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Abstract 

The binding of metal to dissolved organic matter in aquatic environments is 

important in controlling the bioavailability and potential toxicity of metals such as Zn
2+

, 

Pb
2+

, Ni
2+

 and Cu
2+

. The purpose of this research is to: (i) quantify binding capacity to 

different sources of marine organic matter at environmentally relevant concentrations; (ii) 

test fluorescence quenching and voltammetric method for use in seawater conditions and; 

(iii) compare predicted speciation parameters with toxicological observations in the same 

samples.  

Information regarding the solubility of copper and copper compounds is important 

for risk assessment and can be used to set site specific criteria. 

Transformation/dissolution tests were completed to determine solubility of copper and 

cuprous oxide powder. The measured solution copper concentration values were 

compared to a copper solubility model which isolated the precipitate formation tenorite, 

malachite and copper hydroxide to be able to identify which precipitate would best 

describe the results obtained from the experiment. Tenorite underestimated solubility at 

22 ppb while malachite and copper hydroxide overestimated copper solubility, 150 ppb 

and 600 ppb respectively. The experimental data point, 47.9 ppb was placed between the 

tenorite precipitation model and the malachite precipitation model still leaving questions 

about how to optimize the modeling of copper solubility. 

Fluorescence spectroscopy was used to determine stability of natural organic 

matter (NOM) during storage and variability in the molecular nature of the NOM from 

different sources. The molecular differences in NOM will allow for the determination of 
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a source dependence on toxicity and whether or not it should be a factor considered in the 

BLM. Fluorescence Index (FI) was determined for all the NOM samples and had a range 

of 1.12 to 1.54 indicating that the fulvic acid within the samples was terrestrially derived. 

PARAFAC was used to determine the relative concentration of three components within 

the organic material determined to be tryptophan-like, humic and fulvic-like and tyrosine-

like material. The comparison of the relative percents of each of these components 

showed a significant increase within the tryptophan-like material from 10% to 72% and a 

decrease in humic and fulvic-like material from 85% to 16% after storage, for a specific 

sample. The NOM did not remain stable and the quality of the sample changed during the 

storage procedure. This potentially was caused by the fractionation method used to 

collect the NOM samples. 

Copper fluorescence quenching has been validated for marine systems. 

Experimental results agree with a tryptophan model and copper ion selective electrode 

results. The fluorescence quenching model did not agree with tryptophan model for lead, 

nickel and zinc and disagreed with lead toxicity data. The interaction of lead with a 

dissolved organic carbon (DOC) concentration of 2 mg C/L provided an EC50 of 738 

(680-796) nM while a concentration of 12 mg C/L had an EC50 of 757 (680-830) nM for 

early lifestage development tests with blue mussel larvae. Binding capacity determined 

by fluorescence quenching suggested a dose dependence. Voltammetric methods 

demonstrated that a 2 and 12 mg C/L had similar binding capacity with an increase in by 

binding capacity by a factor of 1.1 consistent with the EC50 data. Voltammetric methods 

agree with lead toxicity data. Information on lack of dose dependence in seawater can be 
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implemented in a marine Biotic ligand model (BLM). More work is necessary to 

determine exact relationships. 

Knowledge regarding salinity dependence and source dependence are important 

to implement a BLM. Binding capacities were determined for two different organic 

matter concentrations and three different salinities. Four different NOM sources were 

tested Nordic Reservoir, Pachena, Inshore Brazil and Bamfield. No significant 

differences were found within the NOM sources comparing salinities and concentrations. 

A statistically significant difference was found when comparing the four different sources 

of NOM to each other. The NOM with a lower humic and fulvic acid-like fraction was 

found to be significantly different from the NOM with a higher concentration of humic 

and fulvic-acid like component. The percent of fluorophore fraction was compared to the 

binding capacity to determine any potential trends. A strong trend was found for the 

humic and fulvic acid like fraction (R
2
=0.9327), a slight trend for the tryptophan like 

fraction (R
2
=0.7811) and no trend for the tyrosine like fraction (R

2
=0.4436). 
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Chapter 1: Introduction and Background 

 Canada  has the longest marine coastline of any country, the second largest 

continental shelf in the world, and a total offshore marine area equal to 40 percent of the 

Canadian land mass (Government of Canada, 2003).  Meanwhile in the US, coastal areas 

are home to a wealth of natural and economic resources and are the most developed areas 

in the nation. The coastal region comprising 17 percent of the contiguous U.S. land area 

is home to more than half of the nation's population (DeWailley and Knap, 2006). Over 

53% of the USA population is living along the coastal region (NOAA, 2004). Globally, 

over one billion people rely on fish and other seafood as their main source of animal 

proteins. Due to this high demand on seafood, there is an increasing alarm that seafood 

from the oceans is becoming contaminated with man-made pollutants.  

 There is a growing concern about pollution of the ocean from anthropogenic 

wastes including metals such as copper, lead, nickel and zinc. Trace amounts of certain 

metals, including copper and zinc, are present as natural components of the environment 

and at low concentrations are essential for life. Unfortunately, due to anthropogenic 

inputs, these trace metal concentrations are increasing and can potentially result in 

toxicity to organisms. This results in a need to monitor the levels and effects of these 

metals in marine systems and research toward appropriate regulatory criteria. For this 

research, four specific divalent metals are being investigated (Zn
2+

, Pb
2+

, Cu
2+

 and Ni
2+

) 

in terms of their chemistry in saltwater systems and their potential for toxicity. Previous 

research has shown that natural organic matter (NOM) can potentially be protective due 

to its ability to reduce the bioavailability of metals. This study will focus on metal 
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speciation of zinc, lead and copper within salt water in the presence of NOM from 

variable sources. 

1.1 Metals in the Environment 

Copper, lead and nickel are among the metals of major environmental concern and 

are priority contaminants in water policy regulations (Wright and Welbourn, 2002; 

European Commission, 2001). This results in a need to monitor levels and effects of these 

metals in marine systems and research toward appropriate regulatory criteria. 

1.1.1 Copper in Saltwater Systems 

Copper is an essential trace nutrient for plants and animals and at low 

concentrations it is essential for life. Sources of mobile copper in the environment are due 

to waste disposal, agriculture and extraction operations including mining and smelting 

(Wright and Welbourn, 2002). Copper is deemed to be one of the most toxic metals to 

aquatic organisms (Solomon, 2009). The divalent form of copper is believed to be the 

most toxic form but copper hydroxide complexes (CuOH
-
 and Cu(OH)2)  have 

demonstrated to be bioavailable and exert toxicity (Chakoumakos et al., 1979; Erickson 

et al., 1996; Paquin et al., 2002).  

Copper is present at levels of 0.2 to 30ppb in freshwater (USEPA, 2007) and 

0.001 to 0.1 ppb in open ocean (Bruland, 1980; Coale and Bruland, 1988; Sherrell and 

Boyle, 1992). In aquatic systems, copper can interact with the gills of organisms 

interfering with sodium channels resulting in electrolyte imbalances, ionoregulatory 

failure and death (Paquin et al., 2002; Grosell and Wood, 2002). The EC50 for copper in 
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Mytilus trossolus has been determined to be 9.6 µg/L and in the presence of 20 mg/L 

natural organic matter the EC50 increased to 39.0 µg/L (Nadella et al., 2009). EC50 is the 

concentration needed to affect 50% of the organisms. Thus, copper bioavailability is not 

dependent on total copper because organic matter is protective.  

1.1.2 Lead in Saltwater Systems 

Lead is a nonessential metal that is toxic at low doses in aquatic systems. In 

oceans, lead enters through  surface water and decreases in concentration with depth due 

to settling of lead adhered particles and complexing with reduced species near the 

sediment. It is estimated that 50-70% of lead in the open ocean is organically bound, with 

inorganic compounds accounting for the vast majority of the rest (Reuer and Weiss, 

2002). 

In aquatic systems the majority of lead can be attributed to atmospheric deposition 

and combustion of fossil fuels. Total anthropogenic input of lead to aquatic ecosystems is 

estimated at 138000 tonnes/year (Nriagu and Pacyna, 1988).  

Organisms including algae, invertebrates, fish and amphibians that suffer from 

lead toxicity can have side effects including muscular and neurological degeneration and 

destruction, growth inhibition, reproductive problems and mortality (Eisler, 1988). 

Within organisms, divalent lead has the ability to imitate calcium and interfere with 

calcium dependent physiological processes (Rogers and Wood, 2004). The EC50 for lead 

in seawater for embryo tests with Mytilus trossolus has been determined to be 99 µg/L 

(Nadella et al., 2009).  
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1.1.3 Zinc in Saltwater Systems 

Zinc is essential to all cells in all known organisms. Zinc concentrations in aquatic 

systems vary greatly. In freshwater systems, zinc can range from 0.02 ppb to 1000 ppb 

near areas of mining (Eisler, 1993; Luoma and Rainbow, 2008). However, total zinc 

rarely exceeds 50 ppb in freshwater (Eisler, 1993; Bodar, 2005; Luoma and Rainbow, 

2008). In open ocean the total zinc range is 1 to 60 ng/L (Eisler, 1993; Ellwood, 2004; 

Luoma and Rainbow, 2008). Combined global anthropogenic input of zinc has been 

estimated to be 226000 tonnes/year (Nriagu and Pacyna, 1988). 

 Zinc is required for the catalytic activity of nearly 100 enzymes and plays a role 

in protein synthesis, DNA synthesis, reproduction and cell division (Sandstead, 1994). 

Trace amounts of zinc supports normal growth and development for organisms. Zinc 

toxicity to organisms in aquatic systems is very similar to lead toxicity. Both work to 

imitate calcium and disrupt calcium dependent processes and offset the acid base balance 

within the organism (Spry and Wood, 1985).  The EC50 for zinc in Mytilus trossolus has 

been determined to be 67 µg/L (Nadella et al., Appendix G: MS draft). Natural zinc in the 

environment is mobilized due to weathering of rock and soils. Zinc also enters into the 

environment through anthropogenic activities such as mining. 

1.1.4 Nickel in Saltwater Systems 

Nickel essentiality in animals has been difficult to establish because a nickel-

containing biomolecule has not been isolated from tissues. Nickel essentiality in aquatic 

systems is circumstantial because nickel remains constant despite wide fluctuations in 
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environment nickel concentrations (Tjalve, 1988; Ray, 1990). In unpolluted freshwater, 

nickel concentration ranges from 0.1 to 10 ppb (Chau and Kulikovsky-Cordeiro, 1995) 

and 0.2 to 0.7 ppb in open oceans. 

Nickel toxicity is associated with nickel-mediated oxidative damage to DNA and 

proteins and to inhibition of cellular antioxidant defenses (Rodriguez et al., 1996). The 

EC50 for nickel in Mytilus trossolus has been determined to be 150 µg/L (Nadella et al., 

2009). Nickel enters the environment in much the same way as copper, zinc and lead 

through natural sources such as soil dust, forest fires and vegetation. However, 84% of 

atmospheric nickel is a result of anthropogenic effects including mining, smelting and 

refining activities (Eisler, 1998). 

There has been very little research done on nickel in comparison to the other three 

metals. This is mainly due to nickel having a low gill binding affinity in comparison to 

the other metals (Niyogi and Wood, 2004). Nickel is also less toxic than copper and lead 

but is said to be equally as toxic as zinc (Pickering and Henderson, 1966).  

1.2 Natural Organic Matter  

Natural organic matter (NOM) contains many potential binding sites for available 

metals in marine systems. NOM is mainly comprised of the humic substances, humic 

acid and/or fulvic acid, together with carbohydrates, proteins and lipids (Thurman 1985). 

Fulvic and humic acids have been found to be most abundant in natural organic matter 

(Ericksen et al., 2001). Humic substances account for 5-25% of dissolved organic carbon 

(DOC) in the ocean surface (Benner, 2002). Meanwhile, fulvic acids are much more 
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abundant than dissolved humic substances in the water column (McKnight and Aiken, 

1998). NOM is often divided into humin, humic acid and fulvic acids. These fractions are 

defined strictly on their solubility in either acid or alkali. Humin is insoluble in water and 

in alkali under any pH conditions (Ericksen et al., 2001). Humic acids are not soluble in 

water under acidic conditions but are soluble at higher pH values. Fulvic acids are soluble 

in water under all pH conditions (Thurman, 1985). 

Section 4.1 in Chapter 4 provides greater detail on terrigenous, autochtonous and 

sewage derived NOM. 

NOM has a high content of aromatic rings, carboxylic and phenolic groups which 

are mainly responsible for the metal complexing (Perdue, 1998; Tipping, 2002). Metals 

can bind to many functional groups present within NOM , with metal binding functional 

groups such as carboxyl (M-CO2H), amino (M-NHR, [M-NH2R]
+
, phenolic (M-OAr), 

metal sulfides or thiols (M-SH) (Smith, 2002).  NOM also has a polyelectrolyte nature. 

Polyelectrolytes are polymers carrying either positively or negatively charged ionizable 

groups. The properties of these polymers in solutions and at charged surfaces depend on 

the fraction of dissociated ionic groups, solvent quality for polymer backbone, solution 

dielectric constant, salt concentration, and polymer–substrate interactions. Its 

polyelectrolytic nature is dependent on size, carboxylic content and total acidity. Humic 

substances present within NOM tend to have a high negative charge at their outer surface 

(Buffle, 1984).  

The colour of NOM is influenced by the molecular nature of the components 

within the sample. For example, humic acids are darkly coloured while fulvic acids are 
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light in colour (Gheorghiu et al., 2010). The specific absorption coefficient of the DOC at 

340nm (SEC340) has been shown to be a simple effective predictor of protectivity. 

Terrigenous NOM with a dark colour and higher SAC340 tend to have a greater 

aromaticity and has the ability to bind metals with greater strength to the functional 

groups of the aromatic ring than the light colour autochtonous NOM with lower SAC340 

values. It is because of this that it is generally assumed that terrigenous NOM will have a 

higher binding capacity and has a greater ability to reduce metal bioavailability 

(Gheorghiu et al., 2010).  

NOM contains both dissolved organic matter (DOM) and particulate organic 

matter.  Less than 5% of the organic matter in open ocean is particulate organic matter 

(POM) leaving the majority as dissolved organic matter (Benner, 1998). DOM is defined 

as the fraction of NOM that passes through a 0.45 µm filter. DOM concentration is 

measured based on its carbon content, dissolved organic carbon (DOC). In open ocean 

systems, organic matter content varies between 0.3 and 3 mg/L of carbon (Mota and 

Correia dos Santos, 1995). 

Further information regarding marine NOM and affects of salinity or salt content 

can be found in section 5.1. 

1.3 Biotic Ligand Model 

For fresh water, the bioavailability of metals can be predicted based on bulk 

chemistry of water samples using the biotic ligand model (BLM). The BLM is based on 

equilibrium calculations of metal speciation and has a numerical scheme to predict toxic 
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metal concentrations (Santore et al., 2001). In addition to calculating chemical speciation, 

the BLM can also be used to predict the concentration of metal that would result in acute 

toxicity within a given aquatic system. The BLM is used to establish site specific criteria 

for a given location depending on its water chemistry parameters including temperature, 

pH, dissolved organic carbon, calcium, magnesium, sodium, sulfate, chloride, alkalinity 

and sulfide (Santore et al., 2001). The ability of the BLM to account for site-specific 

variations in the bioavailability and toxicity of copper has also lead the US EPA to 

develop a BLM-based approach for calculating the water quality criteria for copper 

(USEPA, 2007). 

A diagram of the BLM can be found in Figure 1.1. The model assumes toxicity is 

proportional to the accumulation of the metal at the biotic ligand (the site of action). The 

bioavailable metal competes with cations (sodium, calcium, etc) for the active sites at the 

biotic ligand. Simultaneously, organic matter and inorganic matter can complex with the 

bioavailable metal decreasing its ability to accumulate at the biotic ligand. There are 

factors within marine system that can modify the bioavailability and potential toxicity of 

lead, zinc, nickel and copper to organisms. Some of these factors are pH, salinity, 

alkalinity, water hardness and NOM (Santore et al., 2001). Metal toxicity can be hindered 

by pH due to speciation of the metal. 

The ocean has a pH of approximately 8, while seawater has a pH range of 7.5 to 

8.4. At low pH, free metal tends to be most bioavailable and very toxic; however as pH 

increases the free metal can bind available anions or NOM in solution and decrease 

toxicity. Alkalinity, salinity and water hardness can hinder toxicity because the ions 
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present can out-compete the toxic metal for binding sites on the organism resulting in the 

decrease of toxic effects from the metal to this organism. Potentially, binding Cu
2+

, Pb
2+

, 

Ni
2+ 

and Zn
2+

 to NOM can reduce metal bioavailability and reduce toxic effects. 

 

Figure 1.1: Biotic Ligand Model (Playle et al., 1993). 

 

The BLM has been able to predict metal toxicity for a number of dissolved metals 

in freshwaters and has proven a very valuable asset and has been adopted by USEPA for 

freshwater criteria (US EPA, 2007). To date, regional risk assessments in the USA and 

Europe have employed BLMs for metals such as copper, nickel and zinc. The 

parameterization for an acute freshwater BLM for lead was recently completed (Mager et 

al., 2010b) and BLMs for other high-priority metals are currently in various stages of 

development (Wood et al., 2012). The freshwater BLM is based on a salt concentration of 

less than 0.05%. Meanwhile seawater has a salt concentration of 3.1 to 3.8%. The 

increase in salinity affects equilibrium constants and competition which are required for 
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an accurate prediction of bioavailability and toxicity. Due to the differences in freshwater 

and saltwater, there is a need for saltwater research in BLM. 

1.4 Previous Research of Copper and NOM Toxicity 

Depalma et al. (2011b) completed research on the molecular components of 

dissolved organic matter and its interaction with copper. The field based study showed 

that the quality or molecular composition of DOM does not appear to relate to its 

protectiveness in the environment (DePalma et al., 2011a; DePalma et al., 2011b). It was 

determined that DOC could be used as a prediction of EC50. The EC50 equation 

determined by Arnold et al (2005), EC50=11.22x DOC
0.6 

was shown to be consistent, 

regardless of the natural organic matter quality and source. The increased amount of 

DOM affected protectiveness because it has an ability to act as a copper binding ligand 

and therefore, reduce bioavailability (Arnold et al., 2005). This has lead to the conclusion 

that DOC alone is sufficient to predict toxicity. These observations have lead to the 

expectation that the binding capacities of copper to the molecular components of the 

NOM will all be similar.  

 Nadella et al. (2009) has completed similar experiments with contradictory 

results. It was concluded that protective effects of dissolved organic matter did in fact 

vary depending on the source of natural organic matter. However, the organic matter used 

for these experiments was terrestrial organic matter and source dependence has been 

established for terrestrial organic matter (Schwartz et al., 2004).  
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There are numerous studies on the effects of metals in freshwater environments 

(Schwartz et al., 2004; De Schamphelaere et al., 2004; Glover et al., 2005), but very few 

available on the effects of lead, zinc and nickel with dissolved organic matter in marine 

systems (Franca et al., 2005; Kobayashi and Okamura, 2004; Radenac et al., 2001; Doig 

and Liber, 2007). In freshwater environments and the few marine papers cited above, 

there is evidence that NOM reduces bioavailability of the metals and ultimately decreases 

toxicity.  

1.5 Anodic stripping voltammetry (ASV) 

 Anodic stripping voltammetry (ASV) is a non-destructive experimental technique 

that was used for this study. It is a direct method for the study of low concentration (10
-8

 

to 10
-11

M) trace metal speciation. ASV involves a deposition or pre-concentration step 

where the metals in solution are concentrated by plating them onto the electrode (usually 

a mercury drop). Initially, a purge step is applied for approximately 250 to 300 seconds to 

remove oxygen before the deposition step. Oxygen is electroactive and reduced in 

aqueous solutions which can mask signals from the metals in solution if not removed 

from the bulk solution (Riley and Watson, 1987). The electrode is then scanned linearly 

toward positive potentials so that the metals are stripped from the electrode and re-

oxidized at a potential which is characteristic of each metal (Bott, 1995). For the 

electrical current to be generated, the bulk solution should be electrically conducting. 

This can be done by adding a supporting electrolyte solution, except for cases where the 

sample is already conducting. 
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 Figure 1.2 shows the potential change and resultant current versus time that 

occurs to a sample while using ASV. In the deposition stage the ion is reduced to metal 

(1) that will form an amalgam with the mercury working electrode.  

M
n+

 + ne-  M    (1) 

The next stage, allows for an equilibration time to let the solution rest and the 

metal to redistribute on the mercury drop. In the final stage, a potential scan towards 

more anodic values is applied, reoxidizing the metal (2) and stripping it into solution. The 

electron flow is detected as current and measured by the voltammeter. 

M  M
n+

 + ne-   (2) 

 The peak potential of each metal is characteristic of the analyte and can be used 

to identify the metal. For example copper is found at -0.1V, lead at -0.38V and zinc at -

0.98V versus a Ag/AgCl reference electrode. The height of each metal peak (ip) is 

proportional to the concentration of the metal in the test solution (Scott, 1986). 
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Figure 1.2: Linear voltage /time relationship for an ASV. Peaks are observed for the analytes, 

cadmium and copper (Scott, 1986). 

 

 

1.5.1 ASV: Total Metal Analysis 

Metal concentration for total metal analysis is generally determined by standard 

additions. Total metal analysis requires digestion of the samples to eliminate any strong 

complexes with the metal. Strong complexes are not detected by ASV because the ligand 

prevents the metal from accumulating at the mercury drop and being measured. NOM can 

be a strong ligand complex and must be UV digested to break down the NOM to allow 

for total analysis of the metal. The standard additions method uses several successive 

addition of analyte to an unknown analyte concentration. The original concentration of 

the analyte is found by fitting a line to the data and extrapolating to the x-intercept 

(Saxberg and Kowalski, 1979). A visual representation of standard additions can be 
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viewed in Figure 1.3. Spiked concentration c’ can be found on the x-axis with the 

response signal, R on the y-axis. Linear regression to the x-axis provides c’o, the initial 

concentration in the sample. 

The reason for using the standard additions method is that the matrix may contain 

other components that interfere with the analyte signal causing inaccuracy in the 

determined concentration. The idea is to add analyte to the sample and monitor the 

change in instrument response. The change in instrument response between the sample 

and the spiked samples is assumed to be due only to change in analyte concentration. 

 

Figure 1.3: A representation of the standard additions method showing experimental data points and 

the extrapolated regression line, which intercepts the x-axis at –cx which equivalent to the 

concentration (Bruce and Gill, 1999). 

 

1.5.2 ASV: Binding Capacity Determination 
 

 Binding capacity refers to the maximum amount of a sample that can be 

complexed to a molecule; in this case metal to NOM. Binding capacity is important 

because it allows for the determination of the potential protectivity of the NOM for 

specific metals. A higher binding capacity would have a higher protective effect because 
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it restricts the metals access to the biotic ligand, resulting in decreased toxicity from the 

metal. Rivera-Duarte et al. (2005) has related binding capacity of copper complexation 

with organic matter to toxicity results from three invertebrates, Mytilus galloprovincialis 

(Mediterranean mussel), Dendraster excentricus (sand dollar), and Stronglyocentrotus 

purpuratus (purple sea urchin). It was determined that the copper complex capacity of the 

San Diego Bay controlled toxicity by keeping the free divalent copper at non-toxic levels. 

Sanchez-Marin et al. (2011) made similar conclusions with lead and Mytilus edulis. 

Binding capacity is usually done by the titration of the organic matter with metal 

additions. ASV techniques consider the metal organic matter complex to be inert and not 

reduced on the electrode. It is only the labile metal, free hydrated ions and mainly 

inorganic metal complexes that are able to be reduced at the electrode (Srna et al., 1980; 

Coale and Bruland, 1988). The current measurements at the peak potential versus the 

metal added result in a low slope for the initial data followed by steeper slope linear 

response at higher total metal. The small slope occurs because the NOM is binding the 

available metal while the steeper slope arises when the binding capacity for the NOM is 

exceeded.  This method assumes that only inorganic complexes and free lead are detected 

at the electrode and strong organic matter complexes are not detected.  Extrapolation of 

the linear data at high lead allows for estimation of the binding capacity at the x-intercept 

of the regression line. 

1.6 Fluorescence Quenching 

 In natural waters dissolved organic matter fluorescence is potentially quenched in 

the presence of metals through formation of organo-metal complexes (Hood et al., 2005). 
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Quenching can occur by three different methods (Lakowicz, 2006). These methods are 

static, dynamic and apparent quenching. Static quenching results from a ground state 

interaction between the quencher and fluorescent species. Dynamic quenching occurs 

when the quenching species and the fluorescent compound collide, causing a non-

radiative relaxation. Apparent quenching occurs when the quenching species absorbs 

the excitation or emission wavelength, making it appear as though the fluorescence has 

been suppressed (Lakowicz, 2006). It is assumed that the metals zinc, lead and copper 

will exhibit static quenching while binding to the fluorescent NOM which is tested in 

Chapter 4.  

To assist in the visualization of the different types of quenching through electron 

transfer Figure 1.5 displays a Jablonski diagram illustrating ground state interaction, 

excited state interactions and non-radiative relaxation. The first step in Jablonski diagram 

is the transition of an electron from ground state to a higher energy level indicated by a 

straight arrow pointing up.  This electron can be transferred through vibrational 

relaxation, internal conversion, fluorescence or phosphorescence.  Vibrational 

relaxation occurs with the relaxation of the electron within vibrational levels. If 

vibrational energy levels strongly overlap electronic energy levels, a possibility exists 

that the excited electron can transition from a vibration level in one electronic state to 

another vibration level in a lower electronic state known as internal conversion. 

 Fluorescence occurs with the emission of a photon.  Finally, phosphorescence occurs 

after intersystem crossing of the electron from an excited singlet state to an excited triplet 

state and emission to the ground state. 
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Figure 1.5: Jablonski Diagram. Radiative processes (those which are "vertical" in energy transfer) 

are shown in solid lines whereas non-radiative processes ("horizontal" energy transfer) are shown 

using dotted lines.  

 

Previous marine organic matter copper quenching experiments have been able to 

solve for logK and binding capacity (Hernandez et al., 2006; Wu and Tanoe, 2001, and 

Dudal et al., 2006). Fluorescence quenching is a function of equilibrium binding 

parameters including logK, binding capacity (LT) and proportionality constants for the 

ligand and metal ligand complexes. Hernandez et al. (2006) used fluorescence quenching 

to determine stability constants for copper and zinc with humic acids. They determined 

logK values for copper of 4.71-5.13 and a binding capacity of 1.01-2.84 mmol/g. Zinc 

and humic acid had a logK range of 4.24-4.49 and binding capacities of 0.066-1.86 

mmol/g. Wu and Tanoe (2006) determined copper stability constants with varying 

molecular size fractions.  This was done for CuL1 and CuL2 having a logK range of 7.98-

9.56 and 7.05-8.78, respectively. Binding capacity range based on molecular size fraction 

was 8.19-19.88µM for CuL1 and 25.44-32.94 µM for CuL2. Dudal et al. (2006) used 

fluorescence quenching for coper, iron and nickel with low volume DOM samples but did 
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not solve for stability parameters. Fitting a fluorescence quenching curve with a Ryan 

Weber equilibrium model, equation (1), allows for the determination of logK and binding 

capacity for the NOM. By plotting fluorescence intensity versus total metal (CM) added, a 

nonlinear regression analysis can be used to solve for K and CL. IML is a limiting value 

below which the fluorescence will not continue to decrease due to metal addition. 

  (1) 

Freshwater fluorescence quenching has been validated for aluminum with 

salicylic acid and 2-hydroxy-3-napthoic acid by Smith et al. (1998). Copper fluorescence 

quenching was validated by its ability to predict free copper also by Smith et al. (2000). 

Experiments using model compounds with known stability constants for validation of the 

fluorescence quenching method for the metals copper, zinc, nickel and lead in marine 

systems were not discovered. 

1.7 Matlab
TM

: Solving for Chemical Equilibrium 

Modeling of experimental data consists of simultaneously solving for the 

chemical equilibria in solution. A computerized model can be used to fit experimental 

data to chemical equilibrium binding constants by incorporating the constraints of mass 

balance and mass action. Matlab
TM

 was the program used to employ mass balance and 

mass action for solving chemical equilibrium represented by a tableau notation. The 

tableau notation defines the equilibrium problem and the entries in the columns are the 

stoichiometric coefficients required for the formation of each species (Smith, 2010). An 

example of a tableau can be viewed in Figure 1.6. Within the tableau the CuOH
+
 species 
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is explained by stoichiometric coefficients of -1 H and 1 Cu. This can be explained by the 

formation of CuOH
+
 which occurs from 1 copper and by removing 1 hydrogen from 

water, which is where the -1 H comes from. Additionally, if you multiply across the rows 

of the tableau  it is possible to determine the species concentration and if you sum down 

the columns the total values (mass balance) can be recovered (Smith, 2010). Based on 

this tableau, it can be noted that the species are not independent of each other and 

components from the tableau can be selected to solve for the equilibria problem.  

 
Figure 1.6: Example Tableau. It is possible to determine species concentration if an individual 

multiplies across the rows. Mass balance can also be recovered and if the columns are summed. 

 

The computerized code then creates four vectors. First a vector of species 

concentration labeled C is produced, and secondly a vector labeled T containing totals 

including TOTH and CuT. Next a vector summarizing the logK values are produced 

labeled K and finally a matrix of the stoichiometric coefficients for each of the 

components labeled A. Finally the Matlab code solves all these vector calculations by 

using the formula (3). 

R=A’x(10
C
)-T (3) 

To insert numerical values of C, the following equation (2) must be used (Smith, 2010). 

C=10
(K+A+X’)  

(2) 
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1.8 Objective of Research 

The purpose of this research is to: 

1. Characterize different sources of NOM and their binding characteristics with 

copper, lead, zinc, and nickel in marine systems using fluorescence quenching and 

voltammetric methods. 

2. Assess salinity dependence and NOM concentration dependence to determine 

their affect on binding capacity for lead with NOM.  

3. Transformation/dissolution experiments will be completed to determine solubility 

of two copper compounds, copper and cuprous oxide, and ensure that they are 

within appropriate limits and regulations. A solubility model will be used to 

compare to experimental results, and conclusions will be made on which ones can 

effectively describe the experimental results obtained.  

1. 9 Hypothesis 

1. Source of organic matter will affect the binding capacities for the metals and 

will result in the magnitude of organic matter metal toxicity protection being 

source dependent. 

2. An increase in DOM concentration will result in higher binding capacity and 

protectivity in marine samples. 

3. An increase in salinity would result in similar binding capacity. 
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4. A solubility model based on NIST values will accurately predict copper 

solubility and match measured data. 

 1.10 Significance of study  

 The ability to characterize dissolved organic matter and its binding capacity with 

copper, lead, nickel and zinc in marine systems is important because the information can 

be used to expand the use of the Biotic Ligand Model (BLM) to marine systems.  

 The binding information for NOM and these metals in seawater will allow for the 

BLM to set guidelines and regulations for metal discharge in marine systems and 

accurately predict the effect of these metals on the organisms present. The setting of these 

regulations will appropriately protect marine organisms, prevent toxicity and allow for 

site specific discharge criteria.  

Binding capacity comparison between different sources and concentration of 

NOM is essential to understand and characterize interaction of NOM with metals and 

apply it to research for the BLM. Binding capacity allows for information regarding the 

amount of metal the organic matter can hold. Equilibrium binding parameters allow for 

prediction of metal speciation and bioavailability for different bulk water chemistry 

allowing for site-specific regulatory criteria to be derived.  
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1.11 Thesis Road Map 

Chapter 2: Transformation/Dissolution 

Transformation/dissolution experiments are performed to determine the rate and extent to 

which metals and soluble metal compounds can produce soluble metal species in 

environmental conditions. Matlab
TM

 was used to create a copper solubility model. 

Parameters within in the model were adjusted to isolate individual precipitates and 

observe the changes in copper solubility. 

Chapter 3: Sample Characterization by Fluorescence 

Fluorescence spectroscopy is used to determine stability of NOM during storage and 

determine variability in molecular nature of NOM with different sources. PARAFAC was 

used to determine relative concentrations of three components humic and fulvic-like, 

tryptophan-like and tyrosine-like. 

Chapter 4: Fluorescence Quenching Analysis for Copper, Nickel, Zinc and Lead in 

saltwater media 

Fluorescence quenching was used to determine logK and LT for NOM in seawater. The 

method was applied to NOM used in toxicity tests and did not provide measurements 

consistent with results. Tryptophan was used as a model ligand to validate fluorescence 

quenching method. 
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Chapter 5: Natural Organic Matter Source and Salinity Dependence on Binding of Lead 

in Saltwater Media 

Voltammetric Methods were used to determine binding capacities of different 

concentrations and sources of NOM with lead in different salinities. Results were 

compared to toxicological observations. 

Chapter 6: Conclusions and Future Work 

Appendix A: Matlab Code for Transformation/Dissolution Modeling 

Appendix B: Matlab Interpolations for corrected logK values 

B.1 Copper logK Interpolations 

B.2 Acid and Ion logK Interpolations 

B.3 Lead logK Interpolations 

B.4 Zinc logK Interpolations 

B.5 Nickel logK Interpolations 

Appendix C: SIMPLISMA Matlab modeling 

Appendix D: Matlab Code for Theoretical Fluorescence Modeling 

C.1 Matlab Code for lead 

C.2 Matlab Code for copper 

C.3 Matlab Code for zinc 
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C.4 Matlab code for nickel 

Appendix E: Competitive Ligand Exchange Method by Anodic Stripping Voltammetry 

Competitive exchange experiments were completed on the voltammeter for copper with 

NOM Luther Marsh in artificial seawater and the competitive ligand, salicyladoxime. 

Binding capacities were determined. 

Appendix F: Determination of Binding Capacity with Zinc 

Zinc was measured using voltammetry to determine binding capacity. Resultant peak 

height versus total zinc were linear and binding capacity could not be determined. 

Appendix G: Salinity and DOC variables that determine toxicity? 

Nadella et al., Manuscript draft of toxicity results. Voltammetric results in chapter 5 

comparing binding capacities for Nordic Reservoir at different NOM concentrations will 

be inserted into this paper. 
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Chapter 2: Transformation/Dissolution  

2.1 Introduction 

 Copper solubility is an important piece of information needed for many 

companies that manufacture copper containing products. At low copper concentrations 

copper is essential but at increased concentrations copper can become toxic to organisms 

and harmful to the environment. Therefore, it is very important for manufacturers to 

know that the amount of copper that can potentially be released into the environment 

from their products or waste is not an amount that can be harmful or exceed any 

regulatory requirements. If a compound is found to be highly soluble, a greater 

environmental impact is expected. Conversely, insoluble copper compounds are less 

likely to have a negative environmental impact. There is a need for solubility assessment 

in marine environments where high salinity can influence solubility. 

Copper solubility is extremely important to antifouling paint companies. 

Antifouling paint is used to counteract or prevent the buildup of deposits on underwater 

structures. It is added to the hull of a boat and is designed to slow the growth of 

organisms that would attach to the hull and affect performance and durability. This paint 

contains such compounds as copper powder and cuprous oxide, and can flake off into the 

seawater. It is extremely important to know the solubility of copper and ensure that it is 

within appropriate limits and regulations. Harbour environments have a higher 

concentration of boats in a designated area and therefore have a greater likelihood of 

having an environmental impact. 
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Transformation/dissolution experiments are performed to determine the rate and 

extent to which metals and soluble metal compounds can produce soluble metal species 

in environmental conditions. These experiments have been completed for 100 mg/L of 

copper and cuprous oxide powder following OECD (Organisation for economic 

cooperation and development) protocols. Both powders undergo oxidation while 

dissolving into solution. The solubilization of copper powder can be seen in equation (1) 

while the solubilization of cuprous oxide can be viewed in equation (2). 

Cu(s)  Cu
2+

 +2e
-
  (1) 

Cu2O(s) +2H
+
  2Cu

+
 + H2O 

 
(2) 

The OECD work with governments to understand what drives economic, social 

and environmental change. They use data to predict future trends and set international 

standards on a range of things including the safety of chemicals. The OECD protocols are 

the accepted means to determine safe thresholds on solid substances. The solubility 

results can be used to evaluate the short and long term aquatic toxicity of the metal. The 

test guidance applied is the outcome of an international effort under the OECD to develop 

an approach for the toxicity testing and data interpretation of metals and sparingly soluble 

inorganic metal compounds (SSIMs). 

Copper solubility modeling has been based on the precipitate tenorite (CuO) 

which cannot be located within the national institute of standards and technology’s 

(NIST) standard reference database. However, other precipitates that are included in the 

copper solubility modeling, including malachite (Cu2(OH)2CO3(s)), copper hydroxide 
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(Cu(OH)2) and copper carbonate (CuCO3), can be found in the NIST database. This has 

led to the discussion of which is the most reliable solid phase for dissolution equilibrium 

modeling. 

2.2 Experimental Details 

2.2.1 Transformation/Dissolution 

A standard laboratory transformation/dissolution protocol, Annex 10 following 

OECD standards, was applied to seawater sample agitation of 100 mg/L of cuprous oxide 

(Cu2O) and copper (Cu) powder in a pH buffered aqueous medium (OECD, 2001; Annex 

10, 2007).  The chemical composition of the marine medium can be found in Table 2.1.  

Table 2.1: Chemical Composition of Marine Medium used for Transformation/Dissolution. 

Chemical mg/L 

NaF 3 

SrCl2 6H2O 20 

H3BO3 30 

KBr 100 

KCl 700 

CaCl2 2H2O 1470 

Na2SO4 4000 

MgCl2,6H2O 10780 

NaCl 23500 

Na2SiO3 9H2O 20 

NaHCO3 200 
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The marine medium was added to three vessels and allowed to equilibrate for 24 

hours before the addition of the 100 mg/L metal powder. Enough headspace was 

maintained in each vessel to keep the dissolved oxygen concentration above 70%. The 

solutions were agitated by a radial impeller at 200 rpm and the vessels were kept closed. 

Controls were taken from each vessel before the addition of the metal powder. Every 24 

hours, temperature, pH and dissolved oxygen was measured to ensure experimental 

conditions were met. Temperature had to remain between 20 and 25ºC, without varying 

more than 2ºC. The pH had to remain constant at +/-0.2 pH units and dissolved oxygen 

above 70%. After the measurements were recorded, two subsamples were taken from 

each vessel. They were filtered through a 0.2µm polyethersulfone (PES) membrane 

syringe filter and acidified with 1% HNO3. The volume removed from each vessel was 

replaced by fresh marine medium. Sampling and analyzing of the solutions occurred at 24 

hour intervals for 7 days to determine the concentration of total dissolved metal. 

2.2.2 Total Soluble Copper Analysis 

Copper concentrations were measured with a voltammeter following the Metrohm 

No. 231/2e method. A KCl-sodium acetate solution was prepared by dissolving 55.9 g 

KCl, 25 mL 30% by weight NaOH and 14.2 mL acetic acid up to 500mL of Milli-Q 

water. 10mL of the collected sample and 1 mL of the KCl-sodium acetate solution were 

placed in the voltammeter vessel and the pH was tested to ensure it was at 4.6+/-0.2. The 

voltammeter was run with the following parameters: purge time 300 seconds, deposition 

potential -1.15 V, deposition time 90 seconds, equilibration time 10 seconds, scan range 
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of -1.15 to 0.05 V, voltage step of 0.006 V and voltage step time of 0.1 seconds. The 

concentration was determined by standard additions.  

The copper concentrations for the copper and cuprous oxide powder samples (+/- 

standard deviation) were determined to be 47.9   3.48 µg/L and 46.0  5.56 µg/L, 

respectively. Figure 2.1 illustrates the results collected by the transformation/dissolution 

protocol as described above. 

 

Figure 2.1: Copper analysis and standard deviation for 100 mg/L of copper powder and cuprous 

oxide powder in standard marine medium. 

 

2.2.3 Modeling 

Matlab
TM

 was used to create a copper solubility model. Parameters within the 

model were adjusted to isolate individual precipitates and observe the changes in copper 

solubility accordingly. Based on the modeling completed with Matlab
TM

, conclusions 

were made on the acceptability of current precipitates used in the models and which ones 

can effectively describe the experimental results obtained.  
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2.3 Aquatic and Solid Tableaus 

The seawater used for the transformation/dissolution protocol in Table 2.1 has a distinct 

recipe that needs to be followed. The species within the recipe that can directly bind to 

copper are hydroxide, chloride, carbonate and sulfate. The species within this recipe that 

were placed within a tableau for aquatic species can be found in Table 2.1. The matlab 

script used can be found in Appendix A. 

 

Table 2.2: Aquatic species tableau used for matlab copper solubility modeling containing species 

name, number of H, Cu, CO3, Cl and log K values. Log K values can be found in the NIST standard 

reference database and were corrected for ionic strength. 
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The tableau for the precipitates can be found in Table 2.2. There is a need for a 

separate solid tableau because it requires an additional residual involving saturation index 

(SI). The SI is used to predict the ability of the solution to form a precipitate. It is defined 

as the log of the ion activity product divided by Ksp. The tenorite equation can be used to 

explain how the tableau is created. The formation of tenorite can be described by this 

equation (3). 

Cu
2+

 + H2O CuO(s) + 2H
+
   (3) 

From this it can be seen that 1 copper is present as the reactant and 2 hydrogens 

are present as products, thus expressed as -2 reactants. The activity corrected logKsp 

value for an ionic strength of 0.7 of tenorite is 7.89 but because the way tableaus are 

written requires formation constants, not dissolution constants, the logK value becomes -

7.89. 

 

Table 2.3: Precipitate tableau. LogK values were corrected for ionic strength by using the extended 

Debye Huckel equation.  
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2.4 Activity Corrections 

 

 All logK values present within the tableau were corrected for ionic strength. The 

ionic strength of the OECD seawater used is 0.7M which was calculated based on the 

concentrations of each compound used to prepare the seawater medium, as seen in 

equation 4. Here Ci is the molar concentration in mol/L and Zi is the charge number of 

that ion. 

   (4) 

 

 This means that the logK values collected must be corrected for this ionic strength.  Two 

methods were applied to adjust for the ionic strength. The first method is applied with 

multiple measured stability constants at different salinities. It involves an interpolation 

method of measured logK values at different ionic strengths. Data was taken from NIST 

(Martell and Smith, 2001). The measured values are plotted against salinity and an 

interpolation is done to find the measured logK for the specific salinity of the solution. 

This uses the known data points to estimate the logK at the salinity of interest. A 

representation of the interpolation for hydroxide can be found in Figure 2.2. The 

additional interpolations can be found in Appendix B.  
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Figure 2.2: Interpolation of logK for hydroxide at an ionic strength of 0.7 M. 

 

 

The second method, using the extended Debye Huckel equation, was applied to 

the logK values that could not be interpolated within Matlab because multiple ionic 

strength data was lacking. The extended Debye Huckel equation (5) is used for this 

correction. Here z is the charge,   is the ionic strength and  is the radius in pm in an 

aqueous solution. 

)305/(1

51.0
log

2











z
   (5) 
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Based on reaction (6) the fixed ionic strength concentration K value (Kconc) can be 

defined as seen in (7). 

aA+bB  cC +dD    (6) 

ba

dc

conc
BA

DC
K

][][

][][


   

(7) 

 Activity is defined in equation (8). The activity of species A is its concentration 

multiplied by its activity coefficient (γ). The activity coefficient measures the deviation 

of behavior from ideality. 

][AA A     (8) 

 The equilibrium constant can be adjusted to the thermodynamic constant which is based 

on activities (9). 

][][

][][
)(

BA

DC
KK

b

B

a

A

d

D

c

C
activitythermo




    (9) 

 Rearrangement of this equation results in (10). 

ba

dc

b

B

a

A

d

D

c

C
thermo

BA

DC
K

][][

][][




    (10) 

The simplified equation can be written as (11) where β is a constant which is a function 

of ionic strength. 

concthermo KK     (11) 
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Then the activity correction for the K values can be completed using (12). 


thernmo

conc

K
K     (12) 

2.5 Copper Solubility Diagram 

 The Matlab
TM 

program containing the aquatic and precipitate tableau found in 

Appendix A produced the solubility diagram in Figure 2.3. The sum of soluble copper 

species was determined by the difference between total and precipitates as defined by 

equation (13) where CuT was set to 5.0x10
-5

 M to ensure super saturation. 

Cusoluble=CuT-(2*[malachite] +[tenorite] +[Cu(OH)2(s)]+ [CuCO3(s)] (13) 

 In this diagram at a pH of 8, which is roughly the pH in seawater, and the exact pH in the 

transformation/dissolution experiments, the soluble copper is approximately 22 ppb. This 

value is lower by about half than the 47.9 +/- 3.48 ppb and 46.0 +/- 5.56 ppb measured in 

the experiment. 
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Figure 2.3: Copper solubility diagram with precipitates malachite, tenorite, copper hydroxide and 

copper carbonate. The blue data point is the amount in ppb with standard deviation measured within 

the transformation/dissolution experiments. 

 

 The next step taken with the Matlab
TM

 program was to isolate the precipitate 

formation to be able to identify which precipitate would best describe the results obtained 

from the experiment. Three solid phases: tenorite, malachite and Cu(OH)2(s) were 

systematically tested and solubility versus pH was compared to measured values. The 

next model had only one precipitate present in the model, tenorite. However, it is 

identical to the figure 2.3. Indicating that tenorite is the most stable precipitate and 

dominates in the original copper solubility model. This value still underestimates 

compared to the experimentally measured value.  

 The next precipitate to isolate in the modeling is malachite. Figure 2.4 shows the 

copper solubility allowing only malachite formation as the stable mineral phase. At a pH 
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of eight, the copper solubility is predicted to be approximately 150 ppb. This 

overestimates the copper solubility based on the experimentally collected results. 

 

Figure 2.4: Copper solubility model with malachite as the only precipitate present. The blue data 

point is the amount measured in ppb with standard deviation within the transformation/dissolution 

experiments. 

 

 The copper solubility diagram for only the copper hydroxide solid can be found in 

figure 2.5. At a pH of eight, the copper solubility is predicted to be approximately 600 

ppb which overestimates the soluble copper found in the system. 
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Figure 2.5: Copper solubility model with copper hydroxide as the only precipitate present. The blue 

data point is the amount measured in ppb with standard deviation within the 

transformation/dissolution experiments. 

 

Finally, Matlab
TM

 was used to accumulate figures 2.3-2.5 to give an idea of which 

precipitate could be used to best model copper solubility in figure 2.6.  
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Figure 2.6: Copper solubility model with copper hydroxide as the only precipitate present (red line). 

Copper solubility model with malachite as the only precipitate present (green line). Copper solubility 

model with tenorite as the only precipitate present (blue line). The overall copper solubility model 

including tenorite, malachite, copper hydroxide and copper carbonate is directly blue the tenorite 

only model. The blue data point is the amount in ppb with standard deviation measured within the 

transformation/dissolution experiments. 

 

2.6 Discussion 

Tenorite precipitation underestimates the copper solubility but it most closely 

matches the measured data. This disagreement could be due to kinetics. It is important to 

note that the logK value assumes that the tenorite precipitate is at equilibrium. Research 

regarding the length of time it takes for tenorite to reach an equilibrium state has yet to be 

determined. Therefore, tenorite may actually be a good precipitate representation for the 

copper solubility model but it cannot be accurately observed because the logK value is 

for the precipitate at equilibrium and, in fact, the compound may not be there yet. 
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Copper hydroxide solid seriously overestimates copper solubility so is also not a 

reasonable precipitate to be used for modeling. The malachite precipitate overestimates 

the value of copper solubility at 150 ppb compared to 47.9 +/-3.48 ppb and 46.0 +/- 5.56 

ppb. The tenorite solubility model provides closer values than the malachite solubility 

model but from a toxicity standpoint the malachite model could be more conservative. 

The Canadian Environmental Quality Guidelines (CEQG) for copper is currently 

based on total copper concentrations that are considered ‘safe’ copper levels in both fresh 

and marine water. The Canadian freshwater copper criteria range from 2 to 4 µg/L 

depending on water hardness, and the saltwater criteria state a limit of 3 µg/L (CCME, 

2007). The total soluble copper of the copper powder and cuprous oxide was found to be 

47.9 and 46.0 µg/L, respectively and exceeds the limits set by the CEQG. 

Mytilus are among the most copper sensitive taxa in the USEPA ambient seawater 

copper criteria document (Arnold et al., 2009). The EC50 for copper in Mytilus trossolus 

was determined to be 9.6 µg/L without the presence of NOM (Nadella et al., 2009). The 

solubility of these compounds, if used for antifouling agents, could be very hazardous to 

the Mytilus genus because the solubility is almost five times higher than the EC50 and 

greater than ten times the regulatory guidelines. In comparison, blue crab (Callinectes 

sapidus) is a very copper tolerant species with an EC50 of 3367.9 µg/L (Martins et al., 

2011) so the solubility of these copper compounds would not affect them. 
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2.7 Conclusions 

With the use of modeling using chemical stability constants corrected for ionic 

strength of seawater, a greater understanding of modeling of copper solubility was 

established. Tenorite precipitation underestimates the copper solubility in comparison to 

the solubility seen in experimental testing, but agrees more closely than any of the other 

precipitates. However, it is possible that the tenorite precipitate is not at equilibrium and 

given long time periods, may be a reasonable precipitate to use for modeling. More 

information regarding the precipitate is required before an appropriate decision can be 

made. Copper hydroxide solid seriously overestimates measured copper solubility via 

dissolution so is also not a reasonable precipitate to be used for modeling. The malachite 

precipitate overestimates the copper solubility but appears to be more reasonable than the 

copper hydroxide model. Ultimately, the experimental data point was placed between the 

tenorite precipitation model and the malachite precipitation model, still leaving questions 

about how to optimize the modeling of copper solubility. Only divalent copper 

precipitates were used in the solubility model because the copper powders undergo 

oxidation reactions. These models can be used as an estimate but much more work is 

needed to produce an accurate copper solubility model. It is also important to model 

precipitation of copper and not just the dissolution to get a complete picture of copper 

solubility in marine systems. 

The solubility values measured were almost five times more concentrated than the 

EC50’s for Mytilus trossolus, and greater than ten times the regulatory guidelines 

indicating that, if used as an antifouling paint, it may have toxicity effects in marine 

systems. 
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Chapter 3: Sample Characterization by Fluorescence 

3.1 Introduction 

Fluorescence spectroscopy can be used to provide a molecular fingerprint of the 

molecular nature (related to source) of NOM and determine the stability of fluorophores in NOM 

during storage. Fluorescence spectroscopy is a highly selective and sensitive technique that was 

used for characterization of NOM. Fluorescence spectroscopy resolves fluorophores based on 

different fluorescent properties. NOM is particularly useful for fluorescence and fluorescence 

quenching because of the presence of aromatic structural groups. The concentration and 

chemical composition of NOM influences the intensity and shape of the fluorescence spectra 

allowing for different fractions of the NOM pool to be distinguished using detailed spectral 

fluorescence measurements (Coble et al. 1990; Coble 1996).  DOM fluorescence has a broad 

excitation between 250 and 400 nm and a broad emission from 350 to 500 nm. The location of 

the excitation and emission peaks varies with the composition of DOM (Stedmon and Bro, 

2008). 

Terrigenous NOM can be detected in the excitation and emission ranges of 300–350 nm, 

400–450 nm and 250–390 nm, 460–520 nm, suggesting the presence of terrestrially derived 

fulvic and humic material, respectively (Smith and Kramer, 1999; McKnight et al., 2001; Wu et 

al., 2003; Stedmon and Markager, 2005). 

Autochthonous NOM can be detected by the excitation and emission peaks of 225–

275 nm, 350 nm and 225–275 nm, 300 nm identifying microbially derived tryptophan-like and 

tyrosine-like fractions (Baker, 2001; Stedmon and Markager, 2005).  An example of an 

Excitation-Emission Matrix (EEM) for a marine NOM, Nordic Reservoir, can be seen in Figure 
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3.1. Nordic Reservoir has high fulvic and humic acid-like fractions and low tryptophan and 

tyrosine-like fractions. 

 

Figure 3.1: Nordic Reservoir NOM in seawater. EEM shows a high humic and fulvic like fraction with a low 

tryptophan and tyrosine-like fraction. 

 

To quantify humic-, fulvic-, tryptophan-, and tyrosine-like fractions observed by 

fluorescence, parallel factor analysis (PARAFAC) is used. Through spectral deconvolution of a 

‘stack’ of fluorescent EEMs, PARAFAC quantifies a minimum number of fluorescent 

components to describe each EEM in a set of related samples (Depalma et al., 2011b).   

Natural organic matter (NOM) is mainly comprised of the humic substances, humic acid 

and/or fulvic acid, together with carbohydrates, proteins and lipids (Thurman 1985). Fulvic and 

humic acids have been found to be most abundant in NOM (Ericksen et al., 2001). Aquatic 

systems usually contain a mixture of terrigenous and autochtonous natural organic matter (NOM) 

(McKnight et al., 2001). Terrigenous NOM is terrestrially derived and is composed of organic 

matter from decomposition of plants (mostly lignin oxidation), containing carboxylic and 

phenolic functional groups attached to aromatic rings. The presence of the many aromatic 
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structural groups within NOM, as seen in Figure 3.2, allows for its fluorescent nature. 

Autochtonous NOM is composed from the organic matter from microorganisms and bacteria and 

is generated within the water column, containing proteinaceous functional groups including 

amines. The chemical structure of tryptophan and tyrosine can be viewed in Figure 3.3 and 

Figure 3.4. Sewage derived organic matter is also common and contains intermediate properties 

between terrigenous and autochtonous NOM. 

 

Figure 3.2: A proposed structure of a humic acid molecule containing carboxylic and phenolic functional 

groups attached to aromatic rings (Schulten et al., 1993). 

 

 
Figure 3.3: Tryptophan molecule. Trytophan-like components are present within NOM representing 

proteinacious material containing amine groups attached to aromatic rings. 



53 

 

 
Figure 3.4: Tyrosine molecule. Tyrosine-like components are present within NOM representing proteinacious 

material containing amine groups attached to aromatic rings. 

 

There is a lack of information regarding the molecular composition of marine NOM. 

Ocean profiles exist for two components, amino acids and carbohydrates. Amino acids account 

for 1-3% of the ocean pool while carbohydrates account for 2.5-7% of the DOC, leaving 90% of 

DOC uncharacterized (Benner, 2002). 

 

3.2 Method 

Fluorescence spectra of the NOM samples were collected using a Varian Cary 

fluorescence spectrophotometer with 1cm pathlength quartz cuvettes. A table of the NOM 

samples containing source, location and method of collection can be viewed in Table 3.1. 
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Table 3.1: NOM samples source, year collected and collection method. 

NOM Source Year Collected Collection Method 

Bamfield British Columbia. Collected deep 

into the Bamfield marine station 

inlet.  

2010 Rodriguez and 

Bianchini, 2007 

Pachena Collected at the point where a river 

meets the Pacific ocean (bamfield, 

B.C.). 

2010 Rodriguez and 

Bianchini, 2007 

Offshore Collected far off the coast of 

Bamfield, B.C. 

2010 Rodriguez and 

Bianchini, 2007 

Rio Grande Extracted from water far off the 

coast in the Southern Atlantic 

2010 Rodriguez and 

Bianchini, 2007 

Harbour Bamfield Harbour. Lots of boating 

activity. 

2010 Rodriguez and 

Bianchini, 2007 

Nordic 

Reservoir 

IHSS substance N/A N/A 

Inshore Brazil 2009 Rodriguez and 

Bianchini, 2007 

 

 The fluorescence spectra were measured by using excitation wavelengths from 200 to 

450nm using 10nm increments. The emission wavelengths were measured in the range of 250 to 

650nm for every 1nm increment. The EEMs are plotted as contours to identify the fluorescing 

components. Parallel Factor Analysis (PARAFAC) was used to identify and quantify the 

component peaks in the EEMs, as implemented in the PLS toolbox (Eigen-vectors Research Inc, 

WA, USA). Each matrix contains fluorescence information for specific excitation/emission 

wavelength pairs. PARAFAC resolves this information into component spectra and relative 

component concentrations (Gheorghiu et al.,2010; Nadella et al., 2009; Depalma et al., 2011b).  

3.3 Fluorescence Scans 

 The fluorescence scans before and after storage for each NOM can be found below in 

figures 3.5 to 3.11.   
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 Seven different sources of organic matter were measured using fluorescence to determine 

quality and stability during storage time of a year and a half. The NOM samples were filtered 

through a 0.45 µm filter, acidified and stored in a fridge at 4ºC. Every NOM was diluted to a 

concentration of 10 mg C/L before fluorescence analysis. Each NOM sample source potentially 

contains a range of terrigenous, autochtonous and sewage derived organic matter. This can be 

quantified by determination of the fluorescence index (FI), equation (1). 

   (1) 

An FI of ~1.9 indicates a microbially derived fulvic acid (autochtonous) and a FI of ~1.4 is a 

terrestrially derived fulvic acid (terrigenous) (McKnight et al., 2001). Bamfield and Harbour 

contain terrigenous and autochtonous organic matter. Pachena and Nordic Reservoir are solely 

terrigenous organic matter. Inshore Brazil is a mixture of terrigenous and sewage derived organic 

matter. Finally, Offshore and Rio Grande are solely autochtonous organic matter based on 

location. 
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(a)                                                                      (b) 

 

Figure 3.5: Fluorescence fingerprint of Bamfield NOM containing terrigenous and autochtonous NOM (a) 

before storage and (b) after storage. 

 

 

 

 

(a)                                                                      (b) 

 

Figure 3.6: Fluorescence fingerprint of Pachena NOM containing terrigenous NOM (a) before storage and (b) 

after storage. 
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(a)                                                                      (b) 

 

Figure 3.7: Fluorescence fingerprint of Inshore Brazil NOM containing sewage and terrigenous NOM (a) 

before storage and (b) after storage. 

 

 

 

 

(a)                                                                      (b) 

 

Figure 3.8: Fluorescence fingerprint of Nordic Reservoir NOM containing terrigenous NOM (a) before 

storage and (b) after storage. 
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(a)                                                                      (b) 

 

Figure 3.9: Fluorescence fingerprint of Rio Grande NOM containing autochtonous NOM (a) before storage 

and (b) after storage. 

 

 

 

 

(a)                                                                      (b) 

 

Figure 3.10: Fluorescence fingerprint of Harbour NOM containing terrigenous and autochtonous NOM (a) 

before storage and (b) after storage. 
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(a)                                                                      (b) 

 

Figure 3.11: Fluorescence fingerprint of Offshore NOM containing autochtonous NOM (a) before storage and 

(b) after storage. 

 

While analyzing the fingerprints before and after a storage period, significant changes 

can be viewed in the humic and fulvic acid quality in Figure 3.6 Pachena, Figure 3.9 Rio Grande, 

Figure 3.10 Harbour and Figure 3.11 Offshore NOM. In each of these figures there is a 

significant decrease or even absence of the humic and fulvic acid like components in the after 

storage found at an excitation of 360-390, 265nm and 320-340, 230nm with emission at 460-

520nm and 400-450nm. A component analysis was performed on each fluorescent EEM using 

PARAFAC to determine the percent of each component before storage and after storage. 

3.4 PARAFAC 

Parallel Factor Analysis (PARAFAC) was used to identify and quantify the component 

peaks in the EEMs. PARAFAC was set to determine three resolved fluorescence components 

with 95.802 % of variability of the data explained by the three fluorophore model.  The results 

for the three component fit in Figure 3.12 contain tryptophan-like at 280 nm and 230 nm 
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excitation, 340-350 nm emission, humic and fulvic-like at 360-390, 400-450 nm or 265 nm 

excitation, and 320-340 nm, 460-520 nm emission, and tyrosine-like at 280 and 230 nm 

excitation and emission at 300 nm. 

 

Figure 3.12: Parallel Factor Analysis (PARAFAC) results showing the three resolved fluorescence 

components of each NOM isolate (a) Tryptophan-like component (b) Humic and Fulvic-like component (c) 

Tyrosine-like component. 

 

  The fluorescence index (FI) was calculated using equation (1) for each NOM source and 

compared to determine whether the fulvic acid was microbially derived (~1.9) or terrestrially 

derived (~1.4). These results can be found in Table 3.2. 
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Table 3.2: Fluorescence Indices for NOM sources before and after storage. 

Source FI (Before, After) Classification 

Bamfield 1.21, 1.20 Terrestrial Fulvic Acid 

Pachena 1.23, 1.12 Terrestrial Fulvic Acid 

Offshore 1.68, 1.37 Terrestrial Fulvic Acid 

Rio Grande 1.45, 1.41 Terrestrial Fulvic Acid 

Harbour 1.18, 1.23 Terrestrial Fulvic Acid 

Nordic Reservoir 1.35, 1.41 Terrestrial Fulvic Acid 

Inshore 1.52, 1.54 Terrestrial Fulvic Acid 

 

The relative concentration of each of the three components in the different NOM sources 

were converted to percent in equation (2) and plotted in a bar graph. 

   (2) 

Figure 3.13 displays the percent of components present within the organic matter before 

storage. Each source of organic matter has a different ratio of tryptophan-like, humic and fulvic-

like and tyrosine-like components. Pachena and Nordic Reservoir which were both terrigenous 

NOM had extremely similar ratios of components; above 80% humic and fulvic acid with less 

than 10% each of tryptophan and tyrosine. Offshore and Rio Grande were both classified as 

autochtonous NOM and both contain less of the humic and fulvic acid like component and more 

of the proteinacious materials (tryptophan and tyrosine-like). Inshore Brazil was a mix of 

terrigenous and sewage derived NOM, the ratio appears very similar to the solely terrigenous 
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NOM of Pachena and Nordic Reservoir except with a higher fraction of tryptophan-like 

component. Finally Bamfield and Harbour were classified as a mixture of terrigenous and 

autochtonous NOM and do have a relatively high amount of tryptophan and tyrosine-like 

components,  20% and 15-20% respectively, with the rest being humic and fulvic-like material. 

 

Figure 3.13: Percent of tryptophan-like, humic and fulvic-like, and tyrosine-like organic material present 

within each NOM sample before storage. 

  

Figure 3.14 displays the relative percent of each component after storage. It appears that 

for certain NOM sources, the humic and fulvic-like material decreased during storage and the 

tryptophan-like material increased with tyrosine-like material staying relatively the same. 

Pachena had tryptophan-like material increase from 10.1% before storage to 72.2% after storage, 

with a humic and fulvic-like decrease from 85.1% to 16.1%. The same trend can be seen with 

Harbour and Rio Grande. Harbour had 20.7% tryptophan-like material and 66.9% humic and 

fulvic-like material before storage, which changed to 51.7% and 35.1% after storage. Rio Grande 
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had a tryptophan-like material change of 28.6% to 62.3% and a humic and fulvic-like change of 

66.9% to 25.2%. A possible reason for this change is that the humic and fulvic-like material is 

precipitating out of solution during storage. The Pachena DOM had an obvious precipitate 

formation in the solution after storage; sonication did not redissolve the precipitate. 

 

Figure 3.14: Percent of tryptophan-like, humic and fulvic-like, and tyrosine-like organic material present 

within each NOM sample after storage. 

 

 The percent of each component before storage and after storage were plotted against each 

other and compared to a 1:1 line to determine whether the changes with the quality of NOM 

were significant (Figure 3.15). The tryptophan-like material does not scatter around the 1:1 line 

as would be expected for a systematic change within the system but is consistently above the 

line. The humic and fulvic-like material, similar to the tryptophan-like material does not scatter 

around the line but is consistently below it. The tyrosine-like material scatters closely around the 

line. 
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Figure 3.15: NOM component of Tryptophan-like material, humic and fulvic-like material and tyrosine-like 

material before storage versus after storage against a 1:1 line. 

  

Depalma (2009) showed that NOM fluorescence did not change over storage. The change 

in fluorescence after storage demonstrated within this chapter could be attributed to the 

difference in the collection method. The method used to collect the samples was Rodriguez and 

Bianchini (2007). This process involves filtration with 1 and 0.5 µm mesh filters, acidification to 

a pH of 2 with HCl, passage through PPL cartridges (to remove highly polar species), remove the 

salts from the resin before elution of DOM, DOM elution with methanol, lyophylization, DOM 

solution prepared with Milli-Q water, and storage in the dark at 4ºC. This process may not leave 

the NOM as stable as was seen by Depalma (2009).  

3.5 Conclusion 

 Fluorescence spectroscopy provided EEM’s which were used as fingerprints for each of 

the different DOM sources before and after storage. FI was determined for all the NOM samples 
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and had a range of 1.12 to 1.54 indicating that the fulvic acid within the samples was terrestrially 

derived. PARAFAC was used to determine the relative concentration of three components within 

the organic material determined to be tryptophan-like, humic and fulvic-like and tyrosine-like. 

The NOM samples with similar classifications, solely terrigenous or solely autochtonous had 

very similar ratios of each component before storage.  Comparison of the relative percents of 

each of these components showed significant changes within the tryptophan-like material and the 

humic and fulvic-like material after storage. The DOM did not remain stable and the quality of 

the sample changed during the storage procedure. This potentially was caused by the method 

used to collect the NOM samples. 
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Chapter 4 Fluorescence Quenching Analysis for Copper, Nickel, Zinc and Lead in 

saltwater media 

4.1 Introduction 

 Trace amounts of metals are present as natural components of the environment and at low 

concentrations, many metals including copper and zinc are essential for life. Unfortunately, due 

to anthropogenic inputs, trace metal concentrations are increasing. This increase can potentially 

result in toxicity to organisms and there is a need to monitor the levels and effects of these metals 

in aquatic systems. In seawater systems, there are many components including increased salinity 

and NOM that can compete or bind bioavailable metal and decrease toxicity.  

For freshwater systems the Biotic Ligand Model (BLM) has been successful in predicting 

metal toxicity as a function of water chemistry. The BLM has become an excellent tool for 

regulatory and risk assessment purposes. For saltwater systems, such as estuaries and ocean 

environments, BLMs have not been as extensively developed. A requirement for BLM 

development in salt water is an understanding of metal interactions (speciation) in saltwater 

environments.  

Aquatic systems usually contain a mixture of terrigenous and autochthonous natural 

organic matter (McKnight et al. 2001). Terrigenous DOM is terrestrially derived and is 

comprised of organic matter from decomposition of plants (mostly lignin oxidation products), 

containing carboxylic and phenolic functional groups attached to aromatic rings. Autochthonous 

DOM is composed from the organic matter from microorganisms and bacteria and is generated 

within the water column, containing proteinaceous functional groups including amines. Sewage 

derived organic matter contains intermediate properties between terrigenous and autochthonous 

DOM.  
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The BLM has been adopted by the USEPA for prediction of metal toxicity for a number 

of dissolved metals in freshwaters. The BLM is based on equilibrium calculations of metal 

speciation and has a numerical scheme to predict toxic metal concentrations and establish site 

specific criteria for a given location depending on its water chemistry parameters (Santore et al., 

2001). Although well developed for freshwater, there is a need for saltwater research for a 

marine BLM. The purpose of this research is to characterize dissolved organic matter and its 

binding characteristics with divalent metal cations, Cu
2+

, Zn
2+

, Pb
2+

 and Ni
2+

 in marine systems 

using fluorescence spectroscopy. 

4.2 Experimental Methods 

 Fluorescence spectra of the NOM samples were collected using a Varian Cary 

fluorescence spectrophotometer with 1cm pathlength quartz cuvettes at an excitation of 275nm 

and emission range of 300 to 600nm. Luther Marsh NOM collected from southern Ontario 

(43°54′N, 80°26′W) was dissolved in OECD synthetic seawater recipe in Chapter 2, at a 

concentration of 5 mg C/L and maintained at a constant pH of 7.802 +/-0.002. The NOM was 

titrated with each metal individually and allowed for a 15 to 20 minute equilibration time or until 

the scan stabilized. 

 Additionally, 10µM tryptophan (>98% Sigma-Aldrich, USA) prepared with OECD 

synthetic seawater was titrated with each of the metals at a constant pH of 7.802 +/-0.002 to 

validate the method. 

4.3 Fluorescence Quenching to Determine Binding Capacity and logK 

Fluorescence quenching has been used previously to determine equilibrium constants and 

binding capacity with great success in freshwater applications (Smith and Kramer, 2000). In 

natural waters, dissolved organic matter fluorescence is quenched in the presence of metals 
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through formation of organo-metal complexes. The natural organic matter (NOM) is a 

fluorescent compound due to the presence of the aromatic structural groups within it as discussed 

in Chapter 3. As the metals bind to the NOM, it produces a less fluorescent compound (M-NOM) 

and results in fluorescence quenching seen in equation (1) and log K expression in (2). 

Fluorescence is based on a single or a combination of fluorescence species multiplied by its 

proportionality constant as seen in expression (3). The quenching is seen because the 

proportionality constant for the M-NOM is lower than for the NOM. 

M
2+

+ NOM  M-NOM   (1) 

    (2) 

F=kNOM[NOM]+kM-NOM[M-NOM]    (3) 

4.4 Results: Luther Marsh Titration in Seawater 

This spectroscopic technique was applied for copper, lead, nickel and zinc with a 

freshwater isolate, Luther Marsh, in artificial seawater.  Figure 4.1 displays an example of the 

fluorescence spectra quenching for nickel additions of 0 to 188 ppb. It can be observed that with 

each addition of nickel, the fluorescence intensity decreases because the fluorescent Luther 

Marsh dissolved organic matter is binding to the nickel and becoming less fluorescent. It is 

assumed that static quenching is occurring when the metal and NOM interact. There is no 

spectral shifting present in the fluorescence spectra which means that only one fluorophore is 

present within the system. If more than one fluorophore was present under the peak then, as the 

metal bound to one or the other, the fluorescence spectra would shift accordingly. 
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Figure 4.1: Fluorescence quenching spectra of Luther Marsh dissolved organic matter with nickel additions 

ranging from 0 to 128 ppb. 

 

This fluorescence quenching method was repeated with lead (0 to 50ppb), zinc (0 to 129 

ppb) and copper (0 to 120 ppb) and the freshwater isolate luther marsh in OECD synthetic 

seawater. Fluorescence quenching is a function of equilibrium binding parameters including 

logK equation (2), binding capacity (LT) and proportionality constants for the ligand and metal 

ligand complexes equation (3). Fitting a fluorescence quenching curve with a Ryan Weber 

equilibrium model, as discussed in section 1.6 in Chapter 1, allows for the determination of logK 

and binding capacity for the NOM.  

Figure 4.2 displays fluorescence quenching curves for Luther Marsh NOM with nickel, 

copper, lead and zinc fit to Ryan Weber equilibrium curve to solve for logK and binding 

capacity. As the total metal concentration for each metal is increased, the fluorescence is 

decreased due to the formation of a less fluorescent metal organic matter complex. Table 4.1 

displays equilibrium constants and binding capacities for the complexation of these metals and 
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the freshwater isolate were obtained. Equilibrium constants (LogK) obtained from fluorescence 

quenching curves fit to a modified Ryan-Weber model showed a binding strength order of 

Zn
2+

>Pb
2+

>Ni
2+

>Cu
2+

. The Irving-Williams series shows the binding strength as 

Ni
2+

<Cu
2+

>Zn
2+

 with no placement for lead and does not agree. Binding capacity (LogLT) for 

each of the metals was found to range from 10.0 to 17.8 nmol/mg C. This indicates that the 

metals are binding to the same average site on the freshwater NOM and that the Luther Marsh 

NOM has a similar binding capacity for each of the metals. Based on these results, it appears as 

though fluorescence quenching can be used to quantify organic matter Pb, Zn, Cu and Ni 

interactions. These results imply that NOM is predicted to be protective at the EC50 region of the 

metal with the Luther Marsh freshwater isolate. The utility of fluorescence quenching has to be 

validated for model systems and the underlying assumption of static quenching occurring must 

be confirmed. 

 
Figure 4.2: Fluorescence quenching curves from nickel, copper, lead and zinc fit to Ryan Weber equilibrium 

curve to solve for logK and binding capacity for nickel (pink), copper (black), lead (blue) and zinc (red). 
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Table 4.1: LogK and LT values from equilibrium fitting of fluorescence quenching with metals are arranged 

from most toxic to least toxic. EC50 for Mytilus trossolus embryo toxicity test (Nadella et al., 2009). 

Metals  EC50  

(nmol/L)  

LogK  LT 

(nmol/mg C) 

Copper  0.151  5.9  12.6 

Lead  0.965  6.6 17.8 

Zinc  1.51  6.7  15.8  

Nickel  2.56  6.3  10.0  

 

4.5 Fluorescence Quenching Testing 

Due to the great promise of this technique for seawater applications, the fluorescence 

quenching method was applied to a raw sample from Jimbo Bayou in Miami FL, USA. The 

sample was held at a constant pH of 7.67 and DOC concentration of 3.47 mg C/L while 

fluorescence scans were taken at increasing additions of copper. Figure 4.3 shows the 

fluorescence quenching and equilibrium model fittings for the Jimbo Bayou Miami sample. As 

copper concentration is increased from 0 ppb to 231 ppb, the fluorescence intensity decreases 

due to the formation of less fluorescent copper organic matter complexes. The fluorescence scan 

shows multiple fluorophores present in the sample. Specifically, the wavelength shifting 

observed within the box indicates that more than one fluorophore is present under that broad 

peak. Fluorescence for multiple combinations of NOM can be described by equation (4). The 

fluorescence spectra contains multiple fluorescent NOM and the decreased fluorescent copper 

bound to the NOM. Spectra with different emission maxima have a different response to the 

copper and result in spectral shifts which were seen in the Jimbo Bayou sample. This is because 

one NOM would bind copper more efficiently than the other. 

Fspec=SpecNOM1[NOM1]+SpecCuNOM1[CuNOM1]+SpecNOM2[NOM2]+SpecCuNOM2[NOM2] (4) 
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Figure 4.3: Fluorescence of Jimbo from a Miami Bayou with copper. This sample shows multiple 

fluorophores, the wavelength shifting within the box indicates more than one fluorophore present under the 

peak. 

 

SIMPLISMA (SIMPLe-to-use Interactive Self-modeling Mixture Analysis), a spectral 

resolution technique, was used to determine the minimum number of fluorophores present within 

the sample of DOM using the method Windig and Guilment (1991).  This method involves 

selecting variables that are proportional in intensity to one of the components in the mixture. 

Once this has been identified, a matrix equation is solved to determine the pure spectra and 

concentrations of each component. This is done using least squares fitting. Negative 

concentrations were prevented by modifying the SIMPLISMA code (Appendix D) so that 

constrained non-negative least squares optimization was used to solve the matrix equation. 

Figure 4.4 displays the spectral deconvolution of the peak within the box. This shows the 

presence of two fluorophores, an autochtonous organic matter (green line) and terrigenous 

organic matter (blue line). The autochtonous organic material was classified by its low emission 

wavelength due to fulvic-like organic material while the terrigenous organic material was 

classified by its higher emission wavelengths due to high humic-like components. 
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Figure 4.4: Uncorrected Resolved Spectra. Spectral deconvolution of the peak shows the presence of two 

fluorophores. The green line represents autochtonous organic matter (mainly proteinaceous material) while 

the blue line represents terrigenous organic matter.  

 
 

A binding site model was used to interpret the fluorescence quenching results with each 

fluorescent component representing a binding site. To do this a multi-site Ryan-Weber model 

was employed (Smith and Kramer, 1999).  Fluorescence at any excitation and emission 

wavelength pair is a function of concentration of the fluorescence species as seen in equation (5). 

  (5) 

Where ej and cj are proportionality constants and cj is a function of MT and ξ is an experimental 

variation assumed to have a Gaussian distribution. The equation can be rewritten in matrix form 

for p additions of metal seen in equation (6). 

F=CE + Ξ   (6) 

Here F=pxq where column is length p for q different sets of fluorescence observations and 

C=pxm where there is a column of concentrations for each of the m fluorescent species. E=mxq 

containing a proportionality constant for each species at each set of observation wavelengths. 

The calculation is simplified by assuming that each wavelength pair can be found for each 
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component at which fluorescence depends on the speciation only at that component. The 

fluorescence of component n, of a total of N components, can be written as equation (7). 

Fn=Cn(θ)En+Ξn   (7) 

Linear components are contained in matrix En and correspond to the fluorescence of free ligand 

and metal bound ligand. The parameters are common to all N sets of observations and are 

collected in the vector θ. The parameters include N conditional stability constants (K’) and N 

ligand concentrations (L
’
T) (Smith and Kramer, 1999).   

Figure 4.5 displays the resolved fluorescence quenching curves for each of the 

fluorophores under the peak. While both seem to bind the copper added to the system, the blue 

points, representing the terrigenous organic matter, appear to have a higher capacity for copper 

and continue to quench past 1-1.5 µmol/L. The logK and LT  parameters can be found in Table 

4.2. The results indicate that the autochtonous OM has a larger logK value but binds less copper 

per mg of carbon. Meanwhile, terrigenous OM binds less strongly then autochtonous but has an 

increased binding capacity by a factor of eleven. 

 

Figure 4.5: Fluorescence quenching for the resolved fluorophores under the peak in the Raw Miami Bayou 

sample. 
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Table 4.2: logK and LT binding parameters for Jimbo Bayou with copper. 

Organic Matter Component logK LT 

(µmol/mg C) 

Autochtonous OM 10.38 0.078 

Terrigenous OM 9.20 0.89 

 

Additionally, the Jimbo Bayou was analyzed with copper ion selective electrode (ISE) by 

another masters student using the method from Ericksen et al (1999).  The comparison can be 

found in Figure 4.6. The solid line is the speciation model from the fluorescence quenching, the 

data points are ISE measurements and the dashed line is the 1:1 free copper to copper total. The 

two methods agree indicating a working fluorescence quenching method for copper. 

 

Figure 4.6: Fluorescence quenching speciation solid line comparison to copper ion selective electrode (blue 

data points) measurements. Dashed line is the 1:1 free copper to total copper. 
  

4.6 Fluorescence Quenching comparison to Toxicity Tests 

Based on the results from the Luther Marsh isolate and fluorescence quenching results, 

the method was applied to a Nordic Reservoir DOC for comparison of logK and LT by 

fluorescence quenching to lead and zinc toxicity development embryo tests. The lead EC50 
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results showed that the DOC is protective for lead but an increase in DOC did not show greater 

protection. A DOC concentration of 2 mg C/L provided an EC50 of 738 nM while a 

concentration of 12 mg C/L had an EC50 of 757 nM. The EC50’s demonstrate that the Nordic 

Reservoir DOC protection displays no dose dependence. This was surprising because it was 

assumed that an increased amount of DOC would have an increased number of binding sites and 

provide further protection for lead.  

Table 4.3 demonstrates that the fluorescence quenching results do not agree with the 

conclusions of the lead toxicity tests. The fluorescence quenching parameter indicates an 

increase in the DOC concentration resulted in an increased binding capacity for lead by a factor 

of five. This indicates that there should be dose dependence by the DOC with lead in protection 

because according to the fluorescence quenching results, at a higher DOC there are more 

available binding sites for the metal. 

Table 4.3: Binding Capacity for Nordic Reservoir organic matter concentrations of low and high DOC with 

comparison to EC50 values for Mytilus galloprovincialis in seawater. 95% confidence values indicated by 

ranges of values. 

Nordic Reservoir EC50  

(nmol/L) 

Mytilus  

galloprovincialis  

FQ 

Binding Capacity 

(nM)  

0 mg C/L  304.04 

(173-453)  

---  

2 mg C/L NR  738.38 

(680-796)  

6.35 

12 mg C/ NR  757.69 
 (680-830)  

32.34 
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4.7 Testing of Fluorescence Quenching Method 

The contradiction between the chemistry and the biological observations suggested the 

need for a validation of the fluorescence quenching method. The fluorescence quenching method 

was tested in model systems where speciation can be calculated. Tryptophan was chosen because 

it was necessary to pick a test ligand for which certified equilibration constants exist as in 

National Institute of Standard and Technologies (NIST) (Martell and Smith, 2001). 

Figure 4.7 displays the measured quenching for lead, copper, zinc and nickel. The data 

points are measured fluorescence quenching and lines are theoretical fluorescence quenching 

model based on NIST equilibrium constants and calculated speciation. Interpolation graphs used 

to determine corrected logK values can be found in Appendix B. The measured logK values are 

plotted versus salinity as described in Chapter 2. The measured points are connected by a curve 

or line depending on the trend in the data and the value for a salinity of 0.7 is taken from that 

line. 

Theoretical fluorescence at each point in the titration is calculated by determining the 

speciation of the system using equilibrium constant values from NIST (Martell and Smith, 2001). 

With known calculated speciation, equation (8) can be used to calculate predicted fluorescence. 

In particular, the HTrp term is calculated with added metal at a fixed pH of 7.8. The equation 

assumes that HTrp is the only fluorescent species. kHTryp is a proportionality constant 

determined by the fluorescence response in the absence of metal (first data point). There are no 

adjustable parameters within the calculation. Matlab codes used for calculation of the theoretical 

fluorescence can be found in Appendix C. 

F=kHTryp[HTryp]  (8) 
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(a)                                                                                (b) 

 

(c)                                                                                  (d) 

 

Figure 4.7: Model ligand tryptophan in synthetic seawater with metals (a) lead (b) copper (c) zinc (d) nickel. 

Data points are measured fluorescence quenching and lines are theoretical fluorescence quenching model 

based on NIST equilibrium constants and calculated speciation.  

 

Fluorescence quenching measurements for copper agree well with the theoretical model. 

Lead, nickel and zinc data demonstrate excessive quenching compared to the predicted model. It 

appears as though the assumption that static quenching is occurring might be incorrect. For the 

fluorescence quenching technique to work, the decrease in fluorescence is assumed to be a result 

of the formation of a less fluorescent metal-ligand complex (static quenching). Alternatively 

fluorescence can be quenched by collisional deactivation in the excited state (dynamic 



81 

 

quenching).  It appears that fluorescence quenching for lead, zinc and nickel is predominantly 

dynamic and thus the fluorescence quenching method, although it yields quenching curves, is not 

suitable for application in marine systems.  

Additional experiments can be completed to confirm the presence of dynamic quenching. 

Stern-Volmer plots can be used to determine whether the quenching is solely one type of 

quenching (static or dynamic) or a combination of the two. If the plot is linear then further 

analysis needs to be completed to differentiate static quenching from dynamic quenching. This 

can be done through two possible methods. The first would be to complete the fluorescence 

quenching experiments at a higher temperature. Higher temperatures will result in larger 

diffusion coefficients which will result in an increased quenching constant (an increased slope in 

the Stern-Volmer plot) if it is dynamic quenching. However, for static quenching the increased 

temperature will result in a decreased stability of the complexes formed and lower the quenching 

constant. A smaller slope will be seen in the Stern-Volmer Plot in comparison to the room 

temperature one (Lakowicz, 2006). 

 Another method to differentiate static from dynamic quenching would be to examine the 

absorption spectra of tryptophan. Dynamic quenching only affects the excited state of the 

fluorophore which should result in no change to the absorption spectra. Static quenching occurs 

due to the formation of complex and can result in changes to the absorption spectra. Individually 

or in combination these experiments should be done to ensure that the quenching that is being 

viewed is dynamic. 

 These techniques could also be applied to the Luther Marsh results in section 4.3 to 

determine the type of quenching that was measured for those experimental tests. 
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4.8 Discussion 

Fluorescence quenching measurements for copper agree with predictions in a model 

system and agree with copper ion selective electrode results done on the same sample. Lead, 

nickel and zinc display excessive quenching and disagreed with the theoretical model. Thus, 

fluorescence quenching seems to be a viable technique for copper speciation in marine systems 

but not for the other metal cations tested. 

Fluorescence quenching is a very popular technique and has been validated for aluminum 

with salicylic acid and 2-hydroxy-3-napthoic acid by Smith et al. (1998) in freshwater. Copper 

fluorescence quenching was validated by its ability to predict free copper also by Smith et al. 

(2000). Since copper has been validated in freshwater and seawater, it is not believed that the 

salinity is preventing the fluorescence quenching method from working.  Fluorescence 

quenching validation for the three other metals (Ni
2+

, Zn
2+

 and Pb
2+

) in freshwater or seawater 

was not found during an in depth literature search,  indicating that the metals themselves maybe 

the reason the fluorescence quenching method did not provide accurate results. 

4.9 Conclusions 

Fluorescence quenching showed great promise for determining equilibrium binding 

parameters and provided results for Luther Marsh with Cu
2+

, Ni
2+

, Pb
2+

 and Zn
2+

 and Jimbo 

Bayou organic matter with Cu
2+

. Copper ion selective electrode results for the Jimbo Bayou with 

copper give consistent results. Fluorescence quenching comparison with lead EC50 

developmental toxicity tests did not agree. Results showed an increased predicted binding 

capacity as DOC is increased. Fluorescence quenching measurements for copper agree with 

predictions in a model system but lead, nickel and zinc display excessive quenching and 
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disagreed with the theoretical model. Fluorescence quenching seems to be a viable technique for 

copper speciation in marine systems but not for the other metal cations tested. 
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Chapter 5 Natural Organic Matter Source and Salinity Dependence on Binding of Lead in 

Saltwater Media 

5.1 Introduction 

There is a lack of information regarding the molecular composition of marine NOM. 

Ocean profiles exist for two components, amino acids and carbohydrates. Amino acids account 

for 1-3% of the ocean pool while carbohydrates account for 2.5-7% of the DOC; this leaves 90% 

of DOC uncharacterized (Benner, 2002).  Fluorescence can be used to determine number of 

fluorophores present within the NOM. Humic-like fluorescence is derived from a mixture of 

fluorophores which varies between freshwater and marine environments. There is the presence of 

a protein or amino acid component in marine surface water. Coble (1996) determined that there 

were specific marine humic-like materials which are shifted towards shorter wavelengths in 

comparison to unconcentrated non-marine samples. 

NOM can be affected by salinity or salt content. Salt content is known to decrease 

solubility and increase the activity coefficient resulting in a salting out effect. The salting out 

effect refers to a decrease in solubility with an increase in ionic strength (Xie et al., 1997). It has 

been observed with organic molecules in a NaCl medium (Xie et al., 1997) and with DOM in 

natural estuarine and marine coastal waters (Mantoura and Woodward, 1983). 

As mentioned in Chapter 1, lead toxicity is a concern due to anthropogenic outputs into 

saltwater systems. Embryo-Larval toxicity tests are often done to monitor pollutants in marine 

systems (Nadella et al., Appendix G). Early life stages of aquatic invertebrates are considered 

more sensitive than adults as they respond to subtle chemical and physical changes in the 

environment (His et al., 1999). 
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In fish, acute lead toxicity is due to respiratory asphyxiation in extreme concentrations. 

Under environmentally relevant concentrations, lead toxicity it attributed to ionoregulatory 

homeostasis (Wood et al., 2012). Chronic lead toxicity results in neurological dysfunction 

because the lead substitutes for calcium and possibly other essential divalent cations including 

iron and zinc. 

Mechanisms of lead toxicity to fish in seawater have received very little attention in 

comparison to freshwater toxicity tests. Hypocalcemia may contribute to lead toxicity in 

seawater because the calcium uptake mechanism is similar in freshwater and marine organisms 

(Wood et al., 2012). The high alkalinity and calcium content of seawater does limit lead 

solubility and bioavailability which could potentially prevent the ionic divalent lead fraction 

from reaching the levels sufficient to inhibit calcium flux (Wood, Farrell and Brauner, 2012). 

The purpose of this project is to use voltammetric methods to determine binding 

capacities of different concentrations and sources of NOM with lead in different salinities. These 

results will be compared to toxicological observations. 

5.2 Experimental Method 

DOM sources Bamfield, Inshore Brazil, Pachena and Nordic Reservoir were dissolved in 

OECD synthetic seawater (sample details given in Table 2.1 in section 2.2.1) at two different 

nominal concentrations of 2 and 12 mg C/L to determine if binding capacity was dependent or 

independent of NOM concentration. Table of sources can be found in Table 3.1 in section 3.2. 

Additionally, the 2 mg C/L NOM concentration was measured for each organic matter source at 

three different salinities 3, 15 and 30 ppt. The solutions were held at a constant pH of 7.765+/-
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0.02, left to equilibrate for 24 hours and repeated in triplicate. Lead additions were made up to 

900ppb. 

Fluorescence was used as a molecular fingerprint for each of the NOM sources.  

Fluorescence spectra of the NOM samples were collected using a Varian Cary Fluorescence 

spectrophotometer with 1cm pathlength quartz cuvettes. The fluorescence spectra were created 

by using excitation wavelengths from 200 to 450nm using 10nm increments. The emission 

wavelengths were measured in the range of 250 to 650nm for every 1nm increment. The 

excitation-emission matrices (EEMs) are plotted as contours to identify the fluorescing 

components. Parallel Factor Analysis (PARAFAC) was used to identify and quantify the 

component peaks in the EEMs, as implemented in the PLS toolbox (Eigen-vectors Research Inc, 

WA, USA). Each matrix contains fluorescence information for specific excitation/emission 

wavelength pairs. PARAFAC resolves this information into component spectra and relative 

component concentrations (Gheorghiu et al., 2010; Nadella et al., 2009; Depalma et al., 2011b). 

Fluorescence EEMs and PARAFAC results can be found for the NOM sources in Chapter 3. 

Binding capacities determined correspond to the EEMs after storage. 

Anodic stripping voltammetry (ASV) was used for determination of binding capacity. A 

Metrohm Autolab instrument with a 663 VA stand was used with the NOVA 1.7 software to 

obtain scans and peak height. Electrochemically labile lead was measured using square wave 

anodic stripping voltammetry (SWASV) with a deposition potential of  -0.65 V, a deposition 

time of 30 seconds, equilibration time of 5 seconds, voltage scanning (-0.65 to  -0.25V), 

amplitude of 25 mV, frequency of 25 Hz, and a scan increment of  2mV.  This corresponds to the 

method of Sánchez-Marín et al. (2011).  After each scan and lead addition, the peak height is 
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recorded at the lead potential and used to determine the binding capacity. An example of the 

peak heights can be found in Figure 5.1. Peak height increases with standard addition of lead. 

 

Figure 5.1: Voltammetric spectra. Scan of peak height versus potential as total lead is increased. 

 

The current measurements at the peak potential versus the lead added result in a low 

slope for the initial data followed by steeper slope linear response at higher total lead. The small 

slope occurs because the NOM is binding the available lead while the steeper slope arises when 

the binding capacity for the NOM is exceeded.  This method assumes that only inorganic 

complexes and free lead are detected at the electrode and strong organic matter complexes are 

not detected.  Extrapolation of the linear data at high lead allows for estimation of the binding 

capacity as the x-intercept of the regression line. An example of this can be viewed in Figure 5.2. 
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Figure 5.2: Lead speciation for Nordic Reservoir (2 mg C/L) measured by Anodic stripping voltammetry 

(ASV). Voltammetric results lead addition (nM) vs. height of lead peak and linear regression to obtain 

binding capacity (LT). 

 

Statisical comparisons of binding capacities were computed by a two-way ANOVA 

followed by the Student-Newman-Keuls post-hoc test when required. These methods were used 

for all pairwise comparisons of means among the different treatment groups. The limit of P<0.05 

was used to indicate significance. 

A competitive ligand method for determining copper binding capacity was also 

completed and can be found in Appendix E. Binding capacity for zinc was also attempted and 

results can be found in Appendix F. 

5.3 Determination of Binding Capacity  

The lead speciation results for the Nordic Reservoir organic matter in synthetic seawater 

agrees more closely than fluorescence results with the observed lead toxicity in the same system. 
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The results of binding capacity for the lead determination with ASV can be viewed in Table 5.1. 

Voltammetry demonstrates that an increased amount of DOC does not bind significantly more 

lead. The 2 mg C/L Nordic Reservoir had a binding capacity of 320 nM while the 12 mg C/L had 

a binding capacity of 347 nM. This represents a binding capacity increase by a factor of 1.1, 

which supports the EC50 data indicating similar EC50 values resulting from similar binding 

capacities. Binding capacity results for zinc with Nordic Reservoir can be viewed in Appendix E. 

Table 5.1: Binding Capacity for Nordic Reservoir organic matter concentrations of low and high DOC with 

comparison to EC50 values for Mytilus galloprovincialis in seawater. 95% confidence values indicated by 

ranges of values. 

Nordic Reservoir EC50  

(nmol/L) 

Mytilus  

galloprovincialis  

Voltammetry Binding 

Capacity (nM) 

0 mg C/L  304 

(173-453)  

--- 

2 mg C/L NR  738 

(680-796)  

320  

(206-434) 

12 mg C/ NR  758 
 (680-830)  

347 

(279-415) 

 

5.4 Organic Matter Source Effects 

 Organic matter concentrations were confirmed by TOC analysis. The results can be found 

in Table 5.2. Bamfield, Pachena and Nordic Reservoir NOM had a TOC concentration much less 

than the nominal amount while Inshore Brazil was very close to expected. The actual TOC, as a 

percent of nominal values, was 49.1% and 44.7% for the Bamfield 2 and 12 mg C/L respectively. 

Inshore Brazil was 129% and 100%, Pachena was 43.3% and 45.1%, and Nordic Reservoir was 

59.2% and 35.7% for the 2 and 12 mg C/L solutions. The nominal concentration was originally 

calculated to have an increase in NOM concentration between the two solutions by a factor of 6. 
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The actual NOM concentration factor was 5.46 for Bamfield, 4.65 for Inshore Brazil, 6.26 

Pachena and 3.62 for Nordic Reservoir.  

Table 5.2: Measured TOC compared to nominal concentration for each of the NOM sources. 

Organic Matter Source Nominal Concentration 

(mg C/L) 

Measured TOC 

(mg C/L) 

Bamfield 2 0.982 

12 5.363 

Inshore Brazil 2 2.587 

12 12.030 

Pachena 2 0.865 

12 5.416 

Nordic Reservoir 2 1.184 

12 4.288 

 

 Lead binding capacity was measured at different concentrations of DOC. Table 5.3 

displays the binding capacity results for 2 and 12 mg C/L in 30ppt OECD seawater for each 

NOM source. It can be seen that an increase in DOM concentration does not result in a 

significantly increased binding capacity for lead.  

Table 5.3: Binding capacities for 2 and 12 mg C/L for each of the different NOM sources in 30ppt OECD 

seawater. Binding capacity in nmol/mg C is based on measured TOC values. 

Organic Matter 

Source 

Nominal 

Concentration 

(mg C/L) 

Lead Binding 

Capacity 

(nM) 

Lead Binding 

Capacity 

(nmol/mg C) 

Bamfield 2 428.4 (+/-53.5) 436.2 (+/-54.5) 

12 378.9 (+/-86.2) 70.7 (+/-16.1) 

Inshore Brazil 2 300.6 (+/-25.6) 116.2 (+/-9.9) 

12 295.7 (+/-32.5) 24.58 (+/-2.7) 

Pachena 2 464.9 (+/-48.7) 537.5 (+/-56.3) 

12 485.6 (+/-10.7) 89.7 (+/-0.02) 

Nordic Reservoir 2 320.2 (+/-161.2) 270.4 (+/-136.1) 

12 347.4 (+/-96.2)  81.0 (+/-22.4) 
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5.5 Salinity 

 Binding capacities were determined at a constant organic matter concentration of 2 mg 

C/L but at seawater salinities of 3, 15 and 30 to determine if salinity affects binding capacity. 

Table 5.4 displays the binding capacities for each NOM at salinities of 3, 15, and 30 ppt. 

Similarly to the increase in organic matter concentration, no significant increase in binding 

capacity was seen for the NOM at the different salinities. 

Table 5.4: Binding Capacities for each NOM at salinities of 3, 15, and 30 ppt in OECD seawater. Binding 

capacity in nmol/mg C is based on measured TOC values. 

Organic Matter 

Source 

Salinity 

(ppt) 

Lead Binding 

Capacity 

(nM) 

Lead Binding 

Capacity 

(nmol/mg C) 

Bamfield 3 350.7 (+/-145.9) 357.1 (+/-148.6) 

15 413.1 (+/-17.4) 420.7 (+/-17.7) 

30 428.4 (+/-53.5) 436.25 (+/-54.5) 

Inshore Brazil 3 339.0 (+/-62.6) 131.0 (+/-24.2) 

15 292.7 (+/-22.6) 113.1 (+/-8.7) 

30 300.6 (+/-25.6) 116.2 (+/-9.9) 

Pachena 3 381.9 (+/-35.8) 441.5 (+/-41.4) 

15 412.8 (+/-67.0) 477.2 (+/-77.5) 

30 464.9 (+/-48.7) 537.5 (+/-56.3) 

Nordic Reservoir 3 306.7 (+/-87.1) 259.0 (+/-73.6) 

15 313.7 (+/-12.67) 264.9 (+/-10.7) 

30 320.2 (+/-161.2) 270.4 (+/-136.1) 

 

5.6 Binding Capacity Comparisons and Statistics 

 The binding capacities for the NOM at different salinities and concentration can be 

viewed in Figure 5.3. No significant differences were found using a two-way ANOVA within the 

NOM sources comparing salinities and concentrations. The average binding capacity for 

Bamfield, Inshore Brazil, Pachena and Nordic Reservoir were 392.8 nM, 307.0 nM, 436.4 nM 

and 322.0 nM, respectively. A statistically significant difference was found when comparing the 
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different sources of NOM to each other. Pachena was found to be significantly different from 

Inshore Brazil and Nordic Reservoir but not the Bamfield sample. Differences are reasonable 

given that fluorescence scans for the Pachena EEM are significantly different from the Inshore 

Brazil and Nordic Reservoir samples (Chapter 3, Figure 3.6, 3.7 and 3.8). Pachena is lacking in 

the humic and fulvic acid component that is present in the Inshore Brazil and Nordic Reservoir 

EEM’s. 

 

Figure 5.3: Comparison of binding capacities for each NOM source at different salinity and organic matter 

concentration. Error bars are standard deviations. All bars labelled a are statistically the similar while bars 

labelled b are statistically similar determined by a two-way ANOVA. 

  

These results indicate that there is a source dependence on binding capacity of lead to 

NOM and source needs to be taken into account when predicting bioavailability and toxicity of 
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metals in the presence of NOM. It was also determined that an increase in DOC did not bind 

more lead. No dose dependence was seen. It is possible that the ionic strength effect of the 

samples cause the lack of dose dependence of lead-DOM complexation and DOC protectivity. At 

low DOC concentrations, the ligand is free to interact with lead cations. As DOC concentrations 

are increased, DOC-DOC interactions predominate due to salting out effects and salt induced 

colloid formation. This information can be incorporated into the BLM to accurately predict 

toxicity and bioavailability of metals based on the source and dose of NOM. 

5.7 Fluorophores and Lead Binding Capacity 

 Binding capacity for each NOM source was compared to the percent fluorophore 

determined in chapter 3. The percent fluorophore from after storage was used for the comparison 

because that was the state of the NOM before lead binding titration. Figure 5.4 displays the 

correlation between the humic and fulvic acid-like component and the binding capacity. The 

trendline fit to the data shows a strong correlation between the fluorphore percent and binding 

capacity with an R
2
 value of 0.9327. This correlation shows that a decrease in humic and acid-

like fraction resulted in a higher binding capacity. The highest binding capacity with the lowest 

percent of the humic and fulvic-like acid was Pachena which was found to be the most 

statistically different from Inshore Brazil and Nordic Reservoir. These are the two present with 

the lowest binding capacity and highest amount of humic and fulvic–like material. The data point 

in between these two is Bamfield which was found to be statistically similar to all the NOM 

sources in section 5.6. The error bars present on the data points do overlap which indicates that 

this correlation may not be as strong as the R
2
 value indicates. 
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Figure 5.4: Humic and Fulvic-like Acid Fraction versus Binding capacity, error bars are standard deviation. 

A strong correlation between the two is observed with an R
2
 value of 0.9327. 

  

Figure 5.5 displays the tryptophan-like fraction compared to the binding capacity for each 

of the NOM sources. A slight trend was seen with an R
2
 value of 0.7811, indicating that a higher 

tryptophan percentage resulted in a higher binding capacity. Pachena is the data point with the 

highest binding capacity and highest percent tryptophan, while Nordic Reservoir and Brazil 

Inshore are at the low end with Bamfield in the middle. 

 



96 

 

 

Figure 5.5: Tryptophan-like Acid Fraction versus Binding capacity. Error bars are standard deviation. A 

slight correlation between the two is observed with an R
2
 value of 0.7811. 

  

 Finally, a comparison between the tyrosine-like acid fraction and the binding capacity 

was completed in figure 5.6. No correlation was seen with an R
2
 value of 0.4436. 
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Figure 5.6: Tyrosine-like Acid Fraction versus Binding capacity. Error bars are standard deviation. A slight 

correlation between the two is observed with an R
2
 value of 0.4436.  

 

 R
2
 values alone indicate that quality of NOM affects binding capacity and in turn 

protectivity of lead. However, some of the error bars do overlap, decreasing the confidence in the 

correlation between the molecular components and binding capacity. This signifies that there 

might be a requirement for a BLM quality factor but further research on NOM with varying 

molecular components is required to confidently determine this. There is much disagreement 

about the requirement of a BLM quality factor. Depalma et al. (2011b) determined that a source 

dependent quality factor should not be necessary to use equilibrium models to predict site 

specific EC50 values, at least not for the low levels of copper where toxicity is observed 

for Mytilus. Al-Reasi et al. (2012) argue the need for a quality indicator using SAC340. 
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Gheorghiu et al. (2010) also argue the need for a quality indicator due to a disconnect between 

the effects of NOM quality on Cu–gill binding and Cu toxicity studies which demonstrate clear 

effects of NOM quality on toxicity. Gheorghiu et al. (2010) suggests that this discrepancy is 

likely the result of direct NOM effects on the gills, which are quality dependent, and that this 

possibility needs to be considered in future investigations of the inter-relationships between 

NOM quality, metal–gill binding and toxicity in fishes exposed to metals. 

 Experiments displayed in this chapter indicate that a lower amount of humic and fulvic-

like fraction resulted in an increased binding capacity and greater protection while there is 

evidence that a greater amount of humic acid decreases toxicity (Ryan et al., 2004; Al-Reasi et 

al., 2012). Al-Reasi et al. (2012) saw a positive correlation between the humic like component 

and copper LC50s but a negative correlation correlation between fulvic-like component 

concentration and copper LC50.  

PARAFAC results only allowed for a three component fit. If a four component fit had 

been possible it would have allowed the fulvic-like and humic-like fraction to be separated and 

possibly allow for a correlation between the binding capacities that agrees with previous 

literature.  

5.8 Conclusions 

 Binding capacities were determined for two different organic matter concentrations and 

three different salinities. No significant differences were found within the NOM sources 

comparing salinities and concentrations. The average binding capacity for Bamfield, Inshore 

Brazil, Pachena and Nordic Reservoir were 392.8 nM, 307.0 nM, 436.4 nM and 322.0 nM, 

respectively. A statistically significant difference was found when comparing the different 
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sources of NOM to each other. Pachena was found to be significantly different from Inshore 

Brazil and Nordic Reservoir but not the Bamfield sample. 

 These results indicate that there is a source dependence on binding capacity of lead to 

NOM and source needs to be taken into account when predicting bioavailability and toxicity of 

metals in the presence of NOM. It was also determined that an increase in NOM did not bind 

more lead and no dose dependence was seen. This is potentially because the ionic strength effect 

of the seawater causes DOC-DOC interactions at higher NOM concentrations due to salting out 

affects and salt induced colloid formation. 

 The percent of fluorophore fraction was compared to the binding capacity to determine 

any potential trends. A strong trend was found for the humic and fulvic acid like fraction, a slight 

trend for the tryptophan-like fraction and no trend for the tyrosine like fraction. However, error 

bars on data points did overlap, decreasing the confidence in this trend. 
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Chapter 6 Conclusion and Future Work 

6.1 Conclusions 

Objective 1: Characterize different sources of NOM and their binding characteristics with 

copper, lead, zinc, and nickel in marine systems using fluorescence quenching and voltammetric 

methods. 

Fluorescence spectroscopy provided EEM’s which were used as fingerprints for each of 

the different DOM sources before and after storage in Chapter 3. PARAFAC was used to 

determine the relative concentration of three components within the organic material determined 

to be tryptophan-like, humic and fulvic-like and tyrosine-like. The comparison of the relative 

percents of each of these components showed significant changes within the tryptophan-like 

material and the humic and fulvic-like material after storage. The most extreme change was seen 

with Pachena NOM which showed a tryptophan-like increase from 10% to 72% and a decrease 

of humic and fulvic-like from 85% to 16%. The DOM did not remain stable and the quality of 

the sample changed during the storage procedure. This could be attributed to the fractionation 

method used to collect the NOM, alternate storage methods should be considered. 

Fluorescence quenching results in Chapter 4 do not agree with either EC50 determined for 

lead Nordic Reservoir NOM or voltammetry results and show an increased predicted binding 

capacity as DOC is increased instead of no dose dependence. Fluorescence quenching 

measurements for copper agree with predictions using tryptophan as a model system but lead, 

nickel and zinc display excessive quenching and disagreed with the theoretical equilibrium 

model. Additionally, copper fluorescence quenching was confirmed by inter-method comparison 

with copper ISE.  Irving-William series did not agree with the binding strength order suggested 
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by fluorescence quenching and does not support the use of fluorescence quenching for the other 

metals nickel, zinc and lead. Fluorescence quenching seems to be a viable technique for copper 

speciation in marine systems but not for the other metal cations tested. 

Objective 2: Assess salinity dependence and NOM concentration dependence to determine their 

affect on binding capacity for lead with NOM.  

Lead speciation results for Nordic Reservoir NOM determined by anodic stripping 

voltammetry qualitatively agree with the observed lead toxicity results in Chapter 5. Both the 

EC50 values determined by toxicity tests and the binding capacities determined by voltammetry 

show little variation when DOC is increased. This did not agree with the hypothesis that an 

increased DOC concentration would result in an increased binding capacity. The lack of dose 

dependence can be attributed to DOC-DOC interactions due to salting out effects and salt 

induced colloid formation. Lack of dose dependence in marine systems is valuable information 

and can be implemented in the BLM. 

Binding capacities were determined for two different organic matter concentrations and 

three different salinities completed in Chapter 5. No significant differences were found within 

the NOM sources comparing salinities and concentrations. This agreed with the third hypothesis 

that salinity would not affect binding capacity and is another valuable piece of information that 

can be implemented within the BLM. A statistically significant difference was found when 

comparing the different sources of NOM to each other. The NOM with a lower humic and 

fulvic-like fraction was found to be significantly different from the NOM with the higher humic 

and fulvic-like fraction. The percent of fluorophore fraction was compared to the binding 

capacity to determine any potential trends. A strong trend was found for the humic and fulvic 
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acid-like fraction, a slight trend for the tryptophan-like fraction and no trend for the tyrosine like 

fraction. This also agrees with the first hypothesis that NOM protection is source dependent. A 

quality factor may be needed within the BLM. However, the NOM collection method and 

storage may have influenced the results. 

Objective 3: Transformation/dissolution experiments will be completed to determine solubility of 

two copper compounds, copper and cuprous oxide, and ensure that they are within appropriate 

limits and regulations. A solubility model will be used to compare to experimental results, and 

conclusions will be made on which ones can effectively describe the experimental results 

obtained. 

Copper solubility models were used to estimate copper solubility in Chapter 2. The 

original copper solubility model which included all the precipitates was identical to the tenorite 

only precipitation because of the insolubility of the tenorite precipitate. The tenorite precipitation 

underestimates the copper solubility by half estimating 22 ppb. However, it is possible that the 

tenorite precipitate is not at equilibrium and may be a reasonable precipitate to use for modeling. 

Copper hydroxide solid seriously overestimates copper solubility by a factor of 12 estimating 

600 ppb. The malachite precipitate overestimates copper solubility by a factor of 3 estimating 

150 ppb. Ultimately, the experimental data point was placed between the tenorite precipitation 

model and the malachite precipitation model still leaving questions about how to optimize the 

modeling of copper solubility. This disagreed with the hypothesis that the models would agree 

with the measured data. There is a need for an accurate copper solubility model to be used for 

risk assessment and implemented in the BLM. 
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6.2 Future Work 

Precipitation of copper solids from supersaturated solutions should be completed to 

accompany the transformation/dissolution experiments in Chapter 2 to get a complete picture of 

copper solubility in marine systems. 

Additional experiments need to be completed for the fluorescence quenching modeling in 

Chapter 4 to confirm the presence of dynamic quenching. Stern-Volmer plots can be used to 

determine whether the quenching is solely one type of quenching (static or dynamic) or a 

combination of the two. If the plot is linear then further analysis needs to be completed to 

differentiate static quenching from dynamic quenching. This can be done using two possible 

methods. The first would be to complete the fluorescence quenching experiments at a higher 

temperature. The second method to differentiate static from dynamic quenching would be to 

examine the absorption spectra of tryptophan. Dynamic quenching only affects the excited state 

of the fluorophore which should result in no change to the absorption spectra. Static quenching 

occurs due to the formation of complex and can result in changes to the absorption spectra. 

Individually or in combination these experiments should be done to ensure that the quenching 

that is being viewed is dynamic. 

 There is a direct voltammetric method for copper, lead and zinc but not for nickel. 

Binding capacity was determined for Nordic Reservoir NOM with lead and was attempted with 

zinc. To complete these set of experiments and get a full understanding of the metal binding 

capacity with Nordic Reservoir NOM, copper should be completed as well. 
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Appendix A: Matlab Code for Transformation/Dissolution Modeling 

clear; figure(1); clf 

ClT=0.5; 

PCO2=10^(-3.5);  

CuT=5e-5; 

SO4T=1e-2; 

pHplot=[7.5:0.05:8.5]';  

 

% model calc0. 

c=0; 

for i=1:size(pHplot,1) 

    

[species,names]=Cumodel_highIS_Cl_open_ppte_malachite(CuT,pHplot(i),PC

O2,ClT, SO4T, 0); % flag=1 at end no malachite 

    c=c+1; 

    for j=1:size(species,2) 

        txt=[names(j,:),'(c)=species(:,j);'];  eval(txt) 

    end 

end 

 

Cusolidhydroxide=CuT-(2*malachite+tenorite+CuOH2s);  

species=[]; species_summary=[]; malachite=[]; tenorite=[]; CuOH2s=[]; 

 

c=0; 

for i=1:size(pHplot,1) 

    

[species,names]=Cumodel_highIS_Cl_open_ppte_malachite(CuT,pHplot(i),PC

O2,ClT,SO4T,0); % flag=1 at end no malachite 

    c=c+1; 

    for j=1:size(species,2) 

        txt=[names(j,:),'(c)=species(:,j);'];  eval(txt) 

    end 

  end 

 

Cusolidmalachite=CuT-(2*malachite+tenorite+CuOH2s);  malachite=[]; 

tenorite=[]; CuOH2s=[]; 

 

c=0; 

for i=1:size(pHplot,1) 

    

[species,names]=Cumodel_highIS_Cl_open_ppte(CuT,pHplot(i),PCO2,ClT,SO4

T,0); % flag=1 at end no malachite 

    c=c+1; 

    for j=1:size(species,2) 

        txt=[names(j,:),'(c)=species(:,j);'];  eval(txt) 

    end 

    species_summary(i,:)=species;species=[]; species_summary=[]; 

    

end 
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Cusolidtenorite=CuT-(2*malachite+tenorite+CuOH2s);  

 

forRachael=[pHplot species_summary]; 

 

save forRachael.txt forRachael -ascii 

 

h=plot(pHplot, 

(Cusolidtenorite)*63500000,pHplot,(Cusolidmalachite)*63500000,pHplot,(

Cusolidhydroxide)*63500000,'linewidth',2); 

set(gca,'linewidth',2) 

set(gca,'fontsize',12) 

xlabel('pH','fontsize',12) 

ylabel('sum of soluble Cu species (ppb)','fontsize',12) 

 

legend('tenorite','malachite','Cu(OH)_2') 

 

hold on 

 

plot(8.01,49.8,'ko','markersize',8,'markerfacecolor','b','linewidth',2

) 

 

%end 

%axis([5 8 -7.8 -5.5]) 

 

% Carrayrou  et al AIChE journal 2002, 48, 894-904. 

% implement their method using thier notation 

% try HFO ppte as an example calc and at fixed pH 

 

function 

[II,GG]=Cumodel_highIS_Cl_open_ppte_malachite(CuT,pH,PCO2,ClT,SO4T,fla

g) 

 

warning('off') 

 

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]=get_equil

ib_defn(flag); 

 

%CuT=3.9592e-7; 

 

%pH=[6:0.1:9]; % fixed pH 

numpts=size(pH,2);  

Ncp=size(ASOLID,1); 

solid_summary=zeros(numpts,Ncp); 

 

for i=1:size(SOLIDNAMES,1) 

    txt=[SOLIDNAMES(i,:),'=zeros(numpts,1);']; eval(txt) 

end 

 

for i=1:size(pH,2) 



107 

 

    H=10.^(-1*pH(i)); Ka1=10^(-6.3); Ka2=10.^(-10.3); Kh=10.^(-1.47); 

    CT=Kh*PCO2+(Kh*PCO2*Ka1)./H+(Kh*PCO2*Ka1*Ka2)./(H.^2); 

    CTrun(i)=CT; 

     

    % adjust for fixed pH 

     

    

[Ksolution,Ksolid,Asolution,Asolid]=get_equilib_fixed_pH(KSOLUTION,KSO

LID,ASOLUTION,ASOLID,pH(i)); 

 

    Asolid_SI_check=Asolid; Ksolid_SI_check=Ksolid; 

     

    % number of different species 

    Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); 

     

    % initial guess 

    Cu_guess=[-5.5]; CuOH2s_guess=0.1*CuT;  CuCO3s_guess=0.1*CT; 

    guess=[10.^Cu_guess CT./10 CuOH2s_guess CuCO3s_guess]; 

iterations=1000; criteria=1e-19; 

    T=[CuT CT ClT SO4T]; 

     

    % calculate species using NR 

   

    solids=zeros(1,Ncp); 

   

    if i==1; 

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,

T',[guess(1:Nx)]',iterations,criteria); end 

    if i>1;  

        

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,

T',[species(2:Nx+1)],iterations,criteria);  

    end 

 

    for qq=1:Ncp 

     

        [Y,I]=max(SI); 

     

        if Y>1.000000001 

            Iindex(qq)=I; 

            Asolidtemp(qq,:)=Asolid_SI_check(I,:);  

            Ksolidtemp(qq,:)=Ksolid_SI_check(I,:);  

            solidguess(qq)=T(I)*0.5; 

           % solidguess(qq)=min(T)*0.015; 

            if i>1; 

                %if max(solids)>0 

                txt=['solidguess(qq)=',SOLIDNAMES(I,:),'(i-1);']; 

eval(txt); 

                %end 

            end 
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            guess=[species(2:Nx+1)' solidguess]; 

            

[species,err,SItst,solids]=NR_method(Asolution,Asolidtemp',Ksolidtemp,

Ksolution,T',guess',iterations,criteria); 

             for q=1:size(solids,1);  

                txt=[SOLIDNAMES(Iindex(q),:),'(i)=solids(q);']; 

eval(txt) 

              end 

        end 

     

        Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); Ifirst=I; 

     

    end 

     

    Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); 

    SI_summary(i,:)=SI; 

     

    species_summary(i,:)=species; 

    mass_err_summary(i,:)=(err(1)); 

     

    Asolidtemp=[]; Ksolidtemp=[]; 

 

end 

 

for i=1:size(species_summary,2) 

    txt=[SOLUTIONNAMES(i,:),'=species_summary(:,i);']; eval(txt) 

end 

 

II=[species_summary tenorite malachite CuCO3s CuOH2s]; 

GG=strvcat(SOLUTIONNAMES,'tenorite','malachite','CuCO3s','CuOH2s'); 

 

end 

 

% -------------------- NR method solids present 

 

function 

[species,err,SI,solids]=NR_method(Asolution,Asolid,Ksolid,Ksolution,T,

guess,iterations,criteria) 

 

Nx=size(Asolution,2); Ncp=size(Asolid,2); Nc=size(Asolution,1); 

X=guess; 

 

for II=1:iterations 

 

    Xsolution=X(1:Nx); Xsolid=[]; if Ncp>0; Xsolid=X(Nx+1:Nx+Ncp); end 

     

 logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc 

species 

  

    if Ncp>0;  
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        Rmass=Asolution'*C+Asolid*Xsolid-T;  

    end 

 

 

    if Ncp==0; Rmass=Asolution'*C-T; end % calc residuals in mass 

balance  

     

    Q=Asolid'*log10(Xsolution); SI=10.^(Q+Ksolid); 

    RSI=ones(size(SI))-SI;  

     

 % calc the jacobian 

 

 z=zeros(Nx+Ncp,Nx+Ncp);  

 

 for j=1:Nx;  

  for k=1:Nx;  

    for i=1:Nc; 

z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end 

        end 

    end 

 

    if Ncp>0; 

    for j=1:Nx; 

  for k=Nx+1:Nx+Ncp;  

                t=Asolid'; 

    z(j,k)=t(k-Nx,j); 

        end 

    end 

    end 

     

    if Ncp>0 

    for j=Nx+1:Nx+Ncp;  

  for k=1:Nx 

    z(j,k)=-1*Asolid(k,j-Nx)*(SI(j-Nx)/Xsolution(k)); 

       end 

    end 

    end 

     

    if Ncp>0 

    for j=Nx+1:Nx+Ncp 

        for k=Nx+1:Nx+Ncp 

            z(j,k)=0; 

        end 

    end 

    end 

 

    R=[Rmass; RSI]; X=[Xsolution; Xsolid]; 

     

    deltaX=z\(-1*R); 

    %deltaX=-1*inv(z)*(R); 
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 one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

 del=1/one_over_del; 

 X=X+del*deltaX; 

     

    %X=X+deltaX; 

 

 tst=sum(abs(R)); 

 if tst<=criteria; break; end 

       

end 

 

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc 

species 

RSI=ones(size(SI))-SI; 

 

if Ncp>0; Rmass=Asolution'*C+Asolid*Xsolid-T; end % calc residuals in 

mass balance  

if Ncp==0; Rmass=Asolution'*C-T; end % calc residuals in mass balance  

 

err=[Rmass]; 

 

species=[C]; 

solids=Xsolid; 

 

end 

 

% ----------- NR method just solution species 

 

function 

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,

T,guess,iterations,criteria) 

 

Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); 

X=guess; 

 

for II=1:iterations 

 

    Xsolution=X(1:Nx);  

     

 logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc 

species 

  

    Rmass=Asolution'*C-T; 

     

    Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid); 

    RSI=ones(size(SI))-SI; 

  

 % calc the jacobian 

 

 z=zeros(Nx,Nx);  
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 for j=1:Nx;  

  for k=1:Nx;  

    for i=1:Nc; 

z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end 

        end 

    end 

 

    R=[Rmass]; X=[Xsolution]; 

     

    deltaX=z\(-1*R); 

    %deltaX=-1*inv(z)*(R); 

 one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

 del=1/one_over_del; 

 X=X+del*deltaX; 

     

    %X=X+deltaX; 

 

 tst=sum(abs(R)); 

 if tst<=criteria; break; end 

       

end 

 

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc 

species 

RSI=ones(size(SI))-SI; 

 

Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid); 

RSI=ones(size(SI))-SI; 

     

Rmass=Asolution'*C-T;  

 

err=[Rmass]; 

 

species=[C]; 

 

end 

 

% ----- equilib definition ---------------- 

 

function 

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]=get_equil

ib_defn(flag); 

 

logKw=-13.75; 

logKh1=-7.55; 

logBh21=-5.59202 

logBh22=-10.7463; 

logBh34=-22.33122; 

pKa1=5.97; 
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pKa2=9.53; 

logKCuCO3=5.73; 

logKCuCO32=9.23; 

logKCuHCO3=1.03; 

logKCuCl=-0.2; 

logKCuSO4=0.7737; 

logKHSO4=1.1781; 

 

KSOLUTION=[... 

     0 

     0 

     0 

     0 

     0 

     logKw 

     logKh1 

     logBh21 

     logBh22 

     logBh34 

     pKa2 

     pKa2+pKa1 

     logKCuCO3 

     logKCuCO32 

     logKCuHCO3 

     logKCuCl 

     logKCuSO4 

     logKHSO4]; 

  

ASOLUTION=[... 

   %H      M   CO3   Cl  SO4 

     1      0     0     0    0 

     0      1     0     0    0 

     0      0     1     0    0 

     0      0     0     1    0 

     0      0     0     0    1   

     -1     0     0     0    0 

     -1     1     0     0    0 

     -1     2     0     0    0 

     -2     2     0     0    0 

     -4     3     0     0    0 

     1      0     1     0    0 

     2      0     1     0    0 

     0      1     1     0    0 

     0      1     2     0    0 

     1      1     1     0    0 

     0      1     0     1    0 

     0      1     0     0    1 

     1      0     0     0    1]; 
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SOLUTIONNAMES=strvcat('H','Cu','CO3','Cl','SO4','OH','CuOH','Cu2OH','C

u2OH2','Cu3OH4','HCO3','H2CO3','CuCO3aq','CuCO32aq','CuHCO3','CuCl','C

uSO4','HSO4'); 

 

  

    % -------------- solid values 

 

    logKsp=-18.7; 

    logKcuoh2s=-logKsp+2*logKw; 

    logKCuCO3s=11.5; 

    logKmalachite=33.18+2*logKw; 

    logKmalachite=32.0+2*logKw; 

    logKtenorite=20.48+2*logKw; 

    if flag==1; logKmalachite=1; end 

    logKcuoh2s=-10; 

    %logKCuCO3s=1; 

    logKtenorite=-100; 

    %logKmalachite=1; 

     

    KSOLID=[... 

    logKtenorite 

    logKmalachite 

    logKcuoh2s 

    logKCuCO3s]; 

 

    ASOLID=[... 

     -2      1   0      0   0    

     -2     2    1      0   0 

     -2     1    0      0   0 

     0      1    1      0   0]; 

  

 SOLIDNAMES=strvcat('tenorite','malachite','CuOH2s','CuCO3s'); 

 

end 

 

% ----------- for fixed pH ---------------- 

 

function 

[Ksolution,Ksolid,Asolution,Asolid]=get_equilib_fixed_pH(KSOLUTION,KSO

LID,ASOLUTION,ASOLID,pH) 

 

    [N,M]=size(ASOLUTION); 

    Ksolution=KSOLUTION-ASOLUTION(:,1)*pH; 

    Asolution=[ASOLUTION(:,2:M)]; 

    [N,M]=size(ASOLID); 

    Ksolid=KSOLID-ASOLID(:,1)*pH; 

    Asolid=[ASOLID(:,2:M)]; 

end 
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Appendix B: Matlab Interpolations for corrected logK values 

 

B.1 Copper logK Interpolations 

 

Figure B.1: Interpolation of Cu2(OH)2. 
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Figure B.2: Interpolation of CuTrp. 

 

Figure B.3: Interpolation of CuSO4. 
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Figure B.4: Interpolation of solid Cu(OH)2. 

 

Figure B.5: Interpolation of CuOH. 
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Figure B.6: Interpolation of CuHCO3. 

 

Figure B.6: Interpolation of Cu(CO3)2. 
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Figure B.7: Interpolation of CuCO3. 

 

Figure B.9: Interpolation of CuCl. 
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Figure B.10: Interpolation of Cu(Trp)2. 

 

 

 

B.2 Acid and Ion logK Interpolations 
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Figure B.11: Interpolation of H2CO3. 

 

Figure B.12: interpolation of H2Trp. 
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Figure B.13: Interpolation of HCO3. 

 

Figure B.14: Interpolation HSO4. 
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Figure B.15: Interpolation of HTrp. 

 

Figure B.16: Interpolation of OH-. 
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B.3 Lead logK Interpolations 

 

Figure B.17: Interpolation of Pb2OH. 

 

Figure B.18: Interpolation of Pb3OH4. 
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Figure B.19: Interpolation of PbOH. 

 

Figure B.20: Interpolation of PbSO4. 
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Figure B.21: Interpolation of solid PbSO4. 

 

 

Figure B.22: Interpolation for Pb(Trp)2. 
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Figure B.23: Interpolation of PbTrp. 

 

Figure B.24: Interpolation of Pb(OH)3. 
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Figure B.25: Interpolation of Pb(OH)2. 

 

Figure B.26: Interpolation of Pb(CO3)2. 
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Figure B.27: Interpolation of solid PbCO3. 

 

Figure B.28: Interpolation of solid PbCl. 
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Figure B.29: Interpolation Pb6(OH)8. 

 

B.4 Zinc logK Interpolations 

 

Figure B.30: Interpolation of Zn2OH. 
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Figure B.31: Interpolation of Zn(Trp)3. 

 
Figure B.32: Interpolation of Zn(Trp)2. 
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Figure B.33: Interpolation of ZnTrp. 

 
Figure B.34: Interpolation of ZnSO4. 



132 

 

 
Figure B.35: Interpolation of solid ZnO. 

 
Figure B.36: Interpolation of Zn(OH)4. 
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Figure B.37: Interpolation of solid Zn(OH)2. 

 
Figure B.38: Interpolation of Zn(OH)2. 
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Figure B.39: Interpolation of ZnOH. 

 

 

B.5: Nickel logK Interpolations 

 

Figure B.40: Interpolation of Ni4(OH)4. 



135 

 

 

 

Figure B.41: Interpolation of Ni(Trp)3. 

 

Figure B.42: Interpolation of Ni(Trp)2. 
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Figure B.43: Interpolation of NiTrp. 

 

Figure B.44: Interpolation of NiSO4. 
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Figure B.45: Interpolation of solid Ni(OH)2. 

 

Figure B.46: Interpolation of NiOH. 
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Figure B.47: interpolation of NiCl. 
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Appendix C: Matlab Code for Theoretical Fluorescence Modeling 

C.1 Matlab Code for Lead 

function GG=for_Rachael_vCuT_fixedpH_10uM_Trp2_Pb 

 

clear; figure(1); clf; figure(2); clf 

 

ClT=0.5; 

PCO2=10^(-3.5);  

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=((NaHCO3*1e-3)/NaHCO3AW); 

PbTppb=[1:25:600]; 

PbT=(PbTppb*1e-6)/207.21; 

TrpT=10e-6; 

SO4T=1e-2; 

 

pH=7.82;  

 

% model calc no ppte 

 

c=0; 

 

for i=1:size(PbT,2) 

     

    

[species,names]=Cumodel_highIS_Cl_DIC_Trp_ppte(PbT(i),pH,DIC,ClT,TrpT,

SO4T,3);  

     

    % flag=2 malachite only 

    % flag=1 tenorite only 

    % flag=3 no ppte 

     

    c=c+1; 

    for j=1:size(species,2) 

        txt=[names(j,:),'(c)=species(:,j);'];  eval(txt) 

    end 

    species_summary(i,:)=species; 

end 

 

%PbBound=PbTrp2+PbTrp; 

%FreePb=PbT-PbBound; 

%FreeTryp=TrpT-PbBound; 

 

%K=log10(PbBound./(FreePb.*FreeTryp)) 

%plot(PbTppb,K,'ko') 

%k=waitforbuttonpress 

 

figure(1) 
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h=plot(PbTppb,HTrp*1e6,PbTppb,H2Trp*1e6,PbTppb,Trp*1e6,PbTppb,PbTrp*1e

6,PbTppb,PbTrp2*1e6,'linewidth',2); 

legend('HTrp','H2Trp','Trp','PbTrp','PbTrp2') 

xlabel('Pb_T (ppb)','fontsize',12) 

ylabel('species (\mumol/L)','fontsize',12) 

set(gca,'linewidth',2) 

set(gca,'fontsize',12) 

title('Solubility','fontsize',12) 

 

%% 

 data=[0 9.9009900990099 33.8164251207729 78.3410138248848

 137.931034482759 206.349206349206 290.780141843972 372.822299651568

 528.619528619529 

167.6157 158.1005 159.3358 150.547 142.0638 130.6604 116.9886 114.4316 

109.40378]; 

 

 

MT=data(1,:)*1000/207.21; % ppb conc of metal 

F1=data(2,:); %trp 

 

figure(2); h=plot(MT,F1,'ko','markersize',8); 

set(h(1),'markerfacecolor','b'); 

figure(2); hold on; plot(PbT*(1e9),HTrp*1.6785e7,'b','linewidth',2) 

xlabel('Pb_T (nM)','fontsize',12) 

ylabel('Fluorescence (arb)','fontsize',12) 

set(gca,'linewidth',2,'fontsize',12) 

title('Lead Quenching','fontsize',12) 

%% 

 

 

 

end 

 

function 

[II,GG]=Cumodel_highIS_Cl_DIC_Trp_ppte(CuT,pH,DIC,ClT,TrpT,SO4T,flag) 

 

warning('off') 

 

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]=get_equil

ib_defn(flag); 

 

%CuT=3.9592e-7; 

 

%pH=[6:0.1:9]; % fixed pH 

numpts=size(pH,2);  

Ncp=size(ASOLID,1); 

solid_summary=zeros(numpts,Ncp); 

 

for i=1:size(SOLIDNAMES,1) 

    txt=[SOLIDNAMES(i,:),'=zeros(numpts,1);']; eval(txt) 
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end 

 

for i=1:size(pH,2) 

    %H=10.^(-1*pH(i)); Ka1=10^(-6.3); Ka2=10.^(-10.3); Kh=10.^(-1.47); 

    %CT=Kh*PCO2+(Kh*PCO2*Ka1)./H+(Kh*PCO2*Ka1*Ka2)./(H.^2); 

    CT=DIC; 

    CTrun(i)=CT; 

     

    % adjust for fixed pH 

     

    

[Ksolution,Ksolid,Asolution,Asolid]=get_equilib_fixed_pH(KSOLUTION,KSO

LID,ASOLUTION,ASOLID,pH(i)); 

 

    Asolid_SI_check=Asolid; Ksolid_SI_check=Ksolid; 

     

    % number of different species 

    Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); 

     

    % initial guess 

    Cu_guess=[-10.5]; CuOH2s_guess=0.1*CuT;  CuCO3s_guess=0.1*CT;  

    guess=[10.^Cu_guess CT./10 CuOH2s_guess CuCO3s_guess]; 

iterations=1000; criteria=1e-16; 

    T=[CuT CT ClT TrpT SO4T]; guess=T./10; 

     

    % calculate species using NR 

   

    solids=zeros(1,Ncp); 

   

    if i==1; 

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,

T',[guess(1:Nx)]',iterations,criteria); end 

    if i>1;  

        

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,

T',[species(2:Nx+1)],iterations,criteria);  

    end 

 

    for qq=1:Ncp 

     

        [Y,I]=max(SI); 

     

        if Y>1.000000001 

            Iindex(qq)=I; 

            Asolidtemp(qq,:)=Asolid_SI_check(I,:);  

            Ksolidtemp(qq,:)=Ksolid_SI_check(I,:);  

            solidguess(qq)=T(I)*0.5; 

           % solidguess(qq)=min(T)*0.015; 

            if i>1; 

                %if max(solids)>0 
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                txt=['solidguess(qq)=',SOLIDNAMES(I,:),'(i-1);']; 

eval(txt); 

                %end 

            end 

            guess=[species(2:Nx+1)' solidguess]; 

            

[species,err,SItst,solids]=NR_method(Asolution,Asolidtemp',Ksolidtemp,

Ksolution,T',guess',iterations,criteria); 

             for q=1:size(solids,1);  

                txt=[SOLIDNAMES(Iindex(q),:),'(i)=solids(q);']; 

eval(txt) 

              end 

        end 

     

        Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); Ifirst=I; 

     

    end 

     

    Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); 

    SI_summary(i,:)=SI; 

     

    species_summary(i,:)=species; 

    mass_err_summary(i,:)=(err(1)); 

     

    Asolidtemp=[]; Ksolidtemp=[]; 

 

end 

 

for i=1:size(species_summary,2) 

    txt=[SOLUTIONNAMES(i,:),'=species_summary(:,i);']; eval(txt) 

end 

 

II=[species_summary PbCl2s PbCO3s PbSO4s]; 

GG=strvcat(SOLUTIONNAMES,'PbCl2s','PbCO3s','PbSO4s'); 

 

end 

 

% -------------------- NR method solids present 

 

function 

[species,err,SI,solids]=NR_method(Asolution,Asolid,Ksolid,Ksolution,T,

guess,iterations,criteria) 

 

Nx=size(Asolution,2); Ncp=size(Asolid,2); Nc=size(Asolution,1); 

X=guess; 

 

for II=1:iterations 

 

    Xsolution=X(1:Nx); Xsolid=[]; if Ncp>0; Xsolid=X(Nx+1:Nx+Ncp); end 
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 logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc 

species 

  

    if Ncp>0;  

        Rmass=Asolution'*C+Asolid*Xsolid-T;  

    end 

 

 

    if Ncp==0; Rmass=Asolution'*C-T; end % calc residuals in mass 

balance  

     

    Q=Asolid'*log10(Xsolution); SI=10.^(Q+Ksolid); 

    RSI=ones(size(SI))-SI;  

     

 % calc the jacobian 

 

 z=zeros(Nx+Ncp,Nx+Ncp);  

 

 for j=1:Nx;  

  for k=1:Nx;  

    for i=1:Nc; 

z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end 

        end 

    end 

 

    if Ncp>0; 

    for j=1:Nx; 

  for k=Nx+1:Nx+Ncp;  

                t=Asolid'; 

    z(j,k)=t(k-Nx,j); 

        end 

    end 

    end 

     

    if Ncp>0 

    for j=Nx+1:Nx+Ncp;  

  for k=1:Nx 

    z(j,k)=-1*Asolid(k,j-Nx)*(SI(j-Nx)/Xsolution(k)); 

       end 

    end 

    end 

     

    if Ncp>0 

    for j=Nx+1:Nx+Ncp 

        for k=Nx+1:Nx+Ncp 

            z(j,k)=0; 

        end 

    end 

    end 
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    R=[Rmass; RSI]; X=[Xsolution; Xsolid]; 

     

    deltaX=z\(-1*R); 

    %deltaX=-1*inv(z)*(R); 

 one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

 del=1/one_over_del; 

 X=X+del*deltaX; 

     

    %X=X+deltaX; 

 

 tst=sum(abs(R)); 

 if tst<=criteria; break; end 

       

end 

 

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc 

species 

RSI=ones(size(SI))-SI; 

 

if Ncp>0; Rmass=Asolution'*C+Asolid*Xsolid-T; end % calc residuals in 

mass balance  

if Ncp==0; Rmass=Asolution'*C-T; end % calc residuals in mass balance  

 

err=[Rmass]; 

 

species=[C]; 

solids=Xsolid; 

 

end 

 

% ----------- NR method just solution species 

 

function 

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,

T,guess,iterations,criteria) 

 

Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); 

X=guess; 

 

for II=1:iterations 

 

    Xsolution=X(1:Nx);  

     

 logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc 

species 

  

    Rmass=Asolution'*C-T; 

     

    Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid); 

    RSI=ones(size(SI))-SI; 
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 % calc the jacobian 

 

 z=zeros(Nx,Nx);  

 

 for j=1:Nx;  

  for k=1:Nx;  

    for i=1:Nc; 

z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end 

        end 

    end 

 

    R=[Rmass]; X=[Xsolution]; 

     

    deltaX=z\(-1*R); 

    %deltaX=-1*inv(z)*(R); 

 one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

 del=1/one_over_del; 

 X=X+del*deltaX; 

     

    %X=X+deltaX; 

 

 tst=sum(abs(R)); 

 if tst<=criteria; break; end 

       

end 

 

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc 

species 

RSI=ones(size(SI))-SI; 

 

Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid); 

RSI=ones(size(SI))-SI; 

     

Rmass=Asolution'*C-T;  

 

err=[Rmass]; 

 

species=[C]; 

 

end 

 

 

 

% ----- equilib definition ---------------- 

 

function 

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]=get_equil

ib_defn(flag); 
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logKw=-13.75; 

logKh1=-8.0567; 

logBh2=-17.3233; 

logBh3=-27.4667; 

logBh21=-6.6267; 

logBh34=-23.6966; 

logBh68=-43.3392; 

pKa1=5.97; 

pKa2=9.53; 

logKPbCO32=8.8632; 

logKPbCO3=5.284224; 

logKPbHCO3=2.182954; 

logKPb2CO3=6.832248; 

logKPb3CO3=7.994746; 

logKPbCl=0.89; 

logKPbCl2=1.2; 

logKPbCl3=1.15; 

logKPbTrp=5.05656; 

pKa1Trp=2.3176; 

pKa2Trp=11.6731; 

logKPbTrp2=8.752; 

logKHSO4=1.1781; 

logKPbSO4=1.4751; 

 

 

KSOLUTION=[... 

     0 

     0 

     0 

     0 

     0 

     0 

     logKw 

     logKh1 

     logBh2 

     logBh3 

     logBh21 

     logBh34 

     logBh68 

     pKa2 

     pKa2+pKa1 

     logKPbCO32 

     logKPbCO3 

     logKPbHCO3 

     logKPb2CO3 

     logKPb3CO3 

     logKPbCl 

     logKPbCl2 

     logKPbCl3 

     logKPbTrp 
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     pKa2Trp 

     pKa1Trp+pKa2Trp 

     logKPbTrp2 

     logKHSO4 

     logKPbSO4]; 

  

ASOLUTION=[... 

    %H      M   CO3   Cl  Trp SO4 

     1      0     0     0   0   0 

     0      1     0     0   0   0    

     0      0     1     0   0   0 

     0      0     0     1   0   0 

     0      0     0     0   1   0 

     0      0     0     0   0   1 

     -1     0     0     0   0   0  

     -1     1     0     0   0   0 

     -2     1     0     0   0   0 

     -3     1     0     0   0   0 

     -1     2     0     0   0   0 

     -4     3     0     0   0   0 

     -8     6     0     0   0   0  

     1      0     1     0   0   0  

     2      0     1     0   0   0 

     0      1     2     0   0   0  

     0      1     1     0   0   0 

     1      1     1     0   0   0 

     0      2     1     0   0   0 

     0      3     1     0   0   0 

     0      1     0     1   0   0 

     0      1     0     2   0   0 

     0      1     0     3   0   0 

     0      1     0     0   1   0  

     1      0     0     0   1   0 

     2      0     0     0   1   0 

     0      1     0     0   2   0 

     1      0     0     0   0   1 

     0      1     0     0   0   1]; 

 

SOLUTIONNAMES=strvcat('H','Pb','CO3','Cl','Trp','SO4','OH','PbOH','PbO

H2','PbOH3','Pb2OH','Pb3OH4','Pb6OH8','HCO3','H2CO3','PbCO32aq','PbCO3

','PbHCO3','Pb2CO3','Pb3CO3','PbCl','PbCl2','PbCl3','PbTrp','HTrp','H2

Trp','PbTrp2','HSO4','PbSO4'); 

 

 %Try 

    % -------------- solid values 

 

    logKsp=-14.9; 

    %logKPboh2s=-logKsp+2*logKw; 

    logKPbCO3s=-11.1479; 

    logKPbSO4s=-6.2766 
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    logKPbCl2s=-4.8313; 

     

    logKPboh2s=-10; 

    logKPbCO3s=1; 

    %logKtenorite=-100; 

    %logKmalachite=1; 

     

    KSOLID=[... 

    logKPbCl2s 

    logKPbSO4s 

    logKPbCO3s]; 

 

    ASOLID=[... 

    0       1    0      2   0  0 

     0     1    0      0   0  1 

     0      1    1      0   0  0]; 

  

 SOLIDNAMES=strvcat('PbCl2s','PbSO4s','PbCO3s'); 

 

 

end 

 

% ----------- for fixed pH ---------------- 

 

function 

[Ksolution,Ksolid,Asolution,Asolid]=get_equilib_fixed_pH(KSOLUTION,KSO

LID,ASOLUTION,ASOLID,pH) 

 

    [N,M]=size(ASOLUTION); 

    Ksolution=KSOLUTION-ASOLUTION(:,1)*pH; 

    Asolution=[ASOLUTION(:,2:M)]; 

    [N,M]=size(ASOLID); 

    Ksolid=KSOLID-ASOLID(:,1)*pH; 

    Asolid=[ASOLID(:,2:M)]; 

 

end 

 

 

C.2 Matlab Code for Copper 
 
function GG=for_Rachael_vCuT_fixedpH_10uM_Trp 

 

clear; figure(1); clf; figure(2); clf 

 

ClT=0.5; 

PCO2=10^(-3.5);  

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

CuTppb=[1:25:900]; 
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CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; 

SO4T=1e-2; 

 

pH=7.81;  

 

logKw=-13.75; 

logKh1=-7.55; 

logBh21=-5.59202 

logBh22=-10.7463; 

logBh34=-22.33122; 

pKa1=5.97; 

pKa2=9.53; 

logKCuCO3=5.73; 

logKCuCO32=9.23; 

logKCuHCO3=1.03; 

logKCuCl=-0.2; 

logKCuTrp=8.1829; 

pKa1Trp=2.317; 

pKa2Trp=9.3555; 

logKCuTrp2=15.5084; 

logKCuHTrp=2.47; 

logKCuSO4=0.7737; 

logKHSO4=1.1781; 

 

KSOLUTION=[... 

     0 

     0 

     0 

     0 

     0 

     0 

     logKw 

     logKh1 

     logBh21 

     logBh22 

     logBh34 

     pKa2 

     pKa2+pKa1 

     logKCuCO3 

     logKCuCO32 

     logKCuHCO3 

     logKCuCl 

     logKCuTrp 

     pKa2Trp 

     pKa2Trp+pKa1Trp 

     logKCuTrp2 

     logKCuHTrp 

     logKCuSO4 

     logKHSO4]; 
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ASOLUTION=[... 

    %H      M   CO3   Cl  Trp  SO4 

     1      0     0     0   0     0 

     0      1     0     0   0     0 

     0      0     1     0   0     0 

     0      0     0     1   0     0 

     0      0     0     0   1     0 

     0      0     0     0   0     1   

     -1     0     0     0   0     0 

     -1     1     0     0   0     0 

     -1     2     0     0   0     0 

     -2     2     0     0   0     0 

     -4     3     0     0   0     0 

     1      0     1     0   0     0 

     2      0     1     0   0     0 

     0      1     1     0   0     0 

     0      1     2     0   0     0 

     1      1     1     0   0     0 

     0      1     0     1   0     0 

     0      1     0     0   1     0 

     1      0     0     0   1     0 

     2      0     0     0   1     0 

     0      1     0     0   2     0 

     1      1     0     0   1     0 

     0      1     0     0   0     1 

     1      0     0     0   0     1]; 

 

SOLUTIONNAMES=strvcat('H','Cu','CO3','Cl','SO4','Trp','OH','CuOH','Cu2

OH','Cu2OH2','Cu3OH4','HCO3','H2CO3','CuCO3aq','CuCO32aq','CuHCO3','Cu

Cl','CuTrp','HTrp','H2Trp','CuTrp2','CuHTrp','CuSO4','HSO4'); 

 

 Try 

    % -------------- solid values 

 

    logKsp=-18.7; 

    logKcuoh2s=-46.34; 

    logKCuCO3s=12.9089; 

    logKmalachite=33.18+2*logKw; 

    logKmalachite=32.0+2*logKw; 

    logKtenorite=20.8648+2*logKw; 

    if flag==1; logKmalachite=1; end 

    if flag==2; logKtenorite=-100; end 

    if flag==3; logKtenorite=-100; logKmalachite=1; end 

     

    logKcuoh2s=-10; 

    logKCuCO3s=1; 

    logKtenorite=-100; 

    logKmalachite=1; 
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    KSOLID=[... 

    logKtenorite 

    logKmalachite 

    logKcuoh2s 

    logKCuCO3s]; 

 

    ASOLID=[... 

     -2      1   0       0  0   0 

     -2     2    1       0  0   0 

     -2     1    0      0   0   0 

     0      1    1      0   0   0]; 

  

 SOLIDNAMES=strvcat('tenorite','malachite','CuOH2s','CuCO3s'); 

 

 

C.3 Matlab Code for Zinc 
 

ClT=0.5; 

PCO2=10^(-3.5);  

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=((NaHCO3*1e-3)/NaHCO3AW); 

ZnTppb=[1:25:600]; 

ZnT=(ZnTppb*1e-6)/65.39; 

TrpT=10e-6; 

SO4T=1e-2; 

 

pH=7.82;  

 

logKw=-13.75; 

logKh1=-9.1204; 

logBh2=-16.1433; 

logBh3=-28.8547; 

logBh4=-40.06; 

logBh21=-8.7033; 

pKa1=5.97; 

pKa2=9.53; 

logKZnCl=-0.4; 

logKZnTrp=4.5434; 

pKa1Trp=2.3176; 

pKa2Trp=9.3555; 

logKZnTrp2=8.7673; 

logKZnTrp3=11.9747; 

logKZnCO3=3.3; 

logKZnCO32=5.3; 

logKZnHCO3=0.85; 

logKZn2CO3=4.635591; 

logKZnSO4=0.9546; 

logKHSO4=1.1781; 
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KSOLUTION=[... 

     0 

     0 

     0 

     0 

     0 

     0 

     logKw 

     logKh1 

     logBh2 

     logBh3 

     logBh4 

     logBh21 

     pKa2 

     pKa2+pKa1 

     logKZnCl 

     logKZnTrp 

     pKa2Trp 

     pKa2Trp+pKa1Trp 

     logKZnTrp2 

     logKZnTrp3 

     logKZnCO3 

     logKZnCO32 

     logKZnHCO3 

     logKZn2CO3 

     logKZnSO4 

     logKHSO4]; 

  

ASOLUTION=[... 

    %H      M   CO3   Cl  Trp  SO4 

     1      0     0     0   0     0 

     0      1     0     0   0     0 

     0      0     1     0   0     0 

     0      0     0     1   0     0  

     0      0     0     0   1     0 

     0      0     0     0   0     1 

     -1     0     0     0   0     0 

     -1     1     0     0   0     0 

     -2     1     0     0   0     0 

     -3     1     0     0   0     0 

     -4     1     0     0   0     0 

     -1     2     0     0   0     0 

     1      0     1     0   0     0  

     2      0     1     0   0     0 

     0      1     0     1   0     0 

     0      1     0     0   1     0 

     1      0     0     0   1     0  

     2      0     0     0   1     0 

     0      1     0     0   2     0 
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     0      1     0     0   3     0 

     0      1     1     0   0     0 

     0      1     2     0   0     0 

     1      1     1     0   0     0 

     0      2     1     0   0     0 

     0      1     0     0   0     1 

     1      0     0     0   0     1]; 

 

SOLUTIONNAMES=strvcat('H','Zn','CO3','Cl','Trp','SO4','OH','ZnOH','ZnO

H2','ZnOH3','ZnOH4','Zn2OH','HCO3','H2CO3','ZnCl','ZnTrp','HTrp','H2Tr

p','ZnTrp2','ZnTrp3','ZnCO3','ZnCO32','ZnHCO3','Zn2CO3','ZnSO4','HSO4'

); 

 

 Try 

    % -------------- solid values 

 

    logKsp=-16.26; 

    logKZnOH2s=-42.8613; 

    logKZnCO3s=-12.2089; 

    logKZnOs=-16.606; 

     

    %logKZnOH2s=-10; 

    %logKZnCO3s=1; 

    %logKtenorite=-100; 

    %logKmalachite=1; 

     

    KSOLID=[... 

    logKZnOs 

    logKZnOH2s 

    logKZnCO3s]; 

 

    ASOLID=[... 

    0       1    0      0   0   0  

     -2     1    0      0   0   0  

     0      1    1      0   0   0]; 

  

 SOLIDNAMES=strvcat('ZnOs','ZnOH2s','ZnCO3s'); 

 

 

C.4 Matlab Code for Nickel 

 
function GG=for_Rachael_vCuT_fixedpH_10uM_Trp2_Ni 

 

ClT=0.5; 

PCO2=10^(-3.5);  

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=((NaHCO3*1e-3)/NaHCO3AW); 

NiTppb=[1:100:800]; 

NiT=(NiTppb*1e-6)/58.71; 
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TrpT=10e-6; 

SO4T=1e-2; 

 

pH=7.82;  

 

logKw=-13.75; 

logKh1=-10.1434; 

logBh2=-17.4195; 

logBh3=-30.4547; 

logBh44=-28.0779; 

pKa1=5.97; 

pKa2=9.53; 

logKNiCl=-0.4402; 

logKNiTrp=5.5379; 

pKa1Trp=2.3176; 

pKa2Trp=9.53; 

logKNiTrp2=10.52; 

logKNiTrp3=14.4845; 

logKNiCO3=3.57; 

logKNiHCO3=1.59; 

logKNiSO4=0.756; 

logKHSO4=1.1781; 

 

 

KSOLUTION=[... 

     0 

     0 

     0 

     0 

     0 

     0 

     logKw 

     logKh1 

     logBh2 

     logBh3 

     logBh44 

     pKa2 

     pKa2+pKa1 

     logKNiCl 

     logKNiTrp 

     pKa2Trp 

     pKa2Trp+pKa1Trp 

     logKNiTrp2 

     logKNiTrp3 

     logKNiCO3 

     logKNiHCO3 

     logKNiSO4 

     logKHSO4]; 

  

ASOLUTION=[... 
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    %H      M   CO3   Cl  Trp  SO4 

     1      0     0     0   0     0       

     0      1     0     0   0     0 

     0      0     1     0   0     0 

     0      0     0     1   0     0 

     0      0     0     0   1     0 

     0      0     0     0   0     1 

     -1     0     0     0   0     0  

     -1     1     0     0   0     0 

     -2     1     0     0   0     0 

     -3     1     0     0   0     0 

     -4     4     0     0   0     0 

     1      0     1     0   0     0  

     2      0     1     0   0     0 

     0      1     0     1   0     0 

     0      1     0     0   1     0  

     1      0     0     0   1     0  

     2      0     0     0   1     0 

     0      1     0     0   2     0 

     0      1     0     0   3     0 

     0      1     1     0   0     0 

     1      1     1     0   0     0 

     0      1     0     0   0     1 

     1      0     0     0   0     1]; 

 

SOLUTIONNAMES=strvcat('H','Ni','CO3','Cl','Trp','SO4','OH','NiOH','NiO

H2','NiOH3','Ni4OH4','HCO3','H2CO3','NiCl','NiTrp','HTrp','H2Trp','NiT

rp2','NiTrp3','NiCO3','NiHCO3','NiSO4','HSO4'); 

 

% Try 

    % -------------- solid values 

 

    logKsp=-15.2; 

    logKNiOH2s=-42.56; 

    logKNiCO3s=-12.6089; 

     

    %logKZnOH2s=-10; 

    %logKZnCO3s=1; 

    %logKtenorite=-100; 

    %logKmalachite=1; 

     

    KSOLID=[... 

    logKNiOH2s 

    logKNiCO3s]; 

 

    ASOLID=[... 

     -2     1    0      0   0   0  

     0      1    1      0   0   0]; 

  

 SOLIDNAMES=strvcat('NiOH2s','NiCO3s'); 



156 

 

Appendix D: SIMPLISMA Script 

% test SIMPLISMA 

 

function II=MiamiJimbo_SIMPLISMA 

 

clear; figure(1); close; figure(2); close; figure(3); close; 

figure(4); close 

 

data=getdata; enddata=400; startdata=180; 

 

wavelength=data(startdata:enddata,2); 

data=data(startdata:enddata,2:8); data=data'; 

 

n=2; % number of components 

%data2=[]; % for second derivative.  not required. 

offset=50; % value 1-15 depending on necessary correction factor 

varlist=[wavelength]'; % wavelengths in real spectra 

 

[purspec,purint,purity_spec]=simplisma(data,varlist,offset,n); 

 

figure(1); close 

 

conc=[0 24.390243902439 33.8164251207729 78.3410138248848

 137.931034482759 206.349206349206 290.780141843972 372.822299651568

 528.619528619529]; 

 

figure(1); 

plot(wavelength,purspec(1,:),wavelength,purspec(2,:),'linewidth',2) 

set(gca,'linewidth',2,'fontsize',12) 

xlabel('wavelength (nm)','fontsize',12) 

ylabel('pure spectra intensity (arb)','fontsize',12) 

axis([340 520 0 15e-3]) 

 

figure(2); close; figure(2); 

h=plot(conc,purint(:,1),'bo',conc,purint(:,2),'go','markersize',8) 

set(h(1),'markerfacecolor','b'); set(h(2),'markerfacecolor','g') 

set(gca,'linewidth',2,'fontsize',12) 

xlabel('added Cu (ppb)','fontsize',12) 

ylabel('flurophore concentration (arb)','fontsize',12) 

axis([0 250 1.5e4 6e4]) 

end 

 

function II=getdata 

 

data=[...]; 

 

II=data; 

 

end 
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Appendix E: Competitive Ligand Exchange Method by Anodic Stripping Voltammetry 

Competitive ligand exchange experiments were completed on the voltammeter for copper 

with the natural organic matter from Luther Marsh in artificial seawater and the competitive 

ligand, salicylaldoxime (SA). In this technique, SA, which has a known competition strength, is 

allowed to equilibrate for 5 minutes with the natural ligands present in the sample and a range of 

dissolved copper. This procedure was completed by following the Kogut and Voelker (2001) 

method.  

Data analysis for the result was completed following Kogut and Voelker (2001). The data 

points directly corresponding to the binding of the Cu-SA were fit and the binding capacity was 

calculated by using the equation for the line, setting the y=0 and solving for x. The height signal 

from each copper addition was divided by the slope of the above line to solve for the 

concentration of Cu-SA species. The copper total (CuT) was rearranged to solve for the total 

copper reacting with the natural ligand (CuT*) and was solved for using CuT*=[CuT]-[Cu-SA]. 

Free copper is calculated by the use of the equation k=[Cu-SA]/[Cu][SA]. The chosen k was for 

Cu(SA)2 instead of CuSA
+
 because the Cu-SA+ is only important at low SA concentrations 1 

µM and 2.5 µM. Anything over it becomes insignificant relative to the Cu(SA)2 complex (Buck 

and Bruland 2005)  k=15.78. There are two unknown variables; one is [Cu] which we plan on 

solving for the other is [SA]. So to solve for SA we use mass balance for the system. 

 SA-total=[Cu-SA]+[SA]. SA-total is the 25µM SA initially added, which translates to 

25000nM. The equation can be rearranged to [SA]=SA-total- 2[Cu-SA]. Now with our SA 

values for each point we can solve for Cu2+; [Cu2+] =[Cu-SA]/k[SA]
2
. The results are plotted 

Figure 5.  

Figure B.1 (a) shows the increasing copper additions vs. the height of the peak for the 

Cu-SA compound measured by the voltammeter. The first part of the graph has a small slope 

because the natural organic matter has a stronger binding strength than the copper-SA complex 

and is out competing it. Once the binding capacity for the natural organic matter is full, the SA 

can start to fully compete for the copper resulting in a much steeper slope. The linearization of 

the steeper copper-SA complex allows for the determination of binding capacity for the copper 
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binding ligands (Buck and Bruland, 2005). From our experimental results, it can be seen that 

binding capacity from trial one and two is 30.2 nM and 40.7 nM, respectively. 

Figure B.1 (b) displays the bound copper vs. the free copper. In this process the 

concentration of the CuSA is subtracted because it is not a natural aspect of the system. By 

removing this concentration the results are now directly correlated to the natural sample and 

provide a graphical estimation between the free copper and the copper bound to the natural 

organic matter (Buck and Bruland, 2005). 

 

 

Figure B.1: Competitive ligand exchange results for copper and natural organic matter isolate, Luther 

Marsh. Figure B.1(a) shows the increase of the Cu-SA peak height with increasing total copper concentration. 

Figure B.1(b) graphically displays free copper vs. copper bound to the Luther Marsh organic matter (Natural 

ligand logK value of 13.6). 
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Appendix F: Determination of Binding Capacity with Zinc 

Electrochemically labile zinc was measured by adapting the method of Sánchez-Marín et 

al. (2011) to include the zinc peak. Square wave anodic stripping voltammetry (SWASV) was 

used with a deposition potential of -1.5 V, a deposition time of 30 seconds, equilibration time of 

5 seconds, voltage scanning (-1.5 to -0.8V), amplitude of 25 mV, frequency of 25 Hz, and a scan 

increment of 2mV. The resultant current measurements at the peak potential for zinc were 

recorded after additions from 0 to 700 ppb. NOM samples were dissolved in OECD seawater and 

pH was kept constant +/-0.02 throughout the titration. 

The current measurements at the peak potential versus the metal added should result in a 

low slope for the initial data followed by steeper slope linear response at higher total metal as 

seen in Chapter 4 and Chapter 5. Figures E.1 and E.2 displays the voltammetric results of zinc 

addition versus peak height for Inshore Brazil and Nordic Reservoir at 2 mg C/L. These graphs 

do not follow the expected shape and are linear. This resulted in the inability to determine the 

binding capacity for zinc with the Inshore Brazil and Nordic Reservoir NOM.  

 

Figure E.1: Zinc speciation for 2 mg C/L Inshore Brazil measured by Anodic stripping voltammetry (ASV). 

Voltammetric results zinc addition (ppb) vs. height of lead peak. 
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Figure E.2: Zinc speciation for 2 mg C/L Nordic Reservoir measured by Anodic stripping voltammetry 

(ASV). Voltammetric results zinc addition (ppb) vs. height of lead peak. 

 

Voltammetric techniques detect strong ligand binding. The ligand (NOM) prevents the 

metal from accumulating at the mercury drop and being measured. The zinc binding is linear 

which indicates that the zinc binding to the NOM is not strong enough for this technique to prove 

useful for determination of binding capacity. 
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Introduction: 

 

Anthropogenic sources historically related to industrial activity, waste disposal and 

vehicular emissions contribute toxic levels of trace metals like Cu, Pb and Zn into the 

marine environment. Assessing aquatic pollution in terms of chemical analysis of the 

contaminants present is not considered adequate as it does not provide information about 

the toxic effects of the contaminant on organisms. A more useful approach would be to 

derive comprehensive data on environmentally realistic pollutant levels that integrate 

biological factors such as survival and bioaccumulation. 

The freshwater biotic ligand model (BLM) has successfully incorporated the above 

approach of predicting toxicity associated with metal accumulation on or in the organism, 

such that lethality occurs when a critical tissue concentration of the metal is reached 

(LA50; Niyogi and Wood, 2004). The BLM framework assumes that a particular amount 

of metal bound to the “toxic sites” is critical to toxicity (the lethal accumulation-50% or 

LA50 parameter). In practice, the LA50 value is often an assumed value derived from 

iterative modeling but Niyogi and Wood (2004) have specified the importance of 

measured values. Critical body residues (CBR), based on whole body concentrations, 

have been sometimes suggested as a more toxicologically relevant means of predicting 

toxicity as compared to water concentrations for a variety of organic contaminants and 

metals (McCarty and Mackay,1993; Adams et al. 2011; McCarty et al., 2011; Sappington 

et al. 2011;). Recently Rosen et al. (2008) explored the use of the CBR approach for Cu 

in embryo-larval stages of Mytilus galloprovincialis and Stronglylocentrotus purpuratus 
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and found whole body Cu residues were a better predictor of toxicity than exposure water 

Cu concentrations.                

Larval toxicity bioassays have therefore become important for regulatory and 

monitoring programs, largely because they are assumed to be good indicators of 

ecological damage to aquatic communities. Early life stages of aquatic invertebrates are 

considered more sensitive than adults as they respond to subtle chemical and physical 

changes in the environment (His et al. 1999). Investigation on early life stages is also 

particularly important since mortality during early life stages is the decisive factor 

regulating subsequent adult population size of benthic marine invertebrates (Gosselin & 

Qian 1997).  

Sea urchin embryo-larval development has been studied since the late 19th 

century (Hertwig & Hertwig, 1887) and this life stage has been used to monitor pollutants 

in marine environments since the 1950s (Tabata, 1956; Okubo and Okubo, 1962). In 

particular, the early life stages of several different species of sea urchins have been 

shown to be sensitive to metals (Kobayashi, 1973; Phillips et al., 2003). Similarly, 

previous studies report that early life stages of freshwater mussels are more sensitive to 

contaminants than are adults (Yeager et al. 1994; Naimo 1995; Jacobson et al. 1997). 

This finding is also supported by field observations, as alarmingly few young mussels 

have been found in contaminated environments with diverse adult populations (Jacobson 

et al. 1997; Weinstein, 2001). 

There is good reason to believe that metals like Cu, Zn and Pb will be very 

sensitive to the early life stages of these marine organisms because of their common 
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occurrence in municipal and industrial effluents (Ringwood,1992; Eisler, 1993;)as well as 

their known toxicity at elevated concentrations to marine organisms. Very recently, we 

examined Cu toxicity to various early life stages of the blue mussel Mytilus trossolus and 

we showed that the embryo-larval life stage is 10-100 fold more sensitive than either 

sperm or eggs alone (Fitzpatrick et al. 2008). A parallel study (Nadella et al. 2009), 

investigated the individual relative toxicities of four metals to mussel embryo-larval 

stages, demonstrating the following rank order of toxicity Cu>Zn>Ni >Cd. The toxicity 

of Cu (the most toxic metal) was further evaluated in relation to modifying factors like 

DOM from different NOM sources and salinity. While there was no additive effect of 

salinity changes on Cu toxicity, we clearly showed that different DOM’s had varying 

protective effects and these were correlated with fluorescent properties of NOM sources.  

Clearly these results disagree with modeling approaches like the BLM that generally 

assume that all DOMs have equivalent protective abilities. The results of several recent 

studies including ours now argue against this. Toxicity of both copper (De 

Schamphelaere et al. 2004) and Ag (Glover et al. 2005) toward the highly sensitive 

freshwater cladoceran Daphnia magna, for example, is highly dependent on both the 

concentration and the origin of the DOM that is present. Richards et al. (2001) showed 

that Luther Marsh NOM (LMN) was the most effective of three NOMs for protecting 

against mixed-metal toxicity to rainbow trout, similar to the effects seen with D. magna 

(Glover et al.2005).  

          The influence of NOM source appears to depend on differing species-dependent 

binding affinities of the metal for the biotic ligand. Furthermore, metals appear to bind to 
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distinct moieties within the NOM; consequently, NOM may have different protective 

abilities for the toxicity of different metals. Silver, for example, likely binds to nitrogen-

containing groups (Sikora et al. 1988) and, possibly, to organic thiols (Kramer et al. 

2002), whereas a metal, such as copper, tends to bind to carbon-containing moieties, such 

as phenolic groups (Lu and Allen 2002). Clearly, the influence of NOM source on metal 

toxicity is likely to depend on both the metal and the organism under investigation as 

well as on the nature of the NOMs themselves. The qualities of NOM responsible for this 

differential protection are yet to be established, but indications suggest that optical 

properties may correlate with ameliorative ability (De Schamphelaere et al. 2004), at least 

for copper. 

The purpose of this study was to measure CBR and evaluate the effect of DOC 

on the toxicity of Zn which we found to be most toxic after Cu in the previous study 

(Nadella et al. 2009). We extended the study to include Pb as preliminary tests indicated 

the metal could be equally toxic like Zn.  While the toxicity of Zn and to a lesser extent 

Pb has been explored in marine organisms (Conroy et al., 1996; Phillips et al., 1998; 

Novelli et al., 2003; Radenac et al., 2001) few studies have examined the influence of 

physico-chemical factors such as DOC or salinity on the ecotoxicity of these metals to 

marine organisms. Current chronic ambient water quality criteria (AWQC) for Zn and Pb 

in seawater are 81 µg L
-1

 (U.S. EPA 2006) and 8.1 µg L
-1

 (EPA 440/5-84-027) 

respectively. These values have been derived from data available in the 1980’s and have 

not been adjusted for salinity and DOC. There is a clear need to revisit these criteria with 

modern approaches incorporating the influence of DOC and salinity, the two factors 

likely to be the most important variables affecting the toxicity of these metals. As AWQC 
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are not usually based on single organisms, we included two species of blue mussels- 

Mytilus trossolus, Mytilus galloprovincialis and the sea urchin Strongylocentrotus 

purpuratus to account for variations in sensitivity. 

 

Methods: 

Adult Mytilus trossolus were collected from natural intertidal populations in the Broken 

Island Group, near Bamfield, B.C. Mytilus galloprovincialis adults were obtained 

courtesy of Northwest Aquaculture Farm located on the Effingham Inlet in Barkley 

Sound on the west coast of Vancouver Island. Strongylocentrotus purpuratus were 

supplied by Westwind Sealab Supplies, Victoria B.C.  In the laboratory, animals were 

cleaned and transferred to aerated flowing seawater baths maintained at 11-13°C and 

allowed to acclimate for 24 h. Representative seawater chemistry is given in Table 1. 

Mytilus 48 h embryo test: 

Embryo development was assessed using well-established protocols (ASTM 2004-E724).  

Briefly, adult Mytilus were transferred to a 10 L filtered (0.20µm) seawater bath (15-20 

adults/bath) maintained at 22-25°C. The thermal shock induced spawning, and 

individuals releasing gametes were immediately moved to separate 250 ml beakers 

containing 200 ml of filtered seawater, for isolation and collection of gametes. Egg 

quality and sperm motility were assessed using a microscope at 200x magnification. 

Subsequently, eggs from several individual females were pooled and homogenized by 

gentle stirring. An aliquot of sperm solution pooled from several male individuals was 
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added to the eggs to initiate fertilization. A subsample of this mixture was periodically 

observed until 80% or more of the eggs were fertilized. The test was initiated by adding 

100 µl of fertilized embryos (approximately 600-1000 individuals) to each test vial 

containing 10 ml of test solution. Test vials were incubated in a biological incubator 

maintained at a constant temperature of 20ºC ±1 and a photoperiod of 16-h light: 8-h 

dark. After 48 h, control test vials were examined to ensure more than 80% embryos 

developed into normal D-shaped prodissoconch larvae. Tests in which control 

development was less than 80% normal were discarded. The test was then terminated via 

addition of 1 ml buffered formalin to each test vial to arrest development. Contents of 

each test vial were observed microscopically on a Sedgewick-Rafter slide to determine 

the percentage of embryos exhibiting normal development. At least 100 embryos in each 

replicate were assessed. 

Seaurchin 72 h embryo test: 

            Sea urchins were stimulated to spawn by injecting 1M KCl into the gonads, sperm 

and eggs were collected separately (ASTM 2004-E1563) . After fertilization, 100 µl of 

fertilized embryos were added to 10 ml of test solution and  the gametes were incubated 

in a biological incubator maintained at a constant temperature of 15ºC ±1 and a 

photoperiod of 16-h light: 8-h dark. The test was terminated at 72 h by addition of 1% 

formalin when 80% embryos were normal in control vials. Contents of each test vial were 

observed microscopically to determine the percentage of embryos exhibiting normal 

development. At least 100 embryos in each replicate were assessed. 

Whole body residue determination: 
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Exposures for this test were modified slightly from the above procedure according to 

details from Rosen et al (2008). In order to obtain sufficient biomass and determine 

weight and tissue burden, test were conducted using larger water volumes (1L) with 

embryo concentrations of ~60 embryos ml
-1

. After the appropriate exposure period, each 

beaker was gently homogenized with a Pasteur pipette and a 5 ml aliquot was removed 

and preserved with 500 µl of formaldehyde for EC50 determination. 

The remainder of the sample was filtered through a pre-weighed 8µm polycarbonate filter 

(Whatman Nuclepore Track-Etch Membrane PC MB 47 MM 8.0 um). The filter was 

dried at ~ 25ºC until a constant weight was achieved and the mass was recorded. The 

filter was then digested with 100 µL of trace metal grade HNO3 overnight. The next day 

1 mL of de-ionized water was added and the sample stored for tissue Pb measurements. 

Analytical Chemistry: 

As per US EPA (2001) recommendations water chemistry parameters were measured in 

treatments critical to the toxicity tests. 

Dissolved Pb and Zn concentrations were measured after passing samples through a 

0.45um filter, using a method modified from Toyota et al. (1982). Briefly, the 

representative metal was precipitated from 1 ml of sample by adding 1µl of lanthanum 

oxide (10 mg La ml
-1

) and 7.5 µl of 1M Na2CO3, which brought the pH of the sample to 

approximately 9.8. The solution was gently stirred in a hot water bath maintained at 80ºC 

for 30 min to allow flocculation of precipitate (largely lanthanum hydroxide). The 

solution was centrifuged at 5000 rpm for 15 min and the supernatant discarded. The 
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remaining precipitate was dissolved in 1 ml of 1N HNO3 and Pb concentration was 

measured via graphite furnace atomic absorption spectroscopy (220, Varian, Palo Alto, 

CA. U.S.A.). Zn levels were measured via flame atomic absorption spectroscopy (220FS; 

Varian, Palo Alto, CA. U.S.A.). Fisher Scientific calibration standards were used after 

every run. Recovery was always ± 10% as determined from similarly processed 

Analytical Reference material TM15 (Environment Canada, Natural Water Research 

Institute). Measured values are reported in Tables 2 & 3. 

Na
+
, K

+
, Ca

2+
, and Mg

2+
 concentrations in seawater samples were determined by atomic 

absorption spectroscopy (Varian SpectrAA-1275FS) and Cl
-
 by coulometric titration on a 

chloridometer (CMT 10 Chloride
 
Titrator; Radiometer, Copenhagen, Denmark; Cl

–
). 

Reference
 
standards were used for the measurement of all ions studied

 
[Fisher Scientific 

and Radiometer (Copenhagen, Denmark)].Measured values are reported in Table1. 

DOC in the samples was analysed after passing the sample through a 0.45um filter and 

measuring total organic carbon (TOC) using a Shimadzu TOC analyzer (5050A, Mandel 

Scientific). Organic Carbon Standards were prepared according to Shimadzu 

specifications. 

Statistical Analysis: 

An Environmental Toxicity Data Analysis Software Tox Calc
TM

 package(Tidepool 

Scientific Software) was used to estimate EC50 and EC20 with 95% confidence intervals 

(CI),[employing the responses and measured toxicant concentration data from all 

concentrations]. 
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Results: 

Water Chemistry Parameters: key salinity variables (Na, Cl, Mg, Ca, pH) were measured 

for each test, details are listed in summary table 1. 

Accurate concentrations of Pb, Zn and DOC were measured in all tests. EC50 values 

were calculated using measured metal concentrations. 

Salinity series: 

48h embryo-larval development tests over a range of salinities (15-32 ppt) were 

performed for Mytilus galloprovincialis and Mytilus trossolus and Strongylocentrotus 

purpuratus (Fig.1). Exposure to different salinities influenced embryo development. S. 

purpuratus was the most sensitive to salinity changes (Fig. 1C), with normal embryo 

development declining significantly (< 80% normal) at salinity levels lower than 30 ppt. 

Embryo development in M. galloprovincialis (Fig. 1B) and M. trossolus (Fig. 1A) was 

less sensitive with a salinity threshold of 25 ppt and 20 ppt. 

Pb series: 

Toxic effects: 

In 48h embryo-larval toxicity tests over a range (nominally 3.2-1000 µg L
-1

) of Pb 

concentrations for Mytilus trossolus, and Mytilus galloprovincialis, we determined an 

EC50 of 63 (36-94) µg L
-1 

for M. galloprovicialis, and 45 (22-72) µg L
-1

 for M. trossolus. 

EC20 values representing possible chronic thresholds were 19 (7-33) µg L
-1

 and 16 (5-

30) µg L
-1

 for the two species respectively (Table 2). 
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72h embryo-larval toxicity tests over a nominal range (3.2-1000 µg L
-1

) of Pb 

concentrations in 100% seawater were completed with the sea urchin S. purpuratus.  We 

determined an EC50 of 74 (50-101) µg L
-1 

and EC 20 of 31 (16-46) µg L
-1

, slightly, but 

not significantly higher than for the two mussel species (Table 2). 

DOC effects: 

The addition of DOC (Marine Inshore and Nordic Reservoir) to test waters decreased the 

toxicity of Pb moderately. However this protective effect did not show a dose-response 

relationship with increasing DOC concentrations. Both types of DOC tested showed 

similar responses with dissolved EC50 values for Pb ranging between 134 (98-169)-157 

(141-172) µg L
-1

 with 2.1-10.5 mg L
-1

 added DOC,  moderately increased from a control 

EC 50 value of 63 µg L
-1

 for M. galloprovincialis. Similarly DOC showed marginal 

protection from Pb toxicity to M. trossolus embryos with EC50 values ranging from 97 

(90-105) to 117 (77-157) µg L
-1

 compared to control values of 45 µg L
-1 

(Table 2). 

72h embryo-larval toxicity tests over a range of Pb concentrations in exposure water 

spiked with a series of DOC concentrations (2-12 mg L
-1

) were completed with the sea 

urchin S. purpuratus., to assess the protective effects, if any, of DOC against Pb toxicity. 

However, Inshore DOC actually exacerbated Pb toxicity to the embryos, as indicated by a 

decrease in the Pb EC50 from 74 (50-101) µg L
-1  

to between 46 and 57 µg L
-1

 when Pb 

treatments were spiked with 2-12 mg/L DOC. Nordic Reservoir DOC proved toxic over 

the whole concentration range (Table 2). 

Salinity-DOC interactions: 
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The effect of salinity on Pb toxicity was investigated for M. trossolus, the more low-

salinity tolerant of the two mussel species. 48h embryo-larval toxicity tests were 

performed over a range (nominally 3.2-1000 µg L
-1

) of Pb concentrations in 100% SW 

and at 21 ppt. Salinity had no effect on Pb toxicity, with EC50 values of 67 (37-100) µg 

L
-1

  in 100% SW (33 ppt; Fig.2A) and  69 (34-19) µg L
-1

 at 21 ppt (Fig.2B). 

Considering the moderate protective effect of DOC against Pb toxicity, this was 

investigated at a lower salinity for M. trossolus.  Like in full strength seawater we 

observed a small protective effect  at 21 ppt, for both Inshore DOC and Nordic Reservoir 

DOC. EC50 increased from 69 (34-19) µg L
-1

 to only 156 (97-222) µg L
-1

 in the presence 

of 6 mg C L
-1

 of Inshore DOC (Fig.2D) and 184 (111-277) with 6 mg C L
-1

 of Nordic 

Reservoir DOC (Fig.2C).  

Tissue Burden: 

Critical Body Residues (CBR) of Pb, based on whole body concentrations at 48 h of Pb 

exposure (Fig.3A ) were determined for M. galloprovincialis, employing methods 

described in Rosen et al. (2008). A good correlation was observed between tissue burden 

and % mortality (r
2
 = 0.88) for M. galloprovincialis embryos. An LA50 for Pb of 575 

(251-1000) µg/g was determined from this relationship (Fig.3B). 

In embryos of S. purpuratus whole body Pb accumulation increased in a dose-dependent 

manner after a 72h exposure to a range of Pb concentrations (Fig.4A ), a good correlation 

was observed between tissue burden and % mortality (R
2
 = 0.88). An LA50 of 316 (141-
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741) µg g
-1

 was determined from this relationship (Fig.4B), which was not significantly 

different from the LA50 for Pb in M. galloprovincialis embryos. 

Larval tissue weight served as an additional toxicity endpoint for both mussels and 

seaurchins. Larval weight reduced significantly for M. galloprovincialis at a measured Pb 

concentration of 74 µg L
-1

 (nominal Pb = 100 µg L
-1

; Fig. 5A). For S. purpuratus larval 

weight was significantly lower at a measured Pb concentration of 82 µg L
-1

 (nominal Pb 

= 100 µg L
-1

; Fig.5B) close to the EC50 value for normal development.  

Zn Series: 

Toxic effects: 

In 48h embryo-larval toxicity tests over a nominal range (3.2-1000 µg L
-1

) of Zn 

concentrations in 100% seawater for Mytilus trossolus, and Mytilus galloprovincialis we 

determined an EC50 of 172 (126-227) µg L
-1 

for M. galloprovincialis, and 135 (103-170) 

µg L
-1

 for M. trossolus. EC20 values representing possible chronic threshold were 101 

(59-136) µg L
-1

 and 69 (44-92) µg L
-1

 for the two species respectively. Thus Zn was 

somewhat less toxic than Pb (Table 3). 

In 72h embryo-larval toxicity tests over a nominal range (3.2-1000 µg L
-1

) of Zn 

concentrations in 100% seawater with S. purpuratus it was observed that  sea urchin 

embryos proved to have about the same sensitivity as mussel larvae, with EC50 values of 

151 (129-177) µg L
-1

 (Table 3). 
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DOC effects: 

48h embryo-larval toxicity tests over a range of Zn concentrations in exposure water 

spiked with a series of DOC concentrations (2-12 mg L
-1

) were completed for Mytilus 

trossolus, and Mytilus galloprovincialis, to assess the protective effects, if any, of DOC 

against Zn toxicity.  Surprisingly, the addition of DOC (Marine Inshore and Nordic 

Reservoir) to test waters had no significant effect on Zn toxicity. Both types of DOC 

tested showed similar responses with dissolved EC50 values for Zn ranging between 164 

(118-219) - 239 (177-317) µg L
-1

 with 2.1-10.5 mg L
-1

 added DOC for M. 

galloprovicialis. For M. trossolus embryos, EC50 values ranging from 155 (119-192) to 

184 (137-236) µg L
-1

 were measured (Table 3).  

72h embryo-larval toxicity tests over a range of Zn concentrations in exposure water 

spiked with a series of DOC concentrations (2-12 mg L
-1

) with the sea urchin S. 

purpuratus., to assess the protective effects, if any, of DOC against Zn toxicity, revealed 

that  Inshore DOC aggravated  Zn toxicity to the embryos, as indicated by a decrease in 

the Zn EC50 to 101 (99-103) µg L
-1

when Zn treatments were spiked with 2 mg/L DOC. 

Adding a higher concentration (12 mg L
-1

) of the same DOC proved to further exacerbate 

toxicity to the embryos 77 µg L
-1

 . Nordic reservoir DOC was toxic to seaurchin embryos 

even in the absence of added Zn (Table 3). 

Tissue Burden: 

Whole body accumulation of Zn in embryos of M. galloprovincialis after a 48h exposure 

to a range of Zn concentrations increased significantly from controls initially at the 
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lowest Zn exposure concentration and then substantially at the two highest exposures 

(Fig. 3C). Critical Body Residues of Zn (Rosen et al., 2008) in these embryos provided a  

good correlation between tissue burden and % mortality (R
2
 = 0.95). An LA50 of  759 

(617-776) µg/g was determined from this relationship (Fig. 3D). Thus despite the 

differences in toxicity, LA50 values were similar for Pb and Zn. 

In embryos of S. purpuratus, after a 72 h exposure to a range of Zn concentrations, whole 

body accumulation showed significant dose-dependent increases (Fig. 4C). We measured 

an LA50 of 398 (347-575) µg/g (R
2
 = 0.82) (Fig.4D). The CBR for Zn was thus 

comparable to that for Pb in this species and less than that in mussel embryos. 

Larval weight as in the case for Pb was equally sensitive to Zn exposures as a toxicity 

endpoint both for mussels and seaurchins. A significant drop in weight comparable to 

EC50 values for normal development in these embryos was observed at measured Zn 

concentrations of 151 µg L
-1

 for M. galloprovincialis (nominal Zn =100 µg L
-1

; Fig. 5C) 

and 174 µg L
-1 

for S. purpuratus (nominal Zn =100 µg L
-1

; Fig. 5D) 
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Table 1. Measured water chemistry parameters for representative test solutions.(means ± SEM). 

  33ppt Seawater (SW) 21ppt SW 1000 µg Pb L
 -1

 

33ppt SW 

12 mg C L
 -1

  

Marine Inshore DOC 

100% SW 

 

pH 

 

7.5 

 

7.4 

 

 

7.7 

 

7.6 

 

Na (mM)  

 

443 ± 0.47 

 

277 ± 0.75 

 

430± 1.5 

 

486± 0.86 

 

K (mM) 

 

9.3 ± 2 

 

5.4 ± 1 

 

9.2± 1.4 

 

9.3 ± 1 

 

Ca (mM) 

 

7.8 ± 0.9 

 

4.8 ± 0.4 

 

8.6 ± 0.6 

 

8.8 ± 0.7 

 

Mg (mM)  

 

67 ± 5 

 

43 ± 1.6 

 

63 ± 5 

 

69± 7 

 

Cl (mM)  

 

535 ± 5.29 

 

323 ± 1.3 

 

304 ± 3.1 

 

543 ± 0.88 
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Table 2. 48 h EC 50; EC20; EC10 and NOEC values for abnormal development in embryos of M. 

galloprovincialis , M. trossolus and P. lividus for Pb in the presence of a potential 

modifying factor (DOC).  

Mytilus galloprovincialis EC50 (µg/L) EC20 (µg/L) EC10 (µg/L) NOEC 

(µg/L) 

Pb 63 (36-94) 19 (7-33) 10 (3-20) 3.2 

 

Inshore DOC (2.5 mg/L) 134 (98-169) 68 (39-94) 48 (24-70) 4.4 

 

Inshore DOC (10.5 mg/L) 141  (99-182) 82 (43-113) 62 (27-91) 2.2 

 

Nordic Reservoir DOC (2.1 mg/L) 153 (141-165) 85 (75-95) 63 (54-72) 12.2 

 

Nordic Reservoir DOC (8.8 mg/L) 157 (141-172) 85 (71-99) 62 (49-75) 30 

 

Mytilus trossolus      

Pb 

 

45 (22-72) 16 (5-30) 9 (2-19) 3.4 

Inshore DOC (1.4 mg/L) 97 (90-105) 

 

65 (59-72) 53 (47-59) 4.3 

Inshore DOC (10.1 mg/L) 109 (100-118) 

 

80 (71-88) 68 (60-76)  11.8 

Nordic Reservoir DOC (3.1 mg/L) 117 (77-157) 

 

67 (31-96) 50 (19-76) 1.7 

Nordic Reservoir DOC (11.2 mg/L) 108 (83-133) 

 

57 (37-75) 40 (24-57) 0.7 

Mytilus trossolus     

Pb (33ppt SW) 

 

67 (37-100) 27 (10-46) 17 (5-32) 2.7 

Pb (21 ppt) 

 

70 (34-109) 30 (8-53) 19 (3-38)  

21 ppt SW+ Nordic Res DOC (7.3 mg/L) 

 

174 (111-248) 48 (19-81) 25 (7-47) 9.7 

21 ppt SW+ Inshore DOC (5.5 mg/L) 

 

156 (97-222) 52 (20-86) 30 (9-55) 3 

Paracentrotus lividus     

Pb 

 

74 (50-101) 31 (16-46) 19 (8-31) 2.7 

Inshore DOC (4.2 mg/L) 

 

46(10-92) 17 (0.8-40) 10 (0.2-27) 2 

Inshore DOC (10.3 mg/L) 

 

57 (29-89) 27 (7-45) 18 (3-34) 1.5 

Nordic Reservoir DOC (2.7&10.3 mg/L) 

 

No survival    
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Table 3. 48 h EC 50; EC20; EC10 and NOEC values for abnormal development in 

embryos of M. galloprovincialis, M. trossolus and S. purpuratus for Zn in the presence of 

a potential modifying factor (DOC). 

 

   

          

 

Mytilus galloprovincialis EC50 (µg/L) EC20 (µg/L) EC10 (µg/L) NOEC (µg/L) 

Zn 172 (126-227) 101 (59-136) 76 (38-108) 46 

 

Inshore DOC (3 mg/L) 203 (138-290) 132 (59-180) 105 (36-150) <98 

 

Inshore DOC (9.6 mg/L) 239 (177-317) 167 (100-216) 138 (72-185) 111 

 

Nordic Reservoir DOC (2 mg/L) 165 (80-279) 79 (19-137) 54  (8-102) <51 

 

Nordic Reservoir DOC (8.4 

mg/L) 

164 (118-219) 98 (57-133) 75 (37-107) <56 

 

Mytilus trossolus     

Zn 

 

135 (103-170) 69 (44-92) 48 (28-68) 46 

Inshore DOC (2.1 mg/L) 168 (113-232) 

 

99 (48-140) 76 (30-112) 89 

Inshore DOC (10.4 mg/L) 184 (137-236) 

 

109 (65-144) 82 (42-115)  92 

Nordic Reservoir DOC (3.1 

mg/L) 

184 (169-198) 

 

102 (89-113) 75 (64-85) 58 

Nordic Reservoir DOC (11.3 

mg/L) 

155 (119-192) 

 

85 (56-112) 63 (37-87) <49 

Paracentrotus lividus      

Zn 

 

151 (129-177) 125 (95-144) 114 (80-132) 109 

Inshore DOC (2 mg/L) 

 

101 (99-103) 88 (85-91) 82 (78-85) <82 

Inshore DOC (12 mg/L) 

 

77 41 29 78 

Nordic Reservoir DOC 

 
No survival    
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Table 4: Median effect concentration (EC50) values for embryo toxicity test compared to literature values. Exposure Pb  

concentrations are nominal. 

 

Species Pb µg L
-1

  Exposure 

duration 

Medium pH Temperature Embryo 

toxicity test 

EC50 µg L
-1

 

Reference 

Strongylocentrotus 

purpuratus 

3.2-1000  

Pb(NO3)2 

72h 33ppt Filtered 

Seawater 

7.6 15°C 74 (51-101) 

(measured) 

Present study 

Paracentrotus 

lividus 

Pb(NO3)2 72h 35ppt Artificial 

Seawater 

8 18°C 68 (57-80) 

(nominal) 

Novelli et al. 2003, 

Env. Toxicol. Chem. 

22,1295-1301. 

Paracentrotus 

lividus 

10-250 

Pb(NO3)2 

48h 34.3ppt Artificial 

Seawater 

8.3 22°C 40* 

(nominal)  

Radenac et al. 2001, 

Mar. Env. Res. 51, 

151-166. 

Paracentrotus 

lividus 

10-1200 

Pb(OCOCH3)2 

48h 33ppt Filtered 

Seawater 

 21°C 482 (101) 

(nominal) 

His et al. 1999, Water 

Res. 33,1706-1718. 

Paracentrotus 

lividus 

250-4000 

Pb(NO3)2 

48h Artificial 

Seawater 

 20°C 509 (C.V.3.2) 

(measured) 

Fernandez & Beiras, 

2001, Ecotox. 10, 

263-271. 

*this value was calculated by Novelii et al 2003 using data from Radenac et al. 2001(EC50 = 250 µg L
-1

). Endpoint measured was % 

larva reaching pluteus stage at 48h. 
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Figure Legends: 

 

Figure 1. The influence of salinity on percent normal development in embryos of A. 

M. trossolus, B. M. galloprovincialis and C. S. purpuratus in the absence of 

added metals. Values are means ± SEM of 5 replicates.  

 

Figure 2. The influence of salinity and two sources of DOC on toxic responses (% 

abnormal development) of M. trossolus embryos exposed to various 

concentrations of Pb during 48 h development tests. Values are means ± 

SEM of 5 replicates. 

 

Figure 3.  A. Whole body accumulation of Pb in M. galloprovincialis. Values are 

means ± SEM of 5 replicates. 

               B.LA50 concentrations for M. galloprovincialis calculated from tissue 

accumulation relative to exposure Pb concentration.  

               C. Whole body accumulation of Zn in M. galloprovincialis. Values are 

means ± SEM of 5 replicates. 

                D. LA50 concentrations for M. galloprovincialis calculated from tissue 

accumulation relative to exposure Zn concentration.  

 

Figure 4.  A. Whole body accumulation of Pb in S. purpuratus Values are means ± 

SEM of 5 replicates. 

               B. LA50 concentrations for S. purpuratus calculated from tissue 

accumulation relative to exposure Pb concentration.  

               C. Whole body accumulation of Zn in S. purpuratus Values are means ± 

SEM of 5 replicates. 

                D. LA50 concentrations for S. purpuratus calculated from tissue 

accumulation relative to exposure Zn concentration.  

 

Figure 5. Mean dry weight per embryo (Values are means ± SEM of 5 replicates) 

 relative to Pb exposures in A. M. galloprovincialis B. S. purpuratus  

 relative to Zn exposures in C. M. galloprovincialis D. S. purpuratus  
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