
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2012 

The effects of 17α-ethynylestradiol (EEThe effects of 17 -ethynylestradiol (EE22) on gonadal ) on gonadal 

development and differentiation in the estuarine killifish, development and differentiation in the estuarine killifish, Fundulus 

heteroclitus 

Ibrahim Chehade 
Wilfrid Laurier University, cheh8760@mylaurier.ca 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Animals Commons, Biology Commons, Embryonic Structures Commons, Endocrine 

System Commons, Hormones, Hormone Substitutes, and Hormone Antagonists Commons, and the 

Tissues Commons 

Recommended Citation Recommended Citation 
Chehade, Ibrahim, "The effects of 17α-ethynylestradiol (EE2) on gonadal development and differentiation 

in the estuarine killifish, Fundulus heteroclitus" (2012). Theses and Dissertations (Comprehensive). 836. 
https://scholars.wlu.ca/etd/836 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1006?utm_source=scholars.wlu.ca%2Fetd%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholars.wlu.ca%2Fetd%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/941?utm_source=scholars.wlu.ca%2Fetd%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/973?utm_source=scholars.wlu.ca%2Fetd%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/973?utm_source=scholars.wlu.ca%2Fetd%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/952?utm_source=scholars.wlu.ca%2Fetd%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1005?utm_source=scholars.wlu.ca%2Fetd%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/836?utm_source=scholars.wlu.ca%2Fetd%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


 

 

The effects of 17α-ethynylestradiol (EE2) on gonadal 

development and differentiation in the estuarine killifish, 

Fundulus heteroclitus 

 

By 

 

Ibrahim Chehade 

B. Sc., Wilfrid Laurier University, 2008 

 

 

 

THESIS 

Submitted to the Department of Biology 

Faculty of Science 

in partial fulfilment of the requirements for the 

Master of Science in Integrative Biology 

Wilfrid Laurier University 

 

2011 

 

 

 

(Ibrahim Chehade) 2011© 

 



i 

 

Abstract 

Endocrine disrupting substances (EDSs) comprise a wide variety of chemicals 

that perturb normal endocrine function including developmental and reproductive 

processes in vertebrates. The synthetic estrogen 17α-ethynylestradiol (EE2) is a 

commonly-used model EDS because of its environmental relevance and its effects on the 

reproductive endocrine system. Early life-stage exposure of fish to estrogenic EDSs 

causes effects such as intersex (ovotestes in males) and feminization. This study aims to 

confirm the period of gonadal differentiation in the estuarine killifish or mummichog 

(Fundulus heteroclitus) and to determine the sensitivity of gonadal development to EE2. 

Artificially-regressed mummichog were spawned, and fertilized eggs were collected and 

exposed to EE2 (0, 10, 50 and 250ng/L) within 8 h of spawning. Embryos and larvae 

were continually exposed in petri dishes and beakers (26˚C) and sampled weekly from 

hatch date to 10 weeks post-hatch (wph) to determine histologically the sensitivity of 

gonadal development to EE2. Exposure to EE2 (10-250ng/L) resulted in a concentration-

dependent increase in skeletal abnormalities and mortalities; larval lengths proved 

insensitive to EE2 exposure. Complete gonadal differentiation in mummichog occurred 

by 3 wph in control groups, whereas exposure to EE2 accelerated gonadal differentiation 

as early ast 1 wph in all EE2 exposed groups. Sex ratios were skewed (>80% female 

phenotype) within all groups treated with EE2. This study demonstrates that early onset of 

exposure elicits effects on developing mummichog as exposure of EE2 prior to 

establishment of endogenous differentiation pathways influenced and altered sex 

differentiation, resulting in feminized groups of fish at environmentally-relevant and 

higher concentrations. 
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1.1 Endocrine-Disrupting Substances 

Endocrine-disrupting substances (EDSs), comprise exogenous substances or 

mixtures that are able to disrupt the function(s) of the endocrine system in organisms, 

their progeny and/or populations. EDSs can elicit responses even at low concentrations 

and are of increasing concern in the environment (Damstra et al., 2002; Dietrich and 

Krieger, 2009). These substances alter endocrine function by mimicking, altering, or 

inhibiting the action of endogenous hormones responsible for endocrine homeostasis 

(Zillioux et al., 2001). EDSs have been found to occur in industrial wastes, agricultural 

runoff, and municipal wastewater effluents (Sumpter and Jobling, 1995; Jobling et al., 

1998; Routledge et al., 1998; Desbrow et al., 1998). For example, a component of the 

birth control pill (17α-ethynylestradiol; EE2; a synthetic estrogen and demonstrated EDS) 

enters aquatic ecosystems via sewage discharge and is found at low parts per trillion 

concentrations (<5 ng/L; Larsson et al., 1999; Palace et al., 2006). Environmental EDSs 

have been shown to disrupt developmental, endocrine and reproductive processes in the 

laboratory and in the field. Endocrine disruptions in aquatic species can result in altered 

reproductive endocrine status (Leblanc et al., 1997; MacLatchy et al., 2003) and 

secondary sex characteristics (Parrott et al., 2004), reduced gonad size and egg 

production (Parrott et al., 2004), as well as developmental abnormalities during early life 

stages (Maack and Segner, 2004; Boudreau et al., 2004; 2005). Results from field studies 

by Kidd et al. (2007) on fathead minnow (Pimephales promelas) showed that whole-lake 

exposure to EE2 at 5-6 ng/L decreased the reproductive success and sustainability of fish 

populations.  
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For the most part, bioassays on the effects of EDSs have been developed for 

freshwater fish, with fewer studies on marine and estuarine species (Boudreau et al., 

2005). Estuaries are unique areas that receive both industrial (Durhan et al., 2002) and 

municipal (Desbrow et al., 1998) effluents. Effects of EDSs on marine and estuarine 

species may differ from those on freshwater fish because of differences that may occur in 

biological availability of the contaminants based on physical water chemistry and fish 

physiology (Peters et al., 2010). For this reason, EDS studies focusing on estuarine 

species are necessary as these areas serve as breeding and nursery grounds for many 

teleost fish (Boudreau et al., 2005).  

EDSs have the potential to cause significant effects on fish development. The 

reproductive steroids are critical in the development of gonads into either testes or 

ovaries (Yamamoto, 1969; Dietrich and Krieger, 2009). The precise period of 

development at which differentiating gonads are exposed to steroids has major 

implications. This time period is particularly relevant as even the shortest exposure of the 

developing teleost to EDSs may have irreversible effects on the sex and reproductive 

state of the individual (Maack and Segner, 2004), which may over time have adverse 

effects on the entire fish population.  

Various researchers have shown that teleost fish are sensitive to contaminants 

during their early life stages of development (Van Aerle et al., 2002; Örn et al., 2003; 

Boudreau et al., 2004; Maack and Segner, 2004; Peters et al., 2010). Mechanisms by 

which these chemicals cause their effects are not well understood. Therefore, baseline 

studies are required to begin establishing the mechanistic targets of these chemicals and 

their effects on the developing teleost. 
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1.2 Mummichog (Fundulus heteroclitus) 

Mummichog (Fundulus heteroclitus) has been developed as a model fish species 

for EDS studies (MacLatchy et al., 2003; Peters et al., 2007; Burnett et al., 2007; Bosker 

et al., 2009). This species has a long history of use in ecological and physiological 

research (Antz, 1986). It is a small bodied, (semi-) lunar and/or temperature-dependent, 

asynchronous-spawning teleost fish that inhabits a large geographical range along the 

east coast of North America, extending from Florida, USA, to Newfoundland, Canada 

(Armstrong and Child, 1965; Burnett et al., 2007; McMullin et al., 2009). Mummichog 

are commonly found in coastal salt marshes and creeks that experience wide fluctuating 

levels of salinity, oxygen, pH and temperature (Burnett et al., 2007). They are at risk of 

exposure to EDSs throughout their lifecycle due to the release of effluents into their 

environment. As well, their sensitivity to hormonally-active substances has influenced 

their selection as a fish model to study EDSs (MacLatchy et al., 2003; Sharpe et al., 2004; 

Boudreau et al., 2004; 2005; Peters et al., 2010). 

 

1.3 Fish Reproductive Endocrinology 

 In vertebrates, reproduction is controlled by the hypothalamic-pituitary-gonadal 

(HPG) axis. The HPG axis is an interaction between the hypothalamus, which produces 

and secretes gonadotropin releasing hormone (GnRH), the pituitary gland, which is 

responsible for the production and secretion of the gonadotropic hormones (GtHs), and 

the gonads, responsible for the production and secretion of the sex steroid hormones 

(Bieniarz and Epler, 1992; Nagahama, 1994; Dietrich and Krieger, 2009). GnRH does not 

travel from the hypothalamus to the anterior pituitary via the hypophyseal portal system 
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(as found in mammals) but rather, through direct innervations between the pituitary and 

hypothalamic neurons; thus, stimulating the gonadotropes to release GtHs (Dietrich and 

Krieger, 2009). The primary stimuli that regulate these feedback mechanisms are 

environmental cues, such as photoperiod and temperature (Jin et al., 2009). These cues 

stimulate various sensory receptors including those in the pineal gland and are integrated 

within the brain to initiate and regulate reproductive endocrine signalling (Watanabe, 

2009).  

 The GtHs are found in two distinct forms, follicle stimulating hormone (FSH) and 

luteinizing hormone (LH). FSH is responsible for gonadal growth and gametogenesis. LH 

is responsible for gonadal maturation and spawning (Kawauchi et al., 1989). LH targets 

the gonads (granulocytes in females, Leydig cells in males), where it acts to stimulate the 

production of the sex steroids: estrogens, androgens and progesterone. 17β-estradiol (E2) 

is the main estrogen in females, whereas testosterone (T) and 11-ketotestosterone (11-

KT) are the main androgens in males (Borg, 1994; MacLatchy and Van Der Kraak, 

1995). Production of these steroid hormones is mediated by the conversion of cholesterol 

and intermediate steroids via a process known as steroidogenesis (Leusch and 

MacLatchy, 2003).  

 Steroidogenesis is a multi-step biosynthetic pathway involving a number of 

intermediates and enzymatic conversions to produce the final product(s), the sex steroid 

hormones (Leusch and MacLatchy, 2003). The pathway is dependent on the delivery of 

the substrate, cholesterol, from the cytoplasm, across the mitochondrial membrane, to the 

inner mitochondrial membrane (IMM), referred to as cholesterol mobilization. This 

process requires the use of a membrane transporter such as steroid acute regulatory 
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protein (StAR) to move cholesterol across the membrane (Melamed and Sherwood, 

2005). Once in the IMM, the cytochrome P450 side-chain cleavage enzyme (P450scc) 

hydroxylates carbons 20 and 22 and removes a six-carbon residue side chain (C22-C27), 

giving rise to pregnenolone. Pregnenolone is then the precursor for the synthesis of the 

steroid hormones T, E2 and 11-KT (Melamed and Sherwood, 2005) via a multi-step 

enzymatic process. The movement of cholesterol and P450scc conversion are the 

presumed rate-limiting step of the steroidogenic pathway in mammals (Sugawara et al., 

1997; Stocco, 2000); however, this may not be true in fish (Nakamura et al., 2005).  

 

1.4 Effects of Estrogenic EDSs on Reproductive Endocrine Status 

 Estrogenic EDSs have the ability to disrupt the steroidogenic pathway, resulting 

in altered hormone production (Hogan et al., 2010), by closely mimicking the structure of 

E2 and binding to its receptors. Researchers studying 17β-sitosterol, a phytoestrogen in 

pulp mill effluents, have illustrated steroid depression in exposed fish (MacLatchy and 

Van Der Kraak, 1995; Gilman et al., 2003). This depression was explained by the 

inhibition of cholesterol mobilization within the steroidogenic pathway (Leusch and 

MacLatchy, 2003) and further supported by the decrease in transcript levels of StAR 

protein (Sharpe et al., 2007). There has been increasing evidence suggesting that 

estrogens have inhibitory effects on the steroidogenic pathway (MacLatchy and Van Der 

Kraak, 1995; MacLatchy et al., 1997; Leusch and MacLatchy, 2003; Hogan et al., 2010).  

 Estrogens exhibit their effects via receptor-mediated processes. For instance, 

synthetic estrogen will mimic and compete with endogenous E2 for binding to the 

estrogen receptor (ER; Hogan et al., 2010). Binding of estrogen, whether synthetic or 



- 7 - 

 

naturally-produced, to the ER will allow transcription of the estrogen-responsive genes 

and their translation into proteins (e.g., vitellogenin; MacLatchy et al., 2003; Hogan et al., 

2010). While most vertebrates have two subtypes of ER, ERα and ERβ, teleost fish have 

three, one ERα and two ERβ`s (Hogan et al., 2010). These three subtypes are encoded by 

different genes and exhibit different tissue patterns (Hogan et al., 2010). Results by 

Urushitani et al. (2002) indicate that treatment of mummichog with exogenous estrogens 

induces one of the three ER receptors, specifically, ERα.  

  

1.5 Sexual Differentiation and Gonadal Development 

Understanding sexual differentiation and gonadal development is crucial for 

research involving EDSs as these endocrine-active substances have been found to disrupt 

developmental processes in various species such as fathead minnow (Pimephales 

promelas), Japanese medaka (Oryzias latipes), zebrafish (Danio rerio) and mummichog 

(Nimrod and Benson, 1998; Van Aerle et al., 2002; Örn et al., 2003; Boudreau et al., 

2004; 2005; Peters et al., 2010). Two key events are responsible for gonadal development 

of each individual, which are i) sex determination and ii) sex differentiation. Sex 

determination according to Piferrer (2001) is defined as the set of genes responsible for 

the formation of the gonads. Dietrich and Krieger (2009) defined sexual differentiation as 

the process by which the genetic information is phenotypically expressed. In other words, 

it involves a series of events where the primordial undifferentiated gonads differentiate 

into their respective genetically-encoded testes or ovaries.   

Early differentiation in teleost fish begins within the primordial gonad (primary 

gonad, composed of both somatic and germ cells). It is a process which involves a series 
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of events that include the migration of the primordial germ cells along with the formation 

of the gonadal ridges, followed by the differentiation of the gonad into its respective 

testis or ovary, dependent on the encoded genotype (Nakamura, 1998; Piferrer, 2001; 

Strüssmann and Nakamura, 2002; Dietrich and Krieger, 2009). Research on gonadal 

differentiation and development of teleost fish to date has determined that gonads of 

female individuals differentiate sooner than those of males (Piferrer, 2001; Strüssmann 

and Nakamura, 2002); however, the explanation for this remains unknown. Fathead 

minnow sexual differentiation in females occurs as early as 10-25 days post hatch (dph), 

whereas it begins at 90 dph for males (Van Aerle et al., 2004).  

Sexual differentiation may occur through two pathways in fish (Piferrer, 2001). 

The first pathway involves differentiation directly from the primordial gonad into either a 

testis or ovary. The second pathway involves differentiation of all gonads into an ovary-

like gonad; later, half of the fish undergo sexual reversal with degenerating oocytes 

evident along with an increase in number of stromal cells which leads to formation and 

maturation of testes as seen in species such as zebrafish (Piferrer, 2001; Örn et al., 2003). 

Mummichog gonadal differentiation has been suggested to follow the first pathway as 

reported by Shimizu et al. (2008). Gaps remain in the literature as to the critical period of 

differentiation and the mechanistic processes involved, even in well-studied fish species. 

 

1.6 Role of Sex Steroids in Gonadal Differentiation 

It has long been established that the brain-pituitary-gonad axis is intact during 

sexual differentiation in fish and that GnRH, FSH, and sex steroid hormones to the 

greatest degree, fluctuate during this period in development (Feist and Schreck, 1996). 
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Genes responsible for steroid biosynthesis are expressed differently in somatic cells of 

testes than ovaries resulting in the production of sex-specific steroid hormones 

(Nakamura et al., 1998). Testosterone in fish is a hormone that is not directly involved in 

the mechanism of sex differentiation; however, it plays a critical role as a precursor of 

both 11-KT and E2 (Nakamura et al., 1998; Baroiller et al., 1999). 11-KT and E2 have 

direct effects on germ cell development as the former is the major androgen which 

regulates development of testes in fish, whereas, the latter is responsible for inducing and 

maintaining ovarian development (Devlin and Nagahama, 2002; Sandra and Norma, 

2010). 11-KT triggers Sertoli cells to synthesize activin βB (a protein complex) which 

binds to type I and II receptors on spermatogonia A leading to the initiation of mitosis, 

generating spermatogonia B, thereby inducing premeiotic spermatogonial proliferation 

(Ge et al., 1997; Nagahama et al., 1997; Dietrich and Krieger, 2009). E2, on the other 

hand, has been shown to induce feminization by either enhancing gonadal differentiation 

by increasing aromatase (grey mullet; Mugil cephalus; Chang et al., 1999) or repressing 

activity of genes associated with development of testes (e.g., 11β-hydroxylase; rainbow 

trout, Oncorhynchus mykiss; Govoroun et al., 2001). 

 These sex steroids bring about their actions by binding to steroid-specific 

receptors (Sandra and Norma, 2010). ERs and androgen receptors (ARs) have been 

detected in early fish gonads and receptor-mediated mechanisms are the presumed modes 

of action of steroids on gonadal differentiation (Fitzpatrick et al., 1994; Chang et al., 

1999; Devlin and Nagahama, 2002; Hossain et al., 2008; Sandra and Norma, 2010). ARs 

are controlled by the presence of androgens (e.g., 11-KT), whereas, ERs are positively 

controlled in developing fish by the presence of estrogens (e.g., E2; Sandra and Norma, 



- 10 - 

 

2010). This positive control ensures sufficient levels of these receptors are present during 

changes in sex steroid levels suggesting that ERs are important in the regulation of early 

gonadal differentiation (Menuet et al., 2002; Sandra and Norma, 2010; Leet et al., 2011).  

E2 in embryonic and larval fish comes from two sources.  In early-stage embryos, 

estrogens are originally present within the yolk as deposited in the spawned eggs (Devlin 

and Nagahama, 2002; Guiguen et al., 2009); this estrogen depletes as the embryo 

develops.  The second sources of reproductive steroids are the gonads and extra-gonadal 

steroid-synthesizing tissue (e.g., interrenal, brain; Baroiller et al., 1999; Devlin and 

Nagahama, 2002). Synthesized sex steroids cannot be stored; thus, the expression and 

activity of enzymes responsible for synthesizing these sex specific steroids are important 

in their regulation (Piferrer and Guiguen, 2008). For example, in genetically female cells, 

the aromatase enzyme converts testosterone to E2; in genetically male cells, the 

aromatase gene remains inactive, while other steroidogenic enzymes actively convert 

testosterone to 11-KT (Baroiller et al., 1999; Guiguen, 1999; Devlin and Nagahama, 

2002). Sex steroids are critical in sex differentiation and the production of sex steroid-

producing cells exists both prior to and during morphological development of the gonad 

(Nakamura et al., 1998). 

 

1.7 17α-Ethynylestradiol (EE2) 

The estrogenic compound 17α-ethynylestradiol (EE2) has been chosen as a model 

EDS for lifecycle bioassays due to its environmental relevance and its effects on the 

reproductive endocrine system via ER–mediated pathways (MacLatchy et al., 2003; 

Peters et al., 2007; Ankley et al., 2009). EE2 is a synthetic pharmaceutical that is found in 
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contraceptive pills and is used for hormone replacement therapies (Desbrow et al., 1998). 

It is one component of sewage effluents that is not broken down during sewage treatment 

(Ternes et al., 2009). Its concentrations in Canadian sewage treatment plants are usually 

between 1-10ng/L EE2 (Desbrow et al., 1998). This is a concern because the exposure of 

estrogenic EDSs at these concentrations may have potential adverse effects on fish 

reproductive systems and fish populations as demonstrated by various lab and field 

studies (Colborn et al., 1994; MacLatchy et al., 2003; Kidd et al., 2007; Peters et al., 

2007). 

Feminization has been evident in many laboratory studies following a minimal 

exposure to EE2. Studies on zebrafish by Örn et al. (2003) showed that following an 

exposure of 1ng/L of EE2, the sex ratios were skewed towards the female sex, with 

increases in female phenotypes and female-specific proteins, mainly vitellogenin. Van 

Aerle et al. (2002) found similar effects following an exposure of 10ng/L EE2 to fathead 

minnow. 

In a number of studies, mummichog have been exposed to estrogens during their 

early-life stages and its effects on morphological development, including gonadal 

development, were assessed (Urushitani et al., 2002; Boudreau et al., 2004; Peters et al., 

2007; 2010). Peters et al. (2010) studied the effects of EE2 on development of 

mummichog; in this study, exposure of the developing mummichog from pre-fertilization 

(adult generation) through to sexual development (offspring generation) at 100 ng/L 

(nominal; actual concentration was approximately 30% of exposure concentration) for 52 

weeks resulted in skewed sex ratios (86.1% females). EDSs will most likely cause 

gonadal sex change in fish if exposed during the sensitive periods related to gonadal 
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differentiation and development. For mummichog, this sensitive period is yet to be 

characterized; however, Urushitani et al. (2002) have suggested that it occurs between 2-

4 weeks after hatch.  

The exact mechanisms by which these outcomes occur have yet to be clearly 

understood. Thus, it is warranted to characterize the process, pattern and timing of 

gonadal differentiation during the early stages of mummichog development. Establishing 

an understanding for this process will greatly enhance our knowledge on the 

developmental progression of the embryos and the sensitivity of gonadal differentiation 

to EDSs.  

 

1.8 Integrative Biology  

 Concern about EDSs on the environment generates a requirement for a 

coordination of efforts from sub-disciplines of biology including ecology, toxicology, 

endocrinology and molecular biology. The choice of mummichog as a model organism 

for this study is considered to be ideal for an integrative approach as it has previously 

been used in numerous studies in the aforementioned sub-disciplines (MacLatchy et al; 

2003, 2006; Burnett et al., 2007; Fangue et al., 2008; Greytak et al., 2007, 2010; Hogan et 

al., 2010; Peters et al., 2010). Techniques used in this study involve examination at the 

tissue (i.e., histology) and organismal (i.e., steroid concentration) levels. From these data, 

the potential of consequences at the population level can be hypothesized.  

 This study is expected to provide a greater understanding of the effects of EE2 on 

mummichog morphology and development. Mummichog is considered a model species 

for evolutionary, ecological and physiological studies due to its adaptation to its widely 
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fluctuating environment. Including endpoints at various levels of biological organization 

allows the integration of the information to propose consequences of EE2 exposure in 

wild populations. 

 

1.9 Objectives 

 Research linking the pattern of reproductive ontogeny (development of organism 

from embryo to adult) and the effects of EDSs at the developmental level has identified 

differentiation as a very sensitive period in many fish species (van Aerle et al., 2002; Örn 

et al., 2003; Aoki et al., 2011). The first objective of this study is to confirm the critical 

period during gonadal differentiation at which the gonads develop into testes or ovaries in 

mummichog. 

The second objective is to determine the sensitivity of mummichog gonadal 

development to EE2. Endpoints will include hatch rates, hatch success, larval 

abnormalities and mortalities during larval growth (to 10 wph) as well as gonadal 

differentiation (as determined by histology).The null hypotheses are: 

H0: EE2 has no effects on hatch success, growth, mortality or skeletal development. 

H0: EE2 has no effect on the timing and outcome of gonadal differentiation. 
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Chapter 2 

Sensitivity of Early-life Stages of Mummichog  

(Fundulus heteroclitus) to 17α-Ethynylestradiol 
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 2.1 Abstract 

The objectives of this study were to confirm the period of gonadal differentiation 

in the estuarine killifish or mummichog (Fundulus heteroclitus) and to determine the 

sensitivity of gonadal development to EE2. Artificially-regressed mummichog were 

spawned, and fertilized eggs were collected and exposed to EE2 (0, 10, 50 and 250ng/L) 

within 8 h of spawning. Embryos and larvae were continually exposed in petri dishes and 

beakers (26˚C) and sampled weekly from hatch date to 10 weeks post-hatch (wph) to 

histologically determine the sensitivity of gonadal development to EE2. Exposure to EE2 

(10-250ng/L) resulted in a concentration-dependent increase in skeletal abnormalities and 

mortalities; larval lengths proved insensitive to EE2. Histological analyses of 

mummichog gonads showed complete gonadal differentiation occurred by 3 wph in 

control groups, whereas exposure to EE2 (10, 50 and 250ng/L) accelerated gonadal 

differentiation as ovarian tissue was evident by 1 wph. Timing of gonadal differentiation 

was concentration dependent (0 < 10 < 50 < 250ng/L EE2). Sex ratios were skewed 

(>80% female phenotype) within all groups treated with EE2. Whole-body E2 

concentrations were found to be higher at 4 wph compared to 8 wph; however, no 

treatment-related responses were detected in EE2-exposed groups. Environmentally-

relevant levels of EE2 used in this exposure indicate that mummichog developing in 

contaminated estuaries could be at risk for impaired development.  

 

Keywords: 17α-Ethynylestradiol, Endocrine Disruption, Gonadal Differentiation, Skeletal 

Abnormalities, Fundulus heteroclitus, Embryos, Larvae 
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 2.2 Introduction 

 Endocrine-disrupting substances (EDSs) include a variety of anthropogenic 

chemicals with estrogen- or androgen-like properties which have similar modes of action 

to those of endogenous hormones (Ӧrn et al., 2003). EDSs can enter the environment by 

means of industrial wastes, agricultural runoff and municipal wastewater effluents 

(Sumpter and Jobling, 1995; Desbrow et al., 1998; Jobling et al., 1998; Routledge et al., 

1998; Ternes et al., 1999). For example, 17α-ethynylestradiol, EE2, a component of the 

birth control pill and hormone replacement therapy, enters aquatic ecosystems via sewage 

discharge and is found at low parts per trillion concentrations (<5ng/L; Larsson et al., 

1999; Palace et al., 2006). In fish, EDSs have the ability to alter endocrine function 

within individuals and/or their progeny (Zillioux et al. 2001; Damstra et al., 2002; 

Dietrich and Krieger, 2009). Effects of these substances have been evident in field (Kidd 

et al., 2007) and lab studies, resulting in disruption of developmental (Maack and Segner, 

2004, Boudreau et al. 2004; 2005) and reproductive endocrine (MacLatchy et al., 2003) 

processes. In aquatic species, effects of EDSs may result in altered secondary sexual 

characteristics (Parrott et al., 2004); reduced gonad size (Janz et al., 2001) and egg 

production (Parrott et al., 2004); developmental abnormalities (Boudreau 2004; 2005; 

Peters et al., 2010); and altered gonadal differentiation (Ӧrn et al., 2003).  

 Effects of endocrine disruption on early-life developmental processes in fish have 

been studied less than effects on reproduction. Mummichog (Fundulus heteroclitus), a 

species of teleost fish that is dominant in coastal salt marshes and estuaries along the east 

coast of North America (Armstrong and Child, 1965), has demonstrated sensitivity to 

hormonally-active substances in the field (Leblanc et al. 1997) and in the lab (MacLatchy 
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et al., 2003; Peters et al., 2007; 2010). It is considered an ideal candidate for early-life 

development and gonadal differentiation studies due to its size; its ease of breeding, grow 

out and lab husbandry; and the ability to manipulate its reproductive cycles (Burnett et 

al., 2007; Lister et al., 2011). In addition, due to the extent of human activity in coastal 

regions (Oberdörster and Cheek, 2000), it is expected that mummichog are exposed to 

environmental EDSs throughout their lives in many areas.  

EE2 is an environmentally-relevant model EDS with strong affinity for the 

estrogen receptor (Peters et al., 2007; Dietrich and Krieger, 2009; Hogan et al., 2010). It 

is persistent in the environment, has the ability to bioconcentrate in fish tissue and is 

more stable than its natural counterpart, 17β-estradiol (Thorpe et al., 2003; Soares et al., 

2009; Aoki et al., 2011). Levels in the environment have been found to range between 1-

10ng/L EE2 downstream of Canadian sewage treatment plants (STPs; Desbrow et al., 

1998) and are documented to be as high as 42 ng/L EE2 (Ternes et al., 1999). Exposures 

of fathead minnow (Pimephales promelas) and pearl dace (Magariscus margarita) to low 

levels of EE2 during a whole-lake experiment demonstrated the potential for adverse 

effects on fish reproductive systems and populations (Palace et al., 2006; Kidd et al., 

2007).  

Research linking the pattern of reproductive ontogeny to the effects of EDSs has 

identified differentiation as a very sensitive period in many fish species (van Aerle et al., 

2002; Örn et al., 2003; Aoki et al., 2011). Exposure of EE2 to teleost fish during early-life 

stages results in morphological abnormalities (Boudreau et al., 2004), increased 

mortalities (Kidd et al., 2007; Peters et al., 2010), accelerated ovarian differentiation 
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(Aoki et al., 2011) and skewed sex ratios (van Aerle et al., 2002; Örn et al., 2003; Peters 

et al., 2010).  

In mummichog, early-life exposure to estrogenic EDSs causes abnormal 

development and feminization (Urushitani et al., 2002; Boudreau et al., 2004; Peters et 

al., 2007; 2010); however, the sensitive periods for these effects are not well understood. 

Peters et al. (2010) showed that the proportion of mummichog exposed to 100 ng/L EE2 

(nominal; actual concentration was approximately 30% of exposure concentration) had 

skewed sex ratios (86.1%) in the direction of the female sex; however, those fish were 

exposed for 61 wph prior to assessment of their gonadal status. In addition, mummichog 

embryonic development has been well documented (Armstrong and Child, 1965) and 

gonadal differentiation is suspected to occur between 2-4 weeks post hatch (wph; 

Urushitani et al., 2002) although, the precise period has yet to be identified. Further 

investigation is therefore warranted on the early-life development of mummichog in 

order to achieve a greater understanding of the pattern and timing of gonadal 

differentiation and the effects of a model estrogen, EE2, on this differentiation.  

Adult mummichog were regressed and recrudesced and embryos derived from 

these parents were collected within 8 h of spawn and randomly assigned to one of four 

treatments –  0 (control), 10, 50 and 250ng/L EE2 – and continually exposed up to 10 

wph. Endpoints examined included embryonic hatch success, as well as larval/juvenile 

growth, mortality, skeletal abnormalities and gonadal differentiation. This study will 

enhance our knowledge of the reproductive ontogeny of mummichog and the effects of 

EDSs on gonadal developmental.  
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2.3 Materials and Methods 

2.3.1. Mummichog collection and husbandry 

 Mummichog were collected from an uncontaminated site near Shediac, NB, 

Canada (N47°16’, W64°30’) using a beach seine, and transferred to Wilfrid Laurier 

University in an aerated plastic tote. The fish were housed in recirculating, 425L holding 

tanks (Aquabiotech; Coaticook, QC, Canada). Conditions were maintained to meet 

optimal holding requirements (16 ppt salinity, >85% dissolved oxygen, 18˚C and summer 

seasonal photoperiod). Mummichog were fed crushed commercial trout pellets (Corey 

Feed Mills, Fredericton, NB), blood worms (Glycera dibranchiata; Hikari Inc., Hayward, 

CA, USA) and mysis shrimp (Mysis relicta; Hikari Inc.). Well water was mixed with 

Crystal Sea Marine Mixed Buffered Salt (Enterprises International, Baltimore, MD, 

USA) to achieve the desired salinity. Daily water quality tests were conducted to ensure 

that all conditions were met; nitrite and ammonia levels were tested weekly (means 0.17 

and 0.11 mg/L, respectively). Water changes were regularly performed to maintain 

conditions within desired levels.  

 

2.3.2. Chemicals 

 17α-Ethynylestradiol (EE2) was purchased from Sigma-Aldrich, Canada 

(Oakville, ON), dissolved in 100% ethanol (EtOH) and stored at -20°C at a stock 

concentration of 1 mg/mL EE2. Working stock solution was prepared for the exposure at 

10 µg/mL EE2, stored at -20°C and 100 µl was alliquoted daily into 4 L H2O (16 ppt) to 

prepare the working concentration solution of 250ng/L EE2 (0.0025% EtOH) for the 

highest concentration used in the exposure. The 250ng/L EE2 stock was diluted 5x to 
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achieve 50ng/L EE2 (0.0005% EtOH) and 25x to achieve the 10ng/L EE2 (0.0001% 

EtOH) concentrations for the remaining concentrations used. A 100µl aliquot of 100% 

EtOH was dissolved in 4 L H2O (16 ppt) for the exposure control. Homogenizing buffer 

(PBS) and EDTA were also all purchased from Sigma-Aldrich. 

 

2.3.3. Environmental manipulation  

 To provide a supply of fertilized eggs for the exposure, environmental conditions 

were manipulated to artificially regress and then recrudesce male and female 

mummichog (MacLatchy et al., 2003; Bosker et al. 2010). With fish (sexes separated) in 

the recirculating holding tanks, temperature and photoperiod were lowered to 8°C and 8h 

Light:16h Dark by lowering 1°C daily and reducing light 2 h every second day. Fish were 

maintained under these conditions for 30 days and then temperatures and light were 

increased (1°C daily; 2 h light every second day) to stimulate recrudescence to a final 

temperature of 26°C and photoperiod of 16h L:8h D. 

 

2.3.4. Experimental design and exposure 

 Adult fish (sexes separate) were distributed to seven static, filtered tanks (20 L; 

four female tanks and three male tanks; AquaClear 50 Power Filter, Baie d’Urfé, QC). 

Following two weeks of acclimation, sexes were combined (four males and four females) 

and fertilized eggs were collected from the tanks by collecting them from the bottom of 

the tank below a mesh screen (Peters et al., 2007; Bosker et al., 2009). Fertilized eggs 

were collected within 8 h of spawn, randomized and transferred to 250 mL glass dishes at 

an initial density of 120 eggs in 16 ppt saline water per dish (n=6). The bottom of the 
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dishes were placed in water baths and maintained at temperatures of 26 ± 1 °C with a 

photoperiod of 16h L:8h D. Dishes were randomly assigned to one of four treatments: 0 

(control), 10, 50 and 250ng/L EE2 (See Appendix A). Survival and time of hatch were 

monitored over the duration of the hatching period.  

 Upon hatch, larvae were transferred to 500 mL glass dishes containing the 

treatment concentration from its respective dish at a density of 35 ± 5 larvae per dish 

(n=5). Excess larvae were transferred into similar conditions (n=3 for control and 

250ng/L; n=4 for 10ng/L and 50 ng/L) for preliminary studies on whole-body 17β-

estradiol (E2) concentrations. Dishes containing larvae were submerged in water baths at 

a temperature and a photoperiod similar to those of the embryos. Daily water and 

treatment renewals were performed. Once the yolk sac was absorbed (4 d post hatch), 

larvae were fed newly hatched Artemia sp. nauplii (Ocean Star International, UT, USA) 

twice daily. At 5 wph, the marine larval diet, Otohime B2 (360-620 micron diet; Reed 

Mariculture Inc., CA) supplemented the juvenile diet as they were weaned from Artemia.  

 Larval and juvenile growth (length measured to the nearest mm) and vertebral 

abnormalities, calculated as the proportion affected, were assessed on a weekly basis 

from 1 wph to 10 wph. Analyses were performed from images produced using a Nikon 

SMZ1500 stereomicroscope equipped with PaxCam Arc digital camera and Pax-it 

imaging software (Villa Park, IL, USA). Vertebral abnormalities were analyzed based on 

previously established criteria for scoliosis (lateral curvature) and  lordosis (dorsoventral 

curvature; Boudreau et al., 2004; Peters et al., 2010). Larval and juvenile mortalities were 

assessed on a daily basis.  
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2.3.5. Tissue sampling and histological analysis 

 For histological sex evaluation, larval and juvenile mummichog were sampled on 

a weekly basis (n=10 per treatment) from 1 wph to 10 wph. Prior to fixation, specimens 

were sectioned by cutting in front of the operculum and just behind the anal fin, leaving 

the abdominal region, which was fixed in 10% buffered formalin purchased from Sigma-

Aldrich. Tissues were sent to the Ontario Veterinary College (Susan Lapos, University of 

Guelph, ON) for tissue processing, sectioning and staining. Tissues were paraffin-

embedded, transverse (cross) serial sectioned at 5 µm, hemotoxylin and eosin stained and 

mounted on slides using Tissue Tek permanent mounting medium (Sakura Finetek, CA, 

USA). Slides were evaluated using a light microscope equipped with a PaxCam Arc 

digital camera and Pax-it imaging software. For each slide, nine to 12 fields of view were 

analyzed (dependent on tissue availability) to confirm the phenotypic sex of the 

individual. Sections were analyzed for germ cells, undifferentiated gonads, ovaries, testes 

and potential intersex.  

 Histological analyses of the gonads were categorized into five distinct groups: i) 

undefined, ii) germ cells, iii) undifferentiated, and well defined, iv) testes, or v) ovaries. 

Undefined included those in which no gonads were evident as either the gonads had yet 

to develop (e.g., during the first wph) or histological slide sections were missing the area 

in which the gonads were located. Germ cells were categorized by the existence of the 

primordial germ cells and gonadal ridges (Fig. 2.5; Nakamura et al., 1998; Piferrer, 2001; 

Dietrich and Krieger, 2009). The difference between germ cells and undifferentiated is 

minute and subjective. Prior to sexual differentiation, there exists a process of germ cell 

proliferation resulting in the gradual enlargement of the gonad and it is during this period 
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that gonads are classified as undifferentiated (Dietrich and Krieger, 2009).  Testes were 

initially identified by the presence of spermatogonia. During later stages of development, 

testes were examined for the presence of spermatocytes, sperm ducts and a vascular 

system (lobular vs. tubular; Fig 2.7; Dietrich and Krieger, 2009). Ovaries were identified 

during early stages by the presence of the ovarian cavity and perinucleolar oocytes (Fig 

2.8).  

 

2.3.6. Whole-body homogenates 

 Larval and juvenile mummichog were collected at 4 and 8 wph for analysis of 

whole-body E2. Fish in groups of three were transferred to 7mL cryovials and stored at    

-80°C. For analysis, tubes were transferred from the freezer onto ice, fish were weighed 

frozen, placed in aluminum foil and transferred onto dry ice. Samples were crushed and 

transferred into 1.5mL micro-centrifuge tubes containing homogenizing buffer (HB; 

PBS, pH 7.4, 1mM EDTA) in the ratio of 2:1 (HB volume:weight). Samples were 

sonicated on ice (twice for 5 s), vortexed and methanol (MeOH) was added in the ratio of 

4:1 (MeOH volume:HB volume). Samples were incubated at 4°C for 1 h, vortexing 

periodically, and centrifuged (3,000 x g, 5 min, 4°C). Supernatant was collected in 7mL 

glass tubes and the process of methanol addition and centrifugation was repeated twice 

more with a reduced incubation period (30 min/cycle) each time. The homogenate was 

dried using nitrogen gas (N2) and reconstituted with 1mL acetate buffer (50 mM, pH 4.0), 

left at room temperature for 30 min and stored at -20°C freezer for further analysis.  
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2.3.7. Steroid extractions & enzyme immunoassay analysis 

Following tissue sonication, tubes containing acetate buffer were thawed on ice 

and prepared for solid phase extractions (SPE). SPE columns (DSC-18, 100mg; Sigma-

Aldrich) were conditioned by the addition of 1 mL MeOH, followed by 1 mL acetate 

buffer (pH 4.0). Each entire sample was added to the column and was allowed to flow 

through until complete dryness. Once dry, 1 mL hexane was added to the column and the 

total volume collected was discarded and new 7mL glass scintillation vials were obtained 

to collect potential steroids within the column. Ethyl acetate (1% MeOH) was added to 

the column twice (1mL/cycle), collecting potential steroids from the column, and the 

eluate was evaporated under N2 gas. Upon evaporation, precipitate was reconstituted with 

1 mL enzyme immunoassay (EIA) buffer and 50 µl of total sample was analyzed using an 

EIA assay kit (Cayman Chemicals Co., Kit #582251, Cedarlane Labs, Burlington, ON) to 

measure E2 concentrations following manufacturer’s protocol. EIA plates were read at 

405nm for 60 – 90 minutes. 

 

2.3.8. Water sampling and EE2 analysis 

 In order to confirm actual EE2 concentrations, water samples were collected three 

times throughout the exposure in duplicates (at 0 and 8 h) and pre-treated with deuterated 

EE2. Analysis was performed in collaboration with Dr. Mark Servos’s laboratory at 

University of Waterloo (Waterloo, ON). Briefly, EE2 was solid phase extracted, eluted in 

methanol, evaporated under N2, reconstituted in 500 µL methanol and stored at -20°C 

until analysis (<1 week). Prior to analysis, samples were derivatized in order to be 

volatile as required for gas chromatography mass spectroscopy (GC-MS). Following 
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derivatization, samples were analyzed on an Agilent 6890N gas chromatograph (GC) 

with an Agilent 5975B mass spectrometer (MS) detector equipped with an Agilent HP-

5ms (30 m x 0.25 mm x 0.25 µm) column (Agilent Technologies, Mississauga, ON). The 

ions monitored for EE2 identification and quantification were 425.3 and 429.3 m/z.  

Concentrations of EE2 were found to be below the detection limits (50ng/L EE2) for the 

control and 10ng/L samples; however, levels were found to be in the expected range of 

concentration for 50 and 250ng/L EE2 (actual mean values of 57 ± 3.9 and 229 ± 

12.3ng/L EE2, respectively). Therefore, since the values were close to the desired 

concentrations, results are described in terms of the nominal concentrations.  

 

2.3.9. Statistical analysis 

 Statistical analysis was performed using Sigmaplot 11.0 (Systat Software Inc., 

Chicago, IL) and SPSS Statistics 17.0 (IBM Corporation, Armonk, NY, USA). Prior to 

statistical analysis, values calculated as percentages were arc sined and assessed as a 

proportion. These included hatching rates, abnormalities, mortalities and histological 

assessments of the gonads. Assumptions of normality and homogeneity of variance were 

tested using Shapiro-Wilk’s and Levene’s tests, respectively. Data were log10 transformed 

and re-tested when they failed to meet the assumptions for normality. Larval and juvenile 

lengths were assessed using two-way analysis of variance (p < 0.05) to test differences 

among treatments and weeks. Hatching rates and mortalities were assessed using one-

way analysis of variance (p < 0.05) to test the differences among the treatments. 

Abnormalities were analyzed conducting a Kruskal-Wallis test as normality did not meet 

the assumptions. Histological data were assessed using two-way analysis of variance. 
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Tukey’s post hoc test was conducted when applicable to determine between-treatment 

differences. Whole-body E2 data were examined for outliers using Dixon’s test prior to 

analysis. Analyses of whole-body E2 data were then conducted using a two-way analysis 

of variance and Tukey’s post hoc test was used when applicable.  
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2.4 Results 

2.4.1. Embryo hatch success 

 Embryos in 50ng/L EE2 hatched significantly later (1 day) than control group 

compared to those exposed to any other treatment (p=0.021; Fig. 2.1A). All embryos 

hatched between 10-12 days. Percent successful hatch was not different amongst the 

treatments (p=0.171; Fig 2.1B). Average percent successful hatch for all treatments 

combined was 42.4%. 

 

2.4.2. Larval and juvenile development 

 Weekly analysis of larval and juvenile lengths showed no significant differences 

among treatments (p=0.661; Fig. 2.2). Abnormalities observed in larval and juvenile 

mummichog (Fig. 2.3) included vertebral scoliosis (lateral curvature) and lordosis 

(dorsoventral curvature). Percent abnormalities increased in a concentration-related 

manner; with the increase in EE2 concentration, there was a higher incidence of 

abnormalities evident (Control 16%; 10ng/L 20%; 50ng/L 30%; 250ng/L 46% 

abnormalities). There were significant differences observed between the control and 

10ng/L EE2 in comparison to the highest concentration, 250ng/L EE2 (p=0.006). 

 Mortalities in larval and juvenile mummichog increased in a concentration-related 

manner with a significant difference between the 250ng/L EE2 and the control (p=0.042). 

Percentage of mortalities ranged from 18 ± 0.229% in controls to 33 ± 0.967% in 

250ng/L EE2. 
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2.4.3. Gonadal differentiation and development 

 Initial signs of sexual development in the control group were evident at 1 wph 

with 77.8% showing primordial germ cells (22.2% undefined; Fig. 2.4). Sexual 

differentiation was observed at 2 wph with 50% showing ovarian tissue and 20% 

exhibiting testis tissue (Fig. 2.5A). Complete sexual differentiation was evident at 3 wph 

with 30% males and 70% females (Fig. 2.5A; see Appendix B). At the end of complete 

differentiation (3 wph), testis tissue with spermatogonia distributed in an intratubular 

fashion and perinucleolar occytes (Fig. 2.6 and 2.7, respectively) were clearly 

distinguishable. An increase in proportion of males was evident as weeks progressed as 

40% were classified as males and 60% as females in controls at 5 wph (Appendix E). At 

7 wph, the ratio of males to females was 1:1 (Fig. 2.5A). Proportion of females were 

found to be greater (70%) at 10 wph compared to males (30%; Fig. 2.5A). 

 EE2-treated larvae showed evidence of sensitivity to the chemical as sexual 

differentiation with defined gonads was evident at 1 wph in all EE2-treated groups (see 

Appendix C & D). Larvae exposed to 10 and 50ng/L EE2 had on average 30% 

undifferentiated gonads and 70 and 60% differentiated ovaries by 1 wph, respectively 

(Fig. 2.5B & C). The 250ng/L EE2 exposed group showed almost complete 

differentiation with 88.9% exhibiting female phenotype (11% undefined) by 1 wph (Fig. 

2.5D).  At 2 wph, complete differentiation was evident in all of the exposed groups (Fig 

2.5B-D). By 8 wph, the 10ng/L EE2 group had 100% ovaries. Groups exposed to 50 and 

250ng/L EE2 showed complete ovarian differentiation (p<0.001; Fig. 2.5C & D) although 

some of the gonads examined at 50ng/L were germ cells (20%). Larvae sampled at 7 wph 

had skewed sex ratios among the treatments as 10ng/L treatment displayed 10%:60% 
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(male:female; 30% undefined), while 90% of the 50 and 250ng/L EE2 treated fish 

displayed a female phenotype (10% undefined; Fig. 2.5 B-D). Complete feminization was 

evident at 10 wph in all EE2 treated groups (10 and 50ng/L revealed 20 and 30% 

undefined, respectively; Fig 2.5 B-D). No intersex was observed in any of the treatments. 

Proportions of females were significantly higher in all of the groups exposed to EE2 

(p<0.001; Fig. 2.5C-D). All of the groups had a number of fish in which sex could not be 

determined and these were categorized as undefined. 

 

2.4.4. Quantifying E2 concentrations 

 Whole-body E2 concentrations measured at both 4 and 8 wph showed no 

significant difference among the treatments (p=0.783; Fig. 2.8). There was a significant 

difference in E2 within all groups between weeks 4 and 8 post hatch (p<0.001). However, 

control groups at both weeks had a greater concentration of E2 (pg/mg tissue) present 

compared to treatments. In general, E2 concentrations were found to decrease from 4 to 8 

wph. Cross reactivity between E2 and EE2 was not a factor in this study (0.05%). 
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2.4.5. Figures and illustrations 
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Figure 2.1 (A) Mean days to hatch of mummichog eggs exposed to 0, 10, 50 and 

250ng/L 17α-ethynylestradiol (EE2; p=0.021). (B) Percentage of successful hatch of 

mummichog eggs exposed to 0, 10, 50 and 250ng/L EE2 (p=0.171). Bars showing 

different letters are significantly different. Values represent means ± SE. n=6 dishes per 

treatment. 
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Figure 2.2 Average lengths of larval and juvenile mummichog exposed to 0, 10, 50 and 

250ng/L EE2 (p=0.661). Symbols represent means ± SE. n=10 mummichog per treatment 

(120 eggs/dish). 

 

 

 

 

 

 

 

 

 



- 43 - 

 

  

  

  

  

Figure 2.3 Groups A-D are mummichog sampled at 4 wph exposed to 0, 10, 50 and 

250ng/L EE2, respectively. Groups E-H are 8 wph old mummichog exposed to 0, 10, 50 

and 250ng/L EE2, respectively. (A & E) Control mummichog showing undisrupted 

skeletal development. (B & F) Mummichog exposed to 10ng/L EE2 showing lordosis. (C 

& G) Mummichog exposed to 50ng/L EE2 with lordosis (left) and severe lordosis (right). 

(D & H) Juvenile mummichog exposed to 250ng/L EE2 showing lordosis (left) and 

severe lordosis with scoliosis (right). Abnormalities occurred in all groups; these are 

provided as representative illustrations. 
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Figure 2.4 Light micrograph of a mummichog sexually undifferentiated primordial 

gonad (Control; 1 wph) showing germ cells (GC) and the gonadal ridge (GR).  
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Figure 2.5 Larvae and juvenile mummichog sexual differentiation throughout the exposure period. (A) Control group; (B) 10ng/L 

EE2; (C) 50ng/L EE2; (D) 250ng/L EE2.   

Undefined 

Germ Cells 

Undifferentiated 

Testes 

Ovaries 

A B 

C D 



- 46 - 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6 Mummichog testis tissue with an intratubular distribution of the 

spermatogonia (Control; 5 wph). SG: spermatogonia; SC: spermatocytes.  
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Figure 2.7 Light micrographs of mummichog ovaries at 5 wph showing perinucleolar oocytes. (A) Control group; (B) 10ng/L EE2; 

(C) 50ng/L EE2; (D) 250ng/L EE2. Bar: 10.00µm . INT: intestines; SB: swim bladder; PNO: perinucleolar oocyte.
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Figure 2.8 Mean whole-body 17β-estradiol (E2) concentration in 4- and 8-week old 

mummichog larvae exposed to 0, 10, 50 and 250ng/L 17α-ethynylestradiol (EE2; 

p=0.783). Upper case letters represent significant differences within a given week. Lower 

case letters represent significant differences between the 4 and 8 wph within treatments. 

Bars represent means ± SE. n value analyzed for each group is given at the base of the 

respective bar.  
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2.5 Discussion 

 The primary focus of this study was to enhance our knowledge and understanding 

of the effects of an estrogenic EDS on the development and differentiation process of 

mummichog. Eggs from adult mummichog were collected within 8 h of spawn and 

exposed immediately to EE2 concentrations of 0, 10, 50 and 250ng/L for up to 10 wph. 

Results from this study demonstrate a significant concentration-dependent increase in 

skeletal abnormalities, skewed sex ratios (favouring females), and accelerated sexual 

differentiation in mummichog exposed to EE2. Complete gonadal differentiation in 

control mummichog was evident by 3 wph; whereas, gonadal differentiation was evident 

as early as 1 wph for those exposed to EE2. These results add to previous studies on 

mummichog gonadal differentiation (Urushitani et al., 2002) and the effects of EE2 on 

development (Boudreau et al., 2004), including gonadal development (Peters et al., 2010) 

and indicate a strong potential for environmental estrogens to alter reproductive status in 

this species.  

The number of days to hatch were not altered in a concentration-dependent 

fashion as time to hatch for embryos exposed to 50ng/L EE2 was significantly greater 

than the control group; however, found to be non-significant at 250ng/L. In a previous 

study, increased EE2 concentration (10 and 100ng/L) reduced the time to hatch (Peters et 

al., 2010). Results from previous studies have revealed a significant concentration-related 

decrease in hatching success in sheepshead minnow (Cyprinodon variegatus Lacépède; 

Zillioux et al., 2001) and mummichog (Peters et al., 2010) exposed to 200 and 100ng/L 

EE2, respectively. In Boudreau et al. (2004), hatch success was unaffected by EE2. In the 

present study, hatch success was unaffected. Protective membranes, including the 
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chorion, present prior to fertilization, and the vitelline and previtelline, formed following 

fertilization (Armstrong, 1965), reduce the ease of diffusion of EDSs into the embryo 

(Anadu et al., 1999). The differences in results observed in Zillioux et al. (2001) and 

Peters et al. (2010) compared to Boudreau et al. (2004) and the present study could be 

due to the methodologies used in the studies. Fish embryos in the previous two studies by 

Zillioux and Peters were exposed to EE2 during spawning, prior to formation of the 

protective membranes. Embryos in the Boudreau and present studies were transferred to 

an EE2-treated environment following fertilization. This later exposure allowed the 

formation of the protective membranes which could have supplied some protection to the 

embryos. However, the developmental effects of EE2 demonstrated in the present study 

indicate EE2 was taken up by the embryos.  

Morphological analysis of larval and juvenile lengths throughout the duration of 

the exposure showed an increase in length; however, there were no significant differences 

among the treatments. Previous studies on mummichog by Peters et al. (2007) also 

demonstrated no significant differences among larval growth in treatments of 0, 0.1, 1, 10 

and 100 ng/L EE2 (nominal; actual concentrations 30% of nominal) exposed for 3 and 4 

wph. Exposure of fathead minnow to 10ng/L EE2 for 4 wph showed no significant effect 

on growth (van Aerle et al., 2002). A 28- and 56-day exposure of larval fathead minnow 

to EE2 showed a significant decrease in lengths at concentrations of 16 and 64ng/L EE2 

for 28 days and 4, 16 and 64ng/L EE2 for the 56-day exposure (Länge et al., 2001). Thus, 

it appears that a longer exposure period and/or greater exposure concentrations are 

required to impede the growth of fathead minnow. The lack of effects on growth in the 

present study is consistent with the studies on mummichog by Peters et al. (2007; 2010) 
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as compared to fathead minnow. Although previous studies on fish have shown estrogens 

affect growth by depressing insulin-like growth factor (IGF-1) expression, perhaps 

through a genomic mechanism, mediated by estrogen receptor (ER) regulation, there 

were no indications during the period studied here in mummichog that such mechanisms 

were operating. In addition to any potential effects of EE2, other variables, such as food 

availability and temperature, affect growth (Radtke and Dean, 1979). All larvae were 

raised at uniform temperatures in the present study and food was not limiting (potentially 

offsetting effects of EE2 on growth) thus minimizing these variables as factors through 

the study design.  

The effect of increasing EE2 concentrations on skeletal abnormalities confirms 

previous studies in fathead minnow (Länge et al., 2001) and mummichog (Boudreau et 

al., 2004). In the present study, as the concentration increased, the proportion of 

abnormalities, including scoliosis and lordosis, increased and was significant at the 

higher concentrations (50 and 250ng/L EE2).  Previous studies on mummichog (Boudreau 

et al., 2004; 25 and 60 days post hatch (dph) exposure to 1,000 and 10,000ng/L EE2) and 

fathead minnow (Länge et al., 2001; 120 dph to >16ng/L EE2; Warner and Jenkins, 2007; 

25-26 dph to 0.1-100µg/L EE2) showed that abnormalities were significant at the highest 

concentrations used. Results in the present study emphasize that EE2 has a significant 

impact on skeletal development as abnormalities were found to be significant at 50 and 

250ng/L, concentrations much lower than demonstrated in Boudreau et al. (2004). In 

addition, Urushitani et al. (2002) exposed mummichog to 10
-8

 M (28.5 x 10
4
 ng/L) E2 for 

12 weeks and observed incomplete ossification in vertebrae, cranial bones and other 

bones in fry. Urushitani et al. (2002) suggested that the early-life exposure of a strong 
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estrogen mimic such as EE2 leads to a direct ER-mediated effect on bone development by 

causing incomplete bone ossification. Further investigation is necessary to determine the 

impacts of exogenous estrogens (e.g. EE2) on skeletal growth and development through 

direct ER-mediated mechanisms as well as interactions with other endocrine systems 

(e.g., growth hormone-IGF-1 mediated mechanisms). 

Mortality of mummichog larvae and juveniles throughout the duration of the 

study was found to be significantly higher in the 250ng/L EE2-exposed group. Mortalities 

were also significantly greater at the highest concentration (100ng/L EE2) compared to 

the other groups in Peters et al. (2010). Studies using fathead minnow showed no 

significant difference in survival among the treatments (0.2, 1, 4, 16 and 64ng/L EE2; 

Länge et al., 2001) in the range similar to the two lower concentrations (10 and 50ng/L) 

used in the present study. Therefore, there is some indication that higher but not lower 

concentrations of EE2 causes mortality through direct (e.g., toxic) or indirect (e.g., 

developmental abnormalities) mechanisms. It has been suggested that fish survival, 

primarily during early-life development, could be susceptible to density-dependent 

effects (Boudreau et al., 2004). Although treatment-related densities were kept as similar 

as possible in the present study, increasing the volume of water or minimizing density 

within a tank/dish could potentially limit mortalities and encourage fish survival among 

all treatments. 

In the present study, histological examination of the control gonads revealed that 

initial signs of development were evident at 1 wph as both germ cells and 

undifferentiated gonads were present (66.7% and 11.1%, respectively). Gonadal 

differentiation was observed by 2 wph with the presence of testes and ovaries (20% and 
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50%, respectively); however, undifferentiated gonads were also present at that time point 

(20%). Complete gonadal differentiation into ovaries or testes occurred by 3 wph with 

70% exhibiting ovarian tissue and 30% showing testes. This is supported by Urushitani et 

al. (2002) as they found that sexual differentiation occured between 2-4 wph in 

mummichog raised in 25°C under natural photoperiod (9-14 h light). As well, Shimizu et 

al. (2002) found that both testes and ovaries differentiate by 3 wph in mummichog (20°C 

and 16h L:8h D). Research on gonadal differentiation of some teleost species has 

determined that gonads of female individuals differentiate sooner than those of males 

(Piferrer, 2001; Strüssmann and Nakamura, 2002). This is evident as complete sexual 

differentiation in zebrafish (Danio rerio) was found to occur by 4-5 wph for females and 

6 wph for males (Örn et al., 2003) and fathead minnow females are sexually 

differentiated by 2 wph and males by 3 wph (Uguz, 2008). Although other fish species 

indicate that testes differentiate much later than ovaries, this time difference is not 

evident in mummichog in either the present or previous studies. It is well established that 

fish differentiate by two distinct pathways (Piferrer, 2001; Strüssmann and Nakamura, 

2002). The first pathway involves differentiation directly from the primordial gonad into 

either a testis or ovary as exhibited by mummichog (Shimizu et al., 2002; Urushitani et 

al., 2002); whereas the second pathway involves differentiation of all gonads into an 

ovary-like gonad and later half of the fish undergo sexual reversal leading to testes 

formation, as exhibited by zebrafish (Örn et al., 2003).  

 In comparison to the control larvae, EE2-exposed developing gonads revealed 

both an earlier differentiation period and a significantly skewed ratio in favour of the 

female sex. At 1 wph, exposure of mummichog to 10 and 50ng/L EE2 revealed the 
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presence of undifferentiated gonads and differentiated ovarian tissue. Germ cells and 

testes were not evident within these groups at this sampling time. Complete sexual 

differentiation was evident in these groups by 2 wph as both testes and ovaries were 

present in individuals exposed to 10ng/L EE2 and only ovarian differentiation was present 

in the 50ng/L EE2 group. Exposure of mummichog to 250ng/L EE2 showed complete 

ovarian differentiation present by 1 wph as the gonads all appeared to have ovarian 

cavities and/or perinucleolar oocytes. Therefore, exposure of mummichog to EE2, 

including environmentally-relevant concentrations (10ng/L), promotes early ovarian 

differentiation.  These results are in agreement with other studies as exposure of 11-

month-old juvenile grey mullet (Mugil cephalus) to EE2-treated diets for 4 weeks found 

initial signs of sexual differentiation to be accelerated as early as 26 days following 

transfer to an EE2-free environment for those previously exposed to 0.04 µg/g EE2 and 0 

days for 4 µg/g EE2 exposed individuals. On the contrary, sexual differentiation of 

control groups were found to occur 280 and 350 days following transfer (Aoki et al., 

2011). In addition, Aoki et al. (2011) found complete female sexual differentiation to 

have occurred as early as 26 days following transfer of grey mullet exposed to 4 µg/g 

(Aoki et al., 2011).  

 Following the period of complete sexual differentiation, the proportion of females 

was found to be approximately equivalent to males (60% to 40%, respectively) in the 

control group at 5 wph. Mummichog exposed to 10ng/L EE2 showed a skewed sex ratio 

of 90% females to 10% males at the same time. In addition, mummichog exposed to the 

higher concentrations of EE2, 50 and 250ng/L, displayed skewed sex ratios of 100% and 

80% (20% undefined), respectively, in favour of the female sex at 5 wph with no 
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evidence of male gonadal tissue observed. Mummichog larvae sampled at 7 wph had a 

1:1 (male:female) sex ratio within the controls and skewed sex ratios among the 

treatments as 10ng/L treatment displayed 10%:60% (male:female; 30% undefined), while 

90% of the 50 and 250ng/L EE2 treated fish displayed a female phenotype (10% 

undefined). It is important to note that no intersex was observed in any of the treatments. 

These results were further supported at 10 wph as complete feminization was evident in 

all EE2 treated groups (10 and 50ng/L revealed 20 and 30% undefined, respectively). 

Although gonadal differentiation within the control group at 10 wph favoured female sex 

(70%:30%, male:female), the reason for this result is unclear as it could have occurred by 

sampling chance as at week 7 the ratio was 50:50 female:male. Peters et al. (2010) 

observed sex ratios to be skewed by 86.1% in favour of the female phenotype following 

exposure to 100ng/L EE2 nominal concentration (actually ~30ng/L) for 52 wph. Results 

from the present study parallel those from previous studies on other species as following 

a full life cycle exposure of 4ng/L EE2 on fathead minnow, Länge et al. (2001) observed 

84% females at 56 dph and complete feminization at 172 dph. In addition, skewed female 

sex ratios and complete feminization was evident in zebrafish exposed from 20-60 dph to 

2, 5 and 10ng/L EE2; however, the reason was unclear for the appearance of males at 

25ng/L EE2 (Örn et al., 2003). Results from the present study, in relation to other studies, 

suggest that early-life exposure of fish to EE2 promotes skewed sex ratios, favouring 

females. 

In developing fish, production of sex-specific steroid hormones are critical in sex 

differentiation. The genes responsible for the biosynthesis of these hormones are 

expressed differently in somatic cells of testes than ovaries (Nakamura et al., 1998). 11-
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Ketotestosterone (11-KT), a major androgen responsible for differentiation of testes binds 

to androgen receptors (ARs) directly within the gonads inducing premeiotic 

spermatogonial proliferation (Ge et al., 1997; Nagahama et al., 1997; Devlin and 

Nagahama, 2002; Dietrich and Krieger, 2009). On the contrary, E2 stimulates oocyte 

development through direct effects on germ cells (Devlin and Nagahama, 2002; Sandra 

and Norma, 2010).  E2 up-regulates ER numbers in developing occytes via positive 

feedback, ensuring sufficient levels are present for the circulating levels of the hormone 

(Mommsen and Lazier, 1986; Devlin and Nagahama, 2002; Menuet et al., 2002; Sandra 

and Norma, 2010; Leet et al., 2011). The presence of exogenous sex steroids (e.g., EE2) 

can lead to alterations in sex-specific receptors and affect the sex of the individual 

(Devlin and Nagahama, 2002; Leet et al., 2011).  The presence of EE2 prior to gonadal 

differentiation competes with and mimics E2, binding to the ERs, promoting oocyte 

development and leading to feminization (Länge et al. 2001; Devlin and Nagahama, 

2002; Örn et al., 2003; Leet et al., 2011). 

Exogenous hormones have the potential to disrupt reproductive processes in fish 

prior to differentiation and even after sex differentiation has occurred (Devlin and 

Nagahama, 2002; Leet et al., 2011). The major factors responsible for inducing sex 

reversal in fish species include i) timing of exposure, ii) duration of exposure, and iii) 

concentration of the hormone used (Yamamoto, 1969; Nakamura et al., 1998; Piferrer, 

2001). Timing of the exposure is critical as sexually undifferentiated fish are considered 

to be susceptible to exogenous hormones compared to differentiated fish as there exists a 

labile period (period of physiological sex differentiation) of uncharacterized events in the 

gonads that are undetectable prior to the first histological signs of sex differentiation 
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(Piferrer, 2001). Thus, the presence of the exogenous hormones prior to differentiation is 

critical as these hormones target the sex steroid-specific receptors (e.g. ERs or ARs) 

mimicking endogenous hormones and disrupting normal expression levels of genes 

involved in sex differentiation (Leet et al., 2011). The mechanism of action of these 

exogenous hormones involves direct interaction with hormone receptors, changes in gene 

expression, amount of receptors present, and alterations of hypothalamus-pituitary-

gonadal axis feedback mechanisms (Piferrer, 2001; Leet et al., 2011). For example, ERs 

are present in both developing testes and ovaries (Devlin and Nagahama, 2002; Piferrer, 

2001; Sandra and Norma, 2010). EE2 binds to ERs and initiates ER-mediated 

mechanisms that disrupt normal expression of genes involved in sex differentiation, 

promoting the transcription of estrogen-responsive genes, leading to female gonadal 

development (Devlin and Nagahama, 2002; Leet et al., 2011). Previous studies exposing 

EE2 during early-life stages of grey mullet (Chang et al., 1999; 20 mg/kg EE2 in feed for 

four months) and Japanese medaka (Oryzias latipes, Scholz and Gutzeit, 2000; 1, 10 and 

100 ng/L EE2 for two months) stimulated aromatase in both males and females; whereas, 

the exposure of 17α-methyltestosterone (synthetic male androgen; 20 mg/kg feed for four 

months) suppressed aromatase activity (Chang et al., 1999). These results provide 

evidence that the timing and presence of specific steroid hormones during gonadal 

development have critical effects. More research is required in mummichog to elucidate 

the mode(s) of action of endogenous and exogenous estrogen on gonadal development. 

 Previous studies have shown that gonadal steroid production concentrations in 

mummichog adults are decreased by exposure to EE2 (MacLatchy et al., 2003; Peters et 

al., 2007). Although whole-body E2 decreased from 4 to 8 wph in control mummichog, 
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no treatment-related responses were detected. It is assumed that EE2’s high affinity for 

the estrogen receptor stimulates a strong negative feedback response, inhibiting further 

production of the naturally-circulating estrogenic hormone, E2 (Peters et al., 2007; 

Dietrich and Krieger, 2009; Hogan et al., 2010). In addition, E2 in embryos and larvae is 

produced by developing steroidogenic tissue (Dietrich and Krieger, 2009) or could be of 

external origin (Desbrow et al., 1998). The lack of effect could be due to 

unresponsiveness of the system at this stage; however, high variability among the 

individuals sampled (perhaps due to the range in differentiated stages) cannot be 

eliminated as a reason. A study by Feist and Schreck (1996) observed that steroid 

hormone concentrations in whole-body rainbow trout (Oncorhynchus mykiss) were high 

upon hatch and during the period of gonadal differentiation and were reduced following 

differentiation. It is believed that the relative increase in steroid concentration upon 

differentiation may be involved in promoting sexual differentiation (Feist and Schreck, 

1996). In the present study, whole-body E2 concentrations were greater at 4 wph 

compared to 8 wph among all treatments, generally following the pattern described by 

Feist and Schreck (1996).  Further studies will aid in gaining a clearer understanding of 

the effects of EE2 on developing mummichog.  

 

2.6 Conclusion 

EE2 in Canadian STPs has been found to be at concentrations between 1-10ng/L 

and as high as 42ng/L (Desbrow et al., 1998; Ternes et al., 1999). The present study 

clearly demonstrates that EE2 significantly disrupts sexual differentiation and 

development in mummichog as skeletal abnormalities, mortalities, accelerated sexual 
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differentiation and skewed sex ratios favouring females were evident. Histological 

analyses of mummichog gonads showed complete gonadal differentiation to occur by 3 

wph in control groups, whereas exposure to EE2 accelerated gonadal differentiation as 

early as 1 wph. Environmentally-relevant concentrations accelerated gonadal 

differentiation and skewed sex ratios suggesting that these concentrations have the 

potential to cause adverse effects in the environment. Future studies are recommended to 

determine the mechanisms by which environmentally-relevant concentrations of 

estrogenic EDSs impact skeletal and gonadal development.  
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3.1 Discussion Overview 

Sexual differentiation in fish is a delicate developmental process that occurs 

during the early-life stages of the individual (Strüssmann and Nakamura, 2002). 

Endocrine disrupting substances (EDSs) in aquatic environments have the potential to 

cause significant effects on fish development and the timing, duration and concentration 

of these exogenous chemicals are major factors influencing the scale of the effects on 

individuals and/or populations (Yamamoto, 1969; Nakamura et al., 1998; Pifferrer, 

2001).  

More bioassays on the effects of EDSs have been developed for freshwater fish, 

compared to the fewer studies on marine and/or estuarine species (Boudreau et al., 2005). 

Estuarine species may have a different threshold of sensitivity to these EDSs and may 

have differing uptake processes of these chemicals. In addition, the fate of the 

contaminants in saltwater systems may differ from those in fresh water (Peters et al., 

2010). Therefore, EDS studies focusing on estuarine species are necessary as these areas 

serve as breeding and nursery grounds for many teleost fish (Boudreau et al., 2005). 

Previous studies in the field and the lab have examined the effects of EDSs, 

specifically estrogenic contaminants, on teleost fish during both their adult and 

developmental stages. Estrogenic compounds exist in aquatic environments at 

concentrations which are sufficient to induce an effect on the individual and/or its 

progeny (Damstra et al., 2002; Dietrich and Krieger, 2009). For example, in the lab, 

endocrine disruptors have been found to alter secondary sexual characteristics (Parrott et 

al., 2004), reduce gonad size and egg production (Parrott et al., 2004; Peters et al., 2007), 

cause developmental abnormalities during early-life stages (Boudreau et al., 2004; 2005), 
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and alter sex ratios (Peters et al., 2010) in various teleost fish species. In the field, studies 

by Kidd et al. (2007) demonstrated a decrease in reproductive success and sustainability 

of fathead minnow (Pimephales promelas) populations following a whole-lake exposure 

to 5ng/L EE2. Results obtained from the present study add to the knowledge of EDSs, 

specifically EE2, on early-life exposure to mummichog (Fundulus heteroclitus) as 

skeletal abnormalities, mortalities, accelerated sexual differentiation and skewed sex 

ratios favouring females were evident. 

For the present study, mummichog were exposed to EE2 within 8 h of spawn at 

concentrations that ranged from environmentally relevant, 10ng/L EE2, up to 50 and 

250ng/L EE2. The timing and concentrations used in this early-life exposure were 

important factors in the outcomes of the study. Accelerated gonadal differentiation and 

skewed sex ratios (>80% favouring female sex) were evident in all EE2 treated groups, 

suggesting that the presence of steroid hormones during gonadal development of 

mummichog are critical in determining the fate of the sex of the individual. These results 

are comparable with those described in previous literature on both freshwater and 

estuarine species. For example, studies using freshwater species found significant 

differences with sex ratios at low concentrations as complete sexual feminization was 

exhibited at exposures of 4.2ng/L (Länge et al., 2001) and 3.2ng/L EE2 (Parrott and 

Wood, 2002) using fathead minnow; whereas, feminization was evident at concentrations 

of 1ng/L and 2ng/L EE2 using zebrafish (Danio rerio; Örn et al., 2003). In contrast to 

freshwater species, mummichog were found to have altered sex ratios at concentrations 

of 100ng/L EE2 (actually ~30ng/L) as sex ratios were skewed ~86.1% favouring the 

female phenotype (Peters et al., 2010). The binding of EE2 to estrogen receptors (ERs; 
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present in both testes and ovaries), inducing gene expression leading to feminization is 

believed to play a major role in the mechanism of action of EE2 (Piferrer, 2001; Devlin 

and Nagahama, 2002); however, the mode(s) of action require further research for 

complete understanding (see section 3.2).  

Studies on the effects of EDSs on mummichog enhance our knowledge on the 

sensitivity of this species to environmental contaminants. As well, it adds to our 

knowledge on the mechanisms that allow the species to remain reproductively viable 

within contaminated environments (Lister et al., 2011). Research using mummichog as a 

model species for ecotoxicological studies strengthens our understanding about the 

effects of EDSs in estuaries.  

  

3.2 Future Directions 

Future work contributing to the results from this study should focus on two 

distinct objectives. 

The first objective should focus on reducing sampling periods, specifically during 

the first four weeks post hatch (wph). The significance of doing so will allow the 

identification of the period of gonadal differentiation. As well, since this study exhibited 

earlier sexual differentiation to those exposed to EE2 (e.g., complete differentiation by 1 

wph for those exposed to 250ng/L), increasing sampling points within the first few weeks 

will allow determination of the precise period when differentiation occurs in those 

exposed compared to those in the controls. Because this study suggested that EE2 has 

significant effects on mummichog during its early-life development, and the mechanism 

is not clearly understood, determining the precise period of gonadal differentiation will 
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support further mechanistic studies by reducing time and effort spent during periods that 

would yield limited increases in understanding.  

There is sufficient evidence from previous literature to conclude that a 

mechanistic relationship exists between steroid hormones and fish development 

(Yamamoto, 1969; Piferrer, 2001; Devlin and Nagahama, 2002). Thus, the second 

objective should focus on determining ontogeny of ERs along with the pattern of gonadal 

steroidogenic gene expression (e.g., aromatase) in early-life stages of both control and 

EE2-exposed mummichog. These studies should help elucidate modes of action of EE2 on 

gonadal differentiation of mummichog. This will also enhance our knowledge and 

understanding of the modes of action of EDSs on sexual differentiation in fish. In 

addition, studies on androgens should also be initiated to understand their potential to 

also affect sex differentiation in mummichog. 

 

3.3 Thesis Relation to Integrative Biology 

Recently, increases in interdisciplinary studies merging various fields of biology 

have proven vital in understanding the action and impact of EDSs from molecular to 

population levels (Hayes, 2005). Our knowledge gained from previous studies in 

comparative endocrinology has made teleost fish attractive model organisms to predict 

effects of EDS in the lab and the field. This has been demonstrated in this study as the 

presence of EE2 during early-life gonadal development of mummichog promoted earlier 

sex differentiation and lead to feminization, an outcome that has been exhibited in other 

teleost fish (Länge et al., 2001; Örn et al., 2003; Aoki et al., 2011) as well as amphibians 

(Hogan et al., 2008). In addition, EE2 has been found to have effects on morphological 
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development leading to skeletal deformities in various teleost fish species, including 

mummichog (Boudreau et al., 2004; Länge et al., 2001; Warner and Jenkins, 2007; this 

study), and the effects have been suggested to occur through direct ER-mediated 

mechanisms (Urushitani et al., 2002). The present study adds to previous work 

integrating various biological sub-disciplines including ecology, toxicology, 

cellular/molecular biology, endocrinology and others to increase our ability to understand 

and predict the impacts of EDSs on fish. Specifically, the present study integrated 

endocrinology, toxicology and histology.   

 Mummichog is considered a model species in evolutionary, ecological and 

physiological studies due to its adaptation to its variable environment. Analyzing the 

effects of EE2 on early-life gonadal differentiation and development of mummichog 

enhanced our understanding at various levels of biological organization. Histological 

techniques used in this study provided insight into the effects of EE2 at a tissue and organ 

level; whereas, the morphological and whole-body E2 levels provided information at the 

system and organismal levels. Although population effects were not examined in the 

present study, the endpoints examined at the lower biological levels of organization 

provide the opportunity to make inferences about potential effects at the population level. 

Specific to the results of this study, EE2 exposures at environmentally-relevant 

concentrations caused high levels of skeletal deformities and feminization, both of which 

have the potential to have negative effects on population sustainability. 
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Appendix A: Experimental design schematic 

 

 

Figure A. Schematic of the experimental design and exposure used in this study. Schematic depicts adult, egg, embryo and larvae 

conditions throughout the exposure.  
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Appendix B: Control mummichog gonadal differentiation 

 

 

 

 

 

 

Figure B. Light micrograph of mummichog gonadal differentiation (Control) illustrating 

progress from undifferentiated primordial gonad to differentiated, developed gonads. 
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Appendix C: EE2-exposed mummichog gonadal differentiation 

 

 

Figure C. Light micrograph of mummichog gonadal differentiation at from 1-3 wph exposed to 10, 50 and 250ng/L EE2. SB: swim 

bladder; INT: Intestine; Black arrows: ovarian gonads; White arrow: undifferentiated gonad. 
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Appendix D: Mummichog ovarian development 

 

 

 

Figure D. Light micrograph of mummichog ovarian development exposed to control, 10, 50 and 250ng/L EE2. Row A) 5 wph; row B) 

9 wph. Bar: 10.00µm. INT: intestine; OC: ovarian cavity; Arrows: ovary. 
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Appendix E: Mummichog testicular development 

 

 

Figure E. Light micrograph of mummichog testicular tissue development exposed to control and 10ng/L EE2 at 5 and 7 wph. Bar: 

10.00µm. INT: intestine; Arrows: testes.  
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