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Abstract 

  Most chloroplast proteins are encoded in the nucleus and translated in the cytosol with 

an N-terminal cleavable transit peptide, which can be recognized by the translocon at the 

outer envelope membrane of chloroplasts (Toc complex). The core Toc complex is composed 

of two GTPases, Toc159 and Toc34, and the Toc75 channel. atToc159, atToc132 and 

atToc120 are homologues of the Toc159 family in Arabidopsis, and have been shown to 

assemble into structurally and functionally distinct Toc complexes. Targeting of atToc159 to 

the chloroplast outer membrane is mediated by its GTPase (G-) domain. However, the role of 

the acidic (A-) domain in targeting of the receptor to chloroplasts is still unclear. The 

members of the Toc159 family are most variable in the A-domain suggesting that this domain 

might play a role in the functional specificity. The overall goal of this study is to clarify the 

role of the A-domain in the targeting of Toc159 to chloroplasts and in the assembly of distinct 

Toc complexes. In order to reach this goal, in vitro chloroplast targeting and solid-phase 

binding assays focusing on members of the Toc159 family were used. The data suggest that 

atToc132 interacts with both members of the Toc34 family in Arabidopsis (atToc33 and 

atToc34), but that the A-domain affects the targeting and assembly of atToc132 into specific 

Toc complexes by restricting the binding of this receptor parimarily to atToc34. In vitro 

chloroplast targeting assays show that competition with atToc159G also inhibits the targeting 

of atToc132, indicating that atToc132 may not exclusively bind with a specific member of the 

Toc34 family. The A-domain inhibits the targeting of atToc132GM (an A-domain deletion 

mutant of atToc132) to both wild-type and ppi3 (an atToc34 knockout mutant) chloroplasts 
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much more effectively than its targeting to ppi1 (an atToc33 knockout mutant) chloroplasts. In 

addition, in vitro solid-phase binding assays indicate that the A-domain deletion fragment of 

atToc132 increases its affinity for 33G. These results support the contention that the A-domain 

influences the targeting of atToc132 to chloroplasts and the assembly of atToc132-containing 

Toc complexes by inhibiting its interaction with atToc33, thereby promoting an interaction 

with atToc34.  
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1. Introduction 

1.1 Plastids 

  Plastids are a diverse group of semiautonomous organelles found ubiquitously in plant 

and algal cells, and include chloroplasts, leucoplasts and chromoplasts (Pyke, 1999; Bauer et 

al., 2001; Wise, 2007). The progenitors of differentiated plastids are proplastids, which exist 

in the meristematic cells of plants. Depending on the gene expression program and resulting 

sets of proteins produced by the cell, plastids develop into one of the morphologically and 

functionally different types (Pyke, 1999; Bauer et al., 2001; Inoue et al., 2010; Schleiff & 

Becker, 2011). The members of the plastid family play crucial roles in numerous biochemical 

processes, such as photosynthesis, fruit, leaf and flower coloration, amino acid and lipid 

synthesis, and oil and starch storage (Bauer et al., 2001; Lopez-Juez & Pyke, 2005; Inoue et 

al., 2010). Chloroplasts, by far the best studied type of plastid, are responsible for 

photosynthesis, fatty acid and lipid synthesis, nitrogen assimilation and amino acid synthesis, 

sulfur metabolism, and oxygen metabolism (Smith, 2006; Wise, 2007). 

  Although all plastids are derived from proplastids, they develop different internal 

membrane systems depending on their specific function(s). Chloroplasts contain three distinct 

membranes: the double envelope membrane that separates the interior of the chloroplast from 

the cytoplasm, and the thylakoid membrane, which is the membrane where the protein 

complexes required for the biochemical reactions of photosynthesis are located (Waters & 

Langdale, 2009; Lemeille & Rochaix, 2010; Su et al., 2010). These three membranes separate 

chloroplasts into six subcompartments, which are the outer envelope membrane, 
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intermembrane space, inner envelope membrane, stroma, thylakoid membrane, and thylakoid 

lumen (Figure 1).  
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Figure 1. Chloroplast structure. A) a transmission electron micrograph of a wild-type chloroplast from 

Arabidopsis thaliana (Ivanova et al., 2004); B) a diagram of a chloroplast outlining structure and six 

subcompartments (Smith, 2006). 
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1.2 Protein import into organelles 

  As a control centre of eukaryotic cells, the nucleus contains most of the cell’s genetic 

material. After the genes of the nuclear DNA are transcribed, the resulting mRNAs are 

translated into proteins on cytosolic ribosomes. Approximately 45-50% of these proteins 

ultimately reside in one of the many different organelles present in most plant cells (Dalbey & 

von Heijne, 2002), such as mitochondria and chloroplasts. This poses an interesting issue: that 

is, how are such proteins targeted and translocated into different organelles, especially 

mitochondria and chloroplasts, both of which are widely accepted to have originated from 

endosymbiotic events (Gray, 1992; Soll & Schleiff, 2004; Balsera et al., 2009; Schleiff & 

Becker, 2011). As a result of endosymbiosis, mitochondria and chloroplasts function as 

semiautonomous organelles, because the majority of their genetic information was transferred 

to the host nucleus, though both organelles still contain a small genome (Soll & Schleiff, 2004; 

Balsera et al., 2009).  

  There are two broad mechanisms of protein import into organelles: co-translational 

import, in which protein translocation is tightly coupled with translation, and 

post-translational import, in which protein translocation occurs after translation. To date, all 

nuclear-encoded mitochondrial and chloroplast proteins are known to take a post-translational 

import pathway to their target organelle. Although there are distinct protein targeting and 

import pathways for mitochondrial and chloroplast proteins, there are some general principles 

that are shared among these pathways. For example, precursor proteins are translated on 

cytosolic ribosomes with organelle-specific targeting signals, which can be recognized by 
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receptor components of translocons located on the surface of organelles (Schatz & 

Dobberstein, 1996; Schnell & Hebert, 2003; Jarvis, 2008). The proteins are then tranlocated 

across membranes through a protein channel, the targeting sequence is cleaved, and if the 

soluble compartment is the final destination, the mature proteins can be folded (Smith, 2006). 

In cases where the protein is destined for another sub-organellar compartment, the protein will 

contain additional targeting information to direct it to its final destination. 

 

1.3 Chloroplast protein import 

  The majority of the genetic material from the cyanobacterial ancestor that represented 

the original endosymbiont was transferred to the nucleus of the host cells during the 

evolutionary transition from cyanobacteria to plastid (Schleiff & Becker, 2011). 

Approximately 95% of chloroplast proteins, representing 3000~4000 distinct proteins, are 

now encoded in the nucleus, translated on cytosolic ribosomes, and then transported through 

the chloroplast double envelope membrane in order to reach their correct destination (Smith, 

2006; Jarvis, 2008; Kessler & Schnell, 2009). Most of these nucleus-encoded proteins are 

translated with N-terminal cleavable targeting sequences, known as transit peptides, to form 

preproteins. The preproteins are imported into chloroplasts via the Toc (translocon at the outer 

envelope membrane of the chloroplast) -Tic (translocon at the inner envelope membrane of 

the chloroplast) complex pathway (Agne & Kessler, 2009; Bauer et al., 2001; Schleiff and 

Soll, 2003; Smith, 2006; Jarvis, 2008). There are some proteins, however, that contain 

intrinsic targeting information instead of a cleavable N-terminal transit peptide to direct them 
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to the interior of the chloroplast (Jarvis, 2008). Other proteins, such as OEP14 (Outer 

Envelope Protein, 14 kDa) and Toc64/OEP64, are targeted and inserted into the chloroplast 

outer membrane with intrinsic targeting information (Jarvis, 2008). Moreover, other pathways 

exist for targeting proteins to distinct subcompartments. For example, thylakoid lumenal 

proteins are targeted via the Sec (secretory) and Tat (Twin-arginine translocase) pathway 

(Jarvis, 2008), while other thylakoid proteins are targeted via an SRP (signal recognition 

particle-dependent) pathway. 

  In the Toc-Tic protein import pathway, transit peptides play an essential role in targeting 

proteins to chloroplasts. Transit peptides vary in length from 20 to 100 amino acid residues 

and do not possess much sequence conservation (Smith, 2006; Jarvis, 2008). However, they 

are generally positively charged due to their enrichment in the hydroxylated amino acid 

residues, serine and threonine (Von Heijne et al., 1989; Jarvis, 2008). Transit peptide 

recognition is extremely faithful when multiple organelles are included in in vitro studies, in 

which mitochondrial or chloroplast proteins are directed to their destinated organelles without 

any mis-targeting (Vothknecht & Soll, 2007). In addition to ensuring the fidelity of protein 

import into chloroplasts, transit peptides can also interact with some cytosolic components, 

such as Hsp70 (heat shock protein of 70kDa) and 14-3-3 proteins, whose functions are to 

prevent the preproteins from folding prematurely as preproteins are translocated in an 

unfolded state (Vothknecht & Soll, 2007; Jarvis, 2008). It has also been reported that Hsp70 

and 14-3-3 proteins may be involved in the targeting of preproteins to the chloroplast surface 

(May & Soll, 2000; Zhang & Glaser, 2002; Rial et al., 2003). 
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  Import into chloroplasts via the Toc-Tic protein import pathway requires energy in the 

form of ATP and GTP at distinct steps. At first, the Toc complex recognizes and makes 

reversible contact with the transit peptide of a preprotein, which is an energy-independent step 

(Perry & Keegstra, 1994; Ma et al., 1996). At the second step, the preprotein is transported 

across the outer envelope membrane by inserting deeply into the Toc complex. At the same 

time, it makes contact with the Tic complex to initiate translocation across the inner envelope 

membrane. Here, a low concentration of ATP (< 100 μM) is required, as well as GTP (Ma et 

al., 1996; Young et al., 1999; Jarvis, 2008; Balsera et al., 2009). Finally, at the last step, when 

the preprotein emerges in the stroma, the transit peptide is cleaved by stromal processing 

peptidase (SPP); progression to this stage requires a high ATP concentration environment 

(Pain & Blobel, 1987; Theg et al., 1989; Balsera et al., 2009), so that the mature protein can 

be folded or subsequently targeted to one of the internal chloroplast sub-compartments 

(Figure 2). 
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Figure 2. Toc-Tic complex protein import pathway. Schematic representation shows that most of 

nuclear-encoded chloroplast proteins are modified with N-terminal transit peptide, and transported across the 

double membrane envelope by the Toc-Tic complex pathway. This process requires energy in the form of ATP 

and GTP (adapted from Smith & Schnell, 2004). 
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1.4 The Toc-Tic complexes 

  The core Toc complex is comprised of a ß-barrel membrane channel Toc75 and two 

membrane-bound GTPases Toc34 and Toc159, all of which are named based on their 

molecular weight in kilodaltons (Schnell et al., 1994) (Figure 3). Together they form a 

functional Toc complex. The exact stoichiometry has not yet been conclusively determined, 

but a ratio of one Toc159:four Toc75:four Toc34 has been reported (Schleiff et al., 2003) and 

isolated Toc complexes have been reported to have an apparent mass of 500 kDa (Schleiff et 

al., 2003; Vothknecht & Soll, 2007; Jarvis, 2008). In addition to the core components, Toc64 

and Toc12 have also been found in the Toc complex (Sohrt & Soll, 2000; Becker et al., 2004), 

however, the exact conditions under which they are associated with the Toc complex and 

precise roles of these components in import have not yet been conclusively determined. Most 

Toc and Tic components were originally identified in pea; however, due to its completely 

sequenced genome, Arabidopsis thaliana is now used broadly as the model organism for 

chloroplast targeting research, and Toc and Tic components from Arabidopsis are denoted by 

the inclusion of a two-letter prefix “at” as per the nomenclature agreed upon in 1997 (Schnell 

et al., 1997). 

  Toc75 is one of the most prominent proteins in the outer envelope membrane of 

chloroplasts. There are two domains in this protein: the N-terminal cytosolic domain that 

plays a role in recognizing and associating with the other components of the Toc complex, and 

the C-terminal membrane domain which forms the ß-barrel channel (Sveshnikova et al., 2000). 

Although four Toc75 isoforms (atToc75-I, atToc75-III, atToc75-IV and atToc75-V) have been 

found in Arabidopsis, the knockout of atToc75-III is embryo lethal, and is therefore thought to 
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be essential for the viability of plants from the embryonic stage (Baldwin et al., 2005; Smith, 

2006; Balsera et al., 2009). atToc75-IV and atToc75-V have a role in growth in the dark and 

in the biogenesis of a small subset of proteins, respectively, while atToc75-I is not found to be 

expressed during development (Balsera et al., 2009).  

  Toc34 is a major preprotein receptor. It inserts into the outer envelope membrane by a 

C-terminal transmembrane α-helix and exposes to the cytosol GTPase domain at the 

N-terminal. There are two homologues of Toc34 in Arabidopsis: atToc33 and atToc34, which 

are 60% identical in amino acid sequence (Jarvis et al., 1998). atToc33 is primarily expressed 

in photosynthetic tissues, and atToc34 is expressed more highly in non-photosynthetic tissues 

such as roots (Jarvis et al., 1998; Gutensohn et al., 2000). However, it has been shown that 

these two isoforms can substitute for each other in vivo (Jarvis et al., 1998; Wang et al., 2008; 

Balsera et al., 2009). As a GTPase preprotein receptor, the recognition of the preproteins by 

Toc34 depends on the binding of GTP to its N-terminal GTPase domain (Kouranov & Schnell, 

1997; Sveshnikova et al., 2000; Jelic et al., 2002; Vothknecht & Soll, 2007). Furthermore, 

phosphorylation of preprotein transit peptides and specific sites on atToc33 may affect the 

binding of preproteins to atToc33, while atToc34 cannot be phosphorylated (Vothknecht & 

Soll, 2007).  

  The other GTPase at the outer envelope membrane of chloroplasts is Toc159. There are 

four homologues of the Toc159 family in Arabidopsis: atToc159 atToc132, atToc120 and 

atToc90 (Bauer et al., 2000). All members of this family have a tripartite architecture with a 

N-terminal acidic (A-) domain, a GTPase (G-) domain in the middle, and a membrane anchor 
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(M-) domain at the C-terminus (Figure 4b). The sequences of the GM-domains of the four 

isoforms share 65% identity whereas the A-domains are only 20% identical in amino acid 

sequence, and the length of these domains is variable among the family members (Figure 4a) 

(Bauer et al., 2000). It has been suggested that the A-domain may differentiate the functions 

of members in the Toc159 family, and this has been demonstrated recently by Inoue et al. 

(2010), and in our laboratory (Dutta and Smith, unpublished data). To date, atToc159 and 

atToc90 are proposed to play a role in recognizing photosynthetic proteins, while atToc132 

and atToc120 may associate preferentially with non-photosynthetic proteins (Hiltbrunner et al., 

2001a; Ivanova et al., 2004; Balsera et al., 2009). In addition, atToc132 and atToc120 were 

shown to be functionally redundant since the deletion of either of them individually did not 

result in a phenotype, however, a double mutant lacking both atToc132 and atToc120 was 

lethal (Ivanova et al., 2004). It has also been suggested that homologues of the Toc159 family 

specifically associate with different members in the Toc34 family functioning in the import of 

different classes of preproteins: atToc33 is reported to interact preferentially with atToc159 to 

transport photosynthetic preproteins, and atToc34 primarily associates with atToc132/120 to 

form Toc complexes for non-photosynthetic preprotein import (Ivanova et al., 2004; Wang et 

al., 2008; Balsera et al., 2009; Lee et al., 2009) (Figure 5). 

  There are two more components, Toc64 and Toc12, which have been reported as 

components of the Toc complex. Although it may not be required for import, Toc64 might 

function in transferring preproteins to the core Toc complex (Schleiff & Becker, 2011). Toc12 

is anchored to the membrane and associates with Toc64 and Tic22 at the inner envelope 
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membrane of chloroplasts (Balsera et al., 2009). 

  The exact composition and functions of the translocon at the inner envelope membrane 

of chloroplast (Tic) are less well known than that of the Toc complex. Eight proteins are 

proposed to comprise the Tic complex: Tic110, Tic20, Tic22, Tic40, Tic62, Tic55, Tic32 and 

Tic21 (Figure 3). Tic110, as a central component of the inter membrane translocon, is 

essential for preprotein import into chloroplasts. It contains two membrane domains at the 

N-terminus and a C-terminal hydrophilic domain on the stromal side, which may function in 

recruiting chaperones (Kessler & Blobel, 1996; Balsera et al., 2009; Lee et al., 2009). In 

addition, Tic110 has been proposed to form the preprotein import channel in the inner 

membrane (Heins et al., 2002), although this is not universally accepted (Teng et al., 2006; 

Kikuchi et al., 2009). Another inner membrane translocon component proposed to form at 

least part of the channel is Tic20 (Chen et al., 2002). Tic20 is also reported to be distantly 

related to Tim17, a mitochondrial inner membrane translocon (Reumann & Keegstra, 1999). 

Tic22 is a soluble protein in the intermembrane space (IMS), which interacts with Tic20, the 

Toc complex and preproteins, and therefore it may play a role in passing on preproteins from 

the Toc complex to the Tic complex (Kouranov & Schnell, 1997; Vothknecht & Soll, 2007). 

Tic40 is anchored to the inner membrane by a single N-terminal transmembrane domain. It 

works on coordinating the association of chaperones with preproteins during late stages of 

import (Chou et al., 2003). Furthermore, its stromal domain forms a potential Hsp70 binding 

site (Chou et al., 2003). There are three other components, Tic62, Tic55 and Tic32, believed to 

be regulatory members of the Tic complex. All of them are proposed to interact with Tic110 
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(Caliebe et al, 1997; Kuchler et al., 2002; Hormann et al., 2004). Finally, the function of Tic21, 

the most recently added Tic complex component (Sun et al., 2001), remains to be 

conclusively determined, but is likely a component of the pore through the inner envelope 

membrane (Teng et al., 2006; Kikuchi et al., 2009). 
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Figure 3. The chloroplast protein import apparatus. Diagrammatic representation illustrating the Toc-Tic 

complex is responsible for the recognition and import of preproteins from the cytoplasm into the stroma. 

Components in red are the core translocons responsible for recognizing and binding preproteins; components in 

yellow function in membrane translocation; components in purple are involved in translocation and maturation 

of preproteins; the functions of components in blue are still unknown (Smith 2006). 
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Figure 4. Schematic representation showing the domain structure of the four homologues of the Toc159 family 

in Arabidopsis thaliana (B), and a general structure among the Toc159 family (A). 
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Figure 5. Distinct Toc complexes in Arabidopsis that demonstrate functional specificity. atToc159 interacts with 

atToc33 and functions in recognizing photosynthetic proteins; atToc120 and atToc132 associate with atToc34 to 

recognize non-photosynthetic proteins. 
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1.5 Targeting of Toc159 to chloroplast 

 The majority of outer membrane resident proteins are targeted by intrinsic targeting 

information instead of a cleavable N-terminal transit peptide (Jarvis, 2008). Toc75 is the only 

known outer membrane protein that uses a cleavable transit peptide for targeting to the 

chloroplast outer membrane (Schnell et al., 1994; Tranel et al., 1995; Inoue et al., 2005; 

Andres et al., 2010). There are two portions of the Toc75 targeting signal. One is at the 

N-terminus, which is the same as a standard transit peptide in the Toc-Tic protein import 

pathway. It is cleaved by the stromal processing peptidase (SPP). The other component of the 

targeting signal resides to the C-terminal side of the transit peptide, and is necessary to 

mediate Toc75 targeting to the outer membrane. This targeting signal is cleaved by a type I 

signal peptidase (Inoue et al., 2005; Jarvis, 2008). The exact mechanism used by Toc75 for 

targeting to the outer envelope membrane of chloroplast remains undefined.  

Toc34 is targeted to the outer membrane of chloroplasts by an intrinsic signal located at 

the C-terminus. Indistinguished from Toc-Tic pathway, this process requires both membrane 

translocon and an energy source (Tsai et al., 1999; Jarvis, 2008; Dhanoa et al., 2010). It has 

been shown that the targeting signal of both atToc33 and atToc34 consists of almost the entire 

protein, including their GTPase domain and the C-terminal transmembrane domain (Dhanoa 

et al., 2010). In addition, Dhanoa et al.’s study (2010) also indicates that atToc33 and atToc34 

themselves serve as a protein receptor during their targeting to the outer membrane.  

  The discovery that Toc34 from pea can form homodimers through an interaction 

between individual GTPase domains, combined with the high degree of identity between the 
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GTPase domains of Toc159 and Toc33 gives rise to the possibility that the binding of Toc159 

to chloroplasts involves a homotypic G-domain interaction (Smith et al., 2002b; Jarvis, 2008). 

While the exact mechanism remains enigmatic, targeting of Toc159 to chloroplasts can be 

divided into two steps based on different requirements of GTP during the process. In the first 

step, Toc159 binds to the chloroplast surface: this “binding” step requires the presence of a 

nucleotide, but is supported equally well by GTP or GDP (Smith et al., 2002b; Wallas et al., 

2003). The second step is the insertion of the protein into the outer membrane, during which 

the interaction between two GTPases may happen and insertion efficiency increases in the 

presence of GDP (Smith et al., 2002). When studied in vitro using chloroplast targeting assays, 

Toc159 that has been inserted into the membrane (i.e. reached the second step) can be 

detected by treating the chloroplasts with thermolysin. Thermolysin is a non-specific protease, 

which is able to degrade all exposed regions of a protein. In this case, the protease degrades 

all parts of Toc159 that are not protected by chloroplast membranes, meaning only the 

membrane anchor domain is protected for properly targeted and inserted proteins. 

  In Smith et al.’s (2002) paper, another experiment was done to test the adequacy of each 

domain of atToc159 in targeting itself to chloroplasts. Their analysis showed that both 

atToc159GM (an A-domain deletion fragment of atToc159) and atToc159G (an A- and 

M-domain deletion fragment of atToc159) bind to the chloroplast surface with the same 

efficiency as full-length atToc159. The M-domain alone (atToc159M) has lower binding to 

chloroplasts, but no insertion was detected in the absence of the G-domain. The A-domain 

(atToc159A) itself was not able to bind to chloroplasts at all. Intriguingly, the deletion of the 
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A-domain does not affect the targeting of atToc159. However, another set of experiments 

done by Richardson (2007) indicates that a deletion of the A-domain of atToc132 (a 

homologue of the Toc159 family) stimulates its targeting to chloroplasts. 

 

1.6 The A-domain of Toc159 

  Although its function in targeting members of the Toc159 family to chloroplasts is 

unclear, it is reported that the A-domain is an intrinsically disordered protein (IDP) domain 

(Richardson et al., 2009). IDPs are defined as entire proteins or large segments of proteins 

which lack a well-structured three-dimensional fold (Dyson & Wright, 2005). Interestingly, 

this characteristic of protein structure is common in functional proteins and plays a role in 

many crucial areas such as transcriptional regulation, translation and cellular signal 

transduction (Dyson & Wright, 2005). Around 30% of all proteins in higher eukaryotes are 

IDPs (Dyson & Wright, 2005; Fink, 2005). One of the probable reasons for the disorder of 

proteins is that there is a low content of bulky hydrophobic amino acids, such as Val, Leu, Ile, 

Met, Phe, Trp and Tyr, to form the core of a well-folded protein. Moreover, there is a higher 

percentage of some polar and charged amino acids like Gln, Ser, Pro, Glu and Lys present in 

this group of proteins (Dyson & Wright, 2005). 

Earlier studies found that the A-domain contains high ratio of charged acidic amino acid 

residues, repetitive amino acid sequences, and phosphorylation sites (Hirsch et al., 1994; 

Kessler et al., 1994; Bolter et al., 1998; Chen et al., 2000; Tompa, 2003; Receveur-Brechot et 

al., 2006; Agne et al., 2010). It has also been observed that full-length atToc132 and atToc159 
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(i.e. including the A-domain), and the A-domains themselves migrate aberrantly during 

SDS-PAGE (Richardson et al., 2009; Agne et al., 2010). In Richardson’s experiment, they 

also show that the random coil secondary structure content in atToc132 and atToc159 is 76% 

and 63%, respectively. In total, these data confirm that the A-domain, which constitutes a 

large portion of the Toc159 proteins, is an intrinsically disordered protein. To date, the data 

also suggest that the A-domain may work as a functional regulator in Toc159 as a preprotein 

receptor at the outer membrane of chloroplast. 

 

1.7 Overall objectives 

  Toc159 has been shown to be a major chloroplast protein receptor at the outer envelope 

membrane of chloroplasts in Arabidopsis. Moreover, the targeting of Toc159 to chloroplasts 

and its assembly into the Toc complexes are primarily mediated by the interactions between 

the G-domains of the Toc159 and the Toc34 families. Although the paper by Smith et al. 

(2002b) shows that the deletion of the A-domain does not affect binding or insertion 

efficiency of atToc159 to chloroplast membranes, the exact mechanism of how the A-domain 

affects the targeting of Toc159 and the Toc complex assembly remains undetermined. The 

overall objective of this study is to determine the role of the A-domain in targeting of 

atToc132 to the outer envelope membrane of chloroplasts and in the assembly of 

atToc132-containing Toc complexes. This thesis is presented in three portions, and the 

specific objectives of these sections are: 1) to determine the effect of the A-domain on 

targeting atToc132 to wild-type chloroplasts; 2) to investigate the specific interactions 
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between the members of the Toc159 family and those of the Toc34 family as they relate to 

Toc132/159 targeting; 3) to determine the role of the A-domain in the assembly of distinct Toc 

complexes. 
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2. Materials and Methods 

2.1 in vitro chloroplast protein import assays 

2.1.1 Model organism 

  Although pea was the original model system of chloroplast protein import research, 

Arabidopsis thaliana is now applied as a model organism due to its completely sequenced 

genome and advanced genetic and molecular tools. The reasons that Arabidopsis thaliana is 

utilized broadly are that: 1) small genome of around 125Mb; 2) rapid life cycle, which is 

about six weeks from germination to mature seed; 3) easy growth conditions; and 4) a large 

number of mutant lines are available. All these advantages make Arabidopsis thaliana a good 

model organism for genetic and molecular research on chloroplasts and many other plant 

systems.  

 

2.1.2 Plant growth conditions 

  Seeds of wild-type (ecotype Columbia), ppi1 (atToc33 deletion mutant) (Jarvis et al., 

1998) and ppi3 (atToc34 deletion mutant) (Constan et al., 2004) Arabidopsis thaliana were 

sterilized by washing in 95% ethanol for 5 min, 30% bleach with 0.02% (v/v) Triton-X 100 

for 20 min at 4℃, and subsequently washed 5 times with sterile water in a sterile flowhood. 

Approximately 30 mg of seeds were sown on 150mm x 15mm growth medium plates 

composed of 4.4 g/L Murashige and Skoog media, 10 g/L sucrose and 8 g phytoblend agar 

with final pH of 5.7. Seeds were then stratified to break dormancy at 4℃ for 48 h. Plants were 

grown at 22℃ under a 16:8 hour light:dark cycle in growth chamber (Encornair, Bigfoot 
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Series) for 14-21 days on plates. 

 

2.1.3 Isolation of intact chloroplasts from Arabidopsis thaliana 

  Chloroplasts from wild-type, ppi1 and ppi3 plants were isolated as described previously 

(Brock et al., 1993; Schulz et al., 2004). All centrifuge tubes and buffers were pre-chilled on 

ice. Approximately 40-100 g of green tissue from 14-21 days old Arabidopsis seedlings were 

harvested using a razor blade to separate the tissue from the agar, and homogenized in 

pre-chilled grinding buffer (50 mM Hepes-KOH, pH 7.5, 2 mM EDTA, 1 mM MnCl2, 1 mM 

MgCl2, 330 mM sorbitol, 100 mM ascorbic acid, 0.25% (w/v) BSA, 0.05% (v/v) Sigma 

Protease Inhibitor Cocktail (P9599)) using a PowerGen Homogenizer (Fisher Scientific) at 

setting 6 for approximately 15 seconds. The homogenate was filtered through 2-layer of 

Mirachloth (Calbiochem) into an ice-cold 500 ml centrifuge tube and spun at 1000×g for 8 

min at 4℃ (Beckman Coulter Avanti J-30I centrifuge, JLA 10.5 rotor). The chloroplast pellets 

were resuspended in 4-8 ml of cold grinding buffer by shaking gently on ice. Vigorously 

shaking and pipetting the chloroplast suspension was avoided as this would lead to breakage 

of intact chloroplasts. The suspension was equally layered onto two Percoll gradients 

consisting of a lower (7 ml) 85% Percoll layer (85% (v/v) Percoll, 50 mM Hepes-KOH, pH 

7.5, 330 mM sorbitol, 1 mM MgCl2, 2 mM EDTA, 50 mM ascorbic acid, 0.2% (w/v) BSA) 

and an 8 ml upper (8 ml) 40% or 35% Percoll layer (40% or 35% Percoll, 50 mM 

Hepes-KOH, pH 7.5, 2 mM EDTA, 1 mM MnCl2, 1 mM MgCl2, 330 mM sorbitol, 50 mM 

ascorbic acid, 0.05% (v/v) Sigma Protease Inhibitor Cocktail). Gradients were then 



 24 

centrifuged at 7,700×g for 15 min at 4℃ in a swinging-bucket rotor (Beckman Coulter JS13.1) 

with slow acceleration and deceleration to avoid the mixing of two Percoll gradients. Intact 

chloroplasts at the interface between the two Percoll layers were collected using a 1 ml 

micropipet with a tip that had been cut to produce a wider opening at the end, and transferred 

into another pre-chilled 50 ml centrifuge tube containing HS buffer (50 mM Hepes-KOH, pH 

7.5, 330 mM sorbitol). Chloroplasts were collected by centrifugation at 1000×g for 6 min at 

4℃. 600-1000 μl cold HS buffer was added to resuspend the final intact chloroplast pellets by 

shaking it on ice slowly by hand.   

  The chlorophyll concentration of isolated intact chloroplasts was measured at 652 nm in 

a spectrophotometer by diluting it 100 times into 80% acetone (Arnon, 1949). The final 

chlorophyll concentration was calculated using the formula: A652×dilution factor/36 (dilution 

factor = total volume/volume of sample added = 100) in mg/ml (Richardson, 2007). Chilled 

HS buffer was added to the chloroplasts to dilute the chlorophyll concentration to 1 mg/ml for 

in vitro targeting assays. 

 

2.1.4 in vitro transcription/translation of radiolabeled Toc159 homologues 

  Constructs used as templates for in vitro transcription/translation were 

pET21a:atToc132NoHis (Bauer at al., 2000; Ivanova et al., 2004) , pET21a:132GMNoHis 

(Richardson, 2007), pET21a:132GMHis (described in section 2.3) and pET21d:atToc159 

(Smith et al., 2002b). Translation was achieved using the TNT Coupled Reticulocyte Lysate 

System or TNT Coupled Wheat Germ System (Promega) according to the manufacturer’s 
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instructions. Briefly, 1 μg of plasmid DNA was used for a 50 ul reaction that also included 

[
35

S]Methionine (EXPRES S
35

 Protein Labeling Mix, PerkinElmer) instead of unlabelled 

methionine at 30℃ for 2 h. Consequently, all methionines of the protein produced during the 

reaction were radiolabeled and could be detected in dried SDS-PAGE gels using a 

phosphorimager (Bio Rad Personal Molecular Imager FX). 

 

2.1.5 in vitro chloroplast protein import assays 

  in vitro chloroplast protein import assays were done according to the protocol described 

in Smith et al. (2002a). Each reaction contained chloroplasts equivalent to 30-50 μg 

chlorophyll, 1 mM dithiothreitol (DTT), 5 mM ATP, 1mM GTP, 10 mM methionine, 50 mM 

Hepes-KOH, pH 7.5, 3-4 μl radiolabeled protein, and in some cases different concentrations 

of a protein competitor in a final reaction volume of 100 μl. Before adding a radiolabeled 

version of Toc159 or its homologues, the other components of the reaction were equibrated at 

26℃ for 5 min. The import reaction took 30 min in a 26℃ waterbath. Chloroplasts were 

reisolated by diluting the reaction with 400 μl HS buffer, transfering it to the top of an 800 μl 

cushion of 40% or 35% Percoll, and centrifuging at 1000×g for 6 min to collect intact 

chloroplasts and to remove unbound radiolabeled proteins. Chloroplast pellets (~100 μl) were 

resuspended with 100 μl HS buffer and the thermolysin treatment was done on ice for 30 min 

after adding CaCl2 to a final concentration of 1 mM, and 0.2 mg/ml thermolysin. 10 mM 

EDTA was added to stop the proteolysis. The final chloroplasts were pelleted down at 1000g 

for 5 min and resuspended completely with 20 μl 2×SDS-PAGE sample buffer for analysis on 
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SDS-PAGE. This analysis included a lane on the gel containing 10% of the in vitro translated 

radiolabeled protein that was added to each reaction. Each import reaction (with or without 

the thermolysin treatment) was done in duplicate every time, and was repeated at least two 

times. 

 

2.2 in vitro solid-phase binding assays 

  in vitro solid-phase binding assays were performed following the protocol of Smith et al. 

(2002b) and Ivanova et al. (2004). Briefly, a His-tagged protein (the bait) that had been 

purified from E. coli was immobilized on a 8 μl of Ni-charged resin, and incubated with a 

radiolabled protein (the prey). The binding efficiency of the prey with the bait could be 

quantitated in an SDS-PAGE gel using a phosphorimager after washing and eluting proteins 

from the Ni-charged resin. The reactions started with the preparation of a total amount of resin 

to be used at one time by equilibrating three times with two resin volumes of water followed 

by three washes with two resin volumes of HMK buffer (50 mM Hepes-KOH, pH 7.5, 5 mM 

MgCl2, 40 mM KOAc). The resin was then resuspended with 4 resin volumes of HMK and 

aliquots containing 8 μl of resin were distributed into 1.5 ml microcentrifuge tubes. The bait 

(atToc33G-His or atToc34G-His) at a final concentration of less than 20 mM imidazole was 

added and rotated with the resin at room temperature for 30 min to bind completely to the 

resin. Increasing amounts of bait were immobilized on the resin (see figure legends for 

amounts). The resin with immobilized bait was washed once with 250 μl of HMKIT (50 mM 

Hepes-KOH, pH 7.5, 5 mM MgCl2, 40 mM KOAc, 10 mM imidazole, 0.1% Triton X-100, 0.1 
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mM GTP). 2 μl of radiolabeled protein was diluted 50 times with HMKIT and incubated with 

the resin for 30 min while rotating at room temperature. All steps from this point on were 

done in a 4℃ cold room in order to limit the rate of dissociation of bait and prey. The resin 

was washed with 350 μl HMKIT three times and resuspended with ~20 μl 1×SDS-PAGE 

sample buffer (350 mM Tris, 5% (w/v) SDS, 80 mM DTT, 7.5% (v/v) glycerol, 1.5% (v/v) 

saturated bromophenol blue, 775 mM imidazole) to elute resin-bound proteins. The eluted 

samples plus 10% loading control of the in vitro translated radiolabeled protein were resolved 

on SDS-PAGE and visualized in dried gels using a phosphorimager. 

 

2.3 Generation of the different atToc132 constructs 

2.3.1 Generation of atToc132GM construct 

The cDNA encoding the GM-domain of atToc132 (132GM, corresponding to basepair 

1366-3618) was amplified by PCR using GoTaq Hot Start Polymerase (Promega). Gene 

specific primers (Appendix 1, primer set 1) that did not include the stop codon in the 

antisense primer were used, so that the target cDNA could ultimately be expressed as a fusion 

protein with a C-terminal His-tag when inserted into pET21 expression vector. The template 

used was a full-length atToc132 cDNA cloned into pET21a as described in Bauer et al. (2000). 

The PCR-amplified atToc132GM fragment was then ligated into the pTZ57R/T PCR cloning 

vector using the InsTAclone PCR Cloning Kit (Fermentas Life Science) following the 

manufacturer’s instructions. Restriction enzymes NdeI and XhoI were used to release the 

132GM construct from the pTZ57R/T vector by incubating at 37℃ for 3 h. The resulting 
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132GM cDNA fragment with sticky endings was then ligated with pET21a, which was 

digested by the same restriction enzymes, by incubating at 16℃ overnight in the presence of 

T4 DNA Ligase (NewEngland BioLabs). The resulting plasmid including the 

pET21a-132GMHis insert, was then transformed into E. coli strain DH5α and was sequenced 

from the T7/T7 Terminator primers, and using gene specific primers (Appendix 1, primer set 

2) different from those used in PCR (ATCG Sequencing Facility, Sick Kids Hospital, 

Toronto).  

  pET21a:132GMHis, was transformed into E. coli strain BL21 Codon Plus (Novagen) for 

the purpose of over-expressing the corresponding recombinant protein. A number of different 

expression conditions were attempted, but none were successful: 1) 0.4 mM IPTG or 1 mM 

IPTG, 37℃, 3 h; 2) 0.4 mM IPTG, 30℃, 5 h; 3) 0.1 mM, 0.5 mM, or 0.7 mM IPTG, room 

temperature, overnight; and 4) 1.5 mg/ml or 2 mg/ml The Induccer (Molecula Research 

Laboratories), room temperature, overnight. While over-expression was not successful and 

therefore recombinant atToc132GMHis was not used in the thesis, I have included the 

information here for the benefit of future students who might be interested in using this 

reagent. 

 

2.3.2 Generation of atToc132G construct 

  Both the prey and competitor used in solid-phase binding assays must not have a His-tag 

in order to avoid an unwanted association with the His-Bind resin. Consequently, an 

atToc132G construct, which contains a cleavable His-tag, was required as a competitor for 
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this group of assays. A TEV protease cleavage site was chosen to sit between the target 

protein and His-tag, so that it could be cleaved by the TEV protease to release the target 

protein without a His-tag.  

  The cDNA encoding the G-domain of atToc132 (corresponding to basepairs 1366-2382), 

was amplified from pET21a:atToc132 (Bauer et al., 2000; Ivanova et al., 2004) by PCR with 

HotStar HiFidelity DNA Polymerase (Qiagen). Sequence specific sense and antisense primers 

(Appendix 1, primer set 3) were designed to include NdeI and SacI restriction enzyme sites, 

respectively. The PCR-amplified fragment was then directly digested sequentially by NdeI 

and SacI at 37℃ for 6-18 h, and inserted into the corresponding sites of the pET21a:TEV 

vector, by incubating at 16℃ overnight with T4 DNA Ligase (New England BioLabs). The 

ligation product was transformed into E. coli strain DH5α by heat-shock at 42℃ for exactly 

90 sec and incubated at 37℃ overnight. 50 out of ~500 colonies were screened by colony PCR 

(Taq DNA Polymerase, New England Biolabs) using sequencing primers T7 and T7 

Terminator. Positive colonies were grown up in small overnight cultures, and the plasmids 

were isolated using a commercial minipreps kit (Promega). The presence of an insert of the 

correct size (1 kb) was confirmed by double digestion of the plasmid with NdeI and SacI 

(analyzed by agarose gel electrophoresis). 0.8% agarose gels were used at each step to check 

the DNA. The positive constructs were sequenced to definitively confirm their identity 

(ATCG Sequencing Facility, Sick Kids Hospital, Toronto). While over-expression was not 

done and therefore recombinant atToc132GHis was not used in the thesis, I have included the 

information here for the benefit of future students who might be interested in using this 
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reagent.  

 

2.4 Expression and purification of recombinant proteins 

  Recombinant versions 132GHis (A- and M-domain deletion of atToc132) and 132AHis (a 

GM-domain deletion mutant of atToc132) were expressed in E. coli and purified following 

standard procedures. Specifically, the A-domain was purified according to Richardson (2007), 

and the purification of 132GHis was similar to that described by Smith et al. (2004). 

Expression and purification conditions are described in sections 2.4.1 and 2.4.2. The purified 

proteins were used as competitors in in vitro chloroplast import assays (refer to section 2.1.5). 

  

2.4.1 Expression and purification of 132GHis 

  Another protein produced for the purpose of using it as a competitor in place of 

132GMHis, was 132GHis (the G-domain fragment of atToc132 with a C-terminal 6×His tag), 

which was cloned with a C-terminal His-tag. BL21 Codon Plus E. coli containing the 

pET21a-atToc132G-His plasmid was inoculated into 10 ml LB broth with 100 μg/ml 

ampicillin (Amp), 25 μg/ml chloramphenicol (Chl), and 50 μg/ml streptomysin (Strep), and 

was incubated at 37℃ overnight while shaking at 240 rpm. The overnight culture was used to 

inoculate into 1 L of fresh LB (Amp, Chl and Strep) and incubated with shaking at 37℃. 

When the culture reached an OD600 of 0.6-0.8, expression of 132G-His was induced with the 

addition of 2 mg/ml Inducer at room temperature overnight.  

  Cell pellets were collected by centrifugation of the culture at 6000×g for 15 min at 4℃ 
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(Beckman Coulter JLA 10.500 rotor). 30 ml of binding buffer (BB; 25 mM Tris-HCl, pH 6.8, 

50 mM NaCl, 20 mM imidazole) containing 0.8 mg/ml lysozyme were used to resuspend and 

lyse the cell pellet by rotating at 4℃ for 1 h and sonicating with a microtip for 15 sec for 8 

times (setting 6 on a Branso Sonifier 150 sonicator). The cell lysate was centrifuged at 

50000×g for 30 min (Beckman Coulter JS13.1 rotor) to collect the supernatant containing 

soluble proteins, which were stored at -20℃ for later purification. Immobilized metal affinity 

chromatography (IMAC) was used to purify the target proteins from other proteins of the 

lysate. 2 ml His-Bind Ni-charged Resin (Novagen) was allowed to settle in a small 

chromatography column by gravity, and was washed with 6 column volumes of sterile water 

and twice with 4 ml of BB. The soluble proteins of the lysate were applied twice to the resin 

by gravity flow (200 μl of the flowthrough was collected for SDS-PAGE). Non-specifically 

bound proteins were removed by washing the resin with 6 column volumes of washing buffer 

(WB; 25 mM Tris-HCl, pH 6.8, 50 mM NaCl, 40 mM imidazole), and 132GHis was eluted in 6 

1-ml fractions of elution buffer (EB; 25 mM Tris-HCl, pH 6.8, 50 mM NaCl, 250 mM 

imidazole). 50% glycerol was added into the elution fractions to a final concentration of 10% 

and proteins were stored at -80℃. 

  

2.4.2 Expression and purification of atToc132AHis 

  Expression and purification of atToc132AHis (132A; the A-domain fragment of atToc132 

with a C-terminal 6×His tag) was achieved following the protocol of Richardson (2007). In 

detail, pET21b:132AHis in BL21 Codon Plus was grown up in the same way as the strain 
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containing pET21a:132GHis (section 2.4.1) in 1 L LB with Amp, Chl and Strep until the 

culture reached an OD600=0.6-0.8. Expression of 132AHis was induced with the addition of 1 

mM IPTG at 37℃ for 3 h by shaking at 240 rpm. The supernatant of the cell lysate was 

collected by centrifugation and 132A was purified by IMAC, following the same protocol for 

the purification of 132GHis, except that the buffers were slightly different. Buffers used for 

IMAC purification of 132AHis were BB (10 mM Tris-HCl, pH 8, 50 mM NaCl, 20 mM 

imidazole), WB (10 mM Tris-HCl, pH 8, 50 mM NaCl, 30 mM imidazole), and EB (10 mM 

Tris-HCl, pH 8, 50 mM NaCl, 250 mM imidazole). 

  132AHis was further purified by Q-sepharose Fast Flow ion exchange media (GE Health 

Sciences) according to Richardson et al. (2009). All the elution fractions containing relatively 

large amounts of proteins (showing thicker bands on SDS-PAGE gels) were combined and 

diluted 1:1 with ion exchange binding buffer (IEBB; 20 mM piperazine, pH 4.5, 0.2 M NaCl). 

1.5 ml ion exchange resin was washed with IEBB in a glass vial 4 times before proteins were 

added and incubated for 10 min at room temperature while rotating. The resin was then 

allowed to settle by gravity and the supernatant (containing unbound proteins) was removed. 

The resin was washed by mixing it completely 3 times with 5 ml of IEBB each time. The 

resin was transferred into a clean tube and pelleted using a pulse spin to remove as much 

IEBB as possible. Pure 132AHis was eluted by incubating the resin with 4 ml of exchange 

elution buffer (20 mM piperazine, pH 4.5, 0.55 M NaCl) at room temperature while rotating.  

  To obtain more concentrated proteins, and to exchange the protein into HS buffer, a 

centrifugal filter device (Amicon Ultra-15 Ultracel 10k, Millipore) was used. After the 
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centrifuge filter was equilibrated in HS buffer, purified 132AHis was concentrated and 

exchanged into HS buffer by first diluting up to 13 ml with HS buffer and centrifuging at 

4000×g for 25 min at 20℃ 3 times. The flowthrough was discarded and the volume of the 

retentate was recorded each time. Glycerol was added to a final concentration of 10% to the 

concentrated 132AHis for storage at -80℃ for further usage.  

 

2.4.3 Expression and purification of 34GHis 

  34GHis (the G-domain fragment of atToc34 with a C-terminal 6×His tag) was needed as 

a bait for in vitro solid-phase binding assays. Similar to the expression of 132GHis and 132AHis, 

pET3d:atToc34GHis (Weibel et al., 2003) in BL21 Codon Plus strain was grown up until an 

OD600=0.6-0.8 was reached. Expression of 34GHis was induced using 0.1 mM IPTG while 

shaking at room temperature overnight. Cell lysate was obtained following the protocol for 

132GHis and 132AHis and soluble proteins were separated by spinning at 50,000×g for 30 min 

at 4℃. The buffers used in the IMAC purification of 34GHis were BB (20 mM Tris-HCl, pH 

7.5, 300 mM NaCl, 5 mM MgCl2, 1 mM THP (tetrahydrophranyl), 10 mM imidazole), WB 

(20 mM Tris-HCl, pH 7.5, 300 mM NaCl, 5 mM MgCl2, 1 mM THP, 40 mM imidazole) and 

EB (20 mM Tris-HCl, pH 7.5, 300 mM NaCl, 5 mM MgCl2, 1 mM THP, 250 mM imidazole). 

Purification was performed in a 4℃ cold room to protect the protein from degradation. 

 

2.5 SDS-PAGE and phosphorimager analysis 

  Recombinant proteins and chloroplast proteins from the in vitro chloroplast protein 
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import assays and proteins eluted in the in vitro solid-phase binding assays at the final steps 

were resolved using SDS-PAGE (4% stacking gel, 10% or 12% resolving gel depending on 

the size of the proteins) run at constant current (15 mA through stacking and 25 mA through 

resolving gel). Gels were stained with Coomassie blue (0.25% (w/v) Coomassie Blue R250, 

50% (v/v) methanol, 10% (v/v) acetic acid). For the gels that didn’t contain radiolabeled 

proteins, gel drying films (Promega) was used to air dry the gels. Gels containing radiolabeled 

proteins (products from in vitro transcription/translation, in vitro chloroplast targeting assays 

and in vitro solid-phase binding assays) were dried using a heated gel-drying bed (Bio Rad 

Model 224 Gel Slab Dryer) connected to a vacuum pump. Dried gels were exposed to a 

phosphor screen (Bio-Rad Laboratories Ltd.) for 4 to 14 days. The screen was then scanned 

using a phosphorimager (Personal Molecular Imager FX, Bio-Rad Laboratories Ltd.), and the 

radioactivity was quantitated using Quantity One 1-D Analysis software v4.6 (Bio-Rad 

Laboratories Ltd.).  
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3. The role of the A-domain in targeting of atToc132 to isolated chloroplasts 

and in Toc complex assembly 

3.1 Background  

  It has been demonstrated that targeting of Toc159 to the outer membrane of Arabidopsis 

chloroplasts is initiated by the interaction between the G-domains of atToc33 and atToc159 

(Smith et al., 2002b), which gives rise to the notion that the targeting of Toc159 to chloroplast 

happens concurrently with its integration into the Toc complex. 

  Members of the Toc159 receptor family are distinguished from each other by the size 

and sequences of their A-domains (Bauer et al., 2000; Ivanova et al., 2004), which have also 

been shown to be intrinsically disordered protein domains (Richardson et al., 2009). Together, 

these properties lead to the possibility that the A-domain may function in managing the 

specific association between Toc159 family members and other members of the Toc complex. 

Richardson (2007) showed that the A-domain does not affect the binding (Figure 6A, 

atToc159 and 159GM) of atToc159 to wild-type chloroplasts. However, the insertion 

efficiency declines when the A-domain of atToc159 is deleted (Figure 6B, atToc159 and 

159GM). On the contrary, there is a clear increase in the binding efficiency (Figure 6A, 

atToc132 and 132GM) of atToc132 when the A-domain is cleaved, while no dramatic 

differences are observed in its insertion efficiency (Figure 6B, atToc132 and 132GM). These 

data give rise to the hypothesis that the A-domain might influence the insertion of atToc159 

and the binding of atToc132 to the chloroplast outer envelope membranes. Both observations 

suggest that the A-domains do play a role in the assembly of distinct Toc complexes. 
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  In the current study, in vitro chloroplast targeting assays were used to compare the 

targeting efficiency of atToc132 and 132GM to wild-type chloroplasts. In addition, increasing 

concentrations of a competitor, 132A, were added to determine its effect on targeting of 

132GM. For these assays, radiolabeled proteins (full-length atToc132 and 132GM) generated 

using an in vitro transcription/translation system were targeted to isolated wild-type 

chloroplasts. For the competition experiments, increasing concentrations of competitor were 

included. The amount of radiolabeled protein that co-purifies with chloroplasts following the 

protein import assays can be quantified using phosphorimaging after resolving the proteins by 

SDS-PAGE. 
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A. 

 

B. 

 

 

 

Figure 6. Targeting efficiency of Toc159 receptor family-related proteins to chloroplasts isolated from WT 

Arabidopsis. Binding efficiency (A) and insertion efficiency (B) are quantified (Richardson, 2007). 
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3.2 Objectives and hypothesis 

  The objective of the experiments presented in this chapter was to investigate the role of 

the A-domain in targeting of atToc132 to chloroplasts and in the assembly of 

atToc132-containing Toc complexes. I hypothesized that the A-domain restricts the targeting 

of atToc132 by inhibiting its binding to the surface of the outer membrane of chloroplasts. 

 

3.3 Results 

3.3.1 Expression and purification of atToc132AHis 

  atToc132AHis (132AHis) was expressed and purified to be used as a competitor in in vitro 

chloroplast targeting assays following the protocol of Richardson et al. (2009). The 

A-domains of both atToc132 and atToc159 were originally predicted to be intrinsically 

disordered proteins due in part to a high percentage of acidic amino acid residues (Richardson 

et al., 2009). The preponderance of acidic proteins also causes an aberrant electrophoretic 

mobility on SDS-PAGE gels (Bolter et al., 1998; Dyson & Wright, 2005; Richardson et al., 

2009). 132AHis migrated aberrantly at an apparent molecular weight at around 100 kDa 

instead of according to its theoretical molecular weight of ~50 kDa on an SDS-PAGE protein 

gel (refer to section 1.6; Figure 7). Purification of 132AHis was achieved using sequential 

IMAC and ion-exchange chromatography steps. However, sorbitol was added to a final 

concentration of 330 mM to all purified proteins that were used as a competitor in the 

chloroplast targeting assays to maintain isotonic conditions for the chloroplasts and therefore 

to avoid unwanted chloroplast lysis. 
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Figure 7. Expression and purification of atToc132AHis. Protein samples were resolved on a 10% SDS-PAGE gel 

and stained with Coomassie blue. Molecular weight markers (labeled to the left in kDa) are shown in lane 1; lane 

2 is loaded with IMAC-purified 132AHis; lane 3 contains further ion-exchange-purified 132AHis. The black lines 

separate lanes from different SDS-PAGE gels. 
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3.3.2 Effect of the A-domain on targeting of atToc132 to wild-type chloroplasts 

  The targeting efficiency of atToc132 and 132GM to wild-type, ppi1 (atToc33 knockout 

mutant) and ppi3 (atToc34 knockout mutant) chloroplasts was confirmed using in vitro 

chloroplast targeting assays. A doublet appears in all in vitro transcription/translation products 

of full-length atToc132 (Figure 8, lanes 1, 2; Richardson et al., 2009). In addition, an extra 

band of approximately 86 kDa is also noticeable in some in vitro transcription/translation 

products (e.g. Figure 8, lane 2), which may be due to the non-specific proteolysis of the 

A-domain (Bolter et al., 1998). This phenomenon is supported by the finding that “Toc86”, an 

early putative preprotein receptor at the outer membrane of chloroplasts, in fact represents 

only a proteolytic fragment of a larger polypeptide, now named Toc159 (Bolter et al., 1998).  

Indeed, the proteolytic sensitivity of the A-domain is well-documented (Chen et al., 2000). 

Following thermolysin treatment of chloroplasts re-isolated from the chloroplast targeting 

assays, bands can be visualized on SDS-PAGE gels at ~52 kDa. This band represents the 

M-domain of atToc132 (132M, Figure 8, lanes 3, 6), which anchors the protein in the outer 

membrane of chloroplasts and is therefore protected from proteolysis (Bauer et al., 2000; 

Richardson, 2007). The formation of this band after protease treatment is a characteristic 

feature of the Toc159 family and is commonly used to confirm insertion of the proteins into 

the outer envelope membrane, and the Toc complex. 

  By quantitating the density of each band on the phosphorimager-visualized SDS-PAGE 

gel, using the software QuantyOne, the binding and insertion efficiency can by calculated as 

the percentage of in vitro transcription/translation product added into each reaction. The data 
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shows that the binding efficiency of the A-domain deletion construct of atToc132 (132GM) is 

~15%, which is approximately 4% higher than that of full-length atToc132 running at 11% 

(Figure 9). These data are consistent with that of a former student in the Smith’s lab 

(Richardson, 2007; Figure 6), which suggests that the A-domain may play a role in inhibiting 

the binding of atToc132 to wild-type chloroplasts. However, the insertion efficiency of both 

atToc132 and 132GM are approximately equal (~3.7% of in vitro transcription/translation 

products added to import reaction; Figure 9), which indicates that the deletion of the 

A-domain may not affect the insertion of atToc132 into the outer membrane. Intriguingly, the 

results on the targeting to the mutant chloroplasts used in this study (i.e. ppi1 and ppi3) are 

not consistent with those of the previous study by Richardson (2007): 1) full-length atToc132 

and 132GM are targeted to ppi1 chloroplasts with approximately equal binding and insertion 

efficiency of ~12% and ~1.9%, respectively, whereas Richardson reported that the binding 

and insertion efficiency of the A-domain deletion fragment increased by 6% and 0.6% 

compared with full-length atToc132; 2) in Richardson’s study, the binding efficiency of 

132GM to ppi3 chloroplasts is approximately equal with that of atToc132, while 132GM has a 

3% higher binding efficiency than atToc132 in this work (Figure 9). These data illustrate that 

the A-domain may play an inhibitory role in targeting atToc132 to a specific member of the 

Toc34 family. 
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Figure 8. Targeting of atToc132 or 132GM to wild-type, ppi1 or ppi3 chloroplasts. (A) Schematic diagram 

illustrating the set-up of the chloroplast targeting assays; (B)Phosphorimager-visualized SDS-PAGE gels 

following in vitro chloroplast targeting assays comparing targeting efficiency of atToc132 and 132GM to isolated 

chloroplasts. Lanes 1 and 4 contain in vitro transcription/translation products corresponding to 10% of the 

amount used in each import reaction (T). Untreated chloroplasts (corresponding to bound proteins) are shown in 

lanes 2 and 5. Lanes 3 and 6 are loaded with intact chloroplasts treated with thermolysin following the targeting 

assay. 132M represents the M-domain of atToc132 which is protected from thermolysin due to insertion in the 

outer envelope membrane. 
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A. 

atToc132
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Figure 9. Quantitation of targeting efficiency of atToc132 receptor proteins to chloroplasts isolated from 

wild-type, ppi1 or ppi3 Arabidopsis. Binding (A) and insertion (B) efficiencies were quantitated and are 

presented as the percentage of in vitro transcription/translation (IVT) product added to the reaction. Error bars 

correspond to standard error of the mean for ≥2 repeats. The insertion efficiency of 132GM to ppi3 chloroplasts 

was measured only once in duplicate. 
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  To clarify whether the A-domain affects the targeting of atToc132 to chloroplasts by 

inhibiting its binding to the membrane, a set of chloroplast targeting competition assays were 

designed. These experiments were performed by targeting 132GM to wild-type chloroplasts in 

the absence or presence of 0.5, 1.5 or 4 µM of purified recombinant 132AHis as a competitor 

(Figure 10). As shown in Figure 11 both binding and insertion efficiency of 132GM decline as 

an increasing concentration of 132AHis is added as competitor. The binding efficiency falls to 

85.6% and 57.6% of control (binding efficiency of 132GM in the absence of 132AHis), 

respectively, when 0.5 µM and 1.5 µM of 132AHis is applied (Figure 11). The binding 

efficiency further decreases to 22.3% in the presence of a high concentration (4 µM) of 

132AHis (Figure 11). This result confirms that the A-domain inhibits the binding of atToc132 

to the outer membrane of chloroplasts.  

   Interestingly, the insertion efficiency declines more sharply than the binding efficiency 

when 0.5 µM and 1.5 µM 132A is added (Figure 11). Insertion efficiency falls to 57.2% of 

control when 0.5 µM 132AHis is added, and to 25.4% and 12.8% at 1.5 µM and 4 µM of 

132AHis competitor, respectively. These data suggest that the A-domain affects binding and 

insertion of atToc132, but might, in fact, have its strongest effect on insertion. The trend 

observed here is inconsistent with earlier observations by Richardson (2007), who found that 

there were no differences in the insertion efficiency between atToc132 and 132GM targeting 

to wild-type chloroplasts.  

  In summary, the deletion of the A-domain shows a stimulation function in binding of 

atToc132 to the outer membrane of chloroplasts (Figure 9), and the decreased binding 
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efficiency of 132GM in the presence of 132AHis added in trans (in a dose-dependent manner) 

demonstrates that the A-domain plays a role in regulating atToc132 targeting to chloroplasts.  

However, the exact mechanism by which the A-domain might have this effect, in particular 

how it might affect insertion, remains unclear. 
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Figure 10. Targeting of 132GM to wild-type chloroplasts competed with 132AHis. (A) Schematic diagram 

illustrating the set-up of the chloroplast targeting assays; (B) Phosphorimager-visualized SDS-PAGE gels 

following in vitro chloroplast targeting assays comparing the targeting efficiency of 132GM to wild-type 

chloroplasts in the presence of 132AHis. Lane 1 is loaded with in vitro transcription/translation (IVT) products 

corresponding to 1/10 the amount used in each import reaction (T). Lanes 2, 4, 6 and 8 contain untreated 

chloroplasts corresponding to bound proteins. Lanes 3, 5, 7 and 9 contain chloroplasts following thermolysin 

treatment. 132M represents the M-domain of atToc132 which is protected from thermolysin due to insertion in 

the outer envelope membrane. 
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Figure 11. Quantitation of targeting efficiency of 132GM competed with increasing concentration of 132AHis. 

Binding (A) and insertion (B) efficiency of 132GM in the presence of different amount of 132AHis are indicated 

as the percentage of in vitro transcription/translation (IVT) product added to the reaction. Error bars correspond 

to standard error of the mean for ≥3 repeats. The binding and insertion efficiency of 132GM in the presence of 4 

µM 132AHis was measured only once in duplicate.. 
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4. Specific interaction between members of the Toc159 and Toc34 families 

4.1 Background 

  The members of the Arabidopsis Toc159 family, atToc159, atToc132 and atToc120, have 

been proposed to distribute into distinct Toc complexes based on immunoaffinity 

chromatography and solid-phase binding assays (Ivanova et al., 2004). In that paper, they 

illustrated 1) that atToc132 and atToc120 form different Toc complexes from those containing 

atToc159 using immunoprecipitation; 2) that atToc132/120 have a higher affinity than 

atToc159 for atToc34G; and 3) that atToc159 binds to atToc33G with a higher affinity than 

atToc132 or atToc120. Interestingly, the apparent affinity of atToc132 and atToc120 was 

approximately equal for atToc33 and atToc34 using in vitro binding assays; the apparent 

affinity of atToc159 for atToc33, however, was markedly higher than it was for atToc34 

(Ivanova et al., 2004). These data raised the possibility that atToc159 may primarily and 

preferentially associate with atToc33 and atToc132/120 preferentially with atToc34 to form 

distinct Toc complexes. However, the mechanism by which this preferential association might 

occur remains untested. 

  In this chapter, three sets of in vitro chloroplast targeting competition assays will be 

described that were designed to investigate whether the members of the Toc159 family 

(atToc132 and atToc159) specifically interact with members of the Toc34 family. Briefly, 

radiolabeled full-length atToc132 or atToc159 were targeted to wild-type or ppi1 chloroplasts 

in the absence or presence of a G-domain fragment of one of these two homologues (132G 

and 159G) as competitor. It is reported that the G-domain of atToc159 binds to chloroplasts 
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with the same efficiency as full-length and 159GM-domain fragment of atToc159 (Smith et al., 

2002b). Although a similar experiment has not been done for atToc132 or atToc120, it leads to 

the possibility that the presence of 132G or 159G may compete for the targeting of its own 

full-length polypeptide or may compete for the targeting of both homologues. If atToc132 and 

atToc159 preferentially associate with distinct members of the Toc34 family, 132G and 159G 

would be expected to specifically inhibit the targeting of atToc132 or atToc159, respectively, 

by capturing most of the G-domain interaction sites on Toc33/34 at the chloroplast surface. 

 

4.2 Objective and Hypothesis 

  The objective of this study is to examine the specific interactions between members of 

Toc159 family, atToc132 and atToc159, and those of the Toc34 family, atToc33 and atToc34, 

using in vitro chloroplast targeting competition assays. It is hypothesized that atToc132 

primarily associates with atToc34, while atToc159 mainly interacts with atToc33 at the 

chloroplast outer membrane. 

 

4.3 Results 

4.3.1 Expression and purification of atToc132GHis  

  atToc132GHis (132GHis) was expressed and purified to be used in in vitro chloroplast 

targeting competition assays as a competitor. Ideally, the A-domain deletion mutant of 

atToc132 (132GM) would be used here as a competitor for determining the role of the 

A-domain. However, as mentioned in “Materials and Methods” section, attempts to express 
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recombinant 132GMHis in E. coli failed. Since an interaction between the GTPase domain of 

members of the Toc159 and Toc34 families have been shown to be essential for Toc complex 

assembly (Bauer et al., 2002; Smith et al., 2002b), we surmised that the G-domain fragment 

of atToc132 would work as a competitor in these assays in a similar way as 132GM. For the 

same reason, 159G was also used instead of 159GM as a competitor in this set of experiments. 

132GHis was expressed in E. coli and purified using IMAC in the presence of 0.1 mM THP 

(IMAC-compatible reducing agent). The molecular weight of 132G is 37.5kDa (Figure 12). 
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Figure 12. Expression and purification of 132GHis. 132GHis was expressed in E. coli and purified using IMAC 

(pure 159GHis was obtained from Geetika Patel in our lab, and 132GHis was over-expressed  ans purified 

according to the procedure in section 2.4.1). The protein was resolved using SDS-PAGE, and stained with 

Coomassie blue. Lane 1 and lane 3 are loaded with IMAC-purified 132GHis and 159GHis, respectively. The black 

line separates lanes taken from different SDS-PAGE gels run under the same conditions. 
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4.3.2 Specific interaction between members of the Toc159 and Toc34 families 

  The first group of experiments in this section compares the targeting of full-length 

atToc132 or atToc159 to wild-type chloroplasts in the absence or presence of different 

amounts of 159G as the competitor (Figure 13A). We surmised that if 159G interacts 

specifically with atToc33, and if atToc132 interacts specifically with atToc34, 159G would 

compete for targeting of atToc159 to chloroplasts more efficiently than for targeting of 

atToc132. If, on the other hand, there is little specificity for interactions among the Toc 

GTPase domains, then 159G might be expected to compete for the targeting of atToc159 and 

atToc132 with approximately equal efficiency. 0, 0.5 µM, 2 µM and 4 µM of the 159G 

competitor (much higher concentrations than the radiolabeled atToc132 or atToc159 added to 

the reaction) was added to compete with the targeting of either atToc132 or atToc159 of the 

proteins to isolated chloroplasts. The results shown in Figure 14 indicate that 159G competes 

for the binding and insertion of both atToc132 and atToc159 in a dose-dependent manner. 

  The binding efficiency of atToc132 to wild-type chloroplasts declined to 77.3%, 64.3% 

and 32.2% of the efficiency in the absence of 159G when 0.5, 2 and 4 µM of the 159G 

competitor were added, respectively. Meanwhile, the binding efficiency of atToc159 was 

71.4%, 40.5% and 22.0% (Figure 14A) in the presence of 0.5, 2 and 4 µM of the 159G, 

respectively. Therefore, 159G was slightly more effective at competing for the targeting of 

atToc159 than it was for atToc132; specifically, the decrease in binding of atToc159 to 

wild-type chloroplasts by 159G was approximately 6-10% more effective than for atToc132 

binding efficiency. The lowest level of 159G competitor tested (0.5 µM) decreased insertion 
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of atToc132 by ~50%, and by ~60% for atToc159 (Figure 14B). When 2 µM 159G was used 

as the competitor, the insertion efficiency of atToc132 and atToc159 dropped to 37.0% and 

27.4% respectively (Figure 14B). In summary, 159G competes for the targeting of both 

atToc132 and atToc159 to wild-type chloroplasts. The data suggest that atToc159, or at least 

159G, does not exclusively associate with atToc33 or atToc34. However, whether looking at 

the efficiency of either binding or insertion, 159G is a slightly more effective competitor of 

atToc159 than of atToc132, which indicates that atToc159 or 159G may have a slightly higher 

affinity for one or the other member of the Toc34 family. Moreover, the fact that insertion is 

more dramatically affected by the competitor than is binding suggests that the G-domain of 

atToc159 may play a more important role in the insertion of the receptor into the membrane 

than is does in binding it to the outer membrane surface, which is consistent with findings 

from an earlier study on the targeting of atToc159 to chloroplasts (Richardson, 2007). 
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Figure 13. Targeting of atToc132 or atToc159 to wild-type chloroplasts competed with 159G. (A) schematic 

diagram illustrates how the chloroplast targeting assays were set up; (B,C) Phosphorimager-visualized 

SDS-PAGE of the chloroplast targeting assays representing targeting efficiency of atToc132 (B) and atToc159 (C) 

to chloroplasts isolated from wild-type plants competed with increasing concentrations of 159G. Lanes 1 contain 

in vitro transcription/translation products corresponding to 1/10 amount used in each import reaction (T). Lanes 

2, 4, 6 and 8 contain untreated chloroplasts corresponding to bound proteins. Lanes 3, 5, 7 and 9 are loaded with 

intact chloroplasts following thermolysin treatment. The GM fragment is the product of endogenous proteolysis. 

The M fragment represents the thermolysin protected portion of atToc132 or atToc159 (132M or 159M) 
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Figure 14. Quantitation of the targeting efficiency of atToc132 and atToc159 to wild-type chloroplasts competed 

with 159G. Binding (A) and insertion (B) efficiencies were quantitated and calculated as the percentage of in 

vitro transcription/translation (IVT) product added to the reaction. Error bars correspond to standard error of the 

mean for ≥2 repeats. The binding efficiency of atToc159 in the presence of 4µM 159G was measured only once 

in duplicate, and the insertion efficiency in the presence of 4µM 159G was not detected (N.D.). 

 

 

 

Concentration of 159G (µM) 

Concentration of 159G (µM) 

0          0.5         2         4 

0         0.5         2           4 

atToc132 

atToc159 

atToc132 

atToc159 

B
in

d
in

g
 e

ff
ic

ie
n

cy
 

(%
 o

f 
co

n
tr

o
l)

 

In
se

rt
io

n
 e

ff
ic

ie
n

cy
 

(%
 o

f 
co

n
tr

o
l)

 

120 

100 

80 

60 

40 

20 

0 

120 

100 

80 

60 

40 

20 

0 

N.D. 



 56 

  The second group of chloroplast targeting assays involved targeting atToc132 or 

atToc159 to wild-type chloroplasts competed with 132G (Figure 15A). As with the import 

assays competed with 159G (Figure 14), the effect of increasing concentrations of 132G as a 

competitor on targeting of the two preprotein receptors will shed light on whether atToc132 

and atToc159 preferentially associate with a specific member of the Toc34 family. Specifically, 

if 132G competes more effectively with atToc132 than with atToc159, it will suggest that the 

two receptors have distinct binding sites at the chloroplast (presumably one of atToc33 and 

atToc34). If, on the other hand, 132G competes with equal effectiveness for the targeting of 

atToc132 and atToc159, it will indicate that the two receptors share binding sites at the 

chloroplast, and therefore likely do not preferentially interact with either atToc33 or atToc34. 

 The data shown in Figure 16 indicate that the presence of 132G competes for the 

binding and insertion of both atToc132 and atToc159. However, the trend here is distinct from 

that seen when using 159G as the competitor (Figure 14). 

  The binding efficiency of atToc132 declines to 80.5%, 71.7% and 53.9% of the 

efficiency in the absence of competitor in the presence of 0.5, 2 and 4 µM competitor, 

respectively. However, competition with 132G does not show a dose-dependent response for 

the binding of atToc159 to wild-type chloroplasts. Rather, the binding efficiencies drop off 

more dramatically to 23.4%, 40.8% and 23.0% of that without a competitor, with 0.5 µM, 2 

µM and 4 µM 132G, respectively (Figure 16A). The competition of 132G with both atToc132 

and atToc159 confirm that neither of these two receptors exclusively interacts with only one 

member of the Toc34 family. Assuming that atToc33/34 is the primary binding site for 
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atToc132 and atToc159, the data suggest that these receptors, or at least their GTPase domains, 

can interact with either member of the Toc34 family. The addition of 0.5 µM, 2 µM and 4 µM 

132G reduces the insertion efficiency of atToc132 to 66.1%, 53.2% and 26.5% respectively, 

and reduced the insertion efficiency of atToc159 to 50%, 32.3% and 12.2% (Figure 16B). 

Interestingly, the effect of 132G on both the binding and insertion of atToc159 is more 

dramatic than that of atToc132. This might be due to the different amounts of atToc33 and 

atToc34 present in wild-type chloroplasts; specifically, atToc33 is much more abundant than 

atToc34 (Gutensohn et al., 2000). Another possibility is that the A-domain functions in 

inhibiting binding and insertion of atToc132 to atToc33, so that the lack of A-domain allows 

132G to associate with atToc33 simply due to its higher abundance than atToc34. To clarify 

whether the larger amount of atToc33 causes these intriguing results, another chloroplast 

targeting assay was designed using ppi1 chloroplasts (atToc33 knockout mutant) competed by 

132G. 
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Figure 15. Targeting of atToc132 or atToc159 to wild-type chloroplasts competed by 132G. (A) schematic 

diagram illustrates how the chloroplast targeting assays set up; (B,C) Phosphorimager-visualized SDS-PAGE of 

the chloroplast targeting assays representing targeting efficiency of atToc132 (B) and atToc159 (C)  to 

chloroplasts isolated from wild-type plants competed by increasing concentration of 132G. Lanes 1 contains in 

vitro transcription/translation products corresponding to 1/10 amount used in each import reaction. Lanes 2, 4, 6 

and 8 contain untreated chloroplasts corresponding to bound proteins. Lanes 3, 5, 7 and 9 are loaded with intact 

chloroplasts following thermolysin treatment. The GM fragment is the product of endogenous proteolysis. The 

M fragment represents the thermolysin protected portion of atToc132 or atToc159 (132M or 159M). 
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Figure 16. Quantitation of the targeting efficiency of atToc132 and atToc159 to wild-type chloroplasts competed 

with 132G. Binding (A) and insertion (B) efficiencies were quantitated and calculated as the percentage of in 

vitro transcription/translation (IVT) product added to the reaction. Error bars correspond to standard error of the 

mean for ≥3 repeats. The binding efficiency of atToc132 and insertion efficiency of atToc159 in the presence of 

4µM 132G were measured only once in duplicat. 
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  Chloroplasts isolated from ppi1 Arabidopsis, which lack atToc33 (Jarvis et al., 1998), 

were used instead of wild-type in an effort to avoid the complication of having different 

amounts of two members of the Toc34 family at the chloroplast surface as potential docking 

sites for atToc132 and atToc159 (Figure 17). Binding efficiency of atToc132 to ppi1 

chloroplasts falls to 49.9%, 48.4% and 47.6% of that in the absence of a competitor in the 

presence of 0.5 µM, 2 µM and 4 µM 132G, respectively (Figure 18). The competition seen 

here is more dramatic for wild-type chloroplasts, which supports the idea that the difference 

observed between the effectiveness of 132G as a competitor for the targeting of atToc132 and 

atToc159 in the earlier experiment (Figure 16) may be due to the difference in the amount of 

atToc33 and atToc34 in wild-type chloroplasts. A less effective competition with 132G for 

atToc132 to wild-type chloroplasts, where much more atToc33 is located, also indicates that 

the A, M-domain deletion (132G) fragment of atToc132 has a higher affinity for atToc33 than 

full-length atToc132. This result supports the idea that the A-domain plays a role in restricting 

the targeting of atToc132 to atToc34 docking sites on the chloroplast surface by inhibiting its 

binding to atToc33.  

 The insertion efficiencies of atToc132 at 0.5 µM, 2 µM and 4 µM of the 132G 

competitor were 61.9%, 60.7% and 37.1% (Figure 18B), which is similar to the trend 

observed when competing for targeting to wild-type chloroplasts (Figure 16B). An interesting 

point is that the data on 132G’s effect on targeting of atToc132 to ppi1 chloroplasts (Figure 

18B) is similar to its effect on targeting of atToc159 to wild-type chloroplasts (Figure 16B). 

The sharp decrease and stable level of binding in the presence of different concentrations of 
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competitor may illustrate that 132G associates with both members of the Toc34 family. Since 

the G-domain of atToc132 may have a similar affinity for atToc33 and atToc34 (Ivanova et al., 

2004), if our hypothesis that there are distinct Toc complexes at the outer membrane of 

chloroplasts is correct, the A-domain will play a role in regulating the atToc132-containing 

Toc complexes by restricting the interaction between atToc132 and a specific member of the 

Toc34 family. 

  In conclusion, experiments described in this chapter indicate that atToc132 and 

atToc159 do not exclusively associate with specific members of the Toc34 family. However, 

they may have slightly different affinities for atToc33 or atToc34 in order to form structurally 

distinct Toc complexes. In addition, the last set of chloroplast targeting assays raises the 

possibility that the A-domain might affect the targeting of atToc132 to chloroplasts by 

inhibiting its association with a specific member of the Toc34 family, atToc33. 
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Figure 17. Targeting of atToc132 to ppi1 chloroplasts competed with 132G. (A) schematic diagram illustrates 

how the chloroplast targeting assays set up; (B) Phosphorimager-visualized SDS-PAGE of the chloroplast 

targeting assays representing targeting efficiency of atToc132 to chloroplasts isolated from ppi1 plants in the 

presence of increasing concentrations of 132G. Lane 1 contain in vitro transcription/translation products 

corresponding to 1/10 amount used in each import reaction (T). Lanes 2, 4, 6 and 8 contain untreated 

chloroplasts corresponding to bound proteins. Lanes 3, 5, 7 and 9 are loaded with intact chloroplasts following 

thermolysin treatment. 132M represents the M-domain fragment of atToc132. 
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Figure 18. Quantitation of the targeting efficiency of atToc132 to ppi1 chloroplasts competed with 132G. 

Binding (A) and insertion (B) efficiencies were quatitated and calculated as the percentage of in vitro 

transcription/translation (T) product added. Error bars correspond to standard error of the mean of ≥3 repeats. 
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5. The role of the A-domain in the assembly of distinct Toc complexes  

5.1 Background 

  Although distinct Toc complexes, atToc132-atToc34 or atToc159-atToc33, have been 

shown to play roles in recognizing non-photosynthetic and photosynthetic preproteins, 

respectively (Ivanova et al., 2004), data presented in Chapter 4 suggest that atToc132 and 

atToc159 do not exclusively interact with specific members of the Toc34 family. The data do, 

however, indicate that there might still be a difference in the affinity of atToc132 and 

atToc159 for atToc33 and atToc34. In addition to the conclusion of Chapter 3 that the 

A-domain inhibits the binding of atToc132 to wild-type chloroplasts, there is another 

prediction that can be made based on experiments done in Chapter 4, which is that the 

A-domain may affect the targeting of atToc132 to chloroplasts by restricting its binding to 

atToc33.  

  To clarify how the A-domain affects the interaction of atToc132 with the members of the 

Toc34 family, two more sets of experiments were designed: 1) comparison of the binding 

efficiency of full-length atToc132 and 132GM to 33G or 34G (G-domain fragments of 

atToc33 or atToc34) using in vitro solid-phase binding assays; and 2) in vitro chloroplast 

targeting competition assays in which 132GM was targeted to ppi1 or ppi3 (a atToc34 

deletion mutant) chloroplasts competed by different concentrations of 132A. Basically, both 

assays presented in this chapter are designed to eliminate the drawbacks of using wild-type 

chloroplasts in which two members of the Toc34 family are present at the same time, but in 

very different amounts (i.e. atToc33 is much more abundant than atToc34) (Gutensohn et al., 
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2000). More specifically, the use of solid-phase binding assays avoids the effect of all other 

proteins in chloroplasts isolated from plants. In solid-phase binding assays, the binding 

efficiency of radiolabeled proteins to immobilized “bait” proteins can easily be detected and 

quantitated. The radiolabeled proteins used as prey were in vitro transcription/translation 

products of full-length atToc132 and 132GM. 33GHis and 34GHis, which represent 

recombinant versions of the GTPase-domains of atToc33 and atToc34, respectively, with 

C-terminal His-tag fusion, were the bait in these assays.  

 

5.2 Objective and hypothesis 

  Experiments described in this section were designed to clarify the role of the A-domain 

in binding atToc132 to distinct Toc complexes. It is hypothesized that the A-domain restricts 

the binding of atToc132 to members of the Toc34 family by inhibiting its association with 

atToc33, so that the atToc132-atToc34-atToc75 Toc complex is formed preferentially to 

function in recognizing non-photosynthetic “housekeeping” preproteins. 

 

5.3 Results 

5.3.1 Expression and purification of atToc34GHis 

  Recombinant atToc34G with a C-terminal His-tag (34GHis) was expressed and purified 

to be immobilized on His-Bind Ni-charged resin as a bait for in vitro solid-phase binding 

assays. Both members of the Toc34 family in Arabidopsis thaliana (atToc33 and atToc34) 

include a short α-helical C-terminal membrane anchor domain and a GTPase domain which 
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plays an essential role in the core Toc complex (Gutensohn et al., 2000). It is reported that the 

interactions between GTPase domains of atToc159 and atToc33 mediate the targeting of 

Toc159 to chloroplasts as well as its interaction into the Toc complex (Smith et al., 2002b; 

Wallas et al., 2003). 

  In order to avoid degradation of 34GHis, all steps of the IMAC purification process took 

place in a cold room (4℃), and THP (an IMAC-compatible reducing agent) was added into 

each buffer to a final concentration of 0.1 mM to prevent oxidation. IMAC purification 

yielded good concentrations of adequately pure recombinant protein (Figure 19). 
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Figure 19. Expression and purification of 33GHis and 34GHis. Recombinant 33GHis and 34GHis were expressed in 

E. coli and purified using IMAC (33GHis was abteined from Kyle Weston in our lab; expression and purification 

of 34GHis were done as section 2.4.3). Samples were separated using SDS-PAGE gel and stained with Coomassie 

blue. Lane 2 is loaded with IMAC-purified 33GHis. Lane 3 contains IMAC-purified 34GHis. The black line 

separates lanes taken from different SDS-PAGE gels run under the same conditions. 
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5.3.2 Effect of the A-domain on binding of atToc132 to specific members of the Toc34 

family 

  Solid-phase binding assays were used to compare the binding of radiolabeled full-length 

atToc132 and 132GM to increasing amounts of immobilized 33GHis or 34GHis (Figure 20A & 

Figure 21A). 100 , 200 , 300, 400 and 500 pmol of 33GHis or 34GHis were immobilized on the 

His-Bind Ni-charged resin and incubated with the same amount of radiolabeled atToc132 

(Figure 20B & Figure 21B) or 132GM (Figure 20C & Figure 21C). The binding efficiency 

was calculated as the percent of in vitro transcription/translation radiolabeled proteins added 

to the original reaction. If the interaction between the “bait” and the “prey” is genuine, it is 

expected that the amount of prey “pulled down” by the bait will increase as the amount of bait 

increases. If, on the other hand, the bait-prey interaction is non-specific in nature, then the 

amount of prey that is pulled down should not change with the amount of bait, as the bait is 

always in excess in this experiment. 

  When full-length atToc132 binding to 33G was tested, binding efficiency increased from 

1.2% to 11% as the amount of bait (33G) increased from 100 to 500 pmol (Figure 22A). In 

contrast, when 300 , 400 and 500 pmol of 33G was used as bait, the binding efficiency of 

132GM were 21.0%, 18.8% and 18.3%, respectively (Figure 22A), which are dramatically 

higher than the binding efficiency of full-length atToc132. These data are consistent with the 

earlier observation that the deletion of the A-domain of atToc132 stimulates its binding to 33G. 

In other words, the presence of the 132A-domain prevents atToc132 from interacting with 

atToc33. On the other hand, the same general trends are observed for binding of atToc132 and 
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132GM to 34G. atToc132 binding efficiency increased from 4.9% to 23.5% as the 34G bait 

increases, whereas efficiency of 132GM binding to 34G increases from 16.2% to 29.2% for 

132GM (Figure 22B). The overall binding efficiency of full-length atToc132 is higher for 34G 

than for 33G, which is consistent with atToc132 having a higher affinity for atToc34 than for 

atToc33. However, the increase in efficiency of binding to 34G upon removal of the 

A-domain is not as dramatic as observed for 33G. This result suggests that the A-domain 

primarily inhibits the association of atToc132 with atToc33.  
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Figure 20.Solid-phase binding assay: binding of atToc132 or 132GM to immobilized 33GHis. (A) SDS-PAGE 

showing increasing amount of bait, 33GHis, immobilized on the resin. (B) Phosphorimager-visualized 

SDS-PAGE of binding full-length atToc132 to 33GHis. (C) Phosphorimager-visualized SDS-PAGE of binding 
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132GM to 33GHis. Lanes 1 in (B)(C) are loaded with 1/10 amount of radiolabeled protein added in each reaction 

(T). Lanes 2-6 represent binding of radiolabeled protein to 0-500 pmol 33GHis. 

A.               
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Figure 21. Solid-phase binding assay: binding of atToc132 or 132GM to immobilized 34GHis. (A) SDS-PAGE 

showing increasing amount of bait, 34GHis, immobilized on the resin. (B) phosphorimager-visualized 

SDS-PAGE of binding full-length atToc132 to 34GHis. (C) phosphorimager-visualized SDS-PAGE of binding 

132GM to 34GHis. Lanes 1 in (B)(C) are loaded with 1/10 amount of radiolabeled protein added in each reaction 
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(T). Lanes 2-6 represent binding of radiolabeled protein to 0-500 pmol 34GHis. 
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Figure 22 Binding efficiency of different Toc132 constructs to 33GHis (A) or 34GHis (B). The efficiency of 

binding of radiolabeled full-length atToc132 or 132GM was quantitated and is presented as the percentage of in 

vitro transcription/translation (T) product added. Error bars correspond to standard error of the mean of ≥2-time 

repeats. However, the lack of some error bars were due to that they were only detected once, and data of some 

binding reactions were not detected. 
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  Chloroplast targeting competition assays were performed as described earlier. Targeting 

of 132GM to chloroplasts isolated from ppi1 or ppi3 mutant Arabidopsis (rather than 

wild-type as in the earlier assays) was competed by different concentrations of 132AHis 

(Figure 23). The deletion of atToc33 or atToc34 from chloroplasts was expected to give a 

clearer picture of how the A-domain affects the targeting of atToc132 to chloroplasts. Again, 

the binding and insertion efficiency of each reaction is presented as the percent of the 

efficiency of 132GM targeted in the absence of a competitor. 

 The binding efficiency of 132GM to ppi1 chloroplasts was reduced to 79.3%, 86.4% and 

53.1% when 0.5, 1.5 and 4 μM of 132AHis was added as a competitor, and the insertion 

efficiency fell to 84.2%, 74.8% and 53.1%, respectively (Figure 24). Generally, the effect of 

132AHis on targeting of 132GM to ppi1 chloroplasts was not as obvious as it was for 

wild-type chloroplasts, which supports the idea that the A-domain may not influence the 

association between atToc132 and atToc34. To further test this hypothesis, ppi3 chloroplasts 

were used as the target in similar competition assays. These data show that the binding 

efficiency of 132GM decreases to 73.6%, 61.5% and 38.1%, and that the insertion efficiency 

decreases to 54.9%, 59.3% and 29.8% when 132AHis is included at concentrations of 0.5, 1.5 

and 4 μM, respectively (Figure 24). A relatively more dramatic declining trend is evident in 

targeting to ppi3 chloroplasts, which is consistent with the results of the solid-phase binding 

assays indicating that the A-domain inhibits the binding of atToc132 to atToc33. Interestingly, 

however, the decrease in 132GM targeting to ppi3 is still smaller than that to wild-type 

chloroplasts. 
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 In summary, results of the assays presented in this section are consistent with each other, 

and show that the A-domain influences the formation of distinct Toc complexes by inhibiting 

binding of atToc132 to atToc33, thereby increasing the likelihood of binding to atToc34. 
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Figure 23. Targeting of 132GM to ppi1 or ppi3 chloroplasts competed with 132AHis. (A) schematic diagram 

illustrates how the chlorolplast targeting assays were set up; (B,C) Phosphorimager-visualized SDS-PAGE of the 

chloroplast targeting assays representing targeting efficiency of 132GM to ppi1 and ppi3 in the presence of 

increasing concentration of 132AHis. Lanes 1 contain in vitro transcription/translation products corresponding to 

1/10 amount used in each import reaction (T). Lanes 2, 4, 6 and 8 contain untreated chloroplasts corresponding 

to bound proteins. Lanes 3, 5, 7 and 9 are loaded with intact chloroplasts following thermolysin treatment. 132M 

represents the M-domain fragment of atToc132. 
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Figure 24. Quantitation of the targeting efficiency of 132GM to ppi1 and ppi3 chloroplasts competed with 

132AHis. Binding (A) and insertion (B) efficiencies were quantitated and calculated as the percentage of in vitro 

transcription/translation (T) product added. Error bars correspond to standard error of the mean of ≥3 repeats. 
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6. Discussion  

6.1 The role of the A-domain in targeting of atToc132 to chloroplasts and in Toc complex 

assembly 

Targeting of the Toc159 homologue, atToc159, to chloroplasts can be divided into two 

distinct steps: binding of atToc159 to the outer membrane and insertion into the membrane 

(Smith et al., 2002b). The stages can be differentiated following an in vitro targeting assay 

using thermolysin treatment to detect the insertion of Toc159 or other members of the family 

by the production of a characteristic thermolysin-protected fragment corresponding to the 

M-domain. This treatment allows us to determine the efficiency of both steps. During 

targeting of Toc159 to chloroplasts as part of the Toc complex assembly, it was demonstrated 

by Hiltbrunner et al. (2001b) that atToc159 binds to the G-domain of atToc33 through a 

homotypic interaction between GTPase domains. Later studies confirmed that integration of 

atToc159 to chloroplasts is mediated by the interaction between the GTPase domains of 

atToc159 and atToc33 (Bauer et al., 2002; Smith et al., 2002b; Wallas et al., 2003). In addition 

to the observation that the first step, binding of atToc159 to the chloroplast outer membrane 

via an interaction with atToc33, does not consume either GTP or ATP, while the insertion step 

requires the binding of GTP (Smith et al., 2002b), insertion efficiency is more representative 

for the Toc complex assembly. Since the G-domain of atToc132 is homologous to the 

G-domain of atToc159, it has been assumed, but not confirmed, that it also plays a crucial role 

in binding atToc132 to the chloroplast outer membrane and to its assembly into functional Toc 

complexes.  
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  A previous study illustrated that the deletion of the A-domain does not affect the 

insertion of atToc132 into wild-type chloroplasts, rather removal of the A-domain stimulates 

the binding (Richardson, 2007; Figure 6A & B, atToc132 and 132GM). Viewed another way, 

one can say that the presence of the A-domain inhibits the targeting of atToc132 to wild-type 

chloroplasts (Richardson, 2007; Figure 6B, atToc132 and 132GM). Since atToc33 is much 

more abundant in wild-type chloroplasts than atToc34, it seems that the A-domain restricts the 

binding of atToc132 to atToc33. The current study was designed based on the earlier 

observation by Richardson (2007) that the A-domain plays a role in targeting of atToc132 to 

chloroplast outer membranes and in the formation of distinct atToc132-containing Toc 

complexes. 

  In order to confirm the earlier findings on the effect of the A-domain on targeting 

atToc132 to chloroplasts, the targeting efficiency of full-length atToc132 and 132GM to 

wild-type was compared as was described previously (Richardson, 2007; chapter 3). As was 

observed by Richardson (2007), the binding efficiency of atToc132 increases when the 

A-domain is deleted (Figure 6A, atToc132 and 132GM; Figure 9A), suggesting that the 

A-domain may play a role in regulating the targeting of atToc132. It is important to note, 

however, that the difference observed in the current study (~4% on average with the error bar 

of ±6) was not as dramatic as that observed by Richardson (2007) (~5% in average with the 

error bar of ±1). The binding and insertion efficiency of atToc132 and 132GM in this study 

was overall more efficient than in the previous one. Specifically, in the earlier study 

(Richardson, 2007), binding efficiencies of ~2-8% were achieved (Figure 6), as compared to 
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efficiencies on the order of ~10-15% in this study (Figure 9). This phenomenon might be due 

to improvement in the technique used for the in vitro chloroplast targeting assays. 

Nevertheless, both studies show that the deletion of the A-domain stimulates the targeting of 

atToc132 to isolated wild-type chloroplasts. 

  Since the amount of atToc33 and/or atToc34 expressed in wild-type, ppi1 and ppi3 

plants are different, and the concentration of chloroplasts used in each set of assays are not 

exactly the same, the targeting efficiency to chloroplasts isolated from these three plants are 

not directly comparable. The results in the current study show that the binding efficiency of 

atToc132 to chloroplasts isolated from ppi1 mutant plants does not change as compared to the 

A-domain deletion fragment (132GM), while the efficiency of targeting to ppi3 chloroplasts 

increases slightly when the A-domain is deleted (Figure 9A). However, as with targeting to 

wild-type chloroplasts, the increase in the binding efficiency is not dramatic (~3% with the 

error bar of ±3). This result indicates that the A-domain may specifically inhibit the binding of 

atToc132 to atToc33. More data to confirm this interpretation were obtained using solid-phase 

binding and chloroplast targeting competition assays (chapter 5). 

Another group of chloroplast targeting competition assays, involving targeting 132GM 

to wild-type chloroplasts competed by increasing concentration of 132AHis, were designed to 

test the effect of the A-domain on targeting atToc132 to chloroplasts. A clear decrease in both 

binding and insertion was observed as higher concentrations of 132AHis were added in the 

132GM targeting assay (Figure 11), which confirms that the A-domain has an inhibitory effect 

on targeting of atToc132 to chloroplasts. An intriguing point here is that the inhibitory effect 
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is increased as more 132AHis was applied, leading to a much more dramatic effect compared 

with its effect on full-length atToc132 targeting (compare Figures 9 and 11). The data can be 

interpreted to mean that the A-domain restricts the targeting of atToc132 to chloroplast outer 

membranes by occupying specific docking sites at the chloroplast membrane thereby 

preventing atToc132 from gaining access to its binding site (presumed to be the G-domain of 

atToc33 and atToc34). If this is the case, the A-domain might regulate the targeting of 

atToc132 through steric hindrance. 

  In summary, a set of chloroplast targeting competition assays, in which the targeting of 

132GM was tested in the presence of different concentrations of 132AHis, together with import 

assays comparing the targeting efficiency of full-length atToc132 and 132GM, indicate that 

the A-domain plays a role in restricting the targeting of atToc132 to chloroplasts isolated from 

wild-type plants, and might in particular be inhibiting the interaction between atToc132 and 

atToc33. The experiments described in chapter 4 were designed to investigate whether 

members of the Toc159 family, atToc132 and atToc159, associates with specific members of 

the Toc34 family. 

 

6.2 Specific interaction between members of the Toc159 and Toc34 families 

  Although the two homologues of Toc34 in Arabidopsis, atToc33 and atToc34, have been 

shown to be functionally redundant in vivo (Jarvis et al., 1998; Wang et al., 2008; Balsera et 

al., 2009), they are expressed differently in the plant. atToc33 mRNA is detected at a higher 

level in young tissues, while the expression of atToc34 is similar in young and old plants 
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(Jarvis et al., 1998; Gutensohn et al., 2000; Constan et al., 2004). These findings raise the 

possibility that the atToc33 and atToc34 proteins are more prominent in green tissues and 

non-green tissues (e.g. root), respectively (Gutensohn et al., 2000; Jarvis, 2008). Each 

member of the Toc159 GTPase family is proposed to function primarily in recognizing 

distinct preproteins: atToc159 preferentially recognizes photosynthetic proteins, while 

atToc132/120 recognizes non-photosynthetic proteins (Bauer et al., 2000; Ivanova et al., 2004; 

Smith et al., 2004; Lee et al., 2009). Connecting these two hypotheses/findings gives rise to 

the possibility that there are multiple protein import pathways at the chloroplast outer 

envelope membrane. The study by Ivanova et al. (2004) provided evidence for this using 

immunoprecipitation experiments and solid-phase binding assays. It was demonstrated that 

atToc159 has a higher affinity for atToc33 than for atToc34, which confirms that atToc159 

and atToc33 might associate with each other to act as photosynthetic protein receptors (Jarvis 

et al., 1998; Kubis et al., 2003). Interestingly, however, atToc132 associates with atToc33 and 

atToc34 with approximately equal affinity in the solid-phase binding assays (Ivanova et al., 

2004). Experiments in chapter 4 were designed to investigate whether atToc132 and atToc159 

exclusively or primarily interact with distinct members of the Toc34 family. 

  Targeting of full-length atToc132 or atToc159 to chloroplasts isolated from wild-type 

plants was measured in the presence of increasing amounts of competitor, 132G or 159G. The 

results show that both 132G and 159G compete for the targeting of atToc132 and atToc159 to 

isolated chloroplasts (Figures 14 & 16). This suggests that the two receptors do not 

exclusively associate with specific homologues of Toc34. Interestingly, 132G and 159G are 
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more effective competitors of the targeting of atToc159 than they are for atToc132. There are 

two possible explanations for this observation: 1) atToc33 is more abundant in wild-type 

chloroplasts than atToc34, and 2) the deletion of the A-domain (i.e. use of G-domains alone as 

competitor) leads to an alteration in atToc132’s affinity for homologues of Toc34. Since 

atToc159 preferentially associates with atToc33, and atToc132 shows similar affinity for 33G 

and 34G in solid-phase binding assays (Ivanova et al., 2004), most of the competitor added to 

the competition assays might bind with atToc33, which is notably more abundant in wild-type 

chloroplasts, thus resulting a more effective competition on targeting of atToc159. The latter 

reason is based on my hypothesis that the A-domain regulates the targeting of atToc132 by 

inhibiting its binding to atToc33. It is possible that the deletion of the A-domain stimulates the 

binding of atToc132 to atToc33, so that the A,M-domain deletion version, 132G, interacts with 

atToc33 with a higher efficiency, while does not compete the association between full-length 

atToc132 and atToc34 in isolated wild-type chloroplasts. 

  In order to clarify the somewhat ambiguous results from the competition assays, another 

set of chloroplast targeting competition assays were performed, in which full-length atToc132 

was targeted to chloroplasts isolated from ppi1 Arabidopsis. The use of these chloroplasts 

should eliminate the effect of atToc33. A similar competition was observed in these assays 

(Figure 18), which confirms that 132G does not compete targeting of atToc132 to wild-type 

chloroplasts as effectively as with its targeting to ppi1 might be due to the more abundant 

atToc33 and a change in the affinity of atToc132 when the A-domain is deleted as mentioned 

above. 
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  Since the G-domains alone of atToc132 and atToc159 were used as competitors in the 

chloroplast targeting assays, another important consideration here is Toc-GTPase dimerization. 

Heterodimerization between the G-domains of atToc33 and atToc159 has been shown to be an 

important aspect of the targeting of atToc159 to the chloroplast outer membrane (Smith et al., 

2002b; Wallas et al., 2003; Weibel at al., 2003; Ivanova et al., 2004; Lee et al., 2009). In 

addition, atToc33 has been shown to homodimerize at the chloroplast outer membrane, 

although the precise function of this dimer formation is not completely defined (Weibel et al., 

2003; Koenig et al., 2008; Lee et al., 2009). The tendency of GTPase domains to form dimers 

means that the G-domain of atToc132 or atToc159 might dimerize in solution when used as 

competitors and might therefore be unable to compete for the targeting of full-length 

atToc132 or atToc159 in the in vitro assays. Simultaneously, the G-domain competitor and the 

G-domain of the radiolabeled protein being targeted to chloroplasts might interact with each 

other to form homodimers or heterodimers, which would also affect (i.e. presumably inhibit 

or compete) the targeting efficiency detected. 

  To further investigate the preference of interaction between members of the Toc159 and 

the Toc34 families, another set of chloroplast targeting competition assays could be used, in 

which the targeting efficiency of full-length atToc132 or atToc159 to wild-type chloroplasts 

could be tested in the presence of excess 33G or 34G. This would be a more direct way to 

illustrate the interaction preference between Toc159 and Toc34. While these assays have not 

been performed as part of the current study, they should ideally be completed before the work 

is ready for publication.  
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In summary, the decline in targeting efficiency of atToc132 and atToc159 to chloroplasts 

isolated from wild-type plants caused by increasing concentrations of either 132G or 159G 

indicates that these two chloroplast protein receptors do not exclusively associate with 

specific members of the Toc34 family. This result is consistent with solid-phase binding 

assays reported previously by Ivanova et al. (2004). Furthermore, although the G-domains of 

atToc132 and atToc159 do not compete for targeting of full-length atToc132 as effectively as 

they do for the targeting of atToc159, competition assays done with chloroplasts isolated from 

ppi1 plants shed more light on this observation. This assay shows that this phenomenon is 

likely explained by the larger amount of atToc33 than atToc34 in wild-type chloroplasts. The 

speculated stimulatory effect of the deletion of the A-domain of atToc132 on its binding with 

atToc33 provides a possible additional explanation. To clarify the effect of the A-domain on 

forming distinct atToc132-containing Toc complexes, two more sets of experiments were 

designed and are described in Chapter 5. 

 

6.3 The role of the A-domain in the assembly of distinct Toc complexes 

 Although the ectopic expression of atToc34 is able to rescue the pale phenotype of ppi1 

(atToc33 null) mutant, another previous study also indicates that these two homologues of 

Toc34 might possess a certain degree of specificity in transporting chloroplast proteins (Jarvis 

et al., 1998; Kubis et al., 2003; Constan et al., 2004). In addition, the solid-phase binding 

assays performed by Ivanova et al. (2004) showed that atToc159 might have a higher affinity 

for 33G than for 34G, while atToc132 or atToc120 bind to 33G and 34G with approximately 
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similar efficiency. This suggests that atToc159 preferentially interacts with atToc33 to form 

structurally distinct Toc complexes (i.e. distinct from those containing atToc132/120 and 

atToc34). Since there is also evidence showing that atToc159 (Smith et al., 2004) and atToc33 

(Kubis et al., 2003) serve as receptors for photosynthetic preproteins, it implies that these 

structurally distinct complexes are also functionally distinct; the atToc159-atToc33 containing 

complexes would be involved in recognizing and transporting photosynthetic proteins. In 

contrast, atToc132 is proposed to play a role in recognizing non-photosynthetic proteins in 

complexes with atToc34. Although the mechanism by which these distinct Toc complexes 

form remains undefined, Inoue et al.’s study (2010) indicates that the A-domain determines 

the specifity of atToc159 towards photosynthetic preproteins and that of atToc120/132 

towards non-photosynthetic “housekeeping” preproteins. 

The GTPase domains of Toc34 and Toc159 are homologous with one another, and have 

been shown to play essential roles in Toc complex assembly. Their similarity makes it difficult 

to imagine how they might specifically interact with only certain other G-domains. The 

A-domains of the Toc159 members, however, have been shown to be intrinsically disordered, 

which is a characteristic of proteins that are able to specifically interact with multiple binding 

partners (Dyson & Wright, 2005; Richardson et al., 2009). It seems possible, therefore, that 

the A-domain might have a function in mediating the binding of Toc159 to a specific member 

of the Toc34 family. The results in Chapter 3 confirm the inhibitory effect of the A-domain on 

targeting of atToc132 to chloroplasts isolated from wild-type plants. Experiments repeated in 

chapter 5 were designed to investigate whether the A-domain restricts the binding of atToc132 
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to a specific member of the Toc34 family. 

  Solid-phase binding assays were used to compare the binding efficiency of full-length 

atToc132 and 132GM to immobilized 33G or 34G. The results indicate that full-length 

atToc132 has a higher binding efficiency for 34G than for 33G (Figure 22). The data are the 

average of results from experiments repeated at least twice. Although the binding efficiency to 

33G is not exactly consistent with that presented by Ivanova et al. (2004), the data in the 

current study confirms the hypothesis that atToc132 primarily associates with atToc34. The 

binding of the A-domain deletion mutant of atToc132 (132GM) to 34G is similar to that of 

full-length atToc132 (Figure 22B). In contrast, the binding efficiency of 132GM increases by 

~10% as compared to atToc132 (Figure 22A), which indicates that the presence of the 

A-domain inhibits the association between atToc132 and atToc33. The use of solid-phase 

binding assays provides a more chemically defined approach for investigating the association 

between members of the Toc34 and Toc159 families. However, there are also drawbacks of 

these assays, which are the absence of other proteins (e.g. Toc75, Hsp70) involved in 

chloroplasts and the lack of a bilayers system. For making up these disadvantages, a set of in 

vitro chloroplasts targeting competition assays were also designed. 

  In the chloroplast targeting competition assays, the targeting efficiency of 132GM to 

ppi1 and ppi3 was tested in the presence of different concentrations of 132A. These 

experiments showed that the targeting of 132GM to ppi3 (atToc34 knockout mutant) 

chloroplasts was competed more effectively than the targeting of 132GM to ppi1 (atToc33 

knockout mutant) by the addition of 132A (Figure 24). This result lends support to the idea 
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that the A-domain restricts the targeting of atToc132 to atToc33 more dramatically than to 

atToc34, which is consistent with the hypothesis that atToc132 primarily associates with 

atToc34.  

 A recent study indicates that 132GM can partially complement the ppi2 (atToc159 

knockout mutant) mutation in Arabidopsis (Inoue et al., 2010). This suggests that the 

A-domain of atToc132 might not only function in regulating the specific association between 

atToc132 and the Toc34 homologues. Since atToc132 has been shown to be unable to rescue 

the ppi2 phenotype (Inoue et al., 2010), another possibility is that the presence of the 

A-domain inhibits the interaction between atToc132 and atToc33, so that blocks the way by 

which atToc132-containing Toc complexes is able to tranlocate photosythetic preproteins. 

In summary, the results from the two groups of experiments described in chapter 5 are 

generally consistent with each other, and indicate that the A-domain affects the targeting of 

atToc132 to Toc complexes by inhibiting its binding to atToc33 thereby promoting its binding 

to atToc34.  

 

6.4 Future recommendation 

It should be noted that there is an obvious limitation to the in vitro chloroplast targeting 

competition assays. In particular, a negative control competitor protein was not included in 

any of the assays. Although the competitors lead to distinct decreases in targeting each time 

the assay was run, I cannot exclude the possibility that the competition was due to a 

non-specific effect of including high concentrations of protein in the targeting assays. To 
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exclude this possibility, control assays need to be run in which another unrelated protein, not 

expected to compete for the targeting of atToc132 or atToc159 to chloroplasts, is used as a 

negative control competitor. To date, I was not able to express and purify a soluble protein 

which is unrelated to proteins of the Toc-Tic complexes. The control experiment should be 

done using a suitable protein before the work is published to confirm that the observation in 

targeting efficiency is not simply a non-specific effect of adding any recombinant protein to 

the targeting assays. It will be important to run such controls before the work is ready for 

publication. 

 There is a disadvantage in the chloroplast targeting assays that the use chloroplasts 

isolated from wild-type, ppi1 and ppi3 plants, in that each plant (and therefore the 

chloroplasts isolated from them) contains different levels of atToc33 and atToc34. Indeed, the 

amount of atToc33 or atToc34 expressed in ppi3 or ppi1 plants, respectively, may be very 

different than in wild-type (Gutensohn et al., 2000). Furthermore, there are other chloroplast 

proteins, which may affect the interaction between homologues of the Toc159 and Toc34 

families. In addition, the targeting efficiency of radiolabeled atToc132 will almost certainly be 

influenced by the presence of endogenous Toc159 family proteins, such as atToc159, 159GM, 

atToc132 and 132GM. This limitation can be overcome by using in vitro solid-phase binding 

assays (as described in the current study) or with in vitro proteoliposome-based targeting 

assays. In solid-phase binding assays, specific proteins produced recombinantly with a 

carboxy- or amino-terminal His tag are immobilized on Ni-charged resin, and used to monitor 

interactions with other “prey” proteins, that can be radiolabeled for ease of detection. In 
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proteoliposome-based targeting assays, specific Toc components are reconstituted into the 

liposome bilayers to mimic Toc complexes (Wallas et al., 2003). In this way, the Toc 

components (i.e. Toc33/34 and Toc75) and their amounts can be controlled more precisely 

than is possible with isolated chloroplasts. These two approaches make it possible to set up a 

protein binding system with precise amounts of specific “bait” proteins. In this study, the 

solid-phase binding assays were used in Chapter 5 to compare the binding efficiency of 

full-length atToc132 and 132GM to 33GHis or 34G.His. The proteoliposome system has not 

been used as part of this study, this would, however, be a possible approach to pursue in the 

future as a way to corroborate the findings presented here. 
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7. Conclusions 

  Chapter 3 in this study illustrates that the A-domain inhibits the targeting of atToc132 to 

chloroplasts isolated from wild-type Arabidopsis. Since atToc33 is expressed at a higher level 

than atToc34 in wild-type Arabidopsis leaves (Jarvis et al., 1998), it is proposed that the 

inhibitory effect of the A-domain might be on the interaction between atToc132 and atToc33. 

However, no significant difference in the targeting efficiency of full-length atToc132 and 

132GM was observed when chloroplasts isolated from ppi1 and ppi3 Arabidopsis were used.  

  To clarify the results of the targeting assays, interaction between members of the Toc159 

and Toc34 families were tested using in vitro solid-phase binding assays. As shown in chapter 

4 atToc132 and atToc159 do not exclusively associate with specific members of the Toc34 

family (Figure 14 & 16). Of note is that competition with 132G is not as effective as 

competition with 159G on the targeting of full-length atToc132 and atToc159 to chloroplasts 

isolated from wild-type chloroplasts. A possible explanation for this observation is that the 

deletion of the A-domain stimulates the association of atToc132 with atToc33, which would 

be noticeable because of the abundance of atToc33 as compared to atToc34 in wild-type 

chloroplasts. The targeting of full-length atToc132 to chloroplasts isolated from ppi1 

Arabidopsis competed with 132G supports this explanation (Figure 18).  

  To further clarify the hypothesis, in vitro solid-phase binding assays were used in 

addition to the chloroplast targeting competition assays reported in Chapter 5. The results 

shown in Figures 22 and 24 suggest that although there is still a slight effect on the interaction 

between atToc132 and atToc34, the A-domain influences the binding of atToc132 to atToc33 
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more so than to atToc34. 

  In conclusion, this study illustrates the inhibitory effect of the A-domain of atToc132, a 

member of the Toc159 chloroplast protein import receptor family in Arabidopsis thaliana, in 

its targeting to the chloroplast outer membrane and in distinct Toc complexes assembly. More 

specifically, 1) results in chapter 3 confirm the inhibitory effect of the A-domain on the 

targeting of atToc132; 2) experiments describted in chapter 4 ilusstrate that atToc132 and 

atToc159 do not exclusive associate with specific member of the Toc34 famlily; and 3) 

chapter 5 states that the A-domain restricts the targeting of atToc132 by inhibiting its binding 

to atToc33. To conclude, the A-domain regulates the specificity of atToc132 towards the 

members of the Toc34 family by inhibiting its interaction with atToc33 at the outer envelope 

membrane. 

  This study, focusing on investigating protein import into chloroplasts, makes use of 

knowledge of plant biology, cellular biology, molecular biology, and biochemistry. As one of 

the most important groups of organisms on earth, plants, especially the photosynthesis taking 

place in them, play an essential role in keeping the balance of the atmosphere. In order to 

further understand this crucial reaction, molecular and cellular biological tools are used for 

investigate the function of components in the organelle in which it takes place, the chloroplast. 

In addition, biochemical methods are also used frequently. 

 Future research should be aimed at investigating other possible function(s) of the 

A-domain of Toc159 homologues and identifying putative functional partners of the 

A-domain (i.e. other components of the Toc complex, transit peptides). These may further 
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clarify the data in this study and will be important for contributing to our understanding of the 

protein import into chloroplasts. 
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Appendix 1: Primers used for PCR amplification and sequencing of atToc132 constructs 

 

 
Primer 

Set 
Purpose of Primers Sequence 

132GM 1 
Incorporate 5' NdeI and 3' XhoI 

restriction enzyme sites for cloning 

S 5'GATACATATGGGTCGTGCTTCTCC 3' 

AS 

5'CTGTCTCGAGTTGTCCATATTGCGTTTG 3' 

132GM 2 

Approximately 20 ucleotides start 

from 500, 1000, and 1500 of 132GM 

sequence for sequencing 

5'GATACATATGGGTCGTGCTTCTCC 3' 

5'AGTGTGGAAGCCACATTTGTT 3' 

5' GCCAGATTTATCTCTACCTGCG 3' 

132G 3 
Incorporate 5' NdeI and 3' SacI 

restriction enzyme sites for cloning 

S 5'GATACATATGGGTCGTGCTTCTCC 3' 

AS 5'GCGTCTGCAGAGCTCTTGCAACTC 3' 

Note: Restriction enzyme sites are underlined. S = sense primer; AS = antisense primer. 
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