combinations
indicated that Pb protected fish from Cd-induced toxicity. It is concluded that the
interactions of Pb and Cd are more complex than expected and cannot be predicted by a
simple concentration addition model. In addition, our results suggest some evidence for
other types of interactions between Pb and Cd such as non- or anti-competitive inhibition.
The presence of additional metal-binding sites, in addition to Ca** channels, on the gill
for both Pb and Cd, may explain discrepancies ‘in the ability to reliably relate the toxicity

of Pb plus Cd mixtures to metal-gill binding.
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INTRODUCTION
Metal contamination is an ongoing prpblem in aquatic environments, resulting in

extensive research on the impacts of metals on aquatic organisms (e.g. Spry, 1991;

B Playle, 1998; Niyogi and Wood, 2004; Burger, 2008). The continuing goal of the BLM is

to predict metals toxicity based on site specific criteria such as water chemistry, the
affected aquatic biota at a specific site, and the bioavailable metal concentration (Paquin
et al. 2000). The BLM integrates water chemistry parameters such as temperature, pH
and hardness to determine metal bioavailability and therefore the potential toxicity of
metals in a given aquatic environment. Toxicity predicted by the BLM is assﬁmed to be
directly related to the amount of metal bound to the biotic ligand (i.e. the gills in fish) and
has been incorporated into the development of water quality guidelines in some
jurisdictions (Paquin, 2002; Niyogi and Wood, 2004; Borgmann et al. 2008). Despite the
usefulness of this detailed framework, the BLM has been developed only for individual
metals, and it is not yet clear if it could be used to accurately predict the interactions and
effecfs of metals in mixtures, which are more likely in contaminated waters (Playle,
2004). Moreover, the majority of metals research has focused on quantifying the
responses of aquatic organisms to high concentrations of metals, which result in
measurable physiological and toxicological effecfs but may not be representative of the
lower metal concentrations that are typically found in metal contaminafed aquatic
ecosystems (e.g. Paquin et al. 2000).

Over many decades, different methodologies have been used to predict the
toxicity of metals in mixtures (Sprague, 1969; Playle, 2004; Norwood et al. 2003;

Borgmann, 2008). The most common method is the concentration addition model, which
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is typically applied using the toxic unit approach (Newman and Unger, 1991). The
Concentration Addition model suggests that there are three modes of interaction between
multiple toxicants in an aquatic environment and these assumptions can be applied to
multiple metals: 1) strict additivity, where the effects (i.e. gill accumulation) of individual
toxicants can be added together to produce the actual observed effect. 2) Less than
additive, where the effect of toxicants in combination does not equal‘the sum of the
effects caused by individual metals or 3) Greater than addiﬁve, where the effects
observed in exposure to mixtures is greater than the sum of the effects caused by the
toxicants individually (Sprague, 1970).

Toxic units are frequently expressed as units of lethality (i.e. the 96-h LC50)
(Newman and Unger, 1991). Using the TU approach, Playle (2004) attempted to model
multiple metal interactions (including Pb and Cd) with the gills of fish. His simulations
were based on the assumptions: 1) that both Pb and Cd compete for the same binding
sites on the ligand and therefore have the same mode of toxicity (decrease Ca®" uptake
leading to hypocalcaemia); 2) acute toxicity is directly proportional to the amount of
metal bound to the gill; and 3) when half of the gill binding sites are filled, half of the fish
will die (Playle, 2004). Furthermore, each combination of metals added up to equal one
toxic unit. His simulations revealed that metal-gili accumulation would be greater than
additive when fish were exposed to metal mixture concentrations that were less than 1
| TU, but that there would be less than additive gill binding when fish were exposed to
metal concentrations greater than 1 TU due to the non-linear nature of the model (Figure

4.1; Playle, 2004).
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To validate the predictions of Playle (2004) using the TU approach, rainbow trout
(Oncorhynchus mykiss) were exposed to metal mixtures of Pb plus Cd comprising 1, 2
and 3 toxic units of metal (1 TU ~ 600 nmolL" and 6 nmolL respectively) and metal-
gill binding quantified. To test whether metal-gill accumulation was predictive of longer-
term toxicity, metal-gill accumulation after 3 h of Pb plus Cd mixture exposure was
compared to the LT50 for each metal combination over a 10 day time frame. Based on
the concentration addition model, it was predicted that gill metal accumulation and
toxicity would be leés than additive due to the competition between Pb and Cd for

binding sites on the gill.
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Figure 4.1 Model of concentration additivity for Pb and Cd. Figures represent the
amount of Pb and Cd predicted to accumulate on the gill based on external concentration.
At lower concentrations, metals bind in a greater than additive manner, whereas at higher
concentrations they are predicted to bind in a less than additive manner. These can be

explained by the non-linear nature of the model as well as competition between metals

for binding sites on the gill.
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MATERIAL AND METHODS

Fish Husbandry

Rainbow trout (1-3g) were purchased from Rainbow Springs Trout Hatchery,
Thamesford Ont., and held in a 100L aeratéd té.nks in a 1:1 mixture of well water and-
reverse osmosis water ~ 1.5mmolL"! Ca2+, SOOumolL'1 Na', 500umolL CI', pH ~8,
~12°C as per Birceanu et al (2008). After 2 days, they were transferred to reverse osmosis
only water supplied with a calcium (CaCl,) drip to produce soft water (~ 100uM Ca®").
The fish were fed ground commercial trout pellets (Corey Feéd Mills Ltd., Fredericton,
New Brunswick) 3 times per week and food was withheld for 72 h prior to experiments.
Fish were allowed to acclimate to the soft water for at least 2 weeks before experiments.
All fish husbandry procedures and experiments were approved by the Wilfrid Laurier
Animal Care Committee, and followed the Canadian Council of Animal Care (CCAC)

guidelines.

Experimental Protocol: Relating Gill Accumulation to the LTS50 of Pb plus Cd
mixtures

Rainbow trout (1-3g) were randomly distributed in groups of 16 to experimental
buckets containing 10L of ion-poor, slightly acidic ([Ca®] ~103.7+ O.Ip‘molL'l, pH ~
6.18 + 0.001) experimental water containing Cd and Pb. The fish were exposed for 240 h

(10 days) to a matrix of different nominal Cd and Pb concentrations (6, 12 and 24nmolL"’
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Cd and 600, 1200 and 2400 nmolL™" Pb for individual métal exposures as well as all
combinations; Table 4.1). Fish mortality was then monitored for up to 10 days to
determine the LT50 (time to reach 50% mortality) for each metal exposure combination.
To relate 3 h metal-gill binding to metal toxicity after 3 h of exposure to the matrix of Cd
and Pb concentrations, gills were collected from subsamples of fish (n = 6) for metal-gill
analyses. The remaining 10 fish were leﬁ in the exposure buckets for the remainder of the
240 h toxicity experiment. Water pH and mortality were monitored during the experiment
(every 3 h for the first 2 days and every 4-8 h for the remainder of the experiment) and
pH was adjusted accordingly using 8N HNO;3 and KOH to maintain the desired pH of 6.
Water samples (10mL) were sampled at the beginning of the experiment, and at 24 h
intervals throughout. Filtered (45pm Supor® membrane, Pall Life Sciences, Ann Arbor,
MI) and unfiltered Water samples were acidified to 1% using 16N trace metal grade
HNO; and saved for l‘ater measurement of water metals and ions (Ca>" and Na").
Additional un-acidified water samples were collected and saved for measurement of ClI’
or stored in borosilicate scintillation vials with no head space for measurement of

~ dissolved organic carbon (DOC).

Sample Collection and Processing

Fish sampled at 3 h were killed by a blow to the head, and the entire gill basket
was excised, rinsed in 100 mL of deionized water for 10 s to wash away unbound metals
or mucous, and then stored in 1.5 mL micro-centrifuge tubes at -20°C until further

digestion. The gills were digested in 5 times their mass in 1N Trace Metal Grade HNO;
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and baked for 3 h at 80°C. The digests were then vortexed and centrifuged for 2 min at 12
000 rpm. The supernatant was then collected, and diluted 10 times using 1% HNO;

(Trace Metal Grade) for Cd and Pb analyses.

Metal and Ion Analysis

Water and gill Cd and Pb were quantified using graphite furnace atomic
absorption (FAA) spectrophotometry (GTA100 atomizer, SpecthA 880, N> gas; Varian,
Mississauga, ON), and concentrations were validated using precision standards
(Environment Canada). Total Ca?* and Na" concentrations in the water were measured by
FAA spectrophotometry (see above), and water Cl” concentration determined
spectrophotometrically using the mercuric thiocyanate assay (Zall et al., 1956). Dissolved
organic carbon was determined with a Shimadzu TOC 5050A Analyzer (Shimadzu

Corporation, Kyoto, Japan).

Statistical Analysis

All data is expressed as the mean + one standard error of the mean (SEM; N).
Significance between the metal-gill accumulation of different treatments was determined
using a one-way ANOVA. In instances where significant variation was observed, the
ANOVA was followed by a Tukey post-test to determine if there were significant
differences between control and experimental groups. The LT50 for all exposures was
determined by plotting the log % survival over log time as described by Litchfield and

Wilcoxon (1948).
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RESULTS

Toxicity of Metal Mixtures

To determine the toxicity of Pb and Cd mixtures compared to Pb or Cd alone, the
LT50 (time to 50% mortality) was determined over a range of Pb and/or Cd
concentrations (nominal concentrations: 0-24 nmolL™" Cd, 0-2400 nmolL™ Pb). All
control fish survived the entire 10 d (240 h) experiment. Exposure to lower nominal Cd
concentrations (6 and 12 nmolL'l) yielded an LT50 of 168 h, compared to 24 nmolL"’
Cd), which was more toxic with an LT50 of 96.7 h (Figure 4.2, column 1; A-D). In the
presence of low Pb concentration (600 nmolL ") plus Cd (6-24 nmolL™), toxicity was
greater compared to the individual Cd exposures, as indicated by a decrease in the LT50
to 60, 91, 76 and 80 h for 0, 6, 12 and 24 nmolL™" Cd, respectively (Figure 4.2, column
2). However, higher Pb concentrations (1200 and 2400 nmolL™) in the presence of Cd,
decreased toxicity compared to the low Pb plus Cd combination. This trend was seen
predominantly in the 6 and 12 nmolL™" Cd plus 1200 and 2400 nmolL" Pb exposures
(Figure 4.2B and C).

Exposﬁre to Pb alone caused toxicity, but the LT50 increased (toxicity decreased)
with increasing concentrations of Pb. The LT50s for Pb alone were 60, 100 and 75 hin
fish expose to 600 1200 and 2400 nmolL™ Pb respectively, where the Pb toxicity was

greatest at the lowest concentration of 600 nmolL ™" (Figure 4.2A).

Metal-gill Accumulation
Background Pb on the gill was low at a concentration of 2.20 nmol g wetweight !

(Figure 4.3). All Pb exposures caused significant step-wise increases in Pb-gill
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accumulation compared to controls, increasing from 7.4 = 0.8,26.3 £ 6.5 and 51.1 £11.9
nmolg™ wet weight as the nominal Pb concentration increased from 600 to 2400 nmolL ™
(Figure 4.3). Simultaneous exposure to nominal Cd concentrations of 6 and 10 nmolL ™
had no significant effect on Pb accumulation. Only at the highest Cd plus Pb
concentrations (24nmolL ™" and 2400 nmolL") was there significantly greater gill-Pb
accumulation, approximately 125nmol g wet weight™, compared to the lower Cd
exposure concentrations (Figure 4.3).

Background gill Cd was arouﬁd 0.5-0.7 nmol g ! wet weight. There were no
significant differences in gill-Cd accumulation of fish exposed to Cd (6, 12, 24 nmolL™)
compared to controls (Figure 4.4). Gill-Cd accumulation for control, 6, 12 and 24nmolL"
exposures was 0.7 = 0.1, 0.6+ 0.1, 0.6 = 0.2 and 0.8 + 0.1 nmol "'g wet weight
respéctively. Moreover, Gill-Cd accumulation was not affected by the addition of Pb

(nominal 600, 1200 and 2400 nmolL'Pb) (Figure 4.4).
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DISCUSSION

Toxicity of Metal Mixtures

Over the 10 d period, the toxicity of both Pb and Cd individually and in mixtures
were observed through the measurement of respective LT50s (lethal time for 50%
mertality). The Pb alone exposures were more toxic than control exposures. However,
there seemed to be little differences between the LT50s derived for low (600 nmolL™) or
the high (2400 nmolL™) Pb exposures (Figure 4.2). The Cd alone exposures showed a
similar trend, where the two median concentljations had similar LT50s while the highest
was most toxic (Figure 4.2). Similar observations were made by Winter (2008) for
rainbow trout exposed to equal micromolar (0-3pmolL™") concentrations of Pb and Cd. In
this case the lower Cd and Pb concentrations seemed to be more toxic than the higher
ones and the addition of NOM decreased overall toxicity of the metals to the fish.

The addition of Pb to the lower Cd exposures suggests that Pb protected fish from
Cd toxicity, resulting in higher LT50s. Based on these results it would appeae that the
protective effects of Pb are concentration dependent because the amount of protection
increases with the addition of increasing water Pb concentration. The approach that was
taken in this experiment was to expose the fish to 1, 2 and 3 TU of each metal
individually and in combination, with the TU being equal to the respective LC50 for each
metal (~6.8 nmolL" Cd and 492 nmolL™! Pb; Birceanu et al. 2008). The protective effects
of ‘Pb seen in these experiments would suggest less than additive toxicity. If the
concentration addition model (i.e. predicting toxicity based on the concentrations in the

water) is used to analyze this data, then toxicity is less than additive (Sorensen, 1991;
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Norwood et al. 2003). However, this could be reflective of the decrease in Pb
concentration over the 10 d period in which Pb concentrations fell by 20-40% between 3
h and 10 d (Table 4.1). Water was not replaced throughout the experiment therefore the
metal became less bioavailable due to binding to experimentél buckets and/or mucous
within the test water. According to speciation calculations using Visual MINTEQ using
water chemistry parameters and measured dissolved metals, more than 95% of both
metals were calculated to be in the ionic form (Table 4.2).

Another method of determining the interactions of metal mixtures is the response
addition model, where if the toxic effects are strictly additive, then the control corrected
survival in the mixture‘can be predicted using the following equation:

S”mix = S”1 X 87X §7y. (1)

S”mix is the product of the survival rate observed when fish were exposed to each metal
alone (S”,) (Norwood et al. 2003). The response effect was calculated for the mixtures in
our experiment (Table 4.3), but, control correction was not necessary because none was
observed in the study. In most cases the predictéd % survival was lower than the actual %
survival observed over 10 days. This type of response caused by mixtures is also
described as less than additive (Hewlett and Plackett, 1979 as referenced in Norwood et
al. 2003). Like the concentration addition model, the response effects model does not
appear to be an effective means to predict metal mixtures toxicity based on the results

seen using Pb and Cd concentration (Table 4.3).
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Gill-metal Burden

Gill-Pb accumulation during 3 h of exposure increased with increasing Pb
concentration (Figure 4.2). At the lowest ¢Oncentration of Pb (actual ~539nmolL™";
similar to the respective LC50 = 1TU) gill-Pb accumulation was approximately 10nmol
g (wet weight). This amount of Pb on the gill corresponds to the LA50 for Pb as
calculated by Birceanu ef al (2008). Similarly, when the fish were exposed to 2 and 3 TU
of Pb (actual ~15067 and ~3149.5nmolL™") the corresponding gill accumulation was 2
and 3 times greater than LA50 for Pb, which would be expected. Gill accumulation for
Pb was directly proportional to the metal concentration. This proportional increase
suggests the potential to predict Pb-gill accumulation during Pb only exposures by
models such as the BLM (Paquin et al. >2002; Playle. 2004). Gill accumulafion, however,
typically does not occur in a linear fashion due to gill-binding kinetics so this linear trend
seen in our experiments may only be obsérved within the concentration ranges tested here
(Playle, 2004; Niyogi ef al. 2008). This Pb-gill trend was not, however, evident in the
presence of all Cd concentrations. Furthermore, Pb-gill accumulation was signiﬁcantly
greater at the highest Pb and Cd concentrations in combination. Augmentation of Pb
accumulation was not expected due to the anticipated competitive nature of Pb and Cd for
similar binding sites on the gill (i.e. apical Ca’" channels and Ca?*-ATPase) (Verbost et
al. 1988; Grosell et al. 2006; Niyogi et al. 2003; 2008). Competitive inhibition between
two metals can only be demonstrated if the two metals compete for the same binding site
on the ligand, but this may not be true for most metals in combination (Borgmann et al.

2008). Recent studies, however, suggest multiple binding sites for both Pb and Cd which
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may account for the discrepancy from the predicted strict additivity for Pb and Cd
(Birceanu et al. 2008; Niyogi et al. 2008).

The possibility of two binding sites provides evidence for other types of
~ inhibition: anti-competitive binding (where there could be enhancement of metal
accumulation caused by another metal) and non-competitive binding (where there is no
competition between metals at all sites) (Borgmann et al. 2008). The enhancement of Pb-
gill accumulation in the presence of Cd indicates the possibility of these two inhibition
types and although more research and modeling is needed to support one or the other
(and could possibly be concentration-dependent) (Borgmann et al. 2008). Despite the
slight impacts that Cd had on Pb-gill accumulation, Pb did not affect Cd-gill
accumulation.

Unexpectedly, no significant Cd accumulation was observed on the gill after 3 h
exposure fo any of the chosen concentrations (Actual ~6, 13, 23.4nmolL™). At these
| concentrations, Cd typically binds to the gill at very low levels (0.1-0.5 nmol g wet
weight) compared to Pb despite its high affinity for the gill (~ Kcggin = 7.33 — 8.6;
Birceanu et al 2008; Playle 1993). This discrepancy may be because the background gill-
Cd was high (~ 0.3-0.8 nmolg™), making it difficult to determine any substantial
differences between exposure groups. Further studies using the radiotracer 1Cd may
help reconcile small differences in Cd uptake during exposure to low concentrations of
this metal (Hollis et al. 2000).

The BLM assumes that the amount of metal bound to the gill is directly related to |
the toxicity of each metal to the fish. This study, however, suggests that this may not be

the case for Pb and Cd in combination. For higher metal exposures in combination,
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greater toxicity and less than additive gill accﬁmulation was expected. This was
hypothesized due to the non-linear nature of metal binding to the biological ligand
(Playle, 2004), and the assumed competition between Pb and Cd for the same binding
sites on the gill (i.e. Ca®* channels). The weight of currént evidence now suggests,
however, that there is more than one binding site for both Pb and Cd on the gill, which
decreases the probability of strictly competitive interactions between Pb and Cd.
Moreover, Pb and Cd are known to have slightly differing modes of toxicity.

Rogers et al. (2005) found that in addition to competition for Ca”* channels on the
gill, Pb causes a decrease in activity of both the basolateral Na'/K"-ATPase and cytosolic
carbonic anhydrase, which inhibits Na" and CI” uptake by the gills. Whereas, Cd binds
to Ca®" apical channels as well as interfering with Ca**-ATPase within the gill
membranes (Verbost ef al. 1987; 1988). The present study suggests that the premise that
gill accumulation is predictive of toxicity may not apply to metal mixtures, unlike the
case for individual metals. Here, the most toxic concentrations (i.e. lowest LT50) were
not necessarily the exposure in which metal-gill accumulation was highest (Figure 4.2).
This discrepancy can be explaiﬁed by the length of our study (10 d) compared to the
typical time (96 h) used to relate gill accumulation to mortality.

Acclimation through damage repair mechanisms to metals such as the production
of metallothionein-like proteins that sequester and bind metals as well as MRC
proliferation can aid in the process required to maintain homeostasis within contaminated
waters (Chowdhury et al. 2005; Silvestre et al. 2005; McGeer et al. 2007). Moreover, -
acclimation processes can begin to occur within days (<4 d) of initial exposure (Lauren

and McDonald, 1987). With this in mind, there are many more variables to consider
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when relating 3 h gill accumulation with 10 day toxicity. It should be noted that
continued research is being conducted on the development of BLMs able to account for
physiological responses of fish during chronic exposures (e.g. Hollis et al. 2000).

It is clear that Pb plus Cd mixture interactions are very complex. This complexity
likely arises from the differences in the toxic mechanism(s) of action of these two metals.
The enhancement of Pb accumulation in the presence of Cd is concentration—dependent
and is evidence to support anti-competitive interactions between the two metals
(Bormann et al. 2008). Moreover, the response effect calculations conducted support
interactions different from strict competition. In addition to the prediction of toxicity
based on % survival, the 3 h gill accumulation did not accurately reﬂect toxicity after 10
d of exposure. In recognition of the results observed in this study, the interactions of Pb
and Cd at the gill and their ultimate impact on toxicity seem to be less predictable than
once believed. Simple models of additivity including the effects addition model do not
accurately predict the toxicity of Pb and Cd mixtures, perhaps due to the complexity of
mechanistic action at the gill. Multiple binding sites for both Pb and Cd may explain the
unpredictable toxicity and possibly the greater than additive gill accumulation. In
conclusion, the interactions of Pb and Cd cannot be explained by the simple additivity
model; however this evidence may suggest a more complex interaction such as non-
competitive or anti competitive inhibition. The toxicity of Pb and Cd, as seen in this
study is not predictable based on the acute (3 h) gill accumulation as described in the
concentration addition model and this finding is important to note when using predictive

models for use in the development of ambient water quality criteria.
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Figure 4.2 Toxicity (10 day = 240 h LT50 values) »and metal-gill accumulation (3 h) in
rainbow trout exposéd to A) Pb alone, or to Pb plus nominal Cd concentrations of B) 6,
C) 12 and D) 24 nmolL™". Data are presented as the mean + 1 S.E.M. (n = 6 for all gill
accumulation data).
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Figure 4.3 Pb-gill accumulation in rainbow trout exposed for 3 h to Cd concentrations of
6,12 and 24 nmolL'Cd and Pb concentrations of 600, 1200 and 2400 nmolL!. Data is
presented as the mean + 1 S.E.M (n = 6 for each treatment). Capital letters over a line
indicate significant differences between metal-gill accumulation for different Pb exposure
concentrations, while lower case letters indicate significant differences between Cd

exposures (same coloured bars). Bars sharing the same letter are not significantly

different.
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Figure 4.4 3 h gill-Cd accumulation of rainbow trout in the presence of nominal Cd
concentrations of 6, 12 and 24 nmolL"! and nominal Pb concentrations of 600, 1200 and
2400 nmolL™. Data is represented as the mean + 1 S.E.M (n = 6). Capital letters over a
line indicate significant differences between metal-gill accumulation for different Cd
exposure concentrations, while small letters indicate significant differences between Pb
exposures (same coloured bars). Bars sharing the same letter are not significantly

different.
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Chapter 5

Mechanism(s) of Pb and Cd Toxicity on Rainbow Trout in Soft Acidic

Water: A Synopsis
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An Integrative Approach to Understanding Pb and Cd Toxicity

The inputs of both Pb and Cd into aquatic systems are derived from both natural
and anthropogenic sources (Zabel, 1993; Chapter 1). Once these metals enter aquatic
systems, their bioavailability, or their potential to cause toxicity to aquatic organisms, is
affected by water chemistry parameters including hardness, pH, and complexing cations
such as natural organic matter that may decrease this potential. The most sensitive of
aquatic systems are considered to be the soft, slightly acidic waters found in the Canadian
Shield and Scandinavia (Spry and Weiner. 1991). Due to their low hardness and slightly
acidiq nature, these waters are more sensitive to metal inputs. The majority of metals
research in such waters had been conducted on individual metals at high concentrations
(umol — mgL "), however, which are not reflective of actual concentrations found in
contaminated sites. In consideration of genuine environmental scenarios, the major focus
of my thesis was to determine how low, environmentally realistic concentrations (3-50
nmolL™" Pb and 0.4-8 nmolL"' Cd; Reader et al, 1989) affect metal-gill binding,
physiology and toxicity of rainbow trout in soft acidic water ([Ca2+] ~100 pmolL'l,
slightly acidic water (pH 6.0-6.2).

To better understand the integrative mechanisms of Pb plus Cd mixture toxicity in
rainbow trout, three approaches were used: 1) Measurement of the physiological
disruption caused by Pb plus Cd mixtures within the blood of trout where acid-base
regulation, haematology, and ionoregulatory parameters were monitored by repetitive
blood sampling using cannulas implanted in the dorsal aorta; 2) Monitoring of the uptake,
net flux and outflux of Na* across the gill using the radiotracers **Na to determine how

the presence of Pb and/or Cd caused internal ionic disturbances; and 3) Using the
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concentration addition model to determine if Pb- plus Cd-gill accumulation was

predictive of longer term toxicity (10 days) in the presence of metal mixtures.

Physiological Disruption Caused by Pb and Cd Mixtures

Plasma Ca>* and Na* concentration, and plasma osmolality decreased in a greater
than additive manner when rainbow trout were exposed to Pb plus Cd mixtures. These
findings were in accordance with those reported in Birceanu ez al. (2008) who saw a
greater than additive decrease in Ca®* and Na" influx in fish exposed to Pb plus Cd
mixtures. Surprisingly, however, the greater than additive effects were only persistent for
plasfna calcium measurements, which may have contributed to the greater toxicity
observed (Chapter 2). Plasma Na* and osmolality, although significantly reduced within
48 h of exposure to Pb plus Cd mixtures, had been corrected by 120 h in the surviving
trout, however. This recovery indicated that some of the fish were able to acclimate to the
low metal concentrations used in these studies. The restoration of the plasma Na" and
osmolality may be related to‘ an ability of the fish to restrict Na" losses across gills as
demonstrated by reductions in Na" outflux, and by elevating branchial Na'/K"-ATPase
activity. There were no disturbances to acid-base balance or haerﬁatology measurements
, (haematocrif, haemoglobin concentration), which is consistent with recent studies on Pb
and Cd (Rogers et al. 2003; Chowdhury et al. 2004).

vUnexpectedly, exposure to low Cd concentrations decreased Na™ uptake

completely after 72 h. The exact mechanism by which Cd exerts its impacts on Na*
homeostasis cannot be determined by these studies, however studies by Atli and Canli
(2007) and Kinne-Saffran et al. (1993) observed a decrease in Na'/K'-ATPase activity in

the presence of Cd in Tilapia gills and Dogfish rectal glands, respectively. Moreover
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Lionetto et al. (2000) reported a decrease in carbonic anhydrase activity in eel gill
homogenates exposed to Cd. Komjarova and Blust (2009) described a decrease in Cd
accumulation in the presence of high external Na, also suggesting that there were Na'/Cd
interactions. There was no significant decrease in Na'/K"-ATPase measured in fish
exposed to any of the Pb and/or Cd treatments suggesting that the mechanism of Na*
disruption is caused by inhibition of the cytosolic enzyme carbonic anhydrase in addition
to an in vivo disruption to Na'/K'-ATPase efﬁcienicy.

In contrast unidirectional Na’ flux measurements in the presence of Pb pius Cd
did not have any observable effects on Na" uptake over 72 h. This finding was
unexpected and contradicted the hypothesis that longer Pb plus Cd exposure would cause
a greater than additive effect on Na" influx (Birceanu et al. 2008). The competition of Pb
and Cd for binding sites (i.e. apical Ca**-channels) may have delayed the decreases on
Na' influx, ultimately buying mére time for the fish to acclimate to the metals. This
acclimation was demonstrated by the up-regulation of basolateral Na'/K"-ATPase
activity in the gills of trout exposed to Pb and Cd mixtures. Moreover, acclimation could
possibly have been initiated by the decrease in gill Na' permeability that was observed

(see above).

Predicting Toxicity of Pb and Cd Mixtures from Gill-metal Accumulation

Overall, these studies support the conclusion that gill-Cd or gill-Pb accumulation
is not necessarily predictive of toxicity. This was seen in all three of the studiesvy reported
here. This discrepancy between the traditional views that gill metal accumulation is
directly proportional to toxicity may be explained by the presence of multiple binding

sites for both Pb and Cd on the trout gill. The identified high affinity, low capacity sites
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are typically filled first, and are believed to be the physiological active sites (i.e. apical
Ca'-channels and Ca>"-ATPase; Niyogi ef al. 2004), whereas the second, low affinity,
high capacity population of binding sites are less understood, and likely of less
physiological relevance (Niyogi and Wood. 2004; Niyogi ef al. 2004). Metal-gill binding
to this second population of binding.sites may explain why it was difficult to establish
clear relationships between metal-gill accumulation, physiological disturbances or
toxicity.

Initial attempts at modeling the interactions of Pb and Cd toxicity (Playle, 2004)
Were based on the assumption that Pb and Cd compete for the same binding sites on the
gill and that when 50% of the gill sites were filled, 50% of the population would di¢.
Results presented in this study, however, do not support such a result. Measured giil-Pb
and gill-Cd accumulation in all three of the reported studies here were at or near the
calculated Byax for both Pb and Cd (e.g. metal-gill binding was greater than 50 % of Bmax)
for rainbow trout in similar water chemiétry, but greater than 50% mortality was not
observed in many of the exposures to low concentrations of Pb and Cd (Chapter 2, 3).
During higher exposure concentrations (chapter 4) greater gill accumulation was not
necessarily reflective of greater toxicity. Interpretation was likely further complicated by
the presence of multiple binding sites for both Pb and Cd on the gill (see above; Birceanu
et al. 2008; Niyogi et al. 2008), making it more difficult to simply model Pb plus Cd
interactions at the gill. To assess this, it will be important to understand the mechanisms
behind the interactions of the metals at the gill causing ionoregulatory disruption. A clear
understanding of metal-gill binding and toxicity is therefore necessary to provide further

insight into the development of predictive models for metal mixture toxicity to fish.
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Implications of Understanding Pb and Cd Mechanisms of Toxicity in Soft Water
Water quality criteria and guidelines are intended to be based on scientific
evidence to support the profection of aquatic life (Niyogi and Wood. 2004). The toxicity

of metals is based on the idea that metals bind to physiological active ligands and this
binding is dependent on the bioavailability, and the ability of a metal to bind to such a
ligand. The formation of metal complexes with organic and inorganic ions cause a
decrease in metal bioavailability, thereby decreasing their potential toxicity and
competition with hardness divalent cations and univalent protons for binding sites on the
biotic ligand (i.e. the fish gill for purposes demonstrated here). Moreover, the pH of
aquatic systems can affect the bioavailability of metals by increasing the free metal
concentration (low pH) or by increasing complexation of the metal with inorganic
compounds (i.e. CO3’). These factors can make even relatively low concentrations of
metals toxic under certain environmental conditions. The development of the BLM has
focused on using site specific water chemistry to predict the toxicity of metals to aquatic
organisms. The BLM presently predicts the amount of metal required to fill 50% of gill
binding sites (i.e. physiologically active sites for Ca®* uptake at the gill) after 3 h of
exposure (LAS50) which is assumed to be predictive of subsequent longer term toxicity
(96 h LC50; Niyogi et al. 2004; Playle 2004). Although there have been great advances
in the predictive power of the BLM.for individual metals such as copper and Cd, the
BLM is not used to predict the toxicity of metal mixtures, a situation more commonly
found in contaminated waters. Moreover, the consideration of subtle, long-term internal
effects caused by metal toxicity are not considered in the BLM, but likely play an

important role in longer-term metal toxicity, and may potentially be a better indicator of
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metals toxicity compared to the classical endpoint of death. Thus, physiological end-
points rather than death might be a more appropriate means for predicting longer-term

toxicity to Pb, Cd, or Pb plus Cd mixtures (Grossell et a[. 2006).
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Conclusions

This thesis used an integrative approach to study the interactions of Pb plus Cd
mixtures at the gill, and to explain how the combined effects of these metals influence
toxicity. Toxicity tests revealed that exposure to Pb and Cd in combination for longer
periods of time causes greater than additive decreases in plasma ions Ca®" and Na*. The
decrease in plasma Na’, however, was not sustained over 3-5 d exposures suggesting that
hypocalcaemia is the likely cause of death during metal exposure, but it is also likely that
other toxic mechanisms such as neurological damage is caused by these metals (Weber e?
al. 1997). Despite the greater than additive effects on the regulation of internal calcium,
recovery of plasma Na" and studies of unidirectional Néfr fluxes in addition to a
maintenance of Na'/K'-ATPase activity suggésts a poséible acclimation to such a
disturbance during exposure to Pb plus Cd.

Results reported in this study have shown that, despite previously used
assumptions, gill-metal accumulation is not entirely predictive of longer term Pb plus Cd
toxicity and that internal physiological endpoints may be necessary to consider when
predicting toxicity to mixtures. In addition, internal disruption caused by Pb and Cd
mixtures may be overcome through acclimation processes. The results of this thesis will
aid in the understanding of the complex interactions of Pb and Cd on gill mediated
ionoregulation. This thesis further outlines the importance of considering mechanisms of
action and differences in gill accumulation in understanding of metals toxicity. Finally, it
also suggests that the mechanisms of Pb and Cd toxicity in soft water may be different to
those in hard water due to possible differences in the ionoregulatory‘strategies used by

fishes in these two media. Thus it will be necessary to better understand the
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ionoregulatory mechanisms used by fish in soft acidic waters which are characteristic of
those found in the Canadian Shield. Further knowledge of these strategies will allow for

better understanding of the toxicity of metals in similar environments.
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